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ABSTRACT

Human brain dynamics during multitasking physical navigation

by

Tien-Thong Nguyen DO

Spatial navigation is an essential skill that helps one to keep track of their loca-

tion and orientation and navigate efficiently through the environment. Investigating

spatial cognitive processing can be beneficial by rendering a mechanism underly-

ing diseases such as Alzheimer’s disease, which might be diagnosed based on im-

pairments in spatial tests long before established diagnostic criteria. Furthermore,

navigation in real-life often involves multiple cognitive processes, such as landmark

encoding, cognitive map anchoring, and goal-oriented planning, even in the simplest

situation. Thus, investigating spatial navigation under multitasking situation might

provide more insight of brain dynamics underlying navigation in our daily activities.

However, most studies on active physical navigation in 3D space are based on

animal research, or the studies are confined to a specific patient population with

limited movement ranges. These limitations hinder the generalization of findings in

stationary laboratory set-ups to active navigation in healthy human participants.

In this work, we investigated human brain dynamics while multitasking in ac-

tive navigation tasks in a more natural set-up that could be used with healthy

populations. We performed simulated driving and physical spatial navigation task

experiments, which mimic typical navigation tasks in our daily lives. Participants

performed the tasks in a virtual environment, while their brain signal was measured

simultaneously. We investigated brain dynamics of concurrent multitasking in the

simulated driving experiment, where participants performed the driving task, and

dynamic attention shifting task concurrently. We then further investigated brain

dynamics in a physical spatial navigation experiment, where participants actively



ambulated from a location to several others.

We found an increase in the information flow of brain connectivity in the period

of concurrent task response in the simulated driving experiment. Furthermore, in

the same experiment, we observed an increase in frontal beta during the secondary

task response. We then obtained a significant modulation of theta oscillations in

the retrosplenial complex (RSC) during heading changes in the physical spatial

navigation experiment; this is an essential mechanism for heading computation and

generating the grid cell signal. Finally, we reported that local information processing

in the RSC increases linearly with the navigation load level. The findings unpack the

insight of brain dynamics and offer unprecedented benefits for estimating cognitive

load in active navigation.

Dissertation directed by Professor Chin-Teng Lin

Australian Artificial Intelligence Institute (AAII)

School of Computer Science

University of Technology Sydney
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Chapter 1

Introduction

1.1 Background

1.1.1 The evidence of cognitive map in navigation

Navigation is an essential skill of most of species. Tracking their orientation

and location in 3D space helps people, as well as animals of all kinds, to navigate

effectively. For efficient location in space, the brain has a mechanism to store spa-

tial information and can encode and retrieve information about the surrounding

environment. This capability is generally called a cognitive map.

The cognitive map was first proposed by Tolman (1948) to explain rodent be-

haviors in a navigational experiment. After learning a round about route to a goal,

the rats would choose a new, direct path if one of the paths they knew was blocked.

The results led Tolman (1948) to conclude that rats may obtain spatial knowledge

from their surrounding environment, which can then be used to deal flexibly with a

change in the environment.

O’Keefe and Dostrovsky (1971) continued developing the spatial map idea; they

reported that neurons in the hippocampal formation fired when the rat located in the

specific direction of testing platform. This report indicated that the hippocampus is

an important brain region in maintaining the spatial map. Further, after hippocam-

pal damage, the presence of cognitive-mapping deficits supports the notion that the

hippocampus plays a crucial role in the spatial navigation task (O’Keefe and Nadel

1978). Moreover, O’Keefe and Nadel (1978) hypothesized that the spatial map has

a strong affinity for the laws of Euclid (Euclidean coordinate system).

Although the global function of the hippocampus remains debated (Lisman et al.

2017), further research has identified other spatial navigation system components,
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including (i) grid cells; (ii) place cells; (iii) head direction (HD) cells; and (iv)

border cells (figure 1.1). Grid cells are reported that present in the para- and pre-

subiculum (Boccara et al. 2010) and in the medial entorhinal cortex (mEC) (Hafting

et al. 2005); these cells fire in multiple discrete and regular hexagon lattice locations.

Place cells are found in rodent hippocampus (Muller et al. 1987), and they fire when

rodents traverse at specific environment locations. Unlike grid cells and place cells,

various brain areas present the evidence of HD cells (Taube 2007; Winter et al.

2015). These cells fire based on the head orientation of the animal. Boundary and

border cells are reported in the entorhinal cortex and in the subiculum, respectively

(Byrne et al. 2007).

All these cells contribute to a spatial navigation system, which may change in

quality and properties based on navigation conditions in the real-world. However,

there is uncertainty as to whether animal research can be applied to the human

spatial navigation system. Investigating down to a single brain-cell level is one

of the difficulties in studying the human spatial navigation system. Nevertheless,

current brain imaging methodologies, such as functional magnetic resonance imaging

(fMRI), has helped scientists overcome obstacles.

Most of the research aiming to understand the human brain navigation network

has been carried out with fMRI. Visual stimulus is often used as input to engage

memory and path planning in these studies (Maguire et al. 1998; Ghaem et al. 1997;

Aguirre et al. 1996). Researchers have found that hippocampus activity is posi-

tively correlated with distance in the real-world (Nielson et al. 2015; Morgan et al.

2011). In addition, London taxi drivers have a larger right posterior hippocampus

because of their prolong learning of the street maps (Woollett and Maguire 2011).

Furthermore, in the virtual reality experiment, researchers found that hippocam-

pus responds stronger when participant use cognitive-map in the navigation task

(Suthana et al. 2009). Hence, it is believed that human hippocampus activity is

related to cognitive map, and hippocampus size might indicate for the capacity of

cognitive map. Furthermore, researchers have found evidence of grid-like human

memory networks in the entorhinal cortex (Doeller et al. 2010), which is compara-
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ble with the pattern found in rodent studies (McNaughton et al. 2006; Hafting et al.

2005). However, entorhinal cortex and hippocampus are not the only brain areas

that link to long-term spatial memories (Maguire et al. 2006; Teng and Squire 1999).

A person who has the medial temporal lobe damaged still could learn the cognitive

map. Therefore, the question for future study is how these cortices interact with

each other in the functioning of the spatial cognitive map.

Some early research has revealed a brain network that are highly actived in nav-

igation than in passive control conditions (Vukovic and Shtyrov 2017a) (figure 1.2).

For instance, the medial parietal and the retrosplenial and posterior parahippocam-

pal cortex regions strongly respond when seeing cityscapes, rooms, landscapes, and

buildings (Epstein and Kanwisher 1998), which represent the local visual environ-

ment. In another example, frontal lobe regions showed primarily respond during

active navigation, which is inline with the assumpltion of their role in navigation

plaining (Spiers and Gilbert 2015; Spiers and Maguire 2006). Also, the prefrontal

activies are correlated to the error of path changing and re-formulates the route as a

novel sub-goal (Spiers and Gilbert 2015). The hippocampus simulates the new path

when a goal is blocked (Spiers and Gilbert 2015).

1.1.2 Mechanism of cognitive map

The grid- and map-like cells code the spatial environment in the human brain.

There is also a mechanism to decode those cognitive maps in the real environment

during navigational tasks. After perceiving the environment through the visual

system, the brain needs to calibrate and anchor real-world coordinates with the

cognitive map via discrete familiar objects such as houses, buildings or statues,

or scattered entities, such as landscape topography or room shape. These object-

based items and environmental properties are called landmarks (Epstein and Vass

2014), which help the cognitive maps to anchor to the real environment. It should

be noted that navigation can be performed without landmarks as a reference to

calibrating the position and head direction, which is called path integration. The

place-, grid-, and HD cells systems are supported by the animal path integration

task (McNaughton et al. 2006). In humans, it is believed that the medial prefrontal
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Figure 1.1 : Map- and grid-like coding of navigable space in humans. (a) Evidence from

fMRI adaptation. When viewing images of landmarks from a familiar college campus,

fMRI activity in the left hippocampus (Hipp) scales with the real-world distance between

the landmark shown on each trial and the landmark shown on the immediately preceding

trial. (b) Evidence from multi-voxel pattern analysis (MVPA). Voxelwise activity patterns

in the hippocampus reflect distances between events intermittently logged by a camera

worn by participants in the 30 days before the scan (aerial map of navigated territory

shown on the left, as well as example pictures. (c) Evidence from an encoding model.

Participants performed a navigation task in virtual reality. Grid cells in an individual rat

all have the same orientation (Φ; top row), and thus it was predicted that movements

aligned with the grid orientation should result in more fMRI activity than movements

misaligned with the grid. The expected pattern of results was observed in the human

entorhinal cortex (EC, bottom row). Reprinted by permission from Springer Nature,

Nature Neuroscience, Epstein et al. (2017) �.
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Figure 1.2 : Cortical areas involved in spatial reference frame processing/visual

perspective-taking. Based on data from a meta-analytic study of Arora et al. (2015),

and the studies of Burgess et al. (2001) and Committeri et al. (2004). Reprinted from

NeuroImage, vol 161, Vukovic and Shtyrov, Cortical networks for reference-frame process-

ing are shared by language and spatial navigation systems, pages 120-133, �2020, with

permission from Elsevier

cortex processes spatial working memory and the hippocampus process higher-level

spatial information (Wolbers et al. 2007; Sherrill et al. 2013).

Landmark anchoring uses environmental cues to define the cognitive map’s ori-

entation and displacement, and the putative coordinate axes’ angle and position.

Previously, it was believed that the grid cell pattern representing the navigator’s

location is consistent and independent of the environment shape. However, another

research showed that these cognitive maps are affected by the environment of the

navigator (Krupic et al. 2015). The hexagonal grid symmetric pattern cannot be

seen clearly in a highly polarized environment, such as trapezoids. These results

have shown that most assumptions about the invariant of grid cell patterns are in-

valid, and the role of environmental boundaries should be taken into consideration

(Krupic et al. 2015).

Environmental boundaries also control the displacement of the cognitive map.

For example, the grid fields have been found to be distorted when these walls are
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displaced (Barry et al. 2007). Therefore, boundary and border cells are believed to

be important in mediating these effects. During a scene imagination experiment, the

number of surrounding environment boundaries affected the hippocampal activity

(Bird et al. 2010). In addition, the hippocampal activity is correlated with the

capability of learning object locations in relationship with boundaries (Doeller et al.

2008). The displacemence of boundary can also affect human spatial memory when

navigating to hidden locations (Hartley et al. 2004).

The landmarks are first processed by perceptual systems and can then be used for

the cognitive map. There are three major regions involved in this process (Epstein

2008; Nasr et al. 2011): (i) the RSC, (ii) the occipital place area (OPA), and (iii)

the parahippocampal place area (PPA). Among those regions, the RSC appears

to be essential to anchor the cognitive map based on the environmental cues. A

fMRI study showed that the RSC activity is increased when participants recover

the location in the scene; that is, when they locate or orient themselves by using

the scene (Epstein 2008; Maguire et al. 1998).

1.1.3 Navigation strategies - Spatial reference frame

In addition to the evidence on the human cognitive map, numerous studies have

investigated on navigation strategies. The distinct coordination system in encoding

spatial information can define the navigation strategies (Klatzky 1998). Allocentric

strategy uses global coordination to code the spatial navigation, while the egocentric

uses local coordination (within themself) to code the spatial navigation (Gramann

et al. 2006; Gramann 2013). In order to classify the type of spatial reference frame

proclivity (RFP), scientists often use simple tests to check their reference prefer-

ence, such as the tunnel paradigm (Gramann et al. 2010) or the 3D space navigation

paradigm (Goeke et al. 2015). In short, there are mainly two types of navigators

which are turner who use an egocentric strategy, or non-turner who use an allocen-

tric strategy and a third category of navigators can be described as changing their

navigation strategy dependent on the environment. The underlying mechanism that

determines the navigator’s proclivity is believed to be influenced by gender, age, and

cultural background. Males have been reported to perform better than females in
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some navigation tasks (Newhouse et al. 2007; Moffat et al. 1998), such as the men-

tal rotation task (Masters and Sanders 1993) and the Morris water maze (Woolley

et al. 2010). Many studies have shown evidence that performance in spatial nav-

igation tasks is negatively correlated with age (Salthouse et al. 1989; Perlmutter

et al. 1981; Lord and Marsh 1975; Moffat et al. 2001). People from different cultures

also show different scene perception behavior (Masuda and Nisbett 2001); Western

people tend to pay attention to local objects while Easterners are more focusing

on global information in a scene. Moreover, research on specific areas of the world

has shown evidence of cultural differences in navigation tasks. For instance, Goeke

et al. (2015) reported that reference-frame selection of the navigator is significantly

influenced by cultural background; North Americans and Latin Americans tend to

use an allocentric strategy, and an egocentric strategy, respectively, while Europeans

and Asians are in between the egocentric and allocentric strategies.

To understand differences in navigator behavior in a spatial navigation task,

scientists often look at the neural activities in various brain cortices and sub-cortices,

which are believed to be central to manipulating navigator behavior. Gramann

et al. (2010) showed that stronger alpha desynchronization near the right primary

visual cortex during the tunnel turn in egocentric navigators. Furthermore, the

occipitotemporal, bilateral inferior parietal, and retrosplenial show stronger alpha

desynchronization in the allocentric group. The results in Gramann et al. (2010)

reveal that activity in brain cortices and sub-cortices can be studied using high

temporal resolution EEG. Consistent evidence has also been reported by (Lin et al.

2015) that the RSC plays essential role in translating between spatial informations.

These studies indicate the important role of RSC in the spatial navigation task,

and with other cognitive functions, including planning, imagination, and episodic

memory(Vann et al. 2009) (figure 1.3).

1.1.4 Multiple resource theory

Individuals often handle multiple tasks simultaneously during daily activities.

Examples include listening to music while walking or driving or taking notes while

listening to a class lecture. Our capability in performing multitasking is limited
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(Dux et al. 2009). The behavior performance deteriorates when we handle two or

more than two tasks or the same task in shorter time allocation. The mechanism of

multitasking might be explained through multiple resource theory (Wickens 2002).

In this model, Wickens (2002) provided a 4-dimensional model that can explain

the interference of multitasking in different working environments. Furthermore,

the multitasking is closely related to the cognitive load or mental workload. For

instance, given a limited time for handling two (or more than) tasks, the cognitive

load can be identified as (Wickens 2002):

CL = δT/T

where CL indicates for cognitive load, δT indicates for time required (to perform

tasks), T indicates for time available.

It has been demonstrated that the ability to handle multitasking can be im-

proved via training (Ruthruff et al. 2001, 2003). In the neuroscience studies, Dux

et al. (2009) revealed that the ability to perform multitasking, which is improved via

training, is strongly correlated with the prefrontal cortex’s information processing

speed. Therefore, the human prefrontal cortex plays an essential role in multitasking

processing. There is clear evidence that theta rhythm modulated by the cognitive

load level in various experiments (Hsieh and Ranganath 2014; Jaeggi et al. 2003;

Onton et al. 2005). In those studies, the frontal midline theta (FMθ) spectral activ-

ities is strongly related to mental workload, working memory (Hsieh and Ranganath

2014; Jaeggi et al. 2003; Onton et al. 2005).

In our daily lives, people often navigate from one location to another. Being

aware of where they are and avoiding getting lost in 3D space is quite critical.

There are multiple tasks involved during navigation; even in a simple case, people

need to track their orientation and location (Epstein et al. 2017) (figure 1.1). By

doing so, we often remember landmarks in the surrounding environment, anchor

that spatial information with our memory, and decide which direction to go in to

reach our destination; this is a complex cognitive process. Like other conventional

navigation studies, the investigation on multitasking in spatial navigation has been

limited to stationary situations, where participants perform the cognitive task with
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limited movement (Javadi et al. 2017).

1.1.5 Limitations of brain imaging in navigation studies

The human brain’s essential function is to amend motor activities as a result

of a dynamically changing environment (Makeig et al. 2009). Brain dynamics and

cognitive function are coupled with our physical actions. To understand deeper

neurocognitive processes in the natural world, participants need to interact naturally

within a 3D environment. However, existing brain imaging paradigms do not support

investigating active movement due to the limitation of devices or sensors. fMRI is

a common methodology in studying human brain dynamics, but the fMRI device

is bulky and not portable. Therefore, in most fMRI experiments, the participant

usually has to keep their head in a consistent position. Moreover, the fMRI signal

is of low temporal quality. Thus, it might not reflect the natural cognitive process

in real-life. In contrast, electroencephalography (EEG) can provide a signal of high

temporal quality with a portable ability that may help the researcher perform a

complex assignment, closer to a real-life task such as active navigation. However,

in a conventional EEG setup, the participant can move the body in a tiny scale-

space but cannot make large movements due to the limitations of the methods for

movement-related noise removal. To overcome these limitations, we can use an

invasive method with implanted electrodes (Bohbot et al. 2017). However, while

the invasive method can provide more direct activity from the brain cortices, the

number of participants is limited, given the health effects on the participant. The

study by Bohbot et al. (2017) involved patients with epilepsy, and interictal discharge

might impact these oscillations (Blumenfeld et al. 2004). Another approach that has

been subject to much attention recently is the Mobile Brain/Body Imaging (MoBI)

approach, which was developed to investigate brain dynamics in more natual form

of experimental cognition (Makeig et al. 2009; Gramann et al. 2014a). Many studies

have examined brain activity at various levels, such as the channel level (Malcolm

et al. 2015; De Sanctis et al. 2014) and the cortical and sub-cortical level (Luu

et al. 2017; Artoni et al. 2017; Gramann et al. 2011; Jungnickel and Gramann 2016;

Banaei et al. 2017).
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Figure 1.3 : The key anatomical and functional relationships of the retrosplenial cor-

tex. Effective episodic memory, navigation and future thinking all require the ability

to integrate and manipulate different frameworks of information, for example egocentric

(self-centered) and allocentric (world-centered) frameworks. By virtue of its principal

connections, the retrosplenial cortex is uniquely placed to enable translation within these

domains: ATN, anterior thalamic nuclei. Reprinted by permission from Springer Nature,

Nature Reviews Neuroscience, Vann et al. (2009) .

In summary, there is clear evidence of a cognitive map in the human brain,

including a head direction cell network. However, most studies in humans have

relied on specific patient populations or stationary experiments. Thus, there is

still a gap in understanding whether the features identified can be generalized to

a healthy population in a more natural navigation situation, which often involves

physical movement and multitasking. Therefore, in this work, we investigate brain

dynamics in active navigation with a more natural set-up in a healthy population.

To conduct this research, we modified the MoBI approach (Makeig et al. 2009;

Gramann 2013) to allow far more natural movement than standard brain imaging
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technology. All the time-series data streams were synchronized, allowing compre-

hensive investigation into brain dynamics and behavior changes in the different

experimental conditions. In this work, we have investigated brain dynamics un-

der different cognitive load conditions in active navigation. Two experiments were

designed that mimicked our daily navigation tasks of driving and walking.

Due to the complexity of the experimental design and the sensitivity of the EEG

data to external noise, we first investigated the brain dynamics in multitasking in the

driving simulation with semi-physical movement (Chapters 3, and 4). Then, we ex-

plored cognitive brain function with full-body movement in the walking experiment

(Chapters 5, and 6).

This research thesis aims to understand the underlying characteristics of human

brain dynamics while multitasking in active navigation. The ultimate goal is to build

an effective workload assessment tool that can be used to improve task performance.

For instance, a system that can adapt the information presentation to reduce mental

workload in a navigation task when the user’s cognitive load is high.

1.2 Research Problems

1.2.1 Brain dynamics of concurrent multitasking

The frontal area is believed to relate to memory and executive function (Onton

et al. 2005)—this question addresses how the frontal region and maybe other re-

gions are modulated in concurrent multitasking. We designed an experiment where

participants performed an additional task while handling a primary task such as

driving. Then we investigated the spectral power as computed from activity in the

fronto-medial cortex, as well as other brain areas. Examining brain dynamics in

such conditions can reveal how different brain regions coordinate the information by

distinct patterns in broadband frequency.

1.2.2 The effect of fatigue on brain connectivity in multitasking

The brain is a complex and dynamic system. Several brain cortices are involved

in communicating and exchanging information mediated by brain connectivity in
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performing a cognitive task. Thus, brain connectivity could be a useful indicator to

characterize cognitive function when performing tasks (Fonseca et al. 2018). The

brain network might be altered and re-configured based on the environment (exter-

nal) and the participant’s cognitive state (internal). We might find the brain pattern

related to multitasking in invariance conditions, yet how this pattern changes in dy-

namic internal circumstances, such as with participant fatigue status, is still poorly

understood. The research question explores the dynamic changes in multitasking

brain connectivity. To this end, we might have more information to derive a human

brain-like model, which demonstrated that out-performed conventional algorithm

by applying brain-like architecture underlying in the cognitive state processing in

object recognition (Kar et al. 2019; Kubilius et al. 2019), and navigation (Banino

et al. 2018).

1.2.3 Heading computation in active navigation

The spatial reference frames play a crucial role in effective navigation for hu-

mans. There are two main strategies that human relies on when traveling including

allocentric, referred as third-person perspective; and egocentric, referred as first-

person perspective. Previous researches have shown that the RSC plays a central

role in translation between spatial information reference frames in passive spatial

navigation (Lin et al. 2015; Gramann et al. 2010). However, there is still missing

information about the retrosplenial role in active spatial navigation. The research

question’s motivation is whether the reference-frame proclivity (RFP) observed in

passive navigation can still be observed in active navigation and whether or not

the biomarkers corresponding to a specific RFP will change with navigation modes

(active/passive). We hypothesize that allocentric and egocentric users will exhibit

different brain dynamics in active navigation. Egocentric participants will adjust

their cognitive heading based on the visual stimulus. In contrast, allocentric par-

ticipants will not update their cognitive heading based on visual flow information

alone. As a consequence, the homing response of participants will indicate the use

of a specific reference frame.
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1.2.4 Local information processing in RSC under different navigation

load conditions

The research question’s motivation is how to find a reliable biomarker for spa-

tial navigation in such a complicated situation. The capability of the human brain

is still unknown; however, people believe that the brain has a limited capacity to

manage many different tasks simultaneously, which may be because the brain has a

mechanism to share a common network that reacts to changes in the surroundings.

Recently, researchers (Vukovic and Shtyrov 2017b) have shown that some brain

regions share common areas to control different tasks, but with a distinct region

remaining active. Thus, there is a need to investigate the brain network in spatial

navigation under different tasking conditions. We hypothesize that navigation con-

ditions modulate the local information processed in the RSC due to its central role

in navigation tasks; RSC activity could be a potential indicator of the participant’s

navigation cognitive status.

1.3 Thesis Organization

To address those research questions, the thesis presented the brain dynamic re-

sults in two experiments involving some common forms of navigation that humans

use every day such as driving and walking. We disclosed the neural comodula-

tion activity and information flow in the first driving experiment across the brain

network. The results indicated that higher workload conditions might increase ex-

changed information flows. In the second experiment, we further explored how the

retrosplenial complex governs spatial information in physical locomotion. We found

the potential evidence of the heading computation in the RSC during the period re-

quired the head-direction estimation. Moreover, the thesis also demonstrated that

the RSC segregation could be an essential indicator for the navigation load in the

physical navigation.

The thesis is organized as follows:

� Chapter 1: Presents the introduction of spatial navigation.
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� Chapter 2: Explains the research methodology and covers the key steps in ex-

tracting generic EEG features related to the experimental tasks. More detailed

information is provided in Chapter 3, 4, 5, and 6.

� Chapter 3 and Chapter 4: Describe the results of the semi-active navigation

simulated driving experiment. These chapters are heavily focused on under-

standing mental workload and brain dynamics in different domains:

– Comodulation (Chapter 3)

– Effective brain connectivity in channel-based analysis (Chapter 4)

� Chapter 5 and Chapter 6: Investigate spatial navigation in physical ambula-

tory tasks; the results reveal:

– The human brain dynamics in heading computation (Chapter 5).

– The effect of navigation loads in RSC activity (Chapter 6).

� And the Chapter 7 concludes the thesis and sets out the future direction in

researching physical spatial navigation.

Figure 1.4 shows the research map of the thesis:
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Figure 1.4 : Research map in this thesis.
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Chapter 2

Techniques for Data Analysis

2.1 Background

EEG is commonly used, and there is a lot of useful material reviewing EEG

methodologies in detail. This chapter does not set out to explain all the steps,

which have already been described (Delorme et al. 2011; Michel and Brunet 2019;

Delorme and Makeig 2004; Cohen 2014). This chapter reviews the key relevant steps

in EEG data analysis that have been used in this thesis.

In brain imaging study, there are two principal methodologies for scanning brain

activity during an experiment: invasive and non-invasive. The invasive method re-

quires the sensor to be put inside the scalp, which is only suitable for a limited

patient population. The non-invasive sensor can measure brain activity from the

outside the scalp. For this reason, non-invasive techniques are quite popular in

neuroscience studies. Among non-invasive brain imaging methods, EEG has unique

advantages, including the lightweight sensor, high temporal resolution, and porta-

bility to measure neural activity in large populations. Although fMRI and Mag-

netoencephalogram (MEG) can provide excellent data quality with brain source

localization of activation, fMRI and MEG systems are normally bulky, and they

require participants to remain stationary during the experiment. Because a naviga-

tion task normally requires ambulatory movement, the EEG method is an excellent

candidate for this study.

EEG measures brain electrical fields by placing electrode sensors on the head.

The results of the electrochemical signal between neurons generate the electrical

field. When large numbers of nearby neurons synchronously activate and are ori-

ented in parallel, the electrical fields are big enough to be measured by the EEG

system. It is estimated that when around 100,000 pyramidal cells are activated syn-
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chronously, the field can be measured by EEG. Thus, EEG is limited to detecting a

large population of neuron synchronous activity, and estimating the asynchronous

activity of a tiny number of neurons seems impossible for the EEG system. Fur-

thermore, the EEG system was designed to measure small voltages from the human

scalp; the data itself is quite sensitive to unwanted noise from muscle and the envi-

ronment. Thus, it is necessary to be very careful when analyzing EEG data.

Furthermore, EEG signals vary between people. They even vary within the same

person at different measurement times, because of the EEG hardware set-up and

internal cognitive states of the participant. For hardware reasons, it is difficult to get

the same sensor location on one person at different times, and the impedance of the

sensors also alters due to changes in conductivity under the sensors. Moreover, there

is also the learning effect of the typical cognitive experiment design, and participant

performance might be changed in the next recording.

To minimize these effects and ensure replication, participants usually perform a

large number of trials in one recording session. Thus, the signal to noise ratio can be

higher. In addition, there needs to be a systematic method for removing the noise

from EEG data and then estimating the location of the activated brain source. The

typical solutions for those problems are discussed in the next sections, and more

detail and relevant information is exposed in the methods in Chapters 3, 4, 5, and

6.

2.2 Independent Component Analysis

The independence component analysis (ICA) method has been widely used in the

EEG research community to remove potential noise in the data. In EEG recording,

each sensor passively records signals, which are mixed from multiple sources, includ-

ing brain and non-brain signals. The source in the brain is the result of synchronous

or partially synchronous activity from cortical patches. The non-brain source could

be from eye activity, such as a blink or movement, muscle movement, and line noise.

ICA looks for the linear transformation that can maximize statistical independence

among components. Then, we can remove the ”noise” components and clean the
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data.

Let us assume that we have EEG data recorded from 64 channels X (channel

x times), and we are interested in contributing source S to the EEG data. The

problem can be represented by this formula:

X = WS (2.1)

where W is the weight matrix to go from the S space to the X space.

The ICA solution provides an unmixed matrix from given EEG data to trace

back to the original source. Figure 2.2 shows ICA results from a participant in the

physical navigation experiment.

Figure 2.1 : The set-up of the EEG experiment. (a) The EEG cap. (b) The EEG

channel location with the scalp template. (c) The distributed source of activation

in the brain cortex.

2.3 Source localization for inverted problem

EEG data, which is measured from the head, reflects projected data from a brain

source. However, localizing the brain source provides a better idea of the cognitive
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Figure 2.2 : The results of the ICA solution. The largest 18 independent components

from a participant in a physical navigation study.

function. Thus, we can find out more which brain regions are related to our cognitive

tasks.

In general, we can consider the EEG data can be presented as:

y(ti) = Lx(ti) + ε(ti) (2.2)

where y(ti) ∈ Rd×1 indicates EEG data at sample time ti, L ∈ Rd×n represents the

lead-field matrix, x(ti) ∈ Rn×1 indicates brain source activation, and ε(ti) indicates

the noise at sample time ti. Therefore, given the EEG data y, and lead-field matrix

L, we can find the location of source activation.

While EEG data is normally recorded from a small sensor number, the number

of potential source activations is higher, at around 2,000. There is more than one

solution for the brain source projecting the same EEG scalp map without any addi-

tional assumptions. This problem is defined as ill-posed problem, and the solution

for source activity at given EEG scalp map is not unique. However, several methods

have been developed to solve this problem, including dipole fitting, distributed-

source models, and spatial filtering. For more details and practical comparisons,
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see Muñoz-Gutiérrez et al. (2018). The next two sub-sections briefly review the two

methods that were used in this thesis: dipole fitting and non-adaptive distributed-

source imaging methods.

2.3.1 Single and multiple dipole fitting

This method looks for a single point or small set of points that can explain the

maximal variance of a given EEG scalp map. To do so, dipole fitting minimizes the

error between the model and the measured potential from EEG data by estimating

source parameters. The dipole strength and orientation can be estimated by linear

transform, while the position is estimated non-linearly. In the given EEG scalp map

after unmixing the original EEG data by ICA decomposition, we can find the dipole

location by using EEGLAB. More details about this DIPFIT routine can be found in

Oostenveld and Oostendorp (2002). Figure 2.3 shows dipole fitting for a participant

in a physical navigation experiment (chapter 5, and 6).

Figure 2.3 : The dipole fitting solution. (a) The first ten largest independent com-

ponent dipoles location projected on the MRI template. Each dipole (coded by

color) represents location and orientation. (b) The dipole locations projected on the

scalp map. The number on the top indicates the IC number and its corresponding

residual variance (RV).

2.3.2 Distributed source modeling

Instead of assuming that a small number of dipoles are activated at a time,

distributed-source modeling assumes that thousand of dipoles all over the brain are
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activated at a given time. The locations and orientation are pre-defined in a 3D

volume or cortical sheet; this method estimates the strength or magnitude of the

dipole. There are two typical techniques in this type: LORETA and minimum-norm

estimator (MNE). Figure 2.4 shows source-distributed results from a participant in

the physical navigation experiment.

Figure 2.4 : The distributed source localization solution. The cortex source activity

(right hemisphere) of a participant in the first 600 ms in the physical navigation

study (chapter 5, and 6).

2.4 Group study

An independent component (IC) is different between participants; it is unlikely

that a similar component will be found between participants. Therefore, in a group

study, we cannot simply average the property of a component (e.g., ERP, ERSP)

based on its location. Studying EEG data at a group level can be carried using a

clustering method based on the attributes of the components. The next two sub-

sections describe two methods that were used in this thesis: k-mean and repeated

k-mean.
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2.4.1 Clustering: k-means

All ICs’ properties are calculated (e.g., ERP, ERSP, dipole location from dipole

fitting routine, scalp map, power spectra) as an individual measured vector. To

save computation time, which normally takes days with large datasets, principle

component analysis (PCA) is often used for reducing the individual measured vector.

Then, all attributes of ICs are composited as distance vector after normalizing with

different weight factors based on their contribution (dipole location normally gets

a higher weight due to its relationship with the cognitive task). Next, the k-mean

method assigns each ICs to a respective cluster with a pre-defined number of clusters.

Finally, we can study the ICA component activity among conditions from a given

clustering solution.

Figure 2.5 shows the clustering result revealed by the dipole location of all ICs.

2.4.2 Clustering: Repeated k-means

The clustering method can assign a set of ICs into the same cluster based on

their attributes. However, the cluster solution using k-mean might vary due to the

initial assignment by the k-mean cluster method. Thus, the results of the clustering

solution might change slightly at different run times. To overcome this issue, we can

cluster more than a thousand times and then evaluate the best cluster based on our

research assumption.

We first clustered the ICs based on the conventional k−means method imple-

mented in EEGLAB. Next, we re-ran the clustering a thousand times before eval-

uating the best cluster of interest�, based on the region of interest (ROI) cluster

centroid (Gramann et al. 2018). All ICs with an RV of less than a certain thresh-

old (e.g., 15%) were grouped based on their attributes, such as dipole location,

scalp topography, ERP, ERSPs, and mean log spectra. Subsequently, the weighted

IC measurement were summed and compressed by PCA, followed by the k−mean

method. The target cluster centroid with a given location in Talairach space was

�https://github.com/MariusKlug/bemobil-pipeline
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Figure 2.5 : Clustering solution. The color indicates different cluster regions: yellow,

green, blue, red, pink, and white indicate frontal, sensorimotor, parietal, retrosple-

nial complex, occipital, and muscle, respectively. Small sphere indicates an inde-

pendent component; the large sphere indicates the cluster centroid of the cluster.

Figure adapted from the results of the physical navigation experiment in Chapter

5.

evaluated from the sets of ten-thousand clustering results, based on the score of

each cluster solution, including: (i) the number of participants; (ii) the ratio of the

number of ICs per participant; (iii) the cluster spreading (mean squared distance

of each IC to the cluster centroid); (iv) the mean RV of the fitted dipoles; (v) the

distance of the cluster centroid to the ROI; and (vi) the Mahalanobis distance to

the median distribution of the solutions. Figure 2.6 shows the evaluation of 10,000

clustering results to find the best RSC cluster (red color).

After finding the cluster of interest, the next analysis step was based on the

study hypothesis.
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Figure 2.6 : Evaluation of multivariance from 10,000 times clustering based on the

score of each cluster solution, including: (i) the number of participants; (ii) the

ratio of the number of ICs per participant; (iii) the cluster spreading (mean squared

distance of each IC to the cluster centroid); (iv) the mean RV of the fitted dipoles;

(v) the distance of the cluster centroid to the ROI; and (vi) the Mahalanobis distance

to the median distribution of the solutions.
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Figure 2.7 : Clustering solution for the retrosplenial complex cluster - top eight

highest ranked solutions with grand scalp map and dipole location.
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Chapter 3

Brain dynamics in the concurrent multitasking

This chapter investigates neural comodulation of multitasking in a simulated driving

experiment. Chin-Teng Lin conceived this work. Shih-Jie Hsiao collected the data.

Tien-Thong Nguyen Do and Shih-Jie Hsiao performed data analysis, with assistance

from Chun-Hsiang Chuang and Yu-Kai Wang. All the authors discussed and wrote

the manuscript (J-3) (Do et al. 2019).

3.1 Abstract

Distracted driving is regarded as an integrated task requiring different regions

of the brain to receive sensory data, coordinate information, make decisions, and

synchronize movements. In this chapter 3, we applied an independent modulator

analysis (IMA) method to temporally independent electroencephalography (EEG)

components to understand how the human executive control system coordinates

different brain regions to simultaneously perform multiple tasks with distractions

presented in different modalities. The behavioral results showed that the reaction-

time (RT) in response to traffic events increased while multitasking. Moreover,

the RT was longer when the distractor was presented in an auditory form versus a

visual form. The IMA results showed that there were performance-related IMs coor-

dinating different brain regions during distracted driving. The component spectral

fluctuations affected by the modulators were distinct between the single- and dual-

task conditions. Specifically, more modulatory weight was projected to the occipital

region to address the additional distracting stimulus in both visual and auditory

modality in the dual-task conditions. A comparison of modulatory weights between

auditory and visual distractors showed that more modulatory weight was projected

to the frontal region during the processing of the auditory distractor. This chap-
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ter provides valuable insights into the temporal dynamics of attentional modulation

during multitasking as well as an understanding of the underlying brain mechanisms

that mediate the synchronization across brain regions and govern the allocation of

attention in distracted driving.

3.2 Introduction

Driving is a complex task that requires drivers to continuously pay attention

to control the car. One split second of distraction can result in an accident. Re-

cently, there has been reported that 50 million injuries and 1.35 million deaths from

road traffic crashes which is around 3700 people dying everyday globally (WHO

2018). The main reasons for road accident are various including higher population,

low safety standards, distracted driving, fatigue, speeding and alcohol (WHO 2018).

Distracted driving accounted for ten percent in fatal crashes in United States in 2015

(Schroeder et al. 2018). Numerous sources of distracted driving including texting,

calling, passenger conversing and advertising (Drews et al. 2008; Oviedo-Trespalacios

et al. 2017c, 2019a,b). For safe driving, drivers must concurrently concentrate on

the road and handle incoming information and stimuli from the dashboard, road,

and environment. Different regions of the brain receive sensory data, coordinate in-

formation, make decisions, and synchronize movements. Recently, new technological

capabilities in vehicles have been significantly enhanced. However, interacting with

these systems may impair the driver’s attention. Talking on the phone while driving

easily distracts the brain (Just et al. 2008). Thus, the high number of in-vehicle

devices might adversely affect the attention of driver and the possibility of a fatal

motor vehicle crash increases.

Distracted driving is regarded as an integrated task requiring the simultaneous

execution of various cognitive, sensory and psychomotor abilities. Multitasking is

an example of an interruption, in which the additional stimuli require attention

while the primary task is simultaneously performed. Therefore, one of the most

concerning issues addressed in dual-task studies is distracted driving, because this

type of distraction is directly related to public safety. Many previous studies have
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reported that concurrently performing dual tasks leads to impaired performance

(Hick 1952; Hyman 1953). The Hick-Hyman law indicates that the response time

is proportional to the number of stimuli (Hick 1952; Hyman 1953). Compared to

dealing with only one task, there is often an extra cost to performing multiple tasks

simultaneously.

Several researchers have considered attentional resources to be limited, and per-

formance degradation in dual-task situations has been attributed to the central

bottleneck (Welford 1952) or capacity sharing (Kahneman 1973). The central-

bottleneck theory suggests that information can only be processed serially, that

is, only one process can be engaged with at a time. Capacity-sharing theory sug-

gests that information can be processed in parallel but with a limited amount of

attentional resources, therefore different tasks must share this limited attentional

resource. Many experiments have been performed that show the performance of the

first task is affected in the dual-task situation (Kahneman 1973; Gottsdanker and

Way 1966; Herman and Kantowitz 1970). Because both tasks needed the atten-

tional resources at the same time, the allocation of these attentional resources will

be shared between two tasks.

In addition to the fact that performance might be affected in attention-related

dual tasks, many studies have reported relationships between the measured elec-

troencephalography (EEG) spectra and attention-related processes in the past decade.

The neural interference that occurs during multitasking has been revisited frequently

(Anguera et al. 2013; Nijboer et al. 2014). Several studies included many trials

with distincted stimulus onset asynchrony (SOA) to explore the neural correlates

of shifts in attention in dual-task situations. Those results showed that both re-

sponse time and accompanying EEG power varied significantly with different SOAs.

The impaired task performance reflected the consequences of divided attention and

shared brain resources during the dual-task situations. Increased posterior alpha

and frontal theta power were observed in the presence of distraction (Lin et al.

2011; Wang et al. 2014a) , showing that an additional cost was needed to perform

multiple tasks simultaneously.
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An interesting question is how the human executive control system can coordi-

nate different brain regions to simultaneously perform multiple tasks and whether

the multitasking needs to recruit additional brain regions that were not involved in

performance of any of the individual tasks alone. Independent component analysis

(ICA) has been widely employed to explore brain temporal dynamics in EEG anal-

ysis since the 1990s (Bell and Sejnowski 1995). ICA has been demonstrated to be

suitable for EEG source separation, identification, and localization (Delorme and

Makeig 2004). In addition, it can remove none brain signals, such as noise made

by an eyeblink, a body movement, and an indoor power line impulse. Source areas

are often found to simultaneously oscillate at the same frequency. Therefore, we

hypothesize that an executive control center mediates this synchronization across

brain regions and governs the allocation of attentional resources during multitask-

ing. To investigate the executive control system, an independent modulator analysis

(IMA) was recruited to separate power spectral fluctuations of interest, i.e., indepen-

dent components (ICs), into independent modulators (IMs), allowing us to sum up

the spectral dynamics coherence across ICs. The proposed modulator analysis was

applied to the spectra of temporally independent EEG components obtained from

sessions using different stimulus modalities to contrast the differences between the

resulting comodulators. This decomposition of spectral processes into frequency-IM

processes can provide a better understanding of the potential neurophysiological

mechanisms that were involved in cognitive and behavioral changes and systemati-

cally mediated the spectral activations of distinct cortical areas during multitasking.

In this study, we aimed to systematically explore the executive control system that

governs the coordination and allocation of attentional resources during distracted

driving. The aims and hypotheses of this study are listed as follows:

1. Aim 1 - To assess behavioral changes under different stimulus modalities. Hy-

pothesis 1 - The behavioral performance should be strongly associated with

the number of tasks and stimulus modalities being engaged in the experimen-

tal paradigm. Therefore, we hypothesize that attentional interference may be

generated if simultaneously performing several tasks.
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2. Aim 2 - To investigate brain activities involved in attention-demanding tasks.

Hypothesis 2 - Experimental designs and protocols, such as different stimulus

modalities, might affect the cortical areas involved in cognitive processing. The

related activations, interactions, and behavioral performance will be influenced

during multitasking. Hence, we hypothesize that the stimulus modalities used

in multitasking will result in different types of brain activation.

3. Aim 3 - To explore the executive control center that mediates the synchroniza-

tion of power spectra across brain regions and governs allocation of attentional

resources in multitasking. Hypothesis 3 - The spectral synchronization of cor-

tical field potentials are highly affected by ortical networks. Therefore, the

third hypothesis is that there is a neural modulator in the brain, which serves

as an executive control center to mediate the synchronization across brain

regions and to govern allocation of attentional resources during driving.

Taken together, these three hypotheses posit that the modulator(s) may have

different modes of operation under different stimulus modalities used in the dual

tasks.

3.3 Materials and Methods

3.3.1 Participants

Data were recorded from sixteen participants (aged 22.7 ± 1.6 years). All par-

ticipants had normal or corrected-to-normal vision, and no participants took medi-

cations known to affect cognitive function or had a history of alcohol or drug abuse.

All participants were students at National Chiao Tung University (NCTU) in Tai-

wan who participated in this study voluntarily and provided informed consent. All

the components of this study were approved by the Institutional Review Board of

NCTU and performed according to the Declaration of Helsinki. The participants

received monetary compensation for their participation.
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Figure 3.1 : a, Effectiveness score (ES) distributions. One dot indicates one dataset. (i),

normal fatigue group (white), (ii) reduced fatigue group (light pinks) and (iii) high-risk

fatigue group (light purple). b, Effectiveness score (ES) distributions between task and

fatigue groups after the model validation test for effectiveness connectivity (EC) estima-

tions.

3.3.2 Fatigue state

We applied the biomathematical fatigue model “sleep, activity, fatigue, and task

effectiveness” (SAFTE) to estimate the fatigue states of the participants (Hursh

et al. 2004). The SAFTE model is based on using the work/sleep pattern of par-

ticipants to predict cognitive performance. In addition, the SAFTE model further

records data on circadian rhythms, sleep inertia, and homeostatic drive, charac-

terizing the sleep-wake histories of the participants to evaluate their fatigue state.

SAFTE results have been validated as neurobehavioral performance predictors in

experimental environments (Hursh et al. 2004, 2006; Lin et al. 2018). In this study,

the fatigue state was measured using a Readiband device (Fatigue Science Read-

iband, Vancouver, BC), which employs the SAFTE model to estimate fatigue based

on psychology. The effectiveness score (ES) is an automatically continuous output

from the Readiband device based on the data collected for the previous three days.

Every day, the ES index (rank from 0-100) was sent to a cloud server, and the ex-

perimenter decided whether or not the participant was in a suitable state to record

the data. The participant had to come to the laboratory to collect the data within

10 hours of receiving the phone call from the experimenter. Therefore, in principle,

the participant wore the Readiband every day within the experiment period. The
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ES was checked again before the participant performed the experiment. The fatigue

level of the participant was classified for analysis in this study based on the new ES

score.

3.3.3 Experiment paradigm

Figure 3.2 : Experimental design. (a) Virtually simulated environment for the driving

task. (b) Two buttons were placed on the wheel for the DAS task response. (c) Ex-

perimental design; case 1: Lane-keeping task (LKT) only; case 2: concurrent LKT and

visual dynamic attention shift (DASV ) dual tasks; case 3: concurrent LKT and auditory

dynamic attention shift (DASA) dual tasks.

This study adopted the event-related lane-departure paradigm in the realistic

driving simulator environment (Huang et al. 2009) to assess brain dynamics under

task conditions at varying fatigue states. Two task types were executed during
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the experimental protocol of this study: a lane-keeping task (LKT) and a dynamic

attention shift (DAS) task. The LKT task simulated a participant driving a car

on a four-lane road (two lanes for each direction with constant speed at 100 km/h)

at night without other traffic, as shown in Figure 3.2a. Throughout the entire

experiment, the participants were required to maintain the car cruising in the third

lane, as shown in Figure 3.2c. The car randomly drifted to the left or right in

equal proportions. At the time of deviation onset, the participants were instructed

to control the steering wheel to move the car back into the third lane as quickly

as possible. The period from the deviation onset to the time point of turning the

steering wheel was defined as the driving reaction time (RT, in milliseconds). In the

DAS task, the participant was required to respond to the target, an animal name,

and ignore the non-target by pressing the left or right buttons, which were mounted

on the steering wheel (Figure 3.2b). The target appeared in the form of written

(visual) red letters on the screen or spoken words (auditory). The participants

performed three task cases based on a combination of LKT and DAS tasks.

The first case was LKT only (single task), the second case was concurrent LKT

and visual DAS (DASV ) dual tasks, and the third case was concurrent LKT and

auditory DAS (DASA) dual tasks in a random order (figure 3.2c). While the target

was displayed on the screen, the time from the target onset to the button press

was defined as the DAS RT. All participants underwent an orientation session that

described the experimental procedures and their responsibilities during the long-

term study.

3.3.4 Data acquisition

All participants ideally completed this experiment nine times; however, partic-

ipant S06 participated five times; S08 participated six times; S14 participated six

times, and S16 participated eight times. In total, 133 datasets were collected over

six months. Each experimental session lasted approximately two hours (including

experimental set-up), and the sessions were conducted at roughly two-week intervals

for each participant. All participants read the consent form and experiment descrip-

tion ten minutes before the experiment. The ES was logged before the participants
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performed the experiment (Figure 3.1a). Three fatigue groups were divided based

on the total ES distribution. Due to the difficulty of collecting enough datasets

in the high-risk fatigue group, the fatigue groups were divided into three different

fatigue groups with a new threshold that was slightly different from the original

proposal from fatigue science: the normal fatigue group (ES greater than 91.5 (ES-

mean+ESstd)), a high-risk fatigue group (ES less than 72.6 (ESmean-ESstd)) and

a reduced fatigue group (remaining datasets). EEG signals were recorded using

the Synamps2 system (Compumedics Neuroscan Inc., Abbotsford, VIC) using 64

channels with Ag/AgCl electrodes and two references at the left and right mastoids

(A1 and A2) according to the international 10-20 system. All electrode impedances

were maintained at under 5 kOhm and were recorded with a sample rate of 1000 Hz

and 32-bit quantization. The participants were seated in the car in a well sound-

proofed, magnitude wrap-around virtual reality driving laboratory. The participants

performed four sessions throughout the experiment in one EEG dataset; each session

contains 60 trials per task condition (LKT, DASV and DASA) in random order. The

participants had a rest-time of 5-10 minutes between sessions.

3.3.5 Data Processing and Analysis

In this study, all data analyses and signal processing were imported into MAT-

LAB (version 2011a, MathWorks Inc., Natick, MA) and the EEGLAB Toolbox

(version 13.0) (Delorme and Makeig 2004)

EEG data preprocessing

To remove DC drift and high frequency noises, the recorded EEG raw data

were first processed by a high-pass filter and a low-pass filter at 0.5 Hz and 50

Hz, respectively. After filtering continuous EEG data, the filtered EEG data were

downsampled at 250 Hz to reduce the computational complexity of EEG data. The

recorded data might have included artifacts caused by muscle activity, body move-

ment, and poor contact between the sensors and the skin. Therefore, artifacts that

contaminated the EEG signals were first subjected to automatic artifact rejection

provided by EEGLAB to reject those data containing extreme amplitudes and ab-
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normal distribution to enhance the signal-to-noise ratio. Furthermore, to minimize

artifact baseline on the EEG activity, the recording data were removed manually,

e.g. the raw value of each channel is higher than 100 μV. Next, data epochs were

extracted; one event-related epoch was extracted from -1.0 s (prior to the deviation

onset) to 2.5 s (following the deviation onset). The one-second period before de-

viation was selected as baseline, and all event-related effects would be in reference

to the baseline means. Time-frequency analysis and modulation analysis were then

applied to the preprocessed EEG data.

3.4 Neural comodulation analysis

ICA, followed by IMA, was applied to the multichannel EEG signals to deter-

mine whether comodulatory processes mediated the spectral responses of indepen-

dent EEG processes (Chuang et al. 2012, 2016). This decomposition of the spectral

processes into frequency-IM processes can provide a better understanding of the po-

tential neurophysiological mechanisms that were involved in the observed cognitive

and behavioral changes.

Independent Component Analysis (ICA)

Each channel of EEG activities is a time course of mixed electrical signal activ-

ities collected from multiple electrodes placed on the scalp and sensitive to activity

generated within the neurons of the brain. Therefore, EEG signals are linearly

mixed source signals projected from distinct independent neuronal activations and

nonbrain artifacts. ICA is an algorithm to separate a multivariate signal into non-

Gaussian and statistically independent signals. The ICA decomposition of EEG time

series assumed that (a) signal conduction time was instantaneous, and summation

of currents at the scalp sensors was linear, (b) source activations were temporally

independent of one another across the input data, and (c) statistical distributions

of the source activation values were not Gaussian.

D = AS (3.1)

U = WD (3.2)
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ICA is a statistical method to extract the independent sources contributed to mixed

EEG signal, and it describes the source separation problem as a form of equation 3.1.

Where D is the signal recorded from the scalp and A is a linear transform called a

mixing matrix. Blind sources are statistically mutually independent. ICA estimates

an ‘unmixing’ matrix, W, to decompose the multichannel EEG data matrix, D, into

the time courses of the component activation matrix, U are statistically independent

as in equation 3.2. The columns of the inverse ‘unmixing’ matrix, W−1, represent the

projection of each IC onto the original data channels, which enabled the formation

of a color-coded scalp map. These projection weights provide the scalp map of each

IC and evidence of the origin of components’ physiology. For example, eye activity

was projected mainly to frontal sites, etc. The activities from different brain sources,

eye movement artifacts, muscles and channel noises were effectively separated into

ICs. In the current study, ICA decomposition was implemented by the EEGLAB

‘runica’ toolbox function in MATLAB. Furthermore, the criteria of ICA convergence

were set to the maximum steps at 1024, and the error was less than 10-7.

Component Selection and Clustering

To compare neural oscillations across subjects, component clustering was con-

ducted to assess the consistency of ICA decompositions across subjects and sessions.

The consistency of ICs across subjects was assessed semi-automatically by the k-

means clustering method and visual inspection to classify the components from all

subjects into distinct clusters based on measures including scalp maps, mean IC

power spectra and equivalent dipole source locations. To ensure that the clusters

obtained by the k-means method were sufficiently distinct, the clustering procedure

was repeated for seven iterations. The ICs with equivalent dipole sources located in

the medial frontal, medial central, left temporal, medial parietal, posterior-medial

occipital, and bilateral occipital cortices were selected for further time-frequency

analysis. Furthermore, the components in these clusters of interest for each subject

were selected for further independent modulator decomposition (IMD) to assess the

comodulation of independent brain processing activities among these selected ICs.
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Time-Frequency Analysis

Event-related spectral perturbation (ERSP) is a spectra-temporal decomposition

technique that decomposes a continuous time signal into frequencies using the fast

Fourier transform (FFT). ERSP was used to explore the brain dynamics in the

identified brain IC (Chuang et al. 2012). The selected IC activation for each EEG

epoch was separated into the power spectra through the FFT in a frequency range

between 0.5 and 50 Hz. The spectra included delta (1-3 Hz), theta (4-7 Hz), alpha

(8-12 Hz), beta (13-30 Hz), and low gamma (31-50 Hz). Each EEG epoch was

processed using a 256-point Hanning window with 128-point overlap. The ERSP

was computed by obtaining power for each epoch and time point, subtracting the

mean value of the baseline period (-1.0 s to 0 s) over the entire epoch duration

and then averaging across trials. The ERSP results reflected event-related brain

dynamics at different frequencies. Significance levels were computed by bootstrap

resampling, extracted at random from baseline data epochs. The significance level

was set at 0.05 for the ERSP results. Statistically significant (p<0.05) spectral

changes are shown in the ERSP images; in contrast, nonsignificant time/frequency

points are masked. The ERSP was time locked to the deviation onset, and the

time-frequency estimates of all EEG epochs were linearly aligned with the events.

In the single-task condition, the aligned events were the subject turning the steering

wheel. In the dual tasks, the subject turning steering wheel and the onset of the

button press were both considered.

Independent Modulator Decomposition

To model spectral fluctuations of ICs from EEG activations as the actions of IM

processes, this study adopted IMA method which has been used in (Chuang et al.

2012, 2016; Onton and Makeig 2009) – see (Onton and Makeig 2009) for details on

how to compute the IMA. The equation to find the IM activation as below:

U = WAX (3.3)

Here, U is the IM activations across time point t � e. W is an unmixing matrix,

found by the infomax ICA algorithm. A is the projection matrix. X is the matrix
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of log-spectral deviations (with the size [f � c, t � e], c represented the number

of selected ICs and f represented the mean log-power spectra at each frequency

bin, t and e represented the time series in a single epoch and the number of epochs,

respectively). To process the IMA computation, first, the time series of each epoch’s

normalized power spectra of selected ICs were reshaped into a 2D matrix, X, of size

[f � c, t � e] (where c represented the number of selected ICs and f represented the

mean log-power spectra at each frequency bin, t and e represented the time series

in a single epoch and the number of epochs, respectively). Then, this matrix was

reduced to p main principal components by principal component analysis (PCA) to a

matrix, S, of size [p, t � e] and projection matrix, A (AX = S). After using PCA, the

obtained matrix S was submitted to the infomax ICA algorithm that decomposed

log-spectral power across time series for all spectral fluctuations of the selected ICs.

An unmixing matrix, W, found by the infomax ICA algorithm, and its process were

formulated as S = W−1U. The rows of the output data matrix, U, are time courses

of the activation of the IMs. Hence, the IMA could be formulated as AX = S =

W−1U. Given the pseudoinverse of the dimension-reduced PCA eigenvector matrix,

A−1, then we had X = A−1W−1U. The columns of A−1W−1 provided the relative

projection weights of each IM at each frequency bin for each component, and U

represented the IM activations across time point t � e, to compute the means of

each IM’s activation throughout the epochs.

3.5 Results of the comparison between single-task ad multiple-

task conditions

3.5.1 Behavioral Performance

Our hypothesis was that behavioral performance during multitasking might be

adversely affected. We focused primarily on the effect of performing the secondary

task under different stimulus modalities on driving performance. The RTs from

the LKT conditions were compared, as shown in figure 3.3. A hierarchical linear

model analysis was conducted to assess driving performance under different condi-

tions. figure 3.3 indicates a significant difference between the mean of the single-
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and dual-task conditions. The RTs in both dual-task conditions (Case 2 and Case

3) were significantly longer than the single-task (Case 1) condition (p < 0.05). Fur-

thermore, the RTs of dual tasks involving different stimulus modalities also showed

a significant difference (p < 0.05). In the dual-task conditions, drivers’ RT to lane

perturbation was longer when the participants had to react to the secondary task,

which was presented in either an auditory form or a visual form (figure 3.3). In this

study, the driving task was considered the primary task; therefore, trials with the

driving reaction as the first reaction and DAS as the second reaction were included

in this analysis. The stimulus in the form of visual was dominant in the current

experimental design for the LKT task. Therefore, the DASA’s RT might take a

longer time due to the stimuli modality difference (auditory vs. visual).

Figure 3.3 : The behavioral performance among the single- and dual-task conditions. The

averaged driving response time of LKT (gray bar), DASV (yellow bar) and DASA (green

bar) in each condition are listed. The averaged driving response time were significant

different among three cases (p < 0.05).

3.5.2 Event-Related Spectral Perturbation

In addition to the behavioral changes, experimental trials that involved different

workload and stimulus modalities might have produced distinctive activations and

interactions in the human brain. We hypothesized that the workload or stimulus
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modalities used in multitasking would result in different types of activations. To

test this prediction, we applied the ERSP analysis to selected ICA components,

including the frontal, central, parietal, occipital, and temporal components. figure

3.4a shows the ERSP results in the single-task condition (LKT only). The increased

power in the delta band from the deviation onset to the driving response onset was

mainly observed in the frontal, central and parietal areas, and the central area delta

band was strongly increased. The increased power in the theta band was primarily

observed in the frontal and central areas.

Figure 3.4 : The Event-Related Brain Dynamics in three cases (rows) across brain regions

(column), including the frontal, central, parietal, occipital, and temporal components

(top). a) The ERSP in the Case 1 (LKT). b) The ERSP in the Case 2 (DASV ). c) The

ERSP in the Case 3 (DASA). The black-vertical line indicates stimulus onset (deviation

onset), the blue-vertical line indicates driving response, and the red-vertical line indicates

DAS response.

After the deviation onset, decreased alpha and low beta power were also observed

in the posterior area, including the parietal and occipital components. figure 3.4b

shows the ERSP results in the selected components while performing in Case 2

trials (LKT and DASV ). The delta and theta bursts can be observed in all selected
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components from the deviation onset to the button press (red dotted lines in figure

3.4). Decreased power in the alpha band can also be observed in the posterior

area. Increased power in the frontal alpha band appears briefly between the driving

response onset and the button press onset. figure 3.4c shows the ERSP results

while performing in Case 3 trials (LKT and DASA). Delta and theta bursts can

be observed in all selected components except the occipital component from the

deviation onset to the button press, but the central theta power was only observed

from the deviation onset to the driving response onset. The decreased power in the

alpha band was observed in the parietal and occipital components. Frontal alpha

power increases appeared briefly from the driving response onset to the button press

onset. Temporal gamma power increased from the driving response onset to the

button press onset. During the dual-task conditions, the alpha oscillations varied in

distinct brain areas (refer to figure 3.4). Increased power in the frontal alpha bands

was time locked from the driving response onset to the button press onset. Instead

of increased power in the alpha band in the frontal area, decreases in alpha were

observed in the posterior areas (parietal and occipital area). In addition, occipital

theta power was found to be significantly increased in the parietal component in

both dual-task conditions and in the occipital component in the DASV condition.

3.5.3 Independent Modulators and Their Activation

The power spectral fluctuations from the neurons of the brain sources were fur-

ther subjected to IM decomposition by forming a 2D matrix to find independent

modes of comodulation across the ICs. It should be noted that the number of ICs

may vary across subjects since each individual may engage distinct brain processes

even during the same task (Jung et al. 2001)

Event-related activation of IMs

We selected the modulators according to the activation of the modulator rela-

tive to task performance. To assess the consistency of the IMs of interest across

subjects, figure 3.5a shows the modulator activation without being time locked.

Furthermore, figure 3.5b presents the event-related modulator activation in all cases
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over all subjects. Each column plots the individual (thin line) and averaged (thick

line) modulator activation. We found that a burst of modulator activation between

the lane-deviation onset and driving response onset was observed in all cases. The

multiple comparisons of the event-related modulator activation between the different

cases are shown in figure 3.5c. The first column shows the event-related modulator

activation difference between Case 1 and Case 2. The second column shows the

difference between Case 1 and Case 3, and the last column shows the difference

between the dual-case conditions. The signed-rank statistical analyses were used to

examine the differences among the different workloads or stimulus modalities. The

IM activation difference was significant at the 0.05 level. The results showed that

the comodulatory activities during the different workloads or stimulus modalities

were not significantly different.

Projected frequency weights of the modulators

To assess the consistency of the IMs of interest across subjects, figure 3.6 dis-

plays the results of the group projection weights, in which each cell represents a

relative projection weight from one IM to the frequency of the IC. For each selected

IM, the relative weight of projection onto all selected ICs across subjects was aver-

aged, and the average projection weights in the frequency ranges of the delta, theta,

alpha, beta and gamma bands were computed. Then, a bootstrapping test was

conducted on the projection weights through all ICs of each IM, and the significant

differences were plotted as red bars in figure 3.6. For example, the first modulator

in the frontal component has delta and theta projection weights that were signifi-

cantly higher among the various brain regions. In figure 3.6, the first column shows

that the modulator regulated the delta and theta bands in the frontal component,

regulated all frequency bands in the central component, regulated the delta, theta

and alpha bands in the parietal component, regulated the alpha band in the oc-

cipital component, and regulated the theta band in the temporal component when

performing only the LKT (Case 1). The second column modulator regulated the

delta and theta bands in the frontal component, regulated the delta, theta and alpha

bands in the central component, regulated the delta and theta bands in the parietal
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Figure 3.5 : The event-relative independent modulator activation. a) The performance-

related IM activation changes in LKT, DASV , and DASA conditions. b) The event-

related IM activation changes in LKT, DASV , and DASA conditions. c) The IM activation

difference among different conditions. The first column showed the difference between

Case 1 (grey curve) and Case 2 (yellow curve). The second column showed the difference

between Case 1 (grey curve) and Case 3 (green curve). The last column showed the

difference between Case 2 (yellow curve) and Case 3 (green curve). The IM activation

difference is significant at the 0.05 level (blue *).

component, regulated the delta, theta and alpha bands in the occipital component,

and regulated the beta band in the temporal component while performing LKT and

the visual distractor task simultaneously (Case 2). The third column modulator

regulated the delta, alpha and beta bands in the frontal component, regulated the

delta, theta, alpha and beta bands in the central component, regulated the delta and

theta bands in the parietal component, regulated the delta, theta and alpha bands

in the occipital component, and regulated the gamma band in the temporal com-
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ponent while performing the LKT and the auditory distractor task simultaneously

(Case 3).

Figure 3.6 : The relative weight from IMs to each frequency band of ICs. Each column

represents the relative weight of projection from the IM (the top row) to each frequency

band (delta, theta, alpha, beta, and gamma band) of each selected IC (the leftmost col-

umn). For each IM, the red bar plots the significant difference among each frequency band

of each selected IC.
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3.6 Discussion

3.6.1 Behavioral Performance during Distracted Driving

In this study, we investigated the behavioral differences between the single- and

dual-task conditions as shown in figure 3.3. The results demonstrated that the RTs

of the LKT in both dual-task conditions (Case 2 and Case 3) were significantly longer

than the single-task condition (refer to figure 3.3). Executing multiple tasks simul-

taneously leads to impaired performance in one or multiple tasks (Welford 1952;

Kahneman 1973; Pashler 1994; Schubert et al. 2008; Pizzamiglio et al. 2017; Wang

et al. 2018). Furthermore, the drivers’ RT in response to perturbation was longer

when the secondary task stimuli were presented in an auditory form. A previous

study demonstrated that performance with an auditory distracter was dramatically

impaired unless the auditory distracter was simple and required no cognitive pro-

cessing (Tellinghuisen and Nowak 2003). Driving was considered the primary visual

task and the lane-deviation event was always considered the most important issue

for preventing traffic accidents. In this study, therefore, the participants almost

always responded to the lane deviation first. The findings that the performance

tended to decrease more when the component tasks consisted of different sensory

modalities were consistent with previous studies (Näätänen 1992). This may be

because the brain selects appropriate sensory inputs and suppresses different sen-

sory inputs. As a result, the performance in the visual-based driving task was less

affected by a visual distractor than by an auditory distractor. Most recent studies

provide evidence that the driver self-regulates the driving speed as using mobile

phone in various traffic conditions (Oviedo-Trespalacios et al. 2017a, 2018, 2017b).

In this study, the velocity of the vehicle was consistently simulated with 100 km/h

in the motor highway without any other traffic. Therefore, the driver did not have

the opportunity to control the vehicle speed, driver may increase their reaction time

of the driving task to handle the information from the distracting secondary task

(refer to figure 3.3). In addition, the driver always keeps their gaze on the center

of driving scenario, therefore, the distracted factor from secondary task may not be

compatible to the visual-manner distracted from mobile phone such as texting and
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browsing which shifted their gaze from the road. Further study is needed to inves-

tigate the self-regulation of driver to the distracted factor when driving in constant

speed.

3.6.2 EEG Correlates of Distracted Driving

Compared to the behavioral changes, the physiological measurements are more

sensitive to cognitive and attentional changes. In this study, we also investigated the

differences in brain activation between the single- and dual-task conditions. Previous

studies have shown that the frontal and parietal cortices are related to the attentional

demands involved in the coordination of multiple parallel tasks (Herath et al. 2001;

Schubert and Szameitat 2003; Stelzel et al. 2006). We observed that increased theta,

alpha and beta band power in the frontal area appeared briefly while performing

the cognitive task during the dual-task conditions (refer to figure 3.4). Human EEG

studies have highlighted the importance of theta and alpha oscillations in distinct

brain regions as parts of the neural network involved in attention-related processes

(Klimesch 1999). Previous studies have demonstrated that increased frontal theta

and beta bands were associated with distraction effects (Lin et al. 2011; Pizzamiglio

et al. 2017; Wang et al. 2018). In addition, increased frontal theta oscillations were

mainly associated with decision-making, orienting, conditioning, managing work-

load, working memory, and maintaining goal states (Klimesch 1999; Gevins et al.

1997; Sauseng et al. 2005; Kahana 2006; Tombini et al. 2009; Huang et al. 2013;

Popov et al. 2018; Proskovec et al. 2019). In this study, increased frontal theta, al-

pha and beta power might have been correlated with the high attentional demands

and executive controls in cognitive tasks that are involved in decision-making. Since

the subjects needed to shift their attention between two tasks in the dual-task con-

ditions, decision-making must be involved in the process. Therefore, the dual tasks

induced more theta activity in the frontal region, as well as requiring the subjects

to allocate more brain resources to accomplish both tasks. The occipital lobe is the

visual cortex, which processes and relays visual stimuli in the brain. This region

specializes in different visual tasks, such as visuospatial processing, color discrimina-

tion and motion perception. The occipital theta power was significantly increased
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after the deviation onset, when the visual targets appeared simultaneously (refer

to figure 3.4). A previous study reported that the occipital component revealed a

sequence of theta increases after the onset of a visual stimulus presentation (Huang

et al. 2013). In this study, the increased occipital theta was only found in the Case

2 trials. These results can be explained by assuming that the visual stimulus and

the auditory stimulus might engage distinct brain resources during the driving task.

Therefore, the cortical components that were induced would vary across different

types of modalities. In sum, the theta oscillation in the occipital cortex might be

associated with sensory processing or stimulus selection.

3.6.3 EEG Comodulatory Activity Correlates of Distracted Driving

To explore the comodulators of independent brain processes with different work-

load or stimulus modalities in a multitasking situation, we applied a method in-

cluding PCA and a second ICA for decomposing spectra dynamics of temporally

independent EEG components into the different spectral comodulators. The modu-

lator activation trend across participants was similar even though the components’

log spectra of each participants was calculated separately (refer to figure 3.5c). The

statistical comparisons showed that the comodulatory activities during the differ-

ent workloads or stimulus modalities were not significantly different. Our findings

are not in contradiction with those of the previous studies discussed above. More-

over, the number of main spectral fluctuations mediated by the modulators was

also similar (refer to figure 3.6). Regarding the attentional resources in a multi-

ple task condition, several studies have indicated that attentional resources were

limited (Welford 1952; Kahneman 1973; Gottsdanker and Way 1966; Herman and

Kantowitz 1970).

3.6.4 Potential Neurophysiological Mechanisms

In the present study, we found that modulator activations were not significantly

different during the different workload requirements or stimulus modalities, and the

number of main spectral fluctuations mediated by the modulators were also simi-

lar. However, the component spectral fluctuations affected by the modulators were
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distinct across conditions (refer to figure 3.6). Several previous studies have sug-

gested that the components might have different spectra dynamics under different

stimulus modalities engaged in the multiple tasks (Nijboer et al. 2014; Adcock et al.

2000; Just et al. 2001; Jaeggi et al. 2003; Szameitat et al. 2011). The frontal re-

gion oscillations may vary from one task combination to another (Miller and Cohen

2001; Staines et al. 2002) and are involved in managing concurrent processes (Dux

et al. 2006; Kane and Engle 2002). Compared with executing only the lane de-

viation, performing the response to the lane deviation with a visual distractor in

Case 2 involved additional processes and attention (Fernández et al. 1995; Sammer

et al. 2007); therefore, the frontal region may be more activated. Although the

lane deviation with visual distractor induced a higher workload, we found that the

modulators mediated the same spectral dynamic in the frontal regions under Case

1 and Case 2 (refer to figure 3.6). It is possible that both tasks were visual-based.

Therefore, there were no additional spectral dynamics mediated by the modulators

in the frontal area. In contrast, the result of this study showed more spectral dy-

namics in the frontal component mediated by the modulator in Case 3. The possible

explanations for the finding might be that the frontal lobe is considered to control

higher-level cognitive processes and problem solving. Thus, additional attentional

resources might be used in the frontal region to process auditory distractors com-

pared with visual distractors during dual tasks. During the dual-task conditions, the

equal number of spectral fluctuations mediated by the modulator was observed in

the occipital area. Previous studies have suggested that the occipital region might

be associated with attention processing or stimulus selection (Murray and Wojciu-

lik 2004; Huang et al. 2013). These results can be explained by assuming that the

presentation of a distracting stimulus in one of these modalities affected the pro-

cessing of the occipital cortex. It is possible that more attentional resources should

have been shifted into the occipital region to account for the additional distracting

stimulus in the dual-task conditions.
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3.6.5 Possible Neural Modulation Mechanisms

Several previous research indicated that neurotransmitters such as acetylcholine,

norepinephrine, dopamine or serotonin might modulate thalamic and cortical activa-

tion (Robbins 1997; Bardo 1998). The underlying co-modulation possibility consider

that the influence of cortical and thalamic projections (Oken et al. 2006; McCormick

and Bal 1997; Akimoto et al. 1956; Bardo 1998; Robbins 1997). A thalamo-cortical

network involves thalamus receiving sensory input from little cortical area and pro-

jecting to a higher-order cortical areas (Bertram 2010; Swick et al. 1994). Many

studies have found that thalamic neurons modulating the power spectral synchrony

between distinct cortical areas (Swick et al. 1994; Herculano-Houzel et al. 1999).

Therefore, the neural modulator might serve as an executive control center to me-

diate the synchronization across brain regions and govern allocations of attention

resource. An internal mechanism may affect cortex synchrony and oscillations during

the information transmission and cognitive processing (Saalmann 2014). In terms

of the power spectral projection weights of co-modulation, the modulator in the dif-

ferent condition of the present study gave rise to distinct integration of information

across multiple components. Therefore, an underlying neural co-modulation mech-

anism might modulate the degree of synchrony thalamo-cortical activity between

distinct groups of cortices according to task demands in the dual tasks.
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Chapter 4

The effect of fatigue on brain connectivity in

multitasking

This chapter investigates the effect of sleep-related fatigue on effective brain connec-

tivity in a simulated driving experiment. We demonstrate that the effective connec-

tivity increases in multitasking condition, but not in high-risk fatigue stage. Chin-

Teng Lin conceived this work. Tien-Thong Nguyen Do performed data analysis, with

assistance from Yu-Kai Wang. All the authors discussed and wrote the manuscript

(J-2) (Do et al. 2020c).

4.1 Abstract

Multitasking has become omnipresent in daily activities, and increased brain

connectivity under high workload conditions has been reported. Moreover, the effect

of fatigue on neural activity has been shown in participants performing cognitive

tasks, but the effect of fatigue on different cognitive workload conditions is unclear.

In this study, we investigated the effect of fatigue on changes in effective connectivity

(EC) across the brain network under distinctive workload conditions. There were

133 electroencephalography (EEG) datasets collected from sixteen participants over

a five-month study in which high-risk, reduced, and normal states of real-world

fatigue were identified through a daily sampling system. The participants were

required to perform a lane-keeping task (LKT) with/without multimodal dynamic

attention-shifting (DAS) tasks. The results show that the EC magnitude is positively

correlated with the increased workload in normal and reduced states. However, low

EC was discovered in the high-risk state under high workload condition. To the

best of our knowledge, this investigation is the first EEG-based longitudinal study

of real-world fatigue under multitasking conditions. These results could be beneficial
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for real-life applications, and adaptive models are essential for monitoring important

brain patterns under varying workload demands and fatigue states.

4.2 Introduction

Individual often handle multiple tasks simultaneously during daily activities. Ex-

amples include individuals listening to music while walking or running and students

taking notes while listening to a class lecture. Although simultaneously performing

multiple tasks is normal in our daily life, it may cause distractions that lead to serious

consequences, especially during driving. Distracted driving causes a driver’s reaction

time to be fifty percent slower than normal (WHO 2018), and many reasons for dis-

traction or attention switching exist, such as mobile phone calls, texting or listening

to the radio while driving (WHO 2018; Young et al. 2007; Oviedo-Trespalacios 2018).

The factors that contribute to a driver’s impaired attention are related to a driver’s

mental status (WHO 2018) and the surrounding environment (Oviedo-Trespalacios

2018; Oviedo-Trespalacios et al. 2019b; Theofilatos et al. 2018).

Driver fatigue is one of the factors that should be considered when analysing

vehicle crashes (Huang et al. 2016). Fatigue may lead to torpid reactions to the

surrounding environment, such as steering the car or hitting the brakes. Across pre-

vious studies, fatigue was estimated to be responsible for between 10 and 20 percent

of vehicle crashes reported in the US in 2016 (National Academies of Sciences and

Medicine 2016) and led to 21 percent of all fatal crashes and 13 percent of severe

injuries between 2009 and 2013 (Tefft 2014). Therefore, there is a need to regulate

drivers to avoid using distracting devices, such as cell phones, while driving. Fur-

thermore, understanding the mechanism of driver performance could help to avoid

potential accidents on the road. Cognitive states are believed to be associated with

behavioural performance (Borragán et al. 2019; Sievertsen et al. 2016). In addition,

neurophysiology is a valid approach for exploring cognitive states (Lal and Craig

2002; Simon et al. 2011; Lal et al. 2003; Jap et al. 2009; Do et al. 2019), and many

studies have explored the link between fatigue and electroencephalography (EEG)

power spectra (Lal and Craig 2001; Makeig et al. 2000; Makeig and Jung 1996; Jung
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et al. 1997; Schier 2000; Huang et al. 2008, 2001). Researchers have reported that

the powers of the theta (4-7 Hz) and alpha (8-12 Hz) bands concurrently increase

in bilateral occipital brain regions (Lin et al. 2013). An online, closed-loop system

was developed to monitor user alertness and improve user responses during driving

based on EEG power spectra (Wang et al. 2014b, 2015).

Furthermore, there has been increasing interest in neuroimaging research regard-

ing brain connectivity (Friston 2011; Sporns 2014), which can be classified into three

main types (Bullmore and Sporns 2009): structural connectivity (SC), functional

connectivity (FC) and effective connectivity (EC). SC reflects the anatomical net-

works, FC is associated with the correlations among brain regions while the brain

is processing information, and EC involves the causal dependencies among brain

regions. FC uses an undirected graph that can describe the statistical associations

among regions; however, EC uses a directed graph that illustrates the causal rela-

tionships among regions. Hence, an EC study can provide information about how

the information flow is exchanged among brain regions. Therefore, EC results can be

used to interpret how information is exchanged among brain areas in a task-related

period. Many studies have shown increased across-network FC while performing

cognitive tasks (Spadone et al. 2015; Kwon et al. 2017), working memory (2-back

task) (Shine et al. 2016a) and movie watching (Betti et al. 2013) tasks. Studies have

indicated that connectivity is correlated with the task load. As the load increases,

more brain regions are activated to communicate, exchange information and pro-

cess external environmental stimuli, and the across-network brain connectivity may

therefore increase. However, notably, FC has also been reported to decrease across

the brain network during semantic similarity tasks (DeSalvo et al. 2014) and movie

watching (Betti et al. 2013).

Although previous studies have provided insights into complex brain networks

that are correlated with task costs, whether fatigue state variability during the per-

formance of a task is related to fluctuations in brain network organization remains

unknown. Fonseca, et al. (Fonseca et al. 2018) showed evidence of the relationship

between sleep-related fatigue and EC in a simulated driving experiment. Borragán,
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et al. (Borragán et al. 2019) showed that prefrontal connectivity decreased with

participants’ fatigue levels, which were defined by sleep deprivation. In addition,

considering time-on-task as fatigue, Huang, et al. (Huang et al. 2015) showed evi-

dence of compensation between cortico-cortical EC and driving performance, ranging

from alertness to an intermediate level of vigilance. Furthermore, this compensation

seemed to decline from an intermediate to drowsy level of vigilance (Huang et al.

2015). However, the changes in brain connectivity remained unclear considering

both factors, multitasking, and real-world fatigue. In previous studies (Borragán

et al. 2019), fatigue levels have been monitored by sleep deprivation, which is not

sufficiently natural. Although several studies have identified evidence of the fatigue

state and multitasking factors influencing brain connectivity, there is still limited

information on the effects of both factors on brain neural networks during cogni-

tive tasks. In this study, we used a state-of-the-art biomathematical fatigue model

called Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) to assess fatigue

levels. Notably, longitudinal recording can benefit from tracking personal real-world

fatigue for further applications, such as behaviour prediction or task assignment.

To do so, we investigated the ECs of network patterns under different task load

conditions and dynamic fatigue states. The fatigue state was measured based on a

biomathematical fatigue model (Hursh et al. 2004). We hypothesized that the EC

in high-attention load conditions (concurrent dual tasks) enhances brain network

activation compared to that induced under low-attention load conditions (e.g., a

single task). Furthermore, we hypothesized that EC varies under different fatigue

states for each task condition.

4.3 Related works

Brain connectivity has been extensively investigated under altered task load

conditions, revealing increasing brain connectivity with the level of the task load

demand (Cole et al. 2014; Spadone et al. 2015; Kwon et al. 2017; Shine et al. 2016a;

Betti et al. 2013). Furthermore, results have shown that brain connectivity can

be physiologically modulated, including by anaesthesia, fatigue, and ageing (Peltier

and Shah 2011). For instance, a study based on resting-state fMRI demonstrated
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a significantly decreased interhemispheric correlation in the motor cortices after a

muscle fatigue task (Peltier et al. 2005). Studies on simulated driving scenarios

have shown a clear relationship between connectivity among brain areas and fatigue

related to prolonged driving (Xu et al. 2017; Al-Shargie et al. 2019). Al-Shargie,

et al. (Al-Shargie et al. 2019) revealed that the brain connectivity network is neg-

atively correlated with increasing fatigue level, defined as prolonged time-on-task

driving. Furthermore, another study of simulated driving scenarios using effective

brain connectivity highlighted the relationship between driving performance and

effective connectivity, suggesting that EC patterns are affected by distinctive sleep-

related fatigue (Fonseca et al. 2018). Moreover, impairments in prefrontal cortical

connectivity led to decreased attention in cognitive fatigue, which was defined as

sleep-related fatigue (Borragán et al. 2019).

Nevertheless, research has generally focused on the effects of brain connectivity

on task load conditions or the fatigue status rather than considering both factors

together. There is still limited information about the effect of sleep-related fatigue on

brain connectivity under different workload conditions. In this study, we investigated

brain connectivity under different task load conditions in various fatigue states.

We hypothesized that brain connectivity is positively correlated with the task load

demand; however, this correlation is dependent on the fatigue state of participants.

4.4 Meterials and methods

4.4.1 Experimental Design

Refer to the Chapter 3, section 3.3.

4.4.2 EEG data processing

Figure 4.1 lists the processing steps in the current study. Raw EEG data were

subjected to bandpass filtering at 1-50 Hz before being downsized to a sample rate

of 250 Hz using the EEGLAB toolbox (Delorme and Makeig 2004) in MATLAB

(version 2013b, MathWorks Inc., Natick, MA). Some portions of data included ar-

tificial noise, which was manually removed. The artifact noise was defined by their
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raw data quality such as value has strong peak comparing to the rest (threshold

value = 100 μV). Pre-processed EEG data were subsequently subjected to indepen-

dent component analysis (ICA) (Makeig et al. 1996) to decompose the independent

sources of information. The function ‘runica.m’ in EEGLAB was used to decompose

the Independent Components (ICs) which contributes to the EEG data (maximum

step was 2014 and error less than 10−7). Then, dipole fitting routine (dippole2.m)

was applied to find the ICs location. Subsequently, the non-brain components were

removed (48.3 ± 5.4 ICs) based on their ICs properties such as location, topo-

graphic, power spectrum. The main non-brain components were from eye-blind, eye

movement, muscle and sensor noise components. After that, the remaining brain

components (13,5 ± 5.3 ICs) were back-projected to the EEG channel space. Sub-

sequently, the data was divided into task conditions with the epoch length [-1 2.5]

second within the task event onset. The period [-1 0] second of the epoch were used

as the baseline correction for all the epoch data. Then, the bad epochs in those task

conditions was rejected based on their extreme value (threshold was set to 100μV).

Next, the ECs were estimated in the channel domain from the cleaned datasets.

Figure 4.1 : Flowchart of effective connectivity estimation.
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4.4.3 Effective connectivity

All datasets with pre-processing steps were used to calculate the effective brain

connectivity. The multivariate linear dynamical (autoregressive) model was fit to

the process activation time series after stimulus onset to the aligned RT at 667

milliseconds (median of RT). Time series EEG data were subsequently extracted

for all frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta

(13-30 Hz).

Figure 4.2 : EEG channels selected for estimating effective connectivity.

EC was estimated based on Granger causality (GC) to obtain the flow of in-

formation exchanged between the brain regions. GC was introduced for the first

time in the econometric time series analysis (Granger 1969). Time series data X1t

is deemed Granger causal to another time series X2t when the knowledge of his-

tory X1t can improve the prediction of X2t. Multiple-channel data X at time t may

be represented as a stationary, stable vector autoregressive (VAR) with order p as

follows:

Xt = v +

p∑
k=1

AkXt−k+ut, (4.1)

where p is the model order, v is the mean of X, Ak is the model coefficient matrix,

and ut is the zero-mean white noise process. In this study, the model fitting p was
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Brain Area EEG channels

Frontal Fp1, Fp2, Fz, F3, F4, F7, F8

Central Cz

Motor C3, C4

Temporal T7, T8

Parietal Pz, P5, P6

Occipital Oz, O1, O2

Table 4.1 : Brain areas and respective EEG channels selected for estimating effective

connectivity.

selected based on the Akaike information criterion (AIC):

AIC (p) = ln
∣∣∣Σ̃(p)∣∣∣ + 2

T̂
pM2 (4.2)

where ln
∣∣∣Σ̃(p)∣∣∣ is the determinant logarithm of the estimated noise covariance ma-

trix for the VAR model with order p fit to M-channel data, and T̂ is the total data

points (sample data points per trial x N trials).

The model fitting was subsequently validated by three tests:

� Whiteness test: to ensure the residual of fitted model is small and uncorrelated

(white). The fitted model must pass two tests to be considered as whiteness:

autocorrelated function test (ACF) and Portmanteau Tests by checking the

statistic test of Box-Pierce (BPP), Ljung-Box (LBP), and Li-McLeod (LMP)

(Lütkepohl 2005; Arranz 2005).

� Percentage of consistency (PC) test: to check the fraction of correlation struc-

ture between our model and original data (Ding et al. 2000). The higher PC

indicates for the better model for generating the original data.

� Stationary of the model test: to ensure the original data and VAR[p] model

fulfill the stationary and stable properties. Therefore, the VAR[p] process will

not diverge to the infinity (Lütkepohl 2005).
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After the modal validation step, the causal magnitude was estimated via the

following formula:

Fij = ln

(
Σij

Σij

)
= ln

(
var(x

(i)
t |x

(i)
(.))

var(x
(i)
t |x

(i)
(.) , x

(j)
(.) )

)
(4.3)

where Fij indicates the GC from process j to process i. Finally, Wilcoxon signed-

rank tests were used to test the significances of the differences between conditions

while correcting for the FDR. Source of Information Flow (SIFT) (Delorme et al.

2011) from the EEGLAB-compatible toolbox was used to estimate EEG ECs. All

data processing steps are demonstrated in figure 4.1.

4.5 Results

We analysed the behavioural data based on the RT of participants. The be-

haviour results revealed that both task loads and fatigue states affected the RT

of participants (figure 4.3). Then, we further examined the EC magnitude among

brain regions across four frequency bands, including the delta, theta, alpha, and

beta bands (figure 4.4, figure 4.5, figure 4.6). The EC results showed significantly

increased brain connectivity with increasing task load level in both the normal and

reduced fatigue groups. In contrast, the opposite trend was observed in the high-

risk fatigue group. The results demonstrated that fatigue and the task load affected

brain connectivity.

4.5.1 Behavioral Performance

The performance of the participants was measured using the RT required to

response to the first stimulus onset either steering a car back into a fixed lane or

pressing the bottom for DAS task after deviation onset for LKT. The average RTs

were compared among three task conditions (LKT: lane keeping task only, DASV :

concurrent LKT and visual dynamic attention-shifting, and DASA: concurrent LKT

and auditory dynamic attention-shifting) and three fatigue states (normal, reduced

and high-risk) via two-way repeated measures analysis of variance (ANOVA) (3x3

design). The ANOVA showed a significant main effect of the tasks on RT (F=4.32,
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Figure 4.3 : Reaction time and effectiveness score. Reaction time of lane-keeping task

(LKT) across three tasks in three fatigue groups. The RTs of the LKT significantly

increase in the high-risk state (p < 0.05). There is no significant difference among the

fatigue states when performing the DASV and DASA.

p < 0.05) as well as an interaction between the tasks and fatigue states (F=4.99, p

< 0.005) (figure 3.2). A post hoc Tukey test showed that the LKT task in high-risk

and normal, high-risk and reduced groups differed significantly (p < 0.05).

4.5.2 Comparisons of ECs between single- and dual-task conditions in

different fatigue states

Subject ES Model Order1,2 Whiteness1,2,3 Consistency1,2,3 Stationarity1,2,3

S01 93 4 8 8 100 77 80 77 90 90 100 100 100

93 4 5 5 100 94 91 80 84 86 100 100 100

91 4 6 5 100 77 82 76 86 85 100 100 100

88.5 4 7 8 100 78 83 77 90 90 100 100 100
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89 4 9 8 100 80 81 82 92 91 100 100 100

83 4 8 8 100 77 83 81 92 92 100 100 100

83 4 7 9 100 84 79 80 91 92 100 100 100

79 4 5 5 100 78 77 81 86 85 100 100 100

80 4 4 4 88 99 92 81 80 82 100 100 100

S02 91.2 4 5 6 100 94 91 76 84 88 100 100 100

83 4 5 6 88 87 88 76 83 87 100 100 100

88 4 5 5 100 93 94 77 86 86 100 100 100

87.6 4 5 5 98 92 96 83 85 86 100 100 100

87.6 4 5 6 100 90 96 82 84 87 100 100 100

83.1 4 6 6 100 93 92 79 88 88 100 100 100

41.2 4 4 4 92 97 91 84 84 82 100 100 100

80.2 4 5 5 100 94 91 81 84 86 100 100 100

S03 88 5 5 100 96 84 84 100 100

82 5 5 5 100 71 77 84 85 84 100 100 100

93 5 100 86 100

74 5 6 100 93 85 86 100 100

83 4 4 6 100 87 80 83 84 86 100 100 100

81 5 5 100 77 85 84 100 100

76 4 5 6 100 91 79 81 83 85 100 100 100

82 5 7 100 73 84 87 100 100

71.3 4 5 5 92 73 82 83 84 85 100 100 100

S04 87.5 5 6 6 100 85 90 84 85 84 100 100 100

90.8 4 4 99 94 83 82 100 100

94.8 4 6 6 100 80 71 82 86 85 100 100 100

82.6 4 4 4 100 92 96 79 78 76 100 100 100

86.6 6 7 83 87 86 87 100 100

84.3 5 5 6 93 76 87 85 84 87 100 100 100

68.5 5 5 5 100 89 83 84 84 84 100 100 100

68.3 4 4 100 71 81 82 100 100

73.2 3 5 5 100 80 74 58 85 85 100 100 100

S05 90 3 5 5 100 94 94 52 83 81 100 100 100

83.2 3 5 5 100 90 81 63 85 85 100 100 100

92 4 5 5 100 94 96 81 84 83 100 100 100

83 5 6 90 82 83 87 100 100

88.9 4 4 5 96 96 97 80 81 84 100 100 100

85.5 4 5 4 100 94 96 79 84 77 100 100 100
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60 3 4 4 100 89 94 70 75 75 100 100 100

76 4 5 4 100 88 97 79 83 82 100 100 100

77 4 6 5 99 89 85 78 86 83 100 100 100

S06 95 5 6 7 100 83 75 84 87 89 100 100 100

91 3 4 4 99 80 80 65 82 81 100 100 100

94 4 4 5 100 92 91 81 79 83 100 100 100

87 4 5 5 100 77 82 80 85 86 100 100 100

89 4 5 5 100 86 79 83 84 84 100 100 100

S07 88 4 100 84 100

87 4 6 6 100 92 89 83 89 88 100 100 100

93 5 7 100 78 88 93 100 100

88 3 6 100 80 62 87 100 100

90 5 100 88 100

75 6 7 85 81 86 89 100 100

68 4 6 6 100 75 89 83 89 88 100 100 100

71 4 7 6 100 75 87 83 91 88 100 100 100

S08 71 4 4 89 82 72 77 100 100

73 4 6 5 100 80 81 77 88 85 100 100 100

81.8 4 5 5 100 94 92 75 87 86 100 100 100

57 4 5 5 100 80 89 75 85 85 100 100 100

S09 87 5 5 95 82 87 87 100 100

86 3 6 5 100 85 98 72 88 86 100 100 100

98 5 6 6 100 100 92 88 90 90 100 100 100

88 4 5 4 100 86 100 86 87 85 100 100 100

84 4 4 3 100 98 100 83 79 65 100 100 100

88 4 4 5 100 100 77 84 84 87 100 100 100

86 3 4 4 100 98 96 68 83 83 100 100 100

87 3 3 4 100 96 96 71 70 84 100 100 100

59 3 4 4 100 99 92 70 80 82 100 100 100

S10 76 3 4 5 100 88 87 64 77 86 100 100 100

78 3 4 4 100 87 95 60 76 81 100 100 100

86 4 4 4 100 98 91 82 80 77 100 100 100

66 4 4 4 100 100 100 83 82 82 100 100 100

S11 78 4 5 6 100 80 80 82 85 86 100 100 100

88.3 3 3 94 98 63 60 100 100

87.6 4 4 93 94 85 87 100 100

75 4 4 83 80 84 82 100 100



62

77.9 3 4 4 99 93 96 64 84 84 100 100 100

76 4 5 4 100 92 94 83 85 83 100 100 100

74 4 4 4 100 98 100 83 84 83 100 100 100

S12 98 4 6 5 100 88 92 83 88 85 100 100 100

90 4 4 5 100 95 89 82 81 85 100 100 100

96 4 6 6 100 87 92 83 86 88 100 100 100

79 6 7 80 82 88 91 100 100

89 3 4 5 100 95 99 56 78 83 100 100 100

88 4 6 6 100 80 86 83 89 90 100 100 100

68.4 3 5 5 100 91 86 61 84 85 100 100 100

81 4 5 5 100 85 99 81 85 85 100 100 100

68 5 5 5 100 97 89 84 84 84 100 100 100

S13 89.4 3 6 6 100 78 81 72 91 91 100 100 100

91.2 4 8 6 96 73 80 87 92 89 100 100 100

80.2 4 5 6 100 86 88 86 87 89 100 100 100

77.7 5 7 8 100 82 71 87 91 92 100 100 100

85 4 6 7 100 77 80 86 91 91 100 100 100

68.2 3 5 6 100 82 72 70 86 89 100 100 100

57.9 4 4 4 92 72 71 87 85 87 100 100 100

S14 94.6 5 7 100 78 83 88 100 100

89.7 4 4 4 100 100 82 83 84 83 100 100 100

91.3 4 6 4 100 80 80 84 87 82 100 100 100

86.5 4 5 8 100 93 79 81 84 88 100 100 100

89 3 5 5 100 95 76 63 84 85 100 100 100

90 3 4 5 100 94 81 64 81 83 100 100 100

S15 91.9 4 6 6 98 73 81 80 89 87 100 100 100

95 5 5 94 97 85 85 100 100

88 5 5 76 96 88 86 100 100

88 4 5 5 99 80 79 83 88 89 100 100 100

87 4 6 8 100 84 87 82 90 92 100 100 100

80 3 5 4 100 93 99 67 85 82 100 100 100

67 4 6 8 100 81 85 85 91 93 100 100 100

71.5 4 100 83 100

71.5 4 6 6 100 89 80 82 86 87 100 100 100

S16 82 5 5 5 99 85 91 82 83 84 100 100 100

89 4 4 4 100 95 90 82 79 82 100 100 100

76.8 3 5 4 100 85 79 62 85 79 100 100 100
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80.4 4 4 5 100 87 85 83 82 87 100 100 100

74.7 3 4 4 94 86 100 66 76 83 100 100 100

79 4 4 92 92 84 84 100 100

72 4 4 90 100 81 83 100 100

74 4 4 97 91 84 82 100 100

Table 4.2 : Validation results of effective connectivity model estimation.

Computational analysis was performed using the Advanced Research Computing

Laboratory server at the University of Technology Sydney (UTS), and the results of

the validation tests are shown in table 4.2. All the comparison used the Wilcoxon

signed-rank test, followed by FDR-adjusted p<0.05. Overall, the dual-task condi-

tion showed an increased EC across-network among the frontal, central, parietal,

occipital, motor, and temporal areas (figure 4.4 and 4.6). In addition, the EC under

workload task also varies in different fatigue states (figure 4.5, 4.6). The increased

and decreased edges were used from the EC connectivity matrix after the statistic

test between task conditions (Wilcoxon signed-rank test, FDR-adjusted p<0.05).

Then the total number of increased and decreased edges were calculated (figure

4.6). Compared to the single-task condition (LKT), more increased edges and less

decreased edges of brain connectivity were observed in the normal and reduced

fatigue groups (figure 4.6). However, there were more decreased edges of brain con-

nectivity than increased edges in the high-risk fatigue group in the delta, theta,

alpha and beta bands. Furthermore, the number of significant increase edges in A

case is higher or equal to V, indicates the enhance brain connectivity among brain

regions when the task difficulty increases. Of note, the reduced fatigue group showed

the highest number of increased edges across the delta, theta, alpha and beta bands

in both cases V and A (with the exception of delta and theta bands in case V). In

both V and A cases, the number of increased edges had an inverted U-shape trend

in the alpha and beta bands (figure 4.6). The number of increased edges in the A

case also showed the inverted U-shape trend in all bands (figure 4.6); however, the

V case showed a linear decrease trend in the delta and theta bands. Those results

indicate the effect of fatigue to the brain connectivity.
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Figure 4.4 : Topographical comparisons of significant EEG effective connectivity differ-

ences (p < 0.05) between task conditions. The first column shows a comparison between

the concurrent dual-task DASV and LKT (V), the second column shows a comparison

between the concurrent dual-task DASA and LKT (A), and the third column shows a

comparison between the concurrent dual-task DASA and DASV (AV). Line colors indi-

cate the differences in connectivity strength between electrode pairs, with red indicating

positive differences (more information flow) and blue indicating negative differences (less

information flow). The directions of the arrows represent the direct paths of inter-channel

information flow.

4.6 Discussion

Attention and cognition comprise a complex and dynamic process that involves

multiple brain cortical and subcortical regions (Gonzalez-Castillo and Bandettini

2017). The resting state and task performance periods are reportedly altered at

both the neuronal and system levels (Gonzalez-Castillo and Bandettini 2017). Dur-
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Figure 4.5 : Topographical comparisons of significant EEG effective connectivity differ-

ences (p < 0.01) between task conditions in each fatigue group. (a) Normal. (b) Reduced.

(c) High-risk. The first column shows a comparison between the concurrent dual-task

DASV and LKT (V), the second column shows a comparison between the concurrent

dual-task DASA and LKT (A), and the third column shows a comparison between the

concurrent dual-task DASA and DASV (AV). Line colors indicate the differences in con-

nectivity strength between electrode pairs, with red indicating positive differences (more

information flow) and blue indicating negative differences (less information flow). The

directions of the arrows represent the direct paths of inter-channel information flow (note:

V case used p<0.05).

ing the period of task performance, the brain typically converts to a connectivity

network of higher order than that in the resting state and reorganizes the network

based on task properties. Many studies have reported increased across-network

connectivity during task performance compared to that in the resting state during

visual attention tasks (Spadone et al. 2015; Kwon et al. 2017), cognitive tasks (Cole

et al. 2014; Wang et al. 2016), and working memory tasks (Shine et al. 2016a). We

hypothesized that the brain across-network connectivity may correlate with the task

load. In figure 4.4, we applied GC to calculate the differences in ECs under different

fatigue states as participants performed the LKT (single task), DASV (dual task)

and DASA (dual task). The LKT requires multiple senses to safely control a car,
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e.g., motor resources to control the steering wheel and visual sensing to observe

the road traffic (Lin et al. 2016). We simulated a real situation on the street in

which the participants were instructed to keep the car in the fixed lane and identify

the name of an animal displayed visually or auditorily. The DASV task employed

the visual modality; however, it may have required more memory attention than

only performing the LKT. Thus, the period from the concurrent stimuli event onset

to the participant’s first RT is critical because more brain resources are required

to process the dual/multiple tasks, including moving the car back into the fixed

lane and processing external information for the DAS task. Figure 4.4 shows that

the information flow was enhanced in the dual task compared to that in the sin-

gle task in the delta, theta, alpha, and beta bands. In addition, the DASA task

employed an auditory modality, which was substantially different from the visual

modality in the LKT, and the brain therefore tended to communicate more. More

information flows were exchanged within this period with the exception of connec-

tions in the left hemisphere in the delta, alpha and beta bands (figure 4.4). These

results suggested that the communication pathway between the frontal-executive

and occipito-parietal-perceptual regions was influenced by the dual-task condition,

which was consistent with previous studies (Serrien 2009; Kim et al. 2017) reporting

that an enhanced connectivity strength was correlated with task load.

The prefrontal area has been well established to function in the working mem-

ory process (Esposito et al. 1995), and this area is active during dual tasks that

engage the central executive system (Zanto et al. 2011). We hypothesized that

when individuals attempt to maintain their performance under demanding mental

tasks (LKT-DASV and LKT-DASA dual tasks), the prefrontal region is activated.

However, the capacity of the brain may be correlated with the fatigue state, as the

connectivity strength was reduced as a result of the limited remaining resources in

the high-risk group. However, the brain connectivity related to fatigue is not well

understood. Han et al. (2019) has shown that brain connectivity based on fatigue

state during the driving task linearly increased in delta and theta band, while Wang,

et al. (Wang et al. 2016) shown that there was a compensation between neural ac-
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Figure 4.6 : Number of significantly different brain connectivity edges between the dual-

and single-task conditions across brain networks (p < 0.05) in delta, theta, alpha and

beta bands. The green background indicates the normal fatigue group, the light green

background indicates the reduced fatigue group, the light red background indicates the

high-risk fatigue group and the blue background indicates the dual- vs single-task without

considering the fatigue state. The number indicates the number of brain connectivity

edge significant differences (p < 0.05). The light red/blue bar indicates the number of

significant edge increase/decrease differences in the concurrent dual-task DASV vs single-

task LKT comparison. The dark red/blue bar indicates the number of significant edge

increase/decrease differences in the comparison of the concurrent dual-task DASA vs single-

task LKT.

tivity in response to cognitive fatigue. In this study, we demonstrated that EC

varied under different states of fatigue (ref. figure 4.4, 4.5 and 4.6). In the reduced

and normal fatigue groups, information flow was enhanced in the dual-task condi-

tion compared to that in the single-task condition across brain regions in the delta,

theta, alpha and beta bands (ref. figure 4.4, 4.5 and 4.6). In contrast, the high-risk

group showed the reversed trend, as information flow was reduced across all brain

regions with the exception of the frontal region (ref. figure 4.5 and 4.6). Further-

more, the distribution of the edges difference in the multitasking (figure 4.6) is likely

inversed U-shape among three distinctive states, which is inline with the previous

studies (Wang et al. 2016; Huang et al. 2015). The possible explanation for this

phenomenon is that there was maybe a compensation between brain connectivity

to fatigue state of the participants. Our findings provide new evidence of across-
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network brain connections at different fatigue states and thus serve as promising

candidates for real-world applications. In contrast to the reduced and normal fa-

tigue groups, the high-risk fatigue group showed decreased magnitude connectivity

between brain regions, particularly from or to the occipital and parietal regions. In

contrast to the intuitive concept that EC increases as workload increases, EC de-

creases as workload increases for individuals with high fatigue. Thus, in real-world

applications, one single fatigue model cannot fit individuals with different fatigue

statuses, and multiple fatigue models that can adapt to varying fatigue states are

required to address individual variations. This study also provides a view of the

frontal area, an important region that may process information independent of the

fatigue state. The magnitude of connectivity in the frontal region was enhanced in

the dual-task compared to that in the single-task in the three fatigue groups. Most

importantly, this study identified the brain connectivity related to fatigue states.
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Chapter 5

Heading computation in active navigation

This chapter investigates the consistency of RFP in active navigation condition.

Furthermore, we explore the heading computation in a physical navigation experi-

ment. Chin-Teng Lin and Klaus Gramann conceived this work. Tien-Thong Nguyen

Do performed data collection and analysis, with assistance from Klaus Gramann. All

the authors discussed and wrote the manuscript (J-4) (Do et al. 2020b).

5.1 Abstract

Spatial navigation is a complex cognitive process based on multiple senses that

are integrated and processed by a wide network of brain areas. Previous studies

have revealed the retrosplenial complex (RSC) to be modulated in a task-related

manner during navigation. However, these studies restricted participants’ movement

to stationary setups, which might have impacted heading computations due to the

absence of vestibular and proprioceptive inputs. Here, we present evidence of human

RSC theta oscillation (4-8 Hz) in an active spatial navigation task where participants

actively ambulated from one location to several other points while the position of a

landmark and the starting location were updated. The results revealed theta power

in the RSC to be pronounced during heading changes but not during translational

movements, indicating that physical rotations induce human RSC theta activity.

This finding provides evidence of head-direction computation in RSC in healthy

humans during active spatial navigation.

5.2 Introduction

Spatial navigation is an essential human skill that helps individuals track their

changes in position and orientation by integrating self-motion cues from linear and
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angular motion (McNaughton et al. 2006). Spatial navigation involves several brain

regions for spatial information processing (Doeller et al. 2010; Ekstrom et al. 2003),

including the retrosplenial complex (RSC) (Epstein 2008), to translate spatial rep-

resentations based on egocentric and allocentric reference frames (Vann et al. 2009).

Head direction (HD) cells that compute HD and orientation (Clark et al. 2010) pro-

vide vital information for the translation of information based on distinctive spatial

reference frames. HD cells have been found in several brain regions, including the

parahippocampal (Bellmund et al. 2016; Vass and Epstein 2017) and entorhinal re-

gions (Chadwick et al. 2015) as well as the thalamus (Shine et al. 2016b) and the

RSC (Baumann and Mattingley 2010; Marchette et al. 2014; Shine et al. 2016b).

Theta oscillations have been described as an essential frequency underlying the com-

putation of HD and spatial coding in grid cell models (Brandon et al. 2011; Koenig

et al. 2011; Maidenbaum et al. 2018; Winter et al. 2015) in actively orienting ro-

dents. Due to its anatomical connections, the RSC is also a central hub in a human

brain network underlying several cognitive functions, including spatial orientation.

The RSC has a direct connection to V4 (occipital), the parietal cortex, and the

hippocampus and indirect connections to the middle prefrontal cortex (Vann et al.

2009). HD cells in the RSC encode both local and global landmarks simultane-

ously (Vann et al. 2009), supporting the central role of the RSC in encoding and

translating different spatial representations.

Several brain imaging studies using electroencephalography (EEG) to investi-

gate the fast-paced time course of the neural basis of spatial cognitive processes

have shown that the RSC translates between egocentric and allocentric spatial in-

formation (Gramann et al. 2010; Lin et al. 2015). The RSC works with the occipital

and parietal cortices to translate egocentric visual-spatial information embedded in

an egocentric (retinotopic) reference frame into an allocentric reference frame (Vann

et al. 2009; Lin et al. 2017). Most previous studies, however, were conducted in a

stationary setup, and they did not investigate the neural mechanisms contributing

to navigation in real-world environments, including motor efference, visual, pro-

prioception, vestibular, and kinesthetic system information input or subject-driven
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allocation of attention (Cullen and Taube 2017; Gramann 2013). During active

navigation, proprioceptive and motor-related signals significantly contribute to the

estimation of self-motion, leading to higher accuracy in estimating travel distance

and self-velocity (Becker et al. 2002; Frissen et al. 2011; Jürgens and Becker 2006;

Telford et al. 1995). Importantly, heading changes in naturalistic navigation are

associated with vestibular input, which, together with the visual system and pro-

prioception, is the driving input for HD cells (Cullen and Taube 2017; McNaughton

et al. 2006; Stackman et al. 2003). Although a few studies examined active spatial

navigation in humans, their experimental designs did not reflect the brain dynam-

ics associated with unrestricted near-real-life navigation experiences (Ehinger et al.

2014; Lin et al. 2015), or they relied on specific patient populations (Bohbot et al.

2017). In summary, there is little knowledge about the brain dynamics underlying

spatial navigation in actively navigating human participants and how these dynam-

ics subserve the computation and translation of spatial information embedded in

distinct frames of reference for orientation.

In the present study, we investigated the brain dynamics of healthy human par-

ticipants during active navigation. In an effort to overcome the restrictions of es-

tablished imaging modalities, we adapted the Mobile Brain/Body Imaging (MoBI)

approach (Gramann et al. 2011, 2014b; Makeig et al. 2009), allowing physical move-

ment of the participants. Thus, we recorded high-density EEG synchronized to

head-mounted virtual reality (VR) while participants physically performed a spatial

navigation task. Participants tracked their location and orientation by using self-

motion cues from the visual, vestibular, proprioception, and kinesthetic systems as

well as motor efferences. At the end of the trial, after traversing paths that included

several turns and straight segments, participants pointed to previously encoded land-

mark locations. Their brain dynamics were analysed using independent component

analyses (ICA) on high-density EEG data and subsequent source reconstruction.

This approach allowed us to assess the brain dynamics originating in or near the

RSC during the active navigation, focusing on i) the effect of active locomotion on

brain dynamics in participants preferentially using an egocentric reference frame
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or an allocentric reference frame for navigation (Gramann et al. 2005) and ii) how

multisensory convergence during the active movement changes the use of reference

frames underlying active navigation compared with established desktop setups. The

results demonstrate that active movement through space significantly changes the

preferred use of spatial reference frames. Furthermore, naturalistic navigation re-

veals strong theta synchronization in the RSC during navigation phases that require

heading computation and a substantial covariation of alpha desynchronization with

the accuracy in a landmark pointing task.

5.3 Materials and Methods

5.3.1 Participants

Eighteen healthy adults (age 27.8±4.2, 2 females) participated in this exper-

iment. All participants reported normal or corrected-to-normal vision. Each re-

ceived $60 for their participation. The protocol was approved by the University of

Technology Sydney (UTS) (Grant number: UTS HREC REF NO. ETH17-2095).

5.3.2 Experiment design and tasks

Reference Frame Proclivity Test (RFPT)

Prior to the main experiment, the participants completed an online RFPT (Gra-

mann et al. 2010, 2005; Goeke et al. 2015) to classify them as allocentric, egocentric,

or mixed-strategy navigators. In the test, participants had to navigate through a

tunnel on the flat screen monitor that included direction changes of various angles

in the horizontal plane (figure 5.1). When they reached the end, they were asked to

select which one of two homing vectors pointed back to the start of the tunnel. This

choice, made over 40 trials, determined their navigation style: egocentric or allocen-

tric if they consistently used that reference frame in at least 70% of the trials, or

mixed-strategy navigators if they switched between frames. Of the 18 participants,

five were egocentric navigators, seven were allocentric, and six were mixed.
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Figure 5.1 : Depiction of a passage through a tunnel with a turn to the right, with

nonparallel start and end segments. The left-side displays a nonturner (dark grey

head representing the perceived heading and the small light grey head representing

the cognitive heading) using an allocentric frame of reference, with the navigator’s

heading during the first segment (a), during the turn (b), and during the last seg-

ment (c) of the tunnel passage. Note that the perceived and the cognitive heading

diverge during the turn. On the right, a turner (light grey head representing the per-

ceived cognitive heading which is assumed to be identical to the cognitive heading)

is displayed who uses an egocentric frame of reference. During the first segment (a),

the turner’s heading is the same as that of a nonturner. During the turn, the axis

of orientation changes (b). At the end of the tunnel, the turner’s cognitive heading

is different from that of a nonturner. Note that turners build up an additional allo-

centric frame of reference if they are forced to react based on an allocentric frame.

There is no depiction of an additional allocentric reference frame for turners to em-

phasize the preferred use of an egocentric frame of reference by this strategy group.

To the right-side of the figure, examples of homing vectors are displayed with the

correct angular adjustment for a tunnel with one turn of 60� to the right, with panel

D depicting the correct homing vector for nonturners, and panel E that for turners.

Reprinted from Brain Research, Vol 1118, K. Gramann, H.J. Müller, B. Schönebeck,

G. Debus, The neural basis of ego- and allocentric reference frames in spatial naviga-

tion: Evidence from spatio-temporal coupled current density reconstruction, Pages

No. 116-129, Copyright (2021), with permission from Elsevier.
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Figure 5.2 : Experiment Design. a. Trial representation. At beginning of the trial,

participant had 4 seconds to remember a landmark position which appeared in front

of them (around 200 meters). Then participant performed navigation in walk1x

and walk2x with random 2 or 3 turns within each walk. In the middle of the trial,

participant performed the letter encoding task with random of 3, or 5, or 7 letters.

The green squares indicated for the spatial retrieval task, while red squares indicated

for the letter retrieval task. b. There were 20 turning points (4 walking paths, path

1 - point0.1.2.3.4.5, path 2 - point5.6.7.8.9.10), path 3 - point10.11.12.13.14.15) and path 4 -

point15.16.17.18.19.20) in this experiment. The red dots indicated for the turning points.

The reference frame proclivity test (RFPT) was based on the participant response

in path 3 at dot number 12, the participant was considered using egocentric or

allocentric if their response was left or right arrow respectively.
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Main Experiment Design

The experiment comprised a series of straightforward physical navigation exer-

cises interspersed with spatial encoding/retrieval tasks but complicated by letter

encoding/retrieval tasks to impose an additional cognitive workload on the partici-

pants. Each participant first performed four learning trials to familiarize themselves

with the tasks and instructions and subsequently completed 23 sessions, with each

session consisting of four trials, over the course of the full experiment. Each trial

proceeded as follows. First, participants were shown a global landmark and given

4 seconds to remember its position before it disappeared. Participants were then

given the instruction: “Point to the landmark location”. They responded by point-

ing a controller at their reckoned location and clicking the hair-trigger (R1, figure

5.2a). A beep sounded to indicate their response had been registered and that they

that should now start the first navigation task – straight walking with two to three

direction changes over the walk while keeping track of their location in the space.

More specifically, participants walked forward toward a floating red sphere at eye

height, which disappeared once they reached it. A new red sphere then appeared,

showing the next direction and distance, disappearing once they reached that, and

so on. In figure 5.2a, this task is denoted as “walk 1x”, where 1 indicates the first

walk and x indicates the number of red spheres. Once participants reached the

last red sphere, they stopped walking and the text “Attention” appeared in front

of them for 3 seconds, signaling the first spatial retrieval task was about to begin.

First, participants were instructed to “Point to the landmark location” by pointing

their controller to the landmark location as they remembered it and clicking the

hair-trigger (R2a, figure 5.2a). Next, two homing arrows appeared in front of them

– one pointing left, the other right – and they were asked: “Where is the starting

location?”. Responses were given by pointing their controller at one of the arrows

and clicking the trigger (R2b, figure 5.2a). The letter encoding task to impose addi-

tional cognitive burden followed. The participants were shown a series of 3, 5, or 7

letters of the English alphabet at one-second intervals between letters and asked to

remember them. The number of letters chosen and the order the letters appeared
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were both random. Three levels of difficulty were included to avoid familiarity with

the task, ensuring the cognitive load stayed high. Then, three seconds after the last

letter appeared, participants were shown a random letter and asked whether or not

that letter belonged to their letter list. Clicking the trigger indicated yes; pressing

the touchpad indicated no (R3, figure 5.2a). Participants then had 2 seconds of rest

before starting the second walk. A beep sound signaled the beginning of the second

navigation task (walk 2x, figure 5.2a), which followed the same straight walk to the

red sphere format as the first. However, this time, the participants had to remember

their letter list as well as keep track of their orientation to the landmark location

and starting position. When the second walk was finished, the participants were

asked to do three things: first, to confirm whether or not a random letter belonged

to their letter list (R4, figure 5.2a); second, to point to the landmark location; and,

third, to point to the starting location (R5a and R5b, figure 5.2a). The next trial

started when the participant indicated their readiness by clicking both bottom grips

on the controller. The maths of four trials with 2 to 3 random turns in each of

two walks meant that each session consisted of a total of 20 turns, as shown in

figure 5.2b. After 20 turns, the participant reset his or her location to dot number

0 before starting the next session to ensure that the total navigation segments were

within the experimental space. The RFPT in the active walk condition was assessed

only at point 12 (figure 5.2b) based on the participant’s response to the left arrow

(egocentric) or right arrow (allocentric).

Data Recordings

The scenario was developed in Unity (version 2017.3) with the VRTK plug-in and

performed in a VR environment using a head-mounted display (HTC Vive Pro; 2x

1440 x 1600 resolution, 90 Hz refresh rate, 110� field of view). All data streams from

the EEG cap, eye-tracking device, and head-mounted display were synchronized by

Lab Streaming Layer (Kothe 2014). The EEG data were recorded from 64 active

electrodes placed equidistantly on an elastic cap (EASYCAP, Herrsching, Germany)

with a sampling rate of 500 Hz (LiveAmps System, Brain Products, Gilching, Ger-

many). The data were referenced to the electrode located closest to the standard



77

position, FCz. The impedance of all sensors was kept below 5 k�.

5.3.3 EEG analysis

Pre-processing

All pre-processing steps were performed using MABLAB version 2018a (Math-

works Inc., Natick, Massachusetts, USA) and custom scripts based on EEGLAB

version 14.1.2 (Delorme and Makeig 2004). The raw EEG data were downsam-

pled to 250 Hz before applying a bandpass filter (1-100 Hz). Line noise (50 Hz)

and associated harmonics were removed using the cleanline function in EEGLAB.

Dead channels were then removed based on flatline periods (threshold=3 seconds),

correlations with other channels (threshold=0.85), and abnormal data distributions

(standard deviation=4). Missing channels were interpolated by spherical splines be-

fore re-referencing to the average of all channels. Noisy portions of continuous data

were removed through automatic continuous data cleaning based on the spectrum

value (threshold=10 dB) and power. criteria of maximum bad channels (maximum

fraction of bad channels=0.15) and relative to a robust estimate of the clean EEG

power distribution in the channel ([minimum, maximum]=[-3.5 5]). Then, adaptive

mixed independence component analysis (AMICA) (Delorme et al. 2012; Palmer

et al. 2006) was used to decompose the data into a series of statistically maximally

independent components (ICs) with the time source as the unit. The approximate

source location of each IC was computed using the equivalent dipole models in

EEGLAB’s DIFIT2 routines (Oostenveld and Oostendorp 2002). Last, the spatial

filter matrix and dipole models were copied back to the pre-processed but uncleaned

EEG data (no cleaning in the time domain) for further analysis (figure 5.3).

Event-Related Spectral Perturbation (ERSP)

Epoched data sets for each walking condition (walk1x or walk2x) were extracted

at the onset of navigation for a length of 14.5 seconds, including a baseline period of

2.5 seconds prior. Bad epochs were identified and removed in the sensor space (for

strongly affected head and body motion artifacts) and subsequently in the compo-

nent space (for artifact noise in the ICs). (i) In the sensor space, the bad epochs
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were labeled based on the epoch mean, standard deviation (std=5), absolute raw

value (threshold value=1000 �V), and kurtosis activity (refer to the pop autorej.m

function in EEGLAB). From 2714 epochs, 12.5% were deemed bad and removed.

(ii) In the component space, the time-warped ERSP patterns for each epoch were

calculated by computing single spectrograms for each IC and single trial based on

the newtimef() function using the standard parameters. The timewarp option was

used to linearly warp each epoch to a standard length based on the median time

point of sphere collision events. The time period before the onset of the active nav-

igation at the beginning of the trial was used as the baseline to estimate the ERSP

for each epoch with divisive baseline correction (Grandchamp and Delorme 2011) to

minimize single-trial noise. Epochs were then identified as bad if the z-score of the

ERSP epoch was larger than 3 standard deviations from the median of all ERSP

epochs (see the power panels in (figure 5.4, figure 5.5, and figure 5.6) Approximately

6% of the epochs were bad and removed based on their ERSP in the component

space.

Clustering

We first clustered the ICs based on the conventional EEGLAB k−means method.

Then, we repeated the clustering process 10000 times before performing an evalu-

ation to identify the best cluster of interest (COI) based on the region of interest

(ROI) cluster centroid (Gramann et al. 2018). All ICs with an RV of less than 30%

for all participants were grouped based on their dipole locations (weight=6), ERSPs

(weight=3), mean log spectra (weight=1), and scalp topography (weight=1). Then,

the weighted IC measures were summed and compressed with principal compo-

nent analysis (PCA), resulting in a 10-dimensional vector, followed by the k−mean

method (with 25 clusters). The target cluster centroid in Talairach space (RSC,

x=0, y=-45, z=10) was evaluated from 10000 clustering results based on the score

of each cluster solution, including: (i) the number of participants (weight=2); (ii)

ratio of the number of ICs per participant (weight=-3); (iii) cluster spreading (mean

squared distance of each IC to the cluster centroid) (weight=-1); (iv) mean RV of the

fitted dipoles (weight=-1); (v) distance of the cluster centroid to the ROI (weight=-



79

3); and (vi) Mahalanobis distance to the median distribution of the 10000 solutions

(weight=-1). The final COI score of -1.7 was derived from 15 participants, 29 ICs,

a spread of 677, a mean RV of 11.76%, and a distance of 7.3 units in Talairach

space. In the ERSP group-level analysis, the ERSP at COI was calculated first at

the IC level, then at the participant level, and finally at the group level. The time-

frequency data of all ICs of the same participant were averaged. Then, the ERSPs of

all participants were averaged for the final ERSP at the group level. The statistical

test for ERSPs was performed by a permutation test with 2000 permutations and a

multiple comparison correction using the false discovery rate (FDR, α=0.05).

5.4 Results

5.4.1 Behavior

The navigation routes participants were asked to follow were pre-defined. First,

they were shown a global landmark and asked to point to it. After the landmark

disappeared, they followed a path with several turns and, after two or three changes

in course, they were asked to point to the (now invisible) landmark. The navigation

task resumed with two or three more turns, and the trial concluded by asking them

to point to the invisible landmark a final time. The landmark pointing error (in de-

grees) was statistically significantly different at the different number of turns (NT)

using the Friedman test, (χ2(5)=53.34, p<.0001). The pairwise Wilcoxon signed

rank test (with false discovery rate-FDR corrected) between groups revealed sta-

tistically significant differences in landmark pointing error between NT0 and NT2

(p=.000046); NT0 and NT3 (p=.000046); NT0 and NT4 (p=.000046); NT0 and

NT5 (p=.000046); NT0 and NT6 (p=.000046); NT2 and NT4 (p=.007); NT3 and

NT4 (p=.00011); NT3 and NT6 (p=.003). The median error was 5.79� (degrees)

with 0 turns, 29.63� after 2 turns, 32.76� after 3 turns, 45.57� after 4 turns, 44.94�

after 5 turns, and 60.99� after 6 turns (figure 5.9).
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5.4.2 Event-related Spectral Perturbation (ERSP)

Repeated k-means clustering of independent components (ICs) resulted in 25

clusters with centroids located in several structures of the brain including the frontal

cortex, the left and right motor cortices, the parietal cortex, the RSC, and the occip-

ital cortex. Focusing on power spectrum changes in the RSC cluster, we computed

event-related spectral perturbation (ERSP) in the frequency range of 3 to 50 Hz

(figure 5.10). Broadband alpha and beta desynchronization were prominent during

the straight segments of navigation, replicating previous results from both passive

and active navigation studies (Gramann et al. 2010; Lin et al. 2015; Ehinger et al.

2014). In addition, a prominent theta burst became apparent directly after each

turn, i.e., at the time when people were computing heading changes before proceed-

ing along the next straight path. Moreover, the theta burst was present during all

turns, while the alpha and low beta desynchronization became more desynchronized

as the number of turns increased (figure 5.7).

5.4.3 Neural Correlations with Spatial Updating

Heading computations

Next, we calculated the correlations between power modulations in the RSC and

the landmark pointing errors. For a comprehensive analysis, we divided the power

modulations into different frequency bands and the pointing errors by allocentric

or egocentric reference frames for the entire course of the navigation task. Further,

to assess the impact of rotational compared with translational movement on RSC

spectral modulations, we extracted the first 10% of each segment, which included

the turn, and the middle 10% of each segment (50-60%), where participants were

only moving in a straight line, and calculated the correlations between power in

different bands and pointing errors with just these segments.

Participant-level Analysis

The allocentric group showed a significant positive correlation between errors in

the landmark pointing tasks and power changes in the following broadband frequency
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ranges: theta (r(34)=0.48, p=.00048), low alpha (r(34)=0.5, p=.00051), high alpha

(r(34)=0.46, p=.00047) and beta band (r(34)=0.4, p=.0012) (FDR-corrected) (see

figure 5.11A). Egocentric participants demonstrated a negative correlation between

the performance pointing task (error) and power changes in the following frequency

ranges: low alpha (r(22)=-0.34, p=.0.006), and high alpha (r(22)=-0.24, p=.011)

(FDR-corrected)(figure 5.11A). The inverse pattern of correlation coefficients of

power and individual performance error for allocentric and egocentric participants

was consistent across the entire navigation phase (10x10% time bins) (supplemen-

tary figure 5.8), revealing that RSC activity depends on their stationary reference

frames used to encode and integrate the spatial information.

Trial-level Analysis

In contrast to previous stationary navigation studies (Lin et al. 2015; Ehinger

et al. 2014), participants moved actively through the environment, receiving sen-

sory feedback from not only the visual system but also converging sensory evidence

about changes in position and orientation from their vestibular and proprioceptive

systems. This phenomenon opens the possibility that the participants’ preferred use

of spatial reference frames might change depending on the sensory input available

to them (Gramann 2013; Goeke et al. 2015). Therefore, we further investigated the

relationship between individual performance error and power changes in RSC on a

single-trial level. The pointing response at the end of the path required a binary

decision regarding whether the homing location was located to the left or right with

respect to the current position and orientation of the navigators (at point 12, figure

5.2B). The results of the single-trial reference frame classification demonstrated that

a large portion of participants preferentially used an egocentric reference frame in

stationary setups but switched to an allocentric reference frame with active naviga-

tion (figure 5.9B). In contrast, participants with a preference for using an allocentric

reference frame in stationary setups kept the same allocentric reference frame in the

active navigation scenario (figure 5.9B). Importantly, whenever participants used an

allocentric reference frame in the pointing task, irrespective of their habitual pro-

clivity toward an egocentric or an allocentric reference frame in stationary settings,
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there was a positive correlation between the pointing error and power changes in

the lower alpha band (r(100)=0.37, p=.000037 for stationary allocentric; r(44)=0.17,

p=.015 for stationary egocentric), higher alpha band (r(100)=0.13, p=.013 for sta-

tionary allocentric; r(44)=0.13, p=.016 for stationary egocentric), and beta band

(r(100)=0.34, p=.00009 for stationary allocentric; r(44)=0.0012, p=.0.00015 for sta-

tionary egocentric). However, pointing based on an egocentric reference frame (in

physical navigation) still revealed a negative covariation with power in the higher

alpha band (r(12)=-0.10, p=.024) (dark-blue color, figure 5.11A) and the beta band

(r(12)=-0.86, p=.000035 for stationary egocentric). Thus, the single-trial reference

frame analyses clearly revealed a systematic and more pronounced desynchroniza-

tion in the alpha band whenever an allocentric reference frame was used to respond

to a homing challenge.

5.5 Discussion

Spatial navigation is vital to purposeful movement as it requires a representa-

tion of our position and orientation in space as well as our homing trajectories. In

this study, we explored these processes through a typical stationary navigation task

but also a physical navigation task where the participants actually moved through

a large virtual space while we recorded and analyzed their brain dynamics using a

MoBI approach (Makeig et al. 2009; Gramann et al. 2011, 2014b; Jungnickel et al.

2019). We found that participants with a proclivity for using an egocentric reference

frame in stationary navigation tasks switched to an allocentric reference frame dur-

ing physical navigation. In contrast, participants with an allocentric proclivity in

stationary tasks still used the same reference frame during physical navigation. Im-

portantly, using this modified MoBI approach provided this first-ever opportunity to

describe theta synchronization in the RSC during heading computation in actively

rotating navigators. From our analyses, we find that alpha desynchronization in the

RSC occurs when retrieving spatial information from an allocentric reference frame

and translating it into an egocentric location pointing response.

Remarkably, navigators switched from their preferred egocentric reference frame
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to an allocentric reference frame when they were allowed to actively move through

space. Thus, the reference frame proclivity (RFP) observed in stationary naviga-

tion tasks is not consistent with that observed in active navigation tasks, including

naturally occurring sensory feedback from the visual, vestibular, proprioception,

and kinesthetic systems. More specifically, the majority of egocentric navigators

switched to an allocentric reference frame during physical navigation, while the al-

locentric group consistently used their preferred allocentric strategy. To anchor a

cognitive map with the environment, navigators can use local and global landmarks

(e.g., a mailbox, a building) and/or self-motion cues. In our navigation scenario,

we gave the participants a single prominent landmark only at the very beginning

of a trial that was invisible for the rest of the navigation task. Participants then

moved through space, walking straight toward a point and then locating and chang-

ing directions several times while moving away from their starting location (figure

5.2). Consequently, the participants tended to derive their orientations and posi-

tions in space by converging multiple sensory inputs to represent the original global

landmark position. Most participants, including the egocentric strategy group, re-

sponded as allocentric navigators in the homing direction test (figure 5.9B). This

finding suggests that human spatial navigation strategies are quite flexible, exploit

multisensory information, and depend on the particular type of response that is

required at the given moment. In contrast to previous desktop experiments asking

for a simple homing response that demonstrated a preference for distinct reference

frames (Gramann et al. 2005, 2010; Lin et al. 2015) the current task showed that

the majority of participants preferred an allocentric reference frame. Having to con-

stantly update one’s own position as well as the position of other entities in space

(landmark, home) likely fosters the use of an allocentric reference frame.

Moreover, the behavioral results in the landmark pointing task (figure 5.9A) fol-

lowed the leaky integrator model (Lappe et al. 2007; Harris and Wolbers 2012). This

model assumes that the encoded orientation, as the variable state, is incremented

with movement by multiplying the actual orientation gain factor. This process tends

to decay by an orientation-dependent leaky factor. In our trials, there were no vis-
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ible landmarks within the navigation task. Therefore, participants could not use

external landmarks to anchor their cognitive map. Instead, they had to derive their

orientation with each turn based on idiothetic information only. Thus, errors accu-

mulated at each turning point (figure 5.9A) and increased somewhat proportionally

to the number of turns in the scenario. In other words, the errors in the landmark

pointing task (at R1, R2a, and R5a, figure 5.2) are correlated to the number of

turning points (figure 5.9A).

Using a spatial filter approach and subsequent clustering of independent com-

ponents, we demonstrate the RSC to reflect specific aspects of the navigation task.

EEG contains subcortical activity and allows to localize deeper brain structures

(Seeber et al. 2019). Previous desktop studies have already revealed navigation-

related activity in or near the RSC (Gramann et al. 2010; Chiu et al. 2012; Lin

et al. 2015). However, even though theta oscillation is an important mechanism for

computing head orientation and providing a grid cell network (Brandon et al. 2011;

Koenig et al. 2011; Winter et al. 2015), it has not been reported in human brain

imaging studies using stationary setups. Notably, we found a strong theta synchro-

nization in the RSC during periods of heading changes, which indicates that physical

rotations induce RSC activity (figure 5.10). This has not been reported in previous

stationary studies. This theta oscillation was robustly observed with each turn by

navigators along the path. Through MoBI, our participants were able to make use

of naturally occurring spatial information, such as motor efference and cues from the

visual, vestibular, proprioception, and kinesthetic systems. Therefore, participants

could extract their head direction from HD cells activity (Shine et al. 2016b; Chen

et al. 2018), which is often eliminated in stationary setups. In addition, there is

evidence that the firing rate of HD cells decreases with restraints during navigation.

Compared with those in active locomotion, loosely restrained rats in passive move-

ment showed a nearly 24% reduction in the peak firing rates of HD cells (Zugaro

et al. 2001; Bassett et al. 2005), while tightly restrained rats (Taube 1995; Knierim

et al. 1995) showed near or complete suppression. The suppression of the HD cell

firing rate is due to disruption of the vestibular system, which is the essential sig-
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nal for estimating head direction (Cullen and Taube 2017; Stackman et al. 2003;

Muir et al. 2009). In previous human spatial navigation studies, the population was

limited to stationary participants. Thus, the vestibular information for HD signals

may have been eliminated (Gramann 2013). In this study, the participants received

vestibular information in addition to all other naturally occurring sensory modalities

while turning and walking. Accordingly, sufficient multi-modal sensory information

was available for them to compute their head directions. Therefore, theta oscilla-

tion occurred after each turning onset (figure 5.10), indicating heading computation

activity in the RSC, providing evidence of heading computation in healthy partic-

ipants in a physical spatial locomotion study replicating similar theta activity in

participants rotating on the spot (Gramann et al. 2018).

Furthermore, we replicated RSC alpha suppression, which has been previously

observed in spatial learning for maintaining orientation in both passive (Gramann

et al. 2010; Plank et al. 2010; Chiu et al. 2012; Lin et al. 2015) and active nav-

igation tasks (Ehinger et al. 2014). This alpha desynchronization might indicate

ongoing spatial transformations from egocentric to allocentric coordinates and vice

versa (Gramann et al. 2010). Although Kim and Maguire (2019) demonstrated that

RSC activity is correlated with behavioral performance in three-dimensional space,

how the use of distinct reference frames during navigation impacts RSC activity

was still unclear. Remarkably, in this study, we found that RSC activity system-

atically covaried with behavioral responses, and that this correlation depended on

the reference frame used. The use of an allocentric strategy revealed a positive cor-

relation of individual performance and alpha power, while an egocentric strategy

was associated with a negative correlation (figure 5.11). This general pattern was

confirmed using a single-trial analysis approach that identified the reference frame

underlying the single-trial pointing response of participants irrespective of their gen-

eral reference frame proclivity. The results clearly indicate that only the use of an

allocentric response and not the use of an egocentric response was associated with

desynchronization in alpha band activity.
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Figure 5.3 : The pipeline of EEG preprocessing.

Figure 5.4 : The ERSP before and after noise removal. The RSP ERSP before and

after noise removal at the participant level. The left figure shows the average ERSP

for participants before noise removal. The right figure shows the average ERSP

for participants after noise removal at: (a) one egocentric participant; and (b) one

allocentric participant.
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Figure 5.5 : ERSP in several brain regions. The ERSP in different brain regions

in or near the RSC (red), parietal cortex (blue), occipital cortex (pink), and neck

(white).

Figure 5.6 : Effective brain connectivity. The estimated effective connectivity of

the four clusters (the RSC, neck, near the ear on the left side, and near the ear on

the right side) in one participant in the (a) allocentric and (b) egocentric strategy

groups. The results indicate that theta activity in the neck cluster has no effect on

the RSC.
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Figure 5.7 : The permutation test (n=2000, FDR-correlated) of the RSC ERSP for

6 segments in comparison to segment 1.



89

Figure 5.8 : Correlation between landmark pointing error and ERSP at participant

level. These are correlation coefficients between performance and the RSC ERSP

in the continuous frequency (3-45 Hz) in the first ten percent (left column) and

middle ten percent (right column) of the segment length. The asterisk (*) indicates a

significant difference (p<0.05) between the allocentric (red) and egocentric strategies

(blue).
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Figure 5.9 : The results of participant behaviour. a. The participant behaviour in

the landmark pointing task. The X axis indicated for the number of turn points

in the trial, the Y axis indicated for the absolute error of participant when they

performed the landmark pointing task (the error was measured by the angular dif-

ference between the pointing vector and the participant to landmark vector). The

regression was visualized by the red line (*, **, ***, **** indicated for p<.05, p<.01,

p<.001, p<.0001 respectively). b. The RFPT results were in both passive condi-

tion (stationary test with the tunnel paradigm) and active condition (based on the

participant’s response at position 12, path 3 in the Figure 1b). Three groups of

strategies egocentric, mixed and allocentric were colour coded with green, blue and

red, respectively.
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Figure 5.10 : Retrosplenial complex (RSC) event-related spectral perturbation

(ERSP). a. Dipole locations of independent component ( in or near retrosplenial

complex (RSC) cluster at the sagittal, coronal, and top view respectively and the

corresponding mean of scalp map. b. The RSC ERSP with respect to segment of

turns from 1 to 6 turns. c. The permutation test (n=2000, FDR-correlated) of the

RSC ERSP in 6 segments.
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Figure 5.11 : RSC ERSP correlated with participant performance in the first 10

percent (a) and mid 10 percent (b) of the segment length in both participant and trial

level respectively. The top figure showed the correlation coefficients computed (the

number on the bottom right corner, red color indicated for statistical significance;

*, **, ***, **** indicated for p<.05, p<.01, p<.001, p<.0001 respectively) between

individual performance and RSC ERSP at participant level in different frequency

band at theta (4-8 Hz), low Alpha (8-10 Hz), high Alpha (10-12 Hz), and beta

(12-30 Hz). The row indicated for the RFP strategy in the passive RFPT response:

the red colour indicates for allocentric, and blue indicates for egocentric strategy.

The bottom figure showed the correlation coefficients computed between individual

performance and RSC ERSP in the trial level at same the range of frequency as top

figure. The color-coded indicated for RFP strategy; the lighter color in the same

RFP strategy group indicated for active allocentric response, while the darker color

indicated for active egocentric trial response.
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Chapter 6

Local information processing in RSC under

different navigation load conditions

This chapter investigates the local information processed via RSC in different navi-

gation load conditions in a physical navigation experiment. Chin-Teng Lin conceived

this work. Tien-Thong Nguyen Do performed data collection and analysis. All the

authors discussed and wrote the manuscript (J-5) (Do et al. 2020a).

6.1 Abstract

Spatial navigation is a complex cognitive process based on vestibular, proprio-

ception, and visual cues that are integrated and processed by an extensive network

of brain areas. The retrosplenial complex (RSC) is an integral part of coordination

and translation between spatial reference frames. Previous works have demonstrated

that the RSC is active during a spatial navigation task. The specifics of RSC activ-

ity under different navigation loads, however, are still not characterized. This study

investigated the local information processed by the RSC under different naviga-

tion load conditions manipulated by the number of turns in the physical navigation

setup. The results showed that the local information processed via the RSC, which

was reflected by the segregation network, was higher when the number of turns in-

creased, suggesting that RSC activity is associated with the navigation task load.

The present findings shed light on how the brain processes spatial information in a

physical navigation task.

6.2 Introduction

Spatial navigation is an essential human skill. Without it, we would be lost—literally.

However, in comparison to other areas of the brain, relatively little is known about
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how our sense of direction works. We know that several regions of the brain (Doeller

et al. 2010; Ekstrom et al. 2003) are involved in integrating and translating our move-

ments (McNaughton et al. 2006), visual cues, proprioceptive information, and other

sensory inputs into a mental representation of space (Cullen and Taube 2017). One

of these brain regions is the retrosplenial complex (RSC) (Epstein 2008), which is

a central hub between the areas of the brain that govern visual processing, asso-

ciations, learning, and memory and is indirectly linked to planning and decision-

making. The RSC is thought (but not confirmed) to act as a bridge between per-

ception and memory and may be involved in imagining future events or processing

scenes. Studies have also shown that the RSC plays an important role in helping

us switch between spatial reference frames (Gramann et al. 2010; Lin et al. 2017):

egocentric (self-centered) navigation, where we view the world around us in relation

to ourselves, and allocentric (world-centered) navigation, where we reference one

object to another (Vann et al. 2009).

However, only a few studies have explored brain dynamics in spatial navigation in

full-body movement due to the limitation of brain imaging hardware. A stationary

experiment involved participants laying still in a fMRI machine (Doeller et al. 2010);

therefore, the experiments were not designed to explore the neural mechanisms that

contribute to navigation in real-world environments. Other studies did involve freely

moving participants, but the participants were clinical subjects suffering from severe

epilepsy (Bohbot et al. 2017).

Moreover, cognitive function depends on sufficient configuration among brain

regions (Shine 2019). Thus, examining brain network properties could help us better

understand the underlying mechanism of cognitive function. There is clear evidence

of the relationship between cognitive performance, network segregation and network

integration, which are essential attributes of the brain network. Notably, a decline

in network segregation leads to lower cognitive performance (Cassady et al. 2019;

Chan et al. 2014; King et al. 2018; Ng et al. 2016).

Nevertheless, many functional connectivity (FC) studies have investigated the

larger-scale brain network, which may not reflect the involvement of each region in
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task execution. Those studies performed analysis at the global level and consid-

ered all the nodes of the brain to have the same roles, as opposed to scrutinizing

specific brain regions related to the experimental task. Furthermore, brain network

segregation and integration are not generalized for all tasks and rely on the cogni-

tive demand of specific tasks (Cohen and D’Esposito 2016). For instance, at the

global level, in the N-back experiment, the 2-back showed a higher integration than

the 0-back (Cohen and D’Esposito 2016; Fransson et al. 2018; Shine et al. 2016a).

Moreover, trial accuracy was positively related to network integration (Cohen and

D’Esposito 2016). However, this feature is not the same for all subnetworks in the

brain and even contradicts findings in the frontoparietal network (Fransson et al.

2018).

A few studies have investigated specific brain regions related to experimental

tasks. A study on sensorimotor performance demonstrated that reduced sensori-

motor network segregation leads to poorer behavioral performance (Cassady et al.

2019). The same relationship between sensorimotor network segregation and per-

formance has been found at the whole-brain level (King et al. 2018). Moreover, in-

creased network segregation reflects the greater autonomy of task-related networks

and saves resources for other cognitive demands (Bassett et al. 2015). Thus, there

might be a mechanism to segregate brain tasks related to processing cognitive tasks.

Furthermore, investigating brain activity across a network under a specific fre-

quency might rigorously reflect their attributions. Theta frequency has been revealed

as an important mechanism of head direction (HD) cell activity in physical navi-

gation (Brandon et al. 2011; Koenig et al. 2011; Winter et al. 2015). In addition,

theta frequency was modulated and correlated with the mental workload and was

reflected in the frontal midline region (Onton et al. 2005). Therefore, examining the

network properties under a specific frequency in a distinct brain region related to an

experimental task may reflect a precise mechanism of the brain network in a specific

task-related brain region (Mohan et al. 2016). In short, studying a large-scale brain

network may reflect the whole cognitive stage of the brain but might not fully reveal

the specific mechanism of the task-related brain region. It is necessary to investigate
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the segregation and integration of specific brain regions related to the experimental

task.

This study investigated the brain network dynamics of healthy human partic-

ipants during active navigation under different workload conditions. To overcome

the movement restrictions associated with standard brain imaging modalities, such

as fMRI, we adapted a mobile brain/body imaging (MoBI) system (Gramann et al.

2014b, 2011; Makeig et al. 2009), to give participants the freedom to move natu-

rally. We equipped participants with a high-density EEG cap synchronized to a

head-mounted virtual reality (VR) display and then asked them to walk paths that

included several turns and straight segments while we recorded EEG signals. At

various intervals, participants were also asked to point in the direction in which a

landmark they had previously seen might be (see Fig. 6.1). These physical naviga-

tion tasks required the participants to track their location and orientation through

motor efferences and self-motion cues from their visual, vestibular, proprioception,

and kinesthetic systems. Hence, the data we gathered allowed us to assess the net-

work segregation and integration in the RSC and frontal regions of each walking

segment during actual navigation. The results showed that the segregation of the

RSC region increased with a higher number of turning points (NT) during physical

navigation, reflecting that the navigation load modulated RSC segregation. In this

thesis, the terms number of turns, and number of segments are used interchangeably

to mean the navigation load.

6.3 Materials and Methods

6.3.1 Experimental Design

Refer to the Chapter 5, section 5.3.

6.3.2 EEG analysis

All the preprocessing steps were performed in EEGLAB (version 14.2.0) (De-

lorme and Makeig 2004; Delorme et al. 2011). The EEG data were first bandpass

filtered (1-100 Hz) and then downsampled to 250 Hz. Next, all idle segments with
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Figure 6.1 : The experimental design. (a) Trial representation. At the beginning of

the trial, participants had 4 seconds to remember a landmark, which was presented

approximately 200 meters in front of them. Then, the landmark disappeared (in the

rest of the trial), and participants answered the question: “Where is the landmark

position?” (Resp. 1, green square). Next, participants freely walked in a predefined

path with the number of turns points being randomly chosen as 2 or 3 (walk 1x).

Subsequently, participants were asked to recall the landmark position (Resp. 2,

green square). Next, participants encoded a set of letters (3, 5, or 7 letters) (orange

square) and then performed the letter-retrieval task (Resp. 3, red square). Then,

participants started the second walk (2x) with 2 or 3 turn points. After finishing

the walk, participants performed the letter-retrieval task (Resp. 4, red square)

and spatial-retrieval task (Resp. 5, green square). (b) EEG cap set up. (c) The

participant responded to a landmark position.

zero values in the raw data (continuous data) were removed (threshold = 3 sec-

onds). Then, an automatic cleaning segment was run to remove the noise in the

data. Next, the bad channels were identified and removed, and the missing channels

were interpolated by applying the sphere method. Next, the high-power segments



98

Figure 6.2 : pipeline for brain network segregation and integration analysis.

in the continuous data were identified and removed before rereferencing to the aver-

age. Subsequently, adaptive mixed independence component analysis (AMICA) was

applied to the rereferenced data to decompose them into maximally independent

components (ICs). Then, the dipole-fitting routine (Oostenveld and Oostendorp

2002) was applied to identify the locations of the ICs. Next, the AMICA solution

was copied back to the rereferenced dataset. The nonbrain components were iden-

tified and removed by using the IClabel toolbox (Pion-Tonachini et al. 2019) (with

a confident threshold > 95%) before extracting data from six walking navigation

segments with respect to the NT during navigation. Then, the bad epochs were

identified and removed by checking the raw value (threshold = 100 μV).

6.3.3 Functional connectivity

Distributed source localization was used to address the inverse problem. The

dipole brain source localization activity was estimated from cleaned epoched data,

and then the brain FC was estimated from the source activity by using the Brain-

storm toolbox (version 02-Jun-2020) (Tadel et al. 2011).The epoched data were first

coregistered with the MRI template (“ICBM152” template (Fonov et al. 2009)) and

EEG sensor locations (same template for all participants) in the same anatomical
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landmarks. Next, the lead field of cortical mesh (15,002 vertices, 29984 faces) was

estimated by using openMEEG (Gramfort et al. 2010; Kybic et al. 2005). The

noise covariance matrix was calculated using the idle period during the experiment.

Then, a standardized low-resolution brain electromagnetic tomography (sLORETA)

method (Pascual-Marqui et al. 2002) was used to reconstruct the regional time series

from the 68 brain regions (Desikan-Killiany (Desikan et al. 2006), FreeSurfer (Fischl

2012)). Finally, the FC among regions was estimated by the phase-locking value

(PLV) (eq. 6.1) (Lachaux et al. 1999) in four different frequency bands: delta (1–4

Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz). Then, the highest 10%

(of the highest PLV values) were kept for further estimating the network properties

(Rizkallah et al. 2019), and the remaining PLV values were set to zero.

Phase locking value:

PLV (τ) = |
1

δ

∫ τ− δ
2

τ+ δ
2

ej(φy(τ)−φx(τ)dτ | (6.1)

where φy(τ) and φx(τ) indicate the phases of the time series signals x and y at

time τ , respectively, and δ indicates the size of the window. PLV values ranged

between 0 (no phase-locking) and 1 (full synchrony).

6.3.4 Network properties

The network properties (segregation and integration) were calculated from the

PLV connectivity matrix at each frequency of each walking segment. The network

segregation indicated the local information processing at each node (each cortical

region) related to the experimental task, while network integration indicated the

global information exchanged at each node (each cortical region) related to the

experimental task. The network properties were calculated for all walking segments

of each participant. Then, a statistical test was conducted to check the impact

of the walking sequence on the network properties. In this study, we used the

clustering coefficient (eq. 6.2),which reflected local information processing in each

region, for measuring segregation, and the participation coefficient (eq. 6.3), which

reflected local information processing in each region, for measuring integration. Both
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measurements were calculated using the Brain Connectivity Toolbox (Rubinov and

Sporns 2010).

Network segregation:

Ci =
2ti

ki(ki − 1)′
(6.2)

where ti represents the number of triangles around node i and ki indicates the number

of edges connected to node i. The clustering coefficient is the portion of links among

a node’s neighbors divided by the number of connections that could exist between

them, which is 0 if no connections exist and 1 if all neighbors are connected.

Network integration:

Pi = 1−
s=1∑
Nm

(
kis
ki

)2 (6.3)

where Nm indicates the number of modules, kis represents the number of edges

between node i and other nodes in module s, and ki is the total degree of node i. The

participation coefficient of a node is close to 1 if its links are uniformly distributed

among all the modules and 0 if all of its links are within its own module.

6.4 Results

6.4.1 Behavioral performance

Linear regression was conducted to determine whether the NT affected partic-

ipants’ pointing errors. The landmark-pointing error (in degrees) was significantly

different under different NTs using the Friedman test, χ2(5) = 53.34, p<.0001. A

significant regression equation was found (F(5,96) = 9.18, p<.0001), with an R2 of

0.32. Then, the Wilcoxon sign-rank test was used to check the significant difference

in participants’ pointing landmark errors between different NTs (table 6.1).

6.4.2 Functional connectivity

The group average FC was estimated across six walking segments (Fig. 6.3,

visualized by using the BrainNet Viewer (Xia et al. 2013)). Then, the Fried-man

test was recruited to measure the significant difference of the network properties

(segregation was measured by the clustering coefficient, and integration was mea-
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Number of turning points (NT) p-adjust value

0 2 0.000046****

0 3 0.000046****

0 4 0.000046****

0 5 0.000046****

0 6 0.000046****

2 3 1

2 4 0.007**

2 5 0.1

2 6 0.075

3 4 0.000114***

3 5 0.1

3 6 0.003**

4 5 0.1

4 6 0.876

5 6 0.114

Table 6.1 : Error in the landmark pointing task. The first and second columns

indicate the number of turning points, the third column contains the p-values (FDR-

adjusted) of the Wilcoxon signed-rank tests (the *, **, ***, and **** indicate for

p<.05, p<.01, p<.001, and p<.0001, respectively.

sured by the participation coefficient) across walking segments, followed by the

post hoc pairwise Wilcoxon signed-rank test (FDR-corrected). For network seg-

regation, the Friedman test showed significant differences in the frontal delta band

(χ2(5) = 23.18, p=.00031), frontal theta band (χ2(5) = 12.93, p=.024), frontal al-

pha band (χ2(5) = 14.61, p=.012), and RSC theta band (χ2(5) = 17.44, p=.0037).

For the network integration, the Fried-man test showed there was a statistical dif-

ference in frontal theta band (χ2(5) = 18.68, p=.0022). Post hoc pairwise Wilcoxon

signed-rank (FDR-corrected) results showed that there was a significant difference
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Figure 6.3 : The landmark-pointing response error (absolute) across walking seg-

ments with a distinct NT during the navigation trial. The Wilcoxon signed-rank

tests were used to check for significant differences between behavior performance (*,

**, ***, and **** indicate p<0.05, p<0.01, p<0.001, and p<0.0001, respectively)

in the clustering coefficient in the frontal theta (segment 1 and segment 5, p=.042;

segment 2 and segment 5, p=.042); frontal alpha (segment 1 and segment 4, p=.049;

segment 1 and segment 6, p=.025; segment 3 and segment 4, p=.027; segment 3 and

segment 6, p=.025), and RSC theta (segment 2 and segment 6, p=.011; segment 3

and segment 6, p=.018; segment 4 and segment 6, p=.007; segment 5 and segment

6, p=.046) values.
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Figure 6.4 : Functional connectivity of the brain network across six walking segments

in the (a) theta band and (b) alpha band. The nodes indicate brain regions (based

on 68 Desikan-Killiany atlas). The edges indicate a significant connection between

nodes; the edge size indicates the strength of the connection.

6.5 Discussion

Spatial navigation is a vital aspect of many daily activities that require updating

position and orientation information as well as computing a homing trajectory. The

present study addressed these processes in an active navigation task under different

mental workload conditions by manipulating the NT that allowed navigators to

move through a large virtual space. We recorded and analyzed the brain activities

from navigating participants using the MoBI approach (Gramann et al. 2011, 2014b;

Makeig et al. 2009; Jungnickel et al. 2019). We found that participant performance
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measured by landmark-pointing errors increased as the navigation load increased,

which was manipulated by the NT during the navigation. In addition, we found that

this navigation load covaried with RSC segregation. When the NT increased, RSC

segregation increased in the theta band measured by the PLV connectivity matrix.

First, we analyzed participants’ behavior in the landmark point task to check the

effect of turning points on navigation performance. As expected, landmark-pointing

errors increased as the NT increased (Fig. 6.3). In other words, the behavioral re-

sults revealed that an increasing NT led to greater difficulty in navigation. Therefore,

the NT in this experimental design manipulated the navigation load. The possible

explanation for this decline in path integration performance could be biased veloc-

ity estimation (Lakshminarasimhan et al. 2018) or leaky integration (Lappe et al.

2007).However, in the present study, participants actively ambulated from a location

to several other locations; thus, the brain can receive rich information from motor

efference, visual, proprioception, vestibular, and kinesthetic systems. Therefore, the

main corruption factor for this decline in landmark-pointing performance could be

explained by the Stangl et al. (2020) model. The accumulating noise in the traveled

distance increased with the NT, which led to an increased error in the pointing task.

Spatial navigation involves several brain regions that communicate and exchange

information via the brain network. The synchronization of cortical oscillations has

been believed to be a mechanism for this communication and computation (Nadasdy

2010). Through a specific frequency, a subpopulation of the neuronal population

will likely be coactivated, interact with other regions, and exchange information.

Therefore, the synchronization among brain regions reflects both the segregation of

the cortical population for processing incoming information and integration among

regions for transferring information (Cavanagh and Frank 2014). Thus, we further

investigated the brain dynamics in each walking segment under specific frequencies,

which may reflect processing during active navigation. There is a growing body of

evidence demonstrating that theta-band oscillation plays a role in memory encoding

(Onton et al. 2005), retrieval (Mitchell et al. 2008), and heading computation activity

(Winter et al. 2015). The theta phase has been reported as a plausible mechanism
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for neuronal computation and communication (Cassady et al. 2019). In addition,

theta oscillation was reported as an important mechanism for HD cell activities

(Winter et al. 2015). Therefore, investigating the brain network properties that

were analyzed in the theta band might reflect the underlying mechanism of the

brain regions subserving cognitive navigation processing. The results of the network

segregation further showed that navigation pointing errors seems to correspond to

frontal segregation (Fig. 6.5a). A higher NT led to poorer behavioral performance

and a decrease in frontal segregation in the theta band.

Remarkably, in the present work, we found that RSC segregation increased with

an increased NT. This result revealed that RSC activity was modulated by the

navigation load (NT). The RSC coordinates with the parietal and occipital regions

to translate different spatial reference frames (Vann et al. 2009). In addition, the

RSC communicates with the hippocampus to update the spatial information of the

cognitive map, which is in the form of an allocentric framework (Epstein et al. 2017;

Vann et al. 2009). Furthermore, HD cells are present in several regions in the brain,

including the RSC (Epstein 2008). HD cells exchange information across the network

via theta oscillation to modulate grid cell formation in the parahippocampus (Winter

et al. 2015). As a result, considering the brain as a complex system, the RSC plays a

role as a hub in the brain network to coordinate the in and out spatial information. In

previous studies (Gramann et al. 2010; Lin et al. 2015), the experimental setup was

performed in the stationary condition with only an optical flow visual information

stimulus, and the head direction activity, which obtains input from the vestibular

system, might be attenuated. In the current study, participants could freely navigate

and receive richer sensory information via their movements. Thus, the activity of

the RSC might depend on the amount of spatial information that needed to be

processed. Therefore, when the navigation load increased, the local information

processed in the RSC was higher, which was measured by the clustering coefficient.

These study results provide the first evidence that RSC activity covaries with spatial

information processing.
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Figure 6.5 : Graph properties at the frontal and retrosplenial complex (RSC): (a)

Clustering coefficient (a) and (b) participation coefficient across six walking segments

in various frequency ranges. Pairwise post hoc Wilcoxon signed-rank tests (FDR-

corrected) were used to check for significant differences between walking segments

(* and ** indicate p<0.05 and p<0.01, respectively).
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Figure 6.6 : Network atlas.
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Figure 6.7 : Clustering coefficient among different brain networks, including the

whole-brain network, frontoparietal network, somatosensory network, visual net-

work, and default mode network across walking segments under various frequencies.
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Figure 6.8 : Participation coefficients among different brain networks, including the

whole-brain network, frontoparietal network, somatosensory network, visual net-

work, and default mode network, across walking segments under various frequencies.
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Chapter 7

Conclusion and Future Work

This thesis systematically unpacked the brain dynamics involved in multitasking

in active navigation. We first designed two experiments that mimicked our daily

navigation tasks: driving and walking. Due to the sensitivity of the measured EEG

data, the tasks were designed to be from semi-active in the driving experiment, where

participants could use their hands to control the car, to active navigation, where

participants could use their full-body movement to perform the task. The simulated

driving was mostly related to investigating brain dynamics in concurrent tasks, while

the free ambulatory walking experiment demonstrated the neural activity in RSC

in physical navigation.

The concurrent multitasking driving systematically exploring the executive con-

trol system that governs coordination and allocation of attention across multiple

tasks. This study obtained evidence of the comodulatory activities that govern the

allocation of attention across different stimulus modalities in dual-task experiments

(Chapter 3). The IMA was applied to the spectra of temporally independent EEG

components obtained from sessions using different stimulus modalities to contrast

the differences of the resulting comodulators. For each experimental case, we found

spectral fluctuations in distinct cortical areas that were mediated by the IM. The re-

sults demonstrated synchronized spectral fluctuations between distinct components.

Furthermore, the results showed that the activation of the IM was related to con-

tinuous, dynamic allocation of attentional brain resources. Though the attentional

resources were limited, the components had different spectral projection weights un-

der different stimulus modalities engaged by the dual tasks. Regarding the effect

of distractions on the brain-behavior relationship, the attentional resource alloca-

tion showed that the frontal component was allocated more attentional resources
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for cognitive processing. In the occipital component, the region was associated with

sensory processing or stimulus selection. Thus, more attentional resources were al-

located while performing in dual-task conditions. Taken together, it was shown that

secondary stimuli significantly affect brain-behavior relationships. Such findings

could have major implications for understanding the underlying brain mechanisms

that mediate synchronization across brain regions and govern the allocation of at-

tention in distracted driving. The results of this simulated driving study could be

a useful feature that can be adapted in the realistic driving experience to detect

distracted driving based on the brain-behavior relationship.

Then, we further examined dynamic EEG changes in ECs across different fatigue

states during the performance of single and dual tasks in the same simulated driving

experiment (Chapter 4). Overall, increased EC was evident across the entire brain

network during the dual tasks, which involved several brain regions. The EEG

EC in the high-risk fatigue group was lower across all brain regions except the

frontal region, which showed increased EC in the concurrent dual tasks compared

to that in the single task. These brain network dynamics may have implications

for understanding the complex neurophysiology of relationships between real-world

fatigue and task conditions.

Furthermore, we analyzed some of the behaviors and neural dynamics associated

with physical navigation (Chapter 5). We found that theta oscillations originating

from the RSC are present during human navigation, more prominent while com-

puting direction changes, and consistently synchronized irrespective of the length

of the total path walked. In addition, retrieving spatial information is associated

with alpha modulations in the RSC. As the first evidence of how our sense of direc-

tion works in healthy moving humans, these findings demonstrate that, for some,

brain dynamics are not the same when thinking about navigating through space as

opposed to actually moving through space.

Lastly, we investigated the behavior and neural dynamics in active spatial nav-

igation under different workload conditions (Chapter 6). The behavior showed the

increased error in the landmark pointing task when the number of turnings was
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higher. We further investigated neural activity to find the underlying mechanism

for this phenomenon. We found that the RSC local information processing via

RSC increased when the number of turn points increased, reflecting that the RSC

plays an important role in coordinate and process information in active navigation.

In addition, we found that the decline in frontal segregation might reflect spatial

navigation performance. These findings demonstrate that human brain dynamics

systematically vary in stationary and physical navigation experiments. The change

in RSC segregation could be an important feature for monitoring navigation work-

load in actively exploring space.

The results from studies on simulated driving and physical navigation provide

some useful features that can be applied in real-life applications. Chapter 3 revealed

that the frontal and parietal power correlated with the task-load. Chapter 4 further

showed that there was an increase in brain connectivity when the task-load was

higher. However, this brain pattern is different in the high fatigue group, which was

measured based on sleep-related fatigue. Despite the driving simulation providing

meaningful features for mental workload, the experimental design was limited to a

semi-physical task, where participants still sat in the car. The participants could

control the wheel, but their heads still kept looking toward the screen. This ar-

rangement might eliminate other sensory effects that are often involved in real-life

situations.

Chapter 5 continued to leverage the complexity of the experimental design. The

participants could move freely in different locations inside the virtual environment.

In this experimental design, the participant could receive richer information from

motor efference, visual, proprioception, vestibular, and kinesthetic systems. How-

ever, the data in this active navigation experiment contained more noise than in the

stationary experiment. The work in Chapters 5 and 6 overcame this issue by sys-

tematic analysis of the data using repeated k-mean for localizing the brain source of

activation and effective connectivity to estimate the information flow between brain

source and muscle cluster (Chapter 5) and distributed-source approach (Chapter 6).

Thus, we believe that the findings in this experiment are reliable and non-sensitive
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to noise from complex movement actions. Chapter 5 further provided information

on the activity of the head direction cells network in active ambulation. This fea-

ture has been found in active movement experiments in rodents but not in healthy

human participants. Chapter 6 demonstrated that the local information processed

in the RSC is correlated with navigation load.

Frontal theta might reflect mental workload in multiple tasks. The RSC theta

indicates heading computation in active navigation, and the RSC clustering coef-

ficient might indicate navigation load with physical movement. Thus, the findings

can provide useful features for supportive navigation hardware in the future.

There are various possibilities for further work. This EEG analysis pipeline has

been evaluated in other work with different experimental designs, ensuring that it

can be replicated and that it cleans the EEG data. Although this technique is

solid in the current work, it could be improved by minimizing the error in source

localization. In this work, we used the same MRI template for all participants; thus,

the solution for inverse problem in dipole fitting and distributed source remains the

error. In future work, we might need an individual MRI template of a participant

to address this issue.

At the moment, EEG seems to be appropriate brain imaging hardware to inves-

tigate ambulatory spatial navigation. However, the features found by EEG in this

work need to be confirmed with other brain imaging methods, such as MEG and

fMRI. With rapid developments in technology, active navigation studies might be

benefit from mobile MEG or even mobile fMRI hardware. However, that scenario

may not happen within a decade.

This work is a step forward in bringing research from the laboratory to real-

life applications. Although participants could perform the task with their full-body

rotation and translation, the experimental design is still not sufficient to control

co-founding factors. Thus, future work might involve more components to mimic

dynamics and complexity from real-life situations.

And finally, the completed system of navigation assistance should be built to
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evaluate the consistency of those human brain features. Intuitively, this system can

assist navigators in navigating efficiently by adaptive presentation information in

the head-mounted display based on their cognitive stages. Moreover, this completed

system can be useful in many ways, like preventing lost, reducing mental workload.

However, this evaluation will require a tremendous effort to be a success.
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Bellmund, J. L., Deuker, L., Schröder, T. N. & Doeller, C. F., 2016, ‘Grid-cell

representations in mental simulation’, Elife, vol. 5, p. e17089.

Bertram, E. H., 2010, ‘Exploring the thalamus and its role in cortical function’,

Journal of Neuro-Ophthalmology, vol. 30, no. 1, pp. 110–111.

Betti, V., Della Penna, S., de Pasquale, F., Mantini, D., Marzetti, L., Romani, G. L.

& Corbetta, M., 2013, ‘Natural scenes viewing alters the dynamics of functional

connectivity in the human brain’, Neuron, vol. 79, no. 4, pp. 782–797.

Bird, C. M., Capponi, C., King, J. A., Doeller, C. F. & Burgess, N., 2010, ‘Establish-

ing the boundaries: the hippocampal contribution to imagining scenes’, Journal

of Neuroscience, vol. 30, no. 35, pp. 11688–11695.

Blumenfeld, H., Rivera, M., McNally, K., Davis, K., Spencer, D. & Spencer, S., 2004,

‘Ictal neocortical slowing in temporal lobe epilepsy’, Neurology, vol. 63, no. 6, pp.

1015–1021.

Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T., Witter, M. P., Moser,

E. I. & Moser, M.-B., 2010, ‘Grid cells in pre-and parasubiculum’, Nature neuro-

science, vol. 13, no. 8, p. 987.

Bohbot, V. D., Copara, M. S., Gotman, J. & Ekstrom, A. D., 2017, ‘Low-frequency

theta oscillations in the human hippocampus during real-world and virtual navi-

gation’, Nature Communications, vol. 8, p. 14415.

Borragán, G., Guerrero-Mosquera, C., Guillaume, C., Slama, H. & Peigneux, P.,

2019, ‘Decreased prefrontal connectivity parallels cognitive fatigue-related per-

formance decline after sleep deprivation. an optical imaging study’, Biological

Psychology.



118

Brandon, M. P., Bogaard, A. R., Libby, C. P., Connerney, M. A., Gupta, K. &

Hasselmo, M. E., 2011, ‘Reduction of theta rhythm dissociates grid cell spatial

periodicity from directional tuning’, Science, vol. 332, no. 6029, pp. 595–599.

Bullmore, E. & Sporns, O., 2009, ‘Complex brain networks: graph theoretical anal-

ysis of structural and functional systems’, Nature Reviews Neuroscience, vol. 10,

no. 3, pp. 186–198.

Burgess, N., Maguire, E. A., Spiers, H. J. & O’Keefe, J., 2001, ‘A temporopari-

etal and prefrontal network for retrieving the spatial context of lifelike events’,

Neuroimage, vol. 14, no. 2, pp. 439–453.

Byrne, P., Becker, S. & Burgess, N., 2007, ‘Remembering the past and imagining

the future: a neural model of spatial memory and imagery.’, Psychological review,

vol. 114, no. 2, p. 340.

Cassady, K., Gagnon, H., Lalwani, P., Simmonite, M., Foerster, B., Park, D., Peltier,

S. J., Petrou, M., Taylor, S. F., Weissman, D. H. et al., 2019, ‘Sensorimotor

network segregation declines with age and is linked to gaba and to sensorimotor

performance’, Neuroimage, vol. 186, pp. 234–244.

Cavanagh, J. F. & Frank, M. J., 2014, ‘Frontal theta as a mechanism for cognitive

control’, Trends in cognitive sciences, vol. 18, no. 8, pp. 414–421.

Chadwick, M. J., Jolly, A. E., Amos, D. P., Hassabis, D. & Spiers, H. J., 2015, ‘A

goal direction signal in the human entorhinal/subicular region’, Current Biology,

vol. 25, no. 1, pp. 87–92.

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E. & Wig, G. S., 2014, ‘De-

creased segregation of brain systems across the healthy adult lifespan’, Proceedings

of the National Academy of Sciences, vol. 111, no. 46, pp. E4997–E5006.

Chen, X., DeAngelis, G. C. & Angelaki, D. E., 2018, ‘Flexible egocentric and al-

locentric representations of heading signals in parietal cortex’, Proceedings of the

National Academy of Sciences, vol. 115, no. 14, pp. E3305–E3312.



119

Chiu, T.-C., Gramann, K., Ko, L.-W., Duann, J.-R., Jung, T.-P. & Lin, C.-T., 2012,

‘Alpha modulation in parietal and retrosplenial cortex correlates with navigation

performance’, Psychophysiology, vol. 49, no. 1, pp. 43–55.

Chuang, S.-W., Chuang, C.-H., Yu, Y.-H., King, J.-T. & Lin, C.-T., 2016, ‘EEG

alpha and gamma modulators mediate motion sickness-related spectral responses’,

International journal of neural systems, vol. 26, no. 02, p. 1650007.

Chuang, S.-W., Ko, L.-W., Lin, Y.-P., Huang, R.-S., Jung, T.-P. & Lin, C.-T., 2012,

‘Co-modulatory spectral changes in independent brain processes are correlated

with task performance’, Neuroimage, vol. 62, no. 3, pp. 1469–1477.

Clark, B. J., Bassett, J. P., Wang, S. S. & Taube, J. S., 2010, ‘Impaired head

direction cell representation in the anterodorsal thalamus after lesions of the ret-

rosplenial cortex’, Journal of Neuroscience, vol. 30, no. 15, pp. 5289–5302.

Cohen, J. R. & D’Esposito, M., 2016, ‘The segregation and integration of dis-

tinct brain networks and their relationship to cognition’, Journal of Neuroscience,

vol. 36, no. 48, pp. 12083–12094.

Cohen, M. X., 2014, Analyzing neural time series data: theory and practice, MIT

press.

Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E., 2014,

‘Intrinsic and task-evoked network architectures of the human brain’, Neuron,

vol. 83, no. 1, pp. 238–251.

Committeri, G., Galati, G., Paradis, A.-L., Pizzamiglio, L., Berthoz, A. & LeBi-

han, D., 2004, ‘Reference frames for spatial cognition: different brain areas are

involved in viewer-, object-, and landmark-centered judgments about object loca-

tion’, Journal of Cognitive Neuroscience, vol. 16, no. 9, pp. 1517–1535.

Cullen, K. E. & Taube, J. S., 2017, ‘Our sense of direction: progress, controversies

and challenges’, Nature neuroscience, vol. 20, no. 11, p. 1465.



120

De Sanctis, P., Butler, J. S., Malcolm, B. R. & Foxe, J. J., 2014, ‘Recalibration of

inhibitory control systems during walking-related dual-task interference: a mobile

brain-body imaging (mobi) study’, Neuroimage, vol. 94, pp. 55–64.

Delorme, A. & Makeig, S., 2004, ‘EEGLAB: an open source toolbox for analysis of

single-trial EEG dynamics including independent component analysis’, Journal of

neuroscience methods, vol. 134, no. 1, pp. 9–21.

Delorme, A., Mullen, T., Kothe, C., Acar, Z. A., Bigdely-Shamlo, N., Vankov, A.

& Makeig, S., 2011, ‘EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools

for advanced EEG processing’, Computational intelligence and neuroscience, vol.

2011, p. 10.

Delorme, A., Palmer, J., Onton, J., Oostenveld, R. & Makeig, S., 2012, ‘Independent

EEG sources are dipolar’, PloS one, vol. 7, no. 2, p. e30135.

DeSalvo, M. N., Douw, L., Takaya, S., Liu, H. & Stufflebeam, S. M., 2014, ‘Task-

dependent reorganization of functional connectivity networks during visual se-

mantic decision making’, Brain and behavior, vol. 4, no. 6, pp. 877–885.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,

D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T. et al., 2006, ‘An

automated labeling system for subdividing the human cerebral cortex on mri scans

into gyral based regions of interest’, Neuroimage, vol. 31, no. 3, pp. 968–980.

Ding, M., Bressler, S. L., Yang, W. & Liang, H., 2000, ‘Short-window spectral

analysis of cortical event-related potentials by adaptive multivariate autoregres-

sive modeling: data preprocessing, model validation, and variability assessment’,

Biological cybernetics, vol. 83, no. 1, pp. 35–45.

Do, T.-T. N., Chuang, C.-H., Hsiao, S.-J., Lin, C.-T. & Wang, Y.-K., 2019, ‘Neu-

ral comodulation of independent brain processes related to multitasking’, IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 6,

pp. 1160–1169.



121

Do, T.-T. N., Jung, T.-P. & Lin, C.-T., 2020a, ‘Retrosplenial segregation reflects

mental workload in physical spatial navigation’, .

Do, T.-T. N., Lin, C.-T. & Gramann, K., 2020b, ‘Human retrosplenial theta and

alpha modulation in active spatial navigation’, .

Do, T.-T. N., Wang, Y.-K. & Lin, C.-T., 2020c, ‘Increase in brain effective con-

nectivity in multitasking but not in a high-fatigue state’, IEEE Transactions on

Cognitive and Developmental Systems.

Doeller, C. F., Barry, C. & Burgess, N., 2010, ‘Evidence for grid cells in a human

memory network’, Nature, vol. 463, no. 7281, pp. 657–661.

Doeller, C. F., King, J. A. & Burgess, N., 2008, ‘Parallel striatal and hippocampal

systems for landmarks and boundaries in spatial memory’, Proceedings of the

National Academy of Sciences, vol. 105, no. 15, pp. 5915–5920.

Drews, F. A., Pasupathi, M. & Strayer, D. L., 2008, ‘Passenger and cell phone

conversations in simulated driving’, Journal of Experimental Psychology: Applied,

vol. 14, no. 4, p. 392.

Dux, P. E., Ivanoff, J., Asplund, C. L. & Marois, R., 2006, ‘Isolation of a central

bottleneck of information processing with time-resolved fmri’, Neuron, vol. 52,

no. 6, pp. 1109–1120.

Dux, P. E., Tombu, M. N., Harrison, S., Rogers, B. P., Tong, F. & Marois, R.,

2009, ‘Training improves multitasking performance by increasing the speed of

information processing in human prefrontal cortex’, Neuron, vol. 63, no. 1, pp.

127–138.

Ehinger, B. V., Fischer, P., Gert, A. L., Kaufhold, L., Weber, F., Pipa, G. & König,

P., 2014, ‘Kinesthetic and vestibular information modulate alpha activity during

spatial navigation: a mobile EEG study’, Frontiers in human neuroscience, vol. 8.

Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman,



122

E. L. & Fried, I., 2003, ‘Cellular networks underlying human spatial navigation’,

Nature, vol. 425, no. 6954, p. 184.

Epstein, R. & Kanwisher, N., 1998, ‘A cortical representation of the local visual

environment’, Nature, vol. 392, no. 6676, pp. 598–601.

Epstein, R. A., 2008, ‘Parahippocampal and retrosplenial contributions to human

spatial navigation’, Trends in cognitive sciences, vol. 12, no. 10, pp. 388–396.

Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J., 2017, ‘The cognitive map

in humans: spatial navigation and beyond’, Nature neuroscience, vol. 20, no. 11,

p. nn. 4656.

Epstein, R. A. & Vass, L. K., 2014, ‘Neural systems for landmark-based wayfinding

in humans’, Phil. Trans. R. Soc. B, vol. 369, no. 1635, p. 20120533.

Esposito, M. D., Detre, J. A., Alsop, D. C. & Shin, R. K., 1995, ‘The neural basis

of the central executive system of working memory’, Nature, vol. 378, no. 6554,

p. 279.
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