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Abstract: A robust and adaptive smartphone-based colorimetric sensing platform is reported. 
It utilizes multiple regression analysis to address nonlinear concurrent variations of multiple 
sensing variables. The instrument can perform colorimetric measurement with improved 
accuracy over a wide range where both color and intensity information of a colorimetric 
signal varies independently often simultaneously. The instrument utilizes the smartphone in-
built flash LED (λ = 400-700 nm) to illuminate the test sample and the phone’s CMOS 
camera as a detector, collecting and digitizing the reflected light from that sample. 3D 
printing technology is used to fabricate a specially designed optical enclosure that performs as 
a diffuser, neutral density filter, and reflector to ensure constant and uniform illumination of 
the sensing platform. Thus, an ultra-low-cost (< 3 USD) portable smartphone-based 
colorimetric diagnostic system becomes feasible along with an easy-to-use customized 
android app adaptable for multi-analyte assays. The performance of the colorimetric 
measurement system is validated by: (a) monitoring the concentration of a laser dye, (b) 
measuring the pH of drinking water, and (c) quantifying the chlorine concentration of shrimp 
ponds. 
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1. Introduction

Smart sensing and measurements are underpinning the Internet-of-Things (IoT) typically 
located at the network end face where there is a point-of-need [1-5]. These measurements 
usually rely on colorimetric detection that is simply based on digitizing color information of a 
sample using a portable camera device. The color information is quantified and used to assess 
the physical and chemical characteristics of the target analyte. Recent advances in 
complementary metal-oxide-semiconductor (CMOS) technologies coated with selective 
partial red, green and blue (RGB) filters and their interfacing electronics have enabled 
compact and low-cost colorimetric detection with portable smart devices such as smartphone, 
digital cameras, and more [6-9]. These can offer an equivalent performance against high-end 
photodetectors and arrays used in benchtop instruments. In particular, the smartphone-based 
colorimeter can offer easy-to-use, fast measurement, remote control, low-cost and data 
management. 

Colorimetry has been used widely for smartphone-based measurements because it is 
simple and offers excellent color detection [10-15]. Colorimetry is not a spectral 
measurement approach [16-18] but rather a color analysis of the combinations of integrated 
emission bands within the three-color spectral bands as filtered to the CMOS detector by 
distributed RGB pixel filters. In a simple smartphone colorimeter, sensing parameters are 
typically extracted by recording the intensity of the RGB color channels of the CMOS camera 
and calibrating them against the response recorded by a standard colorimeter [10, 11, 19, 20]. 
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However, the technique is sensitive to variations in ambient illumination often made worse by 
software adjustments. There are also non-monotonical changes in RGB responses in different 
colors and intensity that happen with the variation of analytes which are simply difficult to 
determine using the linear response within a single-color channel [19, 21]. The first part has 
been addressed partially by introducing 3D-printable custom-designed enclosures that mainly 
aim to block the unwanted stray illumination reaching the camera detector [4, 14, 22]. The 
addition of a reference to the measurement also helps to reduce the unexpected biasing of 
results from ambient variations thus allowing measurements by direct camera imaging [23, 
24]. Nevertheless, the later part introduces severe problems in colorimetric detection 
particularly that associated with an independent or concurrent variation of color and intensity. 
Here, intensity means the quantity of visible light reflected by or transmitted through the 
sample solution and captured on the CMOS detector for only three specific color bands that 
are defined by the R, G, and B color filters of the detector and quantified to fit within a 
number between 0 to 255 (8-bits number). The variation of intensity and color with samples 
can be correlated using color models such as HSV that show relatively better performance 
and stability as compared to the primary RGB model [25, 26]. HSV is a cylindrical coordinate 
representation of an RGB color model where the color change information is defined by the 
hue (H) and the intensity parameter is represented by the value (V) and saturation (S) 
information of the color map [25-29]. The change of H information is reported with a 
monotonic change of sensing parameters such as pH, glucose, protein in bio-samples [30, 31]. 
Other applications show a sharp variation of S parameters with analytes at a particular H-
value [32]. It should be noted that each of the above techniques demonstrates a significant 
contribution to addressing the issues of traditional CMOS-based colorimetric sensing. 
However, the dependence on a single sensing variable reduces the detection sensitivity and 
the range of detection. The use of both variables was partially utilized in a smartphone 
colorimeter for sensing multi-analytes where color and intensity responsive analytes are 
separated as H-type and S-type respectively [26]. Their actual measurement, however, 
considers a single sensing parameter. To enable an accurate, highly sensitive, and widely 
applicable colorimetric detection, image processing requires an adaptive analysis that 
combines both concurrent and differential variations of multiple sensing variables (color and 
intensity) [33]. 

In this work, a generalized and adaptive colorimetric sensing platform is developed using 
multiple regression analysis of the nonlinear concurrent variations of color and intensity. The 
underlying idea is based on the increasing and decreasing optical sensing parameters with 
associated weight vectors that produce a proportional output signal. A 3D-printed enclosure is 
designed to hold the sample cuvette attached to the smartphone camera, enabling it to perform 
measurements in fields. The performance of the colorimeter considering both HSV and RGB 
color model is analyzed and validated with a field demonstrated colorimetric quantification in 
three different applications: (1) concentration quantification of a laser dye, (2) pH 
measurement of drinking water, and (3) chlorine (Cl) concentration quantification of shrimp 
ponds.    

2. Smartphone colorimeter: materials and methods  

2.1 Optical layout 

The optical layout of the smartphone colorimeter is shown in Fig. 1(a). It mainly consists of a 
smartphone attachment holding a sample cuvette at a fixed distance (d = 3.5 cm) in front of 
the rear-facing camera unit. The colorimeter utilizes the in-built flash LED (λ = 400 ~ 700 
nm) for illuminating the sample whereas the rear-facing CMOS camera is used for detecting 
the colors. For optimal imaging of the camera, a customized pinhole and diffuser setup are 
used that allow the flash LED to illuminate the sample uniformly. The emission of the LED 
propagates from the source to the sample as well as when it reflects back to the camera from 
the attachment surface placed at the other side of the sample cuvette wall. The use of back 
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the changes in measurement. In conventional smartphone colorimeters, simple linear or 
nonlinear regression techniques are used to quantify a measurement variable based on a single 
explanatory variable extracted by utilizing single channel information of HSV color model [2, 
3, 7, 12]. The RGB values of the digitized image are also directly used to calculate a single 
explanatory variable (color ratio or an average of the RGB values) for simple regression 
analysis in many smartphone-based analytical measurements [4, 34]. But, a well-defined 
study variable of the sample is highly correlated with all the H, S, and V channels information 
linearly or nonlinearly. In RGB color model, this change is associated with R, G, and B 
information. In order to include the effects of all possible explanatory variables, we introduce 
a multiple regression analysis that considers the nonlinear concurrent variations of H, S, and V 
information or R, G, and B information. The R, G, and B channel information are extracted 
from the color parameters captured by the smartphone camera that forms an equivalent RGB 
color image on the screen. To extract the H, S, and V values, the primary RGB color is 
transformed into equivalent cylindrical coordinates by using the Eqs. (1)-(6). In HSV color 
model, color (H) and intensity (S and V) information is decoupled. But these information are 
complexly composited among the three channels of the RGB color model [26, 35].    
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Polynomial regression, a technique of multiple linear regression analysis [36] is then 
applied to formulate the generalized equation for the dependent study variable P being 
measured by considering the independent explanatory variables X, Y, and Z associated with 
the concurrent nonlinear variation of color and intensity. Explanatory variables X, Y, and Z 
have to be considered as H, S and V values for the HSV model and as R, G and B channel 
information for the RGB model. The study variable is related to explanatory variables through 
regression coefficient matrices denoted as [ ia ] and [ ijb ] in a second-order polynomial 

expressed by Eq. (7). In Eq. (7), [ ia ] is the matrix of linear effect parameters and [ ijb ] is the 

matrix of quadratic and second order interaction effect parameters [36]. In order to define Eq. 
(7) for a specific application, the least squares method is applied that estimates the regression 
coefficients from an initial known set of P and X, Y, Z values. The final equation with known 
coefficient can be applied as a calibration tool to calculate subsequent unknown values of P 
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The calibration of the smartphone colorimeter for a specific application enables the 
instrument to determine the regression coefficients in Eq. (7) for a specific analyte using a 
known set of standard samples. This application-specific response will allow the user to 
measure an unknown sample within the detection limit of the device. In this case, the 
instrument has been calibrated for demonstrating its performance in measuring the 
concentration of a laser dye (Rhodamine B, [RhB]) and two important quality indicators of 
the water system (pH and chlorine, [Cl]). 

In order to calibrate the device for measuring the [RhB], a total of 15 samples with [RhB] 
~ 0.2 to 4.0 ppm are prepared using distilled water. Images of the samples captured by the 
smartphone camera are shown in Fig. 3(a). The calibration option of the smart colorimetric 
app processes the images to extract their primary explanatory variables H, S and V. Figure 
3(b) shows the variation of H, S, and V with [RhB]. It is found that the S value changes 
significantly with [RhB] whereas the H and V values are almost constant over the 
concentration range as also indicated in their images [Fig. 3(a)]. Because only intensity 
information changes with respect to [RhB] variation [16]. These sets of data have been 
applied in the polynomial regression analysis to formulate a second-order polynomial 
equation on the LabFit platform. The polynomial fit of [RhB] with a determination 
coefficient, R2 = 0.9957370 defines the elements of the regression coefficient matrices 
corresponding to H, S, and V independent variables in Eq. (7). The calibrated regression 
coefficient matrices are summarized in Table 1. Polynomial regression analysis based on the 
RGB model [Fig. 3(c)] is also performed and corresponding regression coefficient matrices 
are tabulated in Table 1. In this case, determination coefficient (R2 = 0.9996446) is better than 
that of HSV model which implies better polynomial fits.  

A similar calibration procedure needs to be applied before measuring any other analytes 
using the smartphone colorimeter. For example, to use the device for pH sensing in water, 
calibration is performed against a total of 11 standard buffer solutions of known pH ranging 
from pH ~ 4.0 to 9.0. The solutions are prepared using a titration of 0.1 M NaOH in standard 
acetate and phosphate buffer at an average temperature of T ~ 25 °C. The pH value of each 
buffer solution is confirmed by using a standard pH meter (Ezodo PH5011).  
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Fig. 3. Calibration of smartphone colorimeter. Standard samples for (a) [RhB] quantifier, (d) 
pH meter, and (g) [Cl] quantifier. Calibration curves: [RhB] quantifier based on (b) HSV & (c) 
RGB color model; pH meter based on (e) HSV & (f) RGB color model; [Cl] quantifier based 
on (h) HSV & (i) RGB color model. The error bars illustrate the relative standard deviation 
over three measurements. 

To get a colorimetric indication of pH samples, a universal indicator solution of 0.2 ml is 
added to 10 ml of each buffer solution. The universal indicator changes the color differently 
at different values of pH as shown in Fig. 3(d). These images are analyzed to extract the 
regression coefficient matrices for the polynomial expression of pH for both HSV and RGB 
model [Table 1]. Unlike [RhB], all the explanatory variables change with pH value [Fig. 3(e) 
and (f)] which illustrates the nonlinear and concurrent variation of color and intensity also as 
indicated in Fig. 3(d). 

To apply the smartphone colorimeter for measuring [Cl] content in water, it is calibrated 
against 24 standard samples of [Cl] ~ 0.1 to 8.0 ppm prepared by dissolving calcium 
hypochlorite (Ca(ClO)2) in distilled water. A volume of 10 ml of each sample is added to 150 
µl of potassium iodide-starch (KI-starch) solution prepared using a standard iodometric 
method [23]. The final solutions give a colorimetric indication of [Cl] in water as depicted by 
the images shown in Fig. 3(g). The sample images are analyzed following the same procedure 
as discussed above and the calibration curves for the HSV and RGB model are depicted in 
Figs. 3(h) and 3(i) respectively. Similar to the pH calibration, all possible explanatory 
variables are impacted and influenced the sample color [Fig. 3(g)] although the effective 
change of variables associated with the intensity and color information varies differently for 
the different rage of detection. Finally, the calibration equations are uploaded to the 
smartphone app to measure the [RhB], pH, and [Cl] of unknown samples. 

Table 1. Estimated regression coefficient matrices for different colorimetric tests 
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3. Colorimetric measurements and performance evaluation 

After calibrating the device using multiple regression analysis, it has been applied for the 
measurement of unknown samples that contain single or multiple variations of the 
explanatory variables with the target analytes. The demonstration starts with the 
measurements of RhB in water samples at different concentrations i.e. [RhB]. RhB is a 
widely available laser dye used to test and calibrate optical parameters due to its stable optical 
and thermal properties. To evaluate the performance of the instrument, a total of 7 samples 
with known [RhB] are measured using the smartphone colorimeter. The average results of 
three repeated measurements are compared with their actual concentrations as shown in Fig. 
4(a). The deviation with the standard measurements is relatively high for HSV model based 
assessment (average error, eRhB ~ 5.2 %) than that of RGB model (average error, eRhB ~ 1.8 
%) for same range of detection. It is noted from RGB to HSV conversion [Eqs. (1)-(6)], H 
variable remains constant with respect to the intensity information which is the only changing 
variable with [RhB]. Therefore, for [RhB] quantifier, the number of effective independent 
variable ( ாܰ) of polynomial regression is reduced for HSV model ( ாܰ = 2) than RGB ( ாܰ = 
3). So, it is concluded that, RGB color model based multiple regression analysis is more 
accurate than HSV for the colorimetric assessments where only the intensity information 
changes and color information remains constant.  

The smartphone colorimeter has been used to measure the pH of drinking water from 
unknown sources. Amongst various parameters considered to measure water quality, pH is a 
particularly important indicator to determine the alkalinity or acidity of water, and standards 
for optimal pH values using different systems are set by the national and international health 
authorities. Therefore, accurate monitoring of pH is important for both biomedical and 
agricultural health. To measure the pH of drinking water, samples were collected from 7 
different water tap located in KUET, Khulna campus, and measured using the smartphone-
based colorimeter. The performance of the smartphone measurements based on HSV and 
RGB model was compared against sample measurements using a standard electrode-based pH 
meter. The smartphone measurements are in good agreement with the electrode-based 



measurements for both HSV (average error, epH ~ 0.2 %) and RGB color model (average 
error, epH ~ 0.3 %). The HSV color model-based assessment gives slightly better performance 
than RGB model. For both of these color models, the number of effective independent 
variable is same ( ாܰ = 3) because the dependent variable (pH) changes effectively with the 
independent variables of HSV and RGB model associated with color and intensity change. 
Inherently, independent variables of the HSV model decouple color and intensity information 
separately [35] and so for the colorimetric assays where both of these color information vary 
significantly, regressed equation based on HSV variables (R2 = 0.9999939) fit more 
appropriately than RGB model (R2 = 0.9997504) as illustrated in the Table 1.    

Finally, the smartphone colorimeter has been used to measure another quality indicator of 
the water system, chlorine concentration, relevant to public health. Chlorine is particularly 
important in drinking water systems used to prevent various water-borne diseases including 
cholera, dysentery, and typhoid. However, the chlorine at high concentrations is toxic to 
many living organisms including fishes in water ecosystems. At low concentration, it stresses 
fishes by damaging their gills. Therefore, accurate determination of [Cl] in the water system 
is also important to ensure safe and healthy environments for fish and other organisms living 
in the water. Consequently, the smartphone colorimeter has been applied to measure [Cl] in 
field samples. To do this, water samples of seven shrimp farms in different locations of the 
Khulna region is measured using the smartphone instrument and compared against standard 
measurements, shown in Fig. 4(c). Shrimp farming is the main agricultural product in the 
region that contributes significantly to the local economy with an annual production of 
approximately 42,000 metric tons. Unlike a traditional [Cl] measurement, the smartphone 
instrument does not require sample storage and transportation to a local laboratory. It offers 
direct, rapid, and on-site detection of [Cl] providing an immediate opportunity for recourse by 
local farmers. The device with regressive color detection allows in-field determination of [Cl] 
with an accuracy ~ 98% and ~ 96.6% for HSV and RGB color model-based measurement 
respectively. Additionally, the result can be shared using the internet connectivity for further 
expert analysis and feedback as well as archiving for both mapping and forecasting water 
quality. 
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Fig. 4. Performance evaluation of the smartphone colorimeter for both HSV and RGB color 
model-based assessment: (a) [RhB] quantification, (b) pH measurement of drinking water, and 
(c) [Cl] quantification of shrimp ponds.  

  
The effectiveness of the multiple regression-based analysis for colorimetric measurement 

in the above applications has been analyzed further by comparing the results against simple 
colorimetric measurement where a single explanatory variable (H or S or V) is used as a 
sensing parameter. For the case of colorimetric assessment of [RhB] based on single sensing 
parameter (S), measurement accuracy and range of detection are, unsurprisingly, unchanged 
after applying multiple regression analysis. This is because only one color and therefore one 
HSV parameter, S, is varying most significantly with [RhB]. But, in the case of pH 
measurement where all three-color bands change, all explanatory variables (H, S, and V) also 
change impacting the study variable pH, multiple regression generates at least a 4-fold 
improvement in pH measurement compared with using a color region or single explanatory 
variable. Similar to the pH measurement, the multiple regression also causes an expected 
improvement in [Cl] measurement performance where all of the explanatory variables change 
significantly with [Cl]. Overall, a 25-fold improvement of [Cl] detection accuracy is obtained 
over a single use of an HSV variable. In addition, the range of detection (ΔP) can be extended 
significantly by considering the impacts of both optical sensing parameters color (H) and 
intensity (S and V) in multiple regression-based analyses. For example, the detection range 
increases from ΔP = 3.9 (0.1 ~ 4.0) ppm to ΔP = 7.9 (0.1 ~ 8.0) ppm when all variables are 
considered. A similar improvement in ΔP has been achieved with the pH measurement. 

Table 2. Comparison of different colorimetric assessments based on single and multiple sensing variables  

Test 
name 

 

Detection 
range 

Average detection error 
considering multiple sensing 

parameters (%) 

Average detection error considering 
a single sensing parameter (%) 

H, S & V R, G & B H S V 

[RhB] 0.2 - 4.0 (ppm) 5.2 1.8 Too high 5.2 Too high 

pH 4.0 - 9.0 0.2 0.3 0.7 5.4 3.2 

[Cl] 0.1 - 8.0 (ppm) 2.0 3.4 Too high 49.8 Too high 

   
 

4. Conclusion 

An application independent smartphone-based colorimeter has been demonstrated by using 
the attributes of concurrent nonlinear variation of color and intensity in a polynomial 



regression-based analysis of the three-color pixel filter spectra of a CMOS camera. The 
technique improves the detection accuracy and the range of detection over the traditional 
smartphone colorimeter analysis that uses only a single sensing parameter. These 
improvements are primarily attributed to the nonlinear concurrent variation of multiple 
optical sensing variables as well as to their differential changes with the target analytes. The 
proof-of-concept has been demonstrated with a custom-designed 3D-printed smartphone 
camera attachment that allows colorimetric measurement of samples using a smart app. The 
instrument is demonstrated through the measurement of the laser dye concentration and two 
quality indicators of water systems. The present measurement approach can also be applied 
for the colorimetric quality detection and assessment of different foods and beverages, 
agricultural items, and colorimetric-based test strips using a specific calibration of the 
smartphone app. The results presented here are validated with the standard values of analytes 
that justify the detection range and the accuracy of the measurement compared to the 
conventional colorimetric detection technique. 
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