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GROUP-THEORETIC GENERALISATIONS OF VERTEX AND

EDGE CONNECTIVITIES

YINAN LI AND YOUMING QIAO

Abstract. Let p be an odd prime. Let P be a finite p-group of class 2 and

exponent p, whose commutator quotient P/[P, P ] is of order pn. We define two
parameters for P related to central decompositions. The first parameter, κ(P ),

is the smallest integer s for the existence of a subgroup S of P satisfying (1)

S ∩ [P, P ] = [S, S], (2) |S/[S, S]| = pn−s, and (3) S is centrally decomposable.
The second parameter, λ(P ), is the smallest integer s for the existence of a

central subgroup N of order ps, such that P/N is centrally decomposable.

While defined in purely group-theoretic terms, these two parameters gen-
eralise respectively the vertex and edge connectivities of graphs: For a simple

undirected graph G, through the classical procedures of Baer (Trans. Am.

Math. Soc., 1938), Tutte (J. Lond. Math. Soc., 1947) and Lovász (B. Braz.
Math. Soc., 1989), there is a p-group PG of class 2 and exponent p that is nat-

urally associated with G. Our main results show that the vertex connectivity
κ(G) equals κ(PG), and the edge connectivity λ(G) equals λ(PG).

We also discuss the relation between κ(P ) and λ(P ) for a general p-group

P of class 2 and exponent p, as well as the computational aspects of these
parameters. In particular, our main results imply that the p-group central

decomposition algorithm of Wilson (J. Algebra & J. of Group Theory, 2009)

can be used to solve the graph connectivity problem.

Keywords: p-groups of class 2, graph connectivity, matrix spaces, bilinear
maps

1. Introduction

The main purpose of this paper is to define and explore two natural group-
theoretic parameters, which are closely related to vertex and edge connectivities
in graphs. Since vertex and edge connectivities have been classical and central
notions in graph theory [23], we expect that this connection can serve as another
opportunity for a fruitful interaction between graph theory and group theory.

We first introduce a method to relate graphs with p-groups of class 2 and
exponent p through Baer’s correspondence [3] and the works of Tutte [22] and
Lovász [16]. We then define two group-theoretic parameters. Our main result
shows that the vertex and edge connectivities of a graph are equal to the two pa-
rameters we defined on the corresponding group respectively. We then compare the
two parameters and discuss their computational feasibility.
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Since our main goal is to set up a link between graph theory and group theory,
we shall include certain background information, despite that it is well-known to
researchers in the respective areas.

1.1. From graphs to groups: the Baer-Lovász-Tutte procedure. One route
from graphs to groups, following Baer [3], Tutte [22], and Lovász [16], goes via
linear spaces of alternating matrices and alternating bilinear maps. While there
are other related methods of constructing groups from graphs [9,18], we follow this
one here, as the perspectives from [3, 16, 22] are most relevant to our work (see
Section 1.3 for details).

We set up some notation. For n ∈ N, let [n] := {1, . . . , n}. Let
(

[n]
2

)
be the set

of size-2 subsets of [n]. We use F to denote a field, and Fq to denote the finite field
with q elements. Vectors in Fn are column vectors, and 〈·〉 denotes the linear span
over F. Let Λ(n,F) be the linear space of n×n alternating matrices over F. Recall
that an n × n matrix A over F is alternating if for any v ∈ Fn, vtAv = 0. That
is, A represents an alternating bilinear form. Subspaces A of Λ(n,F), denoted by

A ≤ Λ(n,F), are called alternating matrix spaces. Fix a field F. For {i, j} ∈
(

[n]
2

)
with i < j, the elementary alternating matrix Ai,j over F is the matrix with the
(i, j)th entry being 1, the (j, i)th entry being −1, and the rest entries being 0.

In this paper, we only consider non-empty, simple, and undirected graphs with

the vertex set being [n]. That is, a graph is G = ([n], E) where E ⊆
(

[n]
2

)
. Let

|E| = m. Note that the non-empty condition implies that n ≥ 2 and m ≥ 1.
Let p be an odd prime. We use Bp,2 to denote the class of non-abelian p-groups

of class 2 and exponent p. That is, a non-abelian group P is in Bp,2, if for any
g ∈ P , gp = 1, and the commutator subgroup [P, P ] is contained in the centre
Z(P ). For P ∈ Bp,2, [P, P ] is elementary abelian and also the Frattini subgroup.
For n,m ∈ N, we further define Bp,2(n,m) ⊆ Bp,2, which consists of those P ∈ Bp,2

with |P/[P, P ]| = pn and |[P, P ]| = pm. Note that the non-abelian condition implies
that n ≥ 2 and m ≥ 1 are required for Bp,2(n,m) to be non-empty.

We then explain the procedure from graphs to groups in Bp,2 following Baer,
Tutte and Lovász.

(1) Let G = ([n], E) be a simple and undirected graph with m edges. Fol-
lowing Tutte [22] and Lovász [16], we construct from G an m-dimensional
alternating matrix space

(1.1) AG = 〈Ai,j : {i, j} ∈ E〉 ≤ Λ(n,F).

(2) Given an m-dimensional A ≤ Λ(n,F), let A = (A1, . . . , Am) ∈ Λ(n,F)m

be an ordered basis of A. The alternating bilinear map defined by A,
φA : Fn × Fn → Fm, is

(1.2) φA(v, u) = (vtA1u, . . . , v
tAmu)t.

Since A is of dimension m, we have that φA(Fn,Fn) = Fm.
(3) Let p be an odd prime. Let φ : Fnp × Fnp → Fmp be an alternating bilinear

map, such that φ(Fnp ,Fnp ) = Fmp . Following Baer [3], we define a p-group,
Pφ ∈ Bp,2(n,m), as follows. The group elements are from the set Fnp ×Fmp .
For (vi, ui) ∈ Fnp × Fmp , i = 1, 2, the group product ◦ is defined as

(1.3) (v1, u1) ◦ (v2, u2) := (v1 + v2, u1 + u2 +
1

2
· φ(v1, v2)).
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It can be verified that Pφ ∈ Bp,2(n,m), because of the condition that
φ(Fnp ,Fnp ) = Fmp .

Definition 1.1 (The Baer-Lovász-Tutte procedure). Let G = ([n], E) be an undi-
rected simple graph with |E| = m > 0. The Baer-Lovász-Tutte procedure, as
specified in the above three steps, takes G and a prime p > 2, and produces a
p-group of class 2 and exponent p, PG ∈ Bp,2(n,m).

The above construction can be easily adjusted to accommodate graphs with ar-
bitrary vertex sets and without imposing certain total orders on the vertex set. We
can actually go from a graph to an alternating bilinear map directly, without going
through alternating matrix spaces. We can also generalise the above construction
to be over a ring R (in which 2 is a unit) instead over a field F, so when R = Z, it
gives a finitely generated torsion-free nilpotent group. See [20, Sec. 3.4] and [8, Sec.
3] for descriptions covering some of the points above.

We adopt the current description to ease the presentation, and to make the links
more transparent. Indeed, as reflected in the literature (see Section 1.3), graphs are
naturally related to alternating matrix spaces, and p-groups of class 2 and exponent
p are naturally associated with alternating bilinear maps. So we think it helpful
to describe these two intermediate objects explicitly, despite that the link between
alternating matrix spaces and alternating bilinear maps is routine.

The Baer-Lovász-Tutte construction also has the following intriguing property.
If two graphs G1 and G2 are isomorphic, then the corresponding p-groups PG1

and PG2
are easily seen to be isomorphic. Interestingly, in [8] it is shown that the

converse direction also holds. The authors of [8] further define a homomorphism
notion of graphs, so that the Baer-Lovász-Tutte procedure leads to a functor from
this category of graphs to the category of groups.

1.2. Our results. Let H be a finite group. We use J ≤ H to denote that J is
a subgroup of H, and J < H to denote that J is a proper subgroup of H. For
S, T ⊆ H, ST = {st : s ∈ S, t ∈ T}. If J,K ≤ H satisfy that JK = KJ , then JK
is a subgroup of H.

Recall that H is a central product of two subgroups J and K, if (1) every element
of J commutes with every element of K, i.e. [J,K] = 1, (2) H is generated by J
and K, i.e. H = JK, and (3) H 6= J and H 6= K; cf. [21, pp. 137] and [25, Sec.
2.1]. If such J and K exist, then we say that H is centrally decomposable.

Definition 1.2 (κ and λ for p-groups of class 2 and exponent p). Let P ∈
Bp,2(n,m). A subgroup S ≤ P is regular with respect to commutation, or simply
regular for short, if [S, S] = S ∩ [P, P ].

The regular-subgroup central-decomposition number of P , denoted by κ(P ), is
the smallest s ∈ N for the existence of a regular subgroup S with |S/[S, S]| = pn−s,
such that S is centrally decomposable.

The central-quotient central-decomposition number of P , denoted as λ(P ), is
the smallest s ∈ N for the existence of a central subgroup N of order ps, such that
P/N is centrally decomposable.

Note that we use the letters κ and λ to follow the conventions in graph theory, as
the reader will see below soon. An explanation for imposing the regularity condition
in the definition of κ(P ) can be found in Remark 2.10. In the definition of λ(P ),
we can actually restrict N to be from those central subgroups contained in [P, P ]
(cf. Observation 2.8 (2)).
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Recall that for a graph G, the vertex connectivity κ(G) denotes the smallest
number of vertices needed to remove in order that G becomes disconnected, and
the edge connectivity λ(G) denotes the smallest number of edges needed to remove
in order that G becomes disconnected [7]. These are classical notions in graph
theory (cf. e.g. [23]).

Let P ∈ Bp,2(n,m), and let G be a graph with n vertices and m edges. We
defined λ and κ for P and G. On the one hand, λ(P ) is defined with respect to

all regular subgroups of P , the number of which is at least p
1
4n

2+Ω(n), the number
of subgroups of Znp . On the other hand, λ(G) is defined with respect to all subsets
of vertices, the number of which is at most 2n. Similarly, there is also a large gap
between the numbers of those objects supporting the definitions of κ for P and
G. Such differences may prompt one to think that λ(P ) and λ(G), as well as κ(P )
and κ(G), could behave quite differently. Surprisingly, our main result suggests that
when restricting to those groups constructed from graphs via the Baer-Lovász-Tutte
procedure, these parameters are actually the same.

Theorem 1.3. For an n-vertex and m-edge graph G, let PG ∈ Bp,2(n,m) be the
result of applying the Baer-Lovász-Tutte procedure to G and a prime p > 2. Then
κ(G) = κ(PG), and λ(G) = λ(PG).

Theorem 1.3 then sets up a surprising link between group theory and graph
theory. For example, as a consequence of Theorem 1.3 in the case of κ(PG) =
λ(PG) = 0, we note that Wilson’s central decomposition algorithm for p-groups of
class 2 [25, 26] can be used to solve the connectivity problem of graphs. While an
overkill for such a basic problem on graphs, we believe it is an interesting instance
of using algorithms developed for groups to solve graph-theoretic problems.

To understand these two parameters and their relation better, we consider the
following question. Recall that for a graph G, it is well-known that κ(G) ≤ λ(G) ≤
δ(G), where δ(G) denotes the minimum degree of vertices in G (cf. e.g. [7, Propo-
sition 1.4.2]). We study a question of the same type in the context of p-groups of
class 2 and exponent p. For this we need the following definition.

Definition 1.4 (Degrees and δ for p-groups of class 2 and exponent p). For P ∈
Bp,2(n,m) and g ∈ P , suppose CP (g) = {h ∈ P : [h, g] = 1} is of order pd. Then
the degree of g is deg(g) = n + m − d. The minimum degree of P , δ(P ), is the
minimum degree over g ∈ P \ [P, P ].

The degrees of elements of P are not to be confused with the degrees of the
characters of P . This notion is closely related to the breadth notion defined for
Lie algebras (cf. e.g. [17, 24]): for an element in a finite dimensional Lie algebra,
its breadth is defined as the codimension of its centraliser. In particular, deg(g) is
exactly the breadth of g in the associated graded Lie algebra of P .

It is easy to see that for any g ∈ P , deg(g) ≤ n − 1 (cf. Observation 2.8 (3)).
Therefore δ(P ) ≤ n− 1. We then have the following.

Proposition 1.5. (1) For any P ∈ Bp,2, κ(P ) ≤ δ(P ), and λ(P ) ≤ δ(P ).
(2) There exists P ∈ Bp,2, such that κ(P ) > λ(P ).

That is, while we can still upper bound κ(P ) and δ(P ) using a certain minimum
degree notion, the inequality κ ≤ λ does not hold in general in the p-group setting.
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1.3. Related works and open ends. There are at least two known construc-
tions of p-groups of class 2 from graphs. In [9], Heineken and Liebeck constructed
p-groups of class 2 and exponent p2 from directed graphs. Another natural con-
struction, known as Mekler’s construction [18] in model theory (cf. e.g. [11]), is as
follows. Take a graph G on a vertex set V , and construct the p-group of class 2
and exponent p generated by V , with the relations [v, v′] added for edges {v, v′}
in G. Mekler’s construction is essentially the same as the Baer-Lovász-Tutte con-
struction applied to the complement graph of G, and is indeed easier to describe.
We stick to the Baer-Lovász-Tutte construction, because it is the perspectives in
their works [3, 15,22] that lead to the present note, as we explain now.

1.3.1. Related works: graphs and alternating matrix spaces. The link between graphs
and alternating matrix spaces dates back to the works of Tutte and Lovász [16,22] in
the context of perfect matchings. Let G = ([n], E) be a graph, and let AG ≤ Λ(n,F)
be the alternating matrix space associated with G as in Step (1). Tutte and Lovász
realised that the matching number of G, µ(G), is equal to one half of the maximum
rank over matrices in AG.1 More specifically, Tutte represented G as a symbolic
matrix: A matrix whose entries are either variables or 0 [22]. It can be naturally in-
terpreted as a linear space of matrices, and Lovász then more systematically studied
Tutte’s construction from this perspective [16].

Recently in [4], the second author and collaborators showed that the indepen-
dence number of G equals the maximum dimension over the totally isotropic spaces2

of AG. They also showed that the chromatic number of G equals the minimum c
such that there exists a direct-sum decomposition of Fn into c non-trivial totally
isotropic spaces of AG. As the reader will see below, the proof of Theorem 1.3
also goes by defining appropriate parameters κ and λ for alternating matrix spaces,
and proving that κ(AG) = κ(G) and λ(AG) = λ(G). This translates another two
graph-theoretic parameters to the alternating matrix space setting.

The work most relevant to the current note in this direction is [14] by the present
authors. In that work, we adapted a combinatorial technique for the graph isomor-
phism problem by Babai, Erdős, and Selkow [2], to tackle isomorphism testing of
groups from Bp,2, via alternating matrix spaces. This leads to the definition of
a “cut” for alternating matrix spaces, which in turn naturally leads to the edge
connectivity notion; cf. the proof of Proposition 2.5.

1.3.2. Related works: alternating bilinear maps and p-groups of class 2 and exponent
p. The link between alternating bilinear maps and Bp,2 dates back to the work of
Baer [3]. That is, from an alternating bilinear map φ, we can construct a group
Pφ in Bp,2 as in Step (3). On the other hand, given P ∈ Bp,2(n,m), by taking the
commutator bracket we obtain an alternating bilinear map φP . A generalisation
of this link to p-groups of Frattini class 2 was crucial in Higman’s enumeration of
p-groups [10]. Alperin [1], Ol’shanskii [19] and Buhler, Gupta, and Harris [5] used
this link to study large abelian subgroups of p-groups, a question first considered by
Burnside [6]. This is because abelian subgroups of P containing [P, P ] correspond
to totally isotropic spaces of φP .

1This is straightforward if the underlying field F is large enough. If |F| is small, it follows e.g.

as a consequence of the linear matroid parity theorem; cf. the discussion after [16, Theorem 4].
2A subspace U ≤ Fn is totally isotropic for A ≤ Λ(n,F), if ∀u, u′ ∈ U , and ∀A ∈ A, utAu′ = 0.
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The work most relevant to the current note in this direction are [25,26] by James
B. Wilson. He studied central decompositions of P via the link between alternating
bilinear maps and Bp,2. In particular, he utilised that central decompositions of P
correspond to orthogonal decompositions of φP .

Finally, we recently learnt of the work [20] of Rossmann and Voll, who study
those p-groups of class 2 and exponent p obtained from graphs through the Baer-
Lovász-Tutte procedure in the context of zeta functions of groups.

1.3.3. Open ends. The most interesting questions to us are the computational as-
pects of these parameters. That is, given the linear basis of an alternating matrix
space A ≤ Λ(n,F), compute κ(A) and λ(A) (see Definition 2.1). When F = Fq
with q odd, there is a randomised polynomial-time algorithm to decide whether
κ(A) = λ(A) = 0 by Wilson [26]. When F = R or C, by utilising certain ma-
chineries from [12], Wilson’s algorithm can be adapted to yield a deterministic
polynomial-time algorithm to decide whether κ(A) = λ(A) = 0. However, to di-
rectly use Wilson’s algorithm to compute κ(A) or λ(A) seems difficult, as when
κ(A) = λ(A) = 0, a non-trivial orthogonal decomposition can be nicely translated
to a certain idempotent in an involutive algebra associated with any linear basis of
A; for details, see [26].

2. Proofs

2.1. Preparations. Some notation has been introduced at the beginning of sec-
tions 1.1 and 1.2. We add some more here. For a field F and d1, d2 ∈ N, we
use M(d1 × d2,F) to denote the linear space of d1 × d2 matrices over F, and
M(d,F) := M(d× d,F). The ith standard basis vector of Fn is denoted by ei.

2.1.1. Some notions for alternating matrix spaces. We introduce some basic con-
cepts, and then define κ and λ, for alternating matrix spaces. Let A,B ≤ Λ(n,F).
We say that A and B are isometric, if there exists T ∈ GL(n,F), such that
A = T tBT := {T tBT : B ∈ B}. For a d-dimensional W ≤ Fn, let T be an
n × d matrix whose columns span W . Then the restriction of A to W via T is
A|W,T := {T tAT : A ∈ A} ≤ Λ(d,F). For a different n × d matrix T ′ whose
columns also span W , A|W,T ′ is isometric to A|W,T . So we can write A|W to
indicate a restriction of A to W via some such T .

Let A ≤ Λ(n,F) be of dimension m. We define an orthogonal decomposition of
A to be a direct-sum decomposition of Fn into U ⊕V , such that (1) for any u ∈ U ,
v ∈ V , and A ∈ A, utAv = 0, and (2) neither U nor V equals Fn. If A has such an
orthogonal decomposition, then A is called orthogonally decomposable.

When n = 1, we define Λ(1,F) to be orthogonally decomposable. Indeed, a graph
with a single vertex is sometimes regarded as disconnected according to [7, pp. 12].

When n > 2 and A = 〈A〉 ≤ Λ(n,F) is of dimension 1, A is always orthogonally
decomposable. This can be seen easily from the canonical forms of alternating
matrices [13, Chap. XV, Sec. 8].

Definition 2.1 (κ and λ for alternating matrix spaces). Let A ≤ Λ(n,F) be of
dimension m. We define the restriction-orthogonal number of A, κ(A), as the
minimum c ∈ N for the existence of a dimension-(n − c) subspace W ≤ Fn, such
that A|W is orthogonally decomposable.
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We define the subspace-orthogonal number of A, λ(A), as the minimum c ∈ N for
the existence of a dimension-(m− c) subspace A′ ≤ A, such that A′ is orthogonally
decomposable.

Clearly, A is orthogonally decomposable if and only if κ(A) = λ(A) = 0. Note
that κ(A) ≤ n − 1, as we defined Λ(1,F) to be orthogonally decomposable. Also
note that λ(A) ≤ m, as any non-trivial direct-sum decomposition is an orthogonal
decomposition of the zero space in Λ(n,F) when n ≥ 2.

Suppose we are given a dimension-m A = 〈A1, . . . , Am〉 ≤ Λ(n,F). We form a
3-tensor A ∈ Fn×n×m such that A(i, j, k) = Ak(i, j). We illustrate the existence
of an orthogonal decomposition for A, the existence of W such that A|W has
an orthogonal decomposition, and the existence of A′ ≤ A with an orthogonal
decomposition, up to appropriate basis changes, in Figure 1.

(a) κ(A) = λ(A) = 0 (b) κ(A) ≤ n− dim(W ) (c) λ(A) ≤ m− dim(A′)

Figure 1. Pictorial descriptions of the alternating matrix space
parameters. The unmarked regions indicate that the entries there
are all zero, W , W1 and W2 denote subspaces of Fn, and A and A′
denote subspaces of Λ(n,F). For example, in (a), suppose W1⊕W2

is an orthogonal decomposition for A spanned by corresponding
alternating matrices. Then up to a change of basis, the upper-
right and the lower-left corners of A have all-zero entries. (b) and
(c) also indicate the situations with appropriate changes of bases.

2.1.2. Some notions for alternating bilinear maps. We introduce basic concepts,
and then define κ and λ, for alternating bilinear maps. Let φ, ψ : Fn × Fn → Fm
be two alternating bilinear maps. Following [25], we say that φ and ψ are pseudo-
isometric, if they are the same under the natural action of GL(n,F) × GL(m,F).
For W ≤ Fn, φ naturally restricts to W to give φ|W : W ×W → Fm. For X ≤ Fm,
φ naturally induces φ/X : Fn × Fn → Fm/X by composing φ with the projection
from Fm to Fm/X.

Let φ : Fn × Fn → Fm be an alternating bilinear map. Following [25, Definition
3.4], an orthogonal decomposition of φ is a direct-sum decomposition of Fn =
W1 ⊕W2, such that (1) for any u ∈ W1, v ∈ W2, we have φ(u, v) = 0, and (2)
neither W1 nor W2 equals Fn. If φ has such an orthogonal decomposition, then φ
is called orthogonally decomposable.

Definition 2.2 (κ and λ for alternating bilinear maps). Let φ : Fn × Fn → Fm be
an alternating bilinear map. The restriction-orthogonal number of φ, κ(φ), is the
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minimum c ∈ N for the existence of a dimension-(n − c) subspace W ≤ Fn, such
that φ|U is orthogonally decomposable.

The quotient-orthogonal number of φ, λ(φ), is the minimum c ∈ N for the
existence of a dimension-c X ≤ Fm, such that φ/X is orthogonally decomposable.

Remark 2.3 (From alternating matrix spaces to bilinear maps). This connection
is simple but may deserve some discussion. Recall that, given an m-dimensional
alternating matrix space A ≤ Λ(n,F), we can fix an ordered basis of A as A =
(A1, . . . , Am) ∈ Λ(n,F)m, and construct an alternating bilinear map φA : Fn×Fn →
Fm as in Equation (1.2). Furthermore, φA is surjective since A is of dimension m.
In the above transformation, we shall need A ∈ Λ(n,F)m as an intermediate object.
For a different ordered basis A′, φA′ is pseudo-isometric to φA. Because of this,
we shall write φA to indicate φA with some ordered basis A of A. Furthermore, if
A and B are isometric and A (resp. B) is an ordered basis for A (resp. B), then
φA and φB are pseudo-isometric.

2.2. Proof of Theorem 1.3. The proof of Theorem 1.3 goes by showing that
the parameters κ and λ defined for graphs, alternating matrix spaces, alternating
bilinear maps, and groups from Bp,2, are preserved in the three steps of the Baer-
Lovász-Tutte procedure. The first step, from graphs to alternating matrix spaces,
is the tricky one, at least for λ. The other two steps are rather straightforward.

2.2.1. From graphs to alternating matrix spaces. Recall that for {i, j} ∈
(

[n]
2

)
, Ai,j

denotes the elementary alternating matrix with the (i, j)th entry being 1, the (j, i)th
entry being −1, and other entries being 0.

Proposition 2.4. Let G = ([n], E) be a graph, and let AG = 〈Ai,j : {i, j} ∈ E〉 ≤
Λ(n,F) as defined in Step (1). Then κ(G) = κ(AG).

Proof. We first show κ(AG) ≤ κ(G). Let I ⊆ [n] be a subset of vertices of size
d = n − κ(G), such that the induced subgraph of G on I is disconnected. Let
W = 〈ei : i ∈ I〉, and T be the n × d matrix over F whose columns are ei ∈ Fn,
i ∈ I. It is straightforward to verify that AG|W,T is orthogonally decomposable.

We then show κ(AG) ≥ κ(G). Let W ≤ Fn be a subspace of dimension d =
n − κ(AG), such that A|W is orthogonally decomposable. That is, there exists
W = W1 ⊕W2 such that

(2.1) ∀w1 ∈W1, w2 ∈W2,∀A ∈ A, wt1Aw2 = 0.

Suppose dim(W1) = b and dim(W2) = c, so d = b+ c.
Construct an n × d matrix T =

[
T1 T2

]
where T1 (resp. T2) is of size n × b

(resp. n× c) and its columns form a basis of W1 (resp. W2). Let the ith row of T1

be uti where ui ∈ Fb, and let the jth row of T2 be vtj where vj ∈ Fc, for i, j ∈ [n].
Observe that the elementary alternating matrix Ai,j ∈ Λ(n,F) can be expressed as
eie

t
j − ejeti. Then by Equation (2.1), for any {i, j} ∈ E,

(2.2) T t1(eie
t
j − ejeti)T2 = uiv

t
j − ujvti ∈ M(b× c,F)

is the all-zero matrix.
Because T is of rank d, there exists a d × d submatrix R of T of rank d. Let

I ⊆ [n] be the set of row indices of this submatrix R. The key to the proof is the
following claim: the induced subgraph of G on I, G[I], is disconnected. To show
this, we shall exhibit a partition of I = I1 ] I2 such that no edges in G[I] go across
I1 and I2.
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As R is of rank d, there exists a partition of I, I = I1 ] I2 with |I1| = b,
|I2| = d− b = c, such that the following holds. Let R1 be the b× b submatrix of R
with row indices from I1 and column indices from [b], and R2 the c× c submatrix
of R with row indices from I2 and column indices from [d] \ [b]. Then R1 and R2

are both full-rank. Note that {uti : i ∈ I1} is the set of rows of R1 and {vtj : j ∈ I2}

is the set of rows of R2. Up to a permutation of rows, R is of the form

R1 R′2
R′1 R2

∗ ∗

.

We then claim that no edges in G[I] go across I1 and I2. By contradiction,
suppose there is an edge {i, j}, i ∈ I1 and j ∈ I2, in G[I]. Then the same edge
{i, j} is also in G. By Equation (2.2), we have uiv

t
j−ujvti is the all-zero matrix, that

is uiv
t
j = ujv

t
i . Note that, up to a permutation of rows as in the last paragraph, ui

is a row in R1 and vj is a row in R2, while uj is a row in R′1 and vj is a row in R′2.
Since R1 and R2 are full-rank, ui and vj are nonzero vectors. This implies that

uj = αui and vi = (1/α)vj for some nonzero α ∈ F. But this gives that
[
utj vtj

]
=

α
[
uti vti

]
, that is, the ith and jth rows of T are linearly dependent. Noting that

these rows are in R which is full-rank, we arrive at the desired contradiction. This
concludes the proof. �

Proposition 2.5. Let G = ([n], E) be a graph, and let AG = 〈Ai,j : {i, j} ∈ E〉 ≤
Λ(n,F) be defined in Step (1). Then λ(G) = λ(AG).

Proof. We first show λ(AG) ≤ λ(G). Let D be a size-λ(G) subset of E such that
G′ = ([n], E \ D) is disconnected. Let AG′ = 〈Ai,j : {i, j} ∈ E \ D〉 ≤ AG. It is
straightforward to verify that AG′ is orthogonally decomposable.

We then show λ(AG) ≥ λ(G). For this, it is convenient to introduce an equivalent
formulation of λ for alternating matrix spaces, which is originated from [14].

Given a direct-sum decomposition Fn = W1 ⊕ W2 with dim(W1) = b and
dim(W2) = c = n − b, let T1 (resp. T2) be a n × b (resp. n × c) matrix whose
columns form a basis of W1 (resp. W2). Given an m-dimensional A ≤ Λ(n,F),
let CW1,W2,T1,T2

(A) = {T t1AT2 : A ∈ A} ≤ M(b × c,F). Note that different choices
of T1 and T2 result in a subspace of M(b × c,F) which can be transformed to
CW1,W2,T1,T2(A) by left-multiplying some matrix in GL(b,F) and right-multiplying
some matrix in GL(c,F). So we can write CW1,W2

to indicate CW1,W2,T1,T2
via some

such T1 and T2. Up to an appropriate basis change as illustrated in Figure 1c,
CW1,W2

(A) can be seen intuitively as spanned by those submatrices in the upper-
right block.

Now we claim that

(2.3) λ(A) = min{dim(CW1,W2
(A)) : ∀ non-trivial Fn = W1 ⊕W2}.

To see this, let A′ ≤ A be of dimension m − λ(A) which admits an orthogonal
decomposition Fn = W1⊕W2. It is easy to verify that dim(CW1,W2

(A)) ≤ m−(m−
λ(A)) = λ(A). On the other hand, let Fn = W1⊕W2 be a direct-sum decomposition
such that dim(CW1,W2

(A)) is minimal. Let T1 (resp. T2) be a matrix whose columns
form a basis of W1 (resp. W2). Let A′ = {A ∈ A : T t1AT2 = 0}. We then have
dim(A′) = m−dim(CW1,W2(A)), and clearly A′ is orthogonally decomposable. This
gives λ(A) ≤ m− dim(A′) = dim(CW1,W2

(A)).
After introducing this formulation, let Fn = W1⊕W2 be a direct-sum decompo-

sition with dim(W1) = b and dim(W2) = c = n− b, such that dim(CW1,W2
(AG)) =
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λ(AG) = d. Construct an n×n full-rank matrix T =
[
T1 T2

]
where T1 (resp. T2)

is a n×b (resp. n×c) matrix whose columns form a basis of W1 (resp. W2). Let the
ith row of T1 be uti where ui ∈ Fb, and let the jth row of T2 be vtj where vj ∈ Fc. We
distinguish between the following two cases. Recall that AG = 〈Ai,j : {i, j} ∈ E〉,
where Ai,j = eie

t
j − ejeti is the elementary alternating matrix.

(1) Suppose for any i ∈ [n], ui 6= 0 if and only if vi = 0. Then there exists
[n] = I1 ] I2 with |I1| = b and |I2| = c, such that i ∈ I1 if and only
if ui 6= 0, and j ∈ I2 if and only if vj 6= 0. Furthermore, vectors in
{ui : i ∈ I1} are linearly independent, and vectors in {vj : j ∈ I2} are
linearly independent. That is, up to a permutation of rows, T is of the

form

[
T11 0
0 T22

]
, where T11 ∈ GL(b,F) and T22 ∈ GL(c,F). We claim that

there are no more than d edges of G crossing I1 and I2. Suppose not, then
there exists {{i1, j1}, . . . , {id+1, jd+1}} ⊆ E, such that ik ∈ I1, and jk ∈ I2
for k ∈ [d+ 1]. We then have for any k ∈ [d+ 1]

(2.4) T t1(eike
t
jk
− ejketik)T2 = uikv

t
jk
− ujkvtik = uikv

t
jk
∈ CW1,W2

(AG).

It is straightforward to verify that the rank-1 matrices uikv
t
jk

, k ∈ [d + 1],
are linearly independent, contradicting that CW1,W2

(AG) is of dimension d.
(2) Suppose there exists i ∈ [n] such that both ui and vi are nonzero. Suppose

by contradiction that λ(G) > d. Up to a permutation of vertices, we may
assume i = n, and the vertex n is adjacent to vertices 1, . . . , d + 1. By
Equation (2.4), we have unv

t
k − ukvtn ∈ CW1,W2(AG) for k ∈ [d + 1]. Since

dim(CW1,W2(AG)) = d, the matrices unv
t
k − ukvtn, k ∈ [d + 1], are linearly

dependent. It follows that there exist αk ∈ F for k ∈ [d+ 1], at least one of

which is nonzero, such that
∑d+1
k=1 αk(unv

t
k − ukvtn) = 0. This implies that

un(
∑d+1
k=1 αkv

t
k) = (

∑d+1
k=1 αkuk)vtn as two rank-1 matrices.

From the above, and by the assumption that un and vn are nonzero,

we have that βun =
∑d+1
k=1 αkuk and βvn =

∑d+1
k=1 αkvk for some β ∈ F.

Since at least one of αk’s is nonzero, this means that the rows in T with
indices {1, . . . , d+ 1, n} are linearly dependent, which contradicts that T is
full-rank.

These conclude the proof that λ(AG) ≥ λ(G). �

Remark 2.6 (Cuts in alternating matrix spaces). The alternative formulation of λ
as in Equation (2.3) rests on a natural generalisation of the notion of cuts in graphs.
Proposition 2.5 then indicates that for an alternating matrix space AG constructed
from a graph G, the minimum cut sizes of AG and G are equal.

2.2.2. From alternating matrix spaces to alternating bilinear maps. We now relate
the parameters κ and λ for alternating matrix spaces and alternating bilinear maps
in the following easy proposition. Note that we use the notation φA due to the
discussions in Remark 2.3.

Proposition 2.7. For an m-dimensional A ≤ Λ(n,F), let an alternating bilinear
map φA : Fn × Fn → Fm be defined in Step (2). Then we have κ(A) = κ(φA), and
λ(A) = λ(φA).

Proof. The equality κ(A) = κ(φA) is straightforward to verify.
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To show that λ(A) ≥ λ(φA), let A′ ≤ A be a dimension-(n − λ(A)) subspace
of A admitting an orthogonal decomposition. Let c = λ(A). We fix an ordered
basis of A, A = (A1, . . . , Am), such that {A1, . . . , Am−c} spans A′. Let X ≤ Fm
be the linear span of the last c standard basis vectors. We claim that φA/X is
orthogonally decomposable. Indeed, let U ⊕ V be an orthogonal decomposition of
A′. Then for any u ∈ U, v ∈ V , we have φA(u, v) ∈ X, which means that U ⊕ V is
also an orthogonal decomposition for φA/X .

To show that λ(A) ≤ λ(φA), let A = (A1, . . . , Am) be an ordered basis of A, and
let c = λ(φA). Let X be a dimension-c subspace of Fm, such that φA/X admits an
orthogonal decomposition Fn = U⊕V . That is, for any u ∈ U and v ∈ V , φA(u, v) ∈
X. Form an ordered basis of Fm, (w1, . . . , wm), where wi = (wi,1, . . . , wi,m)t ∈ Fm,
such that the last c vectors form a basis of X. Let A′i =

∑
j∈[m] wi,jAj be another

ordered basis of A, and A′ = (A′1, . . . , A
′
m). Then for any u ∈ U and v ∈ V , since

φA(u, v) ∈ X, the first m−c entries of φA′(u, v) are zero. In particular, this implies
that Fn = U ⊕ V is an orthogonal decomposition for A′ = 〈A′1, . . . , A′m−c〉, where
A′ is of dimension m− c. �

2.2.3. From alternating bilinear maps to groups from Bp,2. To start with, we ob-
serve the following basic properties of κ, λ, and δ for groups from Bp,2(n,m).

Observation 2.8. Let P ∈ Bp,2(n,m). Then we have the following.

(1) Suppose P = JK is a central decomposition. Let J0 = J [P, P ], and K0 =
K[P, P ]. Then J0 and K0 form a central decomposition of P , and both of
them properly contain [P, P ].

(2) If for a central subgroup N , P/N is orthogonally decomposable, then P/(N∩
[P, P ]) is orthogonally decomposable.

(3) For any g ∈ P , deg(g) ≤ n− 1.

Proof. (1): To show that J0 and K0 form a central decomposition of P , we only
need to verify that J0 and K0 are proper. For the sake of contradiction, suppose
P = J0 = J [P, P ]. Since [P, P ] is the Frattini subgroup of P , it follows that J = P ,
contradicting that J is proper.

To show that J0 properly contains [P, P ], again for the sake of contradiction
suppose J0 ≤ [P, P ]. Then P = J0K0 ≤ [P, P ]K0 = K0, a contradiction to K0

being a proper subgroup of P .
(2): If N ≤ [P, P ], the conclusion holds trivially. Suppose otherwise. Let J/N

and K/N be a central product of P/N for J,K ≤ P . That is, for any j ∈ J
and k ∈ K, jkj−1k−1 ∈ N , so in fact jkj−1k−1 = [j, k] ∈ N ∩ [P, P ]. It then
follows easily that J/(N ∩ [P, P ]) and K/(N ∩ [P, P ]) form a central product of
P/(N ∩ [P, P ]).

(3): If g ∈ Z(P ), deg(g) = 0. If g 6∈ Z(P ), then CP (g) contains the subgroup
generated by g and [P, P ], which is of order at least pm+1. �

Recall that in Step (3), we start from an alternating bilinear map φ : Fnp ×Fnp →
Fmp satisfying φ(Fnp ,Fnp ) = Fmp , and construct Pφ, a p-group of class 2 and exponent
p. Then [Pφ, Pφ] ∼= Zmp , and Pφ/[Pφ, Pφ] ∼= Znp .

It is easily checked that, by Equation (1.3), subspaces of Fmp correspond to
subgroups of [Pφ, Pφ], and subspaces of Fnp correspond to subgroups of Pφ/[Pφ, Pφ].
We then set up the following notation. For U ≤ Fnp , let QU be the subgroup of
Pφ/[Pφ, Pφ] corresponding to U , and let SU be a subgroup of Pφ of the smallest
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order satisfying SU [Pφ, Pφ]/[Pφ, Pφ] = QU . It is easy to show, by following the
proof of [25, Lemma 2.3 (i)], that SU is regular with respect to commutation,
i.e. SU ∩ [Pφ, Pφ] = [SU , SU ]. For X ≤ Fmp , let NX be the subgroup of [Pφ, Pφ]
corresponding to X.

Proposition 2.9. Let φ : Fnp × Fnp → Fmp and Pφ ∈ Bp,2(n,m) be as above. Then
κ(φ) = κ(Pφ), and λ(φ) = λ(Pφ).

Proof. To show that κ(φ) ≥ κ(Pφ), suppose there exists a (n − κ(φ))-dimensional
U ≤ Fnp such that φ|U is orthogonally decomposable. It can be verified easily that
this induces a central decomposition for the regular subgroup SU ≤ Pφ. Further-
more, by Noether’s isomorphism theorems, SU/[SU , SU ] = SU/(SU ∩ [Pφ, Pφ]) ∼=
SU [Pφ, Pφ]/[Pφ, Pφ] = QU , which is of order pn−κ(φ).

To show that κ(φ) ≤ κ(Pφ), suppose that a regular S ≤ Pφ satisfying |S/[S, S]| =
pn−κ(Pφ) admits a central decomposition S = JK. Applying Observation 2.8 (1) to
S, we can assume that J and K both properly contain [S, S]. Let US (resp. UJ , UK)
be the subspace of Fnp corresponding to S[Pφ, Pφ]/[Pφ, Pφ] (resp. J [Pφ, Pφ]/[Pφ, Pφ],
K[Pφ, Pφ]/[Pφ, Pφ]). Then it can be verified, using Equation (1.3), that UJ and UK
form an orthogonal decomposition for φ|US . Furthermore, by Noether’s isomor-
phism theorems, S[Pφ, Pφ]/[Pφ, Pφ] ∼= S/[S, S], which holds with S replaced by J
or K as well. In particular we have dim(US) = n− κ(Pφ).

To show that λ(φ) ≥ λ(Pφ), we translate a subspace X ≤ Fmp with φ/X orthog-
onally decomposable to a subgroup NX ≤ [Pφ, Pφ]. It can be verified easily that
the orthogonal decomposition of φ/X yields a central decomposition of Pφ/NX .

To show that λ(φ) ≤ λ(Pφ), suppose N ≤ Pφ is a central subgroup of order

pλ(Pφ) such that Pφ/N is centrally decomposable. By Observation 2.8 (2), we can
assume that N ≤ [Pφ, Pφ]. Let X be the subspace of Fmp corresponding to N . Let
J/N,K/N ≤ Pφ/N be a central decomposition of Pφ/N for J,K ≤ Pφ. Applying
Observation 2.8 (1) to Pφ/N , we can assume that J/N and K/N both properly
contain [Pφ/N, Pφ/N ] = [Pφ, Pφ]/N . In particular, J and K properly contain
[Pφ, Pφ], so J/[Pφ, Pφ] (resp. K/[Pφ, Pφ]) corresponds to a non-trivial proper sub-
space UJ ≤ Fnp (resp. UK ≤ Fnp ). Then it can be verified that UJ and UK span
Fnp , and for any u ∈ UJ and u′ ∈ UK , we have φ(u, u′) ∈ X. Therefore UJ and UK
form an orthogonal decomposition for φ/X . �

Remark 2.10 (On the regular condition). The reason for imposing the regular con-
dition is to rule out the following central decompositions, which is not well-behaved
regarding the correspondence between φ and Pφ. Suppose that S ≤ Pφ satisfies
[S, S] < [Pφ, Pφ]. Then S and [Pφ, Pφ] form a central decomposition of S[Pφ, Pφ].
Translating back to φ, [S, S] < [Pφ, Pφ] just says that φ(US , US) is a proper subspace
of Fm, which is not related to whether φ|US is orthogonally decomposable.

2.3. Proof of Proposition 1.5. We shall work in the setting of alternating matrix
spaces. So we state the correspondence of Definition 1.4 in this setting, which was
already used in [4].

Definition 2.11 (Degrees and δ for alternating matrix spaces). Let A ≤ Λ(n,F).
For v ∈ Fn, the degree of v in A is the dimension of Av := {Av : A ∈ A}. The
minimum degree of A, denoted as δ(A), is the minimum degree over all 0 6= v ∈ Fn.
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To translate from groups in Bp,2(n,m) to alternating matrix spaces, we recall
the following procedure which consists of inverses of the last two steps of the Baer-
Lovász-Tutte procedure.

For any P ∈ Bp,2(n,m), let V = P/[P, P ] ∼= Znp and U = [P, P ] ∼= Zmp . The
commutator map φP : V ×V → U is alternating and bilinear. After fixing bases of V
and U as Fp-vector spaces, we can represent φP : Fnp ×Fnp → Fmp as (A1, . . . , Am) ∈
Λ(n,Fp)m, which spans an m-dimensional AP ≤ Λ(n,Fp). It is easy to check
that isomorphic groups yield isometric alternating matrix spaces. Furthermore,
this procedure preserves κ and λ, by essentially the same proof for Proposition 2.7
and 2.9, and δ, by a straightforward calculation.

The following proposition then implies Proposition 1.5 (1).

Proposition 2.12. Given A ≤ Λ(n,F), we have κ(A) ≤ δ(A) and λ(A) ≤ δ(A).

Proof. We first show that κ(A) ≤ δ(A). Take some v ∈ Fn such that deg(v) = δ(A).
If δ(A) = n − 1, then the inequality holds trivially. Otherwise, let U = {u ∈ Fn :
∀ A ∈ A, utAv = 0}. Note that dim(U) = n − deg(v) ≥ 2, and v ∈ U . Let V be
any complement space of 〈v〉 in U . Then 〈v〉 ⊕ V is an orthogonal decomposition
of A|U . It follows that κ(A) ≤ n− dim(U) = deg(v) = δ(A).

We then show that λ(A) ≤ δ(A). Take some v ∈ Fn such that deg(v) = δ(A).
Let W be any complement subspace of 〈v〉 in Fn, and let TW be an n × (n − 1)
matrix whose columns form a basis of W . The space vtATW = {vtATW : A ∈
A} ≤ M(1 × (n − 1),F) is of dimension deg(v). By Equation (2.3), we then have
λ(A) ≤ dim(vtATW ) = deg(v) = δ(A). �

In contrast to the graph setting, we show that it is possible that κ(A) > λ(A)
over Q and Fq, therefore proving Proposition 1.5 (2). For this we need the following:

Definition 2.13. We say that A ≤ Λ(n,F) is fully connected, if for any linearly
independent u, v ∈ Fn, there exists A ∈ A, such that utAv 6= 0.

An observation on fully connected A follows from the definition easily.

Observation 2.14. A fully connected A ≤ Λ(n,F) satisfies κ(A) = n− 1.

We shall construct a fully connected A ≤ Λ(n,F) with λ(A) < n − 1 = κ(A).
To do this we need the fully connected notion in the (not necessarily alternating)
matrix space setting. That is, B ≤ M(s× t,F) is fully connected, if for any nonzero
u ∈ Fs and nonzero v ∈ Ft, there exists B ∈ B, such that utBv 6= 0. The following
fact is well-known.

Fact 2.15. Let F be a finite field or Q. Then over F, there exists a fully connected
matrix space in M(s,F) of dimension s.

Proof. Let K be a degree-s field extension of F. The regular representation of K on
Fs gives an s-dimensional C ≤ M(s,F), such that each nonzero C ∈ C is of full rank.
Let (C1, . . . , Cs) be an ordered basis of B. Let Bi ∈ M(s,F), i ∈ [s], be defined by
Bi =

[
C1ei C2ei . . . Csei

]
. That is, the jth column of Bi is the ith column

of Cj . Then B = 〈B1, . . . , Bs〉 ≤ M(s,F) is of dimension s and fully connected.
Indeed, if B is not fully connected, then there exist nonzero v ∈ Fs and nonzero
u = (u1, u2, . . . , us)

t ∈ Fs such that vtBiu = 0 for any i ∈ [s]. But this just means
that v is in the left kernel of C ′ = u1C1 + · · · + usCs, contradicting that C ′ is of
full rank. �
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Let s, t ∈ N and n = s+ t. Let B ≤ M(s× t,F) be a fully connected matrix space
of dimension d < n− 1. We shall use B to construct a fully connected A ≤ Λ(n,F)
such that λ(A) ≤ d < n− 1 = κ(A).

Suppose B is spanned by B1, . . . , Bd ∈ M(s × t,F). Let Ai =

[
0 Bi
−Bti 0

]
for

i ∈ [d]. For 1 ≤ i < j ≤ s, let Ci,j =

[
Ei,j 0

0 0

]
∈ Λ(n,F), where Ei,j = eie

t
j −

eje
t
i ∈ Λ(s,F) is an elementary alternating matrix. For 1 ≤ i < j ≤ t, let Di,j =[

0 0
0 Fi,j

]
∈ Λ(n,F), where Fi,j = eie

t
j − ejeti ∈ Λ(t,F) is an elementary alternating

matrix. Let A be spanned by {Ai : i ∈ [d]} ∪ {Ci,j : 1 ≤ i < j ≤ s} ∪ {Di,j : 1 ≤
i < j ≤ t}.

Proposition 2.16. Let A ≤ Λ(n,F) be as above. Then A is fully connected.

Proof. Assume there exist linearly independent u, v ∈ Fn such that for any A ∈ A,

utAv = 0. Take u =

[
u1

u2

]
and v =

[
v1

v2

]
, where u1, v1 ∈ Fs and u2, v2 ∈ Ft. Note

that for any 1 ≤ i < j ≤ s,
[
ut1 ut2

] [Ei,j 0
0 0

] [
v1

v2

]
= ut1Ei,jv1 = 0. Similarly, we

have ut2Fi,jv2 = 0 for all 1 ≤ i < j ≤ t.
We then distinguish among the following cases.

(1) v1 and v2 are both nonzero. In this case we have u1 = λv1 and u2 = µv2

for some λ 6= µ ∈ F. Therefore, we have[
ut1 ut2

] [ 0 Bi
−Bti 0

] [
v1

v2

]
= −ut2Btiv1+ut1Biv2 = −µvt2Btiv1+λvt1Biv2 = (λ−µ)vt1Biv2.

Since B is fully connected, this implies that v1 = 0 or v2 = 0, a contradiction
to the assumption of this case.

(2) v1 is zero and v2 is nonzero. Then u2 = λv2, and u1 cannot be zero.
Therefore, we have[

ut1 ut2
] [ 0 Bi
−Bti 0

] [
v1

v2

]
= −ut2Btiv1 + ut1Biv2 = ut1Biv2 = 0,

which is a contradiction to the full connectivity of B.
(3) v1 is nonzero and v2 is zero. This case is in complete analogy with the

previous case.

This concludes the proof that A is fully connected. �

We then have κ(A) = n−1 by Observation 2.14. Now observe that the subspace
of A spanned by Ci,j and Di,j is centrally decomposable. This gives that λ(A) ≤
d < n − 1 = κ(A). Over Fq and Q, such B exists for s > 1 by Fact 2.15. This
concludes the proof of Proposition 1.5 (2).

References

1. J. L. Alperin, Large abelian subgroups of p-groups, Transactions of the American Mathematical
Society 117 (1965), 10–20.
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ciedade Brasileira de Matemática 20 (1989), no. 1, 87–99.

17. Avinoam Mann, Elements of minimal breadth in finite p-groups and Lie algebras, Journal of

the Australian Mathematical Society 81 (2006), no. 2, 209–214.
18. Alan H. Mekler, Stability of nilpotent groups of class 2 and prime exponent, The Journal of

Symbolic Logic 46 (1981), no. 4, 781–788.

19. A. Yu. Ol’shanskii, The number of generators and orders of abelian subgroups of finite p-
groups, Mathematical notes of the Academy of Sciences of the USSR 23 (1978), no. 3, 183–

185.

20. Tobias Rossmann and Christopher Voll, Groups, graphs, and hypergraphs: average sizes of
kernels of generic matrices with support constraints, 2019, arXiv:1908.09589.

21. M. Suzuki, Group theory I, Springer, 1982.
22. W. T. Tutte, The factorization of linear graphs, Journal of the London Mathematical Society

s1-22 (1947), no. 2, 107–111.

23. , Connectivity in graphs, University of Toronto Press, 1966.
24. Michael Vaughan-Lee, Groups of order p8 and exponent p, International Journal of Group

Theory 4 (2015), no. 4, 25–42.

25. James B. Wilson, Decomposing p-groups via Jordan algebras, Journal of Algebra 322 (2009),
no. 8, 2642–2679.

26. , Finding central decompositions of p-groups, Journal of Group Theory 12 (2009),

no. 6, 813–830.

Centrum Wiskunde & Informatica and QuSoft, Science Park 123, 1098XG Amsterdam,
Netherlands

Email address: Yinan.Li@cwi.nl

Center for Quantum Software and Information, University of Technology Sydney,

Ultimo NSW 2007, Australia
Email address: Youming.Qiao@uts.edu.au


	1. Introduction
	1.1. From graphs to groups: the Baer-Lovász-Tutte procedure
	1.2. Our results
	1.3. Related works and open ends

	2. Proofs
	2.1. Preparations
	2.2. Proof of Theorem 1.3
	2.3. Proof of Proposition 1.5

	References

