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Abstract: Air pollution is the 9th cause of the overall disease burden globally. The solid component 
in the polluted air, particulate matters (PMs) with a diameter of 2.5 μm or smaller (PM2.5) possess a 
significant health risk to several organ systems. PM2.5 has also been shown to cross the blood–
placental barrier and circulate in foetal blood. Therefore, it is considered an intrauterine 
environmental toxin. Exposure to PM2.5 during the perinatal period, when the foetus is particularly 
susceptible to developmental defects, has been shown to reduce birth weight and cause preterm birth, 
with an increase in adult disease susceptibility in the offspring. However, few studies have thoroughly 
studied the health outcome of foetuses due to intrauterine exposure and the underlying mechanisms. 
This perspective summarises currently available evidence, which suggests that intrauterine exposure 
to PM2.5 promotes oxidative stress and inflammation in a similar manner as occurs in response to 
direct PM exposure. Oxidative stress and inflammation are likely to be the common mechanisms 
underlying the dysfunction of multiple systems, offering potential targets for preventative strategies 
in pregnant mothers for an optimal foetal outcome. 
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1. Particulate Matter (PM)—an Intrauterine Toxin 
Embryonic and foetal development is sensitive to the in utero environment, e.g., maternal stress, 

poor nutrition and environmental toxins [1-4]. A poor intrauterine environment is notably correlated 
with low birth weight in the offspring. The Barker hypothesis links events in foetal development, 
such as intrauterine growth restriction, to the increased susceptibility to develop future adult diseases 
[5-7]. In recent years, the importance of intrauterine environmental factors has been increasingly 
recognised in the postnatal susceptibility to non-communicable illnesses, including respiratory 
disorders, metabolic disorders, cardiovascular diseases and chronic kidney disease [1,8]. 

Apart from the abovementioned well-accepted factors causing foetal underdevelopment, air 
pollution has also been increasingly recognised as a major intrauterine toxin [9,10]. The World Health 
Organisation (WHO) has raised the alarms regarding the gravity of poor air quality on human health 
in the global setting, based on the studies suggesting the detrimental health effects of direct exposure 
to PMs derived from fossil fuel, biomass burning and traffic [11]. The burden of PM on health is 
unevenly distributed. Pregnant women and their unborn infants are among the vulnerable groups that 
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can be significantly affected by the poor air quality in which they live [12]. The attention to the 
adverse health outcome due to intrauterine PM exposure was illustrated after the 2008 Beijing 
Olympic Games, when the air quality was improved during that short period which allowed the 
comparison of the birth outcome between those with and without in utero exposure to heavy air 
pollution [13]. 

PMs with a diameter of 2.5μm or less (PM2.5) are of particularly high risk to human health, 
including that of the growing foetus [14-17], even more than the gas component in the polluted air 
[16]. As such, countries with relatively clean air, e.g., Australia, are still at risk of PM derived from 
traffic-related air pollution [18]. Those living within 50 to 500 m of main roads are at higher risk of 
chronic low-level PM exposure and the associated adverse health effects [19-23]. For example, it has 
been found that living less than 200 m from a major road, meaning exposure to traffic-related air 
pollution, causes an increased risk of developing asthma and low lung function in children [20,24-
26]. The small size gives such PMs the advantage of accessing the bloodstream in the alveoli and 
passing blood organ barriers, including the blood–placental barrier [9]. As such, PM2.5 can potentially 
circulate in foetal blood, although the foetal level compared with the maternal level is currently 
unclear. 

The toxicity of PM is due to the complex composition, depending on the source [18]. The 
common substances carried by PM found in urban and industrial areas include sulphates, carbon, 
polycyclic aromatic hydrocarbons, biological compounds and metals [11,16,27]. Even in countries 
and areas with relatively good air quality, extreme weather conditions due to the change in the climate 
can significantly increase PM mass concentration within a short period of time, such as sand storms 
and bush fires [28,29]. A recent Nature paper has suggested that the oxidative potential of PM may 
be the driver of its adverse health effects [30]. In fact, PM contains high levels of free radicals and 
oxidants, such as reactive oxygen species (ROS) (e.g., oxygen and hydroxyl radicals and other 
reactive forms of O2 such as superoxide anion and hydrogen peroxide) [31,32]. Several PM 
components also generate ROS, including transition metals, polycyclic aromatic hydrocarbons and 
volatile organic compounds [33,34]. PM sourced from non-exhaust traffic emission contain many 
transition metals (i.e., manganese, vanadium, copper and iron) that have redox properties with the 
potential to induce intracellular ROS production, which then activates inflammatory cells to produce 
more ROS [35,36]. This has been associated with higher oxidative stress and toxicity compared to 
other sources [35,37]. Oxidative stress may be involved in all PM-induced disorders in multiple organ 
systems, including the lung, cardiovascular system and liver, which activate the endogenous redox 
system [38-41]. 

While the general public is generally conscious about outdoor pollutions, indoor air pollution is 
another frequent location of PM exposure that can affect the residents’ health. Indoor PMs can come 
from outdoor with similar chemical composition and size as environmental PMs [42]. Household 
generated PM can also be due to daily activities, such as cooking, biomass burning and cleaning [43-
45]. Bisphenol A (BPA), commonly used in plastic products, has been found in 95% of indoor dust 
samples [46,47]. Although its inhalation is less than ingestion, BPA may interfere with lipid 
metabolism and inflammatory responses to increase the risk of atherosclerosis [47,48]. 

While it is well accepted that high ambient PM levels correlate with the mortality rate, it is 
increasingly recognised that long-term exposure to even low level of PM (quite often considered as 
“safe level”) increases the risk of disorders in vital organ systems, including the heart, the lung and 
the brain [49,50]. Although not widely studied, PMs are now considered an in utero environmental 
toxin [9,51] and therefore of interest to this perspective paper. Here, we summarised the currently 
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available evidence from a limited number of publications to raise the awareness of the needs for more 
comprehensive research into this currently understudied yet important health topic. 

2. Disrupted Foetal Development 
As an intrauterine toxin and a strong oxidant, maternal exposure to PM during pregnancy is 

associated with birth complications and long-term health consequences in the offspring, including 
abnormal organogenesis, premature and preterm birth, small for gestational age, impairment in 
newborn lung function and immune function, and increased risk of brain developmental disorders 
and cognitive disorders after birth [32,51-55]. However, this topic is still understudied, considering 
that there is no evidence of a safe exposure threshold of any of the air pollutants [14]. 

The ability of PM2.5 to cross the blood–placental barrier suggests that PM2.5 can circulate in foetal 
blood [9]. Therefore, it can be naturally postulated that PM may directly induce oxidative stress and 
inflammatory responses in the growing foetus and affect foetal development [32,51]. This theory has 
been supported by studies on umbilical blood in newborns with prenatal PM exposure, in which 
reduced endogenous antioxidant Superoxide Dismutase 2 and DNA oxidative stress damage are 
discovered consistently in mother–baby pairs [56,57]. In vitro studies using embryonic cells or 
trophoblast cells have discovered dose-dependent toxicities of PMs on cell cycle and viability 
[51,58,59]. PM exposure affects several pathways, including heightened oxidative stress, 
inflammatory response and endoplasmic reticulum stress, resulting in ROS-JNK/ERK-apoptosis and 
G0/G1 arrest pathways [51,58,59]. These studies have shed light on what can happen to the growing 
foetus if the mother lives in polluted air during pregnancy. The cellular powerhouse mitochondria are 
sensitive to oxidative stress induced damage; however, mitochondrial function and integrity are not 
affected by PM exposure in an in vitro study [59]. Interestingly, changes in mitochondrial DNA copy 
number and methylation have been found in the cord blood of babies born to mothers exposed to PM 
during pregnancy [51]. This may be inherited from mothers, instead of caused by in utero PM 
exposure. In addition, in utero exposure to fine ambient PM correlates with heightened placental 
oxidative stress and inflammatory responses with decreased placental mass and gene expression 
responsible for placental angiogenesis [51,55]. This may impair nutrient delivery to the foetus, 
leading to intrauterine underdevelopment [60,61]. As the developing foetus is highly vulnerable to in 
utero environmental changes, in addition to low birth weight, intrauterine PM exposure can also result 
in miscarriage and preterm birth [60,61]. 

In line with Barker’s hypothesis, low birth weight can lead to an adaptive catchup growth after 
birth, which increases the risk of obesity. It is not surprising to observe fast weight gain in mice with 
pre-conceptional exposure to high levels of PM. Xu and colleagues demonstrated that females born 
to animals exposed to PM2.5 only during preconception seem to be protected, where only males in the 
1st generation (F1) experience intrauterine development and catchup growth after birth [62]. The same 
study suggested that this transgenerational transmission may be driven by the effect of PM on 
mitochondrial DNA in eggs, as exposure to PM2.5 only during gestation did not have the same effect 
as the pre-conceptional exposure; while only the daughters in the 1st generation pass the adverse effect 
to the 2nd generation [62]. 

However, the situation seems more complex in humans, whose mothers are normally exposed to 
PM during both pre-conceptional and gestational periods. In humans, only girls show this predicted 
trend, whereas boys with intrauterine exposure to a higher level of PM remain underweight in 
childhood [63]. This may suggest that there is an additive effect between pre-conceptional and 
gestational exposures or even postnatal exposure, as babies normally live in the same environment as 
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mothers. Whether the effect is consistent until adulthood is unclear for now. The discrepancy between 
few animals and human data available to date may have been related to unphysiologically high doses 
of PM used in animal studies or the effects of daily activities and weather changes on the level 
variations of PM exposure in human. 

3. Risk of Future Respiratory and Metabolic Disorders 
Maternal PM2.5 exposure has been found to cause foetal inflammation and oxidative stress, which 

influence organ development, and therefore increase the offspring’s susceptibility to non-
communicable diseases in adulthood, as foetal development is a critical window that influences adult 
disease susceptibility [9,60,61]. In utero PM2.5 exposure has been shown to cause mitochondrial 
damage due to the mother inhaling oxidants leading to increased oxidative stress in the intrauterine 
environment, which then can cause dysregulation of the foetal immune system and interruption to the 
genetic duplication process causing adverse birth and foetal health outcomes [9,64]. Thus, maternal 
PM2.5 exposure in humans has been linked to increased risks of childhood asthma in the offspring [9]. 

The associations between direct PM exposure and the development of insulin resistance, 
abnormal cholesterol/triglyceride levels and obesity have been reported [65,66]. To date, there have 
been very few studies investigating the impact of intrauterine PM exposure on the risk of future 
metabolic disorders. The very first study was conducted on hamsters in 1982 and showed that PM2.5 
was able to cross the blood–placental barrier, therefore reaching the foetus in utero. It also showed 
that maternal PM2.5 caused a decrease in mitotic activity in the foetal liver [67]. The liver is a key 
metabolic organ and has several roles, including acting as a hub, connecting metabolically various 
tissues and thus governing and maintaining body energy metabolism and metabolism homeostasis 
[68,69]. As this was a study on foetal hepatic development conducted nearly 40 years ago, this 
information is not up to date and is limited. 

More recently, another study in 2019 discovered that prenatal and postnatal (4 weeks) PM2.5 
exposure increased lipogenesis and worsened fatty acid oxidation differentially in mice consuming 
chow and high-fat diet [70]. Moreover, another study using continued PM exposure throughout 
development in mice showed transcriptomic changes in the liver in adulthood [71]. A pre-reviewed 
paper in BioRxiv showed maternal exposure to PM2.5 increased DNA methylation in pancreatic islets 
associated with the reduced blood insulin level and hyperglycaemia, which is an effect lasting for two 
generations [72]. Although no other work has supported the abovementioned discoveries, the above 
evidence suggests that foetal programming of metabolic disorders can be induced by intrauterine PM 
exposure. This needs to be confirmed by future studies. 

4. Influence on Neurocognitive Function 
Exposure to environmental toxins in utero can interrupt brain development [73]. PM may 

interfere with the formation of brain structures and cause failure in cell proliferation and the inability 
to modulate neurotransmission due to dysregulated pruning (loss of synapses) [74-76]. School-aged 
children who were exposed to high PM levels during their foetal life presented a thinner cortex in 
both hemispheres of the brain, particularly the precuneus region in the right hemisphere, which 
correlates with impaired inhibitory control [53]. In rats, maternal PM exposure led to decreased levels 
of IL-18 and vascular endothelial growth factor (VEGF) that are correlated with increased anxiety 
later [77]. These findings emphasise the links between intrauterine PM exposure and neurocognitive 
impairment [77]. Studies also suggest prenatal exposure to traffic PM2.5 may cause social behavioural 
changes by promoting pro-apoptotic pathways in the cerebral cortex during brain development [78]. 
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PM may directly target the immune system by triggering glial cells, e.g., microglia, 
oligodendrocytes and astrocytes [74-76]. Microglia are resident innate immune cells within the 
central nervous system that respond to stimuli (cell stress, tissue damage, pathogens, etc.) and serve 
an active role in inflammation [79,80]. Although without direct evidence, intrauterine PM exposure 
may induce a similar inflammatory response in the brain regions as that of direct PM exposure (e.g., 
frontal cortex, substantia nigra, vagus nerve and the olfactory bulb) [81,82]. Elevated inflammation 
in the brain is also associated with blood–brain barrier leakage, leading to increased iron deposition 
in the brain and microbleeds [83]. Microbleeds are often associated with an impaired cognitive 
function, which may be responsible for the heightened risk of dementia due to direct PM exposure 
[84,85]. However, whether intrauterine PM exposure can lead to early-onset neurodegeneration and 
increased risk of dementia and other neurological conditions is unclear, which can be the focus of 
future epidemiological studies. 

5. Disturbance on Body Fluid Homeostasis 
Chronic exposure to PM has been associated with reduced kidney function [86-90]. The adverse 

impact of PMs on sodium excretion, natriuretic and diuresis further increases the risk of hypertension 
in such individuals [91,92]. An animal study suggests that in utero PM exposure can reduce renal 
dopamine D1 receptor function, which further leads to increased blood pressure driven by increased 
ROS production [92]. However, there is no literature to date to suggest the impact of intrauterine PM 
exposure on early kidney development and later susceptibility to renal dysfunction and chronic kidney 
disease (CKD) in adulthood. 

A human study suggests that individuals who are exposed to PM from polluted air during foetal 
development have low birth weight and individuals with foetal underdevelopment have a 70% 
increased risk for CKD [93]. This is most likely driven by epigenetic modifications, which change 
DNA-encoded gene expression without affecting the original nucleotide sequence [94]. DNA 
methylation is the most widely studied epigenetic modification, with numerous studies linking its role 
to the development of CKD due to in utero environmental influences such as maternal cigarette 
smoking [2,95]. However, whether intrauterine PM exposure can program the risk of CKD via 
epigenetic modification is yet to be determined. Similar to PM, chemicals in cigarette smoke are also 
intrauterine toxins [2]. Intrauterine exposure can induce oxidative stress and inflammatory responses, 
which is linked to mitochondrial DNA damage, impaired mitochondrial function and structure and 
increased global DNA methylation in adult kidneys [2]. As a result, hallmarks of CKD have been 
found in these mice, including increased renal fibrosis and proteinuria [2,8,96]. Whether in utero PM 
exposure also induces CKD in adulthood through similar mechanisms is unclear. This requires future 
studies to close the knowledge gap. 

6. A Temporary but Plausible Solution 
Epidemiological studies have suggested that reducing PM exposure or the level of air pollution 

can reduce the risk of a variety of health problems [97]. Premature deaths could also be reduced by 
lowering air pollution to the WHO standard [14]. A study in India shows that life expectancy would 
increase by 1.7 years if PM levels are below that associated with adverse health outcomes [98]. This 
reduction in PM concentration is achievable through local and national governments establishing 
multisectoral policies in sectors such as transport, energy, agriculture, waste management and urban 
planning [11,99,100]. However, this goal is not easy to achieve. This largely depends on the 
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willingness of the individual government to change their carbon emission policy and the influence of 
the surrounding countries. However, the health risks need to be addressed now. 

The responses to prenatal PM exposure are comparable to cigarette smoke exposure, another 
common intrauterine oxidant/toxin. Both lead to oxidative stress and intrauterine underdevelopment 
[60,61]. Some of the long-term outcomes are also similar between these two stimuli [101-103], 
suggesting common pathological mechanisms and perhaps shared preventative solutions. We have 
shown that maternal supplements with either global antioxidant (e.g., L-carnitine) or mitochondria-
targeted antioxidant (e.g., MitoQ) can ameliorate the detrimental impact of intrauterine cigarette 
smoke exposure caused foetal underdevelopment and risks of non-communicable disorders in 
multiple organ systems [95,104-108]. These benefits include the endocrine system that can lead to 
diabetes, the liver that can lead to dyslipidemia and liver steatosis, the brain that can lead to motor 
and cognitive dysfunction, the kidney that can lead to CKD and the lung that can lead to fibrosis and 
asthma [95,104-108]. Such effects are perhaps not restricted to suppressing oxidative stress in the 
growing foetal, as maternal vitamin C supplement during pregnancy has been shown to interrupt 
unwanted epigenetic modifications that lead to adverse health outcomes after birth due to intrauterine 
toxin exposure [109,110]. It is not clear whether administration of global or mitochondrial specific 
antioxidants during the gestation or early postnatal period can ameliorate adverse effects due to 
maternal PM exposure. Future studies addressing these issues warrant further investigations. 

7. Perspective 
Foetal development determines future health outcomes, in accordance with Barker’s hypothesis 

[6,7,9,19-23]. Therefore, any impact that in utero PM2.5 exposure has on the foetus may be carried 
into adulthood, despite the currently limited number of studies on the effect of in utero exposure to 
PM2.5 on the foetus in this regard. In addition, as the general public is not aware of the danger of low 
PM levels in places where air quality is considered good (e.g., Australia), they will not actively avoid 
it. Therefore, more epidemiological studies are needed to raise the awareness of both the general 
public and policy-makers for urban planning. Furthermore, although research on the adverse impact 
of in utero exposure to tobacco cigarette smoke has suggested the second and third trimester as a 
critical window to cause foetal underdevelopment [111], which trimester is more important for in 
utero PM exposure is still unclear. Investigating this research question can be challenging in humans, 
as moving house or changing working environment during pregnancy is not a common choice among 
most pregnant women. Perhaps only animal experiments can help identify the critical window during 
foetal development and use pharmacological approaches to identify the involvement of oxidative 
stress and inflammation in the toxicity due to in utero PM exposure. 

In addition, in humans, newborns are more likely to live in the same polluted environment as 
their mothers, and thus postnatal development can be directly influenced by PM inhaled by their 
fragile lungs. Therefore, it is often difficult to separate the effects between in utero exposure and 
direct early-life inhalation. There have been some understandings of the respiratory and neurological 
effects of maternal PM exposure, whereas the impacts on the liver, kidney and cardiovascular are 
understudied. We have summarised the potential mechanisms in Figure 1 based on the published 
evidence. More studies are needed to examine how intrauterine PM exposure can interrupt normal 
organ development by adopting more physiologically relevant doses of PM. In addition, there is no 
safe limit for PM exposure. Future studies should also focus on the scenario of chronic low-level PM 
exposure in those with direct or in utero exposure. 
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Earlier investigations have established sexual bias in disease pathophysiology, with females less 
likely to develop certain diseases than males [112]. The conventional explanation is the anti-
inflammatory effects of estrogen [113]. However, this is not always applicable to the sexual 
differences in foetal and early developmental disorders before puberty. Nevertheless, the sexual 
difference in the impact of intrauterine PM exposure has not been well studied, which may hold the 
key to develop a proper preventative strategy.  

8. Conclusion  
Limiting pollution to reduce foetal and life exposure to PM is clearly the goal to achieve optimal 

health outcome. Maternal and early intervention to prevent chronic disease holds promise as a short-
term solution; however, the effect of PM exposure during gestation on foetal health outcomes should 
be studied systematically. Additional studies are required to confirm whether oxidative stress is 
indeed the main mediator for disease development due to in utero PM exposure and identify the 
optimal foetal window for interventions and preventative measures. 

 
Figure 1. Proposed working mechanisms of how in-utero PM exposure leads to the future 
development of organ disorders. 
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