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Abstract

The study proposes a mathematical framework to explain the stochastic behavioural patterns of personal
mobility (PM) devices under low-carbon heterogeneous traffic conditions in shared lanes. We create a set
of anticipation factors in a stochastic PM behaviour model to tackle sensitivities to both space headway
and relative speed against intra- and inter-modes. The proposed behaviour model involves a deterministic
and a stochastic force. In the deterministic force, the anticipation factors are used in an optimal velocity
model and a full velocity difference model. In the stochastic force, the Langevin equation is used to capture
PMs’ stochastic characteristics against movements of other PMs, pedestrians, and bicycles, and the effect of
lateral interactions. We carried out real-world circular experiments of mixed sustainable modes to verify the
performance of the proposed models. Five models’ performances are compared under four different traffic
conditions, including bike-mixed, pedestrian-mixed, low-speed, and high-speed conditions. We confirmed
that newly created anticipation factors play a significant role in all models under all conditions to partially
influence the following PM devices’ behaviour from the leading two different sustainable modes. The valida-
tion results illustrate the excellence of the proposed method. Consequently, behavioural uncertainty is well
captured by the stochastic PM devices following models under all traffic conditions, although it requires
more parameters than the deterministic PM behavioural models. The proposed method paves the way for
the stochastic CF model’s applicability to describe PM devices’ behavioural dynamics under mixed traffic
conditions using anticipation factors. Besides, it lays the foundation stone of PM devices’ dynamics in a
shared lane to construct effective regulations and safety standards.

Keywords: Stochastic behaviour model, Langevin equations, Personal mobility, Heterogeneous traffic
conditions, Anticipation factors

1. Introduction

Recurrent and non-recurrent traffic congestion exacerbate air quality and road users’ mobility in a
metropolitan area around the world. In Australia, the Bureau of Infrastructure, Transport, and Regional
Economics estimated A$16.3 billion of congestion cost in 2015 and predicted congestion costs to reach be-
tween A$27.7 and A$37.3 billion 2030 in BITRE (2015). Sydney’s average travel speed not only declined
by over 2km/h to 58.2km/h but also a percentage of free-flow speed has steadily declined by 0.6 per cent to
92.5 per cent from 2015 to 2018 in Bradley (2018). In recent years, the debut of information and communi-
cation technologies (ICT) in traffic engineering enables ones to relieve traffic congestion and resolve various
byproducts of the congestion. Furthermore, the remarkable growths of ICT diffuse the international norm
of transportation systems to pursue environmentally friendly, person-centred, and multi-modal systems to
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maximize safety, mobility, and efficiency in the systems. It introduces novel low-carbon transport modes,
giving rise to new sensitive issues to a conventional urban road network. Consequently, it is inevitable to
systematically analyse the behaviour of the newly introduced transport modals to tackle newly appeared
conflicts among traffic modes and safety issues with understanding the stochastic behavioural characteristics
of the new sustainable transport modes under mixed traffic conditions.

A low-carbon personal transport mode typically includes pedestrians, bicycles, and personal mobility
(PM) devices, defined as E-scooters in this study. Transport for New South Wales (TfNSW) underlined the
potential benefit of new personalised devices for short trips, such as E-bikes and E-scooters, in a metropolitan
area in Constance & Pavey (2018), even if the use of E-scooters is prohibited in a public area in NSW as
sharing economy. In the meantime, they mentioned it is required to create an appropriate environment
where they could be ridden safely and efficiently to realise their potential benefits in the area of greater
Sydney. Behavioural characteristics of pedestrians and bicycles have been thoroughly studied in recent
decades. In contrast, there is plenty of room for investigating the behaviour of PM devices under mixed
traffic conditions to promote its use in an urban road network to improve individual mobility and accessibility
as a first-and-last mile trip among trip chains.

The debut of PM devices was debatable in many countries due to its vague definition and unexpected
boom as sharing economy in an urban area, which could cause unpredictable conflicts to current transport
modes and safety issues. Fletcher (2017) illustrates that a motorised scooter, which is not classified into
road vehicles in Australia, means a device that is designed to be used by a single person, has two or more
wheels and a footboard supported by the wheels, is steered by handlebars, and is propelled by a motor
or motors having a combined maximum power output not exceeding 200 watts. Even if a wide range of
PM devices are currently used in public spaces and vehicular road facilities to improve road users’ mobility
and accessibility in a complex urban network, the related laws and regulations are varied state-to-state in
Australia. Its public use is strictly prohibited in NSW, South Australia, Western Australia, and ACT while
it is conditionally or partially permitted in Queensland, Victoria, Northern Territory, and Tasmania. Thus,
it is imperative to analyse and understand the stochastic behavioural dynamics of PM devices under mixed
conditions of low-carbon transport modes to construct clear safety regulations and operational strategies in
an urban road network.

Our study aims to develop a stochastic behavioural model of PM devices under heterogeneous traffic
conditions in a shared lane based on car-following theories, which are at a mature level of studies to define
dynamics of moving objects along with a designated lane in an area of traffic engineering. Treiber & Kesting
(2018) and Kurtc & Treiber (2020) simulated bicycle traffic behaviour by the intelligent driver model (IDM)
as well as examined the instabilities of the bike dynamics. They assumed that bicycles’ dynamics, one of
the leading sustainable transport modes, is not significantly different from vehicles’ dynamics. Based on
their validated assumptions and conclusions, we create a set of anticipation factors to tackle the sensitivity
of PM devices’ speed profiles against space headway and relative speed to the leading modes, including the
same modes and the different modes in a shared lane. Such a set of variables will be then incorporated in
the family of the optimal velocity model (OVM) and the full velocity difference model (FVDM). Moreover,
experiments with the bicycles of Kurtc & Treiber (2020) and various PMs described in the ensuing paper
exhibit stop-and-go waves of the PMs at a low-speed regime, similar to the instabilities of traffic flow in
the recent experiments reported in Jiang et al. (2018). We thus extend a stochastic continuous differential
equation developed in Ngoduy et al. (2019) and Lee et al. (2019) to capture such fluctuations in speed
profiles of the PM devices in the heterogeneous low-carbon traffic flow.

To achieve the research goal, this article is organised as follows. The literature review for CF models
and PM’s behaviour models and experimental designs are described in Section 2 and 3, respectively, to find
research gaps and contributions, which are illustrated in Section 4. The model formulation of stochastic
heterogeneous-leaders behaviour of PMs is discussed in Section 5. The model performance in the real-world
experiments and the calibrated and validated stochastic behaviour models of PM devices are illustrated in
Section 6. Finally, Section 7 provides conclusions of this study and future research directions.
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2. Literature review

To date, the dynamics of PM devices had not received as much attention as that of vehicles from
both macroscopic and microscopic perspectives. Macroscopic models mainly deal with vehicular traffic-flow
characteristics at a low level of detail, such as density, speed, and flow. In contrast, microscopic models
illustrate the dynamics of traffic flow at a high level of detail, including the behaviour of individual vehicles.
A thorough understanding of the microscopic dynamics has enabled ones to establish safety standards to
promote the effective management and operational strategies of traffic systems. Over the past decades,
car-following (CF) and lane-changing (LC) models have separately explained the longitudinal and lateral,
respectively, the behaviour of individual vehicles, even if it has been rare to define the simultaneous two-
dimensional vehicular behaviour. In this paper, the CF theory is chosen for developing behaviour models of
PM devices under heterogeneous traffic conditions.

In addition to the CF theory, we employ the Langevin approach, which is the form of stochastic differential
equations used in physics, chemistry, financial economics, to capture the existing uncertainty in riding
manoeuvres, rider’s perception in PM behaviour modelling, and the effect of lateral interactions. Moreover,
it is not possible to model the behaviour of PM devices without considering mixed traffic conditions because
PM devices have always mingled with the current transport modes such as bicycles and pedestrians on shared
footpaths and bicycle lanes in the real world. Consequently, we comprehensively reviewed the stochastic CF
models, heterogeneous traffic conditions, and current behaviour models of low-carbon transport modes in
the following subsections to define research gaps and significant contributions to the proposed study.

2.1. Stochastic car-following models

A concept of CF theories has been widely used to illustrate longitudinal interactions of vehicular move-
ments on the road. In contrast, lateral interactions of vehicular movements have been mainly defined by
LC models (see Zheng (2014)). CF models have mainly dealt with microscopic vehicular longitudinal be-
haviour through defining the reaction of the following vehicle concerning its neighbouring vehicles, including
the individual speed and acceleration profiles (see Treiber & Kesting (2013) and references therein). Pipes
(1953) introduced an idealised law of separation that the following vehicle maintains a sufficient distance
from the leading vehicle. Its debut has led a considerable number of mathematical frameworks to define
CF behaviour under a wide range of traffic flow and geometry conditions. Chandler et al. (1958), Gazis
et al. (1961), and Herman (1959) proposed a simple linear CF model, the Gazis-Herman-Rothery (GHR)
model, and Helly (1959) introduced the speed of the following vehicle in the desired following distance into
the GHR model. A safety distance model was introduced in Kometani (1959) to assume that the follower
reacts to maintain a relative distance with the preceding vehicle, whereas Newell (1961) and Gipps et al.
(1981) proposed a non-linear function of the safety distance model.

In addition to the traditional paradigm of CF models, Treiber et al. (2000) developed the IDM to consider
the desired space headway and the free flow speed to promote realistic acceleration and deceleration of a
vehicle. Treiber et al. (2006) illustrated the desired time gap as a dynamic function of a speed variance,
which was introduced in the IDM to represent several significant traffic phenomena: widely scattered flows,
capacity drops, and platoons as effects of variance-driven time gaps. Bando et al. (1995) introduced the
optimal velocity model (OVM), in which a vehicle is supposed to have an optimal velocity decided by the
space headway from the leading vehicle. For the following vehicle in the OVM, the difference between the
optimal velocity and the actual velocity has a significant impact on its acceleration profile. Bando et al.
(1998) improved the OVM to involve driver reaction time. Meanwhile, their parameters were calibrated in
Helbing & Tilch (1998). Furthermore, Jiang et al. (2001) proposed a full velocity difference model (FVDM)
to introduce relative speed’s effect on the acceleration. Based on the LWR theory in Lighthill & Whitham
(1955) and Richards (1956), Newell (2002) proposed the simplified CF model, in which the spatiotemporal
trajectories of the following vehicle are identical to that of the preceding vehicle under steady-state traffic
conditions. In addition to these existing elementary car-following models, there have been a vast number of
other CF models, which were extended to cover a wide range of traffic problems such as multi-class vehicles,
multi-anticipations, delayed responses, connected vehicles, etc. (Kesting & Treiber, 2008; Ngoduy, 2015b,a;
Jia & Ngoduy, 2016b,a; Ngoduy, 2013; Treiber et al., 2005; Jia et al., 2019; Sun et al., 2018).
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To analyse driving behaviour in non-lane based mixed traffic, Gunay (2007) introduced the lateral dis-
comfort to CF models through a function of the off-centre effects of its leading vehicle. Moreover, Jin et al.
(2010) proposed non-lane-based FVDM to confirm that the lateral separation effects greatly enhance the
realism of car-following models. Ravishankar & Mathew (2011) modified the Gipps CF model to consider
different vehicle types under heterogeneous traffic conditions. They showed that vehicle-type-varied param-
eters in the CF model are effective to enhance the prediction of the followers’ behaviour in a shared lane.
Moreover, Metkari et al. (2013) introduced lateral interactions between vehicles to the existing CF models
to tackle characteristics of non-lane based heterogeneous motorised traffic flow. Li et al. (2015) proposed
the novel CF model to consider the effects of two-sided lateral gaps in a shared lane based on a form of CF
models. The proposed model described larger stable regions than the traditional form of CF models.

The dynamic desired time-headway and stochastic continuous driver’s desired acceleration were intro-
duced in the existing models to improve the performance of CF models. Jabari & Liu (2012, 2013) have
considered the source of randomness in the first order continuum model (i.e. LWR model) by the uncertainty
inherent in a driver gap choice, which is represented by random state-dependent vehicle time headway. In
this model, the problem of negative sample paths of the stochastic variables is well tackled. Zheng et al.
(2018) proposed a Lagrangian model to describe the uncertainty of the following vehicle’s free-flow speed,
reaction times, and safe distance to the leading vehicle. Zhou et al. (2017) compared the IDM and recurrent
neural network (RNN) to predict traffic oscillations, meanwhile, Tian et al. (2016a,b) considered high-speed
and low-speed driving behaviour, separately, to improve performance of the IDM. A stochastic desired ac-
celeration was introduced in the simplified CF model in Laval et al. (2014), which illustrated quantitative
relationships between CF theories and traffic oscillations due to the inherent stochasticity of human driving
behaviour. Treiber & Kesting (2018) carried out the stochastic stability analysis of CF models to analyse
trajectories of two consecutive vehicles in a specific CF theory derived from an acceleration-based model.

A distinct approach proposed in Ngoduy et al. (2019) applied Langevin equations to capture the stochas-
tic driving behaviour in the OVM by using an extended Cox-Ingersoll-Ross (CIR) stochastic process. Based
on the model of Ngoduy et al. (2019), Lee et al. (2019) integrated deep learning methods and the multi-lane
stochastic CF model to describe traffic dynamics under a multi-lane traffic environment. Apart from the
model of Ngoduy et al. (2019); Tian et al. (2019); Zheng et al. (2020), most existing stochastic car-following
models show that the stochasticity does not contribute to the instability of traffic flow, which do not conform
to the empirical findings by Jiang et al. (2018) where it does affect the traffic instabilities in the low-speed
regime. To the best of our knowledge, the work in Ngoduy et al. (2019); Tian et al. (2019) is among very
few attempts to show the noise-induced instability of traffic flow in the low-speed regime analytically using
a microscopic model. In this study, we thus extend the method in Ngoduy et al. (2019) to developing a
stochastic continuous CF framework to model the PM behaviour under mixed traffic conditions. The pro-
posed framework aims to tackle the behavioural uncertainty of PM riders, pedestrians, and bikes within the
shared footpath area.

2.2. Behaviour models of low-carbon personal transport modes

Diverse research approaches have been proposed to analyse behavioural characteristics of sustainable
personal transport modes for the last several decades. For the majority of green transport modes, including
pedestrians and bicycles, microscopic dynamics of pedestrians have been actively studied in Helbing &
Molnar (1995), Antonini et al. (2006), Papadimitriou et al. (2009), Asano et al. (2010), Kneidl et al. (2013),
Guo et al. (2016), Zeng et al. (2017), and Xiao et al. (2019), whereas Heinen et al. (2010), Twaddle et al.
(2014), Hoogendoorn & Daamen (2016), Zhao & Zhang (2017), Treiber & Kesting (2018), Mohammed et al.
(2019), and Paulsen et al. (2019) have defined bicycles’ spatiotemporal dynamics. Moreover, Tordeux &
Schadschneider (2016) applied OVM to analyse the pedestrian’s behaviour.

In the meantime, there is plenty of room for modelling micro-behavioural dynamics of PM devices, which
mainly define E-scooters and E-bikes, unlike that of pedestrians and bicycles until recently. Ulrich (2005)
categorised personal electric vehicles (PEV) into stand-on-scooters, which is the almost identical term to PM
devices in this study, sit-on scooters, and mobility scooters, according to technical specifications, involving
maximum speed, cruising speed, size of wheels, gradeability, riding position, and terrain. Furthermore, the
author illustrated several potential benefits of the PEV to users and society, including lower operating costs
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than automobiles, use as auxiliary modes with transit and passenger cars, lower door-to-door travel times
for short distance in a metropolitan area, reduction of air and noise pollution, and substitute mobility for
the transport vulnerable. They found the social force model can be adapted to simulate Segway’s behaviour
toward pedestrians’ behaviour. The effects of PM devices on traffic streams of pedestrians were evaluated by
a personal space in Pham et al. (2015). The authors developed a simulation model of interactions between
PM devices and pedestrians to show that PM devices significantly influence the increase in pedestrian density.
Dias et al. (2018) explored the applicability of a social force model, which is used to model pedestrians’
dynamics, for microscopic dynamics of Segway under mixed traffic conditions. Although they illustrated
interactions between Segway riders and pedestrians using a social force model, they did not describe the
inter-relationship of their behavioural dynamics under heterogeneous traffic scenarios. In addition, Hasegawa
et al. (2018) analysed a danger perception of pedestrians toward PM devices under a shared footpath.

3. Circular experimental design

To calibrate and validate the proposed stochastic behavioural model of PM devices under heterogeneous
traffic conditions, we designed the circular shared road in which the circumference is 120 metres, and the
width is 1.5 metres. We conducted these experiments in a circular pilot study road in May 2019. Heteroge-
neous Low-carbon transport flow includes scooter riders as a PM device, bicycle riders, and pedestrians. In
the narrow pathway, we designed that PM devices can overtake pedestrians and bikes, whereas no modes
can overtake PM devices.

Fifteen university students in the class of traffic flow theories at Ajou University in South Korea, par-
ticipated in a series of experiments. They can easily understand research purposes and significance of the
proposed experimental methodology since they have studied the importance of circular experimental design
for passenger cars, basic CF models, and traffic flow theories in the class. In addition, they learn how to ride
bicycles and E-scooters safely under mixed traffic conditions. Pedestrians and bicycle riders are instructed
to not only keep the consistent travelling speed at the edge of the circular shared road but also avoid sudden
manoeuvres to change riding direction and speed. We instructed PM riders to find their gap acceptance
against the circular traffic stream when asked to penetrate the mainstream. When PM riders want to take
over pedestrians and bicycle riders in the shared lane, they should give a short prior verbal notice to walkers
and bike riders and then, take their actions gently. When PM riders are asked to leave the stream, they
are instructed to accelerate their PM slightly and then, leave the stream smoothly without interrupting the
leading and the following riders.

We set four initial traffic conditions, including three pedestrians walking, three bicycles riding, three
low-speed scooters driving below 10 km/h, and three high-speed scooters driving over 10 km/h, respectively.
After 2 minutes of four initial traffic conditions, scooter riders enter and leave the main circular stream
every 2 minutes, approximately. We allow a maximum of 10 modes running in the circular road at all
four traffic conditions, in which the maximum density is 83.3 people/km. In contrast, its minimum value
is 25.0 people/km. Consequently, we create 32 different heterogeneous traffic conditions to analyse the
stochastic behaviour of the PM devices thoroughly. The following table summarises the time duration of all
experiments.

Table 1: A time duration of circular experiments

Density (per/km) 25.0 33.3 41.7 50.0 58.3 66.7 75.0 83.3
3 bicycles + scooters 00:01:35 00:02:06 00:01:56 00:02:03 00:02:02 00:01:56 00:02:09 00:02:30
3 pedestrians + scooters 00:01:06 00:01:59 00:02:00 00:02:04 00:02:01 00:02:05 00:02:03 00:01:51
Low-speed scooters 00:02:21 00:01:45 00:01:58 00:01:58 00:02:04 00:02:05 00:01:53 00:02:04
High-speed scooters 00:02:33 00:01:50 00:01:58 00:02:09 00:01:55 00:02:03 00:02:00 00:01:55

Besides, we collect digital images recorded by a video camera installed at the top of a neighbouring
building and a drone to extract the trajectories of all modes running along the track, which are illustrated
in the following figure. A resolution of the extraction is 0.5 seconds. Meanwhile, the total number of frames
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(a) A vision from the top of the building (b) A vision from a drone

Figure 1: The samples of recorded digital images

per a single experiment is from 132 to 300 frames. Moreover, the extracted trajectories per 0.5 seconds of
the individual PM device of 28 riders (7 riders x 4 experiments = total 28 riders) are used to construct
stochastic behaviour models of sustainable modes under the circumstance, in which the leading PM device
leave and enter the circular road.

In Fig. 1a, we create the graduation along the circle on the recorded video images to calculate the travel
distance of the individual PM device per 0.5 seconds. We use the calculated travel distance in a 0.1 metre
resolution to approximate the discrete values of the speed in 0.1m per 0.5s resolution. Besides, the recorded
video images from the drone are used to calibrate the calculated travel distance based on the real travel
distance to minimise the observed errors caused by the tilted angle of cameras in Fig. 1b.

4. Research gap

We discover several significant research gaps from the comprehensive review studies to propose a novel
mathematical framework for modelling microscopic dynamics of PM devices through the designed experi-
ment. To the best of our knowledge, stochastic behavioural characteristics of PM devices have never been
captured from the perspective of PM riders against different low-carbon modes under narrow shared path-
ways. We carried out the real-world circular experiments to verify the effectiveness of the stochastic CF
models in explanations of the behaviour of PM devices under heterogeneous flow conditions.

4.1. Oscillations of the PM speed at the low-speed regime in a single shared lane

Four initial traffic conditions, including three pedestrians walking, three bicycles riding, three low-speed
scooters driving below 10 km/h, and three high-speed scooters driving over 10 km/h, respectively, are con-
structed to analyse oscillations of the PM speed at the low-speed regime in a single shared lane. The following
figures provide oscillations of PM speed profiles under four hetero- and homogeneous traffic conditions.

We illustrate the oscillations of speed profiles of PM devices at the low-speed regime, which is similar to
vehicular traffic behaviour where the stochastic behaviour plays a significant role in the instabilities at the
low-speed regime.

In Fig. 2, Bike01, Bike02, and Bike03 at a Y-axis show speed profiles of bikes running below 5m/s the
circle as the initial heterogeneous condition over 1,800 seconds. In the meantime, PM01 to PM07 show
speed oscillations of PM devices at low-speed regime under bike-mixed traffic conditions. Primary traffic
disturbances that scooter riders participate in and leave the traffic stream have a significant influence on
speed oscillations of PM devices such as speed profiles of PM01 at 200s, PM05 at 1200s, and PM06 at 1400s.

In Fig. 3, low-speed profiles of pedestrians walking below 2m/s are illustrated in rows of Ped01, Ped02,
and Ped03 marked at a Y-axis. They describe relatively constant speed profiles of pedestrians walking
along with the circle as the initial heterogeneous condition, whereas they are highly disturbed after PM07
participated in the traffic stream at 1600s. Furthermore, graphs of PM01 to PM08 show speed oscillations
of PM devices at low-speed regime under pedestrian-mixed traffic conditions. Speed profiles of PM devices
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Figure 2: Speed oscillation of PM devices at low-speed regime under bike-mixed flow
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Figure 3: Speed oscillation of PM devices at low-speed regime under pedestrian-mixed flow

are extremely disturbed when PM01, PM07, and PM08 participated in the traffic stream at 200s, 1600s,
and 1800s, respectively.

PM01, PM02, and PM03 denote speed oscillations of initial PM devices running below 5m/s and below
10m/s in Fig. 4 and Fig. 5, respectively.

In Fig. 4, PM02 and PM03 left the steam at 2300s and 2500s, respectively. Moreover, PM04 participated
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Figure 4: Speed oscillation of PM devices at low-speed regime under low-speed flow

in the mainstream at 300s and then, left from the stream at 2200s. Other PM devices participated in the
stream around every 2 minutes, approximately, and the density of the low-speed running homogeneous PM
stream varied from 25person/km to 83.3person/km. Their speed profiles are unstable at low-speed regime
below 1m/s of speed when there is the new PM device in the stream or sudden changes in speed of the
leading PM device such as speed profiles of PM03 at 300s, PM04 at 700s, PM05 at 700s, PM06 at 2400s,
2500s, and 2800s, PM08 at 1800s, and PM10 at 1700s.

Fig. 5 illustrates high-speed driving PM devices between 5m/s and 10m/s for the experimental period.
PM06 and PM07 participated in the stream at 700s and 1000s and then left from the stream at 2400s and
2200s, respectively. Other PM devices gradually entered the mainstream and then, they were encouraged
to maintain relatively high-speed driving below 10m/s. Although PM riders are allowed to increase their
speed above 5m/s, their riding speed profiles are occasionally disturbed and decrease below 1m/s when the
leading PM device suddenly changed their riding speed, and additional PM devices joined the traffic stream.

Consequently, the oscillations of the PM speed at the low-speed regime are similar to vehicular traffic
where the stochastic behaviour plays a role in the instabilities at the low-speed regime, which are described in
Jiang et al. (2018). Moreover, these oscillations are significantly influenced by mixed low-carbon modes flow
and by additional PM devices joined in. Since the oscillations of PM devices are not reproducible with the
deterministic form of CF models, the development of stochastic behaviour models of PM devices is significant
to tackle uncertain changes in speed profiles of PM devices under diverse mixed traffic conditions. Moreover,
the stochastic force is used to capture PMs’ characteristics against movements of other PMs, pedestrians,
and bicycles, and the effect of lateral interactions.

4.2. Purpose and contributions

The purposes of this study are thus to create a stochastic continuous heterogeneous PM devices-following
model to cope with longitudinal interactions between different green transport modes in a shared lane. The
proposed PM behavioural model tackles unpredictable fluctuations in the velocity of PM devices against
relative speed and space headway to surrounding low-carbon modes under heterogeneous traffic conditions.
In particular, there are four primary contributions of this study as follows:
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Figure 5: Speed oscillation of PM devices at low-speed regime under high-speed flow

• stochastic volatility derived from interactions between intra- and inter-sustainable modes is explained
by the Langevin force in the proposed behavioural model of PM devices;

• Anticipation factors define a degree of influence of space headway and relative speed to the leading
modes on the following PM device in the PM devices-following equation;

• The proposed stochastic models deal with not only fine fluctuations in PM speed profiles with the
anticipation factors but also the main streams under diverse traffic density conditions;

• Real-world circular experiments are designed and carried out to calibrate and validate the proposed
model;

To verify the effectiveness of the created stochastic behaviour models of PM devices, its performance com-
pared to the existing models are given in the following sections.

5. Model formulation

This section presents the mathematical framework of a behaviour model of PM devices under mixed
traffic conditions with stochastic volatility. The proposed framework creatively includes a concept of antic-
ipation factors for space headway and relative speed against hetero- and homogeneous sustainable modes
and stochasticity in the primary form of CF models. The definitions of the common indices, parameters,
and variables used in this study are given in Table 2. Based on the common terms, a typical schematic
configuration of the PM behavioural model is illustrated in Fig. 6. In Fig. 6, mode m, m + 1, and m + 2
are a PM device, a bicycle, and a pedestrian, respectively, within of a shared lane with w width. The nth
PM device m is the target mode, which is moving at speed vn,m(t) and acceleration an,m(t) at time t. Its
intra-space headway to the leading PM is sn,m(t), whereas its inter-space headway to the leading bicycle
and pedestrian is expressed as sn,m+1(t) are sn,m+2(t), respectively.

We suppose a sensitivity level could be varied toward space headway and relative speed among the
same modes and between different modes in a shared lane. To facilitate this assumption, the integrated
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Table 2: Index, Variables, and Parameters used for modelling

Index
n personal mobility devices
m a group of low-carbon transport modes
t time instant (s)

Variables and parameters
xn,m(t) the position of device n in a group of mode m at time t (m)
vn,m(t) the speed of device n in a group of mode m at time t (m/s)
an,m(t) the acceleration of device n in a group of mode m at time t (m2/s)
sn,m(t) the space headway to leading device n− 1 of device n in a group of mode m at time t (m)
∆vn,m(t) the relative speed to leading device n− 1 of device n and in a group of mode m at time t (m/s)
δm the anticipation factors to speed of the follower against device in a group of mode m
λm the anticipation factors to position of the follower against device in a group of mode m
ηm(t) the stochastic process of acceleration of a group of mode m at time t
σ0 the positive dissipation parameters of acceleration
f(.) the deterministic drift of acceleration profile
g(.) the stochastic force of acceleration profile
dWn,m the increments of a standard Wiener process of device n in a group of mode m
Vop(sn,m) the space headway-dependent optimal velocity of PM devices (m/s)
V0 the desired speed of PM devices (m/s)
C the shape of the equilibrium flow-density relations of PM devices under free traffic conditions
b the length scale, defining the transition regime for the s-shape function from Vop(sn,m) = 0 to Vop → V0
γ the constant sensitivity coefficient of the optimal speed of PM devices in a deterministic drift (1/s)
κ the constant sensitivity coefficient of the relative speed of PM devices in a deterministic drift (1/s)

mode m mode m+1 mode m+2

w

vn,m(t), an,m(t)

sn+1,m+1(t) sn,m+1(t)

sn,m+2(t)

sn+1,m(t) sn,m(t)

Figure 6: A typical configuration of the PM behaviour related to surrounding mixed low-carbon transport modes

mathematical framework is constructed to contain interactions of intra- and inter-modes simultaneously. We
then formulate a form of stochastic differential equations (SDE) to capture the deterministic and stochastic
characteristics of PM driving behaviour under mixed traffic conditions. Although Sugiyama et al. (2008)
observed reaction time delays in dynamics of car-following behaviour on circular tracks, we suppose reaction
time delay could have negligible impact in slow-moving systems below 20km/h, which is the low-carbon
traffic flow in this study.

The multiplicative Gaussian white noise was used to illustrate the acceleration profiles of the following
vehicles against the leading vehicles’ speed profiles in the form of CF models justified in Laval et al. (2014).
Based on a concept of the multiplicative Gaussian white noise, Ngoduy et al. (2019) and Lee et al. (2019)
have adopted the Langevin equations to describe the stochastic behaviour of vehicles in the form of CF
models to guarantee positive dissipation of speed profiles at a lower speed regime. The Langevin equations
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have been widely used in physics, chemistry, mathematics, and financial engineering in the last decades, to
describe the stochastic process, which is an effective method to model quasi-continuous diffusion processes.
Furthermore, a random characteristic of the variance in the modelling of stochastic dynamics has captured
the possibility of considering efficiently unpredictable and uncontrolled effects of exogenous variables, called
stochastic volatility.

5.1. Car-following models

Let us recall a generic formulation of the (deterministic) car-following model for lane keeping vehicular
driving behaviour as follows.

dvn(t)

dt
= f (vn(t), sn(t),∆vn(t)) (1)

where sn and ∆vn represent, respectively, the space headway and the relative speed of vehicle n with its
leading vehicle n + 1 in the same lane. Note in this paper we define the relative speed as an approaching
rate: ∆vn = vn− vn+1. The nonlinear function f(.) depicts an elementary car-following model type such as
the OVM, FVDM or IDM for vehicle n.

This elementary car-following model type is used to develop the stochastic behaviour model of the PMs
in the ensuing section.

5.2. Stochastic behaviour model of PMs

To capture the non-lane disciplinary behaviour of the PMs as described in a shared lane as in Fig.6, we
propose anticipation factors to define a level of recognition of the nth PM device in the mode m toward the
leading PM devices, regardless of the mode type. To this end, the car-following model (1) is modified for
PM device n in group m as below.

dvn,m(t)

dt
= f (vn,m, ŝn,m,∆v̂n,m) (2)

Similar to the car-following model, the function f(.) describes the PM following behaviour of PM device n,
which will be specified later.

Furthermore, the newly introduced variables ŝn,m and ∆v̂n,m are the spatial average space headway and
relative speed of PM n w.r.t. all the leading PMs, respectively, in the shared lane. Consider the the modes
in Fig. 6, these variables are determined as follows:

∆v̂n,m(t) = δm[vn,m(t)− vn+1,m(t)] +
∑

m′ 6=m

δm′ [vn,m(t)− vn+1,m′(t)] (3)

ŝn,m(t) = λm[xn+1,m(t)− xn,m(t)] +
∑

m′ 6=m

λm′ [xn+1,m′(t)− xn,m(t)] (4)

where the physical meaning of the anticipation coefficient δm and λm (m = 1, 2, 3) are given below.
In this study, we assume that the behaviour of the leading PM device and heterogeneous mode has a

significant influence on the behaviour characteristics of the following PM device in a single shared lane. All
low-carbon modes are running along in a shared lane, including undesignated lanes for a specific mode. In
the shared lane, parallel running, overtaking the same modes or different modes, and following all modes are
permitted in most countries. We introduce the anticipation factors, δm and λm, to the existing CF models to
cope with these kinds of manoeuvres of sustainable modes. They are used to measure the sensitivity of the
following PM device against space headway and relative speed to the leading same mode as well as different
modes in a shared lane, separately. It is worth mentioning that Jin et al. (2010) introduced a single sensitive
parameter in non-lane-based FVDM to enhance the performance of CF models for heterogeneous non-lane
based vehicular traffic flow. The anticipation factors in our model are restricted to prevent over-quantifying
the influence of relative speed and space headway toward the leading subjects on the following PM device.
Furthermore, vn+1,m(t) and vn+1,m+1(t) describe the speed of the leading subjects involved in the same and
the different group of modes, respectively, whereas xn+1,m(t) and xn+1,m+1(t) denote the location of the
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leading subjects, respectively. The following constraints are imposed for these factors for 3 modes presented
in Fig. 6:

3∑
m=1

δm = 1.0 (5)

3∑
m=1

λm = 1.0 (6)

However, to simplify the numerical study in the next section, we only consider the interactions of the PMs
(i.e. m = 1) and other mixed modes (i.e. m = 2).

To illustrate the stochastic PM behavioural model under heterogeneous traffic conditions, we extend the
Langevin method proposed in Ngoduy et al. (2019) to describe the dynamics of PMs as follows.

dvn,m(t) = f (vn,m(t), ŝn,m(t),∆v̂n,m(t)) dt+ g (vn,m(t), ηm(t)) dt (7)

where gn,m(.) is a stochastic force of the acceleration of PM n in group m, which depends on the traffic
conditions with the stochastic process ηm(t). This stochastic force is derived from the current speed of the
subject mode.

In Eq. (7), the deterministic part could be governed by a specific definition of the function f(.). Without
loss of generality, we use the OVM and FVDM to represent the deterministic part in this study. To this
end, the OVM and FVDM are modified, respectively, as follows:

• Extended OVM type:

f (vn,m(t), ŝn,m(t),∆v̂n,m(t)) = γ [Vop(ŝn,m(t))− vn,m(t)] (8)

• Extended FVDM type:

f (vn,m(t), ŝn,m(t),∆v̂n,m(t)) = γ [Vop(ŝn,m(t))− vn,m(t)]− κ∆v̂n,m(t) (9)

where optimal speed function Vop is defined as:

Vop =
V0
2

ï
tanh

Å
ŝn,m
b
− C
ã
− tanh (−C)

ò
(10)

.
In Eq. (7), we consider the stochastic force g(.) to conform to multiplicative Gaussian white noises, which

illustrates normally distributed fluctuations of behaviour:

g (vn,m, ηm) = σ (vn,m) dWn,m(t) (11)

where Wn,m(t) shows the increment of a standard Wiener process (Uhlenbeck & Ornstein (1930)) to define
the random deviations from the mean speed of the individual PM device n in the group m. σ (vn,m) denotes
a positive speed-dependent dissipation parameter illustrating the noise intensity of PM n in group m, in
which higher σ (vn,m) means more randomness in the acceleration of the following PM device.

To relax the assumption of the constant dissipation parameter and to enhance the positive constraints of
the trajectories of the stochastic model variables, Ngoduy et al. (2019) proposed an extended Cox-Ingersoll-
Ross (CIR) process (Cox et al. (1985)) to model the acceleration deviations in a stochastic OVM. In a
similar line, in this study, we follow the extended CIR process to model the PM device behaviour under
mixed traffic conditions as follows:

σ (vn,m) = σ0
√
vn,m (12)

where σ0 is a noise strength coefficient. A primary advantage of adapting the modified CIR process in
the SDE is to mitigate the negative trajectories of the stochastic variable vn,m(t) for any arbitrary values
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of σ0. This implies that σ becomes very small even for high values of σ0 when vn,m(t) is close to zero.
In this case, the stochastic model Eq. (7) is totally governed by the deterministic part. Furthermore, we
set Vop = max(0, Vop) in the numerical implementation and the case study to prevent the negative speed
due to numerical errors in the simulation. The proposed model is numerically simulated using a standard
Euler–Maruyama scheme. We provided a detailed definition of the discretisation in the Appendix in the
authors’ previous study in Ngoduy et al. (2019).

6. Model performance in real-world experiments

We applied five different forms of models depending on stochasticity, relative speed, and anticipation
factors, to the real-world circular experiments described in section 3. We divided the experimental data into
calibration and validation sets to validate the effectiveness of the proposed methods.

Trajectories of PM devices are used to develop stochastic PM behaviour models and deterministic models
based on the form of the OVM except for errors of digital image processing. Consequently, we compare the
performance of the developed models illustrated in the following table to verify the excellent performance
of the stochastic PM behaviour model compared to the deterministic PM models.

Table 3: Descriptions of the proposed models

Model 1 Model 2 Model 3 Model 4 Model 5∗

Stochasticity X X X
Relative speed X X X

anticipation factor X X X

In Table 3, we apply three different features: stochasticity, relative speed, and anticipation factors
to the proposed models based on the OVM form. Stochasticity is considered in the models through the
integrated form of PM behaviour models, involving the deterministic and the Langevin force. Relative
speed is adopted as a form of FVDM, whereas anticipation factors measure influence on the following PM
device from space headway and relative speed against the different leading sustainable modes in a shared
lane. Individual trajectories of PM devices are used to establish individual stochastic models against each
different traffic condition. Models 2 and 4 denote SOVM and FVDM, respectively, whereas anticipation
factors are introduced in models 1 and 3 to examine the effectiveness of the newly developed sensitive
coefficient considering speed profiles of the leading heterogeneous low-carbon modes. Consequently, models
5, considering stochasticity, relative speed, and anticipation factors induced by the heterogeneity of traffic
flow, is the finally proposed stochastic PM behaviour models under mixed traffic conditions.

In the model calibration, the set of parameters in the proposed stochastic models are calibrated by
a typical meta-heuristic optimization algorithm. We choose the Genetic algorithm (GA) for our illustra-
tion purposes, where 100 replications will be used in the stochastic simulation. We verified the excellent
performance of model 5 by comparing it with other models in the model calibration process. After these
comparisons, we used trajectories of PM devices 1, 3, 5, and 7 for global calibration processes of parameters
in model 5, whereas PM devices 2, 4, and 6 for model validation.

The mean of the speed of individual sustainable modes (i.e. over 100 samples) is used to compare with
the observed speed of individual modes where the (expected) total mean squared errors between the model
output and the data is used as a performance index (PI) for mode m = 1, PM device:

PI =

N∑
n=1

Ã
1

n

T∑
t=1

[v̂n,1(t|π)− ṽn,1(t)]
2

(13)

where t ∈ T is time step, v̂n,1(t|π) denotes the mean simulated speed of the PM device n at time step t
(over 100 samples) given the model parameter π = [δ1 λ1 σ0 V0 C b γ κ], depending on the sort of models
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provided in Table 3. In contrast, ṽn,1(t) is the observed speed of the following PM device n at time step t.
For we only consider the interactions of the PMs (m = 1) and other mixed modes (m = 2), the constraint
of anticipation factors is reduced to: δ2 = 1− δ1 and λ2 = 1− λ1.

The proposed models in Table 3 are applied on trajectories of five PM devices at a time under four
different traffic conditions in a case of individual calibration processes. Models 1, 2, and 5 illustrate the
upper (95 percentile of confidence interval) and lower (5 percentile of confidence interval) bound, which
depends on the estimated speed profiles of the following PM device.

6.1. PMs behaviour in bicycle-mixed conditions

We assume that bike-mixed traffic conditions have a significant impact on the stochastic behaviour of
PM devices in addition to their deterministic behaviour. The stochastic force and anticipation factors
are introduced in the form of the current CF models to capture the uncertainty of PM behaviour under
bike-mixed traffic conditions.

6.1.1. Model calibration

We calibrate four models, which have different sets of parameters depending on the base model, in the
following table. Table 4 provides mean values and standard deviations of parameters of seven PM devices
for individual calibration processes to describe the heterogeneity of the parameters among PM riders under
bike-mixed conditions.

In Table 4, mean values of the anticipation factors against space headway to the bike, δ2, are 0.3284 and
0.0204 with 0.1509 and 0.0063 as standard deviations in Models 1 and 3, respectively. It is worth emphasising
that space headway to the bike has a significant influence, around 30 percentile, on acceleration behaviour of
PM devices under heterogeneous traffic circumstance in the form of stochastic differential equations, whereas
not significant in model 3. Moreover, the values of positive dissipation parameters, σ0, 0.15 - 0.19, show
that behavioural uncertainty is well captured by the stochastic PM devices following models under mixed
traffic conditions with lower standard deviations below 0.1. Mean values of the average desired speed of PM
devices are between 5.0 and 5.3 m/s, which are identical to the specification of PM devices in a market.
Moreover, standard deviations are varied from 0.55 to 1.1 in the average desired speed of PM devices. Values
of a shape of the equilibrium flow-density relations, C, are stable in all models between 1.8 to 2.9 with 0.9 to
1.6 as standard deviations. The values of length scale, b, are between 2.5 and 4.7 with 0.5 to 1.5 as standard
deviations. Meanwhile, the space headway coefficients, γ, are around 0.7 in models 1 and 2, whereas they
are around 0.1 in models 3 and 4. The relative speed coefficient, κ, is 0.42 with around 0.2 as standard
deviations in models 3 and 4.
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Table 4: Calibration results under bicycle-mixed conditions

Model 1 Model 2 Model 3 Model 4

δ2
Mean 0.3284 n/a 0.0204 n/a
SD 0.1509 n/a 0.0063 n/a

λ2
Mean n/a n/a 0.0215 n/a
SD n/a n/a 0.0106 n/a

σ0
Mean 0.1507 0.1886 n/a n/a
SD 0.0858 0.0950 n/a n/a

V0
Mean 5.3006 5.1688 5.0038 5.1207
SD 0.6411 0.8673 0.5597 1.0762

C
Mean 2.6737 2.8820 1.8316 2.7866
SD 1.4185 1.3491 0.9318 1.5811

b
Mean 2.9523 4.7393 2.7813 2.5774
SD 1.3653 1.1915 1.4630 0.5496

γ
Mean 0.7200 0.8991 0.1000 0.1000
SD 0.6901 0.7296 0.0000 0.0000

κ
Mean n/a n/a 0.4215 0.4205
SD n/a n/a 0.2074 0.2087

The fitted-trajectories of speed profiles of the third PM device are selected to compare the performance
of the top three models in Table 4 in the following figure.
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(a) Model 1 with stochasticity and anticipation factors
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(b) Model 2 with stochasticity
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(c) Model 3 with relative speed and anticipation factors
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Figure 7: Speed profiles of the top three models in the third PM device under bike-mixed traffic conditions

Models 1, 2, and 3 are selected to describe the speed of the following PM device under bike mixed traffic
conditions. In Fig. 7a, the proposed model 1 tackles all fine fluctuations in the speed of the following PM
device through considering relative space headway to the leading PM and bike using anticipation factors,
even if 5 and 95 percentile of variance is slightly wider than that of the model 2 due to considering relative
space headway. In Fig. 7b, model 2 explains the main streams of speed with sufficient variance without
anticipation factors; meanwhile, extensive fluctuations are not covered by model 2. According to the results
of model 1 and 2, anticipation factors play a crucial role in behaviour models of PM devices under bike-mixed
traffic conditions. In Fig. 7c, model 3 based on a concept of the FVDM enables to illustrate specific tendency
in PM speed in the most periods with the anticipation factors, which measure a degree of sensitivity to space
headway and relative speed against the leading PM and bike.

After comparing the performance of the top three models, we calibrate model 5, which is the finally
proposed model, to consider stochasticity, relative speed, and anticipation factors with speed profiles of the
second PM device in Table 5. For the second PM device, the traffic conditions are varied from the low-
density mixed traffic condition, 33.3 device/km, to the high-density mixed traffic condition, 83.3 device/km
with three bikes running.

Table 5: Calibration results of the proposed model 5 under bike-mixed traffic conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 0.4161 0.0009 0.1276 5.5001 1.6079 9.2279 0.4496 1.4819
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In Table 5, the anticipation factors for space headway, δ2, and relative speed, λ2, are 0.4161 and 0.0009,
respectively. It is worth emphasising that space headway to the bike has a significant influence, around 40
percentile, on acceleration behaviour of PM devices under heterogeneous traffic circumstance in the form of
stochastic differential equations, with anticipation factors for relative speed. Moreover, the value of positive
dissipation parameters, σ0, 0.1276, shows that behavioural uncertainty is well captured by the stochastic PM
devices following models under mixed traffic conditions. The average desired speed of PM devices is 5.5 m/s,
which are identical to the specification of PM devices in a market. Other calibrated variables of the finally
proposed model 5 are slightly different from the previous models because it involves all anticipation factors
and follows a form of stochastic differential equations. The statistics of calibration results are illustrated in
the following table.

Table 6: Values of final value of GA of the models under bike-mixed traffic conditions

Model 1 Model 2 Model 3 Model 4 Model 5

Final value of GA 8.8962 8.8966 5.2011 5.2011 4.107
Improvement than the base model n/a 0.00% 41.54% 41.54% 53.83%

In Table 6, stochastic model 5 shows better performance than other models. Its final value of GA, 4.107,
is greatly lower than others. This model type improves 53.83% compared to base model 1. Moreover, a
form of FVDM, models 3 and 4, shows better performance than a form of OVM, models 1 and 2. Stochastic
behavioural models of PM devices against heterogeneous traffic conditions perform better when combined
with anticipation factors for both space headway and relative speed. The calibrated results are described in
the following figures.

Fig. 8 illustrates that the stochastic FVDM (SFVDM) based behaviour model of PM devices captures
the general tendency in speed profiles, whereas the upper and lower limits of speed could not cover all sudden
fluctuations in several parts. This implies that newly created anticipation factors against space headway
and relative speed to heterogeneous modes play a significant role in SFVDM to tackle partial influence on
the behaviour of the following PM devices from the leading two different sustainable modes.
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Figure 8: Performance of stochastic FVDM-based behaviour models of PM devices under bike-mixed traffic conditions

6.1.2. Model validation

Trajectories of PM devices 1, 3, 5, and 7 are used to globally calibrate model 5, including the stochastic
force and two anticipation factors in the form of SFVDM. Those devices 2, 4, and 6 are used for model vali-
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dation under bike-mixed heterogeneous conditions. The global calibration results of model 5 are illustrated
in Table 7.

Table 7: Global calibration results of model 5 under bike-mixed conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 0.379 0.0000 0.2 4.5675 9.3087 1.4333 0.2292 0.9196

The globally calibrated parameters in Table 7 are slightly different from the parameters calibrated by
trajectories of PM 2 only in Table 5 due to its diversity in the calibration set. The calibrated mean values
of speed of PM 1, 3, 5, and 7 are provided with the upper (95 percentile of confidence interval) and lower (5
percentile of confidence interval) bound in Fig. 9. They are compared with the ground truth speed profiles
of each corresponding PM device.
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(b) PM 3
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Figure 9: Global calibration results in bike-mixed conditions

In Fig. 9, the ground truth speed profiles of PM devices are within the upper and the lower stochastic
bound of the estimated mean speed. Model 5 in global calibration can capture main fluctuations in speed
profiles, whereas, it could not explain extreme manoeuvres across the PM devices. We validate the calibrated
SFVDM with the ground truth speed profiles of PM devices 2, 4, and 6 in Fig. 10.
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Figure 10: Model validation results of bike-mixed conditions

In Fig. 10, the proposed SFVDM captures the main streams of the observed speed of PM 2 and 4
within the upper and the lower bound of the mean speed. In contrast, the observed speed profiles of PM
6 are frequently beyond the upper and the lower bound of the estimated mean speed due to its relatively
small sample size. Moreover, initial fluctuations in speed profiles are not illustrated well by model 5 in the
validation set. In addition to the comparisons of speed profiles, we illustrate aggregated space headway
to validate the excellent performance of the proposed model 5 in Fig. 11. The mean values of all moving
trajectories estimated by model 5 are illustrated with observed moving trajectories of all PM riders under
the bike-mixed scenario. Red and blue solid lines denote the moving trajectories estimated by model 5 and
the observed moving trajectories, respectively.
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(a) Trajectories during a whole analysis period
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Figure 11: the observed and the estimated moving trajectories under bike-mixed flows

In Fig. 11a, estimated main streams of spacing behaviour of PM devices are almost similar to the observed
stream of spacing profiles under bike-mixed flow conditions. Moreover, the proposed SFVDM captures the
spacing behaviour of PM riders newly joined or left, the leading riders, and the following riders at around
700s, 1000s, and 1500s. In Fig. 11b, the proposed model illustrates the spacing behaviour of PM devices,
which is similar to the observed spacing trajectories from 500s to 750s, which is one of the highest density
periods, whereas, the tiny fluctuations in the spacing profiles are not fully covered by the proposed model
under pedestrian-mixed conditions.

6.2. PMs behaviour in pedestrian-mixed conditions

Stochastic behavioural models of PM devices show better performance than their original deterministic
models under pedestrian-mixed traffic conditions. The stochastic force and anticipation factors are intro-
duced in the form of the current CF models to capture the uncertainty of PM behaviour under pedestrian-
mixed traffic conditions.

6.2.1. Model calibration

We calibrate five models, which have different sets of parameters depending on the base model, in the
following table. The parameters are mean values in the case of individual calibration processes. Table 8
provides statistics of model parameters of seven PM devices for individual calibration processes to describe
the heterogeneity of the parameters among PM riders under pedestrian-mixed conditions.
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Table 8: Calibration results under pedestrian-mixed conditions

Model 1 Model 2 Model 3 Model 4

δ2
Mean 0.2403 n/a 0.0225 n/a
SD 0.1362 n/a 0.0053 n/a

λ2
Mean n/a n/a 0.0142 n/a
SD n/a n/a 0.0030 n/a

σ0
Mean 0.2448 0.2144 n/a n/a
SD 0.1841 0.1821 n/a n/a

V0
Mean 6.2567 6.2117 5.4130 5.5026
SD 0.6141 0.6165 0.3924 0.8859

C
Mean 6.0506 6.0390 1.8059 1.6648
SD 3.6362 2.5946 0.9110 0.6996

b
Mean 2.0980 3.2800 2.6284 2.6450
SD 0.9454 2.0280 1.6709 0.9007

γ
Mean 1.7245 1.6440 0.3161 0.3162
SD 0.5755 0.5647 0.0950 0.0952

κ
Mean n/a n/a 0.8340 0.8062
SD n/a n/a 0.3181 0.3322

In Table 8, the anticipation factors against space headway to the leading pedestrian, δ2, are 0.2403
and 0.0225 in Models 1 and 3, with small values of standard deviations, respectively. Although the space
headway to the leading pedestrian has less influence on the speed of the following PM device than that to
the leading bike in Section 6.1, it has a significant influence, around 25 percentile, on acceleration behaviour
of PM devices under pedestrian-mixed traffic circumstance in the stochastic behaviour models, whereas not
significant in model 3. Moreover, the values of the dissipation coefficient, σ0, 0.21 - 0.24, in individually
calibrated models with 0.18 of standard deviations, show that behavioural uncertainty is well captured by
the stochastic PM devices following models under pedestrian-mixed conditions, even if they are larger than
the case of bike-mixed conditions in Section 6.1. The average desired speed of PM devices is between 5.4
and 6.3 m/s with small values of standard deviations from 0.4 to 0.8, which are larger than the case of
bike-mixed conditions within the designed specification of PM devices in a market, which is significantly
different from the average desired speed of vehicles, 33 m/s. Values of a shape of the equilibrium flow-density
relations, C, are significantly different between models, even if they are stable in all calibration cases with
lower values of standard deviations. The values of length scale, b, are between 2.0 and 3.2, meanwhile, the
space headway coefficients, γ, are between 0.3 to 2.0. Their values of standard deviations are varied from
0.9 to 2.0 and from 0.09 to 0.5, respectively. The relative speed coefficients, κ, are around 0.8 with 0.3 of
standard deviations in Models 3 and 4. The fitted-trajectories of speed profiles are selected to compare the
performance of the top three models in the case of the fifth PM device in Table 8 in the following figure.
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(a) Model 1 with stochasticity and anticipation factors
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(b) Model 2 with stochasticity
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(c) Model 3 with relative speed and anticipation factors
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Figure 12: Speed profiles of the top three models in the fifth PM device under pedestrian-mixed traffic conditions

Models 1, 2, and 3 are selected as the top three significant models to describe the speed of the fifth
PM device under pedestrian-mixed traffic conditions. In Fig. 12a, the proposed model 1 explains the main
fluctuations in the speed of the following PM device through considering space headway to the leading PM
and pedestrian using anticipation factors, even if the calibrated speed profiles miss some fine fluctuations
in the real speed profiles. In Fig. 12b, model 2 captures only the mainstream of the speed profiles without
considering anticipation factors. In Fig. 12c, model 3 tackles fine fluctuations in PM speed profiles in the
most periods with the anticipation factors.

After comparing the performance of the top three models, we calibrate model 5 to not only consider the
relative speed and space headway but also take into account a fine stochastic fluctuation of speed profiles
under pedestrian-mixed conditions in the following tables and figures. For the second PM device, the traffic
conditions are varied from the low-density mixed traffic condition, 33.3 device/km, to the high-density mixed
traffic condition, 83.3 device/km with three pedestrian walking.

Table 9: Calibration results of the proposed model 5 under pedestrian-mixed traffic conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 0.3176 0.0 0.5 6.7837 1.338 9.2094 0.4496 1.4819

In Table 9, the anticipation factors for space headway, δ2, and relative speed, λ2, are 0.3176 and 0.0,
respectively. It is worth emphasising that space headway to the bike has a significant influence, around
30 percentile, on acceleration behaviour of PM devices under heterogeneous traffic circumstance, whereas
relative speed against the leading pedestrian has no influence on the acceleration behaviour of the follower
in the form of stochastic differential equations. Moreover, the value of positive dissipation parameters, σ0,
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0.5, shows that behavioural uncertainty is well captured by the stochastic PM devices following models
under mixed traffic conditions. The average desired speed of PM devices is 6.8 m/s, which is within the
specification of PM devices in a market. Other calibrated variables of the finally proposed model 5 are
slightly different from the previous incomplete models because it involves all anticipation factors and follows
a form of stochastic differential equations. The statistics of calibration results are illustrated in the following
table.

Table 10: Values of final value of GA of the models under pedestrian-mixed traffic conditions

Model 1 Model 2 Model 3 Model 4 Model 5

Final value of GA 6.7876 6.7803 6.3285 6.3285 6.0386
Improvement than the base model n/a 0.11% 6.76% 6.76% 11.03%

In Table 10, stochastic model 5 shows better performance than other models. Its value of least square
error, 6.0386, is lower than others between 6.3 and 6.8. Moreover, a form of FVDM, models 3 and 4, shows
slightly better performance than a form of OVM, models 1 and 2. Stochastic behavioural models of PM
devices against heterogeneous traffic conditions perform better when combined with anticipation factors
for both space headway and relative speed. Under pedestrian-mixed traffic conditions, the effectiveness of
stochasticity and anticipation factors is not as significant as them under bike-mixed conditions to improve
model performance. In the experiments, we observed that PM riders tend to make their platoon to follow the
leading PM device directly to minimise their distractions and anticipations caused by pedestrian movements
and avoid direct conflicts with low-speed walking pedestrians alone. The calibrated results are described in
the following figures.

In Fig. 13, the SFVDM based behaviour model of PM devices illustrates not only the main streams of
speed but also tiny fluctuations in speed within the lower and upper bound of PM speed. This implies that
newly created anticipation factors against space headway and relative speed to heterogeneous modes play a
significant role in SFVDM to tackle partial influence on the behaviour of the following PM devices from the
leading two different sustainable modes.
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Figure 13: Performance of stochastic FVDM-based behaviour models of the second PM devices under pedestrian-mixed traffic
conditions

6.2.2. Model validation

Trajectories of PM devices 1, 3, 5, and 7 are used to globally calibrate model 5, including the stochastic
force and two anticipation factors in the form of SFVDM. Those devices 2, 4, and 6 are used for model
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validation under pedestrian-mixed heterogeneous conditions. The global calibration results of model 5 are
illustrated in Table 11.

Table 11: Global calibration results of model 5 under pedestrian-mixed conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 0.4659 0.0003 0.202 6.8173 2.751 5.7757 1.8264 0.2247

The globally calibrated parameters in Table 11 are slightly different from the parameters calibrated by
trajectories of PM 2 only in Table 9 due to its diversity across PM devices under mixed conditions. The
calibrated mean values of speed of PM 1, 3, 5, and 7 are provided with the upper (95 percentile of confidence
interval) and lower (5 percentile of confidence interval) bound in Fig. 14. They are compared with the ground
truth speed profiles of each corresponding PM device.
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Figure 14: Global calibration results in pedestrian-mixed conditions

In Fig. 14, the most parts of the ground truth speed profiles of PM devices are within the upper and
the lower stochastic bound of the estimated mean speed. Model 5 in global calibration well illustrates
the primary fluctuations in speed profiles but it could not capture sudden changes in accelerations and
deceleration. We validate the calibrated SFVDM with the ground truth speed profiles of PM devices 2, 4,
and 6 in Fig. 15.
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Figure 15: Model validation results of pedestrian-mixed conditions

In Fig. 15, the main streams of observed speed profiles of PM 2, 4, and 6 are well captured by the
proposed model, providing mean speed values with the upper and lower stochastic bounds in the validation
sets. In the meantime, extremely high or low-speed regimes and initial fluctuations in speed profiles are
not fully illustrated by model 5. In addition to the comparisons of speed profiles, we illustrate aggregated
space headway to validate excellent performance of the proposed model 5 in Fig. 16. The mean values of all
moving trajectories estimated by model 5 are illustrated with observed moving trajectories of all PM riders
under the pedestrian-mixed scenario. Red and blue solid lines denote the moving trajectories estimated by
model 5 and the observed moving trajectories, respectively.
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Figure 16: the observed and the estimated moving trajectories under pedestrian-mixed flow

In Fig. 16a, the overall spacing behaviour of PM devices is well described by the proposed model in val-
idation sets under pedestrian-mixed flow conditions. Moreover, the proposed SFVDM captures the spacing
behaviour of PM riders newly joined or left, the leading riders, and the following riders at around 500s,
1000s, and 1500s. In Fig. 16b, model 5 describes primary streams of spacing behaviour of all PM devices
in the enlarged period from 1250s to 1500s, which is the highest density period. In the meantime, sudden
acceleration and deceleration manoeuvres of PM riders around 1300s are not fully captured by the proposed
model in the validation process.

In Fig. 11b, the proposed model illustrates the spacing behaviour of PM devices, which is similar to the
observed spacing trajectories from 500s to 750s, which is one of the highest density periods, whereas, the
tiny fluctuations in the spacing profiles are not fully covered by the proposed model under pedestrian-mixed
conditions.

6.3. PMs behaviour in low-speed homogeneous conditions

To take account of stochastic behaviour characteristics of PM devices under low-speed homogeneous
traffic conditions, we calibrate only two models, which have different sets of parameters depending on the
base model, in the following table. Meanwhile, we exclude two models, containing anticipation factors, due
to homogeneous conditions. After comparisons of performance between models, we validate model 5 based
on unused data set in the calibration process under low-speed conditions.
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6.3.1. Model calibration

The parameters are mean values in the case of individual calibration processes. Table 12 includes mean
values and standard deviations of parameters calibrated in behaviour models of individual PM devices
to describe the heterogeneity of the parameters among PM riders under low-speed running homogeneous
conditions.

Table 12: Calibration results under low-speed homogeneous conditions

Model 1 Model 2 Model 3 Model 4

δ2
Mean n/a n/a n/a n/a
SD n/a n/a n/a n/a

λ2
Mean n/a n/a n/a n/a
SD n/a n/a n/a n/a

σ0
Mean n/a 0.2455 n/a n/a
SD n/a 0.1902 n/a n/a

V0
Mean n/a 3.5010 n/a 2.3496
SD n/a 0.7852 n/a 0.2126

C
Mean n/a 0.8886 n/a 2.4374
SD n/a 0.3714 n/a 0.7696

b
Mean n/a 7.1436 n/a 2.9980
SD n/a 2.5629 n/a 1.2284

γ
Mean n/a 1.1491 n/a 0.1000
SD n/a 0.1247 n/a 3.50E-05

κ
Mean n/a n/a n/a 0.7540
SD n/a n/a n/a 0.3070

In Table 12, the mean value of the dissipation coefficient, σ0, 0.25, with 0.19 of the standard deviation
shows that the stochastic PM devices well capture behavioural uncertainty following models under low-
speed homogeneous conditions. The average desired speed of PM devices is between 2.3 and 3.5 m/s, which
are largely smaller than previous cases of mixed traffic conditions within a boundary of the specification
of PM devices in a market. Moreover, their values of standard deviations are 0.8 and 0.2 for Model 2
and Model 4, respectively, in which the value of Model 4 is smaller than heterogeneous traffic conditions.
Values of a shape of the equilibrium flow-density relations, C, are 0.89 and 2.4 for Model 2 and Model
4, respectively. Their mean and standard deviations are smaller than their values of heterogeneous traffic
conditions in Section 6.2 and Section 6.1. The values of length scale, b, of Model 2 and Model 4 are 7.1
and 3.0, respectively, meanwhile, the space headway coefficients, γ, are between 0.1 and 1.1. Their values of
mean and standard deviations are smaller than their values of heterogeneous traffic conditions in Section 6.2
and Section 6.1. The relative speed coefficient, κ, is 0.75, which is between bike-mixed and pedestrian-mixed
traffic conditions with 0.3 of similar values of standard deviations. The fitted-trajectories of speed profiles
are selected to compare the two models’ performance in Table 12 in the following figure.
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Figure 17: Speed profiles of the top two models in the second PM device under low-speed homogeneous flow conditions

In Fig. 17a, the model 2 explains the main fluctuations in the speed of the following PM device within the
upper and lower boundary of speed profiles, although the calibrated speed profiles miss the finest fluctuations
in the real speed profiles. In Fig. 17b, model 4 captures fine fluctuations in PM speed profiles, whereas it
does not contain all of the main streams in the real speed profiles.

After comparing the top two models’ performance, we calibrate model 5, the results of which are given
in the following tables and figures.

Table 13: Calibration results of the proposed model 5 under low-speed traffic conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 n/a n/a 0.1648 2.8805 1.6876 8.5964 0.1747 0.0195

In Table 13, the value of positive dissipation parameters, σ0, 0.1648, shows that behavioural uncertainty
is well captured by the stochastic PM devices following models under mixed traffic conditions. The average
desired speed of PM devices is 2.9 m/s, which is within the specification of PM devices in a market. Other
calibrated variables of the finally proposed model 5 are slightly different from the previous models. The
statistics of calibration results are illustrated in the following table.

Table 14: Values of final value of GA of the models under low-speed traffic conditions

Model 1 Model 2 Model 3 Model 4 Model 5

Final value of GA n/a 2.1431 n/a 3.0491 1.6717
Improvement than the base model n/a n/a n/a -42.28% 22.00%

In Table 14, models 2 and 5 show better performance than model 4. It implies that stochastic behavioural
models of PM devices against homogeneous traffic conditions greatly influence the improvement of model
performance than considering relative speed under homogeneous low-speed PM conditions. The calibrated
results are described in the following figures.

In Fig. 18, the SFVDM based behaviour model of PM devices illustrates main speed tendency and
tiny fluctuations in speed within the lower and upper bound of PM speed. It also captures the unstable
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Figure 18: Performance of stochastic FVDM-based behaviour models of the second PM devices under low-speed homogeneous
flow conditions

behaviour at very low speed. This conforms to the low-speed regime’s instabilities due to the stochastic
factor, as explained in Ngoduy et al. (2019).

6.3.2. Model validation

Trajectories of PM devices 1, 3, 5, and 7 are used to globally calibrate model 5, including the stochastic
force and two anticipation factors in the form of SFVDM. Those devices 2, 4, and 6 are used for model
validation under low-speed homogeneous conditions. The global calibration results of model 5 are illustrated
in Table 15.

Table 15: Global calibration results of model 5 under low-speed traffic conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 n/a n/a 0.3722 2.7410 2.2699 3.6036 0.6250 0.0181

The globally calibrated parameters in Table 15 are slightly different from the parameters calibrated by
trajectories of PM 2 only in Table 13 due to its diversity in the calibration set. The calibrated mean values
of speed of PM 1, 3, 5, and 7 are provided with the upper (95 percentile of confidence interval) and lower (5
percentile of confidence interval) bound in Fig. 19. They are compared with the ground truth speed profiles
of each corresponding PM device.
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Figure 19: Global calibration results in low-speed traffic conditions

In Fig. 19, the ground truth speed profiles of PM devices are within the upper and the lower stochastic
bound of the estimated mean speed. We validate the calibrated SFVDM with the ground truth speed profiles
of PM devices 2, 4, and 6 in Fig. 20.
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Figure 20: Model validation results of low-speed traffic conditions

In Fig. 20, the observed speed profiles of PM devices are within the upper and the lower stochastic
bounds under low-speed traffic conditions in the validation sets. In addition to the comparisons of speed
profiles, we illustrate aggregated space headway to validate excellent performance of the proposed model 5
in Fig. 21. The mean values of all moving trajectories estimated by model 5 are illustrated with observed
moving trajectories of all PM riders under the low-speed traffic flow scenario. Red and blue solid lines
denote the moving trajectories estimated by model 5 and the observed moving trajectories, respectively.
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Figure 21: the observed and the estimated moving trajectories under low-speed flow

In Fig. 21a, the comprehensive spacing behaviour of PM devices is well described by the proposed model
under homogeneous low-speed traffic conditions. Moreover, the proposed SFVDM captures the spacing
behaviour of PM riders newly joined or left, the leading riders, and the following riders at around 1100s,
1400s, and 1800s. In Fig. 21b, the proposed model shows excellent performance in explaining the spacing
behaviour of PM devices in the enlarged period from 1000s to 1250s, which is one of the most congested
periods.

6.4. PMs behaviour in high-speed homogeneous conditions

Stochastic behavioural models of PM devices are constructed under high-speed homogeneous traffic
conditions, we calibrate only two models, which have different sets of parameters depending on the base
model, in the following table. Meanwhile, we exclude two models, containing anticipation factors, due to
homogeneous conditions. After comparisons of performance between models, we validate model 5 based on
unused data set in the calibration process under high-speed conditions.

6.4.1. Model calibration

The parameters are mean values in the case of individual calibration processes. Table 12 contains
calibration results of Models 1 to 4 under high-speed running homogeneous traffic conditions. Mean values
and standard deviations are provided for parameters calibrated in behaviour models of individual PM devices
to describe the heterogeneity of the parameters among PM riders under high-speed running homogeneous
conditions.
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Table 16: Calibration results under high-speed homogeneous conditions

Model 1 Model 2 Model 3 Model 4

δ2
Mean n/a n/a n/a n/a
SD n/a n/a n/a n/a

λ2
Mean n/a n/a n/a n/a
SD n/a n/a n/a n/a

σ0
Mean n/a 0.1448 n/a n/a
SD n/a 0.1008 n/a n/a

V0
Mean n/a 6.6280 n/a 4.0126
SD n/a 0.5629 n/a 0.4579

C
Mean n/a 1.3298 n/a 1.5160
SD n/a 0.4112 n/a 0.6532

b
Mean n/a 7.6634 n/a 2.5587
SD n/a 1.8695 n/a 0.8116

γ
Mean n/a 1.1243 n/a 0.1000
SD n/a 0.6306 n/a 1.39E-10

κ
Mean n/a n/a n/a 0.8991
SD n/a n/a n/a 0.2472

In Table 16, the value of the positive dissipation parameter, σ0, 0.14, with 0.1 of standard deviation
shows that behavioural uncertainty is well captured by the stochastic PM devices following models under
high-speed homogeneous conditions. The average desired speed of PM devices is between 4.0 and 7.0 m/s,
which are larger than previous all cases, due to the physical specification of PM devices, with similar values
of standard deviations to low-speed running conditions. A shape of the equilibrium flow-density relations,
C, of Model 2 and Model 3 is stable with 1.3 and 1.5 of mean values and 0.4 and 0.6 of standard deviations,
respectively, meanwhile, the values of the length scale of two models are largely different as 7.6 and 2.5
of mean values and 1.8 and 0.8 of standard deviations, respectively. Furthermore, the space headway
coefficients, γ, of Model 2 and Model 4 are 1.1 and 0.1 with 0.6 and 0.0 of standard deviations, respectively.
Values of γ in Model 4 calibrated in individual trajectories of all PM devices are bounded on the lower
limit of values. Whereas the relative speed coefficient, κ, is very significant as 0.90 of mean values and 0.2
of standard deviations. The fitted-trajectories of speed profiles are selected to compare the two models’
performance in Table 16 in the following figure.
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Figure 22: Speed profiles of the top two models in the third PM device under high-speed homogeneous flow conditions

In Fig. 22a, model 2 explains the main fluctuations in the speed of the following PM device within the
upper and lower boundary of speed profiles, meanwhile, model 4 illustrates fine fluctuations in PM speed
profiles.

After comparing the performance of the top two models, we calibrate model 5 with results given the
following tables and figures.

Table 17: Calibration results of the proposed model 5 under high-speed traffic conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 n/a n/a 0.028 6.6842 1.3484 7.7435 1.2857 0.0001

In Table 17, the value of positive dissipation parameters, σ0, 0.028, shows that behavioural uncertainty
is not sufficiently captured by the stochastic PM devices following models under mixed traffic conditions.
The average desired speed of PM devices is 6.7 m/s, which is within the specification of PM devices
in a market. Other calibrated variables of the finally proposed model 5 are slightly different from the
previous incomplete models because it considers both relative speed and space headway and follows a form
of stochastic differential equations. The statistics of calibration results are illustrated in the following table.

Table 18: Values of final value of GA of the models under high-speed traffic conditions

Model 1 Model 2 Model 3 Model 4 Model 5

Final value of GA n/a 4.0839 n/a 4.7219 3.3406
Improvement than the base model n/a n/a n/a -15.62% 18.20%

In Table 18, models 2 and 5 show better performance than model 4. It implies that stochastic behavioural
models of PM devices against homogeneous traffic conditions have a great influence on the improvement
of model performance than considering relative speed under homogeneous high-speed PM conditions. The
calibrated results are described in the following figures.

In Fig. 23, the SFVDM based behaviour model of PM devices illustrates main speed tendency and tiny
fluctuations in speed within small lower and upper bound of PM speed. This implies that SFVDM can
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Figure 23: Performance of stochastic FVDM-based behaviour models of the second PM devices under high-speed homogeneous
flow conditions

tackle the stochastic behaviour of the following PM device under low-speed homogeneous conditions.

6.4.2. Model validation

Trajectories of PM devices 1, 3, 5, and 7 are used to globally calibrate model 5, which includes the
stochastic force and two anticipation factors in the form of SFVDM. Those devices 2, 4, and 6 are used for
model validation under high-speed homogeneous conditions. The global calibration results of model 5 are
illustrated in Table 19.

Table 19: Global calibration results of model 5 under high-speed traffic conditions

δ2 λ2 σ0 V0 C b γ κ

Model 5 n/a n/a 0.3945 6.8648 2.5329 4.5411 0.2038 0.2212

The globally calibrated parameters in Table 19 are different from the parameters calibrated by trajectories
of PM 2 only in Table 17 due to its diversity in the data set. The calibrated mean values of speed of PM
1, 3, 5, and 7 are provided with the upper (95 percentile of confidence interval) and lower (5 percentile
of confidence interval) bound in Fig. 24. They are compared with the ground truth speed profiles of each
corresponding PM device.
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Figure 24: Global calibration results in high-speed traffic conditions

In Fig. 24, the ground truth speed profiles of PM devices are within the upper and the lower stochastic
bound of the estimated mean speed. We validate the calibrated SFVDM with the ground truth speed profiles
of PM devices 2, 4, and 6 in Fig. 25.
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Figure 25: Model validation results of high-speed traffic conditions

In Fig. 25, primary streams and tiny fluctuations in speed profiles of PM 2, 4, and 6 are within the
upper and lower 5 percentiles of estimated mean speed by model 5. In addition to the comparisons of speed
profiles, we illustrate aggregated space headway to validate excellent performance of the proposed model 5
in Fig. 26. The mean values of all moving trajectories estimated by model 5 are illustrated with observed
moving trajectories of all PM riders under the high-speed traffic flow scenario. Red and blue solid lines
denote the moving trajectories estimated by model 5 and the observed moving trajectories, respectively.
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Figure 26: the observed and the estimated moving trajectories under high-speed flow

In Fig. 26a, model 5 well explains the overall spacing behaviour of all PM devices under homogeneous
high-speed flow conditions for the whole analysis period. Moreover, the proposed SFVDM captures spacing
behaviour of PM riders newly joined or left, the leading riders, and the following riders at around 700s, 900s,
1200s, and 2000s. In the meantime, the estimates are in discord with the observations when the observation
has errors at 40m and 100m at around 1400s. In Fig. 26b, the proposed model shows good performance in
estimating the spacing behaviour of PM devices in the enlarged period from 1500s to 1750s, which is one of
the most congested periods.

6.5. Discussion

To find the best model of PMs behaviour under diverse traffic conditions, five different behaviour models
of PM devices were compared under different driving conditions, including bike-mixed, pedestrian-mixed,
low-speed running, and high-speed running conditions, in Section 6.1, Section 6.2, Section 6.3, and Sec-
tion 6.4. Seven PM devices joined the running stream based on gap acceptance abilities under four different
initial scenarios. Trajectories of seven PM devices are used to calibrate five models via the Genetic algo-
rithm locally, and then, the calibration results are given in corresponding sections. Stochasticity through
the Langevin force is applied in model 1, model 2, and model 5 throughout experiments. Moreover, the
relative speed is adopted as a form of FVDM in model 3, model 4, and model 5 under four different traffic
conditions. In model 1, model 3, and model 5, anticipation factors are used to measure the effect on the
following PM devices from space headway and relative speed against the heterogeneous leading modes in a
shared lane.
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Model 1 and model 2 performed better under pedestrian-mixed traffic conditions rather than bike-mixed
traffic conditions. In these models, constant sensitivity coefficients played an essential role in improving
model performance with lower standard deviation in the pedestrian-mixed case than the bike-mixed case
without considering relative speed. Moreover, model 2 showed better performance than model 1 in cases of
pedestrian-mixed conditions due to the introduction of anticipation factors to speed of the follower against a
device, whereas these factors do not have a significant influence on behavioural modelling of PM devices under
bike-mixed conditions. Model 3 and 4 performed very similarly under bike-mixed and pedestrian-mixed
traffic conditions since anticipation factors are not significantly working in the model without considering
stochastic characteristics of the behaviour of PM devices. In the meantime, their performance is highly
better than model 1 and 2 due to introducing the constant sensitivity coefficient of the relative speed
under mixed traffic conditions. Excellent performance of model 5 implies that anticipation factors and
stochasticity created by the Langevin formula have a synergy influence on behavioural modelling of PM
devices under heterogeneous flow conditions. Under homogeneous traffic conditions, model 4 does not show
better performance than model 2 even though it includes the constant sensitivity coefficient of the relative
speed. From the calibrated results, the constant sensitivity coefficient of the optimal speed and the relative
speed countervailed their influence on behavioural modelling of PM devices under low- and high-speed
running PM flow conditions. The sensitivity coefficients of the relative speed in model 4 are significantly
different between low-speed and high-speed running conditions. The optimal speed is bounded at lower limits
of parameters across all PM devices under both conditions. In the meantime, simultaneously considering
stochasticity, relative speed, and anticipation factors have a positive influence on the improvement of model
performance in model 5 under both heterogeneous and homogeneous traffic conditions. It reduced redundant
stochastic upper and lower boundaries of the behaviour following models of PM devices and tackled main
streams and tiny fluctuations in speed profiles of PM devices under diverse traffic conditions.

To verify the excellent performance of model 5, SFVDM, we globally calibrate the model using trajectories
of PM devices 1, 3, 5, and 7 and then, validate the model using PM 2, 4, and 6. The stochastic and
anticipation parameters are calibrated through global model calibrations under each different flow condition.
The calibrated model 5 shows reliable performance in the validation set. The overall streams of spacing
behaviour of PM devices are fully captured by model 5 under four different conditions, meanwhile, the
tiny fluctuations in spacing behaviour caused by sudden acceleration and deceleration manoeuvres are not
partially explained by model 5. Consequently, we confirmed that the stochastic force, anticipation factors,
and relative speed significantly influenced PM devices’ behaviour under hetero- and homogeneous traffic
conditions in a single shared lane.

7. Concluding remarks

We have constructed a stochastic behavioural model of PM devices under heterogeneous traffic conditions
to cope with spatiotemporal interactions between different green transport modes in a single shared lane.
This study provides the novel approach to explain stochastic characteristics of a personal mobility in a
single shared lane through the mature-theoretical framework, the vehicular CF model. Anticipation factors
are newly introduced in the proposed PM behavioural model to tackle unpredictable fluctuations in the
velocity of PM devices against relative speed and space headway to surrounding low-carbon modes under
heterogeneous traffic conditions. Moreover, stochastic volatility derived from interactions between intra-
and inter-sustainable modes, which is not captured by the deterministic force, is explained by the Langevin
force in the proposed behavioural model of PM devices.

We designed real-world circular experiments to validate the proposed model’s performance with antic-
ipation factors under mixed-traffic conditions. We examined the effectiveness of the model components,
involving anticipation factors to heterogeneous space headway and relative speed and stochasticity, in the
proposed framework under four different traffic conditions in a single shared lane. The finally proposed
SFVDM-based behaviour model of PM devices illustrates not only the main streams of speed but also tiny
fluctuations in speed within the lower and upper bound of PM speed, although it requires more parameters
than the deterministic PM behavioural models. Furthermore, newly created anticipation factors against
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space headway and relative speed to heterogeneous modes play a significant role in SFVDM to tackle partial
influence on the behaviour of the following PM devices from the leading two different sustainable modes.

The proposed method paves the way for the stochastic CF model’s applicability to describe PM devices’
behavioural dynamics under mixed traffic conditions using anticipation factors. In addition, it lays the
foundation stone of dynamics of PM devices in a shared lane to construct effective regulations and safety
standards. The proposed methodology will enable to appraise and design traffic safety facilities for a shared
lane through traffic micro-simulation programs, including the newly proposed PM behaviour models with
pedestrian and bicycle behaviour models. For future research directions, the proposed model will involve
lateral components of interactions to tackle frequent overtaking behaviour of inter- and intra-modes in
wider pathways to improve model performance under bike-mixed traffic conditions. We will introduce
delayed responses to capture physical oscillations of PM devices under mixed traffic conditions. Besides, the
applicability of the proposed stochastic behaviour models of PM devices will be studied to form the platoon
of sustainable transport modes under heterogeneous flow conditions.
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