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ABSTRACT

Graphs are widely used to model relationships in various applications, such as

social science, biology, information technology, to name a few. Mining cohesive

subgraphs is one of the fundamental problems in graph analytics, where the main

aim is to find subgraphs with well-connected graph nodes/vertices. A variety

of models have been proposed to capture the cohesiveness of subgraphs with

different constraints. In this thesis, we study three cohesive subgraph models to

investigate various real-life applications better.

Firstly, we would like to detect the critical users whose leave will break the

user engagement of the network, i.e., lead many other users to drop out. Accord-

ingly, we propose the collapsed k-truss problem: detect b vertices from a graph

G, whose removal will lead to the smallest size k-truss, i.e., identifying some

specific users to strengthen the user engagement of the network/graph. From

the theoretical side, we deliver the complexity of this problem: NP-hard and in-

approximate. From the practical side, we propose an efficient algorithm that can

accelerate the computation by vitally reducing the number of candidates. Ex-

tensive experiments on real-life networks (graphs) demonstrate the effectiveness

and efficiency of our proposed algorithm.

Secondly, we study the minimum k-core search problem. Given a graph G,

an integer k and a set of query nodes Q = {q}, we aim to find the smallest size

of k-core subgraph containing all the query node q ∈ Q. As one of the most

representative cohesive subgraph models, k-core model has recently received sig-
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nificant attention. It has been shown that this problem is NP-hard with a huge

search space, and it is very challenging to find the optimal solution. There are

several heuristic algorithms for this problem, but they rely on simple scoring

functions, and there is no guarantee as to the size of the resulting subgraph

compared with the optimal solution. Our empirical study also indicates that the

size of their resulting subgraphs may be large in practice. In this thesis, we de-

velop an effective and efficient progressive algorithm, namely PSA, to provide a

good trade-off between the quality of the result and the search time. Novel lower

and upper bound techniques for the minimum k-core search are designed. Our

extensive experiments on several real-life graphs demonstrate the effectiveness

and efficiency of the new techniques.

Finally, we investigate the fortress-like cohesive subgraph, p-cohesion. Mor-

ris defines the p-cohesion by a connected subgraph in which every vertex has at

least a fraction p of its neighbors in the subgraph, i.e., at most a fraction (1− p)

of its neighbors outside. We can find that a p-cohesion ensures not only inner-

cohesiveness but also outer-sparseness. The textbook on networks by Easley and

Kleinberg shows that p-cohesions are fortress-like cohesive subgraphs that can

hamper the cascade’s entry, following the contagion model. Despite the elegant

definition and promising properties, there is no existing study on p-cohesion

regarding problem complexity and efficient computing algorithms to our best

knowledge. In this thesis, we fill this gap by conducting a comprehensive theo-

retical analysis of the problem’s complexity and developing efficient computing

algorithms. We focus on the minimal p-cohesion because they are elementary

units of p-cohesions and the combination of multiple minimal p-cohesions is a

larger p-cohesion. We demonstrate that the discovered minimal p-cohesions can

be utilized to solve the MinSeed problem: finding the smallest set of initial

adopters (seeds) such that all the network users are eventually influenced under
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the contagion model. Extensive experiments on several real-life social networks

verify this model’s effectiveness and the efficiency of our algorithms.
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Chapter 1

INTRODUCTION

Graphs are widely used to model the relationships of entities in a large spectrum

from the real world, such as social science, biology, information technology, and

collaboration networks. Given a graph G = (V,E), where V represents the

entities that interest from real-world, E represents the relationship between those

entities. With the rapid growth of graph applications, a large number of research

efforts have been devoted to many fundamental problems in analyzing graph

data, in which cohesive subgraph mining has beenwidely studied. Generally

speaking, cohesive subgraph mining aims to find one meaningful subgraph from

a given graph based on pre-defined cohesive metrics. Given the fact that the

graph data is snowballing, algorithms should be designed to handle big graphs

efficiently. For example, there were 1.73 billion daily active users for March 2020

on Facebook on average 1.

There are several frequently studied cohesive subgraph models, such as k-

truss [61], k-core [92], p-cohesion [82], clique [32], k-edge connected component

[26], densest subgraph [45], and k-plex [93], to name a few. More details can

1https://www.prnewswire.com/news-releases/facebook-reports-first-quarter-2020-results-
301049682.html
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Chapter 1 1.1. MOTIVATION

be founded in Chapter 2. This thesis mainly studied three fundamental models

together with two basic components of social networks ((1) tie strength; (2)

user engagement). Furthermore, we focus on the improvement of algorithmic

efficiency and effectiveness. In this thesis, we mainly focus on the following

problems: (1) Collapse k-truss problem: given a graph G, an integer k, and a

budget b, detecting a set of b vertices from G, s.t the removal of these b vertices

can lead to the smallest size of k-truss; (2) Minimum k-core search problem,

given a graph G, an integer k and a set of query vertices Q = {q}, we aim to find

the smallest size of the k-core subgraph containing all the query vertex q ∈ Q;

(3) Fortress-like cohesive subgraph discovering, i.e., p-cohesion. A p-cohesion is a

connected subgraph where every vertex has at least a fraction p of its neighbors

in the subgraph, i.e., at most a fraction (1 − p) of neighbors outside, and a

p-cohesion can ensure not only inner-cohesiveness but also outer-sparseness.

1.1 Motivation

With the rapid growth of information and technology, big graph mining is be-

coming more and more important. Cohesive subgraph mining is one of the

fundamental tools in analyzing network (graph) structures, which has attracted

significant interests over recent years [25, 124, 130]. Besides, cohesive subgraph

mining is vital in many real life applications, such as viral marketing [70], group

recommendation [72], and event organization [44].

How to find cohesive subgraphs meeting the pre-defined cohesive metrics

becomes an important research area in recent years. There are many aspects

to consider, i.e., efficiency, effectiveness, and scalability, because many real-life

graphs contain millions or even billions of edges and vertices. Besides, the cohe-

sive subgraph mining needs to analyze the graph structure better.

2



1.1. MOTIVATION Chapter 1

1.1.1 Collapsed k-Truss Computation

Cohen [35] introduces the cohesive subgraph model k-truss at 2008. The k-

truss is defined as a maximal subgraph, in which the support of every edge is

(k − 2) (i.e., each edge in the k-truss is contained in at least (k − 2) triangles).

The number of triangles that an edge is involved can capture the strength of

the edge [87]. The definition of k-truss ensures that each edge in the k-truss

has high embeddedness, i.e., many common friends of two users incident to the

edge. Aral and Walker[10] present that, with extensive experiments, the user

interactions can be increased with high embeddedness of edges. The definition

also deduces that each vertex in the k-truss has at least (k − 1) friends inside.

Many studies deliver the conclusion that users prefer to engage in communities

if a large number of their friends are engaged [77, 34, 18].

Wang et al. [105] conduct an in-depth study on 10 representative community

detection algorithms. In the study, the k-truss shows high quality on the com-

munity metrics and high accuracy on approximating ground-truth communities.

The k-truss computation (named M-KMF in the study) is also the most effi-

cient one among all the evaluated algorithms. Ugander et al.[102] show that the

friends’ number in local subgraphs, such as k-truss, can control the social con-

tagion, rather than the total number of friends in the graph. Benefits from the

nice properties of k-truss, many studies utilize the k-truss model to find social

communities to further analyze the network structures, e.g., [104, 129, 59, 2, 58].

Nevertheless, none of them study the importance of users concerning the k-truss

communities.

The leave of users can break down user engagement level and weaken the tie

strength inside the communities. Due to the limited budget, we aim to find the

most valuable users (i.e., critical users) whose leave can significantly decrease

the size of the k-truss. The natural problem is that, given an integer k and a

3
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Figure 1.1: Collapsed k-Truss Motivation Example

limited budget b, remove b vertices from a graph so that we can get the smallest

k-truss. This problem is named as the collapsed k-truss problem. The resulting

critical users play an important role regarding to the engagement perspective of

the communities. The problem can be used to reinforce the robustness of k-truss

communities against the attack.

Applications. The importance of the collapse k-truss problem in user engage-

ment related applications can be reflected through the following representative

example.

Example 1. Suppose that there is a project team (group), and every member

wishes to have enough familiar members in the same team to conduct better

collaboration, otherwise he/she may choose to leave.

Figure 1.1 shows a small workgroup. We model it as a network. 11 people

and their friendship construct this network. Based on the definition of k-truss,

an edge will be deleted if it is contained in less than k−2 triangles. A vertex will

be deleted if it becomes isolated. When k = 4, the 4-truss consists of ∪1≤i≤8ui.

If users in the 4-truss continue to leave, the 4-truss will be further collapsed.

For instance, the leave of u1 will lead to the quit of u2, u3 and u4. Note that the

leave of u1 deletes all the edges which are incident to u1. Then the edges (u2, u3),

(u2, u5), (u3, u4) and (u4, u7) are deleted because each of them is contained in only

1 triangle now. Finally, the collapsed k-truss by deleting u1 consists of ∪5≤i≤8ui.

4
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Towards the original k-truss, the leave of u5 can even lead to the collapse of the

whole network. However, the leave of u8 will not take away any other users. In

this sense, we prefer to give u5 the bonus or other incentives to ensure his/her

engagement.

The above example implies an essential need to find the crucial users that

may break the group efficiently. As a matter of fact, such a demand arises from

many real applications, such as social networks and collaboration networks.

Although there are many other user engagement models, such as Clique [102]

and k-core [123], have been widely used to evaluate user engagement widely, we

find that the k-truss [57] is being used to more studies especially for finding the

cohesive subgraphs when considering the tie strength of the connection between

the users. Consequently, we consider these user engagement models as a future

extension of this work. There are many unexplored works because of various

model analysis networks that come from the demand of corresponding real-life

query types, such as diversified top-k problems with clique [117] and k-core [53].

Solving these problems needs a vast demand for the study of user engagement.

Challenges. As far as we know, we are the first to propose and study the

collapsed k-truss problem. In Chapter 3, we will deliver the proof of the com-

plexity for the collapsed k-truss problem: (1) NP-hard for any k value, and (2)

in-approximate within a factor of 1− 1/e for k ≥ 4.

A basic exact solution requires to enumerate all possible answer sets with size

b. Towards a possible answer set A, we have to conduct the complete k-truss

computation with the deletion of A to find the size of collapsed k-truss. Due to

the cascade nature in k-truss computation, it is unpromising to estimate the size

of collapsed k-truss without the complete k-truss computation. Although the k-

truss computation can be done in polynomial time with efficient algorithms, the

large number of candidate answer sets makes the exact solutions unaffordable.

5
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We aim to optimize the heuristical solution for the collapsed k-truss problem,

where reducing the candidate number is critical and challenging. The compu-

tation of k-truss is based on edge deletions with the update of triangles. The

triangles’ capture in k-truss leads to a larger computation cost while also a more

cohesive structure.

The details of this work are presented in Chapter 3.

1.1.2 Minimum k-Core Search

Query processing and mining with cohesive subgraphs are fundamental problems

in graph analytics, where the main aim is to find groups of well-connected graph

vertices. k-core is an important cohesive subgraph model based on k-core con-

straint : a subgraph is a k-core (subgraph) if every vertex has at least k neighbors

in the same subgraph. Problems related to k-core model have been intensively

studied in the literature, with many existing research efforts mainly focusing

on the maximum k-core computation, which aims to find the largest induced

subgraph satisfying k-core constraint. Indeed, there are many important appli-

cations for maximum k-cores, most notably user engagement [18, 77, 18] and

influence evaluation [123, 63, 103]. Nevertheless, in some scenarios, especially

when one or a set of query vertices are involved, users may prefer a small size

group because the group size may closely related to the costs (e.g., verification or

advertisement/recommendation costs), and the stableness and homophily of the

group. In these scenarios, the maximum k-core may contain many extraneous

vertices, and it is more natural to find k-core subgraphs containing all query

vertices with the smallest size. From a theoretical perspective, it is also an inter-

esting optimization problem given the degree constraint and optimization goal

(i.e., minimize the subgraph size).

In Figure 1.2, the graph G is a k-core with k = 3. However, for the given

6
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Fi g ur e 1. 2:  A  Mi ni m u m k - C or e  M oti v ati o n  E x a m pl e, k = 3

q u er y v ert e x v 0 , it is m or e i nt uiti v e t o r et ur n t h e s u b gr a p h { v 0 , v2 , v3 , v9 , v1 0 } as

a k - c or e s u b gr a p h c o nt ai ni n g v 0 wit h k = 3 , i nst e a d of usi n g t h e  w h ol e gr a p h

G . I n t his t h esis, w e st u d y t h e pr o bl e m of mi ni m u m k - c or e s e ar c h,  w hi c h ai ms

t o fi n d t h e s m all est k - c or e s u b gr a p h c o nt ai ni n g t h e gi v e n q u er y v ert e x.  T h e

a p pli c ati o ns a n d c h all e n g es ass o ci at e d  wit h t his pr o bl e m ar e dis c uss e d b el o w.

A p pli c a ti o n s. T h e i m p ort a n c e of t h e  mi ni m u m k - c or e s e ar c h pr o bl e m c a n b e

r e fl e ct e d t hr o u g h s o m e c o n cr et e e x a m pl es i n t h e f oll o wi n g r e pr es e nt ati v e a p pli-

c ati o ns.

S o ci al  N et w o r k s. It is a c o m m o n pr a cti c e t o e n c o ur a g e t h e e n g a g e m e nt of gr o u p

m e m b ers i n t h e s o ci al n et w or k b y utili zi n g t h e p ositi v e i n fl u e n c e fr o m t h eir

fri e n ds i n t h e s a m e gr o u p ( e. g., [ 1 1 1, 4 3, 1 8, 7 7]). I n s o m e a p pli c ati o ns s u c h as

gr o u p r e c o m m e n d ati o n  wit h o n e or a s et of q u er y v erti c es ( e. g., s p e ci fi c us ers),

a s m all k - c or e s u b gr a p h  m a y b e pr ef err e d b e c a us e a l ar g e k - c or e s u b gr a p h  m a y

c o nt ai n  m a n y irr el e v a nt v erti c es f or t h e q u er y v ert e x. I n o nli n e s o ci al pl atf or ms

( e. g.,  Gr o u p o n,  Pi n d u o d u o a n d  M e et u p), t h e s yst e m  m a y r e c o m m e n d a n it e m

( e. g., ti c k et or e v e nt) t o a us er b as e d o n t h e i nf or m ati o n fr o m a s o ci al gr o u p

c o nt ai ni n g t h e us er.  Us u all y, t h e it e m h as b e e n a d o pt e d ( e. g., b o u g ht) b y s o m e

us ers i n t h e gr o u p, a n d t h er e ar e c ert ai n i nt er a cti o ns a m o n g t h es e us ers.  C o nsi d er

t h e r e c o m m e n d ati o n c ost a n d t h e st a bl e n ess of t h e gr o u p, usi n g t h e s m all est k -

c or e s u b gr a p h is  m or e f e asi bl e t h a n usi n g t h e l ar g e o n es.  B y d oi n g t his, t h e

7



Chapter 1 1.1. MOTIVATION

recommendation is more likely to be adopted, and the group members will be

better motivated to take action (e.g., buy items) together due to positive peer

influence [74].

Biological networks. It has been reported in [5, 12] that in protein-protein inter-

action (PPI) networks, the proteins in the same k-core subgraph are likely to

have the same functionalities. However, our empirical study reveals that such

homophily property only holds for small k-core subgraphs, not for large ones.

Thus, it is more reliable to use the minimum k-core subgraph if we aim to find

a group of proteins such that, with high probability, they have the same func-

tionality as the query vertex (i.e., homophily property). The cell-assembling

theory [55] in neural networks is another example. This theory suggests that

information processing in the brain is based on the collective action of groups of

neurons, which is essential for acquiring memories (e.g., [55, 20, 109, 88, 98]). As

shown in [88, 98], a neuron can be fired/activated if a certain number of neighbor

neurons have been activated. This implies that, to activate an area of neurons,

we can initially stimulate a small k-core subgraph for cost-effectiveness purpose.

Challenges. As shown in [37, 16, 8], the minimum k-core search problem is NP-

hard and cannot be approximated with any constraint factor. We remark that

this problem is more challenging than finding a k-clique containing q, although

the latter is also NP-hard, in the sense that minimum k-core search needs to

explore neighbors with more than one hop. As such, it is cost-prohibitive to find

optimal solution for minimum k-core search problem in practice given the huge

search space involved.

To circumvent this obstacle, existing studies [37, 16] propose greedy algo-

rithms to incrementally include candidate vertices according to their scoring

functions till the resulting subgraph is a k-core subgraph. These algorithms are

simple and time efficient, but they do not offer any quality guarantee over the

8



1.1. MOTIVATION Chapter 1

size of the resulting k-core subgraph. Therefore, we propose a progressive algo-

rithm by developing novel techniques to incrementally derive lower and upper

bounds for the size of the minimum k-core containing the query vertex. By doing

this, we can safely terminate the search once the desired approximate ratio is

reached.

The details of this work are presented in Chapter 4.

1.1.3 p-Cohesion Computation

Morris [82] defines the p-cohesion by a connected subgraph in which every vertex

has at least a fraction p of its neighbors in the subgraph, i.e., at most a fraction

(1 − p) of its neighbors outside. We can find that a p-cohesion ensures not

only inner-cohesiveness but also outer-sparseness. The textbook on networks

by Easley and Kleinberg [41] shows that p-cohesions are fortress-like cohesive

subgraphs which can hamper the entry of the cascade, following the contagion

model.

The advantages of the p-cohesion model over other existing cohesive subgraph

models are twofold: first, with a large p value, we can find a p-cohesion ensures

not only inner-cohesiveness, as the vertices inside a p-cohesion are cohesive; but

also outer-sparseness, as the outside neighbors of the p-cohesion have a sparse

connection to the p-cohesion; second, in many applications, it is more natural

to consider the neighbors’ percentage instead of the same number of neighbors

(such as the k value in a k-core) within the cohesive subgraph. For instance,

in real-life social networks, a large-degree user may need more neighbors than a

small-degree user to encourage her/him to adopt a behavior [13].

The p-cohesion is also related to the contagion model, which is introduced

in [82] to study the interaction of large populations: given a graph with some

initial adopters of a behavior ‘A’ and a cascading threshold r ∈ (0, 1), a user

9



Chapter 1 1.1. MOTIVATION

a -cohesion with = 0.6

Figure 1.3: A p-Cohesion in A Small Graph, p = 0.6

will adopt ‘A’ if at least a fraction r of his/her neighbors already adopted ‘A’.

Clearly, with the contagion model, for any p-cohesion S with p > (1−r), none of

the users in S will adopt ‘A’ if S does not contain any initial adopters; in other

words, the influence coming from outside of S alone cannot affect any user in S.

In this sense, a p-cohesion is a fortress regarding the contagion model.

Example 2. Figure 1.3 shows a small graph. Suppose p = 0.6, we use the

gray-filled rectangles to label every user u with the smallest number of neighbors

required for u to stay in a p-cohesion. A minimal p-cohesion S is marked in the

dashed circle, which is the subgraph induced by vertices u1, u2, u3, u4, and u5.

Suppose r = 0.5 in the contagion model and there is no initial adopter in S for

product ‘A’, any user in S will not adopt ‘A’ even if all the other users (not in

S) adopted ‘A’.

Applications. The fortress-like cohesive subgraphs (i.e., p-cohesions) are crit-

ical for information diffusion related applications. They may be information

islands in social networks, focalization in viral marketing, etc. We may benefit

from exploiting the fortress property of p-cohesions. For instance, in viral mar-

keting, it is usually hard to market a new product to homogeneous users in social

groups (e.g., p-cohesions) who use another competing product. In contrast, these

users form a business focalization [41]. Offering incentives such as discounts or

10
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fr e e pr o d u ct tri als t o us ers i n p - c o h esi o ns  m a y h el p i n t h e s u c c essf ul  m ar k eti n g

of a n e w pr o d u ct.

I n t his t h esis,  w e ar e i nt er est e d i n t h e  mi ni m al p - c o h esi o n pr o bl e m  w h er e  w e

s a y a p - c o h esi o n S is  mi ni m al if t h er e d o es n ot e xist a pr o p er s u b gr a p h S 0 of

S (S 0 ⇢ S )  w hi c h is als o a p - c o h esi o n.  B e c a us e: (1 ) t h e y ar e el e m e nt ar y u nits

of p - c o h esi o ns, a n d t h e u ni o n of  m ulti pl e  mi ni m al p - c o h esi o ns f or ms a l ar g er p -

c o h esi o n; ( 2 )  w e  m a y a v oi d e n u m er ati n g a n o v er w h el mi n g n u m b er of p - c o h esi o ns;

a n d ( 3 ) it is m or e us ef ul t o fi n d s m all f ortr ess es i n i n fl u e n c e-r el at e d a p pli c ati o ns.

F or i nst a n c e, it is i m m e di at e t h at t h e  w h ol e gr a p h or a c o n n e ct e d c o m p o n e nt is

a p - c o h esi o n f or a n y p v al u e, b ut t his is n ot i nt er esti n g i n t h es e a p pli c ati o ns.

Mi ni m al p - c o h esi o ns als o e n a bl e us t o fi n d g o o d h e uristi cs f or t h e  Mi n S e e d

pr o bl e m u n d er t h e c o nt a gi o n  m o d el; t h at is, gi v e n a t ar g et gr a p h a n d a c as c a di n g

t hr es h ol d r , fi n d a  mi ni m u m s et of s e e ds s u c h t h at t h e  w h ol e gr a p h is e v e nt u all y

i n fl u e n c e d.  T h e  mi ni m al p - c o h esi o ns c a n hi n d er t h e e ntr y of c as c a d es t o it, a n d

t h e v erti c es i nsi d e a p - c o h esi o n ar e r el ati v el y is ol at e d fr o m t h e o utsi d e v erti c es.

T h er ef or e, b y gi vi n g c ert ai n pri oriti es t o s e e d t h e v erti c es i nsi d e t h e  mi ni m al

p - c o h esi o ns,  w e  m a y br e a k t h e e ntr y b arri ers of t h e p - c o h esi o ns b y t h e gr e at

i n fl u e n c e p o w er of t h e s el e ct e d s e e ds.

I n t his t h esis,  w e st u d y t w o r e pr es e nt ati v e pr o bl e ms  wit h r e g ar d t o t h e p -

c o h esi o n  m o d el:  mi ni m u m p - c o h esi o n s e ar c h a n d di v ersi fi e d p - c o h esi o n e n u m er-

ati o n.

¥ Mi ni m u m p - c o h e si o n s e a r c h ai ms t o fi n d t h e s m all est p - c o h esi o n c o n-

t ai ni n g t h e gi v e n q u er y v ert e x, i. e., t h e p - c o h esi o n  wit h t h e s m all est n u m b er

of v erti c es t o  w hi c h a us er ( q u er y v ert e x) b el o n gs.  We s h o w t his pr o bl e m

is  N P- h ar d, a n d s o m e h e uristi cs ar e pr o p os e d t o effi ci e ntl y i d e ntif y a p -

c o h esi o n  wit h a s m all si z e f or t h e gi v e n q u er y v ert e x.

1 1
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¥ Di v e r si fi e d p - c o h e si o n e n u m e r a ti o n ai ms t o fi n d a s et of di v ersi fi e d

p - c o h esi o ns  w hi c h c a n c o v er as  m a n y v erti c es as p ossi bl e.  H er e,  w e c o n-

si d er di v ersit y b e c a us e, i n pr a cti c e, t h e us er  m a y b e o v er w h el m e d b y t h e

e x p o n e nti al n u m b er of  mi ni m al p - c o h esi o ns.  T h us, i n t his t h esis,  w e d esi g n

e ffi ci e nt al g orit h ms t o fi n d a s et of disj oi nt  mi ni m al p - c o h esi o ns.

C h all e n g e s. T o o ur b est k n o wl e d g e, t h er e is n o e xisti n g st u d y o n p - c o h esi o n r e-

g ar di n g pr o bl e m c o m pl e xit y a n d e ffi ci e nt c o m p uti n g al g orit h ms.  We ar e t h e first

t o fill t his g a p b y c o n d u cti n g a c o m pr e h e nsi v e t h e or eti c al a n al ysis of t h e c o m-

pl e xit y of t h e p - c o h esi o n dis c o v eri n g pr o bl e m a n d d e v el o pi n g effi ci e nt c o m p uti n g

al g orit h ms.  We pr o v e  mi ni m u m p - c o h esi o n s e ar c h pr o bl e m d o es n ot a d mit a

P T A S f or a n y p 2 ( 0, 1) , u nl ess P = N P. F or a gr a p h G , it c o nt ai ns a n e x p o n e n-

ti al n u m b er of  mi ni m al p - c o h esi o ns, f or e v er y fi x e d p 2 ( 0, 1) .

A b asi c e x a ct s ol uti o n r e q uir es e n u m er ati n g all mi ni m al p - c o h esi o ns t o s ol v e

t h e  mi ni m u m p - c o h esi o n s e ar c h pr o bl e m.  As s h o w n i n o ur e x p eri m e nt p art, t h e

n u m b er of  mi ni m al p - c o h esi o n c o nt ai ni n g a c ert ai n q u er y f or a gr a p h  wit h 7 0

v erti c es c a n b e 1 9 , 7 7 8 .1 ,  w hi c h is  m u c h l ar g er t h a n t h e gr a p h si z e.  F urt h er m or e,

t h e n u m b er of all  mi ni m al p - c o h esi o ns f or t h e gr a p h  wit h 7 0 v erti c es c a n b e

8 7 , 4 2 9 ,  w hi c h is i m p ossi bl e t o e n u m er at e all f or bi g gr a p hs.

T h e d et ails of t his  w or k ar e pr es e nt e d i n  C h a pt er 5.

1. 2  C o nt ri b u ti o n s

I n t his s e cti o n,  w e s u m m ari z e all t h e c o ntri b uti o ns i n t his t h esis.  We pr o p os e d

e ffi ci e nt t e c h ni q u es t o d e al  wit h t h e t hr e e criti c al pr o bl e ms. I n t h e f oll o wi n g, f or

e a c h of t h e m,  w e bri e fl y i ntr o d u c e o ur c o ntri b uti o ns.

1 2



1. 2.  C O N T RI B U TI O N S C h a pt er 1

1. 2. 1  C oll a p s e d k - Tr u s s  C o m p u t a ti o n

E v e n t h o u g h t h er e ar e p ol y n o mi al-ti m e al g orit h ms f or t h e k -tr uss s u b gr a p h c o m-

p ut ati o n [ 3 5, 1 0 4],  w e pr o v e t h at t h e pr o bl e m of fi n di n g criti c al us ers a c c or di n g

t o k -tr uss is  N P- h ar d a n d i n- a p pr o xi m at e.  A str ai g htf or w ar d s ol uti o n is t o e n u-

m er at e all p ossi bl e a ns w er s ets  wit h a si z e of b . T o w ar ds a p ossi bl e a ns w er s et

A , w e h a v e t o c o n d u ct t h e c o m pl et e k -tr uss c o m p ut ati o n  wit h t h e d el eti o n of

A t o fi n d t h e si z e of c oll a ps e d k -tr uss.  We s h o w t h at t his is n ot p ossi bl e b e-

c a us e of t h e l ar g e n u m b er of c o m bi n ati o ns of b v erti c es fr o m t h e bi g gr a p h  wit h

milli o n or e v e n billi o n v erti c es. I n t his t h esis,  w e s h o w t h at t h e p erf or m a n c e

c a n b e i m pr o v e d b y c o nsi d eri n g t h e pr u ni n g r ul e.  O ur t e c h ni q u e c a n r e d u c e t h e

s e ar c h s p a c e dr a m ati c all y.  O ur pri n ci p al c o ntri b uti o ns f or t h e c oll a ps e d k - c or e

c o m p ut ati o n ar e as f oll o ws.

¥ We pr o p os e a n d i n v esti g at e c oll a ps e d k -tr uss pr o bl e m t o fi n d criti c al us ers

a c c or di n g t o t h e  w ell-st u di e d  m o d el k -tr uss.  T h e pr o bl e m c a n h el p r ei n-

f or c e (r es p. d estr o y) t h e s o ci al c o m m u niti es b y e n c o ur a gi n g t h e criti c al

us ers’ e n g a g e m e nt (r es p. t h e l e a v e).

¥ We gi v e t h e pr o of of t h e c o m pl e xit y f or t h e pr o bl e m: ( 1 )  N P- h ar d f or a n y

k v al u e, a n d ( 2 ) i n- a p pr o xi m at e  wit hi n a f a ct or of 1 � 1 / e .

¥ We d e v el o p e ffi ci e nt h e uristi c al g orit h m C K T t o s ol v e t h e pr o bl e m.  T h e

pr o p os e d pr u ni n g t e c h ni q u es si g ni fi c a ntl y eli mi n at e t h e u n pr o misi n g c a n-

di d at e v erti c es.

¥ We s h o w t h e a d v a nt a g es a n d dis a d v a nt a g es of C K T b y e x p eri m e nt al c o m-

p aris o n.  A l ar g e n u m b er of e x p eri m e nts o n r e al-lif e n et w or ks e x hi bit t h e

e ffi ci e n c y a n d e ff e cti v e n ess of o ur t e c h ni q u es.

D et ails of t his  w or k ar e pr es e nt e d i n  C h a pt er 3.
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1. 2. 2  Mi ni m u m k - C o r e  S e a r c h

E v e n t h o u g h t h er e is a li n e ar ti m e al g orit h m f or t h e k - c or e s u b gr a p h c o m p u-

t ati o n [ 1 7], t h e  mi ni m u m k - c or e s e ar c h pr o bl e m is  N P- h ar d a n d c a n n ot b e a p-

pr o xi m at e d  wit h a n y c o nstr ai nt f a ct or [ 8, 1 6, 3 7]. S e v er al e ffi ci e nt al g orit h ms

w er e pr o p os e d [ 9 7, 1 6, 3 7].  W hil e, t o t h e b est of o ur k n o wl e d g e, t h e s u b gr a p hs

r et ur n e d b y t h es e s ol uti o ns d o n ot h a v e a n y g u ar a nt e e  wit h r e g ar d t o t h e o pti-

m al r es ult. I n t his t h esis,  w e pr o p os e d a pr o gr essi v e fr a m e w or k a n d t hr e e l o w er

b o u n ds, o n e u p p er b o u n d t e c h ni q u e t o fi n d t h e  mi ni m u m k - c or e  wit h a c ert ai n

g u ar a nt e e.  B el o w ar e o ur pri n ci p al c o ntri b uti o ns i n t his t h esis f or t h e  mi ni m u m

k - c or e pr o bl e m.

¥ We st u d y t h e pr o bl e m of t h e  mi ni m u m k - c or e s e ar c h  w hi c h ai ms t o fi n d

t h e s m all est k - c or e s u b gr a p h c o nt ai ni n g a gi v e n q u er y v ert e x.  A n eff e cti v e

a n d e ffi ci e nt  P r o gr essi v e Se ar c h  A l g orit h m, n a m el y P S A , is pr o p os e d t o

pr o vi d e a n a p pr o xi m at e s ol uti o n b y i n cr e m e nt all y c o m p uti n g l o w er a n d

u p p er b o u n ds of t h e o pti m al s ol uti o n.

¥ We i n v esti g at e t hr e e a p pr o a c h es t o c o m p ut e t h e l o w er b o u n d of t h e o pti-

m al s ol uti o n aft er  m a p pi n g t h e pr o bl e m of l o w er b o u n d c o m p ut ati o n t o t h e

s et  m ulti- c o v er pr o bl e m.  We als o d esi g n a n o ni o n-l a y e r b as e d h e uristi c al-

g orit h m t o fi n d s m all k - c or e s u b gr a p hs, a n d t h e s m all est k - c or e s u b gr a p hs

s e e n s o f ar  will s er v e as t h e u p p er b o u n d as  w ell as t h e a p pr o xi m at e s ol u-

ti o n.

¥ We c o n d u ct c o m pr e h e nsi v e e x p eri m e nts o n r e al-lif e gr a p hs t o e v al u at e t h e

pr o p os e d t e c h ni q u es. T h e r es ults d e m o nstr at e t h e e ffi ci e n c y a n d e ff e cti v e-

n ess of o ur  m et h o ds.  P arti c ul ar y,  w e s h o w t h at t h e pr o p os e d t e c h ni q u es

o ut p erf or m t h e st at e- of-t h e- art t e c h ni q u e S- G r e e d y [ 1 6] i n t w o  w a ys: (1 )

b y usi n g o ur u p p er b o u n d t e c h ni q u e al o n e, t h e c orr es p o n di n g gr e e d y al-

1 4



1. 2.  C O N T RI B U TI O N S C h a pt er 1

g orit h m, n a m el y L- G r e e d y , d o mi n at es S- G r e e d y u n d er all s etti n gs i n t h e

e x p eri m e nts b e c a us e t h e f or m er c a n al w a ys fi n d s m all er k - c or e s u b gr a p hs

wit h l ess s e ar c h ti m e; a n d ( 2 ) P S A al g orit h m e q ui p p e d  wit h b ot h l o w er

a n d u p p er b o u n ds t e c h ni q u es c a n f urt h er si g ni fi c a ntl y r e d u c e t h e r es ulti n g

s u b gr a p h si z e a n d pr o vi d e g o o d tr a d e- o ff b et w e e n r es ult q u alit y a n d t h e

s e ar c h ti m e.

T h e d et ails of t his  w or k ar e pr es e nt e d i n  C h a pt er 4.

1. 2. 3 p - C o h e si o n  C o m p u t a ti o n

D es pit e t h e el e g a nt d e fi niti o n a n d pr o misi n g pr o p erti es of t h e p - c o h esi o n  m o d el,

t h er e is n o st u d y o n t h e pr o bl e m c o m pl e xit y or t h e r el at e d e ffi ci e nt al g orit h ms t o

o ur b est k n o wl e d g e.  A n e x a ct s ol uti o n f or s e ar c hi n g t h e  mi ni m u m si z e p - c o h esi o n

is t o e n u m er at e all  mi ni m al p - c o h esi o ns a n d r et ur n t h e s m all est si z e o n e.  W hil e

t h e tr e m e n d o us n u m b er of  mi ni m al p - c o h esi o ns  m a k e it i m p ossi bl e t o c o m p ut e

all of t h e m. I n t his t h esis,  w e pr o v e d t h at t h e  mi ni m u m p - c o h esi o n  mi ni n g d o es

n ot a d mit a  P T A S, u nl ess p  =  N P, a n d t h e n u m b er of all  mi ni m al p - c o h esi o ns is

e x p o n e nti al.  Fr o m t h e or y t o pr a cti c e,  w e d e v el o p e d s o m e t e c h ni q u es t o c o m p ut e

o n e  mi ni m al p - c o h esi o n c o nt ai ni n g a c ert ai n q u er y v ert e x a n d c o m p ut e a disj oi nt

s et of  mi ni m al p - c o h esi o ns f or gr a p hs. I n t his t h esis,  w e  m a d e t h e f oll o wi n g

c o ntri b uti o ns.

¥ O n t h e t h e or eti c al si d e,  w e pr o v e t h at ( 1 ) t h e pr o bl e m of fi n di n g t h e s m all-

est p - c o h esi o n d o es n ot a d mit a  P T A S, u nl ess  P  =  N P ; a n d (2 ) t h e n u m b er

of  mi ni m al p - c o h esi o ns c a n b e e x p o n e nti al i n t h e gr a p h si z e.

¥ O n t h e pr a cti c al si d e,  w e pr o p os e e ffi ci e nt al g orit h ms t o fi n d a p - c o h esi o n

wit h s m all si z e c o nt ai ni n g a q u er y v ert e x a n d i d e ntif y a s et of di v ersi fi e d

mi ni m al p - c o h esi o ns.

1 5



C h a pt er 1 1. 3.  O R G A NI Z A TI O N

¥ Si n c e t h e  Mi n S e e d pr o bl e m is als o  N P- h ar d,  w e pr o p os e a h e uristi c s ol uti o n

f or it c o nsi d eri n g t h e pr o p ert y of t h e  mi ni m al p - c o h esi o ns,  w hi c h si g ni fi-

c a ntl y r e d u c es t h e n u m b er of r e q uir e d s e e ds f or t h e pr o bl e m, c o m p ar e d

wit h ot h er f e asi bl e s ol uti o ns.

¥ C o m pr e h e nsi v e e x p eri m e nts ar e c o n d u ct e d t o d e m o nstr at e t h e e ff e cti v e n ess

of t h e st u di e d  m o d el a n d t h e e ffi ci e n c y of t h e pr o p os e d al g orit h ms.

T h e d et ails of t his  w or k ar e pr es e nt e d i n  C h a pt er 5.

1. 3  O r g a ni z a ti o n

T h e t h esis is or g a ni z e d as f oll o ws:

¥ C h a pt er 2 pr o vi d es t h e r el at e d  w or k o n c o h esi v e s u b gr a p h  m o d els, us er

e n g a g e m e nt, ti e str e n gt h, a n d t h e c o nt a gi o n  m o d el.

¥ C h a pt er 3 pr es e nts t h e c oll a ps e d k -tr uss pr o bl e m, t h e pr o of of t h e c o m-

pl e xit y, t h e pr o p os e d al g orit h ms, a n d t h e e x p eri m e nt al r es ults.

¥ C h a pt er 4 d es cri b es t h e  mi ni m u m k - c or e s e ar c h pr o bl e m, o ur l o w er a n d

u p p er b o u n ds t e c h ni q u es u n d er t h e pr o gr essi v e fr a m e w or k, a n d o ur e x p er-

i m e nt al r es ults.

¥ C h a pt er 5 pr es e nts t h e f ortr ess-li k e c o h esi v e s u b gr a p h dis c o v eri n g pr o b-

l e ms, o ur t h e or eti c al c o ntri b uti o ns, pr o p os e d al g orit h ms, a n d fi n all y t h e

e x p eri m e nt al r es ults.

¥ C h a pt er 6 c o n cl u d es o ur r es e ar c h  w or k a n d pr o vi d es f ut ur e  w or ks.
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Chapter 2

LITERATURE REVIEW

2.1 Cohesive Subgraph Models

Various cohesive subgraph models are proposed to accommodate different sce-

narios. Clique [73, 38] is the most cohesive subgraph where every two nodes

are adjacent. Because of the over-restriction of the clique model, some clique

relaxation models are proposed. For instance, k-core [92, 65], k-truss [35, 125],

k-plex [93], k-fami [121], dense subgraph [42, 89], and p-cohesion [82], to name

a few. Among all these cohesive subgraph models, k-core and k-truss are the

widely studied and can computed in polynomial time.

2.1.1 k-Core

Seidman[92] introduces the cohesive subgraph model k-core to detect a max-

imal subgraph. In this subgraph, the number of neighbors of each vertex is

at least k. The k-core model benefits a lot of vital problems in recent years

with broad applications. For instance, social contagion [102, 35], user engage-

ment [18, 77, 120, 122, 124], hierarchical structure analysis [7], network analysis

[36, 1], influence studies [63, 103], dense subgraph problems [9, 27], graph vi-

17



Chapter 2 2.1. COHESIVE SUBGRAPH MODELS

sualization [6, 129, 54], event detection [79], anomaly detection [95], internet

topology [22], graph clustering [49], structure analysis of software system [126]

and protein function prediction [5, 112].

Core decomposition and its related structure have also been widely studied.

Batagelj and Zaversnik [17] design a linear in-memory algorithm to derive core

numbers of vertices in a graph. Matula and Beck [78] use bin-sorting algorithm

to find the core number of vertices. Wen [108] and Cheng [31] present I/O

efficient algorithms for core decomposition. Locally estimating core numbers

is studied in [84]. Several papers [3, 71, 128] study core maintenance and its

efficient algorithms to update core numbers against edge addition or deletion.

Bhawalkar et al. [18] propose the anchored k-core problem to prevent un-

raveling of social networks by retaining some users with additional bonus. This

problem is to find b vertices from the graph such that the existence (anchor)

of the b vertices can lead to the largest size k-core, where b is a budget. They

present an algorithm for bounded tree-width graphs, which are usually inappli-

cable in real-life social networks. The problem is proved to be harder in [77],

which shows its NP-hardness even on the planar graph. Zhang et al. [122] come

up with an effective and efficient algorithms to solve this problem. The proposed

algorithm is mainly based on a specific order of vertices with regard to the core

numbers of these vertices. Considering the possibility that a user may choose to

leave a community, Zhang et al. [123] aim to find the users who can break the

user engagement of the k-core community.

Some works aim to discover small-size subgraphs with k-core model. Amini et

al. [8] study some degree-constrained subgraph problems including the minimum-

size k-core search. Cui et al. [37] propose efficient algorithms to locally search

the k-core. Barbieri et al. [16] propose greedy algorithms to search the minimum

k-core for one or multiple query nodes. Wood et al. [110] study the k-assemblies

18



2.1. COHESIVE SUBGRAPH MODELS Chapter 2

based on minimal k-core computation.

2.1.2 k-Truss

Since the k-core model does not consider the strength of each tie (i.e., edge)

that much, by further considering the tie strength, Cohen [35] proposes the k-

truss model where each edge should be involved in at least (k − 2) triangles.

He also proposes an algorithm for truss decomposition with time complexity of

O(
P

v∈V (G) deg(v)
2) in the paper. Wang et al. [104] reduce the time complexity

of truss decomposition to O(m1.5). They also propose an I/O efficient algorithm

in large graphs that cannot fit in memory.

The definition of k-truss deduces that each vertex has at least (k− 1) neigh-

bors in the k-truss subgraph. Compared with definition of k-core, the k-truss

model is proposed as an enhanced version of k-core model by further computing

and requiring the strength of each tie (edge) [104, 129, 59]. Since k-truss requires

each edge inside to be contained in at least (k−2) triangles, which ensures every

social tie in the k-truss is strong [87]. Note that, tie strength is a fundamental

and important social network characteristic. Due to the fact that each tie in the

k-truss is relatively strong, the k-truss can be used to model strong tie commu-

nities. Besides, k-truss subgraph can also be used to capture high engagement

users from the community [105, 2, 58].

Although many research works are based on the k-truss model, they do not

focus on finding critical users. Huang et al. [57] propose the online algorithm for

the community search problem based on the truss model on large and dynamic

graphs. Huang et al. [58] also detect the k-truss communities with the largest

attribute relevance score from attributed graphs. Akbas et al. [2] speed up

the search of the truss-based community by a designed truss-equivalence based

index. As far as we know, we are the first to utilize k-truss model on discovering

19
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essential users from networks.

2.1.3 p-Cohesion

Morris [82] defines the p-cohesion by a connected subgraph, in which every ver-

tex has at least a fraction p of its neighbors in the subgraph, i.e., at most a

fraction (1 − p) of its neighbors outside. By definition, we can find that a p-

cohesion ensures not only inner-cohesiveness but also outer-sparseness. Easley

and Kleinberg [41] show that p-cohesions are fortress-like cohesive subgraphs

which can hamper the entry of the cascade, following the contagion model. De-

spite the elegant definition and promising properties, there is no existing study

on p-cohesion regarding problem complexity and efficient computing algorithms

to our best knowledge.

Although the above introduced cohesive subgraph models (i.e., clique, k-

core, k-truss) hold fantastic properties, none of the above models possess the

fortress property to defend outside information cascades. Furthermore, most

cohesive subgraph models only consider the cohesiveness inside the subgraphs

and ignore the external interactions. The k-defensive alliance [46, 91, 115] has

been proposed to find a subgraph S in which a vertex v has at least k more

neighbors in S than out of S, which corresponds to the p-cohesion with p = 0.5

when k = 0. However, there is no such mapping between the two models for an

arbitrary p value. We stress that none of the above subgraph models possess the

fortress property to defend the enter of information cascades.

2.2 Cohesive Subgraph Search

There is a large body of research on finding cohesive subgraphs within various

large graphs. The cohesive subgraph search aims to find subgraphs that contain
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2.2. COHESIVE SUBGRAPH SEARCH Chapter 2

a set of query nodes, in which the nodes are intensively linked to each other

concerning a particular goodness metric. k-core is one of the popular models

to capture the structural cohesiveness of a subgraph. Some existing works [97,

37, 16] have been proposed to find the small size k-core subgraphs with different

search heuristics. Sozio et al.[97] propose a linear-time global algorithm to find a

k-core containing a query node with size and distance constraint. Cui et al.[37]

study the same problem as Sozio [97] but propose a more efficient local search

algorithm which works in a local expansion manner that may have a smaller size

than that of the global algorithm. The algorithm expands locally to find k-cores

based on two scoring functions, often resulting in smaller size subgraphs than the

global one. Barbieri et al.[16] subsequently present a more accurate and efficient

algorithm for the same problem by designing new scoring functions. However,

all mentioned works cannot guarantee the size of the returned k-core subgraph,

i.e., they just find a smaller k-core, which may be very large as they state in

their work. In reality, this usually means the k-core found is smaller than the

whole but can still be infeasibly large. Thus, the k-core subgraph identified may

be very large in practice.

Size-constrained k-core problem is another popular work. Recently, Ma et

al.[75] study the size constrained k-core search problem, which is to find a k-core

with exact size h and the smallest closeness among all size h subgraphs containing

a query vertex on a weighted graph. This model is suitable for applications when

the cohesive subgroup size is prefixed.

k-core is not the only goodness metric for cohesive subgraphs search. Huang

et al. [57] propose an online algorithm and triangle connectivity preserving in-

dex to tackle the k-truss query problem. Yuan et al. [118] answer a cohesive

subgraph search problem with an index-based approach. Their chosen problem

is the densest clique percolation subgraph search problem, aiming to find the
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k-clique percolation subgraph with the maximum k value that contains a query

set. Chang et al. [24] propose a compact index structure to answer the k-ECC

search problem, which can run in linear time regarding the result size.

2.3 User Engagement

Whenever there is an activity that depends on the involvement of individuals,

engagement becomes a primary and important tool to evaluate the robustness

of the activity. Behavioral engagement can be observed via individual’s actions.

User engagement is an essential tool to evaluate the quality of the user ex-

perience that emphasizes the interaction’s positive aspects. In particular, the

phenomena associated with being captivated by a web application, and numer-

ous studies have been motivated to use it [66]. Other engagements, such as

self-reported engagement, cognitive engagement, and online behavior metrics,

have also been widely studied. In the self-reported engagement, questionnaires

and interviews are used to elicit user engagement attributes [90]. Cognitive en-

gagement occurs when individuals engage in events that are outside their deep

emotional range [86]. Online behavior metrics can collect data from millions of

users. The users accessing a service daily is a strong indication of a high engage-

ment [66]. Thus those can indicate the engagement metrics in their areas, and

measuring the effect on engagement metrics can explain why users engage with

service.

Evaluating the user engagement related activities is vital for social networks,

which can improve the stickiness among users and can avoid the collapse proce-

dure of the network. Collapse means that the leave of users from a group will

lead to the leave of other users, which is very common in real-life. Malliaros and

Vazirgiannis [77] verify that the degeneracy property of k-core can provide a way
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to quantify the engagement incrementally in real social networks. Seki et al. [94]

present the collapse procedure of the Friendster network and explain its mech-

anism, and also presents that the collapse usually starts from the center of the

core structure. Bhawalkar and Kleinberg et al. [21] use the game-theory to show

the network unraveling process stops when the remaining engaged individuals

correspond to the k-core of the network.

User engagement has attracted vital interests in the past few years [111, 106].

k-core is a simple and popular model based on degree constraint, which has been

widely used to measure the network engagement [77, 33, 48, 123]. Suppose that

all users in a community are initially engaged. Each user inside has two options:

(1) to remain engaged: if at least k of his/her friends are engaged (i.e., degree

constraint), (2) and drop out: if a user has less than k friends are engaged. In

the second case, the leave of this user may be influential, which will result in a

cascade of departure (i.e., collapse) in the network. Once the collapse procedure

stops, the rest engaged users correspond to the well-known concept k-core, the

maximal induced subgraph in which every vertex has at least k neighbors [123].

Bhawalkar [18] shows that a user seems to keep strong activate engagement if

there are a large number of this user’s friends engaged.

2.4 Tie Strength

Besides user engagement, the tie strength, which is introduced by Granovet-

ter [52], among users is another fundamental character in social network [40,

50, 87, 96]. The model of k-core fits well with the communities which does not

require tie strength. Such as in a study group, students may discuss with other

students in the group, even though their relationships are not quite strong. Nev-

ertheless, some community types need to consider the strength of ties, e.g., a

23



Chapter 2 2.4. TIE STRENGTH

company’s programming team.

Tie strength is a fundamental character for the social network. A large num-

ber of excellent research works has been done in the sociology related areas. In

recent times, various researchers working in social network related areas show

that the tie strength is an important component for the graph and is worth for

further exploring [14, 50, 129]. Onnela et al. [85] give a counterintuitive conse-

quence that social networks are robust to removing the strong ties but collapse

on the phase when some weak ties have been removed. They observe coupling

between tie strengths and the local structure and show that this coupling sig-

nificantly slows down the information propagation process. Bakshy et al. [14]

examine the relative roles between strong and weak ties in information diffusion.

They show that although strong ties may be more influential towards individ-

uals, the effect of strong ties is not large enough to substitute the abundant

information from weak ties in social networks.

Gilbert and Karahalios [50] present a predictive model that maps social me-

dia data to tie strength for distinguishing strong and weak ties. They show that

the model can enhance social media design elements, including friend recommen-

dation, message routing, privacy controls and information prioritization. Sintos

and Tsaparas [96] use the principle of strong triadic closure to characterize the

tie strength in social networks. They study the problem of labeling the ties

by strong or weak so as to enforce the strong triadic closure property. Rotabi

et al. [87] present that structural information of graphs is often used to detect

strong tie, especially on triangles. They experimentally demonstrate that using

only structural network features is sufficient for strong tie detection with high

precision. With the minimum triangle number of k for each edge, the k-truss [35]

can be regarded as a strong tie community where each edge in the community

is a strong tie.
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2.5 The Contagion Model

The contagion model. Morris [82] introduces the contagion model and p-

cohesion to characterize social choices in local interaction systems. The paper

also studies the diffusion of a behavior from a finite set of initial adopters to all

network users. Centola [23] studies the strength of weak ties with the contagion

model. Ugander et al. [102] show that the contagion probability of a user is

strongly influenced by his local neighbors, e.g., neighbors in cohesive subgraphs.

Zarezade et al. [119] study correlated cascades based on the fact that the adoption

of a behavior by a user is influenced by the aggregation of the behaviors of his/her

neighbors. Young [116] shows that utilizing local clusters greatly enhances the

spread of innovations. Easley and Kleinberg [41] make the same observation as

the above in various applications. They further emphasize the contagion model

and the p-cohesion that it is difficult for new innovations to enter tightly-knit

social groups (i.e., p-cohesions), because people tend to interact with their friends

or acquaintances.

Other cascade models. In addition to the contagion model, there are some

other information cascade models, such as independent cascade model (IC) and

linear threshold (LT) model [62], where the influence maximization problem and

seed minimization problem have been extensively studied, e.g., [127, 11, 100, 80,

30]. It uses polynomial time to compute the influence spread of given seeds in

the contagion model, while this influence computation is NP-hard for both IC

and LT models [76]. For a set of seeds, the spread area of their influence is

certain in contagion model while the influence spread is uncertain and complex

in IC and LT models due to the possible world assumption.
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Chapter 3

FINDING CRITICAL USERS IN

SOCIAL COMMUNITY

3.1 Overview

User engagement and tie strength are fundamental components in social commu-

nities. Many recent studies show that the k-truss model can capture users with

high engagement and strong interactions. It is effective and efficient to utilize

k-truss on discovering social communities and analyzing the network structure.

We observe that the leave of some critical users may significantly break the k-

truss communities. This motivates us to propose the collapsed k-truss problem

to find these users. Giving incentives to these users can reinforce the k-truss

communities. We propose the collapsed k-truss problem to identify the critical

users: given a graph G, an integer k and a budget b, we aim to detect a set of

b vertices from G. Such that the removal of the b vertices may result in a small

k-truss. In this chapter, we prove the problem is NP-hard and in-approximate

within 1 − 1/e. To solve this problem, an efficient algorithm is proposed. The

work is published in [120] and the rest of this chapter is organized as follows.
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Section 3.2 gives preliminary definitions and formally defines the problem.

Section 3.3 gives the proof for the complexity of this problem. Section 3.4 de-

scribes our algorithms for the proposed collapsed k-truss problem. Section 3.5

introduces the evaluation of our proposed algorithms and reports the experimen-

tal results. Section 3.6 summarizes the chapter.

3.2 Preliminary

Let G = (V,E) be an unweighted and undirected graph, where V and E denote

the set of vertices and edges in G, respectively. Let n (resp. m) denote the

number of vertices (resp. edges) in G. Given a subgraph S of G, we denote the

adjacent vertex set (i.e. neighbor set) of u in S by N(u, S). We use G \ S to

represent the subgraph which removes S from G, i.e., G-S. Let deg(u, S) denote

the degree of u in S, which is equal to the number of u’s neighbors in S, i.e.,

deg(u, S) = |N(u, S)|. In a graph, the cycle with 3 edges is a triangle. When we

say a e-containing triangle in the following, we mean a triangle that contains the

edge e, i.e., e is a part of the triangle. The support of an e in subgraph S is the

number of e-containing triangles in S, we denote it as sup(e, S), If a vertex u is

one of the endpoints of an edge e, we say a vertex u is incident to an edge e, or

e is incident to u. The notations are summarized in Table 3.1. In this chapter,

if a vertex is deleted, its incident edges are also deleted accordingly.

Definition 1. k-truss. Given a graph G, a subgraph S is the k-truss of G,

denoted by Tk(G), if (i) S satisfies support constraint, i.e., sup(e, S) ≥ k− 2 for

every edge e ∈ S; (ii) S is maximal, i.e., any subgraph S ′
⊃ S is not a k-truss;

and (iii) S is non-trivial, i.e., no isolated vertex in S.1

1In real-life scenarios, the k value is usually determined by users based on their real re-
quirement for cohesiveness, or can be learned according to ground-truth communities in the
network.
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Notation Definition

G an unweighted and undirected graph
k a non-negative integer
u, v; e, (u, v) a vertex in G; an edge in G
n; m the number of vertices (resp. edges) in G
N(u,G) the set of adjacent vertices of u in G
deg(u,G) the number of adjacent vertices of u in G
sup(e,G) the number of e-containing triangles in G
E(u,G) the edge set where each edge is incident to u and each edge

is in G
E(S,G) the union set of E(u,G) for each u ∈ S
A a set of collapsers
Tk(G) the k-truss of G
Tk(GA) the k-truss of G \ {A ∪ E(A,G)}
F(A,G) the followers in G of the collapser set A
V$(e,G) the set of vertices where each vertex is from a e-containing

triangle in G, and each vertex is not incident to e
V$(S,G) the union set of V$(e,G) for every e ∈ S

Table 3.1: Summary of Notations

This definition also deduces that each k-truss vertex has at least (k − 1)

neighbors in the k-truss, because a vertex involves in at least (k− 2) triangles in

the k-truss. As shown in Algorithm 1, to find the k-truss, we recursively delete

vertices with less than (k − 1) degree. Then we recursively remove every edge

whose support is less than (k − 2) in current graph. We get the k-truss after

removing isolated vertices.

We assume that, the collapse of a vertex v in G will lead to the removal of

vertext v and its incident edges from k-truss even if v is not isolated. We use

collapsers to represent the collapsed vertices.

Definition 2. collapsed k-truss. Given a graph G and a set A ⊆ G of vertices,

the collapsed k-truss, denoted by Tk(GA), is the k-truss of the subgraph G \ {A∪

E(A,G)}.

Besides the deletion of the collapsers in A, there may be some other vertices
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Algorithm 1 ComputeTruss(G, k)

Input: G : a social network, k : support constraint Output: Tk(G) : the k-truss of G

1: while exists u ∈ G with deg(u,G) < k − 1 do

2: G:= G \ {u ∪ E(u,G)}
3: while exists an edge e ∈ G with sup(e,G) < k − 2 do

4: G:= G \ {e}
5: Delete isolated vertices in G
6: return G

in Tk(G) which follow the collapsers to leave the k-truss due to the cascade of

edge deletions. We name these vertices as followers of the collapsers in A, and

denote it by F(A,G). Formally, F(A,G) = the vertices in Tk(G)\{Tk(GA)∪A}.

The number of the followers indicates the importance of the collapsed vertices.

Problem Statement. Given a graph G, a support constraint k and a budget

b, the collapsed k-truss problem is to find a set A of b vertices in G such that

the number of followers, F(A,G), is maximized; that is, the size of the resulting

collapsed k-truss, Tk(GA), is minimized.

Example 3. As shown in Figure 1.1, suppose we set k = 4 and b = 1, the

result of the collapsed k-truss problem can be A = {u5} with Tk(GA) = ∅ and

F(A,G) = {∪1≤i≤8ui} \ u5.

3.3 Complexity

In this section, we give the complexity of the collapsed k-truss problem.

Theorem 1. The collapsed k-truss problem is NP-hard for any k.

Proof. We reduce the collapsed k-truss problem from the Minimum Vertex Cover

(MVC) problem [29]. Given a graph G, the MVC problem is to find a minimum

vertex set such that each edge in G is incident to at least one vertex of the set.
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When k ≥ 2, we construct a graph G′ by (1) adding a vertex set U of (k − 2)

vertices for every edge (u, v) in G; and (2) adding edges to make every U ∪{u, v}

a clique where every two vertices are adjacent. Since every edge in the induced

graph of a k-clique (a clique of k vertices) is contained in (k − 2) triangles, a

k-clique forms a k-truss.

Then we prove the MVC problem on G is equivalent to finding a minimum

vertex set W in G′ such that the k-truss of G′
\ (W ∪ E(W )) is empty. Let C

denote a k-clique in G′ which corresponds to an edge in G. To make the k-truss

empty, we have to delete at least one vertex in every C. Then we have that

the minimum set W comes from G, because deleting a vertex in G′
\ G cannot

destroy more C than deleting a vertex in C ∩ G. Then every edge in G will be

covered by an incident vertex in W . So the above two problems are equivalent.

To find the minimum vertex set W , we can try solving the collapsed k-truss

problem by at most (n− 1) times (1 ≤ b < n). So we can say that the collapsed

k-truss problem is NP-hard when k ≥ 2. When k ≤ 1, the problem is exactly

the collapsed 2-truss problem according to the definitions. Then the collapsed

k-truss problem is NP-hard for any k.

Theorem 2. It is NP-hard to approximate the collapsed k-truss problem within

1− 1/e when k ≥ 4.2

Proof. For the collapsed k-truss problem, we show a reduction from the Maxi-

mum Coverage (MC) problem [56] which is proved to be in-approximate. The

MC problem is to find at most b sets to cover the largest number of elements,

where b is a given budget [123]. It is NP-hard to approximate the MC problem

within 1 − 1/e [56]. Let � > 1 − 1/e, we prove that if there is a solution with
2When k = 3, the collapsed k-truss problem can be reduced from the Triangle Vertex

Deletion problem [51] whose inapproximability is still an open problem. When k ≤ 2, the
k-truss becomes the connected components except isolated vertices.
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Figure 3.1: Examples for Proving Inapproximability for Collapse k-Truss

�-approximation on optimal follower number for our problem, there will be a

�-approximate solution on element number for the MC problem.

Considering an arbitrary instance of the MC problem with c sets T1, .., Tc

and d elements {e1, .., ed} = ∪1≤i≤cTi. Then we can construct a corresponding

instance of the collapsed k-truss problem on a graph G. Figure 3.1(a) shows a
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construction example from 3 sets and 4 elements with k = 4. The set of vertices

of G is constructed by two parts: M and N . There are c vertices in M , i.e.,

M = ∪1≤i≤cvi. N is consist of d sets of vertices, i.e., N = ∪1≤j≤dNj. For every

j ∈ [1, d], Nj contains 3k+c−6 vertices, i.e., Nj = ∪0≤p≤3k+c−7uj,p. To show the

construction clearly, as the example in Figure 3.1(c), we divide Nj into 5 sets:

Vj,1 (k − 3 vertices), Vj,2 (c vertices), Vj,3 (k − 1 vertices), Vj,4 (k − 1 vertices)

and {uj,0}. Specifically, we have Vj,1 = uj,1∪ {uj,p | 2k+ c− 2 ≤ p ≤ 3k+ c− 7},

Vj,2 = {uj,p | 2 ≤ p ≤ c + 1}, Vj,3 = {uj,p | c + 1 ≤ p ≤ k + c − 1} and

Vj,4 = {uj,p | k + c ≤ p ≤ 2k + c − 2}, respectively, (Note that uj,1 = uj,2k+c−2

when k = 4).

The edge construction is as follows: (1) we define the super edge as a (k+b)-

clique, denoted by C, where only two vertices in C have neighbors in G \ C,

as the example in Figure 3.1(a)(b); (2) for every set Ti (i ∈ [1, c]) and every

element ej (j ∈ [1, d]), if ej ∈ Ti, we add two super edges (vi,uj,i), (vi,uj,i+1) and

an edge (non-super) (uj,i,uj,i+1); if ej /∈ Ti, we add a super edge (uj,i,uj,i+1). (3)

there is a super edge between every vertex pair in Vj,1; (4) for every p ∈ [3, c],

there is an edge between uj,p and each vertex in Vj,1; (5) we add a super edge

between uj,2 and each vertex in Vj,1\{uj,1}; (6) we add an edge (uj,c+1, uj,2k+c−2),

and add a super edge between uj,c+1 and each vertex in Vj,1 \ {uj,2k+c−2}; (7)

we add a super edge between every vertex pair in Vj,3 except the pair (uj,c+1,

uj,k+c−1); (8) we add a super edge between every vertex pair in Vj,4 except the

pair (uj,k+c, uj,2k+c−2); and (9) we add an edge between uj,0 and each vertex in

Vj,3 ∪ Vj,4, and add a super edge between uj,k+c−1 and uj,k+c. The construction

of G is completed. Figure 3.1 (c)(d) show the construction of N1 (c = 3) when

k = 5 and k = 6, respectively.

Here we show the support of each non-super edge in G is exactly (k− 2): (1)

for a non-super edge (uj,1, uj,2), it can only form a triangle with each vertex in
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Vj,1\{uj,1} (k−4 vertices), the vertex uj,3 and one vertex inM ; (2) for a non-super

edge (uj,p, uj,p+1) (2 ≤ p ≤ c), it can only form a triangle with each vertex in Vj,1

(k−3 vertices) and one vertex in M ; (3) for a non-super edge (uj,c+1, uj,2k+c−2), it

can only form a triangle with each vertex in Vj,1 \{uj,2k+c−2} (k−4 vertices), the

vertex uj,c and the vertex uj,0; (4) for a non-super edge (uj,p, uj,q) between Vj,1

and Vj,2, it can form a triangle with each vertex in Vj,1\{uj,p} (k−4 vertices), the

vertex uj,q−1 and the vertex uj,q+1; (5) for a non-super edge (uj,0, uj,c+1), it can

only form a triangle with each vertex in Vj,3\{uj,c+1, uj,k+c−1} (k−3 vertices) and

the vertex uj,2k+c−2. Note that it is similar for edges (uj,0, uj,k+c−1), (uj,0, uj,k+c),

and (uj,0, uj,2k+c−2); and (6) for a non-super edge (uj,0, uj,p)(c+2 ≤ p ≤ k+c−2),

it can only form a triangle with each vertex in Vj,3 \ {uj,p} (k− 2 vertices). Note

than it is similar for a non-super edge in (uj,0, uj,p)(k + c+ 1 ≤ p ≤ 2k + c− 3).

Now the support of each non-super edge has been verified to be k−2. Obviously

G is a k-truss.

The key idea is we ensure that: (1) only the vertices uj,0 can become a follower

of a vertex, since we need to delete at least b + 1 vertices in a (k+b)-clique to

produce followers; (2) only vertices in M need to be considered as collapsed

vertices, since any vertex in N cannot have more followers than a vertex in M ;

(3) reduce the support for any non-super edge in Nj (1 ≤ j ≤ d) will lead to

the deletion of uj,0 due to the support constraint; and (4) every Nj (1 ≤ j ≤ d)

can only produce one follower uj,0. Then, every solution of the collapsed k-truss

problem in G corresponds to a solution of the MC problem, where the follower

number for our problem equals the element number for the MC Problem. So

it is NP-hard to approximate collapsed k-truss problem within 1 − 1/e when

k ≥ 4.

33



Chapter 3 3.4. SOLUTION

Algorithm 2 GreedyCKT(G, k, b)

Input: G : a social network, k : support constraint,
b : the budget for collapser number

Output:A : the set of collapsers

1: A := ∅; i := 0
2: while i < b do

3: for each u ∈ Tk(GA) do

4: Compute F(A ∪ u, G)
5: u∗ ← the best collapser in this iteration
6: A := A ∪ u∗; i := i+ 1; update Tk(GA)
7: return A

3.4 Solution

Due to the NP-hardness and inapproximability of the problem, we adopt a greedy

heuristic which iteratively finds the best collapser, i.e., the vertex with the largest

number of followers. We only need to consider the vertices in Tk(GA) as candidate

collapsers, because all other vertices will be deleted during k-truss computation.

A greedy algorithm is shown in Algorithm 2. The time complexity of this algo-

rithm is O(bnm3/2), where n denotes the number of candidate collapsers in each

iteration (Line 3) and m denotes the number of edges in follower computation

(Line 4), i.e., k-truss computation.

The follower computation at Line 4 is efficient by conducting k-truss compu-

tation. However, the number of candidate vertices in Tk(GA) at Line 3 is still

too large to afford, which motivates us to reduce the candidate vertices in the

heuristic algorithm by developing effective pruning rules.

3.4.1 Reducing Candidates

In this section, we introduce the pruning rules on the first iteration in the greedy

algorithm (i.e., A = ∅ and i = 0). The pruning rules can be immediately applied
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Figure 3.2: Candidate Reduction, k = 4

to the following iterations by using Tk(GA) to replace Tk(G). The following

theorem finds the candidate set of collapsers.

Theorem 3. Given a graph G, let D denote the support k − 2 edge set in

Tk(G), i.e., D = {e | sup(e, Tk(G)) = k − 2}, if a collapsed vertex x has at

least one follower, x is from V$(D, Tk(G)); that is |F(x,G)| > 0 implies x ∈

V$(D, Tk(G)).

Proof. We prove that a vertex x ∈ G \ V$(D, Tk(G)) cannot have any followers.

(1) If x ∈ G\Tk(G), x will be deleted in k-truss computation and hence |F(x)| =

0. (2) If x ∈ Tk(G) \ V$(D, Tk(G)), x survived in k-truss computation. Let E$

denote the edge set where each edge is from a triangle containing x in Tk(G),

and let Ex denote the edge set where each edge is incident to x in Tk(G). We

have that each edge in E$ \ Ex has a support of at least k − 1, otherwise x

will be in V$(D, Tk(G)). If we delete x in Tk(G), the support of every edge in

E$ \Ex can only decrease by one, i.e., every edge in E$ \Ex still has a support

of at least k − 2. Consequently, all the edges in E$ \ Ex will exist in Tk(Gx),

i.e., no cascade of deletion will incur for removing x. So only edges in Ex will

be deleted by removing x, and x does not have any followers. Consequently, if

x has at least one follower, x ∈ V$(D, Tk(G)).

Example 4. In Figure 3.2, when k = 4, the graph is already a k-truss. On
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each edge, we label its support, i.e., the number of triangles containing the edge.

According to Theorem 3, the set D = {(v1, v2), (v2, v6), (v1, v4), (v4, v6)}. Thus the

set V$(D, Tk(G)) = {v3, v5, v7} and every other vertex cannot have any followers.

The best collapser is v3 since F(v3) = {v1, v2, v4}, F(v5) = {v2} and F(v7) =

{v4}.

The following theorem further reduces the candidates.

Theorem 4. Given a graph G, if a vertex u is a follower of x, i.e., u ∈ F(x),

we have F(u) ⊂ F(x).

Proof. Since u ∈ F(x), u will be deleted if x is collapsed. For every vertex v in

F(u), v will be deleted if x is collapsed, because u will be deleted and collapsing x

cannot increase the supports for edges. So F(u) ⊆ F(x). Since u ∈ F(x)\F(u),

we have F(u) ⊂ F(x).

Based on Theorem 4, every vertex which is a follower of another vertex should

be excluded from candidate collapser set in the computation of a best collapser.

Thus we can reduce even more vertices in the computation by checking promising

collapsers first, which may have large number of followers. We say a vertex u

corresponds to an edge e if v ∈ V$(e,G). A vertex corresponds to more edges

in the set D is more promising, because all these edges will follow the vertex

to be deleted. This edge numbers (en) in D can be accumulatively produced

by visiting the triangles of each edge in D. To further reduce the candidate

collapsers, we try collapsing vertices in decreasing order of their en.

3.4.2 CKT Algorithm

Algorithm 3 shows the details of CKT algorithm which finds the best collapser

for a given graph G (i.e., b = 1). Specifically, we firstly compute the k-truss
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Algorithm 3 CKT(G, k)

Input: G : a social network, k : support constraint, Output x : the best collapser

1: T := ComputeTruss(G, k)
2: D := {e | sup(u, T ) = k − 2}
3: V := V$(D,T )
4: for each u ∈ V (Theorem 3) do
5: Compute F(u, G)
6: V := V \ F(u,G) (Theorem 4)
7: return the best collapser

of graph G (Line 1) and find the set D of edges with support k − 2 in Tk(G)

(Line 2). According to Theorem 3, we find the candidate set V$(D, Tk(G))

which correspond to at least one edge in D (Line 3-4). To compute F(u,G), we

continue the k-truss computation in Line 1 with vertex u deleted (Line 5). The

best collapser is produced by trying every candidate.

For a general case with b > 1, our CKT algorithm can be simply embedded

in the greedy algorithm (replacing Line 3 and 4) to find the best collapser in each

iteration. In order to avoid the re-computation of D (Line 2) and V$(D, Tk(G))

(Line 4) in the following iterations, we incrementally update two sets at the

end of each iteration. Specifically, let D1 denote the edges whose supports are

decreased to k − 2 during the computation and D2 denote the edges which are

discarded during the computation, we have D = D ∪ (D1 \ D2). Towards the

set V$(D, Tk(G)), we include new vertices correspond to the set D1 and delete

vertices which only correspond to the edges in D2. We also delete vertices in

V$(D, Tk(G)) synchronously with the computation of collapsed k-truss in each

iteration.

Additionally, if we find a vertex u ∈ F (x) in one iteration of Algorithm 1,

we do not need to consider u as a candidate in all following iterations because

x is always a better candidate collapser than u, and u will be excluded from
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k-truss whenever x is removed (Theorem 4). Furthermore, in one iteration, if

there is a connected k-truss subgraph which does not contain the produced best

collapser, the result on this subgraph can be reused. The reason is that the

collapsed k-truss of each vertex in the subgraph will keep same. We can share

the computation by only recording the largest number of followers for a vertex

in this subgraph.

3.4.3 Collapsed k-Core Problem

The collapsed problem first proposed by Zhang [123] with the k-core model. For

the fact that, the k-core model do not consider the tie strength of the graph, we

use the potential model k-truss to find the crucial users, which is more complex

as we showed in the complexity part. In this session, we just give the basic

algorithm that proposed by the authors.

Algorithm 4 CKC(G, k)

Input: G : a social network, k : degree constraint, Output x : the best collapser

1: Ck(G) := ComputeCore(G, k)
2: P := {u | deg(u,Ck(G)) = k}
3: T := P ∪ {u ∈ Ck(G)&N(u,G) ∩ P ,= ∅}

4: for each u ∈ T do

5: Compute F(u, G)
6: T := T \ F(u,G)
7: return the best collapser

CKC Algorithm. Algorithm 4 illustrates the details of CKC algorithm pro-

posed by the users, which finds the best collapser for a given graph G (i.e., b

=1). Particularly, they first compute the k-core of graph G (Line 1) and find

the set P of vertices with degree k in Ck(G), the k-core of G (Line 2). Then

they find the set T of vertices in P , and vertices which are inside Ck and are

neighbors of at least one vertex in P (Line 3). To compute F (u,G), they can
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3. 5.  P E R F O R M A N C E S T U DI E S C h a pt er 3

c o nti n u e t h e k - c or e c o m p ut ati o n i n  Li n e 1  wit h v ert e x u d el et e d ( Li n e 5).  T h e y

w e c a n h a v e t h e b est c oll a ps er  w h e n t h e al g orit h m t er mi n at es.

3. 5  P e rf o r m a n c e  S t u di e s

T his s e cti o n e v al u at es t h e pr o p os e d  m o d el a n d al g orit h ms t hr o u g h c o m pr e h e n-

si v e e x p eri m e nts.

3. 5. 1  E x p e ri m e n t al  S e t ti n g

Al g o ri t h m s. As f ar as  w e k n o w, t h er e is n o e xisti n g  w or k i n v esti g ati n g t h e

c oll a ps e d k -tr uss pr o bl e m a n d its c orr es p o n di n g al g orit h ms. I n t h e e x p eri m e nts,

w e i m pl e m e nt a n d e v al u at e 7 al g orit h ms i n cl u di n g t h e b as eli n e al g orit h m a n d

o ur pr o p os e d al g orit h m.

¥ B a s e l i n e T . T h e b as eli n e al g orit h m ( Al g orit h m 2). I n e a c h it er ati o n, it

fi n ds a b est c oll a ps er b y c o m p uti n g t h e c oll a ps e d k -tr uss f or e v er y c a n di-

d at e c oll a ps er.

¥ C K T . T h e a d v a n c e d al g orit h m ( Al g orit h m 3),  w h er e  T h e or e m 3 a n d  T h e-

or e m 4 ar e a p pli e d.

¥ C K C . T h e a d v a n c e d al g orit h m e q ui p p e d  wit h  Al g orit h m 4.

T h e ot h er al g orit h ms  will b e i ntr o d u c e d  w h e n a p p e ar i n t h e e x p eri m e nts f or

t h e first ti m e.

D a t a s e t s. I n o ur e x p eri m e nts,  w e d e pl o y 9 r e al-lif e s o ci al n et w or ks a n d  w e

ass u m e t h at all v erti c es i n e a c h n et w or k ar e i niti all y e n g a g e d.  T h e ori gi n al d at a

of Y e l p is fr o m [ 1 1 4], D B L P is fr o m [ 6 8] a n d t h e ot h ers ar e fr o m [ 6 7]. I n D B L P ,

e a c h v ert e x r e pr es e nts a n a ut h or a n d e a c h e d g e b et w e e n t w o a ut h ors r e pr es e nts

3 9
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Dataset Vertices Edges davg kmax

Facebook 4,039 88,234 43.7 97
Brightkite 58,228 194,090 6.7 42
Gowalla 196,591 456,830 4.7 23
Yelp 552,339 1,781,908 6.5 73
YouTube 1,134,890 2,987,624 5.3 19
DBLP 1,566,919 6,461,300 8.3 119
Pokec 1,632,803 8,320,605 10.2 20
LiveJournal 3,997,962 34,681,189 17.4 352
Orkut 3,997,962 34,681,189 17.4 352

Table 3.2: Statistics of Datasets

there is at least one co-authored paper of the two authors. The other datasets

have existing vertices representing users and edges representing relationships.

Table 5.3 shows the statistics of all the datasets used in the experiments, in

increasing order of their edge numbers.

Parameters. We conduct extensive experiments by changing the support con-

straint value k and the budget of collapsers b. The default value of b is 20. In

the experiments, the range of k varies from 5 to 50 and the range of b varies

from 1 to 100.

All the programs are implemented in standard C++ and compiled with G++.

All experiments are conducted on a machine with Intel Xeon 2.8GHz CPU run-

ning Redhat Linux.

3.5.2 Effectiveness

In this section, the number of the followers produced by CKT and other approaches

are compared. Two case studies are presented to show an example of the CKC

and CKT.

Effectiveness of the Greedy Algorithm. Figure 3.3 compares the number

of followers w.r.t b collapsers identified by CKT algorithm with that of three
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Figure 3.3: Number of the Followers

other approaches. Specifically, RandomT randomly chooses b collapsers in k-truss,

SupportT chooses b collapsers from vertices with the largest numbers of triangles

containing each vertex in k-truss and DegreeT chooses b collapsers from vertices

with the largest degrees in k-truss. For RandomT, we give the average number

of the followers for 100 independent testings. Note that the input value of k

for YouTube is 10 because the collapsed 15-truss is always empty when b = 20.

Figure 3.3 shows that CKT produces significantly more followers than the others.

To further present the effectiveness of CKT, we compare its performance with

the optimal algorithm (OptimalT), which exhaustively computes collapsed k-

truss for every combination of b collapsers. Figure 3.4 shows that the greedy
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Figure 3.4: Greedy v.s. Optimal

algorithm achieves comparable results with that of the optimal solution.

Comparison between Core and Truss. For a fair comparison on a dataset,

we find a representative set of vertices. For the k-core model, we extract the top

30% vertices from the dataset, whose core numbers are largest among all vertices

(resp. truss numbers for k-truss model). In Figure 3.5, for each dataset, we

report the community score values: global clustering coefficient and modularity,

on the induced subgraphs of the set of extracted vertices for k-core and k-truss,

respectively. Note that the representative set of vertices is the user group with the

highest user engagement with regard to k-core and k-truss model, respectively.

Figure 3.5(a) shows the k-truss vertices possess significantly higher clustering

coefficients on all datasets than the k-core vertices. Figure 3.5(b) shows the k-

truss vertices also have better modularity values than the k-core vertices. The

experiments indicate that utilizing k-truss may be more promising than k-core

when the additional computation cost is affordable.

Comparison of Engagement Loss. In Figure 3.6, we report the engagement

loss in the result of CKC and the result of CKT. For a given budget b, we consider

the reduction percentage of the original noncollapsed subgraph as the engage-
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Figure 3.6: Engagement Loss of Collapsing

ment loss, i.e., the number of reduced vertices (i.e., followers and collapsers)

divided by the number of vertices in the k-core or k-truss. Given the fact that

the (k− 1)-core is usually a super-graph of k-truss, in Figure 3.6, the values of k
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we chosen are 14 for CKC and 15 for CKT, respectively. Here, the budget value

b is setting as 20 for both algorithms. From the figure we can conclude that, the

collapsers of CKT can reduce the original subgraph by a larger extent than CKT

under the same collapsing budget. Particularly, for a same budget b that equals

to 20, the collapsed 15-truss returned by CKT on Orkut has 4598 followers while

there are only 2907 followers in the collapsed 14-core that returned by CKC.

It shows the collapsed k-truss model may be more effective on destroying the

engagement of social communities.

Case Studies of CKC and CKT. Figure 3.7 depicts the best collapser and

the corresponding followers on DBLP identified by CKC and CKT, respectively,

where k = 20 for CKC and k = 21 for CKT. For a clear presentation, the edges

between each author and authors in k-core or k-truss are integrated as one edge.

In Figure 3.7(a), it is interesting that the author“Ying Li” (the collapser) alone

has 74 followers, and only 12 of them are co-authors of Li. This shows the user

engagement can be critically damaged along with the leave of a few individuals

and the effect of leave cascade. In Figure 3.7(b), the author“Reinhold Haux” (the

collapser) has 57 followers and 56 of them are coauthors of Haux. We can see the

connection between among followers and the collapser is significantly stronger

in the collapsed k-truss than that of the collapsed k-core, which the user leave

caused by “Ying Li” replies more on the butterfly effect. The power of collapse

by Haux is stronger in the sense that his leave breaks a tighter group than the

leave of Li. This shows the CKT may better model the collapse of tight-knit

user groups.

3.5.3 Efficiency

Here we report the number of visited vertices and the running time for each

technique and each algorithm.
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(a) CKC, k = 20, b =1

(b) CKT, k = 21, b = 1

Figure 3.7: Case Studies on DBLP

Individual Techniques Evaluation. In Figure 3.8, we report the number of

the visited vertices, i.e., the size of candidate collapsers, in three algorithms,

where BaselineT+ is BaselineT equipped with Theorem 3. Note that CKT is

further equipped with Theorem 4 on BaselineT+. It is easy to get that the

number of visited vertices significantly decreases by both of the theorems on

DBLP for different k and b.
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Figure 3.8: Effectiveness of Reducing Candidate Collapsers
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Figure 3.9: Performance of the Algorithms
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Performance Evaluation. Figure 5.15 shows performance of three algorithms

on all datasets with a logarithmic axis. From Figures 5.15(a)(b) we can see that

CKT outperforms BaselineT on all datasets by several times, where k = 15 and

b = 20. In Figure 5.15(c), the runtime of CKT increases when we vary b from 1 to

100. In Figure 5.15(d), the runtime for CKT is relatively large for extremely small

k and does not change much for other values of k. We can see CKT significantly

outperforms BaselineT under all settings.

3.6 Chapter Summary

In this chapter, we propose and investigate the problem of collapsed k-truss,

which aims to find critical users with respect to the k-truss. These users help

to sustain or destroy the strong tie communities. We prove the problem is NP-

hard and inapproximate. An efficient algorithm is proposed, which significantly

reduces the number of candidate vertices. Extensive experiments on real-life

social networks demonstrate our model is effective and our algorithm is efficient.
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MINIMUM K-CORE SEARCH

4.1 Overview

k-core model is one of the most representative cohesive subgraph model. In this

chapter, we investigate the problem of the minimum k-core search: given a graph

G, an integer k and a set of query nodes Q = q, we aim to find the smallest

k-core subgraph containing all the query node q ∈ Q. It has been shown that

this problem is NP-hard with a huge search space, and it is very challenging to

find the optimal solution. Although, there are several heuristic algorithms for

this problem, they rely on simple scoring functions and there is no guarantee as

to the size of the resulting subgraph, compared with the optimal solution. In

this chapter, we develop an effective and efficient progressive algorithm, namely

PSA, to provide a good trade-off between the quality of the result and the search

time. Novel lower and upper bound techniques for the minimum k-core search

are designed. Our extensive experiments on 12 real-life graphs demonstrate the

effectiveness and efficiency of the new techniques

The work is published in [69] and the rest of this chapter is organized as

follows.
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Section 4.2 gives preliminary definitions and formally defines the problem.

Section 4.3 describes our algorithms for the proposed minimum k-core search

problem. Section 4.4 introduces the evaluation of our proposed algorithms and

reports the experimental results. Section 4.5 summarizes the chapter.

4.2 Preliminary

Notation Definition

G an unweighted and undirected graph
V (G), E(G) the vertex set and edge set of G

u, v vertex in the graph
n, m the number of vertices and edges in G
dmax the largest degree value in G

N(u,G) the set of adjacent vertices of u in G
deg(u,G) |N(u,G)|

k the degree constraint for k-core subgraph
Ck(G) k-core of G
P (G) partial solution of G

Table 4.1: Summary of Notations for Minimum k-Core Search

Problem Definition

Let G = (V,E) be an undirected and unweighted graph, where V and E denote

the set of vertices (nodes1) and edges respectively. Let n = |V | and m = |E| be

the number of vertices and edges respectively. We use N(u,G) to denote the set

of adjacent vertices of u in the graph G, which is also known as the neighbor set

of u in G. Let deg(u,G) denote the degree of u in G, which is the number of

adjacent vertices of u in G. Given a subgraph S of G, we use V (S) to denote its

vertices. The size of the subgraph, denoted by |S|, is the number of the vertices.

When the context is clear, N(u,G), deg(u,G) and V (S) are simplified to N(u),
1In this thesis, we use node and vertex interchangeably.
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deg(u) and S respectively. By dmax we denote the largest vertex degree in the

graph.

Below we have the definition of k-core subgraph based on the concept of

k-core constraint.

Definition 3. k-core subgraph. Given a graph G, a subgraph S of G is a

k-core subgraph if it satisfies the k-core constraint, i.e., every vertex in S has

at least k neighbors in S.

For presentation simplicity, we use k-core to represent k-core subgraph in

this chapter when there is no ambiguity2. In the literature, many studies focus

on the maximum k-core which is the largest induced subgraph which satisfies

the k-core constraint. Note that the maximum k-core is also the maximal k-core

because the maximal k-core of G is unique for a given k, as shown in [122].

Problem Statement. Given an undirected and unweighted graph G = (V,E),

a degree constraint k and a query set Q = {q1, q2, ...}, the minimum k-core search

problem finds the smallest k-core subgraph containing the query set Q. Due

to the NP-hardness of the problem and the huge search space involved to find

the exact solution, in this chapter we aim to develop an effective and efficient

progressive algorithm to enable users to achieve a good trade-off between the

quality of the results (i.e., the size of the k-core subgraph retrieved) and the

search time.

For presentation simplicity and the ease of understanding, we first focus on

computing the minimum k-core containing one query vertex q. The proposed

algorithms are adapted for the query of multiple vertices in Section 4.3.4.

2Note that, in some existing work, k-core is used to represent the maximal k-core.
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Existing Solutions

As discussed in Section 1.1.2, the search space of the exact solution is pro-

hibitively large, and existing solutions resort to simple heuristic algorithms.

In particular, existing solutions follow two search strategies: (1) shrink strat-

egy [97], called global search; and (2) expansion strategy [16, 37], called local

search. In the global search strategy [97], the maximal k-core is the initial re-

sult, which can be efficiently computed in linear time [17]. Then the size of the

resulting subgraph will be shrunken by repeatedly removing the vertex while

keeping q in the resulting k-core subgraph3. As shown in [16], the global search

method in [97] is ineffective because the size of maximal k-core is usually very

large, and the quality of the resulting k-core subgraph is not competitive with

the local search approaches. In recent studies [16, 37], the local search strategy is

adopted which starts from the query vertex and then expands the resulting sub-

graph by incrementally including the most promising candidate vertex at each

step following some greedy heuristics. Below, we present the state-of-the-art

technique proposed in [16].

State-of-the-art. In [16], a greedy algorithm, named S-Greedy , is proposed to

find the minimum k-core subgraph containing the query vertex. Let P denote

the resulting subgraph, which is initialized as {q}. By C we denote candidate

vertices which are neighbors of the vertices in P , not contained by P . In each

iteration, the most promising candidate vertex is chosen for inclusion in P , and

the candidate set C is updated accordingly. P is returned when every vertex

in P satisfies the k-core constraint. The key of the algorithm is the design of

the scoring function to measure the goodness of candidates. In [16], the authors

employ two functions to qualitatively measure the advantage and disadvantage of

3There is no k-core subgraph containing the query vertex q if it is not in the maximal
k-core.
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including a vertex u in P , denoted by p+(u) and p−(u) respectively. Specifically,

p+(u) records the number of neighbors of u in P with a degree still less than k,

i.e.,

p+(u) = |{v|v ∈ N(u, P ), deg(v, P ) < k}| (4.1)

Intuitively, the larger the p+(u) value, the better chance that u can make more

vertices in P to satisfy the k-core constraint. The cost of including u in P is

that an extra number of vertices needed to make u have at least k neighbors in

P , i.e.,

p−(u) = max{0, k − |N(u, P )|} (4.2)

Then the score of the vertex u is defined as p+(u)−p−(u), where the larger value

is preferred.

Discussion. The proposed algorithm is time efficient. The time complexity

of the score computation at each iteration is O(dmax) as only the neighbors

of the vertex u are involved and it takes O(ln(n)) time to maintain the most

promising candidate vertex. Thus, the time complexity of S-Greedy isO(s(dmax+

log(n))) where s is the size of the resulting subgraph. In [16], the maximal k-

core will be computed for the following computation and hence s is bounded

by the size of maximal k-core, which is usually a large number in practice.

Experiments show that S-Greedy significantly outperforms other competitors by

means of the resulting subgraph size. However, our empirical study indicates

that there is still a big gap between its resulting subgraph and the optimal

solution. Moreover, all existing algorithms do not have the quality guarantee

about the size of the resulting subgraph and hence it is difficult for users to

make a trade-off between result quality and search time. This motivates us to

develop a progressive algorithm in this chapter.
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4.3 Progressive Search Algorithm

In this section, we give the solution for the minimum k-core problem.

4.3.1 Progressive Search Algorithm

Motivation and Framework. We devise a progressive search algorithm,

namely PSA. Given a vertex set Vt as a partial solution, we find that it is feasible

to compute the upper/lower bounds of the minimum size of a k-core containing

Vt (the details are introduced in later sections). Thus, if we can progressively

converge the size upper/lower bounds of the partial solutions in a search, it is

possible to compute a k-core with guaranteed size approximation ratio regarding

the size of optimally-minimum k-core. Then, the framework of PSA is designed

as a Best-First Search (BFS) which computes the result in an expansion manner

and visits the most promising branch at each search step.

A search tree of BFS is constructed along with the procedure of BFS where

the root is the query vertex and every tree node contains one vertex. For each

tree node t, its partial solution Vt contains the vertex in the node and all the

vertices in the ancestor nodes. In PSA, when a tree node t is visited and t

contains the vertex u, we add the child nodes of t to the search tree where each

child node contains a unique neighbor of a vertex in Vt with vertex id larger than

u. Then, the search step at node t is processed as follows:

(i) Lower bound driven search. For the partial solution V ′
t
of every child

node t′ of the node t, we compute a size lower bound s−(t) of the minimum

k-core containing V ′
t
(introduced in Section 4.3.2). The next node to visit (the

most promising node) is the one with the smallest lower bound s−(·) from all

the leaf nodes in current search tree.

(ii) Upper bound driven search. For the partial solution V ′
t
of every child

53



Chapter 4 4.3. PROGRESSIVE SEARCH ALGORITHM

node t′ of the node t, we conduct a Depth-First Search (DFS) to compute a min-

imal k-core containing V ′
t
by heuristics (introduced in Section 4.3.3), to update

the global size upper bound s+ of the optimally-minimum k-core.

The algorithm PSA will return if s
+

s� ≤ c is satisfied for current search node,

where c is the approximate ratio.

Example 5. Figure 4.1 illustrates a part of the search tree T of our PSA algo-

rithm, where the root is the query vertex v0. There are 4 neighbors of v0 with

vertex id larger than v0: v2, v3, v4 and v10. When v0 is visited, for each neighbor

of v0, we attach a child node to the current visited node in T , where each child

node contains exactly one unique neighbor of v0. The partial solution for the

node containing v3 is {v0, v3}. In the BFS, suppose the node t has the smallest

size lower bound of the minimum k-core containing its partial solution, t will be

explored in the next search step, e.g., the node containing v3 in Figure 4.1(a).

For each child node with partial solution Vt, we also compute a minimal k-core

containing Vt in a DFS which heuristically adds vertices to Vt. In Figure 4.1(b),

a k-core induced by v0, v2, v3, v9 and v10 is computed for Vt = {v0, v2}, and the

size upper bound is updated to s+ = 5 if it is smaller than existing upper bound.

Iteratively, the search will return when it finds a k-core satisfying approxima-

tion ratio c regarding the size of the optimally-minimum k-core.

Algorithm 5 shows the pseudo-code of our progressive search algorithm. We

use t to denote a tree node in the search tree T . The vertex set Vt of a node t

consists of the vertex t.v in t and all the vertices in the ancestor nodes of t. Let

s+ denote the size upper bound of optimally-minimum k-core, and s−(t) denote

the size lower bound of the minimum k-core containing Vt. Similar to the A*

search [15, 113], we use a set Q to denote the the leaf nodes in T to be visited,

where the key of a node t is s−(t) in ascending order. GetUpper(Vt) computes

a minimal k-core R containing Vt by heuristics (introduced in Section 4.3.3).
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Fi g ur e 4. 1: Tr e e  C o nstr u cti o n

Li n es 2- 4 i niti ali z es t h e a b o v e n ot ati o ns.

I n e a c h it er ati o n ( Li n es 6- 1 9), t h e n o d e t wit h t h e s m all est l o w er b o u n d v al u e

s � (t) is p o p p e d at  Li n e 6.  T o a v oi d d u pli c at e d c o m p ut ati o ns, f or c urr e nt visit e d

v ert e x t. v, w e e x p a n d it b y e a c h n ei g h b or u of a v ert e x i n V t wit h i d(u ) > i d (t. v)

( Li n e 7),  w h er e i d(u ) is t h e i d e nti fi er of u . At Li n es 8- 9, f or e a c h c hil d n o d e t0 of t,

G et L o w e r (V t ) c o m p ut es t h e si z e l o w er b o u n d of t h e  mi ni m u m k - c or e c o nt ai ni n g

V 0t (i ntr o d u c e d i n S e cti o n 4. 3. 2),  w h er e V
0
t c o nt ai ns t

0. v a n d all t h e v erti c es i n V t .

At  Li n e 1 0, s � (t0) is assi g n e d b y s � (t) if s � (t0) is s m all er, b e c a us e t h e si z e l o w er

b o u n d of V 0t s h o ul d n ot b e s m all er t h a n V t . F or t h e si z e u p p er b o u n d s
+ (t0), at

Li n e 1 2,  w e c o n d u ct a h e uristi c s e ar c h t o i n cr e m e nt all y a d d pr o misi n g v erti c es

t o V 0t till it b e c o m es a k - c or e s u b gr a p h, d e n ot e d b y R
0,  wit h s + (t0) = |R 0|.  T h e

gl o b al u p p er b o u n d s + a n d c urr e nt b est s ol uti o n R will b e u p d at e d b y s + (t0) a n d

R 0 if s + (t0) < s + , si n c e s m all er k - c or e s u b gr a p h is pr ef err e d ( Li n es 1 3- 1 4).  N ot e

t h at a s e ar c h br a n c h f oll o wi n g t0 c a n b e s af el y t er mi n at e d ( Li n e 1 7) if s � (t0) � s +

b e c a us e t h e r es ulti n g s u b gr a p h d eri v e d fr o m V 0t c a n n ot o ut p erf or m t h e c urr e nt

b est s ol uti o n R .

T h e gl o b al l o w er b o u n d s � is u p d at e d as t h e s m all est s � (·) a m o n g all n o d es

i n Q at  Li n e 1 8.  T h e al g orit h m  will r et ur n if s
+

s �
 c is s atis fi e d at  Li n e 1 9 or
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Algorithm 5 PSA(G, k, q, c)

Input: G : a graph, k : degree constraint, c : approximation ratio, q : query vertex
Output: R : the approximate minimum k-core

1: if q ,∈ the maximal k-core of G then return ∅

2: t ← the (root) node of search tree T , where t.v = q
3: Q.push(t); R := GetUpper(Vt)
4: s+ := |R|; s−(t) := 1
5: while Q ,= ∅ do
6: t ← Q.pop(); //Q is a priority queue with key on s−(t)
7: for every u ∈ N(t.v) with id(u) > id(t.v) do
8: t′ ← the child node of t, where t′.v := u
9: s−(t′) := GetLower(Vt0)
10: if s−(t′) < s−(t) then s−(t′) := s−(t)
11: if s−(t′) < s+ then
12: R′ := GetUpper(Vt0); s+(t′) := |R′

|

13: if s+(t′) < s+ then
14: R := R′; s+ := s+(t′)
15: Q.push(t′); attach child node t′ to t in T

16: else
17: s−(t′) ← +∞

18: s− ← smallest key value among nodes in Q

19: if s
+

s� ≤ c then return R
20: return R

the queue is empty. R is returned as an approximate solution of the minimum

k-core containing q.

Time complexity. The time cost of Algorithm 5 is O(l × (tl + tu)) where l

is the number of iterations and tl (resp. tu) denotes the computing cost of the

lower (resp. upper) bounds at Lines 9 (resp. Line 12).

Correctness. Every subgraph R′ retrieved at Line 12 is a k-core subgraph con-

taining q, and hence the upper bound s+ is correctly maintained in Algorithm 5.

Given the correctness of the lower bound s−, we have s− ≤ |R∗
| ≤ s+, where R∗

is the optimal solution. Thus, the termination of the search branches at Line 17
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is safe as all possible search branches are considered for lower bound computa-

tion. When Algorithm 5 terminates, we will return R (best solution obtained so

far) with s
+

s� ≤ c.

4.3.2 Lower Bounds Computation

Given a partial solution P = {v1, v2, ...} and a vertex v ∈ P , we use d(v) to

denote the demand of v, i.e., the number of extra neighbors (supports) needed

from vertices outside of P such that v can satisfy the degree constraint, i.e.,

d(v) = max{k − deg(v, P ), 0}. For every vertex v ∈ P with d(v) > 0, we must

include at least d(v) vertices in N(v,G) \ P such that P can be expanded to a

k-core subgraph. Let M∗ be the minimal subset of vertices from V \ P , such

that there are at least d(v) neighbors in M∗ for every vertex v ∈ P . Clearly,

|P |+ |M∗
| is a size lower bound of any k-core subgraph derived from P , denoted

by L(P ), because M∗ is the minimal set of vertices required to satisfy the degree

constraint for vertices in P , without considering the degree constraint for vertices

in M∗.

We show that the computation of M∗ for a given partial solution P can be

converted to a variant of the set cover problem as follows.

Set Multi-Cover Problem [28]. Let U be the universe of n elements with

U = {e1, e2, ..., en}, and there is a count for each element ei. We use C =

{c1, c2, . . . , cn} to denote the counts of the elements. For a family of m subsets

of U , X = {S1, S2, ..., Sm}, where Si is a subset of U . The goal is to find a set

I ⊆ {S1, S2, ..., Sm}, such that every element ei ∈ U is covered by at least ci

subsets from I.

Mapping of the problem. Each vertex v in the partial solution P with d(v) >

0 corresponds to an element ei of U . The element count ci is set to d(v), i.e.,

the demand of v. Let N(P ) denote the neighbor vertices of the partial solution
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P wit h N (P ) = (
S
v 2 P & d ( v ) > 0 N (v,  G )) \ P , e v er y n ei g h b or v ert e x u i n N (P )

c orr es p o n ds t o a s u bs et S w hi c h c o nsists of v erti c es i n P (i. e., U ) a dj a c e nt t o u .

B y d oi n g t his, t h e o pti m al s ol uti o n of t h e s et  m ulti- c o v er pr o bl e m, d e n ot e d b y

I ⇤ , c orr es p o n ds t o M ⇤ i n t h e a b o v e l o w er b o u n d c o m p ut ati o n.

v 2v 0v 1 0

v 2v 2v 0
v 4 v 1v 1 2 v 1 1

v 1 0
v 1
v 2

v 7

v 8
v 9 v 1 0

v 3
v 4

v 1 1
v 1 2

v 1 3

v 0

C:

U:

X:

( k-2 ) ( k- 1 )( k- 1 )

2 1 2

v 2v 0
v 3
v 1 0v 2 v 1 0

v 9

Fi g ur e 4. 2: M a p t o S et  M ulti- c o v er

E x a m pl e 6. C o n si d e r t h e g r a p h i n  Fi g u r e 1. 2  wit h k = 3 , a n d t h e p a rti al

s ol uti o n P = { v 1 0 , v2 , v0 } . We s h o w t h e r el at e d p a rt of Fi g u r e 1. 2 i n t h e l eft of

Fi g u r e 4. 2.  F o r P , w e h a v e d (v 0 ) = 1, d (v 2 ) = 2, d (v 1 0 ) = 2, a n d t h e n ei g h b o r s et

of P i s N (P ) = { v 9 , v3 , v1 2 , v4 , v1 1 , v1 } . M a p pi n g t o s et m ulti- c o v e r p r o bl e m, w e

h a v e U = { v 1 0 , v2 , v0 } , C = { 2 , 2 , 1 } , a n d X = { { v 2 , v1 0 } , { v 0 , v2 , v1 0 } , { v 1 0 } , { v 0 } ,

{ v 2 } , { v 2 } } , e. g., t h e s et { v 2 , v1 0 } i s a s s o ci at e d  wit h t h e v e rt e x v 9 2 N (P ) a s

s h o w n i n t h e fi g u r e.

L o w e r  b o u n d c o m p u t a ti o n. F or t h e gi v e n p arti al s ol uti o n P = P u [ { v }

at  Li n e 9 of  Al g orit h m 5,  w e c a n c o nstr u ct a n i nst a n c e of t h e s et  m ulti- c o v er

pr o bl e m a c c or di n gl y.  We ai m t o d eri v e a si z e l o w er b o u n d of its o pti m al s ol uti o n

I ⇤ , d e n ot e d b y L .  T h e n  w e c a n us e |P | + L as t h e l o w er b o u n d si n c e |P | + L 

|P | + |I ⇤ | = |P | + |M ⇤ |. H er e, w e str ess t h at o ur f o c us is t h e c o m p ut ati o n of L ,

n ot a f e asi bl e s ol uti o n f or t h e s et  m ulti- c o v er pr o bl e m.

I n t h e f oll o wi n g s u bs e cti o ns,  w e i ntr o d u c e t hr e e a p pr o a c h es t o c o m p ut e L :

gr e e d y- b as e d a p pr o a c h ( L g ), str u ct ur e r el a x ati o n b as e d a p pr o a c h ( L s r ) a n d i n cl usi o n-

e x cl usi o n b as e d a p pr o a c h ( L i e ).

5 8



4. 3.  P R O G R E S SI V E S E A R C H  A L G O RI T H M C h a pt er 4

L g :  G r e e d y- b a s e d  L o w e r  B o u n d

I n [ 3 9],  D o bs o n pr o p os e d a gr e e d y al g orit h m f or t h e s et  m ulti- c o v er pr o bl e m

wit h a n a p pr o xi m ati o n r ati o l n(� ),  w h er e � is t h e l ar g est si z e of t h e s u bs ets i n

X . S p e ci fi c all y, t h e gr e e d y al g orit h m r e p e at e dl y c h o os es a s u bs et S i fr o m X \ I

t h at c o v ers t h e l ar g est n u m b er of el e m e nts i n U ,  w hi c h ar e n ot y et f ull y c o v er e d

b y t h e c urr e nt s ets i n I . It st o ps a n d r et ur ns t h e c h os e n s u bs ets i n I w h e n e v er y

el e m e nt e i 2 U ar e c o v er e d b y at l e ast c i c h os e n s u bs ets.  L et |I | d e n ot e t h e

n u m b er of s u bs ets i n I w h e n t h e gr e e d y al g orit h m t er mi n at es, |I |
l n (� )
i s a l o w e r

b o u n d of t h e o pti m al s ol uti o n |I ⇤ |, i. e., |I ⇤ | � b |I |
l n (� )
c . I n t his c h a pt er, w e us e L g

t o d e n ot e t his gr e e d y h e uristi c b as e d l o w er b o u n d f or I ⇤ .

C: 2 233

U:

X:

2 0 000 0

…
…

S 1 S 2 S 3 S 4 S 5 S 6 S 1 S 2 S 3 S 4 S 5 S 6

e 1 e 2 e 3 e 4 e 5 e 1 e 2 e 3 e 4 e 5

Fi g ur e 4. 3:  Gr e e d y  B as e d  L o w er  B o u n d

E x a m pl e 7. C o n si d e r t h e s et  m ulti- c o v e r p r o bl e m i n  Fi g u r e 4. 3,  w h e r e U =

{ e 1 , e2 , e3 , e4 , e5 } , C = { 3 , 2 , 3 , 2 , 2 } , a n d X = { S 1 , S2 , S3 , S4 , S5 , S6 } . T h e el-

e m e nt s i n a s et S i a r e t h e o n e s c o n n e ct e d t o S i a s s h o w n i n t h e fi g u r e. I n a

g r e e d y  m a n n e r, S 3 i s t h e fi r st s u b s et t o b e c h o s e n,  w hi c h c o v e r s e 1 , e 2 , e 3 , a n d

e 4 fi r st.  T h e c o u nt s et C = { 2 , 1 , 2 , 1 , 2 } i s u p d at e d. It e r ati v el y, S 4 , S 5 , S 2 , S 1

a n d S 6 a r e c h o s e n s e q u e nti all y.  T h e g r e e d y r e s ult i s I = { S 3 , S4 , S5 , S2 , S1 , S6 } .

Si n c e t h e  m a xi m u m si z e s u b s et i n X i s |S 3 | = 4 (i. e., � = 4 ), t h e l o w e r b o u n d i s

L g = b |I |
l n (� )
c = b 6

l n ( 4 )
c = 4 .

Di s c u s si o n. Alt h o u g h t h e c o m p ut ati o n of t h e l o w er b o u n d c a n b e n at ur all y

m a p p e d t o t h e s et  m ulti- c o v er pr o bl e m, o ur e m piri c al st u d y i n di c at es t h at t h e

5 9
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� v al u e is us u all y n ot s m all o n r e al-lif e gr a p hs,  w hi c h  m a y l e a d t o t h e p o or

p erf or m a n c e of t h e gr e e d y- b as e d l o w er b o u n d.  We n ot e t h at t h e  m ai n f o c us of

t h e gr e e d y al g orit h m i n [ 3 9] is t o fi n d a f e a si bl e s ol uti o n I f or t h e s et  m ulti- c o v er

pr o bl e m,  w hi c h  m e a n w hil e c a n d eri v e t h e l o w er b o u n d of |I ⇤ |.  C o nsi d eri n g t h at

o ur p ur p os e is t o d eri v e t h e l o w er b o u n d of |I ⇤ |, i n t h e f oll o wi n g t w o s u bs e cti o ns

w e d e v el o p t w o n e w t e c h ni q u es  w hi c h ai m t o d esi g n s o m e h e uristi c a p pr o a c h es t o

di r e ctl y d eri v e a ti g ht er l o w er b o u n d L f or |I ⇤ |,  wit h o ut c o nsi d eri n g t h e f e asi bl e

s ol uti o n t o t h e pr o bl e m.

L s r : S t r u c t u r e R el a x a ti o n B a s e d L o w e r B o u n d

I n t his s u bs e cti o n,  w e i ntr o d u c e t h e S t r u c t u r e R e l a x a t i o n B a s e d L o w e r B o u n d ,

d e n ot e d b y L s r .

S 1 S 2 S 3

e 1 e 2 e 3

2 33C:

U:

X: S 4 S 5

( a)

S 1 S 2 S 3

e 1 e 2 e 3

2 33

X: S 4 S 5’ ’ ’ ’ ’ ’

C:

U:

( b)

Fi g ur e 4. 4: L s r M oti v ati n g  E x a m pl e

M o ti v a ti o n. T h e k e y i d e a is t o dir e ctl y o bt ai n a l o w er b o u n d f or |I ⇤ | b y r e-

c o nstr u cti n g s u bs ets { S i } i n X (i. e., a str u ct ur e r el a x ati o n if  w e tr e at s et U

a n d X as a bi p artit e gr a p h as s h o w n i n  Fi g ur e 4. 4). S u p p os e  w e h a v e U =

{ e 1 , e2 , e3 } , C = { 3 , 2 , 3 } a n d X = { S 1 , S2 , S3 , S4 , S5 } i n t h e s et  m ulti- c o v er

pr o bl e m as s h o w n i n  Fi g ur e 4. 4( a).  F or i nst a n c e,  w e h a v e S 4 = { e 2 , e3 } . We

h a v e I ⇤ = { S 1 , S2 , S3 , S4 , S5 } i n t his e x a m pl e si n c e all S i m ust b e i n cl u d e d, i. e.,

|I ⇤ | = 5 . H o w e v er, s u p p os e w e all o w e a c h S i t o i n cl u d e ar bitr ar y |S i | el e m e nts

(i. e., c h a n g e  wit h t h e si z e c o nstr ai nt), d e n ot e d b y S 0i .  T h e n  w e  m a y r e- c o nstr u ct

6 0
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X, denoted by X ′, as shown in Figure 4.4(b) with |Si| = |S ′
i
|. For instance, we

have S ′
4 = {e1, e3}. Now we have I ′ = {S ′

2, S
′
3, S

′
4, S

′
5} (i.e., L = 4) to cover all

elements under the new setting, with L = |I ′| ≤ |I∗|. Note that although I ′ is

not a valid solution for the original set multi-cover problem, |I ′| indeed can serve

as the lower bound of |I∗|.

Lower bound computation. In this subsection, we introduce how to re-

construct X such that we can easily derive a valid lower bound for |I∗|. Intu-

itively, we should encourage the set with a large size (i.e., covering power) to

include elements with high count values in the re-construction. Algorithm 6 il-

lustrates the details of the structure relaxation based lower bound computation.

Initially, Line 1 orders {Si} in X in descending order of their sizes. Meanwhile,

the elements are organized by a maximal priority queue Q where the key of an

element ei is its count ci (Line 2). In Lines 3-11, we will sequentially choose

subsets {Si} from X based on their sizes. For each Si chosen, we will use Si

to cover the first |Si| elements with the largest count values in Q, denoted by

T (Line 5); that is, count ck will be decreased by one if ek ∈ T (Line 7). We

remove an element ek from Q at Line 8 if it has been covered by ck times, i.e.,

ck is decreased to 0. Then the maximal priority queue is updated due to the

change of count value at Line 9. Algorithm 6 will be terminated if all elements

have been fully covered (Line 11) and l, i.e., {Si} visited so far, will be returned

as the lower bound of |I∗| at Line 12.

Example 8. Figure 4.5 illustrates the procedure of a set multi-cover problem

which has U = {e1, e2, e3, e4, e5}, C = {3, 2, 3, 2, 2}, and X = {S1, S2, S3, S4, S5, S6}

initially. To compute Lsr, the first step is to construct F = {S3, S4, S2, S5, S1, S6}

and Q = {e1, e3, e2, e4, e5}. S3 is processed first because it has the most elements.

The counts of the top |S3| elements (T = {e1, e3, e2, e4}) in Q decrease by one:

C = {2, 1, 2, 1, 2}. This is followed by the update of the lower bound l and Q.
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Al g o ri t h m 6  S t r u c t u r e R el a x a ti o n L B ( U , C , X )

I n p u t : U : a u ni v er s e of el e m e nt s, C : t h e c o u nt s of t h e el e m e nt s,
X : a f a mil y of s u b s et s of U

O u t p u t : L s r : t h e l o w er b o u n d of |I ⇤ |

1: l : = 0; p ut all S i 2 X t o F wit h d e s c e n di n g or d er of |S i |
2: p ut all e i 2 U t o a  m a xi m al pri orit y q u e u e Q wit h k e y c i
3: f o r j = 1 t o |X | d o
4: S i  t h e j -t h s u b s et i n F ; l : = l + 1
5: T  t h e t o p |S i | el e m e nt s i n Q
6: f o r e a c h e k i n  T d o
7: c k : = c k � 1
8: r e m o v e e k fr o m Q If c k = 0
9: U p d at e Q d u e t o t h e c h a n g e of c k
1 0: if c k = 0 f or e v er y k 2 [ 1, |U |] t h e n
1 1: Br e a k
1 2: r e t u r n l

It e r ati v el y, S 4 , S 2 , S 5 , a n d S 1 a r e c h o s e n s e q u e nti all y u ntil c x = 0 f o r e v e r y x

f r o m 1 t o |U |. S o, w e h a v e L s r = l = 5 , w hi c h i s b ett e r t h a n L g = 4 .

C: 2 233

U:

X:

2
C h o o s e

C: 1 122

U:

X:

2 1 111 1

0 000 0

C h o o s e

….    …

S 1 S 2 S 3 S 4 S 5 S 6 S 1 S 2 S 3 S 4 S 5 S 6

e 1 e 2 e 3 e 4 e 5 e 1 e 2 e 3 e 4 e 5

S 1 S 2 S 3 S 4 S 5 S 6 S 1 S 2 S 3 S 4 S 5 S 6

e 1 e 2 e 3 e 4 e 5 e 1 e 2 e 3 e 4 e 5

S 3

S 4

Fi g ur e 4. 5: Str u ct ur e  R el a x ati o n  B as e d  L o w er  B o u n d

Ti m e c o m pl e xi t y. T h e d o mi n at e d c ost is t h e u p d at e of Q ,  w hi c h tri g g ers
|U |P

k = 1

c k ti m es.  T h e u p d ati n g of Q c osts O (l o g (|Q |).  T h us t h e ti m e c o m pl e xit y of
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computing Lsr is O(log(|U |) ∗
|U |P
k=1

ck).

Correctness. Note that it is not necessary that ek ∈ Si at Line 5. In this sense,

we re-construct Si to cover different |Si| elements in U , and hence may end up

with an invalid result set I in Algorithm 6 for the set multi-cover problem, i.e.,

not every element ek in U will be covered by ck times by I. Nevertheless, the

theorem below suggests that |I| obtained by Algorithm 6 is indeed a lower bound

of |I∗|, which is sufficient for our problem.

By Theorem 5 we prove that the Lsr is a lower bound of I∗ for the set

multi-cover problem.

Theorem 5. l obtained in Algorithm 6 is a lower bound of |I∗|.

Proof. We consider the set multi-cover problem with regard to U = {e1, e2, . . . },

C = {c1, c2, . . . }, and X = {S1, S2, . . . }. In order to prove the theorem, we

define a relaxed problem Rex(U , C, H) as follows: Given a set of elements

U = {e1, e2, . . . }, C = {c1, c2, . . . }, and size constraints H = {h1, h2, . . . } with

|H| = |X| and hi = |Si|, we want to find a set I = {Ik1 , Ik2 , . . . } where 1 ≤

k1 < k2 < · · · ≤ |H|, Iki ⊆ U , and |Iki | ≤ hki , such that ej is contained in cj

subsets from I and |I| is minimized. Suppose I is the optimal solution of Rex(U ,

C, H), and I∗ is the optimal solution for the set multi-cover problem regarding

U , C and X, we have |I| ≤ |I∗|, since Rex(U , C, H) is a relaxation for the set

multi-cover problem (each set in I can contain any elements in U with only a size

constraint). Next, we prove that our Algorithm 6 obtains the optimal solution

I for the problem Rex(U , C, H).

Suppose w.l.o.g. that h1 ≥ h2 ≥ . . . and c1 ≥ c2 ≥ . . . , we show that there

exists an optimal solution with k1 = 1 i.e., the size of Ik1 in I is bounded by h1.

This is because if k1 ,= 1 we can replace k1 with 1 and the constraint on Ik1 is

increased, thus we do not obtain a worse solution. Next, we prove that there
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exists an optimal solution s.t. I1 contains the first h1 elements in U (i.e., the

top-h1 elements with the largest ci values). Suppose there is an optimal solution

with I ′ = {I ′1, I
′
2, . . . } s.t. in I ′1 there exists an x < y with ei ∈ I ′1 for i < x,

ex /∈ I ′1 and ey ∈ I ′1, we prove that we can construct an optimal solution I with

ei ∈ I1 for i ≤ x. Since C is sorted in non-increasing order, we have cx ≥ cy,

therefore, we can always find an I ′
j
(j > 1) that contains ex but does not contain

ey. So if we move ex from I ′
j
to I ′1 and move ey from I ′1 to I ′

j
, the constraints

on I will not change and in this way we obtain a solution I that is not worse

than I ′ and has ei ∈ I1 for i ≤ x. As a result, statement that I1 contains the

first h1 elements in U holds. Similarly, we can prove that I2 contains the first h2

elements in U ′ by deducing those covered by I1. Since the selection procedure is

the same as that in Algorithm 6, our algorithm obtains the optimal solution for

the problem Rex(U , C, H). Therefore, the theorem holds.

Lie: Inclusion-exclusion Based Lower Bound

The structure relaxation based approach only considers the size constraint when

it re-constructs X, which may end up with a loose lower-bound. In this subsec-

tion, we introduce an inclusion-exclusion based lower bound, denoted by

Lie.

Motivation. Suppose we have U = {e1, e2, e3} and C = {3, 3, 3}. Let S(e)

denote the sets of {Si} in X which contain element e (i.e., e ∈ Si). Meanwhile,

for optimal solution I∗, we use I∗(e) to denote the set of {Si} in I∗ which contain

the element e. Clearly, for any optimal solution I∗ regarding a given X, we must

have |I∗(ei)| ≥ 3 for elements {e1, e2, e3} since C = {3, 3, 3}. According to the
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inclusion-exclusion principle, we have

|I∗| = |I∗(e1) ∪ I∗(e2) ∪ I∗(e3)|

= |I∗(e1)|+ |I∗(e2)|+ |I∗(e3)|

− |I∗(e1) ∩ I∗(e2)|− |I∗(e1) ∩ I∗(e3)|− |I∗(e2) ∩ I∗(e3)|

+ |I∗(e1) ∩ I∗(e2) ∩ I∗(e3)|

(4.3)

Given the fact that I∗(e) ⊆ S(e) for any element e ∈ U , we now investigate

the possible value of |I∗| if some knowledge about the overlap size among {S(e)}

in X is available. If there is no constraint regarding the size of |S(ei) ∩ S(ej)|

(1 ≤ i < j ≤ 3) and |S(e1) ∩ S(e2) ∩ S(e3)|, we can easily come up with a X

such that |I∗| = 3 + 3 + 3 − 3 − 3 − 3 + 3 = 3 as shown in Figure 4.6(a), in

which each Si (1 ≤ i ≤ 3) covers all three elements. While if we know that

|S(ei) ∩ S(ej)| = 0 (1 ≤ i < j ≤ 3), Figure 4.6(b) constructs a X such that

|I∗| = 3 + 3 + 3 − 0 − 0 − 0 + 0 = 9. Note that we have |I∗(ei) ∩ I∗(ej)| = 0

(1 ≤ i < j ≤ 3) and |I∗(e1) ∩ I∗(e2) ∩ I∗(e3)| = 0 immediately. Using a similar

argument, we may have |I∗| = 3 + 3 + 3 − 1 − 1 − 1 + 0 = 6 in Figure 4.6(c)

if |S(ei) ∩ S(ej)| = 1 (1 ≤ i < j ≤ 3) and |S(e1) ∩ S(e2) ∩ S(e3)| = 0. In

Figure 4.6(d), we have |I∗| = 3+3+3−1−1−1+1 = 7 given |S(ei)∩S(ej)| = 1

(1 ≤ i < j ≤ 3) and |S(e1) ∩ S(e2) ∩ S(e3)| = 1.

The above example implies that we may come up with a tighter lower bound

of |I∗| if we know the overlap sizes of sets among {S(e)}. For computing effi-

ciency, we only consider the intersection size of pairwise sets, i.e., |S(ei)∩S(ej)|

for all 1 ≤ i < j ≤ n, in our inclusion-exclusion based lower bound computation.

Lower bound computation. Algorithm 7 gives details of the inclusion-exclusion

based lower bound computation. Initially, the elements in U are organized by a
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S 6 S 7

S 4
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Fi g ur e 4. 6: L i e M oti v ati n g  E x a m pl e

m a xi m al pri orit y q u e u e Q , t h e k e y of a n el e m e nt e i is its c o u nt c i ( Li n e 1).  We

g e n er at e a s et S (e i ) f or e a c h el e m e nt. S (e i ) d e n ot es t h e s ets of S 2 X w hi c h

c o v er t h e el e m e nt e i , i. e., e i 2 S . I n Li n es 3- 1 1, w e s e q u e nti all y c h o os e a n el e-

m e nt e i fr o m Q b as e d o n its c o u nt.  F or e a c h e i c h os e n, t h e ot h er el e m e nts i n Q ,

t h at is, t h e c o u nt c k will b e d e cr e as e d b y � ,  w h er e � = mi n { S (e i ) \ S (e k ), ci } .

We r e m o v e e k fr o m Q at  Li n e 8 if c k  0 , i. e., e k h as b e e n c o v er e d c k ti m es.

T h e n t h e  m a xi m al pri orit y q u e u e is u p d at e d d u e t o t h e c h a n g e i n t h e c o u nt

v al u e ( Li n e 1 1).  Al g orit h m 7  will b e t er mi n at e d if all el e m e nts h a v e b e e n f ull y

c o v er e d, i. e., Q is e m pt y a n d l will b e r et ur n e d as t h e l o w er b o u n d of |I ⇤ | at

Li n e 1 2.

6 6
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Algorithm 7 Inclusion-Exclusion LB(U , C, X)

Input: U : a universe of elements need to be covered,C : the count of every element in U ,
X : a family of subsets of U

Output: Lie : Inclusion-exclusion based lower bound

1: put all ei ∈ U to a maximal priority queue Q with key ci
2: generate S(ei) for each element ei ∈ U ; l := 0
3: while Q ,= ∅ do

4: ei ← Q.top(); Q.pop(); l := l + ci; ci := 0
5: for each ej ∈ Q do

6: � := min{|S(ej) ∩ S(ei)|, ci}
7: if � ≥ cj then

8: remove ej from Q
9: else

10: cj := cj −�
11: Update Q
12: return l

Example 9. Consider the set multi-cover problem in Figure 4.7, where U =

{e1, e2, e3, e4, e5}, C = {3, 2, 3, 2, 2}, and X = {S1, S2, S3, S4, S5, S6}, where Si ⊆

U . Let S(ei) denote the sets of {Sj} in X that cover the element ei (i.e., ei ∈ Sj),

shown as S(e1) = {S1, S2, S3} in the figure. We construct the priority queue

Q = {e1, e3, e2, e4, e5}. Here e1 is processed first and l = 0 + c1 = 3. The set C

is updated accordingly: �2 = min{|S(e1) ∩ S(e2)|, c1} = 2. Thus �2 ≥ c2, e2 is

removed from Q. We have C = {0, 0, 2, 1, 2} and Q = {e3, e5, e4} after completing

the first round. Next, e3 is processed and l is updated to l = 3+c3 = 5. Similarly,

we have C = {0, 0, 0, 0, 1} and Q = {e5} after finishing this round. Then e5 is

processed in the next step, and l = 6, followed by c5 = 0 and Q = ∅. As a result,

the lower bound is Lie = l = 6.

Time complexity. The dominant cost of Algorithm 7 is the computation of

S(ei) ∩ S(ej) at Line 6. With the help of the data structure HashMap in c++

STL, we can get |S(ei) ∩ S(ej)| in |X| × O(1) time, where O(1) is the time
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Fi g ur e 4. 7: I n cl usi o n- e x cl usi o n  B as e d  L o w er  B o u n d

c o m pl e xit y of o n e s e ar c h i n  H as h M a p. As e a c h S (e i ) c a n b e pr e-s ort e d, t h e c ost

is O (|U |2 |X |).

S p a c e c o m pl e xi t y. As e a c h s et S (e i ) t a k es O (|X |) s p a c e at  m ost.  E a c h

H as h M a p t a k es O (|X |) s p a c e.  T h e s p a c e c o m pl e xit y is O (|U ||X |) at  m ost.

C o r r e c t n e s s. T h e f oll o wi n g t h e or e m s h o ws t h e c orr e ct n ess of t h e i n cl usi o n-

e x cl usi o n b as e d l o w er b o u n d c o m p ut ati o n.

T h e o r e m 6. l o bt ai n e d i n  Al g o rit h m 7 i s a l o w e r b o u n d of |I ⇤ |.

P r o of. S u p p os e t h e s et  m ulti- c o v er pr o bl e m is r el at e d t o U = { e 1 , e2 , e3 , . . . , eh } ,

C = { c 1 , c2 , c3 , . . . } , a n d X = { S 1 , S2 , . . . } , a n d t h e o pti m al s ol uti o n f or t his

pr o bl e m is I ⇤ . We us e S (e i ) t o d e n ot e t h e s ets of { S j } i n X w hi c h c o nt ai n

el e m e nt e i (i. e., e i 2 S j ).

We pr o v e t h e t h e or e m b y i n d u cti o n. S u p p os e t h e t h e or e m h ol ds f or a n y U

wit h h � 1 el e m e nts,  w e pr o v e t h e t h e or e m h ol ds f or a n y U wit h h el e m e nts.

We st art fr o m a n el e m e nt e 1 2 U : S u p p os e i n t h e o pti m al s ol uti o n I
⇤ , w e

us e l⇤1 s u bs ets t o c o v er e 1 , a p p ar e ntl y, w e h a v e l
⇤
1 � c 1 . L et l

⇤
0 b e t h e n u m b er

of s u bs ets t o c o v er all ot h er el e m e nts i n U \ { e 1 } i n t h e o pti m al s ol uti o n. S o

6 8
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we have |I∗| = l∗1 + l∗0. Suppose after selecting l∗1 subsets I∗(e1) to cover e1,

other elements in U need to be covered C∗ = {c∗2, c
∗
3, . . . } times. We have

c∗2 = c2 − |I∗(e1) ∩ S(e2)|, c∗3 = c3 − |I∗(e1) ∩ S(e3)|, . . . .

For Algorithm 7, firstly, we select l1 subsets to cover e1, i.e., l1 = c1, ap-

parently, l∗1 ≥ l1. Let l0 be the number of subsets that we get from Algo-

rithm 7 to cover all elements in U \ {e1}. Thus, we have l = l1 + l0. Sup-

pose after selecting l1 subsets to cover e1, the elements in U \ {e1} need to be

covered by C ′ = {c′2, c
′
3, . . . } times, and according to the algorithm, we have

c′2 = c2 − |S(e1)∩ S(e2)|, c′3 = c3 − |S(e1)∩ S(e3)|, . . . . Since I∗(e1) ⊆ S(e1), we

have c∗2 ≥ c′2, c∗3 ≥ c′3, . . . .

According to the induction condition, l0 is the lower bound of the prob-

lem with regard to U ′ = {e′2, e
′
3, . . . , e

′
h
} with S(e′

i
) = S(ei) \ S(e1), and C ′ =

{c′2, c
′
3, . . . }. We know that l∗0 is the optimal solution to the problem with re-

gard to U ′ = {e′2, e
′
3, . . . , e

′
h
} with S(e′

i
) = S(ei) \ S(e1), and C∗ = {c∗2, c

∗
3, . . . }.

Therefore, l0 is also a lower bound of the problem with regard to U ′ and C∗, i.e.,

l0 ≤ l∗0.

Consequently, we have l = l1 + l0 ≤ l∗1 + l∗0 = |I∗|. The theorem holds.

(4) Putting the lower bounds together

Intuitively, we can use three lower bounds Lg, Lsr and Lie together and

choose the maximal one as the lower bound at Line 9 of Algorithm 5, i.e., L =

max(Lg, Lsr, Lie). However, as shown in our empirical study, the greedy-based

lower bound Lg is not useful because of its poor performance in terms of pruning

power and computing cost. Thus, we only use the structure relaxation based

lower bound Lsr and the inclusion-exclusion based lower bound Lie in our im-

plementation of PSA, i.e., L = max(Lsr, Lie).
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4.3.3 Upper Bound Computation

Any k-core subgraph containing query q can immediately serve as an upper

bound of the optimal solution. Thus, we may continuously maintain an upper

bound s+ at Line 14 of Algorithm 5 by keeping the smallest size k-core containing

q obtained so far. In this subsection, we present a heuristic algorithm to find

a k-core starting from a partial solution P in Algorithm 5. The key idea is

to incrementally expand the partial solution based on the importance of the

vertices. Particularly, we use the concept of the onion layer proposed in [122]

to prioritize the access order. The onion layer can be regarded as a refinement

of the k-shell.

Given a graph G, we use Ck(G) to denote the maximal k-core of G. The

coreness of a vertex u, denoted by cn(u), is the largest value of k such that

u ∈ Ck(G). The k-shell of G, denoted by Sk(G), is the set of vertices with core

number k, i.e., Sk(G) = Ck(G) \ Ck+1(G).

Coreness has been used to measure the importance/influence of the vertices

in a variety of applications (e.g., [18, 122]). Given the k-shell Sk(G) of graph

G, where every vertex in Sk(G) has the same coreness value k, the onion layer

further partitions these vertices into different layers using an onion-peeling-like

algorithm. Given the maximal k-core Ck(G), we use the Lk,0 to denote the

vertices in Ck(G) which do not satisfy the k + 1 degree constraint, i.e., Lk,0 =

{u | deg(u, Ck(G)) < k+1}. Then we use Lk,1 to denote the vertices which do not

satisfy the k+1 degree constraint after removing the vertices in Lk,0. The above

procedure is repeated until Lk,l+1 is empty, and we have Sk(G) = ∪0≤j≤lLk,j.

Through this procedure, each vertex u ∈ G will be assigned to a unique onion

layer Lk,j. Given any two vertices u and v in onion layers Lk1,j1 and Lk2,j2

respectively, we say u has higher onion layer than v if k1 > k2 or j1 > j2 given

k1 = k2.
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Figure 4.8: Onion Layer Structure, k = 3

Example 10. Consider the graph in Figure 1.2 with k = 3. The graph itself is a

3-core. We start to peel the graph: firstly, L3,0 = {v1, v7, v8, v11, v12, v16, v17, v18},

because these vertices do not satisfy the k + 1 degree constraint. After removing

the vertices in L3,0, v4 and v14 do not satisfy the k + 1 degree constraint, so we

have L3,1 = {v4, v14}; Repeating the above procedure, we have L3,2, . . . , L3,6 as

shown in Figure 4.8 because v13 ∈ L3,4 and v1 ∈ L3,0, v13 have a higher onion

layer than v1.

Onion Layer Based Upper Bound. Algorithm 8 illustrates details of the

onion-layer based upper bound computation. In Lines 1-6, we sequentially as-

sess the vertices {v} in partial solution P which still do not satisfy the degree

constraint, i.e., deg(v, P ) < k. For each vertex v, we add r = k − deg(v, P )

neighbors of v that are not in P with the highest onion-layer values, denoted by

X (Line 4). The partial solution P will be updated accordingly with P := P ∪X

(Line 5). At Line 6, we ensure the resulting subgraph is a small k-core subgraph

by removing the redundant vertices in P . Note that we say a vertex u ,= q is

redundant if every neighbor v of u in P has deg(v, P ) ≥ k + 1. Algorithm 8

will be terminated if P grows to a k-core subgraph (Line 1), and P is a minimal

k-core since we remove the redundant vertices. Then P is returned at Line 7,

which can serve as the upper bound of the minimum k-core containing q.

Note that the construction of onion layer is independent to the query vertex

q, which can be pre-computed in O(m+ n) time as shown in [122].
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Algorithm 8 L-Greedy(P )

Input: P : the partial solution Output: a k-core subgraph containing P

1: while P is not a k-core subgraph do

2: v ← the vertex in P with deg(v, P ) < k
3: r := k − deg(v, P )
4: X ← r neighbors of v not in P with highest onion-layer values
5: P := P ∪X
6: remove redundant vertices from P
7: return P

Time complexity. For each vertex v accessed at Lines 1-6, it takes

O(dmax log(dmax)) time to find the set X at Line 4, where dmax is the highest

degree in graph G. Meanwhile, we only need to consider the redundancy for

its neighbor vertices, with cost O(d2
max

). Therefore, the time complexity of

Algorithm 8 is O(|U |× d2
max

).

Correctness. The correctness of the algorithm is immediate because the set P

returned is a k-core subgraph.

4.3.4 Processing Multiple Query Vertices

In addition to one simple query vertex q, it is interesting to consider to find

a minimum k-core subgraph containing a set of query vertices Q = {q1, q2, ...},

which is also NP-hard. The PSA algorithm proposed in this chapter can be easily

extended to tackle this problem by enforcing every partial solution to contain all

query vertices. The computation of the lower and upper bounds are the same.

Algorithm 5 can be adjusted as follows.

(i) Replace the input with “PSA(G, k,Q, c)”;

(ii) Replace Line 1 with “if ∃q ∈ Q and q /∈ the maximal k-core of G then”;

(iii) Replace the initialization (Lines 2-4) part with “(1) u ← the vertex in Q

with the largest id; t ← the (root) node of search tree T ; t.v = u; (2) Vt ← Q
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wit h i n cr e asi n g or d er of i d(x ); s � (t) : = G e t L o w e r (V t ); Q . p u s h(t); a n d ( 3)

R : = G e t U p p e r (V t ); s
+ : = |R |”.

Ti m e c o m pl e xi t y. T h e ti m e c ost of  Al g orit h m 5 is O (l⇥ (tl + tu )),  w h er e l is t h e

n u m b er of it er ati o ns.  T h e  m ai n di ff er e n c e b et w e e n t h e  m ulti pl e q u er y v erti c es

a n d o n e q u er y v ert e x is t h e n u m b er of it er ati o ns i n v ol v e d a n d t h e c o m p uti n g

c ost of l o w er (r es p. u p p er) b o u n ds is t h e s a m e at e a c h it er ati o n.  T h us, t h e ti m e

c ost of u p d at e d  Al g orit h m 5 f or  m ulti pl e q u er y v erti c es is als o O (l ⇥ (tl + tu )).

4. 4  P e rf o r m a n c e  S t u di e s

I n t his s e cti o n  w e e v al u at e t h e effi ci e n c y a n d e ff e cti v e n ess of o ur pr o p os e d al g o-

rit h ms.

4. 4. 1  E x p e ri m e n t al  S e t ti n g

Al g o ri t h m s. We e v al u at e t h e f oll o wi n g al g orit h ms:

¥ S - G r e e d y : T h e st at e- of-t h e- art t e c h ni q u e [ 1 6] f or t h e pr o bl e m of  mi ni m u m

k - c or e s e ar c h,  w hi c h is o utli n e d i n S e cti o n 4. 2.  A ut h ors i n [ 1 6] ki n dl y

pr o vi d e d t h e s o ur c e c o d e i m pl e m e nt e d b y J a v a a n d  w e r e writ e it i n  C + +

f or f air c o m p aris o n of s e ar c h ti m e.

¥ L - G r e e d y : A gr e e d y al g orit h m  w hi c h o nl y us es t h e u p p er b o u n d t e c h ni q u e

pr o p os e d i n S e cti o n 4. 3. 3; t h at is,  Al g orit h m 8 is i n v o k e d  wit h p arti al

s ol uti o n P = { q } a n d t h e r es ulti n g k - c or e s u b gr a p h  will b e r et ur n e d.

¥ P S A : T h e pr o gr essi v e s e ar c h fr a m e w or k ( Al g orit h m 5) pr o p os e d i n S e c-

ti o n 4. 3. 1, e q ui p p e d  wit h t w o l o w er b o u n d t e c h ni q u es L s r ( S e cti o n 4. 3. 2-

( 2)) a n d L i e ( S e cti o n 4. 3. 2-( 3)) a n d t h e u p p er b o u n d t e c h ni q u e L- G r e e d y .
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D a t a s e t N o d e s E d g e s d a v g d m a x k m a x
E m a i l 3 6, 6 9 2 1 8 3, 8 3 1 5. 0 1 1 3 8 3 4 3

E p i n i o n 7 5, 8 7 9 4 0 5, 7 4 0 5. 3 3 0 4 4 6 7

G o w a l l a 9 9, 5 6 3 4 5 6, 8 3 0 2 1. 9 9 9 6 7 4 3

D B L P 5 1 0, 2 9 7 1, 1 8 6, 3 0 2 2. 3 3 4 0 2 5

Y e l p 2 4 9, 4 4 0 1, 7 8 1, 8 8 5 7. 1 3 8 1 2 1 0 5

Y e a s t 1 2, 7 8 2 2, 0 0 7, 1 3 4 1 5 7. 1 3 3 2 2 2 7 7

Y o u T u b e 1, 1 3 4, 8 9 0 2, 9 8 7, 6 2 4 2. 6 2 8 7 5 4 5 1

G o o g l e 8 7 5, 7 1 3 4, 3 2 2, 0 5 1 4. 9 6 3 3 2 4 4

W i k i 2, 3 9 4, 3 8 5 4, 6 5 9, 5 6 5 1. 9 1 0 0 0 2 9 1 3 1

F l i c k r 1, 7 1 5, 2 5 5 1 5, 5 5 5, 0 4 1 9. 1 2 7 2 3 6 5 6 8

U K 2 0 0 2 1 8, 4 8 3, 1 8 6 2 9 2, 2 4 3, 6 6 3 1 5. 8 1 9 4 9 5 5 9 4 3

W e b b a s e 1 1 8, 1 4 2, 1 5 5 1, 0 1 9, 9 0 3, 1 9 0 8. 6 8 1 6 1 2 7 1 5 0 6

T a bl e 4. 2: St atisti cs of  D at as ets f or  Mi ni m u m k - C or e S e ar c h

N ot e t h at P S A d o es n ot us e t h e gr e e d y- b as e d l o w er b o u n d L g ( S e cti o n 4. 3. 2-

( 1)) d u e t o its p o or p erf or m a n c e i n t er ms of e ff e cti v e n ess a n d e ffi ci e n c y.

¥ P S A - S : T h e pr o gr essi v e s e ar c h fr a m e w or k e q ui p p e d  wit h S- G r e e d y as t h e

u p p er b o u n d a n d L g ( S e cti o n 4. 3. 2) as t h e l o w er b o u n d.

¥ P S A - L : T h e pr o gr essi v e s e ar c h fr a m e w or k e q ui p p e d  wit h L- G r e e d y as t h e

u p p er b o u n d a n d L g as t h e l o w er b o u n d.

D a t a s e t s. T w el v e r e al-lif e n et w or ks ar e d e pl o y e d i n o ur e x p eri m e nts. Y e a s t

is a pr ot ei n- pr ot ei n i nt er a cti o n n et w or k,  w hi c h c a n b e f o u n d i n [ 9 9]. F l i c k r

is t h e n et w or k f or s h ari n g c o nt e nt [ 8 1]. D B L P is a c o- a ut h or n et w or k,  w h er e

e a c h v ert e x r e pr es e nts a n a ut h or a n d t h er e is a n e d g e b et w e e n t w o a ut h ors i ff

t h e y h a v e c o- a ut h or e d at l e ast 3 p a p ers. G o w a l l a is a l o c ati o n- b as e d s o ci al

n et w or k.  Verti c es  wit h o ut c h e c k-i ns a n d t h eir i n ci d e nt e d g es ar e r e m o v e d.  We

tr a nsf er dir e ct e d e d g es t o u n dir e ct e d e d g es. U K 2 0 0 2 a n d W e b b a s e ar e d o w nl o a d e d

fr o m  We b Gr a p h4 . Y e l p is d o w nl o a d e d fr o m  Yel p5 .  T h e r e m ai ni n g d at as ets ar e

4 htt p: / / w e b g r a p h. di. u ni mi.it
5 htt p s: / / w w w. y el p. c o m. a u / d at a s et / c h all e n g e
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downloaded from SNAP6. Table 5.3 shows the statistics of all the datasets.

Parameters and query generation. Algorithms are evaluated by varying the

degree constraint k and the approximation ratio c. The default values for k and c

are 10 and 1.8 respectively. In the experiments, k varies from 5 to 25 and c varies

from 4.0 to 1.6. In the experiments, each query vertex is randomly selected from

the k-core. In each test, 100 queries are randomly generated and their average

result size or search time is reported. Each computation is terminated if it cannot

finish within half an hour.

All the programs are implemented in C++ and compiled with G++. All

experiments are conducted on a machine with Intel Xeon 2.3GHz CPU running

Redhat Linux.

4.4.2 Effectiveness

Metrics diameterdegreedensity CC avg. size Engage

k-Core 8.12 24.45 0.001 0.3223196.29 35%
k-truss 4.61 6.92 0.63 0.3313020.85 43%
k-Ecc 7.62 25.18 0.02 0.3322561.75 36%

k-Clique 5.18 15.49 0.38 0.6315775.21 42%
Graph Clustering 13.87 8.59 0.11 0.3281232.53 30%

Min k-Core 3.39 10.09 0.37 0.57 52.02 49%

Table 4.3: Comparison for CS solutions on Gowalla

Comparison with community search methods

We compare several representative algorithms introduced in the survey of com-

munity search (CS) [44] (i.e., k-Core, k-truss, k-Ecc, k-Clique) and the structural

graph clustering [107] with our PSA on Gowalla dataset. For each query vertex

v, the setting of the input k is same to the evaluation in the survey [44], e.g.,
6http://snap.stanford.edu

75



Chapter 4 4.4. PERFORMANCE STUDIES

k is the coreness of v for k-core and k is the trussness of v for k-truss. For the

clustering algorithm, the similarity threshold for two nodes is set as ✏ = 0.6 (the

default value in [107]) and the threshold for the cardinality of ✏-neighborhood is

set as µ = cn(v). To evaluate the result, we use all the quality metrics used in

the survey [44] and two additional important metrics: diameter, average degree,

density, clustering coefficient (CC) and average size of the communities, as well

as the user engagement (Engage). Engage is the proportion of active users in a

community where a user is active if the user has at least 1 check-in during 2018-

08-04T00:00:01 and 2018-08-10T23:59:59. Note that the chosen query vertices

are also active during this period.

Table 4.3 shows the communities returned by our PSA achieve high scores in

the evaluation. Particularly, the average size of our communities is much smaller

than the others where the size is reasonable in real-life. Besides, our k-cores have

the best diameter and Engage scores, benefiting from the k-core constraint and

the small community size.

YPR110C

(a) S-Greedy

YPR110C
YOR224C

YOR116C

YKL144C

YJR063W YOR341W

YPR187W

YBR154C

(b) PSA

Figure 4.9: Case Studies on Yeast, k = 5

Case studies

We compare S-Greedy and PSA (k = 5, c = 1.8) on Yeast to show different

results from two approaches. As shown in Figure 4.9(a), S-Greedy returns a large

k-core subgraph where some vertices are not closely connected. Besides, only 32
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of the 254 proteins detected by S-Greedy have at least one common function with

the query protein YPR110C. In Figure 4.9(b), PSA identifies 7 nearby proteins

of YPR110C where each of these proteins has at least one common function with

the query protein.

Alg.k-Corek-trussk-Ecck-CliqueGraph ClusteringMin k-Core

% 61% 70% 61% 86% 52% 95%

Table 4.4: Percentage of Homogeneous Communities

To further evaluate the homophily property of vertices in a minimal k-core

subgraph, we compare it with the community search methods introduced in

Section 4.4.2, in terms of the common protein functions in the communities.

Specifically, we say a community C is homogeneous iff the query protein has the

function f which is the most common function among all the proteins in C. It

can be verified by the enrichment analysis in David7 [60]. Table 4.4 reports the

percentage of homogeneous protein communities over all detected communities

for each method, where our PSA has the best performance.

Evaluation on result size

Evaluation on different graphs. Figure 4.10 reports the average size ratios of

k-core subgraphs returned by S-Greedy , L-Greedy and PSA on all the datasets,

where k = 10 and c = 1.8. The average size of the k-cores returned by PSA is

regarded as the base value, i.e., 1. The sizes of the k-core subgraphs found by

S-Greedy and L-Greedy are much larger than PSA, because of the theoretical

approximation guarantee of PSA. Regarding result size, L-Greedy outperforms

S-Greedy due to better heuristics. On Flickr with |Q| = 1, the size of a k-core

returned by S-Greedy (resp. L-Greedy) is usually larger than 80, 000 (resp. 2000),

7https://david.ncifcrf.gov
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Figure 4.10: Average Result Size, k = 10, c = 1.8

while the size of a k-core from PSA is usually smaller than 100. In Figure 4.10,

we also mark the running time of each setting. To find a k-core with a practically

small size, PSA costs more runtime in computation than the other algorithms.

Given the benefit of consistently retrieving small size k-cores, it is cost-effective

to apply the PSA algorithm. Given a larger dataset, we observe that the time

cost of PSA is not necessarily higher. This is because, although the increase of

graph size leads to larger search space, PSA may have a larger possibility to fast

complete the query on a (k − 1)-clique in the search, in which we only need to

explore 1-hop neighbors.

Varying the approximate ratio c. Figures 4.11 shows the average sizes of k-

core subgraphs returned by PSA on all the datasets when c varies from 4.0 to 1.6.

Note that the size of a k-core returned by S-Greedy or L-Greedy does not have

a approximation guarantee, and is irrelevant with the value of c. As expected,

the average size decreases when c became smaller. It implies a reasonable ratio

can be applied to trade-off the efficiency and the quality.
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Figure 4.12: Effect of k, c = 1.8

Varying the degree constraint k. Figure 4.12 reports the average size of a

k-core returned by S-Greedy , L-Greedy and PSA, by varying k from 5 to 25 on

Epinion and Wiki. The margin of PSA and S-Greedy becomes smaller when the

input of k grows, because the size of a k-core from S-Greedy is related to the size

of maximal k-core which decreases with a larger k, and our PSA performs well

on different k. The margin of PSA and L-Greedy becomes larger when the input

of k grows, because it is harder for L-Greedy to constraint the size of returned

k-core given a larger k.

Varying the size of query set |Q|. Figure 4.13 shows the results of three

algorithms by varying the size of query set from 2 to 32 on Epinion and Wiki.

The average size of a k-core returned by L-Greedy or S-Greedy is much larger

than PSA. As expected, the minimal k-core found by PSA becomes larger given

more query vertices. Since the minimal k-core returned by S-Greedy is more
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Figure 4.13: Effect of |Q|, k = 10

related to the size of maximal k-core, the margin between PSA and S-Greedy

becomes smaller with a larger query set.

4.4.3 Efficiency
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Figure 4.14: Effect of Lower Bounds, c = 1.8

Evaluating lower bounds. Figure 4.14 shows the size of different lower bounds

derived from the lower bound technique Lg, Lsr and Lie. We report the average

size over 100 independent queries. Note that a large value is preferred in the

evaluation of the lower bound. The performance of the single Lg is beaten by all

the other methods for all the evaluated settings. This is not surprising because it

is difficult for a greedy algorithm to get a good approximation due to the factor

ln(�), where � is the largest size of the subsets in X (Section 4.3.2). The bound

max{Lg, Lsr
} is to choose the larger one from Lg and Lsr, which outperforms
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Lg. As analyzed in Section 4.3.2, sometimes the lower bound derived by Lsr is

not tight enough, while it can improve the result from Lg. We further evalu-

ate max{Lg, Lsr, Lie
} which adds Lie to max{Lg, Lsr

}. Figure 4.14 shows that

max{Lg, Lsr, Lie
} achieves the best results. It implies that Lie produces a tighter

lower bound, compared with Lsr. The reason is that Lie considers more informa-

tion of the subsets in X. To further validate the effectiveness of different bounds,

we evaluatemax{Lg, Lie
}. Compared withmax{Lg, Lsr

}, max{Lg, Lie
} produces

a tighter bound. Considering the computing cost of Lg is expensive, we also in-

vestigate the performance of max{Lsr, Lie
}, which shows similar performance

with max{Lg, Lsr, Lie
}. Because the time cost of max{Lsr, Lie

} is dominated by

Lie, we deploy max{Lsr, Lie
} in our PSA algorithm.
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Figure 4.15: Memory Cost, k = 10, |Q| = 1

Evaluating Memory Cost. Figure 4.15 shows the memory cost of S-Greedy ,

L-Greedy , and PSA, respectively. The memory cost gradually grows with a

larger graph, because the graph data dominates the memory cost. For instance,

when the edge number of a graph is larger than 3M , the memory cost of three

methods is almost the same. For graphs with very small size, the lower bound

computation dominates the memory cost, while it helps to fast return a minimal

k-core.

Evaluation on different graphs. Figure 4.16 shows the time cost of PSA-

S, PSA-L and PSA, respectively, when k = 10 and c = 1.8. PSA-L always

outperforms PSA-S because the upper bound technique L-Greedy can better
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Figure 4.16: Performance of PSA, k = 10, c = 1.8

reduce the size of the resulting k-core subgraphs, compared with S-Greedy . As

shown in Figure 4.14, the combination of Lsr and Lie performs better than Lg.

Thus, in Figure 4.16, PSA outperforms PSA-L in all the settings, benefiting from

the superior upper bound technique (L-Greedy) and two lower bound techniques

Lsr and Lie.
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Figure 4.17: Varying k, c = 1.8

Varying degree constraint k. Figure 4.17 shows the average running time

of the three algorithms when k varies from 5 to 25. The result is the average

from 100 queries of a random vertex. Similar to Figure 4.16, PSA-L always
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outperforms PSA-S . The increase of degree threshold k may affect the time cost

in two ways: (1) more vertices need to be explored s.t. the runtime increases; and

(2) the number of candidate vertices decreases because the size of maximal k-core

becomes smaller s.t. the runtime decreases. In Figure 4.17(a), (1) dominates the

effect on different k. In Figure 4.17(b), when k > 10, (2) becomes the major

effect for different k values. Thus, the trend of a larger input of k is different on

different settings.
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Figure 4.18: Varying c, k = 10

Varying the approximate ratio c. In this experiment, we vary c from 4.0 to

1.6 and set k = 10. Figure 4.18 shows the average time cost for 100 independent

queries on Epinion and Google. PSA is the most efficient among the three

algorithms, and PSA-L consistently outperforms the PSA-S . With a relatively

large c, PSA can find a proper result in a reasonable time. For example, when

c = 4.0, the time cost of PSA-L or PSA on Epinion is less than 100 seconds.

The size of the resulting k-core can be smaller if we allow more time cost for the

algorithm, which leads to a trade-off between result quality and efficiency.

Varying the query size |Q|. Figure 4.19 shows the results of the three algo-

rithms when |Q| varies from 2 to 32 on Wiki. The figure shows that PSA out-

performs PSA-L and PSA-S under all the settings. PSA-S performs the worst

due to the limited performance of its upper/lower bound techniques. Given a

larger query set, both the upper bound and the lower bound values may increase
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Figure 4.19: Effect of |Q|

while usually the lower bound has a larger increase ratio due to its smaller value.

Thus, the runtime of PSA decreases with a larger query set Q in this experiment.
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Figure 4.20: Varying |V |

Scalability evaluation on Webbase. In scalability test, we vary the graph size

by randomly sampling vertices from 20% to 100% in the original graph. For

each sampled vertex set, we obtain the induced subgraph of the vertex set as

the input data. Figure 4.20 shows the running time of PSA-S , PSA-L and PSA

under different percentages, respectively. It is shown that the grows of running

time of the algorithms are not very significant with respect to the growth of the

graph size. This is because, although the increase of graph size leads to larger

search space, we may have a higher chance to quickly end up the query with a

(k − 1)-clique in the search, in which we only need to explore 1-hop neighbors.

Evaluating different kinds of queries. We compare the efficiency of our PSA

algorithm for three kinds of query vertices: Hubs, Nonhubs, and Random. Hubs
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Figure 4.21: Different Query Types, k = 10, c = 1.8

contains the hub vertices which are the top 10% vertices of the k-core w.r.t the

vertex degree in k-core. Nonhubs contains the other 90% vertices in the graph.

Random is to randomly choose query vertices from the k-core. We randomly

select 100 vertices from each category. Figure 4.21 shows that the running time

for queries on Hubs is much faster, because the query on hub vertices is more

likely to quickly end up with a clique, in which only direct neighbors need to be

accessed. Queries on Random are faster than queries on Nonhubs because there

are both hub and non-hub vertices in Random.

4.5 Chapter Summary

In this chapter, we investigated the problem of the minimum k-core search which

aims to find the smallest k-core subgraph containing the query vertex set. Some

existing studies on this problem are based on greedy heuristic following a vari-

ety of scoring functions, while they cannot provide any theoretical guarantee on

the quality of the results. Motivated by these issues, we propose a progressive

search algorithm PSA, based on novel lower and upper bound techniques. The

proposed algorithm achieves a good trade-off between the quality of the result

and the search time. Our extensive experiments on 12 real-life graphs demon-

strate the effectiveness and efficiency of our proposed techniques. Our progres-

sive framework and lower/upper bound heuristic techniques can shed light on
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other cohesive subgraph/community mining problems. In addition to the k-core

model, the framework can be used by other cohesive subgraph models such ad

k-truss and k-ecc due to different focuses of the modes. We will leave this as

future work.
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C h a p t e r 5

DI S C O V E RI N G  F O R T R E S S- LI K E

C O H E SI V E S U B G R A P H S

5. 1  O v e r vi e w

Gi v e n t h e el e g a nt pr o p ert y of t h e p - c o h esi o n, i n t his c h a pt er,  w e c o n d u ct a c o m-

pr e h e nsi v e t h e or eti c al a n al ysis o n t h e c o m pl e xit y of t h e pr o bl e m a n d d e v el o pi n g

e ffi ci e nt c o m p uti n g al g orit h ms.  We f o c us o n t h e  mi ni m al p - c o h esi o n b e c a us e t h e y

ar e el e m e nt ar y u nits of p - c o h esi o n a n d t h e c o m bi n ati o n of  m ulti pl e  mi ni m al p -

c o h esi o ns is a l ar g er p - c o h esi o n. I n t his c h a pt er,  w e st u d y t w o r e pr es e nt ati v e

pr o bl e ms  wit h r e g ar d t o t h e p - c o h esi o n  m o d el:  mi ni m u m p - c o h esi o n s e ar c h a n d

di v ersi fi e d p - c o h esi o n e n u m er ati o n.

¥ Mi ni m u m p - c o h e si o n s e a r c h ai ms t o fi n d t h e s m all est p - c o h esi o n c o n-

t ai ni n g t h e gi v e n q u er y v ert e x, i. e., t h e p - c o h esi o n  wit h t h e s m all est n u m b er

of v erti c es t o  w hi c h a us er ( q u er y v ert e x) b el o n gs.  We s h o w t his pr o bl e m

is  N P- h ar d, a n d s o m e h e uristi cs ar e pr o p os e d t o effi ci e ntl y i d e ntif y a p -

c o h esi o n  wit h a s m all si z e f or t h e gi v e n q u er y v ert e x.
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C h a pt er 5 5. 2.  P R E LI MI N A R Y

¥ Di v e r si fi e d p - c o h e si o n e n u m e r a ti o n ai ms t o fi n d a s et of di v ersi fi e d p -

c o h esi o ns  w hi c h c a n c o v er as  m a n y v erti c es as p ossi bl e.  H er e,  w e c o nsi d er

di v ersit y b e c a us e, i n pr a cti c e, t h e us er  m a y b e o v er w h el m e d b y t h e e x p o-

n e nti al n u m b er of  mi ni m al p - c o h esi o ns.  T h us, i n t his c h a pt er,  w e d esi g n

e ffi ci e nt al g orit h ms t o fi n d a s et of disj oi nt  mi ni m al p - c o h esi o ns.

B esi d es,  w e d e m o nstr at e t h at t h e dis c o v er e d  mi ni m al p- c o h esi o ns c a n b e uti-

li z e d t o s ol v e t h e  Mi n S e e d pr o bl e m: fi n di n g a s m all est s et of i niti al a d o pt ers

(s e e ds) s u c h t h at all t h e n et w or k us ers ar e e v e nt u all y i n fl u e n c e d, u n d er t h e c o n-

t a gi o n  m o d el.  E xt e nsi v e e x p eri m e nts o n 8 r e al-lif e s o ci al n et w or ks v erif y t h e

e ff e cti v e n ess of t his  m o d el a n d t h e e ffi ci e n c y of o ur al g orit h ms.  T h e  w or k is

u n d er r e visi o n, a n d t h e r e visi o n h as b e e n s u b mitt e d.

T h e r est of t his c h a pt er is or g a ni z e d as f oll o ws.

S e cti o n 5. 2 gi v es pr eli mi n ar y d e fi niti o ns a n d f or m all y d e fi n es t h e pr o bl e m.

S e cti o n 5. 3 gi v es t h e pr o of of t h e c o m pl e xit y f or t h e  M P C S pr o bl e m a n d i n-

tr o d u c es o ur s ol uti o n f or t h e  M P C S pr o bl e m. S e cti o n 5. 4 gi v es t h e pr o of of

t h e c o m pl e xit y f or t h e di v ersi fi e d e n u m er ati o n pr o bl e m, i ntr o d u c es o ur s ol uti o n

f or t h e disj oi nt  mi ni m al p - c o h esi o n e n u m er ati o n, a n d gi v es o ur s ol uti o n f or t h e

Mi n S e e d pr o bl e m. S e cti o n 5. 5 e v al u at es o ur pr o p os e d al g orit h ms. S e cti o n 5. 6

s u m m ari z es t h e c h a pt er.

5. 2  P r eli mi n a r y

Ass u m e t h er e is a n u n w ei g ht e d a n d u n dir e ct e d gr a p h G = ( V,  E ) wit h n v erti c es

a n d m e d g es,  w h er e V (r es p. E ) r e pr es e nts t h e s et of v erti c es (r es p.  e d g es). S

d e n ot es a s u b gr a p h of G . L et N (u,  S ) d e n ot e t h e s et of a dj a c e nt v erti c es (i. e.,

n ei g h b ors) of u i n S . L et d e g (u,  S ) d e n ot e t h e n u m b er of v erti c es i n S w hi c h

ar e a dj a c e nt t o u .  We  m a y o mit t h e t ar g et gr a p h i n n ot ati o ns  w h e n t h e c o nt e xt

8 8
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Notation Definition

G an unweighted and undirected graph
S a subgraph of G
V (S) the vertex set of S
E(S) the edge set of S
G(V ) the induced subgraph of a vertex set V on

G
u, v; e a vertex in G; an edge in G
n, m the number of vertices and edges in G
N(u, S) the adjacent vertices of u in S
deg(u, S) the number of adjacent vertices of u in S
E(u) the set of incident edges to u in G
D a set of seed vertices

Table 5.1: Summary of Notations

is clear, e.g., using deg(u) instead of deg(u,G). We assume that if a vertex is

deleted, its incident edges are also deleted accordingly.

The contagion model in [41, 82] defines the following cascading condition

when some vertices are activated and the others are not.

Definition 4. Cascading Condition. Given a graph G and a cascading thresh-

old r ∈ (0, 1), an inactivated vertex u ∈ V (G) will be activated iff the number of

activated neighbors of u is at least 3r × deg(u,G)4.

The cascades in a graph may imply some interesting subgraphs which are

named p-cohesions.

Definition 5. p-Cohesion. Given a graph G and a real number p ∈ (0, 1), a

connected subgraph S is a p-cohesion of G, denoted by Cp(G), where deg(u, S) ≥

3p× deg(u,G)4 for every vertex u ∈ S.

Easley and Kleinberg [41] prove that the p-cohesion subgraphs have the

“fortress” property to hamper the progression of information cascades.
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Property 1. “Fortress”. Given a graph G and a real number p ∈ (0, 1), for an

arbitrary p-cohesion S of G, according to the Cascading Condition with threshold

r > 1− p, no vertex in S can be activated when all vertices in S are inactivated

initially, even if all the vertices in V (G) \ V (S) are activated.

Definition 6. Minimal p-cohesion. Given a graph G and a real number

p ∈ (0, 1), a p-cohesion S of G is called minimal if it is an elementary unit of

p-cohesion, i.e., every proper subgraph S ′
⊂ S is not a p-cohesion.

Problem Statement. Given an undirected and unweighted graph G, and a real

number p ∈ (0, 1), we aim to develop algorithms for the following two represen-

tative problems: (1) Minimum p-Cohesion Search (MPCS): Given a query vertex

q, find the smallest p-cohesion containing q in G; and (2) Diversified p-Cohesion

Enumeration (DPCE): Enumerate a set of disjoint minimal p-cohesions.

5.3 Minimum p-Cohesion Search

In this section, we study the minimum p-cohesion search problem, i.e., MPCS.

We firstly analyze the complexity of the problem, and then present the solution.

5.3.1 Problem Analysis

In this section, we give the proof of the complexity for the MPCS problem.

Theorem 7. The MPCS problem does not admit a PTAS, unless P = NP.

Proof. We prove the hardness of MPCS by the hardness of minimum p-cohesion

computation (denoted by MinPC) which is to find the smallest p-cohesion in G

(without query vertices). If there is a polynomial solution for MPCS, we can

immediately come up with a polynomial solution to find the minimum p-cohesion

in G (MinPC) by conducting MPCS on every vertex.
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For MinPC, we show a reduction from Vertex Cover in cubic graphs which

does not admit a PTAS (Polynomial Time Approximation Scheme) in cubic

graphs, unless P = NP [47, 4]. Given an arbitrary cubic graph H as an instance

of vertex cover, with |V (H)| = n, we construct an instance G of MinPC as

follows.

We may assume that |E(H)| = 3n
2 = 3 × 2l for some integer l, without loss

of generality [8]. As shown in Figure 5.1, we construct a rooted tree T with a

height of l + 1, where the root vertex has 3 child vertices. Except for the root

and leaves, every vertex in T has 1 parent vertex and 2 child vertices. So T

contains 3 × 2l leaf vertices, where the leaf set is denoted by L. Then we add

a copy of L, denoted by F , and add a Hamiltonian cycle on L and F as in the

figure. The elements in F are identified with the elements in E(H). Now we

add a set A which is a copy of V (H) with the identifications. Then we add an

edge between a vertex u ∈ A and a vertex e ∈ F (i.e., corresponding to an edge

in H) if and only if u is incident to e in H.

Let ST denote a star-like subgraph which is induced by a center vertex and

its 3
|V (T )|+|V (F )|+|V (A)|

p
4 neighbors. Then for every vertex u in T (resp. F ), we

connect u to every center vertex in k − 3 (resp. max(k − 4, 0)) copies of ST ,

where k = /
2
p
0+ 1. The construction is completed.

Every vertex in the star-like subgraph has a degree of 1 except the center

vertices. When 2
3 < p < 1, we have that every vertex in F has a degree of 4

in G and every vertex in V (G) \ F has a degree of 3 in G. When 0 < p ≤
2
3 ,

every vertex in T and F has a degree of k in G. If a p-cohesion Cp contains

a vertex in one of the star-like subgraphs, then Cp has to contain more than

|V (T )| + |V (F )| + |V (A)| vertices which makes Cp not a minimum p-cohesion,

as shown in the following.

According to the definition of p-cohesion, if a vertex u ∈ T ∪ F is in a
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minimum p-cohesion (Cp) of G, u has at least 3 neighbors in Cp. Based on

the construction, if a minimum p-cohesion contains a vertex in T ∪ F , it has

to contain every vertex in T ∪ F . Furthermore, a minimum p-cohesion cannot

only contain the vertices in T ∪ F or A. So a minimum p-cohesion is induced

by all the vertices in T ∪ F and a smallest subset of vertices in A such that

each vertex in F has at least a degree of 3 in the p-cohesion. Clearly, such

a p-cohesion contains at most |V (T )| + |V (F )| + |V (A)| number of vertices,

where |V (T )| = 1 + 3 ∗ 20 + 3 ∗ 21 + · · · + 3 ∗ 2l = 3 ∗ 2l+1
− 2 = 6n

2 − 2,

|V (F )| = L = 3 ∗ 2l = 3n
2 , and |V (A)| = n. Then the minimum p-cohesion

search problem on G is exactly the Vertex Cover problem in H. Thus, we have

that

OPTMinPC(G) = OPTV C(H) + |V (T )|+ |V (F )| = OPTV C +
9n

2
− 2 (5.1)

where OPTMinPC(G)(resp. OPTV C(H)) is the optimal solution for the MinPC

in our constructed graph G (resp. Vertex Cover in cubic graph H). We may omit

the target graph in notations when the context is clear, e.g., using OPTMinPC

instead of OPTMinPC(G). Note that, any solution of MinPC in G of size

SOLNMinPC induces a solution of Vertex Cover problem inH of size SOLNV C =

SOLNMinPC −
9n
2 +2. Suppose that we assume MinPC admits a PTAS, i.e., for

any ↵ > 0 we can find a solution for MinPC in polynomial time in graph G of

size SOLNMinPC ≤ (1 + ↵) ∗ OPTMinPC . Therefore, we can find a solution of

Vertex Cover in H in polynomial time with size

SOLNV C = SOLNMinPC −
9n

2
+ 2 ≤ (1 + ↵) ∗OPTMinPC −

9n

2
+ 2 (5.2)
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Based on Equation 5.1 and Equation 5.2, we have

SOLNV C ≤ (1 + ↵) ∗OPTV C + ↵ ∗ (
9n

2
− 2) (5.3)

SinceH is a cubic graph, any solution of Vertex Cover inH has at least |E(H)|
3 = n

2

nodes, i.e., n

2 ≤ OPTV C . Using this in Equation 5.3, we have

SOLNV C ≤ (1 + ↵) ∗OPTV C + ↵ ∗ (
9n

2
− 2) ≤ (1 + 10 ∗ ↵) ∗OPTV C (5.4)

In all, the existing of a PTAS for MinPC would imply the existence of a PTAS

for Vertex Cover in the cubic graphs, which is impossible unless P = NP [4].

𝐿𝐿 

F 

A 

𝐻𝐻: 

𝑆𝑆𝑆𝑆: 

… … 
… … … 

𝐺𝐺: 

Figure 5.1: Construction Example, p = 1
2

5.3.2 The Search Algorithms

Exact Search Algorithm

In order to solve the MPCS problem, enumerating all minimal p-cohesion con-

taining the query vertex would be the way to find the exact solution.

Algorithm 9 and Algorithm 10 show the pseudo-code of our algorithms for

enumerating all p-cohesions containing the query vertex. The p-cohesions with

the minimum size is the solution for our MPCS problem. Algorithm 9 is based
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Algorithm 9 SubPCExact(R, P , X, p, c)

Input: R, P , X : three data sets, p : a real number in (0, 1), c : a positive integer
Output:MinC : a p-cohesion containing q

1: if all v ∈ R are with deg(v,G(R)) ≥ 3p× deg(v,G)4 then

2: if |R| < c then

3: MinC = G(R), c = |R|

4: return

5: for each v ∈ P do

6: R ← R ∪ {v}, X ← X ∪ {v}
7: SubPCExact(R, (P ∪ {N(v)−R}−X), X, p, c)
8: R ← R− {v}
9: return MinC

on the framework proposed by Bron and Kerbosch [19], which is a backtracking

algorithm to solve the maximal clique enumeration problem.

In Algorithm 9, we use R to denote the intermediate vertex set of a p-cohesion

containing the query vertex q. G(R) is a p-cohesion when every vertex in R

satisfy the definition of p-cohesion, i.e., deg(v,G(R)) ≥ 3p×deg(v,G)4. Set P is

the candidate set that the combining of P and R may be a p-cohesion. By X, we

denote the vertices that have been processed. p is the parameter for p-cohesion

and c is the minimum size of all p-cohesions we found. Within each recursive

call, the algorithm considers vertices in P in turn. If there are no such vertices,

it backtracks. For each vertex v chosen from P , it makes a recursive call in

which v is added to R and X respectively, and in which P are the added with

N(v)−R−X, which finds and reports all p-cohesions containing vertex v. Then,

it moves v from R and P to exclude it from consideration in future p-cohesions

and continues with the next vertex in P .

In Algorithm 10, we invoke Algorithm 9 with R = {q}, P = N(q), X = {q}

and c = |V (S)|, where S is the input graph. It is clearly that, the p-cohesion

returned by Algorithm 9 is the minimum p-cohesion containing query vertex
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q. Note that, with the help of Algorithm 9, we can also enumerate all the

p-cohesions of a graph.

Algorithm 10 ExactPC(S, p, q)

Input: S : a graph, p : a real number in (0,1), q : a query vertex
Output:MinCp : the minimum p-cohesion containing q

1: MinCp ← ∅, c = |V (S)|, R ← ∅, P ← ∅, X ← ∅

2: MinCp ← SubPCExact(R ∪ {q},P ∪N(q), X, p, c)
3: return MinCp

As shown in the experiment part, the number of minimal p-cohesions is enor-

mous, and given the fact that the MPCS is NP-hard, and does not admit a

PTAS, unless P = NP, we design heuristic algorithms to fast retrieve a small

minimal p-cohesion.

Global Search Algorithm

As previously mentioned, the whole graph or a connected component is a p-

cohesion. By removing a vertex from a p-cohesion, it may cause the collapse of

the p-cohesion, resulting in a smaller p-cohesion or an empty set. In Algorithm 11

we show the removal of a vertex may lead to the shrink of the p-cohesion.

Let u be a vertex that should be removed from a graph S. After removing u

and the edges incident to u, if there is a vertex v in S violating the p-cohesion

constraint (Line 2), we remove v and its incident edges from S at Line 3. The

algorithm returns a smaller p-cohesion or an empty set.

Time Complexity. If a vertex u is deleted at Line 1 or 3, only the neighbors of

u may violate the definition of p-cohesion (Line 2). Thus, each vertex is visited

once for deletion and each edge is visited once for degree update and vertex

marking. The time complexity of Algorithm 11 is O(m+ n).
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Algorithm 11 Collapse(S, p, u)

Input: S : a graph, p : a real number in (0,1), u : a vertex
Output:Cp : a smaller p-cohesion or an empty set

1: S ← S \ {u ∪ E(u)}
2: while ∃v ∈ V (S) with deg(v, S) < 3p× deg(v,G)4 do

3: S ← S \ {v ∪ E(v)}
4: return S

Space Complexity. The subgraph S, and the neighbor set take O(m+n) space re-

spectively. The degree set, to-delete set and vertex index take O(n) respectively.

The space complexity of Algorithm 11 is O(m+ n).

Example 11. Figure 1.3 shows a graph with the label of the smallest number

of neighbors required for every vertex in a p-cohesion, when p = 0.6. If the

input graph S is induced by {u1, . . . , u13}, and u = u12, in Algorithm 11, the

deletion of u leads to the removal of u11, u13 and u10 (Lines 2-3) according to

the label (p-cohesion constraint). The returned S is induced by {u1, . . . , u9}. In

Algorithm 11, if the input graph S is induced by {u1, u2, u3, u4, u5}, and u = u4,

the deletion of u leads to the removal of u5, u2, u3 and u1, such that the returned

S is an empty set.

Based on the above collapse procedure, we propose a global search algo-

rithm to compute a minimal p-cohesion containing q in a top-down manner.

Let S be the connected component containing the query vertex q, which is a p-

cohesion, we iteratively remove a vertex from S without violating the p-cohesion

constraint until no such vertex exists.

Algorithm 12 shows the details of the global search algorithm. Let S be a

copy of the connected component in G which contains q (Line 1). At Line 2, T

ensures each vertex in S is visited once only. Let S ′ be a copy of S (Line 4). We

select an unvisited vertex u with the largest degree in S (Line 3) and compute
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Algorithm 12 GlobalSearch(G, p, q)

Input: G : a graph, p : a real number in (0,1), q : a vertex
Output:Cmin : a p-cohesion containing q

1: S ← the connected component containing q in G
2: T ← ∅; T ← T ∪ {q}
3: while ∃u ∈ V (S) \ T do

4: S′
← S; T ← T ∪ {u}

5: S ← Collapse(S, p, u)
6: if S = ∅ or q /∈ S then S ← S′

7: return S

the p-cohesion on S after deleting u by invoking Algorithm 11 (Line 5). If the

returned subgraph is empty or q is deleted from S, we recover S (Line 6). When

every vertex in current S is visited, S is a minimal p-cohesion. In this chapter,

the vertex with the largest degree in current S will be chosen first at Line 3,

because a large degree vertex may fast reduce the size of current p-cohesion (S).

Time Complexity. The visit of every vertex in V (S) takes O(n) (Line 3). Algo-

rithm 11 (Line 5) and the recover of S (Line 6) take O(m+ n) for one iteration

respectively. Thus, the time complexity of Algorithm 12 is O(n(m+ n)).

Space Complexity. The subgraph S, S ′ and the neighbor set take O(m + n)

space respectively. The set T and deg(·) take O(n) space respectively. The

space complexity of Algorithm 12 is O(m+ n).

Example 12. Figure 1.3 shows a graph with the label of the smallest number

of neighbors required for every vertex in a p-cohesion, when p = 0.6. If q = u1,

Algorithm 12 may firstly choose u10 at Line 3, and then delete u11, u12 and u13

by the collapse procedure (Algorithm 11). At the next loop, it deletes u4 which

leads to the deletion of all the vertices according to the constraint of p-cohesion,

i.e., S = ∅. Thus, we recover S, and try another unvisited vertex in S until no

more vertices can be deleted. Finally, the vertices in ∪1≤i≤5ui induce a minimal
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Algorithm 13 LocalSearch(G, p, q)

Input: G : a graph, p : a real number in (0,1), q : a vertex
Output:Cmin : a p-cohesion containing q

1: D ← {q}; T ← ∅

2: f(u) ← compute score for every vertex in G
3: while ∃v ∈ D \ T do

4: T ← T ∪ {v}; b ← |N(v,G) ∩D|

5: P ← {max(3p× deg(v,G)4− b, 0) vertices in N(v,G) \D with the largest f(u)}

6: Update score f(u); D ← D ∪ P
7: S ← GlobalSearch(G(D), p, q)
8: return S

p-cohesion containing q.

Local Search Algorithm

Due to the giant component phenomenon [41], the connected component contain-

ing the query may occupy a large part of the graph. In such cases, Algorithm 12

is inefficient on large graphs. To improve algorithm efficiency, we can compute

the minimal p-cohesion on a reduced S. In a bottom-up manner, we repeat-

edly expand the vertices starting from the query vertex to form a p-cohesion

subgraph which may be much smaller than the initial connected component S.

Algorithm 13 shows the local search procedure from q on a graph G. The set

D records the to-expand vertices and set T ensures that each chosen vertex is

expanded only once (Lines 1-4). When we expand a vertex v, b is the number of

v’s neighbors in D (Line 4). We add max(3p× deg(v,G)4 − b, 0) neighbors of v

to D, such that v can stay in the resulting p-cohesion (Line 5).

In Algorithm 13, at Line 3, the chosen vertex v is the vertex with the largest

degree in D at that time. At Line 2 we compute a score f(u) for every vertex. At

Line 5, we choose the vertices in N(v,G) with the largest score f(u) in G-G(D)
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since the existence of such vertices can get a good trade-off between the gain and

penalty effect of adding one vertex to D. All these chosen vertices are added

to D for further expansion (Line 6). After the expansion of every vertex in D,

the vertices in D can induce a p-cohesion subgraph. By invoking Algorithm 12

(Line 7), we can get the minimal p-cohesion containing the query vertex q.

Score Function. A straightforward score definition for a vertex u /∈ D is the gain

effect of adding u to D, denoted by f+(u), specifically, f+(u) records the number

of u’s neighbor v in D with deg(v,G(D)) < 3p× deg(v,G)4:

f+(u) = |{v|deg(v,G(D)) < 3p× deg(v,G)4, v ∈ N(u,G(D))}| (5.5)

Intuitively, f+(u) denotes the inclusion of u into D could contribute to increasing

the degrees of some vertices in D s.t. they are closer to satisfy the p-cohesion

constraint.

Besides, there is also a penalty effect of adding u to D, since u may need

extra neighbors outside of D to make it have at least 3p× deg(u,G)4 neighbors

in D. We denote the penalty by f−(u):

f−(u) = max{0, 3p× deg(u,G)4 − |N(u,G(D))|} (5.6)

By considering both the gain and penalty effect, we define a score for a vertex

u to determine which neighbor should be selected in Line 5 with the trade-off

between its gain and penalty. The ultimate score of a vertex u is defined as:

f(u) = f+(u)− f−(u) (5.7)

As for Algorithm 13, in Line 5, for an expanding vertex v, we choose its neighbors

u /∈ D with the largest scores f(u).
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Example 13. Figure 1.3 shows a graph with the label of the minimum number

of neighbors required for every vertex in a p-cohesion, when p = 0.6. If u = u1,

Algorithm 13 may firstly add u2, u3 and u4 to D, s.t., u1 satisfies the threshold for

existing in a p-cohesion. Then u2 and u3 are expanded with no vertex pushed into

D. Then u4 is expanded, which adds u5 to D, because f(u5) = f+(u5)−f−(u5) =

1− 0 = 1 is larger than f(u6) = 1− 2 = −1 and f(u7) = 1− 2 = −1. When all

the vertices in D have been expanded, the algorithm returns the induced subgraph

by ∪1≤i≤5ui.

Time Complexity. Let n̂ and m̂ denote the number of vertices and edges of G(D),

respectively. In Line 3 of Algorithm 13, the total number of visited vertices in D

is n̂. For each vertex in D, the value b can be retrieved by visiting its neighbors,

which takes O(m+n) for one iteration. The updating of f(·) for the neighbors of

a vertex v takes O(deg(v,G)∗ log(deg(v,G))). The retrieval of P takes O(m+n)

for one iteration. The score computation at each iteration takesO(m+n) because

deg(·, G(D)) and N(·, G(D)) can be maintained when each vertex is added to D

by visiting the neighbors of the vertex, and each vertex is added to D at most

once. At Line 7, Algorithm 12 takes O(n̂(m̂+ n̂)). As shown in our experiments,

usually n̂ 5 n and m̂ 5 m. Thus, the time complexity of Algorithm 13 is

O(n̂(m+ n)).

Space Complexity. The sets D, T , P , f(·) and deg(·) take O(n) space respec-

tively. G and N(·) take O(m + n) space respectively. The space complexity of

Algorithm 13 is O(m+ n).

Algorithm Correctness. In Algorithm 13, every vertex v in D is expanded once

at Line 3, which ensures v has sufficient neighbors in the partial set D by adding

enough neighbors of v into D (Lines 5-6). When every vertex v in D has been

expanded, every v in D satisfies deg(v,G(D)) >= 3p × deg(v,G)4, i.e., the

returned G(D) is a p-cohesion containing u. Then in Line 7, we invoke Algo-
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rithm 12. Since the Algorithm 12 has been proved to be correct, Algorithm 13

is correct.

5.4 Diversified Enumeration

In this section, we study the diversified p-cohesion enumeration problem (DPCE):

Enumerate a set of disjoint minimal p-cohesions.

5.4.1 Problem Analysis

Firstly, we show the number of minimal p-cohesion for a graph can be exponential

by the following theorem.

Theorem 8. There exists a graph G that contains an exponential number of

minimal p-cohesions, for every fixed p ∈ (0, 1).

Proof. We prove the theorem based on the exponential number of maximal

cliques in a graph G. Suppose G is empty initially, we add a vertex set O =

∪1≤i≤nvi to G where n = 2x and x ∈ N+. For every vertex vi ∈ O, we connect

vi to every other vertex in O except the opposite vertex vj where |j − i| = n

2 ,

i.e., the degree of every vertex v ∈ O is deg(v,G) = n− 2.

For every vertex v ∈ O, we add y extra vertices and connect each of them to

v:

y =

8
>><

>>:

3(n− 2) · (
1

2p
− 1)4, 0 < p <

1

2

3(n− 2) · (
1

2(1− p)
− 1)4,

1

2
≤ p < 1

(5.8)

The construction is completed. We have |V (G)| = n + n · y. For every vertex

101



Chapter 5 5.4. DIVERSIFIED ENUMERATION

v ∈ O, we have deg(v,G) = (n− 2) +y:

deg(v,G) =

8
>><

>>:

3
(n− 2)

2p
4, 0 < p <

1

2

3
(n− 2)

2(1− p)
4,

1

2
≤ p < 1

(5.9)

For both cases of p, we have p · deg(v,G) ≥
n−2
2 . So for each vertex in O to

be in a minimal p-cohesion S, at least n−2
2 of its neighbors are also in S. Note

that, for a maximal clique of G(O), the degree of every vertex in the clique is
n−2
2 . If we count each minimal p-cohesion in which each vertex contained in O

has exactly n−2
2 neighbors in O, the number of the minimal p-cohesions is at

least the number of maximal cliques in G(O) which is 2n/2. Thus, the number

of minimal p-cohesions in G is exponential.

According to Theorem 8, the number of minimal p-cohesions may be over-

whelming to users. Moreover, the p-cohesions discovered may heavily overlap

with each other. Thus we are interested in tackling the diversified minimal p-

cohesion enumeration problem (DPCE) for graph G: we prefer to find a set of

disjoint minimal p-cohesions for G.

5.4.2 Pivot based Local Search (PLS)

In this section, we efficiently find a set of disjoint minimal p-cohesions based on

the algorithms for MPCS.

Baseline Algorithm

A straightforward method to find a set of disjoint p-cohesions for a graph is to re-

peatedly find a minimal p-cohesion and remove it. Thus, we propose an algorithm

in a top-down manner: For a graph G, starting with a connected component S,
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we can find a minimal p-cohesion by Algorithm 12: “Cp = GlobalSearch(S, p,

∅)”. We remove Cp and the vertices violating the p-cohesion constraint after the

removal of Cp. Repeatedly when all vertices are removed from graph G, we can

get a set of disjoint minimal p-cohesions.

A Pivot based Local Search Algorithm

Finding one minimal p-cohesion in a top-down manner without a pivot is time-

costly. Motivated by the MPCS, we can improve the efficiency of the BaseLine

Algorithm by adding a pivot u and finding a minimal p-cohesion containing u

by Algorithm 13. The details are shown in Algorithm 14.

At Line 1, we record the degree of every vertex in G. The set T is used

to ensure every vertex is checked exactly once. Then we compute a minimal

p-cohesion on each connected component S of current graph G from Line 2.

A minimal p-cohesion Cp can be computed by Algorithm 13 with subgraph S,

threshold p and a vertex u ∈ S. We delete Cp from S and record Cp in C

(Line 6). We delete the vertices violating the fraction threshold of p-cohesion

in S to further reduce S (Lines 7-8). Algorithm 14 returns the set of minimal

p-cohesions in C.

At Line 3, we select the vertex with the smallest degree in S because a small

degree pivot can fast expand to a p-cohesion and keep the advantage of the

pivot that prunes more vertices at the early stage. Besides, the chosen pivot

allows us to compute the minimal p-cohesion on a reduced initial S at Line 5 of

Algorithm 14, which can improve the efficiency significantly.

Time Complexity. The visit of the connected components in the graph takesO(n)

at most (Line 2). Algorithm 13 takes O(n(m + n)) for one iteration (Line 5).

The update of S and C takes O(m + n) at most (Lines 6-8). Thus, the time

complexity of Algorithm 14 is O(n2(m+ n)) in the worst case.
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Algorithm 14 PLS(G, p)

Input: G : a graph, p : a real number in (0, 1)
Output:C : a set of disjoint minimal p-cohesions

1: deg(v) ← deg(v,G) for every v ∈ V (G); T ← ∅

2: while ∃a non-empty connected component S ∈ G do

3: while ∃u ∈ S \ T do

4: T ← T ∪ {u}
5: Cp ← LocalSearch(S, p, u)
6: S ← S-Cp; C ← C ∪ {Cp}

7: while ∃v ∈ V (S) with deg(v,G) < 3p× deg(v)4 do

8: S ← S \ {v ∪ E(v)}
9: return C

Space Complexity. Algorithm 13 takes O(m + n) space. The G, Cp and C take

O(m + n) space. The deg(·) and T takes O(n) space. The space complexity of

Algorithm 14 is O(m+ n).

5.4.3 An Application on MinSeed

In this section, we study an application of the minimal p-cohesion subgraphs

on the contagion model introduced by [82, 41] along with the p-cohesion. To

promote the sale of a product B, the company may give incentives to some seed

users, such as a discount or free product trial. These seed users are regarded as

activated (i.e., influenced) for using B, which may influence (i.e., activate) their

friends to use B. The influence will further cascade to the friends of the activated

users. In the following, we formally introduce the cascading rule.

Problem Statement

In this section, we give the definition of cascade rule, the problem statement of

the MinSeed problem, and a simple describe for the complexity of the MinSeed

problem.
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Definition 7. Cascading Rule. Given a graph G, the set of activated vertices

A ∈ V (G) and a cascading threshold r ∈ (0, 1), we have (1) a vertex u ∈

(V (G)\A) is immediately activated iff there are at least 3r×deg(u,G)4 activated

neighbors of u in G, i.e., deg(u,G(A)) ≥ 3r × deg(u,G)4; and (2) a seed vertex

u is always activated.

Given a target user group (which induces a graph) to cascade, a company may

wish to find the fewest seed users (initial adopters) such that all the target users

are activated while the promotion expense is minimized. Thus, the MinSeed

problem is defined.

MinSeed Problem. Given a target graph G with no activated vertices, and

a cascading threshold r ∈ (0, 1), the MinSeed problem is to find a set of seed

vertices D in V (G), such that (1) all the vertices in V (G) are activated by

applying the Cascading Rule repeatedly, and (2) |D| is minimized.

We prove that MinSeed is NP-hard by a reduction from Vertex Cover prob-

lem. Given a graph G, when r is large enough, e.g., r = |V (G)− 1|/|V (G)|, the

activation of a vertex needs all its neighbors to be activated first. To activate all

the vertices in G, each edge in G should be incident to at least one seed vertex.

Thus, MinSeed with such a r is exactly Vertex Cover which is NP-hard.

Solutions for MinSeed

Heuristic Seed Selection. Algorithm 15 shows the basic framework to find an

approximate solution for MinSeed. For every vertex v in G, we use c(v) to record

the number of activated neighbors (Line 1). Set D records the selected seeds

and set A records the activated vertices except the seeds (Line 2). We select an

inactivated vertex u as a seed and use L to record the activated vertices by seed u

(Lines 3-4). We update the c(·) value for the inactivated neighbors of each vertex
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Algorithm 15 SeedSelection(G, r)

Input: G : a target graph, r : a real number in (0, 1)
Output:D : the seed set

1: c(v) ← 0 for every v ∈ V (G)
2: D ← ∅; A ← ∅

3: while ∃u ∈ V (G) \ {D ∪A} do

4: D ← D ∪ {u}; L ← {u}
5: for each u ∈ L do

6: for each v ∈ N(u,G) \ {D ∪A} do

7: c(v) ← c(v) + 1
8: if c(v) ≥ 3r × deg(v,G)4 then

9: L ← L ∪ {v}; A ← A ∪ {v}
10: return D

in L (Lines 6-7). An inactivated neighbor v is activated if c(v) ≥ 3r×deg(v,G)4

(Lines 8-9). The algorithm returns D as the seed set.

Time Complexity. Algorithm 15 activates each vertex in G by exactly one time

and updates the c(·) value of its neighbors. So the time complexity of Algo-

rithm 15 is O(m+ n) if the seed selection at Line 3 takes up to O(m+ n).

Space Complexity. Sets c(·), D, A, L and deg(·) take O(n) space respectively. G

andN(·) takeO(m+n) space respectively. The space complexity of Algorithm 15

is O(m+ n).

Algorithm Correctness. Every vertex in G is either pushed into D as a seed, or

pushed into A as an activated vertex by the seeds. Since the seeds are regarded

as activated, the D returned by Algorithm 15 is a feasible solution of MinSeed.

Selection Order. The vertex selection order in Line 3 decides the number

of resulting seeds. Because the minimal p-cohesions prevent outside influence

spread according to the Fortress property, the vertices in the p-cohesions are

relatively isolated from the non-p-cohesion vertices. By giving certain priorities

to fortress vertices, we may break through the barrier of influence spread from
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the non-p-cohesion vertices to the p-cohesion vertices. Thus, the number of seeds

required may be reduced. For MinSeed, we explore the following seed selection

orders.

IC-Deg Selection. We select a vertex u with the largest degree in G at Line 3,

because such a u can increase the c(·) values by a great extent and such a u can

relax the fortress property when it is in a minimal p-cohesion.

IC-Core Selection. We select a vertex u with the largest coreness in G at Line 3,

because the coreness of a vertex means the importance/influence [69]. The core-

ness of a vertex u is the largest value of kmax such that u ∈ kmax-core. k-core

is a subgraph that every vertex in this subgraph has at least k neighbors inside.

Thus, such a u may increase the c(·) values.

IC-Truss Selection. Similar to the IC-Core Selection, we select a vertex u with

the largest trussness in G at Line 3, because trussness of a vertex also means

the importance of the vertex [104]. Here we define the trussness of a vertex u is

the largest value of trussness of the edges incident to this vertex. The trussness

of an edge e is the largest value of km such that e ∈ km-truss. The k−truss is

a subgrpah where every edge e is contained in at least k − 2 triangles in the

subgraph. For some insight, such a u may increase the c(·) values.

IC-BF Selection. We select a vertex u at Line 3 such that the size increase of

A is the largest with the selection of u. Such a u is “best” in a greedy view.

When there are ties, we choose the one with the largest degree in G, as in the

degree based selection. We hope these “best” vertices can effectively break the

boundaries of the fortresses.

IC-PC Selection. We find that the vertices with extremely large degrees have

great influence power. So firstly we select ↵ × |V (G)| vertices as seeds which

have the largest degrees in G. Then we retrieve a set C of minimal p-cohesions

on G-G(D∪A) by the BUTD algorithm where p = 1−r+" and " is an infinitesimal
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positive number. We compute a weight � × deg(u,G) for each vertex u in C.

For a vertex v not in C, its weight is just deg(v,G). Then we continue to select

a vertex u as a seed which has the largest weight in G at Line 3. In this way,

the fortress property may be relaxed by giving priorities to the vertices in the

minimal p-cohesions.

Example 14. Figure 1.3 shows a graph where r = 0.5 and all the users are

inactivated. By IC-Deg, Algorithm 15 may select u10 and u4 sequentially. By

IC-BF, Algorithm 15 may select u10, u7 and u5 sequentially. By IC-PC, when

↵ = 0.01 and � = 2, Algorithm 15 may select u4 and u5.

5.5 Performance Studies

5.5.1 Experimental Setting

In this section, we give the experimental settings for the evaluation of our pro-

posed algorithms and techniques.

Algorithms. As far as we know, there is no existing work investigating the p-

cohesion computation. We implement and evaluate 6 algorithms for p-cohesion

computation and 3 algorithms for MinSeed as shown in Table 5.2.

Datasets. 8 real-life graphs are deployed in our experiments. The original

data of Yelp is from [114], DBLP is from [68] and the others are from [67].

In DBLP, each vertex represents an author and each edge between two authors

represents the two authors have at least 5 co-authored papers. The other datasets

have existing vertices and edges. For Gowalla and Brightkite, we remove the

vertices without check-ins and their incident edges. We transfer directed edges

to undirected edges. Table 5.3 shows the statistics of the datasets.

Settings. All programs are implemented in standard C++ and are compiled
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Algorithm Description

GlobalS Finding a minimal p-cohesion containing a query vertex q by
Algorithm 12

LocalS Local search algorithm (Algorithm 13) equipped with Equa-
tion (5.5)

LocalS
∗ Local search algorithm (Algorithm 13) equipped with Equa-

tion (5.7)
BaseTD The top-down heuristic algorithm to find disjoint minimal

p-cohesions (5.4.2)
BaseTD+ BaseTD equipped with the pivot vertices
BUTD The pivot based local search algorithm (Algorithm 14)
IC-Deg Algorithm 15 equipped with the degree based vertex selection
IC-Core Algorithm 15 equipped with the coreness based vertex selec-

tion
IC-Truss Algorithm 15 equipped with the trussness based vertex se-

lection
IC-BF Algorithm 15 equipped with the best first vertex selection
IC-PC Algorithm 15 equipped with the minimal p-cohesion based

vertex selection

Table 5.2: Summary of Algorithms

with G++ in Linux. All experiments are performed on a machine with Intel

Xeon 2.3GHz CPU and Redhat Linux system. The runtime of an algorithm is

set to INF if it cannot finish in 1 hour.

5.5.2 Effectiveness

In this section, we extensively evaluate the resulting p-cohesions regarding the

size and the fortress property. Different cohesive subgraph models are compared

with the p-cohesion. The fortress property of p-cohesion is evaluated on differ-

ent influence spread models. We also show the minimal p-cohesions are more

promising than the non-minimal p-cohesions. Case studies are depicted to visu-

ally show the effectiveness of p-cohesion. We also report the seed numbers for

MinSeed using the p-cohesion based selection order and other selection orders.

Exact Number of p-cohesions. With the help of Algorithm 9 and Algo-
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Dataset Vertices Edges davg dmax

Email 36,692 183,831 10 1,383
Brightkite 50,111 194,090 7.7 1,098
DBLP 210,840 363,299 3.4 159
Epinion 75,879 405,740 10.7 3,044
Gowalla 99,563 456,830 9.2 9,967
Deezer 54,573 498,202 18.3 420
Amazon 334,863 925,872 5.5 549
Yelp 249,440 1,781,908 14.3 3,812

Table 5.3: Statistics of Datasets

rithm 10, we can compute the number of minimal p-cohesions for a graph. Due

to the high time and space complexity, we only compute the number of the p-

cohesions on a small graph with p = 0.6. We extract a small graph G with 70

vertices from the Yelp dataset. Since the extracted graph with 80 vertices can-

not finish in one week, we only compute the minimal p-cohesions of an extracted

graph with 70 vertices.

We compute the exact number of minimal p-cohesions containing a query

vertex with Algorithm 10, which can solve the MPCS problem. In order to do

this, we randomly choose 10 vertices as the queries q and repeat “ExactPC(G,

p, q)” for 10 rounds. The results show that the average number of minimal p-

cohesions containing a query vertex is 19, 778.1, and the average smallest size is

9.2. We also compute the total number of minimal p-cohesions of the extracted

graph with Algorithm 9, i.e. “SubPCExact(∅, V (G), ∅, p, |V (G)|)”. The number

of minimal p-cohesions of graphG with 70 vertices is 87, 429, which is much larger

than the graph size.

Score Function Evaluation for MPCS. Figure 5.2 reports the average min-

imal p-cohesion subgraph size returned by GlobalS, LocalS, and LocalS
∗ over

100 runs. One query vertex is selected randomly from all the vertices. Fig-

ure 5.2(a) shows the result on 8 datasets with p = 0.6. The score function based
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Figure 5.2: Average Size of Minimal p-Cohesions

algorithm LocalS
∗ can significantly outperform GlobalS regarding average size,

because the search space of GlobalS is larger. Some large degree vertices may

be chosen in the execution of GlobalS, and they usually need more neighbors to

stay in a p-cohesion. On most of the datasets, LocalS∗ can significantly outper-

form LocalS. For example, on DBLP, the number of vertices returned by LocalS

is almost 5 times greater than the number of vertices returned by LocalS
∗. This

implies that considering only the gain effect (Equation (5.5)) during the expan-

sion procedure cannot guarantee a good performance. Figures 5.2(b)(c) report

the results of three algorithms by varying the constraint p from 0.1 to 0.9 on

DBLP (5.2(b)) and Amazon (5.2(c)) respectively. In both figures, the sizes of

the minimal p-cohesion subgraphs returned by GlobalS, LocalS, and LocalS
∗
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increase as p grows, since a large p inherently requires more vertices in a p-

cohesion subgraph. When p is very large, the results of the three algorithms are

similar, because nearly the whole graph is returned.
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Figure 5.3: Comparing Modularity of Different Models, p = 0.6
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Figure 5.4: Comparing Clustering Coefficient of Different Models, p = 0.6

Different Cohesive Subgraph Models. For each query vertex v, we com-

pute the minimal p-cohesion by LocalS
∗, the 3p × deg(v,G)4-core by [17], the

(3p × deg(v,G)4+1)-truss by [35], the maximal clique by [101], and the edge

densest subgraph by [45] where every computed subgraph contains v. The query

vertex is randomly selected from all the vertices in the graph. In Figure 5.3, we
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report the modularity scores [83] on the evaluated subgraph and the subgraph

of the outside, for each of the above models, when p = 0.6. The scores are

the average values from 100 independent tests. Consistent with the definition,

the minimal p-cohesion shows better modularity scores because it holds both

inner-cohesiveness and outer-sparseness. In Figure 5.4, we report the cluster-

ing coefficient values on the induced subgraphs of representative set of vertices

for these models. Figure 5.4 shows the p-cohesion vertices possess significantly

higher clustering coefficients on all datasets than other models except “Clique”

model which is always 1. Considering the meaning of clustering coefficient, i.e.,

the high value of clustering coefficient of a group means the vertices inside tend

to create tightly knit groups, which is corresponding with the definition of p-

cohesion.

Evaluation of Fortress Property. Figure 5.5 reports the effectiveness of the

minimal p-cohesions on the fortress property, compared with k-core [92] and s-

clique [64]. The query vertex is randomly selected on the graph. The minimal

p-cohesion is computed by LocalS
∗. For the s-clique containing the query vertex,

we choose the size of the minimal p-cohesion as the parameter s. For k-core, the

input of k is the largest value of k such that the k-core containing the query

vertex is not empty.

We report the average influenced (i.e., activated) vertex ratio under the con-

tagion model [41, 82] over 100 independent tests with p = 0.5 and influence ratio

r = 1.0− p+ 0.001. For each influence test, we randomly choose b = x× |V (S)|

seeds where S is the connected component containing the query vertex in the

graph.

In Figure 5.5, Minimal p-Cohesion represents the average ratio of “the num-

ber of influenced vertices in the p-cohesion (denoted by S)” divided by “the num-

ber of all the vertices in S”. It is similar for k-Core and s-Clique. The figure
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Figure 5.5: Evaluating the Fortress Property

shows that the s-clique and k-core subgraphs have more difficulty in hindering

the influence spread from outside, because the different definitions and they do

not guarantee the outer-sparseness. The minimal p-cohesion shows a stronger

fortress property than the others on all the settings.

Fortress Property on Different Influence Models. We also examine the
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fortress property of p-cohesions under the independent cascade (IC) model and

the linear threshold (LT) model [62], respectively. The target minimal p-cohesions

are computed by BUTD. For each influence test, we randomly choose b = 0.1 ×

|V (G)| seeds. We follow the settings in [62] to compute the influence spread.

During the cascade procedures of the LT and IC models, each edge (u, v) is split

to two directed edges (u, v) and (v, u). The existing probability of each directed

edge, i.e., (u, v) is set as 1/deg(v). For the LT model, we randomly distribute a

threshold from 0 to 1 for each vertex v as the influence threshold. We generate

10 possible worlds on both the IC and LT models, to compute the influenced

vertices and generate the average influence ratios.

In Figure 5.6, Contagion, IC, and LT represent the average influence ratio of

“the number of influenced p-cohesion vertices” divided by “the number of all the

influenced vertices” for contagion, IC model, and LT model, respectively. We

use BaseValue, i.e., |V (Cp(G))/|V (G)||, to represent “the number of p-cohesion

vertices” divided by “the number of all the vertices”, as a base value for influence

comparison. The setting is p = 0.6 and r = 1−p+0.001. BaseValue is basically

larger than Contagion, IC and LT, among different settings, which implies that

the vertices in a p-cohesion have a relatively smaller possibility to be influenced
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than the other vertices, under every evaluated influence model. The p-cohesion

holds the fortress property on all the evaluated influence models, because a p-

cohesion maintains a sparse connection to the outside s.t. the influence spread

from outside is hard to enter the p-cohesion on these influence spread models.
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Figure 5.7: Influence Maximization of Different Methods

Evaluation with Influence Maximization Algorithms. To further verify

the fortress property of our p-cohesion model, we test the spread of the influence

under the influence maximization scenario. We use the IC model as the influence

cascade model. The target minimal p-cohesions are computed by BUTD with

p = 0.6. For the influence spread probability of the IC model we simply use

r = 1− p = 0.4. We follow the settings in [80] to compute the influence spread.

We will run R = 100 rounds, and in each round we select b = 50 inactive vertices

as seeds.

During the seed selection of our IM-PC, we compute the influence spread with

the following steps: (1) choose an inactive vertex from all minimal p-cohesions

with the largest degree as the seed; (2) compute the spread of the influence

of this seed; (3) repeat step (1) and step (2) for R ∗ b times; (4) report the

average number of active vertices. The IMUG [80] is for unknown graph, following

the settings in [80], we prob m = 30.001 ∗ |V (G)|4 vertices and select b seeds
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for each round, s.t the expected number of active vertices in the Rth round is

maximized [80]. Since the IMUG is for unknown graph, first of all, we probe

the vertex with the largest degree, which will be selected as a seed. Because

the vertex with the largest degree results in larger influence spread than other

heuristics [62]. The DegreeDiscountIC [30] is based on degree discount. The

general idea is as follows. Let v be a neighbor of vertex u. If u has been selected

as a seed, then when considering selecting v as a new seed based on its degree,

we should not count the edge (u, v) towards its degree.

In Figure 5.7, we report the average number of active vertices for different

seed selection methods. IM-PC is larger than DegreeDiscountIC and IMUG, which

implies that the vertices in a p-cohesion have a relatively smaller possibility to be

influenced than other vertices. Since the p-cohesion holds the fortress property,

seed from p-cohesions can break the entry barriers of the p-cohesions under IC

model. While, the DegreeDiscountIC and IMUG do not consider this property,

thus the influence spread is hard to enter the p-cohesions, s.t the influenced

vertices of these two methods are smaller than our IM-PC method.
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Figure 5.8: Minimal vs Non-Minimal p-Cohesions

Evaluation of Minimal and Non-Minimal p-Cohesions. Figure 5.8 eval-

uates the effectiveness of “minimal” constraint on p-cohesion, by comparing the
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fortress property of minimal p-cohesions and non-minimal p-cohesions. Each

time for a random query vertex in G, we compute a minimal p-cohesion by

LocalS
∗ and a corresponding non-minimal p-cohesion by the expansion proce-

dure of LocalS∗. We conduct 100 influence tests under the contagion model. In

each test, we randomly choose b = 0.1× |V (S)| seeds to compute the influenced

vertices, for 10 times, where S is the connected component containing the query

vertex.

In Figure 5.8, Minimal p-Cohesion represents the average ratio of “the num-

ber of influenced vertices in the minimal p-cohesion (denoted by S)” divided by

“the number of all the vertices in S”. Non-Minimal p-Cohesion represents the

average ratio of “the number of influenced vertices in the non-minimal p-cohesion

(denoted by S′)” divided by “the number of all the vertices in S ′”. The minimal

p-cohesion shows stronger fortress property than the non-minimal p-cohesion,

because the smaller diameter and size may benefit the defend of information

cascades coming from the outside.

Case Study 1: MPCS on Email. In Figure 5.9, we depict a minimal p-

cohesion S containing the query vertex “20317” found by LocalS
∗ with p = 0.6

on Email. The p-cohesion contains all the grey vertices. In Figure 5.10, we find

a s-clique containing the query vertex “20317” where s = |V (S)|. The s-clique

contains all the grey vertices. We also compute the 3p× deg(v,G)4-core and the

(3p × deg(v,G)4+1)-truss containing vertex“20317”, the sizes of the subgraphs

found are “11,538” and “10,097” respectively. Since these two subgraphs are

too large to show, we omit them in this chapter. We also depict all the 1-hop

neighbors of one vertex in the p-cohesion or the s-clique, to show the outer

connections to the subgraph. In Figure 5.9, we can see the vertices in S are

sparsely connected to their outside neighbors. However, in Figure 5.10, vertex

“24944” has a dense connection with its neighbors outside of the s-clique. The
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outside influence cascades may enter the s-clique through “24944”.

In Figure 5.11 and Figure 5.12, we depict the minimal p-cohesion S found by

LocalS
∗ with p = 0.6 and a |V (S)|-clique containing the query vertex “251583” on

DBLP. The p-cohesion S and |V (S)| contain all the grey vertices respectively.

We also compute the 3p × deg(v,G)4-core and the (3p × deg(v,G)4+1)-truss

containing vertex“251583”, the sizes of the subgraphs found are “35,281” and

“22,499” respectively. Since these two subgraphs are too large to show, we omit

them in this chapter either. In the p-cohesion S or the |V (S)|-clique we also

depict all the 1-hop neighbors of one vertex inside these subgraphs, to show

the outer connections to the subgraph. The results on DBLP show the similar

results as on Email.
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Figure 5.9: Minimal p-cohesion (Email)
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Figure 5.10: s-Clique(Email)
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Figure 5.11: Minimal p-cohesion (DBLP)
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Figure 5.12: s-Clique(DBLP)

Case Study 2: DPCE on DBLP. Figure 5.13 depicts a part of DBLP with

the minimal p-cohesions discovered by BUTD when p = 0.8. The p-cohesions

are marked by the black edges and their incident vertices. We also show all

the vertices which are within the 5-hop neighborhood of one vertex in the p-
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Figure 5.13: BUTD on DBLP, p = 0.8

cohesions. We can see the minimal p-cohesions have a loose connection to their

outside neighbors.
Email Brightkite

r IC-DegIC-CoreIC-TrussIC-BFIC-PCIC-DegIC-CoreIC-TrussIC-BFIC-PC

0.2 1,129 1,130 1,130 1,140 1,129 457 459 461 459 457

0.4 2,410 2397 2377 2,343 2,083 1,262 1291 1338 1,310 1,253

0.6 4,925 5107 5153 4,909 2,156 7,699 8280 8442 7,382 1,312

0.8 11,145 11,426 11,498 10,5352,292 17,501 18,032 18,513 15,9601,264

Table 5.4: Seed Numbers of Email and Brightkite with Different Methods

Gowalla Amazon
r IC-DegIC-CoreIC-TrussIC-BFIC-PCIC-DegIC-CoreIC-TrussIC-BFIC-PC

0.2 1,088 1,088 1,091 1,102 1,088 1,126 1119 1112 1,125 1,126
0.4 2,722 2714 2700 2,902 2,692 21,122 21,445 21,487 - 4,549

0.6 16,131 17,123 17,082 15,4873,023 76,215 77,633 78,845 - 4,013

0.8 39,264 40,663 41,358 - 3,043149,177 150,616 155,377 - 4,115

Table 5.5: Seed Numbers of Gowalla and Amazon with Different Methods

Evaluation of MinSeed Algorithms. In Table 5.4 and Table 5.5 we report

the seed numbers returned by IC-Deg, IC-BF, IC-Core, IC-Truss, and IC-PC

when r varies from 0.2 to 0.8. We report the seed numbers on four datasets, i.e.,

Email, Brightkite, Gowalla, and Amazon. According to Property 1, it is difficult

for the p-cohesions to be influenced from the outside vertices. Our IC-PC gives

selection priority to the vertices in minimal p-cohesions such that the resulting

seed numbers can be reduced. We set " as 0.001 and p = 1 − r + ". According

to statistical observation, we set ↵ = 0.01 and � = 2. Table 5.4 and Table 5.5

120



5.5. PERFORMANCE STUDIES Chapter 5

show that the IC-PC significantly selects less seeds than the other algorithms,

which helps to reduce the cost of cascading the network. Some results of IC-BF

are not reported because the computation cannot finish within 1 week. All

methods of IC-Deg, IC-Core, IC-Truss, and IC-PC are efficient, because IC-PC

just additionally conducts BUTD on a reduced graph and the BUTD is efficient. We

observe that the seed number is much smaller than the size of a dataset, e.g., the

seed number of IC-PC on Brightkite (resp. Gowalla) is only 2.5% (resp. 2.7%)

of its vertex number when r = 0.4.

5.5.3 Efficiency

In this section, we report the runtime of finding a minimal p-cohesion and finding

the disjoint minimal p-cohesions.

Score Function Evaluation on MPCS. Here we report the average runtime

of GlobalS, LocalS, and LocalS
∗ to compute a minimal p-cohesion containing

a query vertex q over 100 runs. One query vertex is randomly selected among

all the vertices. Figure 5.14(a) reports the runtime on all the datasets when

p = 0.6. We observe that the runtime on a dataset is strongly affected by its

vertex number, since every vertex belongs to at least 1 minimal p-cohesion in the

result. Figures 5.14(b) and 5.14(c) report the runtime on DBLP and Amazon

with p varying from 0.1 to 0.9. The runtime of GlobalS drops slightly with the

increase of p, because a larger p makes vertex deletion more efficient. LocalS

and LocalS
∗ perform faster when p is small, because the computation space is

reduced for a small p. Note that LocalS and LocalS
∗ expand the query vertex

to a p-cohesion and then deletes the vertices from the p-cohesion to produce a

minimal p-cohesion containing q. LocalS runs slower than LocalS
∗, because the

former does not consider the penalty effect during the expansion procedure, and

usually finds a larger p-cohesion than LocalS
∗. When p = 0.9, the runtime of
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Figure 5.14: Finding a Minimal p-Cohesion

LocalS
∗ is not larger than that of p = 0.8 on Amazon, because the p-cohesions

have a similar size for both p values while the deletion procedure is faster for

p = 0.9. In general, LocalS∗ significantly outperforms GlobalS on runtime.

Evaluating Algorithms for DPCE. Here we evaluate the performance of

BaseTD, BaseTD+ and BUTD to find disjoint minimal p-cohesions. Figure 5.15(a)

reports the performance on all the datasets when p = 0.6. Figures 5.15(b)

and 5.15(c) show that BaseTD and BaseTD+ cannot finish the computation in 1

hour when p is small. Although the computation of one minimal p-cohesion is fast

when p is small, the size of produced p-cohesion is quite small such that we have

to compute much more minimal p-cohesions than that of large p values. This

issue is relaxed when p is large enough such as p = 0.6. There are 4 factors which
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Figure 5.15: Finding Disjoint Minimal p-Cohesions

influence the trends of runtime: (a) the size of every expanded p-cohesion, (b) the

size of every resulting minimal p-cohesion, (c) the number of resulting minimal

p-cohesions, and (d) the deletion procedure from an expanded p-cohesion to

a minimal p-cohesion. When the p value increases, usually (a) increases, (b)

increases, (c) decreases and (d) speeds up, which, in total, constitutes the trends

of runtime for different p. In general, BUTD is significantly faster than the other

algorithms.
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5.6 Chapter Summary

In this chapter, we study two representative problems on the fortress-like p-

cohesion subgraphs: minimum p-cohesion search and diversified p-cohesion enu-

meration. We analyze the complexity of the problems and prove that finding a

minimum p-cohesion is NP-hard and the minimal p-cohesion enumeration is in-

tractable. From theory to practice, we propose efficient algorithms to find a min-

imal p-cohesion for a query vertex and a set of disjoint minimal p-cohesions. For

a feasible solution of MinSeed, we employ the discovered minimal p-cohesions to

reduce the seed number required for cascading the whole network. Comprehen-

sive experiments show that our algorithms are efficient, the minimal p-cohesions

hold the fortress property, and the algorithms help solve the MinSeed problem.
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EPILOGUE

In this thesis, we mainly study three representative cohesive subgraph models: k-

truss, k-core, and p-cohesion in big graphs, and all of them have a large number

of applications. We prove that the collapsed k-truss problem is NP-hard and

inapproximate. After that, we propose an efficient algorithm collapsed k-truss,

which can reduce the computation time. In addition to the k-truss model, we

also study the minimum k-core search problem based on the k-core model, which

has been proved to be NP-hard. Even though some existing algorithms can

be used to solve this problem, they do not have any guarantee for the result

subgraphs. Given this fact, we propose a progressive algorithm PSA, which

can find the minimum k-core subgraph with a certain guarantee. Finally, we

study a fortress-like cohesive subgraph model, p-cohesion. We are the first to

give the complexity and propose efficient and effective algorithms to the best of

our knowledge. We conduct extensive performance evaluations on several large

real-world datasets for all three cohesive subgraph related problems to show our

techniques and algorithms’ efficiency and effectiveness.

Based on the research works in this thesis, several future research works can

be conducting. Such as, the size-constraint k-core search problem can be figured
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out based on our progressive framework. While, our upper and lower bounds

may not be suitable for the size-constraint problem, new techniques need to be

considered. In addition, for the p-cohesion model, the decomposition related

work can be an interested research topic.
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