
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343689082

Rapid Composition for a Multi-Device Networked Music Platform.

Poster · June 2020

CITATIONS

0
READS

56

4 authors, including:

Some of the authors of this publication are also working on these related projects:

PhD Thesis - New Media Curation: a novel methodology and preliminary criteria for exhibiting new media and interactive art View project

Smart Controller View project

Deborah Jane Turnbull Tillman

UNSW Sydney

10 PUBLICATIONS   20 CITATIONS   

SEE PROFILE

Oliver Bown

UNSW Sydney

1 PUBLICATION   0 CITATIONS   

SEE PROFILE

Angelo Fraietta

21 PUBLICATIONS   47 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Deborah Jane Turnbull Tillman on 17 August 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343689082_Rapid_Composition_for_a_Multi-Device_Networked_Music_Platform?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343689082_Rapid_Composition_for_a_Multi-Device_Networked_Music_Platform?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-Thesis-New-Media-Curation-a-novel-methodology-and-preliminary-criteria-for-exhibiting-new-media-and-interactive-art?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Smart-Controller?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Deborah-Tillman-2?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Deborah-Tillman-2?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/UNSW-Sydney?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Deborah-Tillman-2?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Bown?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Bown?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/UNSW-Sydney?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Oliver-Bown?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angelo-Fraietta?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angelo-Fraietta?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Angelo-Fraietta?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Deborah-Tillman-2?enrichId=rgreq-77d5a99373cb4d30d6732336cda26a74-XXX&enrichSource=Y292ZXJQYWdlOzM0MzY4OTA4MjtBUzo5MjU0MTU2MDI0MDEyODBAMTU5NzY0NzY4MTM1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Rapid Composition for a Multi-Device Networked Music Platform

Oliver Bown
Interactive Media Lab,

UNSW
o.bown@unsw.edu.au

Angelo Fraietta
Interactive Media Lab,

UNSW
a.fraietta@unsw.edu.au

Sam Ferguson
Creativity and Cognition Studios

Faculty of Engineering & IT
University of Technology Sydney

samuel.ferguson@uts.edu.au

Deborah Turnbull Tillman
Creative Robotics Lab,

UNSW
d.turnbull.tillman@unsw.edu.au

ABSTRACT

In this paper we discuss the results of a workshop study
for the HappyBrackets system – a development framework
for creatively coding multi-device musical performances,
sound installations and interactive media artworks – in which
new users using the system are invited to create new multi-
device music compositions in a rapid creative and collab-
orative hacking session. We consider the types of works
made, the problems encountered and the methods used,
including how some of the new features we have added
to the system support exploratory creative search. We de-
velop our observations into design principles that we spec-
ulate will better support more rapid creative exploration of
multi-device creative musical compositions.

1. INTRODUCTION

In this paper we discuss the results of a workshop study
for the HappyBrackets system – a development framework
for creatively coding multi-device musical performances,
sound installations and interactive media artworks – in which
new users using the system are invited to create new multi-
device music compositions in a rapid creative and collabo-
rative hacking session.

Our research interest lies in how creative coding tools,
in this complex domain of multiple-networked devices, in-
fluence and support the production of creative work, given
how laborious and slow it can often be to configure and
code multiple devices in many different bespoke config-
urations. This is an area that has received recent atten-
tion through concepts such as the hackability of digital
musical instruments (e.g., [1]) and the Internet of Musical
Things [2], and more generally through networked music
creation (e.g., [3]).

Participants with little or no previous experience of Hap-
pyBrackets, and varying levels of coding skill, were invited

Copyright: c© 2020 Oliver Bown et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

to prototype original works on a 25 device system in a col-
laborative and open workshop. We used this workshop as
an opportunity to study what kinds of works the partici-
pants conceived of, how their design ideas were influenced
by their effort to implement the design, what problems they
encountered, how they went about solving problems, and
how their time was divided up between different kinds of
problem-solving and creative tasks. This study seeds a new
direction in our research focused on adding a new API
layer to HappyBrackets which will support conceptualis-
ing and hacking works for multiple devices, taking into ac-
count issues like spatial relationships, synchronisation of
system state and communication.

This paper begins by giving an overview of the Happy-
Brackets system and the design considerations involved in
some of the recent features we’ve added, which are focused
on addressing creative productivity and flexibility. We then
describe our workshop study, report results, and consider
new principles arising from our observations.

Figure 1. The 25 device DIAD system in its original setup
at the Powerhouse Museum. Devices are wired for power
but communication takes place via WiFi.

2. HAPPYBRACKETS

HappyBrackets is a system that allows the live deployment
of compiled programs from an integrated development en-
vironment (IDE) to multiple remote, networked client de-
vices, which we refer to as distributed interactive audio de-
vices (DIADs). Each remote client includes a system run-
time that contains a real-time audio DSP framework, sim-
plified network communication functionality, and a mech-
anism for synchronising all the devices through a virtual
clock over the network. The associated plugin for the In-

mailto:o.bown@unsw.edu.au
mailto:a.fraietta@unsw.edu.au
mailto:samuel.ferguson@uts.edu.au
mailto:deborah.turnbull@unsw.edu.au
http://creativecommons.org/licenses/by/3.0/


Figure 2. A HappyBrackets project running in the IntelliJ
environment. The plugin window to the right shows a set
of connected devices.

telliJ Java IDE (Figure 2) provides tools for monitoring
and remote controlling devices, deploying programs in re-
altime to devices, rapidly setting up GUI controls for con-
trolling specific programs running on devices, sending au-
dio and data files to devices, and configuring devices. Al-
though live coding performance is one possible use of this
system, we primarily conceive of live coding in our work
as a strategy and set of technologies that supports rapid de-
velopment, experimentation and hands-on ideation.

2.1 Existing and New Features

HappyBrackets is described in a number of previous pa-
pers [4–6], and has been used in a variety of exhibited art-
works [7–9] going back to an initial instantiation in 2013
(presented at the International Computer Music Confer-
ence 2013, Perth, Australia, and previously at the Tin Shed
Spots in Sydney, Australia) [10], which as far as we know
was the first instance of multiple Raspberry Pi units being
used in live coded, networked music performance. Hap-
pyBrackets takes inspiration from the Processing creative
coding environment, a key feature of which is the speed
at which a computational design ‘sketch’ can be created.
However, like another creative coding environment, Super-
Collider, HappyBrackets works with a client-server model,
with a runtime system on the client device responding to
incoming sketches (or compositions) sent from a program-
ming integrated development environment (IDE) running
on what we call the ‘controller’ device (usually a laptop
computer). HappyBrackets sketches are sets of instruc-
tions that are run on the client immediately upon being
received from the controller. The code in a sketch can
be used to dynamically create audio signal chains (or any
event for that matter, but historically HappyBrackets has
been audio-focused) and activate clocks and network lis-
teners that in turn enable any number of other events to be
triggered in the future. Multiple HappyBrackets sketches
can be run on any client and can be programmed to interact
with each other. It should be noted that although Happy-
Brackets can and has been used as an environment for live
coding performance, our main interest in the ’liveness’ of
HappyBrackets is for the purpose of rapid prototyping and
experimental creation, not performance.

Figure 3. IntelliJ’s list of “live templates”, including those
added by the HappyBrackets plugin.

Basic interaction can be programmed very easily. Setting
up a sensor listener or network listener involves a few lines
of code, and we make use of IntelliJ’s “Live Templates”
mechanism to support this. A Live Template is a keyword
which triggers a generic code block to be generated. For
example, an existing Live Template in IntelliJ is the key-
word “sout” which generates the code:
System.out.println();

It also inserts the caret into the brackets. An example
of one of our Live Templates is “accelerometerListener”
which generates a block of code to respond to the accelerom-
eter and places the caret at the start of the block so that
users can immediately start writing the accelerometer ac-
tion (for supported sensors, the HappyBrackets runtime
will automatically find a connected sensor, meaning that
configuration effort is minimised). Users can also look up
Live Templates from a list (Figure 3).

At heart, HappyBrackets is built around the Java pro-
gramming language. It uses the capability of Java to se-
rialise compiled classes and load these dynamically. Code
written on the controller device is compiled and sent over
a network to the client devices, which ingest the Java class,
identify it as a HappyBrackets action (HBAction), and run
it. Whilst Java has a fraught history in the audio domain,
particularly because of its memory management system
(which can unexpectedly interrupt program execution, a
problem which has largely been resolved with newer garbage
collectors), we now find that we can run moderately com-
plex audio programs on very low cost Raspberry Pi Zero
W devices, at CD quality (stereo, 44.1kz, 16bit) with mod-
erate latency (e.g., 1024 samples). With many very fast
embedded audio systems in use, some very popular, such
as Teensy, we have found that the Pi Zero is comparable
on cost, reasonably strong although not superior in terms
of form factor, and a somewhat inferior option in terms
of power consumption, latency and startup time. We note
that in many situations the latter negatives are not signif-
icant; this is largely the case in our work, except in in-
teractive performance situations where latency and battery
consumption is an issue. In such cases, we believe that
the combination of a mature operating system and a rich,
multi-threaded programming environment like Java, com-
bined with the ease of deployment of HappyBrackets to
multiple devices, is superior in supporting flexible creative
coding development.

In addition, HappyBrackets is set up as an entirely decen-



Figure 4. A device interface auto-generated from parame-
ters specified in the sketch code, rendered on the controller
computer.

tralised system where any number of clients can connect
to any number of controller computers. Each connected
controller has the ability to send sketches to, and control,
each device. This has proven useful for collaborative work.
Users can also set their controllers to operate only a spe-
cific subset of clients in situations where there may be po-
tential confusion. They can also set their controller com-
puter to operate as a client, which can be useful for testing
when it is not convenient or possible to set up devices. Re-
cent developments have been focused on making this last
feature more robust, including more streamlined use of net-
work traffic in complex multi-device, multi-user situations.

2.1.1 Newest Features

Several newer features have been reported in previous pa-
pers but remain more active areas of exploration. One key
development, previously discussed in [11], is a system for
sharing parameters between devices and controllers. A
program may set up shared parameters in a sketch using
any of the common numeric data types: booleans, integers
and floats. These parameters are given names and ranges
(where applicable), and on the controller computer, a GUI
can automatically be generated that presents these parame-
ters as sliders or number boxes (Figure 4). Two way bind-
ing between controller and device is automatically man-
aged, although it is the user’s responsibility to write the
code to control how the device manipulates and responds
to this parameter at its end. Parameters can also be scoped
to be global, which means that all devices and all GUI in-
stances of that parameter running on any controller com-
puter will share that parameter (referenced by name).

Most recently, we have implemented a time synchroni-
sation mechanism by which users can instruct all devices

on a network to synchronise their internal clocks, and then
write simple code to create timestamped events in the fu-
ture, or to write beat-event code blocks that respond to
a shared metronome, which will stay in time even in re-
sponse to tempo changes. The performances of the time
synchronisation is variable, but regularly manages to fall
within around 20ms. We found that clock drift on the Pis
was very minor, and that they could stay in synch for over
24 hours. We also found in practice that network broadcast
messages would tend to arrive at multiple devices almost
simultaneously (although without certainty, due to jitter in
Java’s program execution), and that, knowing this, users
can choose between various alternative methods for syn-
chronisation. Higher accuracy synchronisation is of inter-
est to achieve specific acoustic effects, but is not a high
priority, given our general philosophy of treating our net-
works of devices as independent sound objects, not as com-
ponents in a spatial audio rendering system.

Lastly, we added additional functions into IntelliJ that al-
low users to easily send additional files besides live code
sketches to one or all devices (also discussed in [11]). The
main files that can be sent are audio files and additional
classes and jar files (Java libraries), which are organised
in a “data” folder on the device (as used in Processing
sketches), and which can be mirrored in the file structure of
the IntelliJ project. Users can configure their “data” folder
however they like to manage other file types.

All of the above features were implemented by lead de-
veloper Angelo Fraietta, and have been in regular “beta”
use by the authors in their own creative work. These fea-
tures are presented in greater detail in [4]. In addition, we
have engaged in more or less formalised user research into
how tools such as these influence the creative process of
working with multi-device audio systems.

3. STUDIES

Evaluation of creative artefacts developed within the do-
main of interactive art [12] can focus on aspects of ex-
perience such as creative engagement [13], play [14], or
curation of digital art [15]. Our focus is on the produc-
tivity of the creator, but this necessarily takes into account
the creative goals of their work. Supporting creative pro-
ductivity can involve designs that speed up iterative cy-
cles, reduce barriers to productivity such as the need to
perform menial tasks (e.g., configuring systems and writ-
ing boilerplate code), and in particular, reduce cognitive
load distractions that draw away from exploratory search.
In creative software design research we draw on Shnei-
derman and Resnick’s [16, 17] design principles for cre-
ativity support, in particular the idea of supporting low
floors, wide walls and high ceilings. Related frameworks
include Blackwell’s cognitive dimensions of notations sys-
tems analysis [18,19], which include attributes such as vis-
cosity (resistance to change) and premature commitment,
and Nielsen’s heuristics for interaction design [20], which
include factors such as consistency, visibility and cogni-
tive load. In this paper, we build on a framework started
in [21] where we categorise creative coders’ activities, con-
sider when and why they might get stuck in less creatively



exploratory activities, and also consider the overhead of
switching between these activities. We add to this an at-
tempt to categorise the types of works that people natu-
rally conceive of with when faced with a multiplicitous
media context, broadly imagined as ’design pattern’, and
consider how realisable such categories of work are given
our current framework, and how we might bring the more
complex patterns within reach. We also consider how col-
laboration occurs and can be supported in this context.

The study presented in this paper was conducted in an
informal one-day workshop setting, in the style of a hack-
day, as this was essential to creating a situation in which
participants could comfortably engage with our 25 device
rig, with the training and support required to create work.
The 25-device system, set up at UNSW’s Interactive Media
Lab, was originally built for an installation at the Power-
house Museum in Sydney (Figure 1). The devices were
hung from the ceiling at various heights just above head-
height, and randomly scattered across two connected rooms.

From several previous workshops with people of different
skill levels, such as a National Science Week workshop for
kids [22], we have found informal creative activities to be
important to creating a stimulating environment. In our re-
search therefore we focused on qualitative results derived
from observations and a post-event survey, which also in-
cluded a small number of Likert-scale questions relating
to the relative time cost of activities. We also collected
participants’ code at the end of the session. We consid-
ered it obstructive and costly to record detailed data of the
participants usage, for example via video, self-reporting
on the go, or input logging, since participants were mov-
ing around, discussing ideas and taking breaks throughout
the day. Self-reporting at the end of the session is an im-
perfect way to gather data, but has the advantage of being
efficient and unobtrusive. Reports were checked against
observation throughout the day by the team. Recruits were
primarily drawn from the pool of students and staff from
UNSW. Although it is preferable to recruit without this
constraint and proximity to participants, this was also a
practical measure given the informal but in-depth nature
of the workshop. We consider this an efficient precursor
to more in-depth and arms-length studies, with the aim of
seeding design concepts that can be tested thoroughly once
implemented.

Participants were from a wide variety of coding back-
grounds, but all self-reported some prior experience writ-
ing code. They were all from the surrounding academic
community and research cohort at UNSW Art & Design
and other local universities, at varying education levels (un-
dergraduate to doctoral candidates and recipients). The
gender split of male to female participants was 6:2. They
were given a 2-hour introduction to using the HappyBrack-
ets system and library, through a number of demonstrative
examples. They were then encouraged to develop their
own simple creative concepts and implement them, with
3 members of the HappyBrackets team supporting them.
We report these new users’ responses to working creatively
with the system, including observation, interviews, a brief
survey, and analysis of the code they wrote. In all, 8 partic-

ipants responded to our survey and submitted examples of
the code. We also discuss our own experiences as creative
practitioners.

The following subsections organise responses according
to the themes we are interested in. We intersperse further
elaboration on our design thinking throughout this discus-
sion of responses as it helps to clarify what the issues being
raised are, as they come up.

3.1 Working with Multiples

Aside from specific usability issues, one of our key inter-
ests was how people take to working with a multi-device
sonic system for which each device is individually pro-
grammable but there is no notion of spatial abstraction away
from the devices themselves, i.e., there is no pre-defined
way to render sounds as abstract objects moving between
the devices. As we mention above, we find the DIADs
system invites a slightly different way of thinking about
multi-speaker audio as compared to traditional multichan-
nel systems. One participant commented specifically on
how the DIADs paradigm directed their thinking: “I think
that the modular nature of the system forces you to think
in individual MODULES, which makes you more likely to
design systems that scale. I could realize my project eas-
ily by having 8 speakers hooked up to my computer, but
I wouldn’t write it in a way that scales up to more units.
i think that’s GREAT” (P1). Another participant noted:
“I learnt that it’s incredibly important to think about the
physicality of the system - asking whether the network can
handle what you want to send through to it and how sim-
plicity that is replayed throughout all of the speakers can
generate a profound effect. The power of replication using
networked systems can be just as effective as a technically
complex program” (P3).

Participants developed a number of creative visions in the
workshop. These included:

• a simple implementation of Tristan Perich’s “sound
wall” (P1);

• an exploration of temporal synch patterns between
devices via simple click rhythms, including random
clouds, random 16th-note quantised clouds, and uni-
son 16th notes (P9);

• a concept to capture audio and have it disperse through
the system like a distributed echo or reverb;

• a sound that ricochets around from one device to an-
other (P10);

• “an addressable array of notes making up a pretty
chord with an aim to push waves of activation through
the array” (P5);

• and “a random sample player which selects a new
sample at the end of the current sample.” (P7)

We briefly consider how such concepts might be cate-
gorised in terms of how the code being deployed to devices
needs to take into account the relationship between action
taking place on each device. We assume a static config-
uration of devices. We propose the following categorisa-
tion (which is an adaptation of work initiated in [10], in
response to these and other designs we have encountered):

Forests (term first used in our previous paper [10]): each



device plays the same sound, with some variation in pa-
rameters, or a different sound, but with no attempt to dic-
tate spatial relations between the devices. The overall ef-
fect is a rich orchestration of sound that is manually or
statistically determined. The devices may play in synch:
although this is clearly a form of coordination between the
devices it happens automatically and does not require the
programmer to think about the relationship between de-
vices.

Fields: Fields are like forests, except sonic parameters
are dictated by the spatial locations of the devices, and an
abstract ‘parameter field’ may be involved in determining
the variation in these parameters. For example, devices at
one end of the room may be quieter than at the other end
of the room, but over time the volumes gradually alter as
the field changes. Here the programmer needs to know the
positions of devices. Additionally, there is clearly some
potential to abstract away the need to think about actual
devices and their positions.

Networks: the devices are considered to be connected by
some network topology (such as nearest neighbours or a
“scale free network”), which dictates how sound behaviours
or parameters move around the system. Here typically the
programmer would need to know the positions of devices
and to build a network of relations between them. They are
more likely to be concerned with thinking of devices indi-
vidually. This may be more likely to correspond to certain
spatial configurations too, such as grids and other regular
geometric shapes.

Substrates: the devices render abstract sonic objects. For
example, a sound moves across the space, gradually pan-
ning between different neighbouring devices, or, through
this method, a specific sound scape is recreated. In this
case there is a clear need for the programming environ-
ment to support abstraction away from individual devices,
towards virtual objects.

In the very short time frame in which works were devel-
oped in this project, the majority of works can be seen to be
based on the forest model, which places a minimal require-
ment on the programmer. One respondent commented that
because the devices were randomly scattered in space, and
not in any obvious formation, they were more inclined to
think in terms of random variation and not specific spatial
relationships. A grid might have promoted greater consid-
eration of spatial parameters.

Some works required a field approach, which needn’t be
considered significantly more complex than the forest ap-
proach: it can be as simple as querying each device’s po-
sition and using that position data in the determination of
parameters. During the workshop, a manual map of device
positions was drawn, and these were provided to partic-
ipants as a Java Map object, which mapped device host-
names to 2D coordinates, that could be pasted into their
sketches and used to query the position of any device. Specif-
ically, each device could then query its own position be-
cause it could query its own hostname. More complex
field-based systems might take network inputs communi-
cating a field of data from which devices could extract
parameters based on their location within the field. This

could easily be supported with some general purpose code.
One project attempted to use a network configuration in-

stead, in which devices would send and receive informa-
tion from their immediate neighbours. In this case, the po-
sitions needed to be mapped into information about neigh-
bourhood relations. No existing library code supported this
process, so a great deal of the team’s time was spent con-
sidering strategies for doing so. Again, library code could
be added that would support querying neighbourhood re-
lations, and as mentioned, in many situations we might
expect the use of more regular spatial configurations for
projects where this was the underlying concept.

We note that some of the concepts involved spatiality
but were sufficiently loosely defined that they could be
implemented either as fields, networks or substrates, re-
quiring teams to then consider in greater detail what they
expected of their designs and what the easiest paradigm
was to get them to a satisfactory outcome. For example,
the idea of recorded audio propagating through the system
could be achieved in any of these ways, but added the addi-
tional complexity of thinking about how the recorded audio
might be shared over the network.

3.2 Design Processes

In previous research [21] we considered how creative coders
move between a series of activity categories:

• setting up devices: getting things set up and switched
on;

• connecting to devices: ensuring all devices are re-
sponding on the network;

• in-depth programming: implementing some specific
feature, with some thought given to the design of an
algorithm;

• debugging and testing: making some design or fea-
ture work properly by iteratively modifying and ex-
amining its behaviour;

• creative programming: exploring a creative idea rapidly
through code, for which the metaphor of sketching is
sometimes used;

• playing with parameters and interaction: exploring
various possibilities in a program using other means
besides writing, such as tweaking specific variables
or interacting with an interface;

• discussing and designing: stepping entirely away from
the system and code and engaging in conceptual de-
velopment of the work.

We assume that the last three of these items are where the
creative action lies and time spent on these tasks should
be maximised in relation to the earlier items on the list.
We recognise that some in-depth programming may also
be where the creative innovation of a project lies, as we
expect projects to come up with original technical con-
cepts, but we nevertheless expect that in many cases in-
depth coding could be minimised significantly given pow-
erful frameworks to create with.

Our survey asked participants to detail where they found
themselves spending most time (Figure 5). We also ob-
served participants and regularly checked in to discuss their
projects with them.



Ho
w

 m
uc

h 
tim

e 
di

d 
yo

u 
sp

en
d 

se
ar

ch
in

g 
th

e 
w

eb
 fo

r c
od

e?

Ho
w

 m
uc

h 
tim

e 
di

d 
yo

u 
sp

en
d 

so
lv

in
g 

bu
gs

?

Ho
w

 m
uc

h 
tim

e 
di

d 
yo

u 
sp

en
d 

sk
et

ch
in

g 
/ d

es
ig

ni
ng

 y
ou

r 
pr

og
ra

m
?

Ho
w

 m
uc

h 
tim

e 
di

d 
yo

u 
sp

en
d 

lis
te

ni
ng

 
an

d 
m

ak
in

g 
tw

ea
ks

?

5

3
1 1

(1=no time, 5=more than half of the time)

4

2

1

4

3

3

2

1

Figure 5. Survey responses to questions concerning how
much time participants spent in certain activities.

We found that participants spent the bulk of their time
split equally between fixing bugs (or more generally un-
known issues), and spending time tweaking and listening;
participants’ projects were generally simple in scope and
derived from a short tutorial introducing the capabilities
of the system through examples, so programs were short
and would not have taken a long time for an experienced
coder to write, but understanding the system and the li-
braries through problem-solving was significant work for
new users. Participants also did not report spending a lot
of time looking online for solutions to bugs or problems,
possibly because of a lack of faith they’d find answers (this
being an ’in house’ system), and also because they had ex-
perienced developers in the room; attempts to fix bugs and
issues were more exploratory. One participant noted: “I’m
in this place where I am advanced enough to code on my
own and explore the examples and then adapt them to what
I want to do. But I do not understand how the methods
work from looking at the API. so I am completely depen-
dent on the examples or people that know how to code in
that environment” (P2).

As we hoped, a lot of time was spent listening and tweak-
ing, which we consider tentatively to be a more creatively-
oriented activity; still potentially associated with ‘prob-
lem solving’ their designs, just with a more aesthetic fo-
cus. Participants reported that they did not spend a lot of
time sketching, discussing or otherwise engaging in design
thinking away from the code. This is also as we might
expect given the spirit of exploratory search and hacking
from the examples that was established in the workshop.
However, participants did clearly spend some time sketch-
ing and ideating in groups.

One participant noted that they struggled to apply con-
cepts from one example to a similar area due to lack of
consistency. Specifically they found that concepts in the
WaveModule example (code to create a simple oscillator),
did not clearly map to a similar SampleModule application
(the same idea but using sample playback). Another men-

tioned that they couldn’t easily understand the principles
underlying device synchronisation in a way that enabled
them to easily make a synchronised sample player.

In other comments about the ease of the workflow, one
participant noted: “The sample player function is powerful
and exciting for me at the moment, largely due to its ease
of use. For someone that is not so great at coding, it was
a simple framework that allowed me to get things going
quickly. It means that I can focus more on the sound itself,
I can design sounds at home using gear that I am familiar
with and then bring them into the space and create some-
thing interesting with them with not too much effort” (P8).
In other cases, there was clearly a greater need to provide
easy entry points to the functionality, with participants ex-
pressing difficulty finding out how to do things or look up
functions, examples and templates.

Another participant was frustrated about: “saving my dif-
ferent sketches so they don’t overwrite the examples” and
“file management in general” (P1). We suspect this would
be less of an issue for someone experienced with advanced
IDEs like IntelliJ, but acknowledge that depending on an
advanced IDE may place a greater strain on the user getting
started. Another participant added that “a lighter weight
(maybe purpose built) IDE and not needing to install java
would be nice” (P5).

3.3 Managing Parameters and Getting Feedback from
Devices

The parameter control feature described above was demon-
strated to participants in depth, illustrating how GUI slid-
ers could be created and used to control parameters on
individual devices or simultaneously across a number of
devices. Our hope was that participants would find ways
to use these parameters both as performative controls and
as ways to explore parameter possibilities. Indeed, three
survey respondents indicated that they used this feature in
three different ways: in one case, in order to tweak param-
eters to seek a sweet spot, in another case to be able to
manually trigger simultaneous playback at a specific mo-
ment, and in a final case as a user control to control sound
density. We feel that this ability to both code and dynami-
cally manipulate parameters is emerging in our designs as
an important creative-coding principle, drawing on related
work in this field such as the concepts of Bret Victor [23]
and the kinds of tight GUI-code integration seen in visual-
programming environments like MaxMSP, TouchDesigner
and QuartzComposer.

Other comments related to the need to better visualise
what was going on. Requests included: “A VU meter dis-
play that shows you when the different devices are playing
and what their levels are” (P1); “Perhaps a way to see the
flow of waves / uGen chain visually, like a summary map
diagram” (P4); “Having a GUI based modular synth for
beginners” (P7).

3.4 Collaboration

Allowing multiple users access to control the group of de-
vices from different laptops was a conscious design fea-
ture in the sense that we wanted to avoid clunky or unclear



scenarios where two users both tried to connect their con-
troller computers to the group. When we started running
workshops with multiple users simultaneously deploying
code from their own laptops we found that this feature
was actually essential: the complexity of having a multiple
wifi networks or establishing a system of binding between
controllers and devices would have introduced additional
complexity, and the idea of a group of people having to
take turns accessing a controller computer was too inflex-
ible. Initially, this multi-user experience was clunky, suf-
fering from clogged networks and confusion around which
devices were which, and what they were doing. As well
as improving network communication and stability, which
reduced the clunky experience, an additional feature that
supported this scenario was an option to allow users to
‘favourite’ specific devices, and then limit interaction to
this favourites list.

This multi-user scenario proved effective in certain modes
of collaboration. Two coders could work independently
and send sketches to the network. Given that individual
devices allow two sketches to be run simultaneously, with
precise control over when the state of the device is reset, it
was feasible for two users to work together in a fluid ’de-
tached’ way, as if jamming together on the network. Partic-
ipant feedback supported this view: one participant stated
that “the collaborative potential of being able to overlay
sketches is great” (P5). Other comments referred to the
pleasure of being able to work in this shared space, hear-
ing each others’ work on the system during a hack session.
This builds on a commonly held view that creative coding
is enhanced by the speed of seeing or hearing responses,
and we may speculate that being able to do so in a shared
environment of experimentation can also support innova-
tive and exploratory concept development.

However, this framework did also cause some confusion.
One participant suggested a need for “being able to collab-
orate live more effectively by easily targeting and killing
specific active sketches.” They added: “I found I’d have to
stop audio entirely and start from scratch building some-
thing up if there was one element I wanted to change”(P5).

4. CONCLUSION

Our observations reinforce some general design principles
that have been in development in our own practice-based
research for some time, and that relate to other work into
creative computing research. We consider three broad con-
clusions here:

Multiplicities paradigms and time burden: In the cre-
ative space of media multiplicities, there are certain go-
to system architectures, and some are more easily acces-
sible than others. Forest architectures, those where mul-
tiple devices behave in similar ways but needn’t be co-
ordinated, are trivial to program, but still support a great
wealth of creative possibilities. Field, network and sub-
strate architectures all benefit from more framework sup-
port that we do not currently offer, but could easily do.
Without such framework support users are forced to en-
gage in in-depth coding, a distraction from creative pro-
ductivity. Libraries to support these paradigms would need

to be clearly outlined, first conceptually, and then via the
API and its affordances. Learning from examples, and
innovating new works from the starting point of existing
‘proof-of-concept’ examples is a powerful way to learn
and produce, the latter being considerably lower-risk and
requiring less experimentation and what we have called
‘in-depth coding’ (framework coding). We suggest that de-
veloping these paradigms independently, without too much
concern about seeking a single overarching framework that
covers them all, will be necessary. This might be analo-
gous, say, to the paradigms of vector and bitmap graphics.

Collaboration: A multi-user system supporting simul-
taneous running of multiple sketches was seen to be cre-
atively productive, supporting collaborative ideation. But
to be really effective such a system clearly requires richer
feedback so that users are aware of the state of the system,
and possibly a clearer conceptual grounding for what users
might expect from the state of the system. Such issues are
also present in server-based live coding environments like
SuperCollider. Generally this is a hard problem to solve
and the user is typically expected to master practices that
help maintain their mental model of the system without
perfect system visibility. An example, as proposed by one
of our respondents, is to frequently stop everything and re-
build the system: not ideal, but practical.

Parameter manipulation, tweaking and extensibility:
The free and flexible manipulation of parameters at dif-
ferent stages of the creative design process was shown to
be creatively empowering, but needs to be more rigorously
and consistently supported. This poses design challenges
associated with moving between code and “direct manip-
ulation” interfaces without adding some degree of com-
plexity to the process, which may be counter-productive.
Contemporary GUI design frameworks (as used in Apple’s
XCode or Google’s Android Studio) are a source of inspi-
ration for how such integration can take place, as are con-
ceptual demonstrations such as Bret Victor’s designs [23].
Supporting the natural creation of two-way bindings and
simple arithmetic combinations of parameters are exam-
ples of ways this more creatively productive approach to
parameters could work.

Whether in the HappyBrackets framework or elsewhere,
developing clear creative coding architectures and princi-
ples such as these, for the composition of media multiplic-
ities, will, we believe, have a great impact on creative pro-
ductivity in this emerging field.

Acknowledgments

We acknowledge the support of the Australian Research
Council through their Linkage Grant (LP180100151), and
our project partners BitScope Designs, ArtworksRActive
(Linda Candy), Squidsoup, and the Casula Powerhouse Arts
Centre. We also acknowledge the support of the Museum
of Applied Arts and Sciences in the creation of the 25 de-
vice system, originally developed for the Spiral artwork in
2019. We thank the anonymous participants for their par-
ticipation in the research.



5. REFERENCES

[1] A. P. McPherson, A. Chamberlain, A. Hazzard, S. Mc-
Grath, and S. Benford, “Designing for exploratory play
with a hackable digital musical instrument,” in Pro-
ceedings of the 2016 ACM Conference on Designing
Interactive Systems. ACM, 2016, pp. 1233–1245.

[2] L. Turchet, C. Fischione, G. Essl, D. Keller, and
M. Barthet, “Internet of musical things: Vision and
challenges,” IEEE Access, vol. 6, pp. 61 994–62 017,
2018.

[3] L. Gabrielli and S. Squartini, “Wireless networked mu-
sic performance,” in Wireless Networked Music Perfor-
mance. Springer, 2016, pp. 53–92.

[4] A. Fraietta, O. Bown, S. Ferguson, S. Gillespie, and
L. Bray, “Rapid composition for networked devices
in the internet of things,” Computer Music Journal,
vol. 43, no. 2, p. forthcoming, 2020.

[5] O. Bown, L. Loke, S. Ferguson, and D. Reinhardt,
“Distributed interactive audio devices: Creative strate-
gies and audience responses to novel musical inter-
action scenarios,” in Proceedings of the 2015 Inter-
national Symposium on Electronic Art, Vancouver,
Canada, 2015.

[6] O. Bown and S. Ferguson, “Creative media+ the in-
ternet of things= media multiplicities,” Leonardo, no.
Early Access, pp. 53–54, 2017.

[7] W. Marynowsky, S. Ferguson, A. Fraietta, and
O. Bown, ““the ghosts of roller disco”, a
choreographed, interactive performance for robotic
roller skates,” in Proceedings of the Fourteenth
International Conference on Tangible, Embedded,
and Embodied Interaction, ser. TEI ’20. New
York, NY, USA: Association for Computing Ma-
chinery, 2020, pp. 631–637. [Online]. Available:
https://doi.org/10.1145/3374920.3375284

[8] L. Loke, O. Bown, S. Ferguson, L. Bray, A. Frai-
etta, and K. Packham, “Your move sounds so pre-
dictable!” in Proceedings of the 2018 Annual Sym-
posium on Computer-Human Interaction in Play Com-
panion Extended Abstracts, 2018, pp. 121–125.

[9] O. Bown and S. Ferguson, “A musical game of bowls
using the diads,” in Proceedings of the International
Conference on New Interfaces for Musical Expression,
2016, pp. 371–372.

[10] ——, “Understanding media multiplicities,” Entertain-
ment Computing, vol. 25, pp. 62–70, 2018.

[11] A. Fraietta, “Transient relics: Temporal tangents to an
ancient virtual pilgrimage,” in Fourteenth International
Conference on Tangible, Embedded, and Embodied In-
teraction, ser. TEI ’20. New York, NY, USA: ACM,
2020.

[12] E. A. Edmonds, A. Weakley, L. Candy, M. Fell,
R. Knott, and S. Pauletto, “The studio as laboratory:
combining creative practice and digital technology re-
search,” International Journal of Human-Computer
Studies, vol. 63, no. 4-5, pp. 452–481, 2005.

[13] Z. Bilda, E. Edmonds, and L. Candy, “Designing for
creative engagement,” Design Studies, vol. 29, no. 6,
pp. 525–540, 2008.

[14] B. Costello, “A pleasure framework,” Leonardo,
vol. 40, no. 4, pp. 370–371, 2007.

[15] D. Turnbull and M. Connell, “Curating digital pub-
lic art,” in Interactive Experience in the Digital Age.
Springer, 2014, pp. 221–241.

[16] B. Shneiderman, G. Fischer, M. Czerwinski,
M. Resnick, B. Myers, L. Candy, E. Edmonds,
M. Eisenberg, E. Giaccardi, T. Hewett et al., “Creativ-
ity support tools: Report from a US national science
foundation sponsored workshop,” International Jour-
nal of Human-Computer Interaction, vol. 20, no. 2,
pp. 61–77, 2006.

[17] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman,
R. Pausch, T. Selker, and M. Eisenberg, “Design prin-
ciples for tools to support creative thinking,” in Na-
tional Science Foundation workshop on Creativity Sup-
port Tools, Washington DC, 2005.

[18] A. Blackwell and T. Green, “Notational systems–the
cognitive dimensions of notations framework,” HCI
Models, Theories, and Frameworks: Toward an Inter-
disciplinary Science. Morgan Kaufmann, 2003.

[19] L. Church, M. Marasoiu, and A. Blackwell, “Sintr: Ex-
perimenting with liveness at scale,” in Proceedings of
ECOOP 2016, 2016.

[20] J. Nielsen, “10 usability heuristics for user interface de-
sign,” Nielsen Norman Group, vol. 1, no. 1, 1995.

[21] O. Bown, A. Fraietta, S. Ferguson, L. Loke, and
L. Bray, “Facilitating creative exploratory search with
multiple networked audio devices using happybrack-
ets,” in Proceedings of New Interfaces for Musical Ex-
pression (NIME2019)., 2019.

[22] A. Fraietta and O. Bown, “Creating a sonified space-
craft game using HappyBrackets and Stellarium,” in
Procedings of the 17th Linux Audio Conference (LAC-
19). CCRMA, Stanford University, USA, 2019, pp.
1–7.

[23] B. Victor, “Inventing on principle,” Video re-posted by
Wired Magazine, February 2012.

View publication statsView publication stats

https://doi.org/10.1145/3374920.3375284
https://www.researchgate.net/publication/343689082

	 1. Introduction
	 2. HappyBrackets
	2.1 Existing and New Features
	2.1.1 Newest Features


	 3. Studies
	3.1 Working with Multiples
	3.2 Design Processes
	3.3 Managing Parameters and Getting Feedback from Devices
	3.4 Collaboration

	 4. Conclusion
	 5. References

