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Abstract  
This study presents a new computational method for GC content profiling based on the idea of multiple 
resolution sampling. The benefit of our new approach over existing techniques follows from its ability to locate 
significant regions without prior knowledge of the sequence, nor the features being sought. The use of multiple 
resolution sampling has provided novel insights into bacterial genome composition. Key findings include those 
that are related to the core composition of bacterial genomes, to the identification of large genomic islands (in 
Enterobacterial genomes), and to the identification of surface protein determinants in human pathogenic 
organisms (e.g. Staphylococcus genomes). We observed that bacterial surface binding proteins maintain 
abnormal GC content, potentially pointing to a viral origin. This study has demonstrated that GC content holds a 
high informational worth and hints at many underlying evolutionary processes.  

Background  
Bacterial genomic GC content has been reported to broadly range between 25% to 75% [1], and recently some 
organisms have been identified outside of this range, including Carsonella extending below 20% GC. The GC 
content of a prokaryote genome is a complex property borne out of evolutionary time. For example, free-living 
bacteria have average GC content higher than obligatory pathogens and symbionts as evidenced across several 
taxonomic branches [2]. There are many other research works examining the relationship between environment 
and genome nucleotide composition. As shown in [2], the selection against GC is attributed to the increased 
energy cost in GTP and CTP synthesis, and the mutational bias toward A/T may therefore confer selective 
advantage and may impact coding sequence length. The unavailability under stress of cytosine and its tendency 
to mutate to U/T suggest short coding sequences with longer sequences devoid of cytosine to be a feature of 
prokaryote genomes [3]. The mechanisms contributing to low GC content in shorter genomes also include the 
inability to clear uracil from DNA [4] and habitat specificity [5] in conjunction with the increased energy 
differential in GC synthesis. Recently, environmental considerations toward a relationship between optimal 
growth temperature and GC genome content have been proposed [6], and then questioned [7] and rebutted [8]. 
The environmental division between aerobic and anaerobic prokaryotes have shown increased GC content for 
aerobes [9]. 
The heterogeneous environment of free-living organisms potentially impacts their genomic GC content via 
lateral DNA transfer [10, 11]. Pathogenicity islands (PAI), as an important GC content pattern, are tracts of 
DNA conferring specific pathogenic potential to the host genome. The ‘island’ represents a cluster of genes 
culminating in a pathogenic potential either integrated into the chromosome or plasmid DNA [12]. Of great 
interest in this study are the pathogenicity islands for Escherichia coli 536 (O6:K15::H31), an important 
organism which has been identified and investigated by [13]. The differential GC content of PAIs vs. the 
background genome arises due to the insert not belonging to the host genome. At the most simplistic level, 
profiling a genome’s GC content can just indicate genomic islands, but not specifically pathogenicity islands nor 
the case when the pathogenicity island has similar GC content to the host genome.  
Genome reduction and the notion of a ‘core-genome’, essentially the minimal set of coding sequences to sustain 
life, pose an interesting question: which GC scanning can contribute. In this paper, we investigate genomes 
categorized as containing low < 35% GC or high > 65% genomic GC. The role of obligate host-environment 
interrelationships and their impact on GC reduction are of significant interest. From the GC analysis perspective, 
profiling of low %GC genomes for aberrant regions are theorised to highlight core regions critical to survival. 
As low %GC is a desirable biological quality, the presence of lower than average GC regions in an already 
reduced genome may signify regions of more ancient composition or structural importance, for which reductive 
processes have acted over an extended time. The lack of functional DNA repair enzymes are a feature of 
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reduced genomes [14]. This poses an interesting conclusion, stating that the default condition for unchecked 
replicate error is biased toward A+T. Studies have shown A+T richness to be a feature surrounding the 
replication terminus [15]. Closely associated with A+T biasing near the replication terminus is the translesion 
repair mechanism [16], a less accurate repair mechanism favouring adenine incorporation. Under the translesion 
scheme, sequences located toward the replication terminus are hindered by their single copy number for longer 
durations hence other repair mechanisms (including homologous recombination) are biased against. 
Interestingly, genes associated with the region proximally preceding the replication terminus evolve at an 
accelerated rate [17].  
From a historical perspective, computational efforts toward genomic segmentation of compositional features has 
centred around usage and distribution patterns of nucleotides. As summarized by Karlin [18], compositional 
variances can be analysed through G+C window calculations, dinucleotide bias (often termed genomic 
signature) and discernable differences in codon and amino acid usage. Detractions from these techniques readily 
occur when compositional deviance levels are small in magnitude (with respect to the parent background 
genome) and resolution concerns become apparent through the use of sliding windows of unknown size to 
define features not fitting the a priori consensus length.  
Computational models and algorithms generally seek to segment sequences based on identifiable shifts in G+C 
composition. Several techniques exist beyond simple compositional measures for genome segmentation with 
variances based on prior threshold setting and resolution capability. The ultimate measure of effectiveness of 
such algorithms relies on their ability to handle segmentation with the best judgment /refinement / optimization 
of input parameters. The heterogeneity of target sequence length e.g. PAIs whose length range can extend 
between 10-200kb [19], poses significant challenges. To begin the background study of more advanced 
techniques, the reader is advised to keep foremost in their minds, the degree to which decision criteria are 
optimised, ultimately produces the most desirable outcome. One should also take a view to the generalization of 
such techniques for profiling features covering gene (1-2 kb) to large lateral tract length scales (~200kb). A 
segmentation algorithm referred to as ‘entropic segmentation’ [20] has been proposed to identify regions of 
abnormal composition for isochore determination at the eukaryote sequence level. Since the statistical 
foundations call for a confidence level, this key criteria has the potential to limit effectiveness. More recently, 
entropic methodology has been used to identify non-self genes [21]. 
Toward targeting pathogenicity islands and lateral transfer regions, a wavelet shrinkage approach has been 
effectively applied to smooth insignificant G+C variations [22]. Showing similarity with the optimisations made 
in the entropic segmentation method, wavelet coefficients are eliminated ‘shrinkage’ with the use of thresholds, 
effectively removing noise from the data. Outcomes for the method suggest a technique for modeling both small 
and large features; reported findings included the identification of two putative pathogenicity islands in N. 
mengingitidis [22].  
Hidden Markov Models (HMM) have been applied to G+C tract identification [23], with segmentation (coding 
vs. non-coding) ability in the yeast genome. Toward G+C genome segmentation, the approach concentrated on 
determining the optimal number of states, a process designed to optimise model effectiveness analogous to the 
parameter optimisation witnessed in the previous two techniques. The HMM has been used again toward 
identifying alien DNA, however modeled at the genes codon level [24]. As determined in our analysis, certain 
genes show invariant nucleotide composition with respect to the surrounding genome, specific steps have been 
taken in [24], to distinguish them from laterally transferred genomic islands. As with other techniques discussed 
thus far, the SIGI-HMM utilises several threshold/correction terms (sensitivity term, gap length), to achieve 
desirable results. The approach utilizing comparative codon usage is thus susceptible to misidentification of 
HGT event where inserts match the codon usage of the parent.  
Compositional methods and their reliance on training signatures, to some degree impart negative outcomes for 
overall prediction accuracy whereby smaller genomes offer less comparative background to gauge a defined 
signature. Similarly, the limitation over the number of genes forming phylogenetics studies limits prediction 
confidence. The ‘Wn’ method [25], based on templates of size n (2<n<=8) offers the ability to rate gene 
typicality. Thresholds appear in the methodology as T, where the distribution of typicality scores f, whose 
derivative f’ approaches a constant which is defined as the threshold. In a subsequent work [26], support vector 
machines were used as an enhanced similarity measure, thus gaining a 10% increase in performance. Using a 
naïve Bayesian classifier [27], putative HGT sequences of length 400bp could be identified at 85% accuracy. 
The classifier in this instance was based upon genomic signature. The task specifically addresses solving the 
origin of HGT segments. Actual HGT events were resolved in H. influenzae to N. meningitis, whereby sliding 
windows were required to define criteria for the origin of the insert.  
Window based schemes more recently include the straight-forward window-based approach [28] and the 
windowless approach [29] for G+C content profiling. To overcome some of these limitations, a cumulative G+C 
profiling technique [29], a windowless approach (Z-curve), has been proposed toward identifying regions of 
G+C abnormality. The idea of this G+C profiling technique is founded on the independent distribution of purine 
/ pyrimidine, amino / keto and weak / strong hydrogen bonds, the later describing GC / AT distribution. 
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Outcomes include a clear demarcation of the genomic island where G+C abnormality arises. Simplistic G+C 
window calculations often prove useful toward gaining an overview level of the genomic nucleotide 
distribution. G+C window calculations consist of dividing a genome into fixed windows of a defined length l 
and sampled at frequency f. Windows can be discrete or overlapping, calculations for each window are 
evaluated as (G+C)/(A+T+G+C) * 100% and represented in the literature as ‘%G+C’. Recently an Monte-Carlo 
approach validating sliding windows was proposed [30]. Window sizing remains an issue in the initial and 
refinement stages which may be biased by sampling too small a window, hence sensitive to local compositional 
variations.  
Using the umbrella term ‘Constrained Nucleotide’, techniques including GC skews (G-C/C+G), dinucleotide 
biasing and aberrant nucleotide-amino acid usage, can be employed to elicit evidence supporting horizontal 
transfers [18]. Common to these processes is the use of windows in which frequency calculations are made 
relative to other windows and to the broader genome. The genome signature method [31] and the technique 
proposed by [18] both detect G+C abnormalities through the shift in expected dinucleotide usage relative to a 
random null model. Codon usage and the biases introduced via several biological processes including lateral 
transfers, tRNA species biasing and translational efficiency, transcription effectiveness and transcript stability 
constitute detectable variances, see [32] for a review. Nucleotide substitution rates ‘Q’ pose an interesting 
approach for compositional profiling [33]. Central to this approach is principle of genome specific mutational 
bias and the resulting nucleotide shift it imparts. Horizontal transfers are thus hypothesized to transfer genes 
from a donor of differing rate matrix into an acceptor whose rate matrix is detectibly different. The key 
qualification of this approach is the discrimination ability to gauge incongruence between rate matrices. Using 
orthologous gene displacement as a case study, such models mandate orthologous genes had shared a common 
ancestor and the inserted sequence evolved according to a Q different from the acceptor genome under analysis. 
Simulated experimentation has shown a 10-fold reduction in error rates utilising a multitude of predictor 
statistics encapsulating phylogenetic tree and compositional (codon 3rd position) data. 
Other forms of compositional modeling centring on codon usage include correspondence analysis (CA) [34] and 
the codon adaptation index (CAI) [35]. Correspondence analysis is the statistical analysis of two and multi-way 
tabular data (contingency tables). Typical associations could entail modeling codon usage vs. genes, as in [35]. 
The univariate measure CAI [36] aims to show the direction of synonymous codon bias. As before, tabular 
calculations of codon usage for a set of genes serve as a starting point with CAI methodology. Interpretation of 
results indicate the fitness of the gene with respect to the tRNA pool of the genome. High CAI values may 
indicate a greater level of expression. Such comparisons of CAI vs. a reference set of genes, may highlight the 
deviance encountered by laterally transferred DNA [37]. 
Taking the phylogenetics approach, genes are mapped according to their similarities with respect to related and 
distant genomes. The clustering of a gene to distantly related genomes instead of those within close taxonomic 
classifications can potentially indicate HGT. Algorithms to address these phylogenetics questions centre on the 
underlying basis causing the incongruence between gene and species trees [38-40].  
Several databases exist to aid similarity searching against putative [41] and known genomic islands [42] and 
more specifically virulence factors [43] and pathogenicity islands [44]. The strategy of comparing putative 
transferred regions vs. those of known HGT regions via BLAST has been criticised [45]. The key contention 
arises from the simplicity by which conclusions are drawn from alignment results. Phylogenetic reconstruction 
is clouded as convoluting factors including compositional biases in thermophilic bacteria/archaea and the 
sweeping conclusions drawn across taxonomic domains based on limited analysis (again, dataset availability).  
In this paper, we address the challenging issue of window size vs. resolution ability again. We propose an 
iterative scheme, which analyses a defined resolution at every iteration. The discrete nature of the predictions 
and non-reliance on any prior training or context, makes our approach extend the utility of GC profiling above 
other techniques. Our technique is applied for the identification of regions displaying GC aberration. As 
discussed by [18], %GC windows compared to the parent sequence %GC, represent the standard evaluation 
approach. In this paper, this evaluation measurement will be revised to focus on the identification of regions 
displaying aberrant GC composition.  
Our findings and results are reported and discussed regarding four aspects: (1) the PAI prevalence in the 
Enterobacteriales and other free-living organisms’ genomes, (2) the conserved high GC content of rRNA in 
reduced genomes, (3) the determination of dynamic G+C DNA sequences in a reducing genome, and (4) the 
identification of bacterial capsule adhesion and antigen proteins. In particular, we highlight a detected GC 
aberrant region from the Pelagibacter ubique HTCC1062 chromosome and investigate the basis of bacterial 
attachment in Staphylococcus. 
To evaluate the effectiveness of our method, outcomes reported from other studies, including the most recent 
cumulative GC profiling technique [46], are compared with ours. Findings from these comparative results 
suggest that our GC content profiling method has a high informational worth, exceeding standard GC profiling, 
as our method can discover widely known GC patterns and intricate protein pathogenic determinants. The scale 
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at which detection operates, enables the identification tRNA scale length sequences up to PAI length features, 
length is not a factor impeding prediction.  

Results  
As our method seeks to identify regions of distinct GC composition different from the parent sequence, smaller 
AT rich genomes were expected to indicate little evidence of substantive genomic islands. For the previously 
stated reasons, namely biochemical and nutrient efficiency, smaller genomes were predicted to be AT 
homogenous. However, larger free living genomes whose genomic size reflects its ability to acquire survival 
pathways and to reproduce in complex environments over evolutionary time were expected to contain regions of 
aberrant GC content through lateral transfer events. 

Pathogenicity Island Detection - Enterobacteriales 
As mentioned, pathogenicity islands are genomic clusters of genes that confer specific pathogenic capability to 
the host genome. For the set of Enterobacterial genomes, success rates of the PAI detection varied, with strong 
detection in Escherichia coli 536, Enterococcus faecalis V583 and Escherichia coli O157:H7 str. Sakai. The 
detection results for Escherichia coli 536 are summarized in Table 1. Specifically, Table 1 shows our predicted 
regions of the 5 PAIs in comparison to the BLAST reference positions. Note that the five clusters in Table 1 are 
ranked with the 5 highest scoring predictions by our method.(  

Table 1. BLAST reference position in comparison to our predicted positions. 

Island Reference Position Predicted Position Range 

  I 3986088-3965918 3929000...4028170
  II 4777771-4815325 4727000...4896341
  III 334178-361041 331000...408170 
 IV 1970000-1972628 1888000...1976170
  V 3140691-3177184 3118000...3204170 

 
They also correspond to PAIs I-V in the Escherichia coli 536 genome supported by the literature [13, 47].  
When compared to GC-Profile, only 2 of the 5 PAIs are detected by ‘GC-Profile’, whereas our method can 
locate all the known PAIs in a discrete manner. The effectiveness of the technique presented here also includes 
non-reliance on input parameters, a detraction of ‘GC-Profile’ and traditional sliding window approaches. The 
effect of altering segmentation thresholds in the GC-Profile technique either resulted in too many or too few 
predictions. To be effective, ‘GC-Profile’ required a valid and reasonably accurate estimate initially. Without 
this estimate, the ‘GC-Profile’ continuous graphical output requires human interpretation to determine regions 
of significance.  
 
Comparison results with other recent profiling techniques are presented in Table 2. 
 

Table 2. Multiple resolution sampling compared to other techniques, we denote our technique as ‘MRS’ 

Genome Predictions Unique Prediction Prediction Agreement 
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D. radiodurans R1 chr I 22 7 - - 16 1 - - 6 6 - - 
H. pylori 26695 5 5 - - 1 1 - - 4 4 - - 
H. pylori J99 7 3 - - 5 1 - - 2 2 - - 
N. meningitidis Z2491 17 8 - - 8 0 - - 9 8 - - 
N. meningitidis MC58 15 10 - - 6 0 - - 10 10 - - 
C. glutamicum 7 - 1 - 6 - 1 - 1 - 1 - 
V. vulnificus CMCP6 chr. I 7 - 3 10 4 vs Zhang 

3 vs vanPassel 
- 0 6 3 vs Zhang 

4 vs 
vanPassel 

- 3 4 

V. vulnificus CMCP6 chr. II 6 - - 11 4 - - 9 2 - - 2 
  
Trends arising from the data presented in Table 2 suggest PAI detection by our MRS method is better than or 
comparable to other techniques based on GC analysis. In addition to PAI detection, MRS when compared with 
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the other GC based techniques [22, 29], our method resolves many more genomic features. Presented in [22] are 
wavelet algorithms and their ability to detect putative pathogenicity islands. For the Neisseria meningitidis 
MC58 chromosome, the putative PAIs at 1428-1455kb and 2222-2232kb were identified in addition to 
previously identified PAIs [48]. The multiple resolution GC scan in this genome has found additional features. 
Analysis of the Z2491 chromosome revealed similar findings with the addition of a transposase locus and other 
core cellular proteins. The Helicobacter strains analysed by [22], predictions were in agreement with additional 
features identified by MRS functioning as DNA restriction or modification enzymes. Deinococcus radiodurans 
R1 chromosome 1 predictions arising from MRS were numerous in comparison to [22], loci of interest included 
insertion sequences, transposases and additional features. Beyond the predictions by [29] for the 
Corynebacterium glutamicum ATCC 13032 chromosome, our method determined a cell wall / sugar 
modification locus, rRNA - transposase locus and an integrase locus. The Vibrio vulnificus CMCP6 
chromosomes I & II revealed several sugar processing proteins on a single loci and a helicase protein on 
chromosome I. On chromosome II, a plasmid stabilisation - DNA repair locus was identified. A comparison of 
the results obtained by MRS with those of [31] shows the ability of MRS to determine lateral gene transfer 
based on %GC content. Using the genomic signature approach, [31] were able to locate regions deviating 
significantly to MRS. The degree of difference in predictions can be explained by the different approaches used 
to analyse the genome. 

GC regional detection in reduced genomes 
Here, we focus on the following three organisms: Buchnera, Staphylococci, and Pelagicbacter each containing 
low genomic GC content. A reason to carefully study them is their medical and evolutionary importance. We 
use an example from each genus to demonstrate a key genomic property arising from GC analysis. 
 
The Buchnera aphidicola genome 
The Buchnera aphidicola species survives as a symbiont within the bacteriocytes of most aphid species [49]. 
Two strains showing significant GC deviation include Buchnera aphidicola str. APS (Acyrthosiphon pisum) and 
Buchnera aphidicola str. Sg (Schizaphis graminum). In similarity with Pelagibacter ubique, the Buchnera 
aphidicola strains are under environmentally limiting conditions. The environment of their host heavily limits 
symbionts and as such, evolutionary pressures adapt to mold genomic priorities. The genome reduction found in 
the Buchnera strains suggested a close association with its aphid host to the extent of true symbiotic mutual 
metabolite transfer [5].  
However, our analysis on the available Buchnera aphidicola strains has identified regions of GC composition 
deviating from the parent sequence (strains APS & Sg); The genomic region spanning nucleotides 
527000...567090 in the Schizaphis graminum strain genome and the genomic region spanning nucleotides 
527000...571042 in the Acyrthosiphon pisum strain genome correspond to rRNA encompassing sequences. To 
highlight the significance of this result when compared with other techniques, ‘GC-Profile’ did not determine 
any region of significance for either genome. Moreover, our GC content profiling method resolved rRNA 
regions of GC content 0.440 and 0.418 respectively, much greater than the genomic 0.253 and 0.263 
respectively. Subsequent BLAST matches coincided with rRNA genes from members of the Enterobacteriales. 
In addition to rRNA detection, our method has identified a GC deviating region located at 360000-362406 on 
the Buchnera aphidicola str. Bp chromosome [NC_004545.1]. Genbank annotation has defined this region to 
contain virulence factor MviN, flagellar basal-body rod protein Flgb and flagellar basal-body rod protein FlgC. 
The presence of a virulence factor in a genome that is in such a stable symbiotic environment was a surprising 
finding. MviN virulence factor is associated with genomes of other bacteria encoding a membrane protein, 
including Salmonella typhimurium [50], its function has been characterized in the plant pathogen Pseudomonas 
viridiflava [51]. Analysis of four Buchnera strains chromosomes revealed` rRNA as the predominant feature 
detected. The low cluster detection counts of 3, 2, 4, 2 for Buchnera aphidcola strains APS, Sg, Bp and Cc 
respectively indicate very homogenous genomes with respect to nucleotide distribution. 
 
The Staphylococci 
The medically significant Staphylococci genus presents several unique features upon genomic GC scans. 
Confirmatory checks with the PAIDB reveal pathogenicity islands in the genomes under analysis including 
aureus subsp. N315 containing 4, Mu50 containing 5, COL containing 5, MRSA252 containing 3, MSSA476 
containing 2, MW2 containing 5 and RF112 containing 2. Other strains including epidermidis RP62A 
containing 2, ATCC 12228 containing 3, haemolyticus JCSC1435 containing 0 and saprophyticus subsp. 
saprophyticus ATCC 15305 containing 0. With genomes in the order of 2.5-2.9Mb containing %GC of ~32.8%, 
Staphylococci represent the largest and highest %GC genomes of the low %GC dataset. The large genome and 
relatively high %GC would indicate the presence of pathogenicity factors, a feature supported by the PAI-DB. 
GC scans via our method reveal PAI regions and rRNA loci. Other highly significant features were detected, 
these included surface adherence proteins. The ability for cellular binding serves to enhance the method of 
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opportunistic action by affixing to susceptible tissue. Genomic %GC scans with our method has resolved a 
hemagglutinin, several cell wall anchoring proteins, methicillin resistance, map and membrane proteins.  
The presence of the cell wall binding proteins in a GC scan was very significant. Firstly, their presence would 
suggest a level of conservation, secondly a pointer to their origin, since they deviate compositionally from the 
background genome and thirdly, a correlation with the pathogenic binding ability to specific cell types in the 
host organism. Subsequent BLASTN [52] analysis of these regions against the ‘refseq_genomic’ database 
revealed two important findings. The first finding indicated the cell wall protein of S. epidermidis RP62A was 
derived from a putative Streptococcal origin. The second finding was the resolution of the cell wall component 
in S. saprophyticus subsp. ATCC 15305, the uniqueness of this protein has direct implication for its site of 
pathogenesis. With a commonly accepted PAI absent from the genome (S. sapropyticus), the result was of 
greater significance. This isolated protein performing specific cellular attachment with the host tissue type was 
not found in any other organism, related or non-related. The hemagglutinin protein, has been characterised to 
perform a dual role in binding to human uroepithelia [53] or causing hemagglutination in sheep erythrocytes 
[54]. As noted [53], substrate specific adhesion is mediated by separate distinct adhesins in S. aureus. Unlike S. 
aureus, S. saprophyticus has a dual role in hemagglutination and fibronectin binding [55]. The lack of any 
additional cell wall-anchored proteins, which are abundant in the other Staphylococci, would thus indicate its 
target specific cell type [56]. The other non-PAI containing Staphylococcus genome analysed in this study (S. 
haemolyticus JCSC1435) uncovered many insertion sequences and supports the conclusions of [57] regarding 
genome plasticity. In summary, the medically important Staphylococci present a heterogenous genome from the 
%GC viewpoint, containing pathogenicity islands and discernable surface binding proteins. %GC profiling can 
be used as an indicator of origin as in the S. epidermidis finding, however as in the S. saprophyticus subsp. 
ATCC 15305 finding, suggests a unique inclusion and results in attachment to a specific host tissue type Sample 
predictions are presented in Table 3. 

Table 3. Staphylococcus Cell Wall / Capsular protein identification 

Genome Location  Product(s) Function 

S. epidermidis RP62A  2317000..2319555 Putative hemagglutinin 

S. epidermidis RP62A  2544000-2460110 Putative cell wall anchor protein 

S. aureus subsp. aureus COL  59000..61743 surface anchored protein / clumping factor / 
methicillin resistant surface protein 

S. saprophyticus subsp. saprophyticus 
ATCC 15305   

153000..157915 Serine-thronine rich surface antigen / LPXG-
motif cell wall anchor domain 

S. aureus subsp. aureus N315  2002000..2007497 map protein 

S. aureus subsp. aureus N315  717000..719748 membrane protein 

S. epidermidis ATCC 12228  2471000..2473440 Ser-Asp rich fibrinogen-binding 

 
The Candidatus Pelagibacter ubique HTCC1062 genome 
The information summarised in Table 4, highlights the ability of GC content profiling to determine regions of 
laterally transferred DNA. 
 
Table 4. Sample subset of Enterobacterial genomic predictions via our method 
Genome Genome 

%GC 
Cluster 
Count 

Significant 
Clusters 

Cluster 
Score 

Genome Pos. Cluster 
%GC 

Δ% PAI-
DB  

Literature PAIs Significant GC-
Profiler 

Buchneria           
NC_004061.1 0.253 2 1 9 527000...567090 0.291  0.15 0 - - 
NC_002528.1 0.263 3 1 10 527000...571042 0.294  0.12  - - 
Candidatus           
NC_007205.1 0.297 1 1 23 514000...603797 0.267 -0.10  - - 
NC_008610.1 0.340 6 2 9 

9 
949000...1021548 
1068000...1087137 

0.316 
0.384 

-0.07
 0.13

 - - 

Escherichia           
NC_008253.1 0.505 20 5 24 

12 
16 
11 
10 

4727000...4896341 
3118000...3204170 
1888000...1976170 
3929000...4028170 
331000...408170 

0.472 
0.467 
0.462 
0.469 
0.462 

-0.07
-0.08
-0.09
-0.07
-0.09

# 
# 
# 
# 
# 

[13, 47] 4728844…4773931 
- 
- 
3941033…4001718 
- 

NC_008563.1 0.505 32 2 16 260000...349406 0.464 -0.08 # [58] - 
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11 3295000...3392406 0.471 -0.07 # 
NC_002695.1 0.505 29 3 30 

13 
12 

4520000...4718826 
3466000...3515956 
3679000...3764913 

0.473 
0.451 
0.460 

-0.06
-0.05
-0.09

* 
- 
- 

[37] 2773370…2790867 
4588426…4624331 
4686135…4693432 
5327868…5464674 

NC_002655.2 0.504 15 1 15 4596000...4786763 0.471 -0.07
 

* [37] 2843583…2861081 
4657409…4693314 
4755116…4762413 
5357853…5494668 

NC_007946.1 0.506 28 1 29 4679000...5000608 0.483 -0.05 # [59] 1071387…1089056 
2070120…2100295 
2597096…2662406 
4771813…4817253 
4817254…4842055 

# indicates non-existent genome in the PAI-DB, - indicates no match in the PAI-DB for the genome, ′ indicates a match to a candidate PAI 
in the PAI-DB  ′′ indicates a match to a non-candidate PAI in the PAI-DB, emboldened predictions indicate PAIs supported by the literature 
or PAI-DB 
 
Interestingly, organisms not considered to contain laterally transferred DNA contain clearly defined signals. One 
such example, the Pelagibacter ubique HTCC1062 genome, constitutes a very small 1.3Mb genome 
[NC_007205.1] belonging to the SAR11 clade [60] which is estimated to account for 25% [60] of all oceanic 
microbial cells. The genome is recognised to have the minimal macromolecular components for autonomous 
replication [61]. As stated previously in the paper, GC genomic content is dependent on many factors, with two 
key, environmental constraints and lateral transfer events. Properties of the Pelagibacter ubique HTCC1062 
genome include the near absence of redundant and non-functional DNA and the absence of pseudogenes, phage 
genes, laterally transferred and duplicated genes, whilst maintaining a majority of metabolic pathways [60]. 
Genomic streamlining [62], a process of genomic refinement to aid replication under selective pressure, may 
explain the stripping of non-functional DNA from the genome [60]. As expected, the genome has a global GC 
content of 29.7%. The genomic analysis however has highlighted a region of significantly lower GC content 
26.7%. The feature is strong among the predictions with significance at window sizes spanning 1278-82797bp, 
corresponding to a genomic position of 514000-603797 [NC_007205.1]. Analysis of the genome using ‘GC-
Profile’ resulted in only a single segmentation point (1061902), bearing no relevance to the region discovered by 
our technique.  
The special quality of this genome is its reduced size whilst incorporating core metabolic functionality. The 
streamlining, reductive evolution in conjunction with its nutrient poor environment [60] are contributing factors 
toward its low genomic GC content. Analysis of the genomic region using BLASTN [52] and the ‘nr’ nucleotide 
database revealed no significant matches, whilst recent investigation have suggested this region to be a hotspot 
of horizontal gene transfer arising from metagenomic studies [63]. Depicted in Figure 1, we demonstrate the 
features detected by our algorithm, the contention between genomic streamlining and HGT (typically acting 
against each other) has been shown as a specific example. We are therefore confident that MRS G+C profiling 
can indeed highlight such deviations from convention and thus providing worth as an initial stage scanning tool, 
in this case applicable to incomplete and uncharacterized genomic data. 
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Figure 1. Regions of G+C deviation identified in Pelagibacter ubique HTCC1062 (Left) and Candidatus 
Ruthia magnifica str. Cm (Right) 

GC regional detection in expansive genomes 
Whilst the high %GC genome set consisted of a similar number of chromosomes, the number of predictions and 
the number of gene products were more than double the low %GC dataset. Organisms presenting significant GC 
deviation included Burkholderia and Rhodobacter. The Burkholderia, opportunistic pathogens are associated 
with chronic human conditions including cystic fibrosis. Two regions of interest were identified. The first region 
corresponded to a unique hypothetical protein on B. sp. 383 chromosome 3 [NC_007509] located at 1139000-
1141724. The second region of interest was located on B. cenocepacia AU 1054 chromosome 2 [NC_008061] at 
436000-438723 (RHS transmembrane protein). Rhodobacter form an interesting genus of organisms with 
respect to their diversity. The multiple chromosome genomic complement, has been studied recently [64] and 
stated, chromosome II content has rapidly evolved. Results from our analysis revealed important features 
consistent with rRNA, transposases, membrane transporter proteins and other coding sequences of aberrant G+C 
composition with respect to the host genome. 

Core Chromosomal GC coding sequence identification 
Analysis of the relative coding sequence products between the high and low %GC chromosomal sets reveal 
proteins encoded by high aberrant GC content and their relative occurrence. Figure 2 summarises the findings.  
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Figure 2. Keyword occurrence differential between high and low chromosome dataset aberrant GC 
features.  
 
For each dataset, keywords were extracted from the Genbank coding sequence ‘product’ entries. Two factors 
explain the observable trends. In comparison to the low %GC set, the high %GC set contains a vastly greater 
occurrence count for each product except ribosomes. Since high %GC genomes generally constitute large 
bacterial genomes of free-living organisms, the scope and capability to acquire laterally transferred DNA is 
increased. Results obtained in this study indicate the low %GC set formed 519 predictions containing 20856 
products while the high %GC set formed 1448 predictions containing 58962 products. It can therefore be 
determined that high %GC genomes contain a greater degree of aberrant GC regions. Of interest are the proteins 
with the highest occurrences as detailed in Figure 2. The coding sequences identified in Figure 2, represent those 
typically found in pathogenicity islands. The second feature arising from Figure 2, is the identification of 
ribosomes. The detection pattern is different to the other product categories as the high and low %GC sets return 
near identical results. The conclusion drawn from this finding would indicate ribosome coding sequences are of 
a conserved GC content. In terms of defining core chromosomal coding sequences by GC content, ribosomal 
sequences are strong candidates. 
Evaluation of our algorithm has been shown against previously reported outcomes whilst, further analysis of the 
sequenced bacterial genomes has shown these findings. (1) In the low GC set, predictions per genome occurred 
at a ratio of 5:1. (2) In the high GC set, predictions per genome occurred at a ratio of 13:1. 
Further classification of the predictions into functional regions are often difficult to gauge as for example, the 
consensus PAI does not have a defined composition. Utilising Refseq product keywords, categorisation into 4 
classes {core, phage, surface, drug resistance} were made. The low GC set resulted in 242, 30, 69 and 15, core, 
phage, surface and drug resistance clusters. The high GC set resulted in 349, 330, 192 and 42, core, phage, 
surface and drug resistance clusters. The core clusters contained product keywords including ‘ribosomal’, 
‘tRNA’, phage grouped, transposon, integrase, surface included adhesins, membrane proteins, transporters, 
while the drug cluster included, drug / multidrug, antibiotic and resistance keywords.  

Discussion  
Our method for GC content profiling has revealed many characteristics of genome architecture. By sampling 
across arbitrary window sizes in a consistent and non-biased scheme, regions of deviant GC composition are 
determined in a systematic manner. Regions defined as a cluster represent multiple overlapping predictions 
across multiple resolution scales. This scheme has the advantage of ensuring signal significance. As differences 
in GC content are not theorized to present sharp and well-defined boundaries down to individual nucleotides, 
except perhaps in the case of laterally transferred genomic islands, multiple resolution sampling is thus a valid 
technique. The outcomes include the PAI detection and core genomic constituent identification. PAIs, the 
laterally transferred genomic islands that confer specific pathogenic potential to the host genome are readily 
detectible through standard aberrant GC composition analysis. The results achieved for Enterobacteriales have 
shown that PAI detection seems to be marginal unless the island is well defined with respect to deviance in its 
genomic GC content. Detection results in the Escherichia genus however were significant. 
The disparity between free-living and non free-living organisms’ genome composition has been reflected in the 
number of coding sequences. The free-living Escherichia, Salmonella and Bacillus encode 1500-6000 proteins 
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in contrast to 500-1000 for obliquely pathogenic bacteria [14]. Of interest is the finding that <40% of the genes 
identified in the Escherichia coli K12 genome have corresponding identities in the EDL933 and CFT073 strains 
[65]. From Table 4, detection of pathogenicity islands in Escherichia coli strains 536, APEC O1, O157:H7, 
O157:H7 EDL933 and UTI89 have been accomplished along with other genomes of the Enterobacteriales. 
Outcomes arising from Table 4 with respect to the Buchnera genomes, have identified regions of aberrant GC 
content, showing homologous genomic positions as determined by BLASTN [52]. The major contributor to the 
high %GC in these segments is the rRNA coding sequences. The Buchnera genome is influenced by its 
symbiotic relationships with the aphid over evolutionary time, leading to its ‘reduced’ size and structure. The 
rRNA is a core component of the genome and function of the organism at the molecular level. Conservation of 
rRNA has been shown and hypothesised to persist outside of genomic compositional pressures [66]. The finding 
presented via our MRS method suggests this exclusion exists in the genome of two Buchnera strains outside of 
the powerful influence from genomic reduction. 
One of the most successful bacterial clades, SAR11 [67], whose member Pelagibacter ubique HTCC1062 has 
shown abnormal chromosomal GC content in the study. In agreement with the Buchnera studied in this 
investigation, the genome size and environmental constraints have influenced genome architecture in the 
Pelagibacter. The small genome size and low %GC content are features associated with reductive evolution. A 
region of the chromosome (549000..559112, subset excluding rRNA of the prior cluster) was found to contain 
abnormal GC content of 21% in contrast to the genome %GC of 29.7%.Associated with activated sugar transfer 
and cell envelope biosynthesis, the coding sequences located in this region represent a peculiar biological 
feature. Subsequent BLASTN [52] (analysis revealed no significant matches, however the region has been 
identified as ‘hypervariable’ [63]. The consequence of locating this region further suggests the role HGT may 
play in defining genome structure, even within heavily reduced genomes, an ongoing research question [68].  
The detection of cell surface and adhesion proteins via GC scanning posed an interesting question. Central to the 
finding is the question, to what degree and why do these class of proteins present with GC content different 
from the surrounding genome? Toward answering this question, an analysis of the proteins identified in 
particular Staphyloccocal species held an explanation. Hemmaglutination proteins and more generally adhesins 
constitute heavily to the pathogenic potential of an organism. The simplest binding scenario is found in viral 
protein coats. In the system of viral attachment, hemaglutinin plays a central role as a viral surface glycoprotein. 
The mechanism of viral attachment is facilitated by hemagglutinin which binds to cell surface receptors on the 
target cell. The influenza A - hemagglutination binding to sialic-acid-containing cell-surface receptors has been 
well studied [69].  
Owing to the ability for viral DNA to be inserted into host genomes, the transfer of genetic material is one 
explanation for the presence and divergence of progenitor cell wall attachment proteins in bacteria.  
As determined in this study, and well accepted in the community, lateral transfer of genetic material is 
commonplace between bacteria and accounts for the genomic islands found in many genomes. The role played 
by genomic GC analysis centres on identifying changes in GC content that may indicate genomic material from 
a non-host origin. The presence therefore of cell wall attachment proteins in GC scans thus indicates either of 
two conclusions.  
(1) These binding proteins were acquired via lateral transfer events over long stretches of evolutionary time. (2) 
The compositional nature of the attachment proteins are very highly conserved as in rRNA, as to persist aberrant 
GC levels relative to the genomic background. 
The second conclusion would thus indicate, retention of cellular attachment proteins may potentially serve as a 
survival strategy. The goal and contribution of this investigation has been developing a computational method to 
identify GC regions to a more sensitive and biologically relevant grade than other techniques. The outcomes 
from this process have led to many questions effecting core genome compositional theorems. Conclusions 
drawn include; the environment shaping to a major degree genomic composition; free-living lifestyles providing 
models for lateral DNA uptake as in the Enterobacteriales. Identification of aberrant GC elements in already 
reduced (A+T biased) genomes indicated regions that have implication for underlying ancient genomic 
processes and newer HGT contributions.  
More recently, a comparison of PAI detection tools has revealed a marked disparity between recall and precision 
[70]. As the definition of a genomic island (GI) is relatively fluid, the approach taken by the analysis centers 
upon comparing percentage overlap of GI predictions. Datasets used in their comparisons resulted in 118 
genomes with 771 predictions in the positive dataset (data containing GI). To contrast existing sequence based 
approaches contained in this recent comparison, we utilised their published database. Of the 771 predicted 
islands, the multiple resolution approach (G+C) covered 41% of the islands. This suggested multiple resolution 
sampling is an effective technique for detecting patterns of genomic G+C variation. These values surpass SIGI-
HMM [71] (33%), Centroid [72] (25.7%), DIMOB [73] (35.6%), PAI_IDA (32.2%), but not DINUC [73] 
(53.3%) or AlienHunter [74] (77%). Alternatively when the multiple resolution algorithm is used in conjunction 
with codon analysis coverage jumps to 74.5%(GC1), 72.6%(GC2) and 71%(GC3) and when combined (G+C 
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and codon MRS) 80% coverage, the highest of sequence based tools, refer Table 5. To complement coverage, 
GI detection rates are presented in Table 5, whereby MRS outperformed all but AlienHunter across the dataset. 
 

Table 5. Multiple resolution sampling compared to other techniques, we denote our technique as ‘MRS’ 
Dataset consisted of 118 bacterial chromosomes with annotated GIs according to [70]
 
 
Property/ 

Algorithm 

SIGI-

HMM 

Centroid DIMOB PAI_IDA DINUC Alien 

Hunter 

MRS 

G+C 

MRS Codon MRS 

Total GC1 GC2 GC3 

GI 

Detection 

66.3% 33.3% 43.3% 34.5% 67.6% 91.6% 49.3% 75.9% 73.9% 71% 82.9% 

GI 

Coverage 

33% 25.7% 35.6% 32.2% 53.3% 77% 41.4% 74.5% 72.6% 68% 80% 

 
Codon usage and observed GC trends have been known for many years, the consensus suggests GC3 (3rd 
position in the codon), exists as the most redundant position in the codon, hence an indicator of mutational 
pressure [75]. These mutational biases are thus properties of the organisms’ response to environmental 
conditions [2], an emergent sequence feature that would contrast against those of an appreciably distant host 
genome in horizontal transfer events. Of the trends identified in our codon analysis, positions one and two of the 
codon act in slight preference to position three as indicators of GC aberrant genes. Whilst coverage metrics offer 
a simple guide as to the effectiveness of algorithms, however another metric has to be considered. Specificity, a 
well-known fact of genomic nucleotide scanning involves informational genes who show marked nucleotide 
bias, e.g. rRNA and tRNA appearing with experimentation seeking other features such as GIs. Our methodology 
detects such sequences without distinguishing them from GIs, in addition to other non-GI elements such as 
phages. This broad scale approach to genomic content profiling does not lend itself to specificity measures 
based on boundary determination (as underlying window schemes are being employed) nor to strict 
classification of predictions i.e. (into categories such as GIs, PAIs, phages and informational genes). 
Our method may serve as a tool for identifying the variable region of reducing genomes and identifying cell 
surface adhesion proteins, a pointer to pathogenicity, in addition to PAI detection. With more sequenced 
genomes, the statements proposed in this paper will be further strengthened. In comparison to other techniques 
for HGT detection, our method has lessened reliance on prior training parameters. The frequency / codon based 
methods often rely upon tweaking input parameters to achieve specific desired results. Our approach uses a 
fixed geometric progression to score windows and standard measures of spread. We therefore make no prior 
assumptions of the data, hence producing a wide range of result types, PAIs, islands, phages, rRNA, other core 
coding sequences. In comparison to phylogenetic and database approaches, we do not require a prior dataset  
to align against. We are therefore confident that our algorithm and its online implementation offers a credible 
resource for characterising newly sequenced bacterial genomes. 

Methods 
GC content profiling is a computational process that determines the frequency of the guanine and cytosine 
nucleotide in a genomic sequence. 

Multiple Resolution Sampling 
The window size reflects the resolution of sampling. This study does not hold any assumptions regarding the 
size of the features under analysis. Toward determining an optimal window size (resolution) to screen a genomic 
sequence for GC variability, an iterative self-reducing progression is proposed, following the general form  

a n = a 1 r n − 1
 (1) 

where a1 represents the genome length with r the common ratio ½ in this study, and an the window size for the 
iteration n. This geometric progression starting at the genome length and iteratively halving the window size 
provides a sound basis for population sampling. The stop criteria for the progression is set as when an < 1000. 
Given that large windows have lower resolution and small windows are very susceptible to statistical 
fluctuations, there exists a point in which the decreasing window size will approximate the required resolution. 
In this manner, a non-biased sampling set can be achieved. In this work, the shifting offset between two 
consecutive windows is set as 1000bps. 
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At every particular iteration, we calculate the %GC score for every window (the window score), and calculate 
their average (the mean %GC score at this iteration). Then, we transform every individual window score s into a 
log-odds score according to 

S
Ss ∈ln

 (2) 
where S is the set of the %GC window scores, and S is the mean %GC score in this iteration. The effect of 
taking the log-odds score relative to the mean window score S  forms an association test with an asymptotic 
normal distribution. By equation (2), our method yields a distribution of the log-odds scores for all the windows. 
We accept all windows whose log-odds score is 3 fold away from the standard deviation. This gives us only the 
most significantly deviating (peak) windows from the mean. We combine overlapping peak windows into a 
bigger window. 
For successively smaller window sizes, spurious signals cloud true signals. To identify significant signals over 
arbitrary window sizes, a clustering technique is developed in this work. The central idea is to merge similar and 
overlapping windows crossing all the iterations. Specifically, we combine all overlapping windows (for all 
window sizes) into a cluster, and then determine the mean %GC score for all the component windows in this 
cluster. The most ‘deviant GC window’ in the cluster is the one that deviates most from the mean.  
In summary, the pseudocode is presented below. 
Input: FASTA genome sequence 
Processing: 
For each window size in the progression 
 Score the windows at 1Kb intervals 
 Compute log-odds score over the windows 
 Filter peak windows based on ≥ 3 standard deviations 
 Combine adjacent peak windows 
Merge overlapping windows under all window sizes into clusters 
Determine the most deviant GC window within every cluster 
Output: List of significant clusters with component window size predictions enumerated 
Using the 4639675bp Escherichia coli K12 [NC_000913.2] chromosome as an example, the following sets 
would be generated. Window size set w[] = (4639675, 2319837, 1159918, 579959, 289979, 144989, 72494, 
36247, 18123, 9061, 4530, 2265, 1132) bp. Window score set ws[wn][t]. The 2D set containing n rows with each 
row populated with scores t according to (w1 - wn) / 1000bp. As an example,w7 window size 72494, t = 
(4639675-72494) / 1000 = 4567 windows for which %GC is obtained. Log-odds calculations follow 
ln(tn/mean(t)). A three standard deviation threshold is applied to the log-odds distribution. Those window values 
exceeding 3σ are held and a check is performed to merge neighbouring predictions if they also fall outside of 
3σ. The final processing step iterates over the windows size set w as an index into the ws set. Windows showing 
values above 3σ at each window size are grouped to form a ‘cluster’. The resultant cluster is a region of 
genomic GC variation whereby deviant GC composition is detected at multiple resolution scales. The most 
deviant window is defined as the value furthest from the mean %GC for the cluster. 

Datasets Used for Evaluation 
The genomes of prokaryote organisms span a wide GC composition. To elucidate the differences between such 
genomes, a division based on compositional GC was sought. Two datasets were formed and included genomes 
with chromosomal GC content less than 35% (101) forming the ‘low GC set’ whilst chromosomes containing 
greater than 65% GC (108) formed the ‘high GC set’. Genomic data was sourced from the NCBI Genomes 
resource (ftp://ncbi.nlm.nih.gov/genomes/Bacteria). Benchmark datasets for PAI detection were obtained from 
the NCBI Genbank database with accessions [AJ488511.1, AJ494981.1, X16664.4, AF135406.1, and 
AJ617685.1] corresponding to PAI (I-V) in the source genome Escherichia coli 536 [NC_008253.1]. To place 
our results in context of prior work, the PAI-DB [44] for pathogenicity island lookup was utilised. 
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