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NF-κB in respiratory diseases
In light of the large number of proinflammatory genes that interact with NF-κB, it is not surprising that this protein
complex plays a central role in the pathogenesis of lung diseases by regulating the pathophysiological transcription
of proinflammatory cytokines and chemokines, which may include TNF-α, IL-1β and IL-6, and proinflammatory
enzymes such as cyclooxygenases and nitric oxide synthase [1]. The heightened expression or dysregulation of NF-
κB resulting from physicochemical or physiological stimuli in the lungs manifests as chronic respiratory ailments;
namely, asthma, SARS, chronic obstructive pulmonary disease, pulmonary arterial hypertension (PAH), systemic
inflammatory response syndrome, acute respiratory distress syndrome, cystic fibrosis and acute lung injury [2].

Advanced nanosystems for targeting NF-κB in respiratory ailments
Advanced drug delivery nanosystems offer systemic and noninvasive routes of administration of high- and low-
molecular-weight nonpolar and polar therapeutics while enabling epithelial or subepithelial absorption of the cargo
pharmaceutical agent [3]. Tethering of the advanced delivery vehicles with absorption enhancers and mucolytic agents
further improves their transit across the tight junctions of lung epithelia, avoiding the excessive mucous layer that
is characteristic of obstructive respiratory diseases. The aerosolized, biocompatible, polysaccharide, nanoparticle-
based, advanced drug delivery system ‘Novochizol’, identified as a first-in-class drug delivery vehicle for impending
COVID-19 drugs, displays a strong adherence to the lung epithelia. In addition, it exhibits sustained drug release
properties and demonstrates remarkable biocompatibility [4]. The nanosystem enables the achievement of an
optimal drug concentration in SARS-infected lungs while avoiding undesirable systemic distribution of the cargo
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drug molecules, thereby achieving an optimal therapeutic effect by improving the pharmacokinetic properties of the
drug. Similarly, polymeric nanoparticles with marked biocompatibility and biodegradability prompt a sustained
drug release, thereby maintaining optimum absorption, distribution, bioavailability, metabolism and excretion
of the loaded therapeutic. Stimuli responsiveness represents an important feature of polymeric nanoparticles in
attaining drug delivery applications by exploiting the local physical, chemical, metabolic or biological environment
of the target site [5]. Vesicular drug delivery systems represent a state-of-the-art approach for carrying the cargo
pharmaceutical to the target site irrespective of its hydrophilicity or lipophilicity. Specifically, vesicular drug
delivery systems that carry a positive surface charge achieve incredible electrostatic adherence to the oppositely
charged mucous membrane, which avoids enzymatic degradation of the encapsulated drug molecules and prevents
their mucociliary clearance. Importantly, vesicular drug delivery systems prove highly effective in co-delivery of
adjuvants with desired pharmaceuticals, achieving an ideal mitigation effect in respiratory diseases [6]. Further
advancements have identified metallic, nanoparticle-based drug delivery systems for therapeutic delivery across the
respiratory system and the simultaneous imaging of affected tissues or infected sites owing to the characteristic
optoelectronic, plasmonic or magnetic properties of the parent metallic nanoparticle. The physical or chemical
loading of drug molecules or bioconjugation of antibodies and therapeutic nucleic acids or nucleotides on the
surface of physicochemically distinct metal nanoparticles further promotes their drug delivery applications in
respiratory ailments [7].

The remarkable profile of advanced drug delivery systems provides a robust candidature in the contemporary
respiratory disease management paradigm. However, regulation of the pathogenesis of inflammation-driven disease
by these systems represents the cornerstone of concomitant respiratory therapy. Dysregulation of the NF-κB
pathway serves as the major causative factor in the production of proinflammatory metabolites and dysregulated
lung tissue homeostasis, hence causing the onset of the pathophysiology of respiratory disorders. The targeting of the
NF-κB pathway by advanced drug delivery systems therefore provides a future path for the effective management
of respiratory health.

Metal nanoparticles for the targeting of NF-κB in respiratory ailments
Ag nanoparticles (AgNPs) are reported to have attenuated allergic airway inflammation and hyperresponsive-
ness caused by upregulation of the NF-κB pathway, which resulted in increased levels of IL-4, IL-5 and IL-13,
in an ovalbumin-induced murine model of allergic airway disease [8]. The administration of AgNPs caused a
marked downregulation in the heightened levels of ovalbumin-triggered intracellular reactive oxygen species in
the bronchoalveolar lavage fluid of test animals and demonstrated a significant decrease in NF-κB-regulated Th2
cell-mediated inflammation, which is the leading immune factor in the induction of asthma. However, in vitro
and in vivo analyses have suggested the contribution of AgNP-induced apoptosis to the onset of cellular senescence
in the lung via upregulation of the NF-κB–COX-2–PGE2 axis, which results in the progression of cystic fibrosis
in animal models [9]. By contrast, recent reports concluded that the utilization of AgNP-induced reactive oxygen
species generation led to NF-κB-directed cellular apoptosis, preventing the invasion and malignancy of lung adeno-
carcinoma A549 cells and suppressing the growth and progression of human lung cancer H1299 cells in a xenograft
severe combined immunodeficient mouse model [10,11]. Nevertheless, AgNP-induced alterations in NF-κB-related
genes depend on the cell type, nanoparticle size and basal activity of NF-κB, further validating NF-κB-targeted
respiratory drug delivery by AgNPs [12].

Biocompatible polymers for targeting NF-κB in respiratory ailments
Intratracheal instillation of polymeric nanoparticles constituted within bioabsorbable PEG-PLGA in a rat model of
monocrotaline-induced PAH for 2 weeks prevented the activation of NF-κB, thereby discouraging the progression
of PAH and remodeling of pulmonary arteries by monocrotaline [13]. The survival rate of the test animals with
monocrotaline-induced PAH further improved during the third week of polymeric nanoparticle administration.
Glycol chitosan nanoparticles with hyaluronic acid surface fabrication served as a pH-sensitive advanced drug
delivery system for co-delivery of doxorubicin and celecoxib in non-small-cell lung cancer, thereby improving
drug pharmacokinetics and tissue distribution of the cargo molecules [14]. The drug delivery nanosystem, with an
average diameter of 150 nm, displayed stability at a neutral physiological pH of 7.4, whereas drug release using this
nanosystem occurred at an acidic pH of 6.0 and 4.0 in response to the tumor microenvironment. Importantly, the
drug delivery nanosystem remarkably downregulated the expression of NF-κB-related genes compared with free
doxorubicin and celecoxib. The association of NF-κB with cancer cell survival, cell proliferation and immune cell
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response and its inhibition by the hyaluronic acid-decorated glycol chitosan nanoparticles encourage a novel drug
delivery approach in the treatment of respiratory diseases by targeting the NF-κB pathway with advanced drug
delivery vehicles.

Vesicular nanosystems for targeting NF-κB in respiratory ailments
A liposome drug delivery system loaded with dexamethasone demonstrated marked mitigation of silica-induced
pulmonary toxicity by downregulating the expression of NF-κB and subsequently upregulating the production of
anti-inflammatory IL-10 by leukocytes [15]. Histopathological analysis confirmed the attenuation of lung fibrosis
and the reduction in silica-induced pulmonary toxicity (based on the ratio of right lung to total body weight)
and the reduction in hydroxyproline content in the right lung, which served as the biochemical index for fibrosis.
Liposomal curcumin delivery offered similar effects in radiation pneumonitis by inhibiting the expression of NF-
κB in addition to downregulating the expression of IL-6, IL-8, TGF-β and TNF-α instigated during thoracic
radiotherapy [16]. The combination of radiotherapy and curcumin liposomes improved intratumoral apoptosis,
reduced lung fibrosis and ameliorated the sensitivity of target murine lung carcinoma (LL/2) cells to radiation
therapy.

Dry powder inhalers for targeting NF-κB in respiratory ailments
Dry powder inhalers have proven to be highly beneficial in achieving a higher drug concentration in the lungs while
maintaining low systemic exposure to counter the poor solubility and systemic side effects of the drugs. ‘Tranilast’,
which is used for treating airway inflammation, causes these side effects, and this led to the development of a
novel powder inhaler that attenuates NF-κB-triggered inflammation in the airways [17]. The drug delivery powder
maintained its therapeutic properties even after 6 months of storage at room temperature. Inhalation of the dry
powder formulation remarkably inhibited inflammation in experimental chronic obstructive pulmonary disease
models and asthma mainly because of the downregulation of NF-κB and COX-2 expression. Similarly, liposomal
andrographolide dry powder inhalers provided relief upon intratracheal spraying in test animals infected with
staphylococcal pneumonia [18]. Andrographolide liposomes displayed a mean diameter of 77.91 nm with a negative
zeta potential of -56.13 mV. Rehydration of liposomal andrographolide dry powder inhalers led to the recovery
of liposomes that demonstrated suitability for pulmonary delivery of the therapeutic agent, with a fine particle
fraction of 23.03% and mean mass aerodynamic diameter of 4.87 μm. The dry powder formulation proved highly
effective compared with the tenfold dose of andrographolide and penicillin. Inhibition of the phosphorylation of
NF-κB provided the principal basis for the downregulation of proinflammatory cytokines as well as the regulation
of immune response with regard to the bacterial infection in test animals.

Nanocomposites for targeting NF-κB in respiratory ailments
Nanocomposites composed of porous chitosan oligosaccharides and SiO2 nanoparticles displayed a pH-sensitive
release of the encapsulated drug while achieving a sustained release pattern and maintaining an optimal concentra-
tion of the cargo drug at acute lung injury sites [19]. The nanocomposite significantly downregulated the heightened
expression of NF-κB and related inflammatory cytokines in caerulein-administered animal models. Attenuation of
the NF-κB pathway occurred as a result of the activation of Nrf2 expression in animals treated with the nanocom-
posite. Similarly, Zn-doped CuO nanocomposites notably inhibited the development of lung adenocarcinoma
A549 cells by inhibiting the expression of nucleus NF-κB p65 [20]. The inhibition of NF-κB-mediated oxidative
stress in cancer cells by nanocomposites encourages their further utilization in the treatment of respiratory diseases.

Conclusion & future perspective
The NF-κB pathway plays an important role in the instigation of the acute inflammatory response, which is found
to be upregulated in most chronic respiratory diseases. The contemporary drug delivery paradigm for treating these
disorders, which is broadly based on dry powder inhalers, nebulizers and aerosolized formulations, faces persistent
challenges related to several factors; namely, target specificity, preservation of drug pharmacokinetic profile and dis-
tribution to infected tissues. Furthermore, the utilization of aerosols enhances the possibility of respiratory infection
as a result of accidental inhalation. Advanced drug delivery vehicles respond to the necessity for a new approach
by effectively managing the intricacies associated with conventional methods. Metal nanoparticles, vesicular drug
delivery systems, polysaccharide-based therapeutic delivery vehicles, polymeric nanoparticles, nanocomposites and
respirable powder approaches selectively target the NF-κB pathway to overcome the acute inflammatory response
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and oxidative stress associated with the onset of respiratory pathogenesis. In addition, these tools present themselves
as robust candidates for the therapeutic delivery of drugs in the treatment of COVID-19, where the NF-κB pathway
plays a major role in triggering the cytokine storm. These claims further validate their candidacy as the prospective
respiratory drug delivery vehicles of the future.
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