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𝛿@ Displacement of the inner ring in 𝑦 − axis 
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𝛿/ Relative deformation between the contacting elastic bodies 

𝛿1,( Flange contact deformation between roller big end and inner ring 

𝛿1,9 Contact deformations between rollers and raceways caused by 

translation motion 

𝛿1,9,2 Contact deformations of the kth slice on right and left rows 

𝛿9= Deformation of contact area 

𝜀 Roller semi-cone angle 

𝜀B Tolerances for inner race displacement 

𝜀C Tolerances for roller displacement 

𝜉 𝜉 − axis in coordinate system	(𝑃1 , 𝜉1 , 𝜂1 , 	𝜁1) 

𝜂 𝜂 − axis in coordinate system	(𝑃1 , 𝜉1 , 𝜂1 , 	𝜁1) 

𝜁 𝜁 − axis in coordinate system	(𝑃1 , 𝜉1 , 𝜂1 , 	𝜁1) 

𝜃1 Rotation angle of inner ring 

𝜆 Half angular extent of spherical roller end 

𝜇> Nominal angle between the centre line of a roller and the flange 

contact line of inner ring 

𝜇1 Angle transformed by 𝜇> to account for the shift of contact points 

between the big-end of roller and the flange of raceway under low-

speed and heavy-load conditions 

𝜇A Friction coefficient between roller and races 

𝜌 Radius of curvature 
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∑𝜌 Sum of curvature radius 

𝜎, Value of fatigue criterion related stress 

𝜎D, Critical value of the fatigue criterion 

𝜏; Largest orthogonal shear stress in contact zones 

𝜈1 Poisson’s ratios of two contact bodies 

𝜓1,, Revolution angle of inner raceway around the 𝑧1,, − axis  in the 

coordinate system k𝑜1,% , 𝑥1,% , 𝑦1,% , 𝑧1,,l 

𝜓1,8 Revolution angle of roller around the 	𝑧1,8 − axis in the coordinate 

system k𝑜1,8 , 𝑥1,8 , 𝑦1,8 , 𝑧1,8l 

𝜙1 Rotation angle of a roller 

𝜔1,E*:/ Angular velocity of cages 

𝜔1,8 Rotational velocity of rollers 

𝜔1,>8 Orbital revolution velocity of rollers 

𝜔> Velocity of outer ring 

∆𝑙2 Width of the slice 

∆𝑆, Survival probability 

𝛥𝑡 Time increment 

∆𝑉, Volume element 

𝛥+ Radial clearance 

𝛥A Axial clearance 

superscript Definitions 

𝑗 The 𝑗34 roller 

𝑓 Friction force 

Subscript Definitions 
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𝑖  Inner ring 

𝑀  𝑀 = 1, 2 indicate the right row and left row, respectively 

𝑁  𝑁 = 𝑖, 𝑜 indicate the inner and outer rings, respectively 

𝑜  Outer ring 

𝑟  Roller 
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Abstract 

Double-row tapered roller bearings (TRBs) are one of the main components of a 

modern direct-drive wind turbines, TRBs are commonly used to support the main shafts 

of wind turbines since faults can lead to the malfunctions and downtime of wind 

turbines. In recent decades, some numerical approaches have been proposed for 

calculating the contact force and pressure distribution of double-row TRBs. 

Nevertheless, most of the existing studies failed to consider angular misalignment 

between the inner and outer rings as well as the friction force between the rollers and 

raceways. A fatigue life analysis of roller bearings is typically performed for bearings 

under constant rotating speed and invariant loading conditions. The bearings used in 

floating direct-drive wind turbines, they often experience oscillating motions with 

varying loading patterns; thus, for which the standard fatigue life analysis is not valid in 

this case due to the presence of fluctuating loads. 

Notably, a quasi-static state does not exist for bearing in the actual operating condition. 

Since the dynamic model is unable to show the detailed dynamic mechanical behaviour 

of double-row TRBs such as the contact area stress, total displacement of bearing 

components of bearings, velocity and acceleration of rolling elements (by considering 

the combined radial and axial load), the angular misalignment of roller and inner ring, 

roller skewing conditions, components vibration characteristics and roller-end flange 

friction a new general dynamic model was proposed in this section based on the 

previous studies. This is because most of the previous studies are unsuitable for real 

working conditions.  

However, to verify the proposed dynamic model, a simplified finite element analysis 

(FEA) model was also established using the commercial software ANSYS Workbench. 
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Hence, the data obtained from this dynamic behaviour analysis can be used to 

implement the fatigue life prediction for the double-row TRBs, which can significantly 

benefit their design and manufacturing. 

This thesis presents a comprehensive quasi-static model to investigate the internal load 

and contact pressure distribution in a double-row TRB by considering the angular 

misalignment, the combined external loads and friction force. Most importantly, the 

presented numerical model was validated by other published references and the 

simplified FEA model. First of all, it was found that a small misalignment angle 

between the inner and outer rings can cause a significant change in the magnitude and 

distribution of the contact force and pressure. A double-row TRB with a crowned roller 

profile exhibits a substantial improvement in contact pressure distribution by 

eliminating the contact pressure. Peak contact pressure can be significantly reduced on a 

roller with crowned profile, even with a misaligned bearing. Comparisons of the 

simulated contact loads and pressure distributions demonstrate that need to consider 

angular misalignment and friction force in the modelling of large size and heavy-load 

double-row TRBs. 

Furthermore, this thesis presents a fatigue life analysis for double-row TRBs under 

oscillating external load and speed conditions in which the double-row TRB was used to 

support the main shaft of a large modern direct-drive wind turbine. Meanwhile, the 

proposed comprehensive and quasi-static model of the double-row TRB outlines the 

internal load distribution of rollers. The contact pressure of rollers is then provided 

based on an iterative scheme using the elastic contact model. Thereafter, the basic rating 

life of the double-row TRB under an oscillating external load and speed is provided to 

calculate the fatigue life. Numerical simulations were also performed to investigate the 
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effects of the oscillating load and speed, angular misalignment, and internal clearance 

on the fatigue life of this bearing.  

Finally, the simulation results of the dynamic model analysis indicated that the 

combined radial load and pure radial load have a significant effect on the vibration of 

rollers and the inner ring of double-row TRBs in a floating direct-drive wind turbine. 

Meanwhile, the angular misalignment of the inner ring also affects the vibration of the 

rollers and the inner ring itself. With an increase in the misalignment angle, the 

vibration of roller elements became increasingly apparent. The vibration frequency of 

rollers and the inner ring gradually decreased with an increasing misalignment angle. 

Additionally, the vibration of components in the double-row TRBs is sensitive to the 

initial axial preload. 

 

Keywords: Direct-drive wind turbine, Double-row tapered roller bearing, Angular 

misalignment, Contact pressure, Load distribution, Deformation, Roller profile, Fatigue 

life, Preload, Clearance, Oscillating load, Rotating speed, Dynamic behaviour, 

Vibration, Displacement. 
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