

Computationally efficient adaptive algorithms for active control systems

by Somanath Pradhan

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of A/Prof. Jinchen Ji and Dr. Guoqiang Zhang

University of Technology Sydney Faculty of Engineering and Information Technology

January 2021

Certificate of Original Authorship

I, Somanath Pradhan declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Somanath Pradhan

Date: 29-01-2021

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my principal supervisor A/Prof. Jinchen Ji for his guidance, encouragement and support during my PhD candidature. I am grateful to Prof. Xiaojun Qiu, who was my previous principal supervisor, for providing me with knowledge, guidance and experience not only in research but also in many other aspects of life. I would like to express my appreciation to my co-supervisor Dr. Guoqiang Zhang for his insightful ideas for my research work and valuable suggestions.

I would like to thank my former academic mentor A/Prof. Nithin V. George from Indian Institute of Technology Gandhinagar for encouraging me to pursue a research career and supporting me since I entered the field of signal processing research five years ago.

I express my sincere thanks to my teammates Tong Xiao, Jiaxin Zhong, Dr. Sipei Zhao, Dr. Qiaoxi Zhu and Dr. Shuping Wang for their valuable assistance and suggestions during the research work. Thanks to all the academic staff members of the School of Mechanical and Mechatronic Engineering for always being friendly and helpful.

Further, I would like to thank my personal mentors Shakti Prasad Tripathy, Bibhu Prasad Tripathy, Dr. Nityananda Pattanaik and Tanmaya Kumar Sahoo for being continuous support for me. I am grateful to my high school teacher, Gurumaa, Ms. Sabitarani Mishra for teaching me lessons for life. I dedicate my PhD to her.

Finally, I would like to express my deepest gratitude to my parents (Mr. Tareswar Pradhan and Ms. Golap Pradhan), my grandmother Malika Pradhan, my sister Snehalata Parida and brother-in-law Sudarshan Parida for their unconditional love, support and encouragement during my research work.

List of Publications

Much of this work has either been published or submitted for publication as journal papers and conference proceeding. The list is as follows:

In International Journals

- Pradhan, S. & Qiu, X. 2020, 'A 5-stage active control method with online secondary path modelling using decorrelated control signal', *Applied Acoustics*, vol. 164, p. 107252. https://doi.org/10.1016/j.apacoust.2020.107252
- Pradhan, S., Qiu, X. & Ji, J. 2019, 'A four-stage method for active control with online feedback path modelling using control signal', *Applied Sciences*, vol. 9, no. 15, p. 2973. https://doi.org/10.3390/app9152973
- Pradhan, S., Zhang, G. & Qiu, X. 2020, 'A time domain decentralized algorithm for two channel active noise control', *The Journal of the Acoustical Society of America*, vol. 147, no. 6, pp. 3808-13. https://doi.org/10.1121/10.0001401
- 4. **Pradhan, S.**, Qiu, X. & Ji, J. 2020, 'A time-frequency domain flexible structure of delayless partitioned block adaptive filters for active control', submitted to *Applied Acoustics* [under revision].

In conference proceeding

 Pradhan, S., Qiu, X. & Ji, J. 2021, 'Affine combination of the filtered-x LMS/F algorithms for active control', Vibration Engineering for a Sustainable Future, Springer, pp. 313-9.

The following papers are also the outcomes during PhD candidature, but not included in this thesis:

In International Journals

 Bhattacharjee, S. S., Pradhan, S. & George, N. V. 2020, 'Design of a class of zero attraction based sparse adaptive feedback cancellers for assistive listening devices', *Applied Acoustics*, vol. 173, p. 107683. https://doi.org/10.1016/j.apacoust.2020.107683 Bhattacharjee, S. S., Pradhan, S., George, N. V. & Nordholm, S. 2020, 'Multi microphone assisted variable step size delayless multiband-structured subband feedback cancellation for two microphone hearing aids', submitted to *Signal Processing* [under review].

In Conference Proceedings

 Pradhan, S., Qiu, X. & Ji, J. 2020, 'A variable step size improved multibandstructured subband adaptive feedback cancellation scheme for hearing aids', 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), IEEE, pp. 681-5.

Statement of Contribution of Authors

The chapters of this thesis contain materials from 4 papers published or submitted for publication in the top-tier journals and 1 conference proceeding, where I was the first author.

Pradhan, S. & Qiu, X. 2020, 'A 5-stage active control method with online secondary path modelling using decorrelated control signal', *Applied Acoustics*, vol. 164, p. 107252. https://doi.org/10.1016/j.apacoust.2020.107252

Contributor	Statement of Contribution	Thesis Chapters
Somanath Pradhan	Literature review, Conceptualization, Methodology, Validation, Investigation, Manuscript Writing- Original Draft. Overall contribution: 80%	Chapter 2 and 3
Xiaojun Qiu	Conceptualization, Manuscript Writing- Review & Editing, Supervision. Overall contribution: 20%	

Pradhan, S., Qiu, X. & Ji, J. 2019, 'A Four-Stage Method for Active Control with Online Feedback Path Modelling Using Control Signal', *Applied Sciences*, vol. 9, no. 15, p. 2973. https://doi.org/10.3390/app9152973

Contributor	Statement of Contribution	Thesis Chapters
Somanath Pradhan	Literature review, Conceptualization, Methodology, Validation, Investigation, Manuscript Writing- Original Draft. Overall contribution: 80%	Chapter 2 and 3
Xiaojun Qiu	Conceptualization, Manuscript Writing- Review & Editing, Supervision. Overall contribution: 10%	
Jinchen Ji	Manuscript Writing- Review & Editing Overall contribution: 10%	

Pradhan, S., Zhang, G. & Qiu, X. 2020, 'A time domain decentralized algorithm for two channel active noise control', *The Journal of the Acoustical Society of America*, vol. 147, no. 6, pp. 3808-13. https://doi.org/10.1121/10.0001401

Contributor	Statement of Contribution	Thesis Chapters
Somanath Pradhan	Literature review, Conceptualization, Methodology, Validation, Investigation,	Chapter 2 and 6
	Manuscript Writing- Original Draft. Overall contribution: 80%	
Guoqiang Zhang	Conceptualization, Manuscript Writing- Review & Editing, Supervision. Overall contribution: 10%	
Xiaojun Qiu	Manuscript Writing- Review & Editing, Supervision. Overall contribution: 10%	

Pradhan, S., Qiu, X. & Ji, J. 2020, 'A time-frequency domain flexible structure of delayless partitioned block adaptive filters for active control', submitted to *Applied Acoustics* [under revision].

Contributor	Statement of Contribution	Thesis Chapters
Somanath Pradhan	Literature review, Conceptualization, Methodology, Validation, Investigation, Manuscript Writing- Original Draft. Overall contribution: 80%	Chapter 2 and 5
Xiaojun Qiu	Conceptualization, Manuscript Writing- Review & Editing, Supervision. Overall contribution: 10%	
Jinchen Ji	Manuscript Writing- Review & Editing. Overall contribution: 10%	

Pradhan, S., Qiu, X. & Ji, J. 2019, 'Affine combination of the filtered-x LMS/F algorithms for active control', Vibration Engineering for a Sustainable Future, Springer, pp. 313-9.

Contributor	Statement of Contribution	Thesis Chapters
Somanath Pradhan	Literature review, Conceptualization, Methodology, Validation, Investigation, Manuscript Writing- Original Draft. Overall contribution: 80%	Chapter 2 and 4
Xiaojun Qiu	Conceptualization, Manuscript Writing- Review & Editing, Supervision. Overall contribution: 10%	
Jinchen Ji	Manuscript Writing- Review & Editing. Overall contribution: 10%	

Contents

Certi	ificate of Original Authorship	i
Ackr	nowledgement	ii
List	of Publications	iii
State	ement of Contribution of Authors	v
Cont	rents	viii
List	of Figures	xi
List	of Tables	xiv
Abbi	reviations	XV
Abst	ract	xvii
1	Introduction	1
	1.1 Motivation and objectives	1
	1.2 Contributions	6
	1.3 Thesis outline	7
2	Literature review	10
	2.1 Single channel feedforward ANC system	10
	2.2 Online secondary path modelling	14
	2.3 Online feedback path modelling	17
	2.4 Convergence behaviour and noise reduction performance	21
	2.5 Low-complexity algorithms for active control at high sampling rate	23
	2.6 Decentralized algorithms for active control	26
	2.7 Summary	28
3	Online modelling of acoustic paths in active control systems using control signal	31
	3.1 Introduction	31
	3.2 Online secondary path modelling	32
	3.2.1 Proposed method	32
	3.2.2 Numerical experiments	39
	3.2.2.1 The five stage method	41
	3.2.2.1.1 Case 1: Autoregressive signal	41

	3.2.2.1.2 Case 2: Frequent acoustic path change	43
	3.2.2.2 The decorrelation filter	46
	3.2.2.1 Case 1: Autoregressive signal	46
	3.2.2.2.2 Case 2: Broadband signal	47
	3.2.2.2.3 Case 3: Mixture of white noise and multitone	49
	3.2.2.3 The five-stage method with decorrelation filter	51
	3.2.2.3.1 Case 1: Coloured signal	51
	3.2.2.3.2 Case 2: Mixture of white noise and multitone	53
	3.2.2.3.3 Case 3: Effect of measurement noise	54
	3.2.3 Computational complexity	56
	3.3 Online feedback path modelling	58
	3.3.1 Proposed method	58
	3.3.2 Numerical experiments	66
	3.3.3 Computational complexity	72
	3.4 Summary	73
4	Affine combination of adaptive filters for active control	75
	4.1 Introduction	75
	4.2 The proposed affine combination algorithm	75
	4.3 Numerical experiments	79
	4.3.1 Case 1: White noise	79
	4.3.2 Case 2: Multitone noise	81
	4.3.3 Case 3: Effect of imperfect secondary path model	83
	4.4 Summary	84
5	A time-frequency domain flexible structure for active control	85
	5.1 Introduction	85
	5.2 The proposed structure	85
	5.3 Numerical experiments	89
	5.3.1 Case 1: White noise	89
	5.3.2 Case 2: Traffic noise	93
	5.4 Computational complexity	96

	5.5 Summary	98
6	Decentralized algorithm for broadband active control	99
	6.1 Introduction	99
	6.2 The proposed algorithm	99
	6.2.1 Framework description	99
	6.2.2 Eigenvalue shaping in frequency domain	100
	6.2.3 Scaling of the diagonal matrices	102
	6.2.4 Auxiliary FIR filter design	103
	6.2.5 The time domain control algorithm	104
	6.3 Numerical experiments	106
	6.3.1 Case 1: White noise	108
	6.3.2 Case 2: Traffic noise	110
	6.4 Computational complexity	112
	6.5 Summary	113
7	Conclusions and future work	114
	7.1 Conclusions	114
	7.2 Future works	116
Ref	References	

References

List of Figures

Figure 1.1	A basic single channel feedforward ANC system.	2
Figure 2.1	Schematic block diagram of a single channel ANC system.	11
Figure 2.2	Schematic block diagram of ANC system with acoustic feedback.	18
Figure 3.1	Block diagram of the proposed method for active control operation.	33
Figure 3.2	Flowchart of the proposed method.	34
Figure 3.3	Frequency response of (a) the primary path and (b) the secondary	
	path.	40
Figure 3.4	Case 1: Learning curve for the 5-stage method obtained from an	
	AR(1) input signal.	43
Figure 3.5	Case 2: Learning curve for the 5-stage method obtained from an	
	AR(1) input signal with a frequent acoustic path change.	44
Figure 3.6	Relative modelling error for the AR(1) signal.	47
Figure 3.7	(a) Relative modelling error for the full frequency range, (b) Relative	
	modelling error for the frequency band of [100 500] Hz	49
Figure 3.8	Relative modelling error for the mixture of white noise and multitone	
	signal.	50
Figure 3.9	Learning curve for the 5-stage method obtained from a coloured input	
	signal.	52
Figure 3.10	Learning curve for the 5-stage method obtained from a mixture of	
	white noise and multitone input signals.	54
Figure 3.11	Learning curves for the proposed method obtained from a colored	
	input signal and different level of measurement noise. (a) $SNR = 30$	
	dB, (b) $SNR = 20 dB$, (c) $SNR = 10 dB$ and (d) $SNR = 0 dB$.	55
Figure 3.12	Schematic diagram of the proposed method for active control with	
	online feedback path modelling using the control signal.	59

Figure 3.13	Flowchart of the proposed feedback path modelling method.	60
Figure 3.14	Effect of different value of β on mapping of $r(n)$ to the linear range	
	of tanh function.	62
Figure 3.15	Frequency response of (a) the primary path and the secondary path	
	and (b) feedback path.	67
Figure 3.16	Feedback path modelling error in the second stage.	68
Figure 3.17	(a) Feedback path modelling error, (b) learning curve for the whole	
	duration of control operation.	70
Figure 4.1	Schematic block diagram of the proposed affine combination	
	algorithm.	77
Figure 4.2	Case 1: (a) ANR for white noise, (b) variation of combining	
	parameter.	80
Figure 4.3	Case 2: (a) ANR for multi-tone noise, (b) variation of combining	
	parameter.	82
Figure 4.4	Case 3: (a) ANR and (b) variation of mixing parameter with an	
	imperfect secondary path model.	84
Figure 5.1	Block diagram of the proposed structure for a single channel	
	feedforward ANC system.	86
Figure 5.2	(a) Acoustic path measurement setup in a duct, (b) impulse responses	
	of the primary and secondary paths.	90
Figure 5.3	(a) Normalized MSE curves for white noise using different	
	algorithms and (b) the power spectral density with and without noise	
	control.	92
Figure 5.4	(a) Position of source and sensor in the measurement and (b) Impulse	
	responses of the primary and secondary paths measured in a normal	
	room.	94

xii

Figure 5.5	(a) Normalized MSE curves for traffic noise using different	
	algorithms and (b) the power spectral density with and without noise	
	control.	96
Figure 6.1	Schematic diagram of the proposed time domain two channel	
	decentralized algorithm.	105
Figure 6.2	Arrangement of the sources and the sensors in a normal room for	
	multiple channel acoustic path measurement.	107
Figure 6.3	Normalized MSE curves for zero-mean white Gaussian noise using	
	different algorithms when they (a) converge and (b) diverge.	109
Figure 6.4	(a) Normalized MSE curves for traffic noise using different	
	algorithms and (b) the power spectral density with and without noise	
	control.	111

List of Tables

Table 3.1	The five stages of the proposed method.	38
Table 3.2	Residual noise levels of different methods for different measurement noise levels.	56
Table 3.3	Computational complexity of different methods.	57
Table 3.4	Computational complexity of different methods.	73
Table 5.1	The average number of real multiplications required for different algorithms.	97
Table 5.2	The average number of real multiplications required with respect to the number of partitions used for control signal generation.	98
Table 6.1	Procedure of the proposed decentralized algorithm.	105
Table 6.2	Computational complexity per sample of different algorithms.	112

Abbreviations

WHO	world health organization
NIOSH	national institute for occupational safety and health
ANC	active noise control
ADC	analog-to-digital converter
DAC	digital-to-analog converter
FIR	finite impulse response
IIR	infinite impulse response
LMS	least mean square
FxLMS	filtered-x least mean square
NLMS	normalized least mean square
FBPM	feedback path modelling
FBPN	feedback path neutralization
FBPMN	path modelling and neutralization
CS	convergence speed
NR	noise reduction
FxAP	filtered-x affine projection
FAP	fast affine projection
VSS	variable step size
FxLMF	filtered-x least mean fourth
FxGMN	filtered-x generalized mixed norm
FFT	fast Fourier transformation
IFFT	inverse fast Fourier transformation
FBFxLMS	frequency domain block FxLMS
MDF	multidelay adaptive filter
PBFDAF	partitioned block frequency domain adaptive filter
FPBFxLMS	frequency domain partitioned block FxLMS
DANC	decentralized active noise control

FxLMS/F	filtered-x least mean square and fourth
A-FxLMS/F	affine combination of the FxLMS/F
S/P	serial-to-parallel converter
P/S	parallel-to-serial converter
TFPBFxLMS	time-frequency domain delayless partitioned block FxLMS
GA	genetic algorithm
MSE	mean square error
EF	extended filtering
SNR	signal to noise ratio
AR	autoregressive
ANR	averaged noise reduction

Abstract

As the side effect of urbanization, acoustic noise from various sources is the most common health threat in our day-to-day life. Passive noise control methods are constrained by several factors such as frequency content of noise, absorbing material type, thickness and geometry. Alternatively, active noise control method has emerged as a promising solution to control low-frequency noise cost-effectively. In an active noise control system, the acoustic path from the control source to the error microphone affects the control performance. If the reference microphone is placed in close proximity of the control source, an unwanted acoustic feedback signal from the control source will be captured by the reference microphone, which may lead to system instability. Furthermore, the adaptive control algorithms have a high computational complexity, which limits its application with high sampling frequency and the scalability of a control system for generating a larger quiet zone. Various algorithms have been proposed in literature for modelling acoustic paths, low-complexity implementation of single and multiple channel control systems. However, they are still constrained by factors such as computational complexity, noise reduction performance, causality issue and stability issue.

The objectives of this PhD research are to develop low-complexity algorithms for (1) online modelling of acoustic paths without affecting noise reduction performance, (2) achieving improved control performance at transient and steady state, (3) high sampling frequency operation and broadband noise control and (4) multiple channel decentralized algorithm for broadband noise control.

In the first aspect of this thesis, the online modelling of secondary path and feedback path are explored and two active control methods are proposed. One method is for online modelling of secondary path, and the other is for online modelling of feedback path. Unlike the existing methods in literature, the proposed methods do not require auxiliary noise injection, rather uses the control signal and decorrelation filters to model the acoustic paths. The simulation results demonstrate the improved control performance and low computational complexity of the proposed method compared to the existing methods in literature.

In the second aspect of this thesis, an affine combination of adaptive filters are investigated for active control operation. Unlike the convex combination, the combining parameter in this linear combination is not constrained to lie in a specific interval and plays a vital role in deciding the overall control performance. An adaptation rule is developed for updating the combining parameter. The simulation results demonstrate that the proposed algorithm provides faster convergence and improved steady-state control performance.

In the third aspect of this thesis, a time-frequency domain flexible structure is proposed for active control operation, which has no signal path delay and is well suited for lowcost DSP implementation. The proposed structure divides the long filters into many equal partitions and carry out the control filter update in frequency domain while generating the control signal in both time and frequency domains. The simulation results using the measured acoustic paths in a duct and in a normal room demonstrate that the proposed structure maintains similar performance as that of the time domain algorithm but with much less computational complexity.

In the last aspect of this thesis, a multiple channel decentralized control algorithm is proposed to achieve the similar noise reduction performance as the centralized one. Auxiliary filters are introduced to filter the reference signal for control filter update and a unique design method is proposed to shape the frequency response of the auxiliary filters. The simulation results using the measured acoustic paths demonstrate the efficacy of the proposed algorithm for broadband noise control.

In summary, online acoustic path modelling methods are proposed using the control signal; an affine combination of adaptive filters are proposed for improved control performance; a time-frequency domain flexible structure is proposed for active control operation for high sampling frequency operation; a decentralized algorithm is proposed to achieve similar noise reduction performance as the centralized one for broadband control.

Keywords: Active control system, online secondary path modelling, online feedback path modelling, computational complexity, decentralized control.