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Abstract

Bacterial foraging optimization (BFO) has been proved to be an efficient optimization method and successfully applied to a variety
of fields in the real world. In BFO, the chemotaxis process is a complex and close combination of swimming and tumbling,
and plays a crucial role in searching better solutions. A previous study has modeled the dynamics of the chemotaxis mechanism
mathematically, and investigated the stability and convergence behavior of the chemotaxis dynamics over the one-dimensional
objective function by Lyapunov stability theorem. However, this study appears to be very limited from a practical point of view,
and how to extend their study to the multidimensional objective function is a challenge. To solve it, we present a stability analysis of
chemotaxis dynamics in BFO over the multi-dimensional objective function in this paper. First, the general mathematical model of
the chemotaxis mechanism over the multi-dimensional objective function is created. Secondly, this paper uses the general descent
search to analyze the general mathematical model, and points out two necessary conditions for avoiding the bacterium to trap into a
non-optimal solution. And then, the stability and convergence of the chemotaxis dynamics, represented by the general mathematical
model, is proved by using Lyapunov stability theorem. Finally, empirical research is conducted to validate the above theoretical
analysis.

Keywords: Bacterial foraging optimization, chemotaxis dynamics, multi-dimensional objective function, general mathematical
model, Lyapunov stability theorem.

1. Introduction

The metaheuristic search technology based on swarm in-
telligence has been increasing in popularity due to its ability
to solve a variety of complex scientific and engineering prob-
lems [1–4]. Such technology models the social behavior of cer-
tain living creatures, where each individual is simple, has lim-
ited cognitive capability, and communicates only locally with
others and environment, but the swarm as a whole can act in
a coordinated way without a coordinator or an external com-
mander, and yield an intelligent behavior to obtain global op-
tima. Inspired by the biological behavior of bacteria searching
for nutrient-rich areas, Passino [5] developed a bacterial forag-
ing optimization (BFO) algorithm in 2002, where each bacteria
represents a feasible solution of an optimization problem. It
starts with a population of bacteria, each of which is randomly
generated during an initialization phase. Then, the bacterial
population iteratively tries to find an optimal solution by four
mechanisms, namely, chemotaxis, swarming, reproduction, and
elimination and dispersal. Up to now, BFO has been success-
fully applied to a variety of fields in the real world [6–14], for
example, image registration [7], prediction of stock market in-
dices [9], vehicle routing [11], and visual imaging [13], etc.
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While BFO has been established as a popular optimization
technique by a lot of empirical studies, not much research has
so far been devoted to theoretically analyze its search mech-
anism and convergence property, which is very important for
developing more effective methods [15]. To the best of our
knowledge, there are only several research works that focus on
the theoretical analyses of the properties of BFO. In [16, 17],
researchers presented mathematical analysis of the chemotaxis
mechanism over the one-dimensional (1-D) objective function
(i.e., 1-D individual) in light of the classical gradient descent
search. Following the same train of thought, Abraham et al.
made a mathematical analysis of the reproduction mechanism
in 1-D case [18]. In [19], the stability and convergence behavior
of the chemotaxis mechanism was analyzed on the 1-D objec-
tive function using Lyapunov stability theorem.

It is obvious that these existing theoretical studies on BFO
establish the theoretical analysis of properties of BFO over the
1-D objective function, just like many theoretical studies on the
swarm intelligence algorithm prefer to make analysis on the 1-
D objective function [20–23]. However, although the theoret-
ical studies over the 1-D objective function give insights into
some mathematically relevant properties of algorithms, they ap-
pear to be very limited from a practical point of view [24]. That
is because the 1-D function optimization is a kind of relatively
simple and basic problem, and there exist abundant optimiza-
tion problems of complex functions with multi-dimensions in
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science and engineering. The authors [16–19] also acknowl-
edged this point of view, and take it as a challenging future
work to generalize their studies to multi-dimensional objective
functions.

To break through the limitation, this paper makes a humble
attempt on the chemotaxis mechanism in BFO, and has tried
to extend the theoretical analysis of the chemotaxis mechanism
to multi-dimensional objective functions based on the similar
train of thoughts as in the 1-D case [19]. First, this paper
derives the general mathematical model of a single bacterium
performing the chemotaxis process over arbitrary dimensional
functions. Then it uses the general descent search to analyze the
general mathematical model, and points out two necessary con-
ditions for avoiding the bacterium to trap into a non-optimal
solution. Subsequently, the stability and convergence of the
chemotaxis dynamics, represented by the general mathematical
model, is proved by using Lyapunov stability theorem when the
bacterium is very near the equilibrium state. Finally, for ease of
visualization and without loss of generality, two 2-D objective
functions are used to do the empirical research to validate the
above theoretical analysis.

The rest of this paper is structured as follows. Section II
briefly introduces the classical BFO algorithm. Section III
derives and analyzes the general movement model of a sin-
gle bacterium performing the chemotaxis process over multi-
dimensional objective functions. The general model is proved
to be asymptotically stable near the equilibrium state by using
Lyapunov stability theorem in Section IV. Afterwards, Section
V carries out experimental simulations to verify the theoretical
results. Finally, Section VI concludes this paper and outlines
future research work.

2. Classical BFO

The classical BFO algorithm operates under four principal
mechanisms: chemotaxis, swarming, reproduction, and elimi-
nation and dispersal. In the following, we will briefly introduce
each of these mechanisms in the case of finding the minimum of
an objective function (also called fitness function), J(x), where
x = (x1, x2, . . . , xp, . . . , xn) ∈ Rn (i.e., x is an n-dimensional
vector of real numbers), and finally provide a pseudo-code of
the complete BFO algorithm.

2.1. Chemotaxis

Chemotaxis simulates the movement of E.coli bacteria
through tumbling and swimming via flagella. A bacterium tum-
bles in a random direction, searching for food. If food is abun-
dant in the selected direction, the bacterium will swim in this
direction until the food supply worsens or the bacterium reaches
the specified maximum number of steps. This bacterium move-
ment is expressed as

xi( j + 1, k, l) = xi( j, k, l) +C(i)
Φ(i)√
ΦT (i)Φ(i)

, (1)

where xi( j, k, l) represents the position of the ith bacterium
at the jth chemotaxis, kth reproduction, and lth elimination

and dispersal step (sometimes, we drop the indexes and use
xi to represent the position of the ith bacterium); Φ(i) =(
φ1(i), φ2(i), . . . , φp(i), . . . , φn(i)

)
represents a random direction,

where each component φp(i)(p = 1, 2, ..., n) is a random num-
ber in [-1,1]; and the expression Φ(i)√

ΦT (i)Φ(i)
is to compute a unit

length vector which is regarded as the direction of the tumbling
behavior; C(i) is the step size in the random direction for bac-
terium i. It should be noted that the step size C(i) is usually a
constant, and many state-of-the-art studies adopt adaptive step
size to improve the performance of BFO [9, 25–27]. When
J(xi( j + 1, k, l)) < J(xi( j, k, l)), the ith bacterium will swim an-
other step of size C(i) in the same direction according to Eq.(1).
Swimming continues until the bacterium reaches the maximum
number of steps, Ns, or its objective function value does not
decreases.

2.2. Swarming
When each bacterium moves, it always releases attractant

signals to make other bacteria swim toward it. Meanwhile, it
also releases repellant signals to keep other bacteria at a safe
distance. A cell-to-cell signaling function (whose value should
be added to the objective function value) is used to model this
phenomenon as below:

Jcc(xi, P( j, k, l)) =
S∑

r=1

Jr
cc(x

i, xr)

=

S∑
r=1

−dattexp

−watt

n∑
p=1

(xi
p − xr

p)2




+

S∑
r=1

hrepexp

−wrep

n∑
p=1

(xi
p − xr

p)2


 (2)

where S is the number of the bacterial population; P( j, k, l) =
{xr( j, k, l)|r = 1, 2, ..., S } represents the position of each individ-
ual in the population of S bacteria at the jth chemotaxis, kth
reproduction, and lth elimination and dispersal step; datt, watt,
hrep and wrep are different coefficients that should be properly
chosen. It is noted that swarming is an optional mechanism.
Some studies do not consider the swarming operation to keep
the algorithm computationally simple without seriously impact-
ing the solution accuracy [9, 28].

2.3. Reproduction
The bacteria grow longer in accordance with the increase

in the absorption of nutrients in the chemotactic steps. Un-
der appropriate conditions, some bacteria will die, and others
that have obtained adequate nutrients will asexually split into
two same bacteria. To model this reproduction phenomenon,
let the number of chemotactic steps, Nc, be the lifetime of the
bacterium, and S r = S/2 be the number of bacteria that have ac-
cumulated adequate nutrients to copy for themselves. After Nc

chemotactic steps, a reproduction step is instigated. First, the
bacterial population is sorted in an ascending order according to
the health of bacteria. Then, each of the S r healthiest bacteria
is split into two bacteria, which are placed at the same loca-
tion, while the remaining S r bacteria die, to maintain a constant
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population size. The health function is used to compute the ac-
cumulated objective value of the ith bacterium over its lifetime,
and is defined as

Ji
health =

Nc+1∑
j=1

J(i, j, k, l), (3)

where J(i, j, k, l) = J(xi( j, k, l)), and Ji
health represents the accu-

mulated objective value of the ith bacterium, and the lower the
value of Ji

health, the healthier the bacterium i.

2.4. Elimination and dispersal

With changes to the local environment that a population of
bacteria live in, a group of bacteria may be dispersed into a
new environment to find better food sources. To simulate this
phenomenon, an elimination and dispersal step is taken after
Nre reproduction steps. Each bacterium in the population may
be dispersed to a new location with probability Ped. The rule is
shown below:

x =
{

x′, i f q < Ped

x, otherwise (4)

where x is the current solution associated with a bacterium;
x′ is a new solution generated at random in the n-dimensional
search space; q is a random number uniformly distributed in
[0,1]. That is, for each bacterium, if the number generated ran-
domly is smaller than Ped, it will move to a new location and
get a new random solution, otherwise, it will keep the original
solution unchanged.

According to [5], the detailed pseudo-code of the complete
algorithm is given in Algorithm 1.

3. Model the chemotaxis dynamics over multi-dimensional
functions

This section provides a theoretical analysis of the chemotaxis
dynamics over multi-dimensional objective functions. We first
derive the mathematical models of a single bacterium perform-
ing the chemotaxis process over the n-dimensional (i.e., arbi-
trary dimensional) case. Then we analyze the general mathe-
matical model with an arbitrary dimension in light of the gen-
eral descent search. As mentioned in [19], five similar simplify-
ing assumptions have been made to gain mathematical insights,
and they are listed in the following. It should be noted that we
drop the indexes of C(i) and Φ(i) in the chemotaxis process de-
fined in Eq.(1), and use C and Φ to represent the step size and
the tumble direction, respectively, since only a single bacterium
is considered in this section.

1) The bacterium lives in continuous time, and its po-
sition is denoted by an n-dimensional vector x(t) =
(x1(t), x2(t), . . . , xn(t)) at the tth instant.

2) The chemotactic step C satisfies 0 ≤ C < 1 (in the seminal
paper of BFO, C = 0.1 was used [5]).

Algorithm 1: The classical BFO algorithm
————————————————————————
1 Initialization:

a). Set parameters: S , Ns, Nc, Nre, Ned , Ped .
b). Let j = k = l = 0 (three counters)
c). Initialize the bacterial population: randomly distribute each bacterium

xi(0, 0, 0) across the domain of the optimization problem, and set
xbest = x0(0, 0, 0).

2 Elimination and dispersal loop: l = l + 1
3 Reproduction loop: k = k + 1
4 Chemotaxis loop: j = j + 1
5 For bacterium i = 1, 2, ..., S , perform a chemotaxis operator.

a). Compute J(xi( j, k, l)), let J(xi( j, k, l)) = J(xi( j, k, l))
+ Jcc(xi( j, k, l), P( j, k, l)) (i.e., add the swarming behavior).

b). Let Jlast = J(xi( j, k, l)) to save this value since it is possible
to find a better objective value via a run.

c). Tumble: randomly generate a n-dimensional vector Φ(i).
d). Move: Make a move according to Eq.(1), then compute

J(xi( j + 1, k, l)), let J(xi( j + 1, k, l)) = J(xi( j + 1, k, l))
+ Jcc(xi( j + 1, k, l), P( j + 1, k, l)).

e). Swim as follows:
i) Let m = 0 (The swimming counter).
ii) While m < Ns
• Let m = m + 1.
• If J(xi( j + 1, k, l)) < Jlast , let Jlast = J(xi( j + 1, k, l)),

keep on the move according to Eq.(1), then use the new
xi( j + 1, k, l) to compute the new J(xi( j + 1, k, l)), and
let J(xi( j + 1, k, l)) = J(xi( j + 1, k, l)) +
Jcc(xi( j + 1, k, l), P( j + 1, k, l))
• Else, let m = Ns.

f). If J(xi( j + 1, k, l)) < J(xbest), then xbest = xi( j + 1, k, l).
g). Go to the next bacterium (i + 1) if i < S .

6 If j < Nc, go to step 4.
7 Reproduction

a). Compute the health value for each bacterium according to Eq.(3).
b). Sort bacteria based on the health values in descending order.
c). Abandon S r bacteria with higher health values and split each of

another S r bacteria into exactly same two ones.
8 If k < Nre, go to step 3.
9 Elimination and dispersal

For each bacterium i = 1, 2, · · · , S may be dispersed into a new location
with a probability Ped according to Eq.(4).

10 If l < Ned , go to step 2.
Else return the optimal solution xbest .

3) The bacterium moves at a uniform rate. Φ =

(φ1, φ2, . . . , φn) is an n-dimensional (n-D) unit vector so
that we need not to calculate a unit vector by Φ√

ΦTΦ
. Thus,

if the bacterium moves C · Φ in a unit time, its posi-
tion will be changed by 4x = (C · Φ) · (4t) in 4t time,
i.e., in component-wise manner, (4x1,4x2, . . . ,4xn) =
(C · φ1 · 4t,C · φ2 · 4t, . . . ,C · φn · 4t).

4) The objective function J(x) is a continuous differentiable
function in the search space and a unimodal function in
the region of interest, and its unique optimum J(x) = 0 is
located at x = xe.

5) The analysis applies to the regions where the objective
function is close to the optimum, i.e., the gradients of the
objective function are very small.

3.1. Derive the general model

At each chemotactic step in classical BFO algorithm, the
bacterium first randomly generates a direction vector of unit
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Figure 1: Unit step function

length (i.e., the direction of tumble) denoted by Φ. In the
n-D optimization problem, Φ has n components, i.e., Φ =
(φ1, φ2, . . . , φn), and has the relation

∑n
i=1 φ

2
n = 1. Then, the bac-

terium decides whether to move in the Φ direction by judging
the change of the objective function value. If the new objective
function value is less than the previous one, i.e., J(x + 4x) <
J(x) (in component-wise manner, J(x1+4x1, x2+4x2, . . . , xn+

4xn) < J(x1, x2, . . . , xn)), the bacterium will change its posi-
tion; otherwise, it will stay in place. To model this crucial
decision-making activity of the bacterium, we use the unit step
function [29] which is shown in Fig.1 and defined as

u(x) =
{

1, i f x > 0
0, otherwise

Thus, according to the assumption 3), we have

4x = u(J(x) − J(x + 4x)) · (C · Φ) · (4t)

From this equation, the amount 4x that the bacterium moves
is equal to 0 or (C·Φ)·(4t), depending on the sign of the quantity
of (J(x) − J(x + 4x)). For clarity and convenience, we use the
following component form in most cases:

4xp =u(J(x1, . . . , xn) − J(x1 + 4x1, . . . , xn + 4xn))

·C · φp · 4t ∀ p = 1, 2, . . . , n (5)

According to Eq.(5), each component has similar ex-
pression. In this equation, 4t is assumed to be an
infinitesimally small positive quantity, so the sign of
(J(x1, . . . , xn) − J(x1 + 4x1, . . . , xn + 4xn)) remains unchanged
if it is divided by 4t. After both sides of Eq.(5) is divided by
4t, we obtain

4xp

4t
= u

(
J(x1, . . . , xn) − J(x1 + 4x1, . . . , xn + 4xn)

4t

)
·C · φp

= u
(
− J(x1 + 4x1, . . . , xn + 4xn) − J(x1, . . . , xn)

4t

)
·C · φp

Defining the velocity of the bacterium as v = (v1, v2, . . . , vn),
and each component as vp =

dxp

dt = lim4t→0(4xp

4t ) (∀p =
1, 2, . . . , n), we get

Figure 2: Logistic function (the larger the parameter k, the more close to u(x))

vp = lim
4t→0

4xp

4t

= lim
4t→0

[
u
(
− J(x1 + 4x1, . . . , xn + 4xn) − J(x1, . . . , xn)

4t

)
·C · φp

]

In accordance with the assumption 4), J(x1, x2, . . . , xn) is a
continuous differentiable function, thus we apply the the theory
of differential and integral calculus, and obtain J(x1 +4x1, x2 +

4x2, . . . , xn +4xn)− J(x1, x2, . . . , xn) = J′x1
4x1 + J′x2

4x2 + . . .+

J′xn
4xn+o(ρ), where ρ =

√
4x2

1 + . . . + 4x2
n, and o(ρ) represents

the infinitesimal of higher order of ρ. Hence, the equation above
can be written as

vp = lim
4t→0

[
u
(
−

J′x1
4x1 + . . . + J′xn

4xn + o(ρ)

4t

)
·C · φp

]
= lim
4t→0

[
u
(
−

(
J′x1

4x1

4t
+ . . . + J′xn

4xn

4t
+

o(ρ)
4t

))
·C · φp

]
= u

(
−

(
J′x1

lim
4t→0

4x1

4t
+ . . . + J′xn

lim
4t→0

4xn

4t
+ lim
4t→0

o(ρ)
4t

))
·C · φp

= u(−(J′x1
v1 + . . . + J′xn

vn)) ·C · φp (6)

Moreover, for ease of calculation, the step function u(x)
is usually approximated with the continuous logistic function
φ(x):

u(x) = lim
k→∞
φ(x) = lim

k→∞

1
1 + e−kx

Fig.2 illustrates the logistic function for different values of k. It
is seen from this figure that a larger k makes the logistic func-
tion φ(x) be more close to the unit step function u(x). However,
for ease of analysis, k cannot be infinity, so we choose a mod-
erately large value (for example k = 100) with which φ(x) can
fairly approximate u(x). Hence, from Eq.(6), we get

vp =
Cφp

1 + ek(J′x1 v1+...+J′xn vn)

According to the assumption 5), J′xp
(∀ p = 1, 2, . . . , n) are

very small, and k = 100, so k(J′x1
v1 + . . . + J′xn

vn) � 1, and
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∣∣∣∣ k(J′x1
v1+...+J′xn vn)

2

∣∣∣∣ � 1. By neglecting higher order terms in the

expansions, ek(J′x1
v1+...+J′xn vn) ≈ 1 + k(J′x1

v1 + . . . + J′xn
vn), and(

1 +
k(J′x1

v1+...+J′xn vn)
2

)−1
≈

(
1 − k(J′x1

v1+...+J′xn vn)
2

)
. Hence, the pre-

ceding equation is changed into

vp ≈
Cφp

2 + k(J′x1
v1 + . . . + J′xn

vn)

⇒vp ≈
Cφp

2
· 1

1 +
k(J′x1 v1+...+J′xn vn)

2

⇒vp ≈
Cφp

2
·
(
1 −

k(J′x1
v1 + . . . + J′xn

vn)
2

)
(7)

Due to Φ = (φ1, φ2, . . . , φn) is a vector of unit length, at least
one component is not zero. Thus, if the bacterium moves in the
Φ direction, at least one component of v = (v1, v2, . . . , vn) is
nonzero. Supposing φ1 , 0 and v1 , 0, the following relation
is obtained from Eq.(6):

vp

v1
=
φp

φ1
⇒ vp =

φp

φ1
· v1 (∀ p = 1, 2, . . . , n)

From the two previous equations, we have

vp ≈
Cφp

2
·
1 − k(J′x1

v1 + J′x2
· φ2
φ1

v1 + · · · + J′xn
· φn
φ1

v1)

2


⇒vp ≈

Cφp

2
− C

2
·

vpφ1

v1
·

k(J′x1
v1 + J′x2

· φ2
φ1

v1 + · · · + J′xn
· φn
φ1

v1)

2

⇒vp ≈
Cφp

2
−

kC(J′x1
φ1 + . . . + J′xn

φn)vp

4

It is easy to solve vp from the equation above, and get

vp ≈
2Cφp

4 + kC(J′x1
φ1 + . . . + J′xn

φn)

⇒vp ≈
Cφp

2
· 1

1 +
kC(J′x1

φ1+...+J′xp φn)

4

As a vector of unit length, |Φ| =
√
Φ · Φ =√

φ2
1 + φ

2
2 + . . . + φ

2
n = 1, so |φp| ≤ 1 (∀ p = 1, 2, . . . , n). Ac-

cording to the assumptions 2) and 5), 0 ≤ C < 1, J′xp
(∀ p =

1, 2, . . . , n) is very small, and k = 100, then
kC(J′x1

φ1+...+J′xnφn)
4 �

1. By neglecting higher order terms,
(
1 +

kC(J′x1
φ1+...+J′xnφn)

4

)−1
≈(

1 − kC(J′x1
φ1+...+J′xnφn)

4

)
. Therefore,

vp ≈
Cφp

2

(
1 −

kC(J′x1
φ1 + . . . + J′xn

φn)

4

)
⇒vp ≈ −

kC2φp

8
(J′x1
φ1 + . . . + J′xp

φp) +
Cφp

2

⇒vp ≈ −
kC2φp

8
(gradJ(x) · Φ) +

Cφp

2
(∀ p = 1, 2, . . . , n) (8)

where gradJ(x) = (J′x1
, J′x2
, . . . , J′xn

) is the gradient of the ob-
jective function J(x) at x = (x1, x2, . . . , xn).

Each vp is a component of v along φp direction, and we can
write it as below

vp ≈
(
− kC2

8
(gradJ(x) · Φ) +

C
2

)
φp (∀ p = 1, 2, . . . , n) (9)

Thus, we have

v =
dx
dt
≈

(
− kC2

8
(gradJ(x) · Φ) +

C
2

)
· Φ (10)

i.e.,

v =
dx
dt
≈

(
− kC2

8
· ∂J
∂Φ
+

C
2

)
· Φ (11)

Through the above derivation, we have obtained the general
model of the chemotaxis dynamics over multi-dimensional ob-
jective functions. The general model is represented by Eq.(10)
or Eq.(11), and its component-wise manner is expressed as
Eq.(8) or Eq.(9).

3.2. Analyze the general model

It is exciting to find out that the general model of the chemo-
taxis dynamics represented by Eq.(11) is essentially consistent
with the line search descent method [30], which is shown

dx
dt
=

(
−α · ∂J

∂Φ
+ β

)
· Φ (12)

where α represents the learning rate, and β is the momen-
tum [19]. The way that how the descent direction Φ is chosen
determines different descent methods [30]. When the descent
direction Φ is identical with the opposite direction of the gra-
dient, Eq.(12) becomes the famous steepest descent algorithm.
The consistency between Eq.(11) and Eq.(12) suggests that the
chemotaxis process may be viewed as a kind of the line search
descent method.

As [30] have pointed out, to decrease the objective function
value, it is needed that ∂J/∂Φ < 0, i.e., gradJ(x) · Φ < 0. Due
to gradJ(x) · Φ = |gradJ(x)||Φ| cos θ, where θ is the angle be-
tween two vectors gradJ(x) and Φ, thus, to decrease the objec-
tive function value and locate a better solution, θ must satisfies
the relation π/2 < θ ≤ π.

For ease of visualization and without loss of generality,
Fig.(3) takes the 2-D objective function as an example to il-
lustrate this fact. In Fig.(3), L1, L2, L3, L4, and L5 are different
contour lines of the objective function. Point O represents the
optimal solution xe = (xe

1, x
e
2). At present, the bacterium arrives

at point A on the level curve L1. It should be noted that only
the objective function value within the region surrounded by
the level curve L1 is smaller than that of point A. To reduce the
objective function value, the bacterium will select a new direc-
tion for moving. For the multi-dimensional case, there are nu-
merous directions. Here, we only plot four different directions,
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Figure 3: The movement state of the bacterium at point A in the search space

Φ1,Φ2,Φ3, and Φ4, to explain this fact. It is clear from the fig-
ure that the angles between the three directions, Φ1,Φ2 and Φ4,
and the gradient vector gradJ(x) meet the relation π/2 < θ ≤ π.
So if the bacterium chooses one of them, it has a chance to enter
the region surrounded by the level curve L1, and decrease the
objective function value. But if the bacterium picks out the Φ3
direction, it will keep unchanged since the angle between Φ3
and the gradient vector gradJ(x) is in a range of 0 ≤ θ ≤ π/2
that would not make the bacterium step into the area surrounded
by the level curve L1, and can not reduce the objective function
value.

Actually, in addition to a right descent direction, a proper
multiplier (i.e., the amount of movement in the selected direc-
tion) is another key factor in decreasing the objective function
value [30]. For the chemotaxis dynamics, the multiplier corre-
sponds to the step size C. With a too large step size C, the bac-
terium would not move even if it finds a right direction. Fig.(3)
shows clearly this point. In Fig.(3), the bacterium is at point
A. The longest segment that starts from A, and is surrounded
by the level curve L1 is AB whose length is symbolized by d.
Obviously, the value of d changes as the bacterium moves. The
more close the bacterium to the optimal solution, the smaller
the value of d. The blue dashed curve is a circle that takes the
point A as the center, and the length d as the radius. The relation
between d and C influences the movement of the bacterium. To
be specific, there are the following three situations.

• C > d: The bacterium keeps in place because the bac-
terium would go outside the area surrounded by the level
curve L1, and increase the objective function value no mat-
ter which direction it moves toward.

• C = d: The bacterium would get to the blue dashed curve
no matter which direction it moves toward. On the blue
dashed curve, only point B has the same objective func-
tion value as point A, and all the other points have larger
objective function values than point A. In other words, the
objective function value of any point on the blue dashed

curve is not smaller than that of point A. Thus, the bac-
terium still keeps in place in this situation.

• C < d: If the angle between the selected direction and the
gradient direction belongs to the range of 0 ≤ θ ≤ π/2 (that
is, gradJ(x) ·Φ ≥ 0), the bacterium remains motionless for
the reason that it would not step into the area surrounded
by the level curve L1, and can not decrease the objective
function value. If the angle between the selected direction
and the gradient direction is in the range of π/2 < θ ≤ π
(that is, gradJ(x) ·Φ < 0), the bacterium may have chance
to enter the area surrounded by the level curve L1, and get
a smaller objective function value. However, it is merely
a possibility, since C < d and gradJ(x) · Φ < 0 are only
two necessary conditions for the bacterium entering the
area with smaller objective function value. Besides the
two necessary conditions, the longest distance of moving
in a selected direction is also related to the movement of
the bacterium.

Through the above analysis, it comes to a beneficial conclu-
sion as below. There are two necessary key conditions to ensure
that the bacterium has chance to move toward the direction of
decreasing the objective function value: (1) The angle between
the moving direction and the gradient direction must satisfy the
relation π/2 < θ ≤ π (that is, gradJ(x) · Φ < 0), and (2) The
step size C must be smaller than the longest distance d between
the current position and any other location on the same contour
(i.e., C < d). If the two conditions are met, the bacterium is
likely to move to a new position associated a better solution;
otherwise, the bacterium does not move. To be noted, the two
key conditions have different requirements. The key condition
(1) naturally demands a proper direction for the bacterium to
locate a better solution. The key condition (2) spontaneously
requires a varying step size C, since the value of d becomes
smaller and smaller with the bacterium getting closer to the op-
timal solution, and therefore the step size C should be tuned
from a coarse mode to a fine mode and get smaller and smaller
to meet the relation C < d. In fact, these two key conditions are
just the theoretical bases of many studies on developing more
efficient BFO algorithms. For example, some research works
focus on setting good directions by introducing new strategies
to the classical BFO algorithm [31, 32]; some others present
new adaptive step size C to improve the classical BFO algo-
rithm [9, 25–27].

4. Stability Analysis Using Lyapunov Stability Theorem

Lyapunov stability theory is an important tool to study the
stability of the nonlinear dynamic system in the field of modern
control [33–36]. This section will use Lyapunov stability theory
to establish the stability of chemotaxis dynamics over the multi-
dimensional objective function defined in Eq.(10) or Eq.(11).

4.1. Lyapunov stability theory
Some basic concepts about the Lyapunov stability theory are

first introduced according to the standard literature on modern
control theory [33, 34].
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Definition 1 (Equilibrium state (point)). A state (point) xe ∈
Rn is called an equilibrium state (point) of the dynamic system
described by

dx
dt
= f (x(t)) x(t0) = x0 (13)

if for any t, the following condition holds:

f (xe(t)) ≡ 0

Definition 2 (Stable in the sense of Lyapunov). A dynamic sys-
tem defined in Eq.(13) is stable in the sense of Lyapunov at the
equilibrium state xe if for any ε > 0 there exists a φ > 0 such
that

‖x0 − xe‖ ≤ φ→ ‖x(t; x0, t0) − xe‖ < ε, ∀t > t0 (14)

Explanation: x(t; x0, t0) represents the trajectories that start-
ing from the initial state x0 at time t0. A dynamic system being
stable at the equilibrium state xe in the sense of Lyapunov re-
quires that for any neighborhood S (xe, ε) (i.e., ‖x − xe‖ ≤ ε),
there would be a neighborhood S (xe, φ), such that the trajecto-
ries x(t; x0, t0) starting within S (xe, φ) does not leave S (xe, ε) as
time t → ∞.

Definition 3 (Asymptotically stable). A dynamic system de-
fined in Eq.(13) is asymptotically stable at the equilibrium state
xe if
1) it is stable in the sense of Lyapunov, and
2) limt→∞ ‖x(t; x0, t0) − xe‖ = 0.

Definition 4 (Positive definite function). A scalar function V :
Rn → R is said to be a positive definite function in the region
Ω = {x|‖x − xe‖ ≤ M} if
1) V(xe) = 0, and
2) V(x) > 0,∀ x ∈ Ω and x , xe.

Definition 5 (Negative definite function). A scalar function V :
Rn → R is said to be a negative definite function in the region
Ω = {x|‖x − xe‖ ≤ M} if
1) V(xe) = 0, and
2) V(x) < 0,∀ x ∈ Ω and x , xe.

Theorem 1 (Lyapunov stability theorem). Consider a scalar
function V : Rn → R, and some real number ε > 0, such that,
for all x in the region ‖x − xe‖ ≤ ε, if the following conditions
hold:
1) V has continuous first partial derivatives with respect to all
components of x.
2) V is a positive definite function.
3) dV/dt is a negative definite function.
Then, the system defined in Eq.(13) is asymptotically stable at
the equilibrium state xe.

Remark: This theorem is based on an energetic standpoint,
and is inspired by an intuitive physical fact of the classical me-
chanics vibration system, i.e., the total energy of the system re-
duces continually with time, till reaching the equilibrium state
(at this time, the energy of the system is zero). The scalar func-
tion V that satisfies the three conditions listed in Theorem 1 is
often called Lyapunov function.

4.2. The stability proof of the chemotaxis dynamics
Theorem 2 (Main result). The chemotaxis dynamics repre-
sented by Eq.(10) or Eq.(11) is asymptotically stable at the
equilibrium state xe.

Proof: In the following, we will use the Lyapunov stabil-
ity theorem (i.e., Theorem 1) to determine the stability of the
chemotaxis dynamics. To do this, one of the difficulties is that
establishing a scalar function regarding the chemotaxis dynam-
ics defined in Eq.(10) or Eq.(11). Here, we successfully find a
scalar function as follows:

V(x) =
kC2φ2

1

8
J(x) −

Cφ2
1

2
((x − xe) · Φ) (15)

and its component form is

V(x) =
kC2φ2

1

8
J(x) −

Cφ3
1

2
(x1 − xe

1) −
Cφ2

1φ2

2
(x2 − xe

2)

− . . . −
Cφ2

1φn

2
(xn − xe

n)

where


C = 0, i f x = xe

0 < C < d, i f gradJ(x) · Φ < 0 and (x − xe) · Φ < 0

C > 4
k
|x−xe|

J(x) , other cases
(16)

The key to determining the stability of the system is verifying
that V meets the three conditions in Theorem 1. Next, we will
check each condition individually.

Condition 1: According to the assumption 4), V has contin-
uous first partial derivatives with respect to all components of
x. Thus, the first condition is satisfied automatically.

Condition 2: In light of Definition 4, we must judge that V
satisfies the relation V(xe) = 0, and V(x) > 0 for any x , xe in
order to confirm that V is a positive definite function.

When x = xe, we have

V(x) =
kC2φ2

1

8
J(xe) −

Cφ2
1

2
((xe − xe) · Φ) = 0

Moreover, at this time, gradJ(x) =
−→
0 and v = dx/dt =

−→
0 .

Thus, from Eq.(11),

v =
dx
dt
≈

(
− kC2

8
(gradJ(x) · Φ) +

C
2

)
· Φ = −→0

⇒v =
dx
dt
≈

(
− kC2

8
(
−→
0 · Φ) +

C
2

)
· Φ = −→0

⇒C · Φ
2
=
−→
0

⇒C = 0

The criterion, C = 0 at x = xe, means that the bacterium
does not take any more chemotactic steps once it arrives at the
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optimum xe of the unimodal objective function. This intuitively
reflects a desired performance for an optimization algorithm.
That is, the algorithm is expected to do nothing when it finds
the optimum.

When x , xe, to make V(x) > 0, we should have

kC2φ2
1

8
J(x) −

Cφ2
1

2
((x − xe) · Φ) > 0 ∀ x , xe

In the equation above, C > 0 for all the points except xe, and
we have assumed that φ1 , 0 beforehand. Thus, we only need
to guarantee

kC
4

J(x) > (x − xe) · Φ ∀ x , xe

Since k = 100, and J(x),C > 0 for all the points except xe,
we have kC

4 J(x) > 0 when x , xe. Thus, if (x − xe) · Φ < 0,
the equation above always stands up. However, we impose a
restriction on C (requiring 0 < C < d) when gradJ(x) · Φ <
0 in order to continuously reduce the objective function value
according to the analysis in Section III.

For other cases except (x − xe) · Φ < 0 and grad(x) · Φ < 0,
to let V(x) > 0, we only need to assure

C >
4
k

(x − xe) · Φ
J(x)

∀ x , xe

Now,

∣∣∣∣∣4k (x − xe) · Φ
J(x)

∣∣∣∣∣ ≥ 4
k

(x − xe) · Φ
J(x)

⇒
∣∣∣∣∣4k (x − xe)

J(x)

∣∣∣∣∣ ≥ 4
k

(x − xe) · Φ
J(x)

[as |Φ| = 1]

⇒4
k
|x − xe|

J(x)
≥ 4

k
(x − xe) · Φ

J(x)

Hence, if C is required to satisfy the relation C > 4
k

(x−xe)·Φ
J(x) ,

then C > 4
k
|x−xe |
J(x) can fully meet this requirement.

Therefore, according to Definition 4, V is a positive definite
function, and the second condition is proved to be satisfied.

Condition 3: Taking the derivative of V with t, we get

dV
dt
=
∂V
∂x1
· dx1

dt
+
∂V
∂x2
· dx2

dt
+ . . . +

∂V
∂xn
· dxn

dt

=

n∑
p=1

∂V
∂xp
·

dxp

dt
(17)

The next step is to deal with ∂V
∂xp

and dxp

dt (p = 1, 2, . . . , n),
respectively.

∂V
∂x1
=

kC2φ2
1

8
J′x1
−

Cφ3
1

2
∂V
∂xp
=

kC2φ2
1

8
J′xp
−

Cφ2
1φp

2
(p = 2, . . . , n)

dx1

dt
= v1

dxp

dt
= vp =

φp

φ1
· v1 (p = 2, . . . , n)

Based on the four equations above, we obtain

∂V
∂x1
· dx1

dt
=

(
kC2φ2

1

8
J′x1
−

Cφ3
1

2

)
· v1

∂V
∂xp
·

dxp

dt
=

(
kC2φ2

1

8
J′xp
−

Cφ2
1φp

2

)
· vp

=

(
kC2φ2

1

8
J′xp
−

Cφ2
1φp

2

)
·
φp

φ1
v1

=

 kC2φ1φp

8
J′xp
−

Cφ1φ
2
p

2

 · v1

From Eq.(17)

dV
dt
=

 kC2φ2
1

8
J′x1
+

n∑
p=2

(
kC2φ1φp

8
J′xp

)
−

Cφ3
1

2

−
n∑

p=2

Cφ1φ
2
p

2

 · v1

=

 kC2φ1

8
·

n∑
p=1

(J′xp
φp) − Cφ1

2
·

n∑
p=1

φ2
p

 · v1

Since Φ = (φ1, φ2, . . . , φn) is a vector of unit length, Φ · Φ =∑n
p=1 φ

2
p = 1. Then,

dV
dt
=

(
kC2φ1

8
(gradJ(x) · Φ) − Cφ1

2

)
· v1

where gradJ(x) = (J′x1
, J′x2
, . . . , J′xn

) is the gradient of the ob-
jective function at x = (x1, x2, . . . , xn).

According to Eq.(8), v1 = − kC2φ1
8 (gradJ(x) ·Φ)+ Cφ1

2 . Hence,
the previous equation is changed into

dV
dt
= −

(
− kC2φ1

8
(gradJ(x) · Φ) +

Cφ1

2

)2

i.e.,
dV
dt
= −v2

1

When x = xe, we have C = 0, then get v1 = 0 according
to Eq.(8), and finally obtain dV/dt = −v2

1 = 0. When x ,
xe, dV/dt meets the relation dV/dt < 0 as we have assumed
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Table 1: The positions and their information of bacterium iterations with a step size C = 0.2 over J(x) = x2
1 + x2

2

Iteration Position Step size (C) Velocity Tumble direction (Φ) grad J(x) grad J(x)·Φ d

1 (-0.5, -0.4) 0.2 0.2 ( 1
2 ,
√

3
2 ) (-1, -0.8) -1.1928 1.2806

2 (-0.4, -0.2268) 0.2 0.2 (
√

2
2 ,−

√
2

2 ) (-0.8, -0.4536) -0.2449 0.9196
3 (-0.2586, -0.3682) 0.2 0 (−

√
11
4 ,−

√
5

4 ) (-0.5172, -0.7364) 0.8405 0.8999
4 (-0.2586, -0.3682) 0.2 0.2 (

√
3

3 ,
√

6
3 ) (-0.5172, -0.7364) -0.8999 0.8999

5 (-0.1431, -0.2049) 0.2 0 (−
√

7
4 ,

3
4 ) (-0.2862, -0.4098) -0.1180 0.4998

6 (-0.1431, -0.2049) 0.2 0.2 (− 1
4 ,
√

15
4 ) (-0.2862, -0.4098) -0.1626 0.4998

7 (-0.1931, -0.0113) 0.2 0.2 (
√

30
6 ,

√
6

6 ) (-0.3862, -0.0226) -0.3618 0.3869
8 (-0.0105, 0.0703) 0.2 0 Any direction (-0.0210, 0.1406) −− 0.1422

Table 2: The positions and their information of bacterium iterations with an adjusted step size C = 0.02 over J(x) = x2
1 + x2

2

Iteration Position Step size (C) Velocity Tumble direction (Φ) grad J(x) grad J(x)·Φ d

9 (-0.0105, 0.0703) 0.02 0.02 (
√

30
6 ,−

√
6

6 ) (-0.0210, 0.1406) -0.0766 0.1422
10 (0.0078, 0.0621) 0.02 0 (

√
7

4 ,
3
4 ) (0.0156, 0.1242) 0.0517 0.1252

11 (0.0078, 0.0621) 0.02 0.02 (
√

2
2 ,−

√
2

2 ) (0.0156, 0.1242) -0.0768 0.1252

12 (0.0219, 0.0480) 0.02 0.02 (−
√

1
3 ,−

√
2
3 ) (0.0438, 0.0960) -0.0807 0.1055

13 (0.0104, 0.0249) 0.02 0.02 (−
√

2
5 ,−

√
3
5 ) (-0.0126, -0.0560) -0.0719 0.0540

14 (0.0052, -0.0049) 0.02 0 Any direction (0.0104, -0.0098) −− 0.0193

v1 , 0 in section III. Thus, according to Definition 5, dV/dt
is a negative definite function, and the third condition is also
proved to be satisfied.

Based on the analysis above, V defined in Eq.(15) has met
the three conditions in Theorem 1, and is a Lyapunov function.
Therefore, the chemotaxis dynamics represented by Eq.(10)
or Eq.(11) is asymptotically stable at the equilibrium state xe.
Here, there are a couple of things to note about the Lyapunov
function V . One thing is that the restriction on the step size
in Eq.(16) makes the step size C look complicated and seem
to be a function of x, but it is actually not. The step size C is
only a constant which varies at the different stages of the opti-
mization process, and would not change with x from moment
to moment. The experimental section illustrates the change of
the step size. The other thing is that in control theory, if a dy-
namic system is asymptotically stable at the equilibrium state,
there must be a Lyapunov function regarding the dynamic sys-
tem, but the Lyapunov function is not the only one. In other
words, the existence of a Lyapunov function is only a sufficient
condition for the stability of the dynamic system, and not a nec-
essary and sufficient condition. Hence, the Lyapunov function
V defined in Eq.(15) is merely a tool to prove the asymptot-
ically stability of the chemotaxis dynamics at the equilibrium
state xe, and the restriction on the step size in Eq.(16) is only
one criterion. There may be another Lyapunov function of re-
garding the chemotaxis dynamics and another criterion of the
step size. Given this, in experimental section, we only focus on
how to validate the two key conditions obtained in section III,
and ignore the specific restriction, such as Eq.(16).

5. simulation results

For the bacterium to continuously move toward the equilib-
rium state, this section gives two examples to verify the two

necessary conditions obtained by theoretical analysis in Section
III. The two necessary conditions are: (1) The angle between
the moving direction and the gradient direction must satisfy the
relation π/2 < θ ≤ π (that is, gradJ(x) · Φ < 0), and (2) The
step size C must be smaller than the longest distance d between
the current position and any other location on the same contour
(i.e., C < d). The two examples are specific to the 2-D case
since it is ease of visualization and without loss of generality.

One example is the objective function J(x) = x2
1 + x2

2, where
the single optimum is located at xe = (0, 0). The gradient
of this objective function is gradJ(x) = (2x1, 2x2) at point
x = (x1, x2). The longest distance d between the current po-
sition and any other position on the same contour is calculated
by d = 2·‖x−xe‖. Let the bacterium move under the guidance of
the actual BFO algorithm, and start at (x1, x2) = (−0.5,−0.4).
With the bacterium moving, Tables 1 and 2 list the positions
that the bacterium arrives at and some position-relevant infor-
mation. As Table 1 shown, the bacterium moves with a step
size C = 0.2 in the early stages of the optimization process.
When the bacterium reaches the position (−0.2586,−0.3682)
in the third iteration, it selects the direction (−

√
11/4,−

√
5/4)

to move. However, (−
√

11/4,−
√

5/4) is a direction of increas-
ing the objective function value, so the bacterium keeps in place
(i.e., its velocity is 0). At this time, gradJ(x) · Φ > 0. That is,
when gradJ(x) · Φ > 0, the bacterium does not move because
doing so would increase the objective function value. Obvi-
ously, this result supports the necessary condition (1). When
the bacterium gets to the position (−0.1431,−0.2049) in the
fifth iteration, despite the fact that it obeys the two conditions
since gradJ(x) · Φ = −0.1180 < 0 and C = 0.2 < d = 0.4998,
it still does not move. This illustrates that the two conditions
are only necessary conditions and not sufficient conditions for
the bacterium to reduce the objective function value. Once the
bacterium arrives at the position (-0.0105, 0.0703) in the eighth
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Table 3: The positions and their information of bacterium iterations with a step size C = 0.2 over J(x) = 1 − e−(x2
1+x2

2)

Iteration Position Step size (C) Velocity Tumble direction (Φ) grad J(x) grad J(x)·Φ d

1 (0.4, -0.6) 0.2 0.2 (− 1
2 ,
√

3
2 ) (0.4756, -0.7134) -0.8556 1.4422

2 (0.3, -0.4268) 0.2 0.2 (
√

3
7 ,

√
4
7 ) (0.4570, -0.6502) -0.1923 1.0434

3 (0.4309, -0.2756) 0.2 0.2 (−
√

5
6 ,−

√
1
6 ) (0.6634, -0.4243) -0.4324 1.0230

4 (0.2483, -0.3572) 0.2 0 (
√

3
5 ,

√
2
5 ) (0.6001, -0.8632) -0.0811 0.9131

5 (0.2483, -0.3572) 0.2 0.2 (−
√

2
3 ,

√
1
3 ) (0.6001, -0.8632) -0.7375 0.9131

6 (0.0850, -0.2417) 0.2 0 (− 1
4 ,−

√
15
4 ) (0.1592, -0.4527) 0.3985 0.5124

7 (0.0850, -0.2417) 0.2 0.2 (−
√

3
2 ,

1
2 ) (0.1592, -0.4527) -0.4735 0.5124

8 (-0.0882, -0.1417) 0.2 0 (
√

2
2 ,−

√
2

2 ) (-0.1716, -0.2756) 0.2220 0.3292

9 (-0.0882, -0.1417) 0.2 0.2 (
√

8
11 ,

√
3
11 ) (-0.1716, -0.2756) -0.2903 0.3292

10 (0.0824, -0.0373) 0.2 0 Any direction (0.1635, -0.0740) −− 0.1809

Figure 4: The moving trajectory of the bacterium with a step size C = 0.2 over
J(x) = x2

1 + x2
2

iteration, no matter which direction it chooses, it never moves.
Because the step size C = 0.2 is too large for the bacterium,
which goes against the necessary condition (2) and leads to the
bacterium trapped into the position (−0.0105, 0.0703). At this
moment, to make the bacterium jump out of this position and
keep walking towards the optimal solution, the step size should
be adjusted to meet the necessary condition (2). As Table 2
shown, given a smaller step size C = 0.02 (C = 0.02 < d =
0.1422), the bacterium again is able to go on moving from the
position (−0.0105, 0.0703). When the bacterium arrives at the
position (0.0052, -0.0049) in the fourteenth iteration, it once
again get trapped into stagnating because the value of d grad-
ually gets smaller with the bacterium approaching the optimal
solution, and the step size C = 0.02 no longer meets the nec-
essary condition (2). If the step size C continues to be adjusted
to satisfy the condition (2), the bacterium will keep on moving
towards the optimal solution. This fact exactly suggests that a
constant step size is not conducive to search the optimum. Be-
cause a constant step size easily makes the bacterium trapped
into a non-optimal position with the bacterium getting closer
and closer to the optimum. That is why many researches ex-
plore the self-adaptive modes of the step size [9, 25–27].

To more clearly show the movement of the bacterium, we

Figure 5: The moving trajectory of the bacterium with a step size C = 0.02 over
J(x) = x2

1 + x2
2

plot it in Figs. 4 and 5. In the two figures, the red aster-
isk indicates the optimum (i.e., the equilibrium state), marked
by “O”. The closed curves represent different contour lines.
The blue line with the arrow is the trajectory of the bac-
terium, and the black dotted line with the arrow represents
the wrong direction that the bacterium selects at a certain po-
sition. As seen from Fig. 4, the bacterium starts from the
position P1 (−0.5,−0.4), and gets to P2 (−0.4,−0.2268) by
taking a step size of 0.2 in the direction (1/2,

√
3/2). Then

it moves along the direction (
√

2/2,−
√

2/2), and arrives at
P3 (−0.2586,−0.3682). At this position, the bacterium first
chooses a direction (−

√
11/4,−

√
5/4) which makes gradJ(x) ·

4 > 0. If the bacterium walks in this direction, it will reach P4,
where the corresponding objective function value is larger than
that at the position P3. So this direction is a wrong direction,
and the bacterium has to reselect a new direction (

√
3/3,

√
6/3),

and gets to P5 (−0.1431,−0.2049). Next, the bacterium in-
tends to move in the direction (−

√
7/4, 3/4) at first. How-

ever, in this situation, although the two necessary conditions
are met (i.e., gradJ(x) · Φ < 0 and C < d), moving in this
direction is still a bad choice. Because if doing so, the bac-
terium will arrive at the position P6, where the objective func-
tion value is larger than that on the position P5. Therefore,
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Table 4: The positions and their information of bacterium iterations with an adjusted step size C = 0.03 over J(x) =

1 − e−(x2
1+x2

2)

Iteration Position Step size (C) Velocity Tumble direction (Φ) grad J(x) grad J(x)·Φ d

11 (0.0824, -0.0373) 0.03 0.03 (−
√

3
2 ,

1
2 ) (0.1635, -0.0740) -0.1786 0.1809

12 (0.0564, -0.0223) 0.03 0.03 (−
√

5
6 ,−

√
1
6 ) (0.1132, -0.0448) -0.0850 0.1213

13 (0.0290, -0.0345) 0.03 0 (
√

2
3 ,

√
1
3 ) (0.0581, -0.0691) 0.0075 0.0901

14 (0.0290, -0.0345) 0.03 0.03 (−
√

1
5 ,

√
4
5 ) (0.0581, -0.0691) -0.0438 0.0901

15 (0.0156, -0.0077) 0.03 0.03 (−
√

5
7 ,

√
2
7 ) (0.0312, -0.0154) -0.0346 0.0348

16 (-0.0098, 0.0083) 0.03 0 Any direction (-0.0196, 0.0166) −− 0.0257

Figure 6: The moving trajectory of the bacterium with a step size C = 0.2 over
J(x) = 1 − e−(x2

1+x2
2)

the bacterium again chooses a new direction (−1/4,
√

15/4),
and gets to the position P7 (−0.1931,−0.0113). Finally, the
bacterium reaches the position P8 (−0.0105, 0.0703) by taking
a step in the direction (

√
30/6,

√
6/6). But the bacterium is

trapped into this position due to that the step size C = 0.2
is too large, and has violated the necessary condition C < d.
To escape from the position P8 and go on moving towards the
optimal solution, the bacterium has to adjust its step size to a
smaller value (e.g. C = 0.02) which meets the necessary con-
dition C < d. As shown in 5, the bacterium successfully jumps
out of P8 with the smaller step of 0.02, and arrives at P9 by
taking a step size in the direction (

√
30/6,−

√
6/6). Afterward,

the bacterium tries to move in the direction (
√

7/4, 3/4), but
it fails because moving in this direction will increase the ob-
jective function value. So the bacterium has to reselect a new
direction (

√
2/2,−

√
2/2), and gets to the position P11. Sub-

sequently, the bacterium reaches the position P13 by moving
twice, one towards the direction (−

√
1/3,−

√
2/3) and another

towards the direction (−
√

2/5,−
√

3/5). However, while grad-
ually getting closer to the optimal solution, the bacterium once
again gets trapped into this non-optimal position due to the step
size C = 0.02 no longer meets the necessary condition C < d.

The other example is the objective function J(x) = 1 −
e−(x2

1+x2
2), where the single optimum is also located at xe = (0, 0).

The gradient of this objective function is given by gradJ(x) =(
2x1 · e−(x2

1+x2
2), 2x2 · e−(x2

1+x2
2)
)
. The longest distance d between

Figure 7: The moving trajectory of the bacterium with a step size C = 0.03 over
J(x) = 1 − e−(x2

1+x2
2)

the current position and any other position on the same contour
is also calculated by d = 2 · ‖x−xe‖. Similarly, let the bacterium
move under the guidance of the actual BFO algorithm, and start
at the position (x1, x2) = (0.4,−0.6). Tables 3 and 4 list the po-
sitions that the bacterium arrives at and some position-relevant
information. Figs. 6 and 7 clearly show the moving trajectory
of the bacterium. Among them, Table 3 and Fig. 6 illustrate the
movement of the bacterium with a step size of 0.2 in the early
stage of the optimization process. From Table 3 and Fig. 6, it
is easy to find that the bacterium tries twice to select a good
moving direction when it gets to the position P4 in the fourth it-
eration. On the first try, the bacterium fails to move because tak-
ing a step in the selected direction (

√
3/5,

√
2/5) will increase

the objective function value despite the two necessary condi-
tions are met. Besides, the bacterium also takes two tries at the
position P6 in the sixth iteration and at the position P8 in the
eighth iteration, respectively. The reason for the failures on the
first try is that the selected directions lead to gradJ(x) · Φ > 0,
which goes against the necessary condition (1). When the bac-
terium arrives at the position P10, it gets trapped into this po-
sition due to that C = 0.2 > d = 0.1809, which violates the
necessary condition (2). To continue to search for a better so-
lution, the bacterium has to change its step size into a smaller
value to meet the condition C < d. Table 4 and Fig. 6 show
the movement of the bacterium with a smaller step size of 0.03
in the latter stage of the optimization process. In this stage,
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the bacterium also goes through a failure attempt at the posi-
tion P12. The bacterium first selects a direction (

√
2/3,

√
1/3),

but this direction makes gradJ(x) · 4 > 0 which violates the
condition (1) and would increase the objective function value.
At last, the movement of this stage ends up with the bacterium
trapped into the position P15 for the same reason that the step
size C = 0.03 > d = 0.0257, which again violates the necessary
condition (2).

In the above two examples, the two necessary conditions ob-
tained by the theoretical analysis in Section III have been visu-
ally and effectively validated. The two examples clearly illus-
trate that a proper direction and a varying step size are crucially
important to make the bacterium move towards the optimum,
which are not only the theoretical basis of studies on develop-
ing effective BFO algorithms, but are also the reasons behind
the success of these studies [9, 25–27, 31, 32]. That is, to make
the bacterium pretty close to the optimal solution, the step size
should be adjusted every once in a while except to select the
correct direction.

6. Conclusion

In this paper, we have extended the theoretical analysis of
the chemotaxis mechanism in BFO algorithm from 1-D objec-
tive functions to multi-dimensional objective functions. We first
derived the general mathematical model of a single bacterium
performing the chemotaxis process over multi-dimensional ob-
jective functions. Then we analyzed the general mathematical
model in light of the general descent search, and pointed out
two necessary conditions for the bacterium continuously mov-
ing toward the optimum. Afterwards, the Lyapunov stability
theorem was applied to prove the asymptotically stability of the
chemotaxis dynamics over multi-dimensional objective func-
tions near the equilibrium state (i.e., the optimal solution). At
last, the experimental simulations took two representative ex-
amples to validate the two necessary conditions. Both the the-
oretical analysis and experimental simulations suggested that a
right direction and a varying step size (i.e., a adaptation scheme)
are very essential for the bacterium to search the optimal solu-
tion.

In future work, we will focus on developing superior BFO
algorithms for the single objective function optimization prob-
lem, the multi-objective function optimization problem, and the
combinational optimization problem based on the theoretical
analysis.
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