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ABSTRACT 

 
Measurements and Evolution of Complex Networks with Propagation Dynamics 

 

With the development of technology, we live in a world which is surrounded by complex networks, 

e.g., the power grid, transportation network, Internet, neural networks, social networks. Understanding 

the structure and dynamics of these extremely complex interactive networks has become one of the key 

research topics and challenges of life science in the 21st century. For example, the coronavirus disease 

2019 (COVID-19) pandemic markedly changed human mobility patterns, hygienic habits and the 

communication methods. In order to control the virus spread, it is very necessary to analyze the network 

structures and epidemic dynamics, e.g., the importance of nodes in the networks, the influence of network 

structure measurements on propagation, the interaction between propagation dynamics and the structure 

measurements, and the construction of epidemiological models that can capture the effects of these 

changes in mobility on the spread of virus. Meanwhile, the results of these studies can also be used as a 

reference for the study of multiple propagation behaviors in other networks. 

Complex network theory is to study the commonness of these seemingly different complex networks 

and the universal methods to deal with them. In 1998 and 1999, the finding of small world effects and 

scale-free property has attracted a great deal of attention of network structures and dynamics, which 

raises the science awareness for the real world. After the discovery of small world effects and scale-free 

property of networks, researchers gradually realize and study the complexity of networks. More network 

structure metrics are proposed, and more network characteristics are found with the development of 

complex network research. For example, many networks have community structures, e.g., the families, 

the schools, in which the internal connection of the community is much closer than the external 

connection. Meanwhile, studies on network structure related to the structure metrics are also in progress, 

such as the node influence identification, the community structure mining and the link prediction. 

As one of the main subjects in the field of complex network theory, the study on dynamical 

behaviors in complex networks has assumed greater importance and attracted wider attention since the 

spreading phenomena on different type of real-world networks affect significantly human activities in 

social and economic environments. For example, the epidemic spread in the crowd, the cascading failures 

in the power grid and the information diffusion in online social networks. It is pointed out that the 

network structure measurements have an important impact on the propagation processes. For example, 

the epidemic threshold tends to zero in scale-free networks, which means that the virus is very easy to 

spread in scale-free networks because of a small minority of ‘super-spreader’. Compared with the scale-

free network, the epidemic in the small world network is more difficult to break out due to the existence 

of the non-zero epidemic threshold. 



xiv 
 

While the network structure affects the propagation dynamics, the spreading process is also 

changing the network structure. For example, when a virus breaks out, people will selectively avoid 

symptomatic infected persons to protect themselves. The network structure has been changing 

dynamically due to the evasive behaviors, and the dynamic change in structure can also affect the spread 

of the virus in turn. In short, the network structure and the propagation dynamics in the network are co-

evolving. 

In the thesis, the influence of complex network structure measurements on the propagation 

processes and the dynamic relationship between network structures and the propagation processes are 

studied. Firstly, the influence of network structure measurement on the propagation process is studied 

and applied to the process of node influence identification, cascading failure and virus propagation. 

Based on the degree value of the nodes, a method to quickly identify the influence of the nodes, as well 

as a cascaded failure model considering the local real-time information priority redistribution strategy, is 

proposed, and a novel metric is proposed to measure the robustness in regard to virus attacks in social 

networks. Following on from this, the cooperative evolution of network structure and propagation 

process is studied, and the reliability of adaptive weighted networks is analyzed and discussed. 
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Chapter 1 

Introduction 

The rapid development of the Internet has brought our lives into the information network era. A large 

number of studies have shown that most networks and systems in nature and in human society, e.g., food 

chain networks, social networks, communication networks, transportation networks, etc., can be 

described as complex networks [1]-[5]. As a theory and tool for description and analysis, complex 

network provides a fresh view for the studies of the structures and dynamics of real-world complex 

systems. 

In recent years, with the emergence and rapid development of computer technology, networks have 

brought unprecedented experiences to human life. With the deepening of the application of computer 

networks and the rapid expansion of the fields for those applications, both the concept and connotation 

of the idea of a "network" are constantly being updated. Conversely, the characteristics of networks, i.e., 

rapidity, efficiency, virtuality and openness, enable our production, life, communication and ways of 

thinking be extended across time and space. However, the gradual deepening of these networks is like a 

double-edged sword, which not only brings convenience to people's lives, but also brings many adverse 

effects and new challenges. For example, the rapid development of the transportation network makes it 

easier for biological viruses to spread around the world [6]-[9], computer viruses can quickly spread to 

all parts of the world through the Internet, causing adverse effects to network users [10]-[13], various 

rumors quickly spread through social networks [14]-[16], the personal and private details of users are 

invaded and sold on the internet unscrupulously [20]-[22], and large-scale cascading failures occur in 

power grids due to overloads [17]-[20]. 

Therefore, it is of great practical significance to study and understand these complex networks and 

the relationships between network structures and network dynamics. On the one hand, the research of 

complex network structure measurement and spreading behaviors can solve many problems in real world 

networks, such as establishing a corresponding propagation model for the spread of viruses through 

social networks, a practical cascading failure model for node loads and capacity in power grids, etc. On 

the other hand, the increasing degree of human social networking and the more complex network 

structures provide prospects for broad applications to complex networks. 

Against the above backdrop, the thesis presents a study of the complex network dynamics process. 

It reveals the influence of network structure measurements on spread processes and the cooperative 

evolution and interaction between network structures and spread dynamics. Some effective network 

spread dynamics control strategies are proposed based on the studies. Furthermore, based on the 

similarity of spread processes, such as virus spread, information diffusion, and cascading failures, the 

thesis also provides some new concepts and methods for the study of multiple spread processes in 

complex networks. 

1.1 Background 
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The earliest literature on network research is the famous Königsberg's seven bridge problem written 

by Leonhard Euler in 1736 [23], [24], where the mathematical descriptions of vertices and edges became 

the basis of graph theory, which further became a branch of mathematics that studies the properties of 

pairwise relations in complex network structures. Subsequently, graph theory continues to be developed 

and applied to different fields. In the 1950s, two Hungarian mathematicians, Erdös and Rényi, established 

the random graph theory [25], and created a systematic study of complex network theories in 

mathematics. In the 1990s, the study of complex networks entered a new era. In 1998, Duncan J Watts 

and Steven H Strogatz published a paper entitled “Collective dynamics of 'small-world' networks” [26] 

in the journal Nature, where the Small-World network model was proposed. In 1999, physicist Albert-

László Barabási and his doctoral student Réka Albert presented a scale-free network model in a paper 

entitled “Emergence of scaling in random networks” [27]. These two kinds of network characteristics 

can accurately reflect the structures of real-world networks, deepening our understanding of real 

networks. 

In the study of network theory, a complex network can be regard as a network structure composed 

of a large number of nodes and the complex relationships between those nodes. In the language of 

mathematics, it is a graph with complex topological structure features. Complex networks have 

characteristics that simple network structures, e.g., lattice networks and random graphs, do not have, and 

these characteristics often appear in real-world systems. Therefore, these highly complex systems are 

closely related to the research of complex networks. With the furthering and development of research, 

the academic field of complex networks, which studies real-world systems such as telecommunication 

networks, computer networks, biological networks and social networks, is called the field of network 

science. As an interdisciplinary subject, network science contains many scientific applications, e.g., the 

mathematical theories and methods of graph theory, statistical mechanics from physics, data mining and 

information visualization in computer science, statistical reasoning models in sociology and social 

structure. The National Research Council defines network science as “The study of network 

representations of physical, biological, and social phenomena leading to predictive models of these 

phenomena.” [28]. Therefore, network science has gradually become a stronger interdisciplinary subject 

and one of the most attractive fields of scientific research [29]-[31]. 

Based on different real-world network functions, the spread processes in network are diverse. As a 

typical transmission process in complex networks, epidemic spread has become an important topic in 

network science research in recent decades [6]-[11]. On one hand, many epidemics spread rapidly and 

easily cause social panic, which can lead to a series of (associated) social problems, and the process of 

this spread is closely related to the continuous development and evolution of human relationship network 

structures. On the other hand, for a specific epidemic, it is necessary to model it using a specific network, 

in order to reproduce the real-world dynamics of the epidemic and design methods to control or even 

eradicate the disease. In addition, based on epidemic spread models, many problems in complex networks 

have been solved, such as the measurement of node influences. Additionally, the established epidemic 

mathematical models can be extended to study other propagation behaviors on complex networks, such 

as cascading failures and information diffusions[14]-[18]. Because of the propagation characteristics of 
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different behaviors, new propagation models have been built and studied based on the mathematical 

models of epidemic spread. 

1.2 Thesis Objectives and Arrangement 

This thesis studies the relationship between the complex network structure measurements and the 

propagation processes, i.e., the influence of complex network structure measurements on the propagation 

processes and the coevolution between network structures and the propagation processes. The main 

research ideas are summarized in Figure 1.1. The influence of network structure measurements, e.g., 

degree, betweenness, closeness, on the propagation process is studied. Based on the degree value of the 

nodes, a method to quickly identify the influence of the nodes, as well as a cascaded failure model 

considering the local real-time information priority redistribution strategy is proposed, and a novel metric 

is proposed to measure the robustness in regard to virus attacks in social networks. Following on from 

this, the cooperative evolution of network structure and propagation process is studied, and the reliability 

of adaptive weighted networks is analyzed and discussed. In our research, the mean-field method [32], 

[33], differential dynamics [34] and other theoretical methods are used to model the network dynamics 

process, and nonlinear stability analysis [35] is used to study and discuss the critical characteristics and 

dynamics processes of propagation. 

 
Fig 1.1 The framework of the thesis. 

As shown in Fig 1.1, the most concerned network structure measurement in the thesis is the degree 

of nodes and the dynamical measurements are the spread velocity, the final infection scale and the 

epidemic threshold. A method in light of node degree and network structure to identify high-influence 

nodes rapidly in networks was first proposed. And then a novel cascading failure model was built and 

analyzed based on the degree of nodes. The impact of network structure measures on the propagation 

processes is reflected in the changes of network dynamical measures. A novel metric based on the 

network dynamical behavior measurements is proposed to quantify the network robustness in regard to 

virus attacks. Besides, the coevolution between network structures and the propagation processes are 
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analyzed to describe and understand the relationship between them. 

The content of each chapter of the thesis is arranged as follows. The main work of the thesis is from 

Chapter 4 to Chapter 8. The first chapter introduces the significance of the research, the research 

background, research status, main work and the chapter arrangement of the thesis. 

Chapter 2-3: The information of network structure measurement and cooperative evolution in 

communication dynamics is introduced, including complex network measurements, classical network 

models, typical propagation behaviors and virus propagation models. Finally, the interaction and co-

evolution between network structure measurement and propagation behavior are discussed. 

Chapter 4: Considering the dynamic change of networks, the privacy of network information and 

the big data of the network, this chapter focuses on how to quickly find the highly influential nodes in 

the network. A method based on the degree value of nodes to do this, which can quickly find a fraction 

of highly influential nodes in the network is proposed.  

Chapter 5: Considering the real-time of network information and the rationality of load 

redistribution strategies, a new cascading failure model to analyze the robustness of a network due to 

node failure is proposed. Additionally, a network robustness and reallocation strategy are analyzed and 

discussed. The simulation results in artificial networks and real-world networks prove the effectiveness 

of the threshold analysis and reallocation strategy. 

Chapter 6: Considering the network dynamical measurements, a novel robustness metric with 

respect to virus attacks in social networks is proposed. Simulation results show that the network becomes 

more vulnerable to the virus attacks as the average degree of the network grows in both homogeneous 

and heterogeneous networks.  

Chapter 7: In this chapter, an adaptive weighted network model is proposed to describe the 

interactions between network structures and propagation processes. By using the mean-field method and 

Monte Carlo simulation, the influence of weight distribution and edge break reconnection probability on 

the propagation process is studied. The results show that the propagation threshold of the network 

increases with the decrease of the average network weight or the increase of the average edge break 

probability. 

Chapter 8: Considering the diversity of human relationships, and the interaction between network 

topology and epidemic spread, this chapter proposes a new adaptive weighted heterogeneous network 

model based on the SIS spread process, which describes the interaction between node dynamic behavior 

and epidemic spread. Based on the dynamic epidemic propagation dynamics model, an effective edge 

disconnection and reconnection strategy is proposed to suppress epidemic propagation. 

Chapter 9: Summary and prospects. This chapter summarizes the main contents and contributions 

of this thesis, and points out areas worthy of further study. 
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Chapter 2 

Preliminaries 

Network science, as a new interdisciplinary subject, covers mathematics, statistical physics, computation 

and various engineering technology sciences. As one of the main contents of network science research, 

the study on complex networks has attracted extensive interest in recent years, especially in the formation 

mechanism, evolution modes, structural measurements and dynamic behaviors on complex networks. 

Among them, network measurements have broadened people's understanding of complex networks, 

while network dynamics effectively depicts the essence of complex networks. The relationship between 

structural measurements and network dynamics reveals more profound and richer content of complex 

networks. 

The history of research on complex networks can be traced back to 1736, when the famous 

mathematician Leonhard Euler studied and solved the famous Seven Bridge problem [24], thus turning 

a physical problem into a mathematical problem. One of Euler's contributions was to bring in a new 

branch of mathematics: Graph Theory. To study the measurement characteristics of different networks, 

effective analyzable tools are needed, among which graph theory is one of the best. A network can be 

regarded as a graph which contains nodes and the links which connect these nodes do so according to 

certain rules or formulae. 

A network is described mathematically by a graph. According to the definition of a graph in graph 

theory, a network can be defined as the graph G = (V, E) composed of nodes and their connecting links 

(called edges). V and E are respectively recorded as the nodes set and the edges set of G. Of course, in 

different fields of science, the definition of a network is also different. What kind of network can be 

called a complex network? The famous scientist, Xuesen Qian, believes that complexity is the dynamic 

characteristic of an open complex giant system [34]. The complexity of a complex network mainly lies 

in [1]: 

 Complex structure: the number of nodes is large, and the network structure presents many different 

characteristics. 

 Diversity of links: the weightings of links are different, and the links may have directionality. 

 Diversity of nodes: nodes in a complex network can represent anything. 

 Network evolution: the generation and disappearance of nodes or edges. 

 Dynamics complexity: the dynamic change of a node’s state is a nonlinear dynamics system. 

 Multiple complexity fusion: the interactions among all of the above complexity items, resulting in 

more unpredictable networks. 

Complex systems are composed of many components that may interact with each other, such as 

social networks, biological systems, information networks, transportation systems, etc. While these 
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networks have different structural characteristics because of different functions, the communication 

behaviors on the network are also different, such as the spread of infectious diseases, information 

diffusion in social networks, traffic flow in traffic networks, the spread of computer viruses on the 

internet, etc. People are constantly studying real-world characteristics of these networks, trying to reveal 

the different propagation laws for each type of network, and trying to control the network measurements 

and network dynamics, which are the main contents of complex network research. 

This chapter introduces the basic information related to those complex networks closely related to 

this thesis. It will be viewed from three aspects: (1) the introduction of the main complex network metrics, 

including the typical complex network structure metrics and typical network models, (2) the introduction 

of the network propagation processes related to the thesis, including the propagation model, 

measurements and the main results, and finally (3) the introduction of the co-evolution between the 

dynamic behaviors and the network structure. 

 
2.1 Network Measurements and Network Models 

2.1.1  Main Network Structure Measurements 

(1) Degree and degree distribution 

Degree is one of the simplest and most important concepts for describing the attributes of a single 

node. The number of edges connected to a node is its degree. Degree distribution is a general description 

of the degree values of nodes in a network. For a network, degree distribution refers to the probability 

distribution of the degree of each node in the graph. 

For the degree of node i, ki refers to the number of nodes directly connected to i, which is the most 

basic static feature of a node. The average degree of all nodes in a network becomes the average degree 

of the network, which is recorded as <k>. Given the adjacency matrix A = (aij)N*N of network G, we have 

1 1
=

N N

i ij ji
j j

k a a ,                              (2.1) 

1

1 N

i
i

k kN
,                                (2.2) 

where N represents the number of nodes in G. 

The degree distribution P(k) of a network is the probability that the degree of a randomly selected 

node in the network is k. For example, the degree distribution of a random network and a small-world 

network model obey the approximate Poisson distribution, and the shape of the distribution graph is 

approximately bell shaped, and it decreases exponentially away from the peak value <k>. Therefore, 

these networks are also called homogeneous networks. However, it has been found that the degree 

distribution of many real-world networks, e.g., movie actor networks, power grids, etc., do not obey the 

Poisson distribution with uniform characteristics, but the power-law distribution as follows 

,                              (2.3) 
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where  is the power index, usually between 2 and 3. There are a large number of nodes having very 

low degrees and yet a few nodes having very high degree. The power-law distribution is more commonly 

called the scale-free distribution.  

(2) Clustering coefficient 

The degree of a network describes the number of neighbors a single node has. In fact, the 

relationship between the neighbors of nodes is very close. For example, in social networks, it is very 

likely that the two of your friends know each other. The clustering coefficient of a network, a parameter 

used to describe the clustering degree of nodes, can quantitatively describe the probability that those two 

friends are also friends with each other. The clustering coefficient Ci of a node i with a degree of ki in the 

network is defined as 

2
( ( -1)) / 2 ( -1)

i i
i

i i i i

E EC k k k k
,                           (2.4) 

where Ei is the number of existed edges in the network, and so obviously 0 1iC . = 0iC , if and only 

if any two neighbors of node i are not neighbors or node i has only one neighbor. Here, Ei can be regarded 

as the number of triangles made with node i as one of the vertices. The number of connected triangles 

with node i as the center is actually the maximum possible number of triangles including node i, i.e., 

( ( -1)) / 2i ik k . Therefore, from a geometric point of view, the definition of the clustering coefficient of 

node i is as follows: 

.               (2.5) 

The clustering coefficient C of a network is defined as the average of the clustering coefficients of 

all nodes, namely 

1

1=
N

i
i

C C
N .                              (2.6) 

(3) Average path length 

Furthermore, not only are the neighbors of each node in a network closely related, but also the 

relationship among the nodes is very close. Despite the number of nodes in a real-world network being 

huge, the path between any two nodes in a network is short. For example, the average distance between 

two users on Facebook is only 4.74 steps. This is the so-called small-world phenomenon. 

The shortest path between the two nodes i and j in a network is the path with the least number of 

edges directly connecting the two nodes. The distance dij is defined as the number of edges on the shortest 

path connecting the two nodes i and j. In this way, the average path length L of the network is defined as 

the average value of the distances between any two nodes, 

Ci

the number of triangles containing node i
the number of connected triples centered on node i



24 
 

  1= 1 ( 1)2
ij

i j
L d

N N
.                             (2.7) 

(4) Weights 

In many real-world networks, the relationships between nodes are different. For example, in the 

scientific research cooperation network, the number of papers that each researcher cooperates with is 

different; in the social network, people's intimacy with family members, friends or colleagues is different; 

in the internet or communication network, the traffic of each page/site is very different; in the traffic 

network, the traffic of each city is significantly different, and the traffic of big cities is different as the 

number of traffic lines is significantly greater than for those between small cities. Therefore, it is more 

suitable to describe these networks by weighted network models. 

Let wij represent the weight of the link between nodes i and j. A weighted network can use the link 

weight matrix (wij)n×n, i, j=1, 2, …, n. For an undirected network, the weight matrix is symmetric, that is, 

wij = wji. The strength of node i in the weighted network is defined as: 

( )
i ij

j i
s w

,                               (2.8) 

where ( )i  represents the neighbor nodes set of node i. 

(5) Centrality measurements of networks 

The concept of node centrality [46] represents the importance of nodes in the network, which is an 

important concept in social network analysis. Based on different indicators that impact the importance 

of nodes, many different definitions of centrality have been proposed. The simplest index of centrality is 

node-degree. The larger the degree a node has, the greater its influence/centrality. 

For a network with N nodes, the betweenness centrality of node i, denoted by iBC  is 

tis st

i
st

i g
nBC ,                                (2.9) 

where stg   is the number of shortest paths between nodes s and t, and i
stn   denotes the number of 

shortest paths between s and t which pass through node i. 

Closeness of node i is defined as the reciprocal of the average geodesic distances to all other nodes 

of i 

N

j
ij

i
i

d

N
d

CC

1

1 ,                             (2.10) 

where ijd  is the geodesic distance between i and j. 
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The nodes with the largest betweenness have the greatest control ability over the flow of information 

in the network, while the nodes with the largest closeness have the best observation for the flow of 

information. Therefore, the node with the largest betweenness and the largest closeness may not be the 

same node. 

Another widely used centrality measure is eigenvector centrality. The importance of a node depends 

on the number of neighbor nodes and the importance of each neighbor node. The eigenvector centrality 

of node i is defined as being proportional to the sum of the eigenvector centers of the nodes to which 

node i is connected. That is 

1( )

1 1=
N

i j ij j
jj i

EC EC A EC ,                       (2.11) 

where  is a constant and A is the adjacency matrix of the network. 

 

2.1.2  Network Models 

The previous section describes some basic indicators and statistical characteristics of network 

structures, which have been used to describe and evaluate real-world networks. The discovery of these 

different network structures in turn has prompted the theoretical research of network generation models. 

The usefulness of network models in the current context lies in the fact that they can be used as generators 

of synthetic networks to generate topological properties with particular requirements. In these network 

models, the dynamic behaviors, such as epidemics, can be studied in detail. In this section, some simple 

and general network models are introduced, which are used to explore the propagation processes from 

the perspectives of research motivation, construction process and important attributes. 

(1) Random networks 

The systematic study of random graphs [25], [94] was initiated in 1959 by two Hungarian 

mathematicians, Erdős and Rényi. The term "random graph" refers to the lack of order of connection 

arrangement between different nodes. Erdős and Rényi proposed a random graph model with N nodes 

and M connections, which is called the ER random network ,
ER
N MG . Starting from n disconnected nodes, 

an ER random graph is generated by connecting randomly selected nodes with probability p. Multiple 

connections are forbidden between the same pair of nodes until the number of edges equals M. 

Although it cannot reproduce most of the attributes in real-world networks, random graphs are the 

most widely studied model of graph models. The structural characteristics of ER random graphs change 

with the change of p. At that time, when N  and ln( )p N N , almost all networks generated by 

using the probability p become connected. For graph ,
ER
N MG , the probability of any node with degree k is 

1(1 )k N kp p , so the degree distribution of a random network obeys binomial distribution 

11
( ) (1 )k N kN

P k p p
k

.                         (2.12) 
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When N  and p is small, the degree distribution follows Poisson distribution 

( ) e( )
! !

kk Np
kkNpP k e

k k
.                        (2.13) 

(1) Small-world networks 

The first small-world network model [26] was proposed by D. Watts and S. Strogatz in the paper 

“Collective dynamic of 'small-world' networks” published in the journal Nature in 1998. It was found 

that the clustering coefficient of a regular network is high, but the average path length of a network is 

also large, while the average path length of a random network is short, and its clustering coefficient is 

low. A real-world network is neither completely regular nor completely random. Therefore, based on a 

regular network, the authors randomly reconnected each edge with the probability p (Self-connection 

and reclosing connection were not allowed), which introduced both randomness and long-range 

connections (or shortcuts) into the regular network. These small-amount and random long-range 

connections greatly reduced the average distance(s) between nodes in the network while maintain the 

high clustering characteristics of the original network, so that the network possessed a small-world 

characteristic. Adjusting the value of p realized the transition from a completely regular network (p=0) 

to a completely random network (p=1). 

The average path length L and the average clustering coefficient C are introduced to quantitatively 

analyze the small-world characteristics of the network. In Fig 2.1, two values are normalized, i.e. 

C(p)/C(0) and L(p)/L(0). It can be seen from Fig 2.1 that when p increases from 0, the clustering 

coefficient of the network after a random reconnection decreases slowly, but the average path length 

decreases very quickly, that is, when 0 < p << 1, C(p) ~ C(0), L(p) << L(0). This implies that after the 

rewiring, the resulting network shows small-world characteristics with a short average path length and a 

large clustering coefficient. 

Fig 2.1 The relationship between the average path length and clustering coefficient of WS small-world network 

model with the probability of reconnection p. (from Ref. [1]) 

M. Newman and D. Watts improved the WS small-world network model [1], [3]. Without changing 

the connection edge between nodes in the original regular network, they chose two nodes at random, and 

allowed the probability p to decide whether to add an edge between the two nodes or not. A random 
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connection edge was added between the two nodes. This kind of operation also introduces randomness 

and long-range connections in regular networks, which makes the network have small-world 

characteristics. 

(3) Scale-free networks 

In 1998, Albert-László Barabási and Réka Albert cooperated in a study of describing the World 

Wide Web (WWW). They found that the WWW network, which is composed of hyperlinks, web pages 

and files, did not have the same degree distribution as a general random network. It was found that there 

were a small number of highly connected pages with high-degree in the WWW network. The vast 

majority (more than 80%) of web pages have no more than 4 hyperlinks, but a few (less than 1/10000 of 

the total pages) have many links, more than 1000, and some pages even connect with more than 2 million 

other pages. As an analogy using the example of people’s height, most of the nodes are "short men", but 

there are a few "giants" with a height of 100 feet. In 1999, Albert-László Barabási and Réka Albert 

proposed a scale-free network model called the BA scale-free network [27]. This model was based on 

two assumptions: 

Growth mode: Many real-world networks are growing, such as the birth of new web pages on the 

internet, the joining of new friends in social networks, the publication of new papers, and the construction 

of new airports in the aviation network. 

Priority connection mode: New nodes tend to be connected to existing nodes with more connections 

when they join. For example, new web pages will generally have connections to well-known web sites, 

new members of the community will want to get to know well-known people in the community, new 

papers will tend to quote well-known literature that has been widely cited, and new airports will give 

priority to establishing routes with large airports. 

Based on these assumptions, the specific structure of the BA network model is as follows: 

Growth: Starting from a smaller network G0, with n0 nodes and E0 edges, add one new node at each 

step and connect to n existing nodes, 0n n , 

Priority connection: The connection mode is to give priority to nodes which have a high degree 

value. The probability of establishing a connection between the new node and the existing node i is 

i i j
j

k k . 

The basic metrics of these three network models are shown in Table 2.1. Among them, in the small-

world network,  is the number of neighbors of each node in the initial regular network. When , 

( )f  is a constant, and when , ( ) ln( ) /f . 
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Table 2.1 Basic measures of three network models. (from Ref. [2]) 
Measurement Random network Small-world network Scale-free network 

Degree 

distribution
 ( )

!

kke k
p k

k
 

min( , )

1

( )
( ) (1 )

!

k ik
i k i p

i

p
p k p p e

i k i
 

3( ) ~p k k  

Average 
degree 

( 1)k p N  2k  2k m  

Clustering 
coefficient 

C p  
3

3( 1)
( ) ~ (1 )

2(2 1)
C p p  

0.75~C N  

Average path 
length 

~ ln
lnl N

k
 ( , ) ~ ( )T Tl N p p f Np  log

~
log(log )

N
l

N
 

 

(4) Weighted scale-free networks 

The above network model can reflect the attributes of nodes in a network and the simple connection 

between those nodes, but not the diversity and difference of the interactions between the actual network 

nodes, for example, the strength, the tightness and the distance between the nodes. Therefore, the 

weighted network model was introduced to describe the actual network. Barrat, Barthélemy and 

Vespignani proposed the famous weighted scale-free network model BBV model [95]-[98], where the 

results show that the node-weight, node-degree and edge-weight satisfy the power-law distribution. The 

algorithm for generating the BBV model is as follows: 

 The initial network is fully connected with N0 seed nodes, and the weight of each edge is set 

at w0, 

 One node is added in each step, and the nodes added in each step send out m edges, which are 

connected to the existing node i according to the priority principle of node strength. The 

preference probability of the new node being connected to an existing node i is 

new i i j
j

s s , 

 The weight of each new edge is w0, and the new edge will cause the change of the network’s 

weight: when the new node is connected to node i, the node strength of node i will increase by 
a constant parameter , and the node strength of node i will change to 0i is s w , as 

shown in Fig 2.2, 

 The increase   is allocated to other sides of node i according to the following rules: 

ij ij ijw w w , where ij
ij

i

w
w s

, 

 Repeat the above steps until the total number of network nodes reaches N. 
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Fig 2.2 Generation diagram of BBV network. (from Ref. [95]) 

The measurement of complex networks has become an important research direction of complex 

network dynamics. By revealing some simple dynamic rules or network characteristics, such as the 

priority connection characteristics in scale-free networks and the high clustering characteristics in small-

world networks, complex network topology can be generated. These network metrics are not only 

important tools for generating network models, but also important factors to shape real-world networks 

such as the internet and social networks. 

 
2.2 Propagation Dynamic Processes 

Besides the network measurements, another focus of complex network research is the dynamic 

behaviors on a network. Research shows that complex network measurements have an important impact 

on the dynamic changes of nodes. For example, the epidemic threshold of virus spread in a small-world 

network is larger than in a scale-free network, but the infection scale at the steady state in a scale-free 

network is smaller than in a small-world network. This section briefly introduces two kinds of 

propagation processes and some conclusions which relate to this thesis. 

 
2.2.1  Epidemic Spread 

 For more than 200 years in the history of epidemiological research, the mathematical model of 

epidemic spreading [99]-[102] has been developing into a research field spanning the field of 

mathematical biology and other disciplines. The epidemic model describes the dynamic evolution 

process of health, infection and other states in populations. In epidemic models, the population can be 

divided into different categories according to the stage of the disease, for example, Susceptible refers to 

the healthy population that can be infected. Infected refers to the population that has been infected and 

is infectious. Recovered refers to the population that has recovered from the disease. There are other 

classifications that can be used to represent other possible states of an individual about a disease, such as 

an Immune individual. This framework can be extended to consider diseases that are transmitted through 

contact with external vectors, such as malaria viruses which are carried by mosquitoes. In order to 

understand the dynamic evolution of the number of infected individuals over time, it is necessary to 

define a basic individual-level-based process to control individuals from one state to another. 

The simplest definition of epidemic dynamics assumes that the total population in the system is 

fixed, composed of N individuals, and ignores any other demographic processes (migration, birth, death, 
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etc.). One of the simplest two-state partition models is the SIS model, which contains two state transition 

processes: 1) S I , when a healthy individual interacts with an infected individual, there is a certain 

probability they will become infected . 2) I S , there is a certain probability the infected individuals 

will recover to full health. In the process of simplified modeling, the probability of state transformation 

is assumed to be a constant. Epidemics can be described as a random reaction diffusion process. 

Individuals of different states correspond to individuals of different populations. These individuals 

evolve according to a set of interaction rules and represent different transformation probabilities between 

different states. In this way, the SIS model can be expressed as 

( ) ( ) ( ) ( )

( ) ( )

S i I j I i I j

I i S i                           (2.14) 

where   and   are the probability of infection and recovery respectively. When   is small 

enough, the infection process in the model will continue. 

Fig 2.3 Typical epidemic spread models. 

Similar to the SIS model, there are many other epidemic models that can be defined in this way. Fig 

2.3 shows different epidemic spread models from the perspective of the reaction diffusion process. 

Squares represent different states, while arrows represent transitions between the states, which occur 

according to their respective probabilities. In the SIR model, an S-state node is infected by an I-state 

neighbor with probability , while an I-state node will restore to the R-state with probability  and 

this state will not be changed again. Different to the SIR model, the R-state node in the SIRS model will 

change to an S-state with probability   and continue with the whole state evolution process. With 

consideration of the incubation period of an epidemic, the SEIR model was proposed by researchers. In 

the model, an S-state node will change to an E (exposed) state with probability , and an E-state node 

will be infected by an I-state neighbor with probability , while an I-state node will return to the R-

state with probability , after which it will not change state any more. On the one hand, these models 

can be used to describe different types of infectious diseases. For example, the SI model can simulate the 

spread of HIV, the SIS model can represent the spread of most influenza viruses, the SIR model can 
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represent the spread of the smallpox virus, and the SEIR model can represent some virus transmission 

behaviors with a latent period. On the other hand, they can be used to describe and study other types of 

network propagation behaviors, such as information diffusion, cascading failure and so on.  

In the study of complex networks, one of the simplest methods for dynamic behavior analysis is the 

mean-field approximation [32], [33]. The mean-field method is widely used in the analysis and prediction 

of epidemic transmission dynamics, and its analytical results can better reflect actual situations. In short, 

the mean-field method is to deal with the effect of environment on the object collectively, and replace 

the sum of single effects with the average effect. This section focuses on the application of the mean-

field method in the analysis of full contact SIS models and gives basic conclusions by taking a small-

world network and a scale-free network as examples. 

The earlier epidemic model was proposed by Reed and Frost in an unpublished paper in 1920, and 

was also the first time differential equations were used to describe dynamics. In this paper, the differential 

equations of the SIS propagation model and some conclusions are introduced. 

For a homogeneous network, random network or small-world network, etc., let the average degree 

of nodes in the network be <k>, the infection rate of an epidemic be , the recovery probability of the 

nodes be , and S(t) and I(t) represent the node density of the S-state and the I-state, respectively. Thus, 

the differential equation of SIS model is as follows 

( ) ( )(1 ( )) ( )dI t k I t I t I t
dt

.                        (2.15) 

This equation describes the changing of the density of I-state nodes at time t, in which the term 

( )(1 ( ))k I t I t  describes the new I-state individuals after the S-state nodes are infected, and the term 

( )I t  describes the I-state individuals reduced by the restoration of I-state to S-state. The steady-state 

equation of (2.15) is ( )(1 ( )) ( )=0k I I I , so the steady-state solution satisfies 

0,
( )= 11 ,

c

c
I

k ,                             (2.16) 

where the epidemic threshold is =1c k . When the effective infection probability is less than c , the 

epidemic in the network dies out, and when the effective propagation probability is greater than c , the 

epidemic spreads widely in the network, that is, there will always be some infected nodes in the network. 

For heterogeneous networks, the assumption that the degree of nodes is the same will not be able to 

describe real-world situations. In order to more accurately describe the epidemic spread process on 

heterogeneous networks, Pastor-Satorras and Vespignani proposed the mean-field method of the 

heterogeneous network [103]. The mean-field equation of the SIS virus model on heterogeneous 

networks is shown as follows 
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'

'
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k

dI t I t k I t P k k I t
dt .                 (2.17) 

The first term at the right side of (2.17) describes the recovery process of the infected node, and the 

second term represents the infection process of the healthy node, 
'

'

( ' | ) ( )k
k

P k k I t   is the infected 

neighbor of the node with degree k. According to (2.17), the epidemic threshold of the heterogeneous 

network is 2=c k k  . When the network size N  , there is 2k  , therefore 0c  , the 

epidemic threshold is 0. Fig 2.4 compares the relationship between the infection density at the steady 

state ( )I   and the effective infection rate   of the SIS model on an Erdös-Rényi network (ER 

network) and a Preferential attachment network (PA network) [27], [30]-[31]. It can be seen from the 

figure that the epidemic threshold of the heterogeneous network is obviously smaller than that of the 

homogeneous network, while the infection scale at the steady state of the homogeneous network is larger 

than that of the heterogeneous network. 

 

Fig 2.4 The relationship between the infection density at the steady state ( )I  and effective infect rate  (SIS 

model). 
 

2.2.2  Cascading Failure 

Most real-world networks, because of their own network functions, will bear certain loads, such as 

traffic flow load in traffic networks, voltage load on power networks and information flow load on the 

internet. This requires that the nodes/edges in the network have a certain load capacity and a load 

processing capacity. When the load allocated to the nodes/edges exceeds their processing capacity, the 

nodes/edges will be overloaded and fail. After a failure, the node/edge redistributes its load to other 

nodes/edges, and this kind of cyclic behavior will continue until there are no new failed nodes/edges. 

This process is called a cascading failure. In short, the failure of one or a few nodes/edges in the network 

will lead to the failure of other nodes/edges through the coupling relationship between the nodes, and 

then produce a cascading effect, eventually leading to the collapse of a considerable number of nodes or 

even the whole network. 

Based on the mechanisms of a cascading failure, many network cascading failure models are 

proposed, such as the Sandpile model [79], the CASCADE model [78], the OPA model [80], the Motter-
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Lai (ML) model [75]-[77]. Based on the summary of these models, it can be found that there are three 

main factors affecting cascading failure: 

(1) Initial load 

The initial research assumed that the initial load of nodes in a network is the same, but this is not 

consistent with the initial load distribution in real-world networks. Later, many models used the degree 

or betweenness of nodes as the initial load. The betweenness describes the ability of nodes to control the 

network flow along the shortest path. The larger the number of shortest paths through the node, the 

greater the initial load of the node. While this definition is reasonable, the complexity of the calculations 

is relatively high because global information is needed to calculate the betweenness of a node. In order 

to reduce the computational complexity, many researchers have set the initial load as a function related 

to the node’s degree, for example, considering the node's own degree and the neighbors’ degree. 

(2) Load capacity 

The definition of load capacity can be roughly divided into three categories: the first is that the load 

capacity of each node is independent of the initial load of the node. Load capacity is defined as a statistical 

distribution, which increases with the increase of network size (ICA mode) or defined as a constant (ECA 

mode). The second definition of load capacity is proportional to the initial load of the node, which is 

currently the most widely used. The third is that the load capacity is non-linear to the initial load. Based 

on the data of real-world networks, it is found that the load capacity of nodes is not linear with the initial 

load, as some nodes have a very small initial load but a very large residual capacity. This discovery has 

triggered many new thinking and research on the relationship between the initial load and the load 

capacity. 

(3) Load redistribution strategy 

Load redistribution refers to the behavior of redistributing the load to other nodes in order to ensure 

the normal operation of network functions after a node’s failure. An effective load redistribution strategy 

can reduce the probability of cascading failures and the scale of a network’s failure. At present, load 

redistribution strategies include: the uniform redistribution strategy, the random redistribution strategy, 

the global redistribution strategy, the local optimal redistribution strategy, and the adjustable load 

redistribution strategy. 

 
2.3 Adaptive Networks 

In most real-world networks, the evolution of a network structure is always related to the states of 

the network nodes, and vice versa. For example, in the crowd contact network, the healthy people are 

“far away” from the infected individuals by wearing masks and avoiding contact. In such a process, the 

network structure changes due to the state of the nodes. In turn, due to the adjustments of the network 

structure, the original transmission paths change, and the transmission process will also be affected. For 

a transportation network, if a road is often blocked, the road is likely to be widened or a new road built 

to alleviate the congestion. That is, the flow of traffic and the network structure influence each other. In 
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this way, a cooperative evolution process between network topology and propagation dynamics is formed 

in the network. The network with the above process is called an adaptive network, combining the 

evolution of network structure, node state dynamics and the interaction between them together. Adaptive 

networks exist widely in real life, such as technology networks, transportation networks, biological 

networks and social networks. 

Considering that individuals change their behavior adaptively in order to avoid possible infection 

in the outbreak of a disease, Gross et al. introduced the rewiring rate in [36], and proposed the concept 

of the adaptive network model for the first time. The model is described as follows: Assume that there 

are N nodes, L undirected edges in the random graph, and the node state is susceptible (S) or infected (I). 

Every I-state node returns to an S-state with probability r. For an SI-edge, an I-state node infects an S-

state node with probability p, which makes the S-state node become an I-state node. At the same time, 

the S-state node disconnects the SI edge with probability w, and then randomly selects an S-node to 

establish a new edge. Assuming that the disease breaks out in a static homogeneous network, the average 

number of people an I-node can infect in the infection cycle, i.e., the basic reproduction number, is 

0 = /R p k r , so the epidemic threshold can be written as p*= /r k . When there is an adaptive rewiring 

process in the network, the expectation of the node’s degree can be written as ( ) exp( )k t k wt , where 

t refers to the duration that the node has been infected. By averaging the number of infections during the 

infection period 1/r, the epidemic threshold is obtained, p*= / (1 exp( / ))w k w r . 

Gross defined in reference [36] that the densities of the susceptible and infected nodes are i and s 

respectively, and the densities of SS-links, II-links and SI-links of each node are lSS, lII and lSI respectively, 

so 1s i , / 2SS II SIl l l k . abcl  represents the density of a triple, where , , [ , ]a b c S I . In order 

to study the dynamics caused by the mechanism of adaptive rewiring, three equations of the changes of 

i, lSS and lII are applied to describe the dynamic state and topological structure of the network. 

SI
di pl ri
dt

,                               (2.18a) 

( 1) 2ISIII
SI II

SI

ldl pl rl
dt l

,                          (2.18b) 

( )SS
SI SSI

dl r w l pl
dt

.                           (2.18c) 

(2.18a) describes the change of nodes in state I, the increase of I-state nodes caused by infection is 

SIpl . As the I-state nodes recover at probability r, the decreased number of I-state nodes caused by the 

recovery process is ri. (2.18b) describes the change of II-links. In a single infection event, the virus 

spreads through an SI-link, changing the SI-link into an II-link with probability p, so at least one II-link 

will be generated in a single infection event. But if there are other I-state neighbors, the infection event 

will generate other II-links. Therefore, the total number of II-links generated by an infection event is 

1ISI

SI

l
l

, where "1" represents the SI-link where the infection occurs, and the first item represents the 

number of ISI-triples formed by this SI-link. It can be concluded that the generation rate of an II-link is 
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( 1) ( )ISI
SI ISI SI

SI

l
pl p l l

l
. If the nodes on an II-link recover with probability r, then the II-link decreases. 

The average number of II-links formed by an I-state node is 2 IIrl , where "2" means that one II-link 

connects two I-state nodes, so the rate of decrease of II-links is 2 IIrl . For (2.18c), since the S-nodes in 

each SS-link may be connected to other I-nodes, if the S-nodes in this SS-link are infected, the SS-link 

will be reduced. The reduction rate of SS-link is SSIpl , the recovery of an I-state node in an SI-link will 

increase the SS-link, and the corresponding rate is SIrl , while at the same time, each process of rewiring 

will increase one SS-link, so the rate of SS-link increase caused by rewiring is SIwl . 

(2.18) depends on two unknown second-order moments- IS Il  and SSIl , and the solution of these 

two quantities depends on the quaternion in the network. With such a development, the equation group 

will be very complex and cannot be solved. Therefore, the method of moment closure approximation is 

used in ref. [158] to make it closed, i.e., = SI SI
ISI

q l ll
k s

. When the degree distribution of the network 

obeys Poisson distribution, the residual average degree and average degree of the network are equal, 

= 1
q
k

. Similarly, =2 SS SI
ISI

l ll
s

, (2.18) can be reduced to 

SI
di pl ri
dt

,                                (2.19a) 

( 1) 2SIII
SI II

ldl pl rl
dt s

,                           (2.19b) 

( ) 2SS SS SI
SI

dl pl lr w l
dt s

.                           (2.19c) 

Due to the interaction between the network topology and dynamics on adaptive networks, there are 

many new dynamic phenomena, as shown in Fig 2.5. In the figure, the thin line represents the analytical 

results of (2.19), and the circle represents the simulation results. We can see from the figure that the 

analytical results of the differential equation are consistent with the numerical simulation results, which 

further proves that the model is suitable for analyzing dynamic homogeneous networks. When there is 

no adaptive rewiring, only one continuous phase transition occurs at the propagation threshold p*; when 

there is adaptive rewiring, the threshold p* increases and another lower threshold appears, that is, the 

persistence threshold, corresponding to saddle node bifurcation. 

Although increasing the probability of adaptive rewiring can reduce the infection scale of the disease, 

the persistence threshold changes substantially when the probability of rewiring is large. First, the saddle 

node bifurcation disappears, and then a subcritical Hopf bifurcation which will lead to the instability 

limit cycle being replaced. When the probability of edge rewiring is higher, the subcritical Hopf 

bifurcation becomes the supercritical Hopf bifurcation. As the new limit cycle is stable, this supercritical 

Hopf bifurcation marks the third threshold, when a continuous phase transition to the oscillatory state 

occurs. However, such oscillations can only be observed in a relatively small range before the persistence 

threshold is reached, as shown in Figure 2.6. There is only a single attractor in the white and light gray 
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areas. The white areas are healthy and the light gray areas are morbid. In the middle gray area, the healthy 

state and morbid state are stable. Another small bistable region is dark gray, where a stable healthy state 

and a stable propagation limit cycle coexist. The transition lines between these regions correspond to a 

transcritical bifurcation (dotted line), saddle node bifurcation (dotted line), Hopf bifurcation (solid line) 

and periodic folding bifurcation (dotted line), respectively. Therefore, in general, the interaction between 

topology and dynamics on adaptive networks can lead to numerous dynamic phenomena. 

 
Fig 2.5 Relationship between steady-state infection density i* and infection probability p under different adaptive 

rewiring rates w. (from Ref. [36]) 

Based on the adaptive network model of Gross, Shaw et al. [38] in 2008 used the adaptive 

mechanism to study the transmission process and characteristics of the SIRS in the adaptive network, 

and found the same phenomena as Gross's research, such as bistability and bifurcation. Gross et al. [104] 

further proposed a computational approach to the investigation of emergent properties of adaptive 

networks, where they have avoided the strong homogeneity assumption that is inherent in previous 

analytical moment closure approximations. Through their analysis, it was found that in a considerable 

parameter range the prevalence of the disease and the topology of the network exhibits oscillations of 

large amplitude. 
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Fig 2.6 Relationship between the probability of edge break reconnection w and the probability of infection p. (from 

Ref. [36]) 

 
2.4 Summary of the Chapter 

In this chapter, some basic information related to complex networks has been reviewed. Firstly, it 

introduced the basic concepts related to complex network, including the definition of complex networks 

and the definition of main network metrics. Then it introduced several network models related to the 

thesis - random network, small-world network and scale-free network models. Then we introduced two 

typical network propagation behaviors: epidemic propagation and cascading failure. Finally, the 

information regarding complex network structures and dynamic coevolution adaptive networks was 

introduced. 
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Chapter 3 

Research Status 

At present, the research of complex network dynamics mainly focuses on 3 aspects: the dynamics 

of complex networks, the dynamics on complex networks and the interactions between these two 

dynamics [26]. The dynamics of complex networks focuses on the complex network structure. It  

regards to the network itself as a complex system growing or changing according to the specific local 

area construction rules, and studies the evolution rules of the network and the structural characteristics 

of different networks [25]-[27]. The dynamics on complex networks stipulate that each node in the 

network has a dynamic state. The network topology remains unchanged, while the node state changes 

according to the local evolution rules, such as in the study of viruses, information dissemination, etc. [1]-

[6], [16]. Finally, there is a very close relationship between the dynamics of complex networks and the 

dynamics on complex networks [36]-[39]. The network structure affects the spread dynamics in the 

network, for example, the influence of the selection of the initial infected seeds on the epidemics, the 

network degree distribution and the clustering coefficient on the propagation threshold and scale, etc. 

Conversely, the spreading processes also affect the network structures. For example, during an outbreak 

of influenza, healthy people have an awareness of the risks of becoming infected, and so their behavior 

of actively avoiding contact with infected individuals would cause a change of the network structure. 

This evasive behavior can also reduce the probability of healthy nodes becoming infected, thus inhibiting 

the spread of the virus. This way, a feedback loop is formed between the network topology and the 

dynamics on the network, which is called an adaptive network [36]-[39]. Based on the research of the 

above three aspects, the remainder of this chapter gives a detailed introduction to the research status of 

each aspect, which is more related to the research content of the thesis. 

 

3.1 Measurement of Node Influence 

A node is the most primary and important element of a network, and the relationship between the 

nodes and the positions of nodes in the networks determines the structure of the network. In complex 

networks, there are some special nodes or links between nodes, which, compared to other nodes in the 

network, can affect the structure and function of the network to a greater extent. For example, the content 

released by the most popular bloggers can have tens of millions of forwards in only a few minutes, or 

the damage of a high voltage line in a power grid will cause a large-scale blackout, while only 1% of the 

companies in the global economic system control 40% of the global economic lifeline. In these networks, 

a small percentage of the important nodes can affect most of the nodes in the network quickly. Therefore, 

the problem of the ranking of influence/importance of nodes and the mining problem of high influence 

nodes have wide application value and significance. 

The ranking and mining of nodal influence has become an important area of complex network 

research [46]-[50]. So far, within the specific problems studied, researchers have proposed a variety of 

methods to rank the influence of nodes. Accordingly, these sorting methods can be roughly divided into 
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four types: the structural centralities [53]-[57], the iterative refinement centralities [53], [58]-[61], the 

node operation methods and the dynamics-sensitive methods [62], [63]. These four kinds of methods 

contain many more detailed sorting methods. According to their different requirements and measurement 

standards, these methods can effectively rank the influence of nodes in specific networks or functional 

environments. 

Among all of these methods, the neighbor-based methods are the simplest and most intuitive 

methods. A straightforward and efficient algorithm is used to directly count the number of neighbors 

nearest to a node, resulting in the degree centrality. Chen et al. proposed the semi-local centrality [54], 

an improved version to the degree centrality considering the information of the multi-order neighbors 

(four orders). K-shell decomposition [55] can be regarded as an extension of degree centrality. It defines 

the influence of nodes according to their positions in the network, i.e., the node’s coreness. Simply put, 

a node’s influence is strongly correlated to its capacity to impact the behaviors of its surrounding 

neighbors. 

The path-based sorting method can be widely used in transportation networks, communication 

networks and social networks, as the more influential nodes play an important role in the transmission 

process of information packets and traffic flows. In these networks, we need to examine the ability of 

nodes to control the information flow, which is often closely related to the paths available in the network. 

For example, the closeness of the nodes [49] measures the influence of the nodes by calculating the 

average distance between each node and all other nodes in the network. The smaller the average distance 

between one node and the other nodes in the network, the greater the closeness of the node is. Closeness 

centrality can also be understood as the average time for information to completely spread throughout a 

network, starting from a single node. According to the betweenness centrality [57], the larger the number 

of the shortest paths through a node, the more important the node is. The betweenness centrality describes 

the control ability of nodes to the network flow along the shortest paths. 

The previous methods are all measures of the influence of nodes based on the number of neighbors 

to each node. However, the method based on an eigenvector not only considers the number of neighbors 

a node has, but also considers the impact of their quality on the importance of the nodes. For example, 

with regards to the network of the internet, the famous PageRank algorithm [58] gives the score of a 

node increase along the access path by simulating the process of users browsing the web, which is used 

to identify the importance of each web page. In HITS algorithm [59], the automatic information 

aggregation algorithm [60] and the SALSA algorithm [61], the dual roles of nodes, authority and hub, 

and their interactions are considered. These methods have received great attention in the field of physics, 

chemistry, biology and business, and have important reference significance. 

In the node removal and contraction method, the most significant feature is that in the process of 

ranking the influence of nodes, the structure of the network will be in a dynamic change, and the 

importance of the nodes is often reflected in the destruction of the network after the node is removed. 

From the perspective of measuring the robustness of the network [65], [66], once some nodes fail or are 

removed, the network may fall into paralysis or be divided into several disconnected subnets. Many 
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infrastructure networks in real life, such as power transmission networks, transportation networks, water 

and natural gas supply networks, etc., all have the risk of "one point of failure, whole network paralysis" 

[45]. In order to reduce or avoid the risk, researchers have proposed many methods to study the changes 

of network structures and functions after node shrinkage or removal, in order to provide the basis for the 

design and construction of new systems. 

At present, the main method to evaluate the advantages and disadvantages of the above sorting 

algorithms can be described as follows. Take the important nodes from the sorting algorithm as the 

research object, and judge whether the sorting is appropriate by examining the influence of these nodes 

on some structure and function of the network and on the state of the other nodes. The commonly used 

methods to evaluate these ranking algorithms are the network-based robustness and vulnerability 

methods [65], [66], and the network-based propagation dynamics model [6]-[8]. For example, if a single 

node is selected as the initial propagation source, the larger the propagation scale, the greater the 

influence the node. 

 

3.2 Propagation Dynamics 

Another major topic for the research of complex networks is propagation dynamics [64], in which 

every node in the network is regarded as a dynamic system. In this process, the topology of the network 

remains static while the state of the nodes is constantly changing. One important piece of progress in this 

field refers to the dynamic process of network propagation. Dynamic behaviors exist widely in real-world 

networks, and they are different in networks with different functions. This section introduces the dynamic 

behaviors in the networks related to this thesis, which include typical propagation models and important 

conclusions and results related to network structure measurements and dynamic behaviors. 

(1) Epidemic Spread Model 

As a typical dynamic process, epidemic spreading has become a research hotspot in the field of 

network science for nearly 20 years, and many important breakthroughs have been obtained [1], [7], [8]. 

In the early stage of epidemic model research, the compartmental model [81]-[83] was mostly used, 

including the most typical and simple SI (Susceptible-Infected) model, the SIS (Susceptible-Infected-

Susceptible) model and the SIR (Susceptible-Infected-Recovered) model. These models assume that the 

nodes in the network are uniformly mixed, that is, each individual has the same chance to come into 

contact with any other individual within a unit of time. The SI model is the simplest case of transmission, 

which assumes that an individual is always in an infectious state after being infected, such as HIV [82]. 

In the real world, many infectious diseases are curable, so there are more realistic epidemic spreading 

models such as SIS and SIR. The compartmental model is based on the completely mixed hypothesis, 

but in reality, individuals can only come in contact with a limited number of people in a crowd. Therefore, 

further study on the virus propagation models and analyses on homogeneous networks and heterogeneous 

networks has been conducted, considering of the impact of the real-world network structure 

measurements on propagation behaviors. It has been concluded that there is an important impact of the 

network structure measurements on the propagation velocity/speed, infection scale and epidemic 



41 
 

threshold. 

In the study of the epidemic spreading process, the outbreak threshold of an epidemic has a very 

important impact on the early warning and selection of control strategies for the outbreak and spread of 

the epidemic. It was found that the research method of the macroscopic emergence such as the epidemic 

outbreak is closely related to the non-equilibrium phase transition in statistical physics. Inspired by this, 

in the past decade, many analytical methods of epidemic propagation have been proposed. These range 

from the classical mean-field method [32], [33] to the more rigorous quantitative numerical analytical 

methods [7]. At present, there are many methods for threshold analysis and various conclusions about 

the epidemic threshold in the research of complex networks. For example, in homogeneous networks, 

there is a limited epidemic threshold 1/c k , where k  is the average degree of the network. When 

the infection rate is higher than the threshold, epidemics can exist in the network for a long time, but in 

the contrary situation, the viruses die out rapidly [70]. In heterogenous networks, the epidemic threshold 

is 2/c k k , assuming the network size N , there is 2k , therefore, 0c , the virus 

is more likely to be prevalent in such networks and exist for a long time [69], [70]. Another important 

measurement of the epidemic process is the infection scale, which is generally defined as the density of 

infection in the network at a stable state or within the same time period. The research has shown that, 

although homogeneous networks have a larger epidemic threshold than in heterogeneous networks, once 

the epidemic spreads in the network, the virus spreads faster and easier in homogeneous networks than 

in heterogeneous networks. 

In order to explain and predict some important problems in the spread of epidemics, computer 

simulations have been carried out to predict virus spread accurately as it is extremely difficult or 

impossible to get the general analytical solutions even for the analysis of the propagation dynamics on a 

static network, and further the internal laws of network dynamics evolution are found. The complexity 

factors, e.g., network hierarchy and aggregation, have also forced researchers to develop appropriate 

mathematical analytical methods and calculation models. It is worth mentioning that, although the 

specific mechanisms of different dynamics are different, the epidemic propagation dynamics model and 

its analytical methods are also used for reference in other commonly existing dynamics behavior studies, 

such as information, rumor diffusion [14]-[16], [84]-[86], consensus [87]-[89] and cascading failure [18]-

[20]. 

(2) Cascading Failure Model 

In March 2019, from the afternoon of the 7th local time, a large-scale power outage occurred 

throughout Venezuela, including Caracas, until the evening of the 8th, when the power supply was 

partially restored. Venezuelan President Maduro said at a rally that about 70% of the power supply in the 

areas affected by the power outage had been restored, but at noon, the power system was hit by a new 

round of cyber-attacks, leading to another collapse. Due to the deliberate destruction of the Guri 

hydropower station in Venezuela, the power of the whole country fell into a state of collapse in just one 

day. The blackout was initially caused by a power plant fault, however, this initial fault triggered a series 

of cascading failures, including circuit overloads, which spread across the whole power grid. In addition, 
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the blackout also indirectly led to other losses, such as communication interruption, water and gas supply 

paralysis, traffic congestion and so on. The losses caused by this cascading failure were huge and 

unpredictable. Therefore, it is very important to explore the cascading failure of this network to propose 

effective reliability measures. 

A cascading failure is a kind of network failure mode that can cause a series of failures and, 

ultimately, can lead to the propagation of a whole network failure [17]-[20]. Cascading failures exist 

widely in many real-world networks, such as power grids, transportation networks, the internet and 

economic networks. Therefore, many fields invest a lot of energy to explore cascading failures, so as to 

propose new measures to avoid such risks and reduce the catastrophic consequences of such cascading 

failures. At present, the related research of cascading failures mainly focuses on the analysis of the critical 

condition and failure mechanism, and the empirical research conducted on real-world network failures 

[71]. 

The fault process of a network can be regarded as a typical phase transition process, and the critical 

point of the phase transition indicates the overall failure of the network. The criticality analysis of 

network faults is generally based on the percolation theory [72]-[74]. By establishing the fault 

interdependence among the network nodes, the tolerance ability of the whole network function is 

analyzed by the tolerance of each node to risk. The study of critical conditions usually assumes that the 

failure depends on the topology of the network, and quantifies the impact of network structure 

measurement factors on network resilience. 

The research of fault mechanisms is mainly based on the principle of fault propagation to construct 

network cascading failure models, which can better describe the actual network cascading failure process. 

For example, an overload is a common cascading failure mechanism, which mainly occurs in power 

networks, transportation networks and other networks with transfer tasks. In these networks, if the traffic 

on one node of the network exceeds its threshold value, it will lead to the redistribution of traffic on the 

node, which will aggravate the load pressure of other nodes, and may lead to an overload failure of these 

nodes, and finally form fault propagation. In the study of complex networks, the degree/ betweenness of 

nodes is closely related to its load capacity and load distribution, and then the cascading failure caused 

by the overload is modeled. The existed typical models include the Motter Lai (ML) model [75]-[77], 

the Crucitti model [78] and the OPA model [79]. Among these models, the ML model is the most widely 

used to simulate the cascading failure processes of various networks. The OPA model is mainly aimed at 

simulating the cascading failure processes in power grids considering many characteristics of power grid 

operations. 

Compared with the theoretical analysis and model construction of cascading failures, the empirical 

research based on real-world failure data can achieve more reliable analysis conclusions. As a result, 

cascading failures in real-world networks have been widely concerned. Especially in the actual fault data 

of power grids, it has been found that due to the dual requirements of economy and reliability, power 

grids are required to always operate below the critical point of its own failure to meet the reliability 

requirements while get the maximum economic benefits. Under such conditions, once the cascading 
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failure occurs in the power network, the fault scale presents a power-law distribution, which greatly 

increases the probability of a large-scale failure [80]. 

 

3.3 Cooperative Evolution of Complex Network Dynamics 

The above research on complex networks divides into two directions mainly, one is to pay attention 

to the measurement of network structures and reveal the structural characteristics of networks, such as 

small-world characteristics [26] and scale-free properties [27], while the other is to study the dynamics 

of networks, that is, each node in the network has a dynamic state, which is autonomous. Under a specific 

network topology, the states of nodes change according to the local evolution rules, such as epidemic 

spread, information diffusion, cascading failures, etc. However, in most real-world networks, the network 

structure is not unchangeable, but evolves with the states of the nodes in the network. For example, in 

the crowd contact network, the healthy individuals have the awareness of being vigilant, and they can 

avoid contacting infected individuals by changing their connections, and so in turn, the individuals’ 

evasive behaviors can reduce the probability that the healthy individuals become infected, thus inhibiting 

the spread of the virus. In mobile communication networks, when a node fails, in order to ensure that the 

communication process continues, the communicating nodes adjust the relationship with the surrounding 

nodes adaptively, which leads to the change of the network structure, and the communication process 

between the individuals also changes. 

Therefore, there is a close interaction between the structure of complex networks and their 

propagation dynamics. The change of nodes’ states in the network will affect the evolution of a network’s 

structure, while the change of network structure also impacts the propagation behavior in the network. 

In this way, a feedback loop is formed between the topology and node state of the network. This feedback 

loop is a complex interaction between a time-varying network structure and node dynamics. This kind 

of network with a feedback loop is called a cooperative evolutionary network or adaptive network [36]-

[38]. 

Gross et al. [36] first proposed an adaptive network model based on the SIS epidemic model and 

introduced a new important parameter, the rewiring rate w. Because the adaptive behavior of individuals 

can change their connection, which will have a very important impact on the process of disease 

transmission, a lot of dynamic phenomena appear in the adaptive network. Among them, the bistable and 

oscillatory states in the adaptive network are characteristics that do not appear in static networks. With 

the development of adaptive network research, many adaptive network models based on real-world 

network characteristics have been proposed, e.g., the adaptive network model based on the Susceptible-

Infected-Recovered-Susceptible (SIRS) epidemic model [37]-[41], and the adaptive SIS model which 

considers community characteristics [90], [91], etc. Based on the analysis and research of these models 

under different network structures, the researchers proposed a variety of immunological and isolating 

strategies [90]-[93] for virus spread to put forward more targeted control measures, in order to better 

prevent the spread of disease. 

Besides the processes of virus propagation in adaptive networks, network structures and many other 



44 
 

propagation behaviors have this kind of adaptive cooperative evolution relationship, such as adaptive 

information diffusion [56], adaptive election [83], etc. On the one hand, the spreading of a disease in an 

adaptive network is similar to other propagation mechanisms, such as the transmission being limited to 

the local neighborhood, the dynamic processes of the model being random, and the topology changes 

with the update of node state. On the other hand, there are great differences between them, for example, 

the state in the disease model is asymmetric, as only the infected node can spread a disease, while in the 

opinion formation model, different opinions are equal, so the evolution mechanism is symmetric. 

Therefore, considering the characteristics of dynamics, we can use the adaptive network virus 

propagation model to analyze the propagation process of other dynamics. 
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Chapter 4 

Study on the Rapid Identification of High-influence Nodes in Complex Networks 

4.1 Introduction 

The high influential individuals in complex systems play a critical role in the dynamics on complex 

systems, for instance, the target population that need to be immune after an outbreak of an infectious 

disease, the optimal spreaders for information diffusion in online social networks [49], priority protection 

should be given to the important breakers and power units to prevent power outages caused by large-

scale cascading failure in power grid and so on. Identifying those influential nodes and finding effective 

ranking methods of node influence are significant subjects in the field of complex networks. 

How to design a ranking measure considering both universality and the effectiveness in complex 

networks has become one of the core problems affecting nodes study. In the last few years, various 

methods [46] have been introduced for studying the “importance” of nodes within complex network 

structures, mainly including the ranking methods based on nodes neighbors, such as degree centrality 

[53] and k-shell decomposition [54], the ranking methods based on path, such as betweenness centrality 

[57] and closeness centrality [50], the ranking methods based on eigenvector, such as the eigenvector 

centrality [53], [58], PageRank [58]and HITs algorithm [59] and the ranking methods based on nodes 

removal and shrink, such as the shortest distance method of node deletion [62] and node contraction 

method [63]. Those methods have been proved to be effective on nodes ranking through a large number 

of experiments. In light of these classic methods, many new improved methods were proposed, such as 

the semi-local centrality [47], LeaderRank [48] and some new ones based on the network topology [105]-

[107]. Measures to evaluate the ranking methods are usually based on the dynamics [16] and the 

robustness and fragility of networks. The influence of nodes is judged by its impacts on some network 

structures, functions and other nodes status in the network. Anyway, designing an effective sorting 

method is one of the most crucial problems in complex networks research. 

Currently, most of the researchers are focusing on the accuracy of the method to identify the most 

influential nodes, namely to find the most effective method of node ranking. In fact, now the networks 

we are facing demonstrate many characteristics which can be ignored in the past: 1) Extensive. With the 

development and progress of science and technology, we are now in a big data age, the scales of networks 

are growing fast. In this case, even the simplest ranking method will be time-consuming. 2) Adaptive. 

Many real-world networks are characterized by adaptive changes in their topology depending on the state 

of their nodes [36], the nodes order we ranked in the previous time may fail to be sorted in the current 

time. 3) Time-sensitive. Dynamic behaviors in real networks are time-sensitive, which means we need 

to find the influential nodes in a limited time to apply it into the dynamics. In addition, the main purpose 

of study on node identification is to find a fraction of top influential nodes for application, so mostly it 

is not necessary to rank all nodes. Based on the reasons above, instead of ranking all nodes in the network, 

we focus on finding a fraction of high-influence nodes in networks. 
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In this chapter, we proposed a method in light of node degree and network structure to identify high-

influence nodes rapidly in networks. Compared with the results gained from existed ranking methods, 

our method is proved to be better on identifying the fraction of high-influence nodes. Moreover, we use 

the SIR model, in which the high-influence nodes are regarded as spreaders and protected to evaluate the 

performance of our method. The simulations on different networks show that our method performs well 

on identifying high-influence nodes. 

Following parts are organized as follows. First, we introduce our new measure in Section 4.2, and 

in order to detect and analyze our measure, the definition of some classic centrality measures in Section 

4.2 has been briefly reviewed. The data description is presented in Section 4.3, and the effectiveness of 

our measures is discussed and analyzed, and then we use the SIR model to evaluate the performance of 

our method in different networks. Conclusions are given in Section 4.4. 

 

4.2 Methods 

Among those different centrality measures, each one has its scope of application and their respective 

characteristic. Here we briefly introduce some classic and authoritative methods, which will be used in 

experimental analysis in Section 4.4. 

A simple one is degree centrality, namely, the larger degree it is, the higher influence it will get. 

Compared with the centrality measure based on nodes local properties, methods considering the global 

information give better ranking results, such as betweenness centrality and closeness centrality as 

introduced in Chapter 2. 

As a local property, degree considers only local information of the node itself. So the degree 

centrality has lower computational complexity but also is low-relevant. Comparing with degree centrality, 

betweenness and closeness centrality measures considering the global information can better quantify 

the influence of node, but they are more time-consuming. Local centrality measure is proposed as a 

tradeoff between low-relevant degree centrality and other time-consuming measures. It considers both 

the nearest and the next nearest neighbors. The local centrality iCL  of node i is defined as 

j

j k
k

Q N ,                                (4.1) 

i

i j
j

CL Q ,                                (4.2) 

where j  is the set of the nearest neighbors of node j, kN  is the number of the nearest and the next 

nearest neighbors of node k. 

With the deepening of the research on node influence, a growing number of methods have been 

proposed. Most of these methods are based on the previous methods for improvement and get the desired 

effect. 
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Instead of ranking all nodes, we are focused on identifying a fraction of high-influence nodes. 

Considering the facts of uncertainty of network scale and topology, the timeliness of dynamic behaviors 

in real networks, we propose a method to rapidly identify high-influence nodes based on nodes local 

properties. Our method is introduced as follows: 

1) m nodes will be randomly chosen as the first source nodes, denoted as is , i = 1, 2, …, m, 

2) find the highest-degree neighbor of each is  as the second source nodes, denoted as _ (1)i Ns , 

i = 1, 2, …m, and then find the highest-degree neighbor of each _ (1)i Ns  as the third source 

nodes, according to this way, we will stop until we find the k + 1 source nodes, denoted as 

_ ( )i N ks , i = 1, 2, …, m, which means we will find m k  nodes, denoted by _ ( )i N Ks , i = 1, 

2, …, m, K = 1, 2, …, k. the first source nodes is  will not be counted, 

3) rank the m k  nodes we found according to degree, choose the top-j nodes jT  as the target 

nodes ( _ ( )j i N KT s ). 

Considering that degree is one of the simplest but most important parameters on describing local 

characteristics of nodes, we can implement our method without knowing the global information of the 

network. In addition, the close relationship among hubs (high-degree nodes) makes our method work. 

 
4.3 Experimental Analysis 

4.3.1  Data  

In experiments, a set of artificial networks are used to test the effectiveness of our method. 

Furthermore, two real networks are used to evaluate the performance of our method applying in real 

networks [26]: (i) Facebook - the complete Facebook network data (from a single-time snapshot in 

September 2005) of Caltech. Only intra-college links are included. There are in total 769 individuals in 

this Facebook network. We here consider the largest component with 762 individuals. (ii) Email - the 

network of Email interchanges between members of the University Rovira i Virgili (Tarragona). The 

basic topological properties of the empirical networks and the artificial networks are shown in Table 4.1 

and Table 4.2. 

Table 4.1 The artificial networks we study and their basic properties. 
Networks N <k> k_max C <d> r 

Scale-free network with clustering1 500 6 65 0.05 3.2166 -0.092 

Scale-free network with clustering2 500 6 104 0.27 3.2573 -0.080 

Scale-free network with clustering3 500 6 77 0.55 3.4794 -0.109 

Scale-free network with assortativity1 500 4 48 0.0325 3.8629 -0.1 

Scale-free network with assortativity2 500 4 48 0.0333 3.8893 0 

Scale-free network with assortativity3 500 4 48 0.0295 4.2205 0.2 
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Table 4.2 The empirical networks we study and their basic properties. N and L are the total numbers of nodes and 

links, respectively. <k> and k_max denote the average and the maximum degree. <d> is the average shortest 

distance. C and r are the clustering coefficient [26] and assortative coefficient [110], respectively. 

Networks N L <k> k_max C <d> r 

Email 1133 5451 9.62 71 0.0096 3.6060 0.0783 

Facebook 762 16651 43.70 248 0.4093 2.3378 -0.0662 

 

 
4.3.2  SIR Spreading Model 

Spreading models measuring the dynamics and the robustness and fragility of networks are used to 

evaluate the performance of ranking methods. The influence of nodes is judged by its impacts on network 

structures, functions and other nodes status in the network. Most of the researchers are using network 

models to evaluate the ranking methods. For example, calculate the nodes influence by SIS/SIR model 

or judge the nodes importance by attacking. 

We use the SIR model to examine the performance of our method in different networks. In SIR 

model, there are three states [1]: (i) Susceptible(S), (ii) Infected(I), (iii) Recovered(R). S individuals are 

susceptible to (not yet infected) the disease, I individuals have been infected and is able to spread the 

disease to susceptible individuals and R individuals have been recovered and will never be infected again. 

To investigate the influence of target nodes we found in the network, these nodes are first set to be 

infected or to be protected initially. The proportion of infected and recovered nodes at time t, denoted by 

f(t), can be considered as an indicator to evaluate the influence of the initially infected nodes at time t. 

f(t) increases with t, and finally gets stable when there is no infected node in the network. Thus both of 

the spreading velocity and the spreading scale evaluate the influence of the initially infected nodes. 

 
4.3.3  Effectiveness 

We use different ranking methods to verify the effectiveness of our method. At first, in order to show 

the results clearly, we simplify our method that in each implementation only one node is randomly 

selected as the first source node, and 10 nodes will be found according to our method, which means m = 

1, k = 10. After n implementations (each node is randomly selected as the first source node once and only 

once) the results of node's ranking and the average ranking of n implementations on each step t by their 

corresponding degree centrality (DC), closeness centrality (CC), betweenness centrality (BC) and the 

local centrality (CL) in different artificial networks and real networks are shown in Fig 4.1-Fig 4.10, 

including scale-free (SF) networks with different values of the clustering coefficient C (Fig 4.1-Fig 4.4) 

and the coefficient of assortativity r (Fig 4.5-Fig 4.8), Email network (Fig 4.9) and Caltech Facebook 

network (Fig 4.10). 

We can see from the Figs that the top-ranking nodes can be identified before step 8, and the nodes’ 

average ranking in step 3-step 7 by different centralities is smaller than at other steps in different network 

structures, which means the nodes in step 3-step 7 are the most influential nodes we find in 10 steps. 
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  (a)                              (b)                         (c) 

Fig 4.1 The nodes’ ranking and the average ranking of n implementations by betweenness centrality (BC) for 

artificial networks with exponential degree distributions, with n = 100, and different values of the clustering 

coefficient C. (a) C = 0.05, (b) C = 0.27, (c) C = 0.55, respectively. 
 

  
  (a)                              (b)                         (c) 

Fig 4.2 The node's ranking and the average ranking of n implementations by closeness centrality (CC) for artificial 

networks with exponential degree distributions, with n = 100, and different values of the clustering coefficient C. 

(a) C = 0.05, (b) C = 0.27, (c) C = 0.55, respectively. 
 

  
  (a)                              (b)                         (c) 

Fig 4.3 The node's ranking and the average ranking of n implementations by degree centrality (DC) for artificial 

networks with exponential degree distributions, with n = 100, and different values of the clustering coefficient C. 

(a) C = 0.05, (b) C = 0.27, (c) C = 0.55, respectively. 
 

  
 (a)                              (b)                         (c) 

Fig 4.4 The node's ranking and the average ranking of n implementations by semi-local centrality (CL) for 
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artificial networks with exponential degree distributions, with n = 100, and different values of the clustering 

coefficient C. (a) C = 0.05, (b) C = 0.27, (c) C = 0.55, respectively. 
 

  
 (a)                              (b)                         (c) 

Fig 4.5 The node's ranking and the average ranking of n implementations by betweenness centrality (BC) for 

artificial networks with exponential degree distributions, with n = 100, and different values of the coefficient of 

assortativity r. (a) r = -0.1, (b) r = 0, (c) r = 0.2, respectively. 
 

  
(a)                              (b)                         (c) 

Fig 4.6 The node's ranking and the average ranking of n implementations by closeness centrality (CC) for artificial 

networks with exponential degree distributions, with n = 100, and different values of the coefficient of 

assortativity r. (a) r = -0.1, (b) r = 0, (c) r = 0.2, respectively. 
 

  
(a)                              (b)                         (c) 

Fig 4.7 The node's ranking and the average ranking of n implementations by degree centrality (DC) for artificial 

networks with exponential degree distributions, with n = 100, and different values of the coefficient of assortativity 

r. (a) r = -0.1, (b) r = 0, (c) r = 0.2, respectively. 
 

  

2 4 6 8 10
0

100

200

300

400

t

B
et

w
ee

nn
es

s 
R

an
ki

ng

2 3 4 5 6 7 8 91011
0

20

40

60

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

50

100

150

200

250

300

t

B
et

w
ee

nn
es

s 
R

an
ki

ng

2 3 4 5 6 7 8 91011
0

20

40

60

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

t

B
et

w
ee

nn
es

s 
Ra

nk
in

g

2 3 4 5 6 7 8 91011
0

20

40

60

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

500

t

C
lo

se
ne

ss
 R

an
ki

ng

2 3 4 5 6 7 8 91011
0

50

100

t

Av
er

ag
e 

R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

t

C
lo

se
ne

ss
 R

an
ki

ng

2 3 4 5 6 7 8 91011
0

50

100

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

500

t

C
lo

se
ne

ss
 R

an
ki

ng

2 3 4 5 6 7 8 91011
0

50

100

t

Av
er

ag
e 

R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

t

D
eg

re
e 

R
an

ki
ng

2 3 4 5 6 7 8 91011
0

20

40

60

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

t

D
eg

re
e 

R
an

ki
ng

2 3 4 5 6 7 8 91011
0

20

40

60

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

500

t

D
eg

re
e 

Ra
nk

in
g

2 3 4 5 6 7 8 91011
0

20

40

60

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

500

t

Se
m

i-l
oc

al
 R

an
ki

ng

2 3 4 5 6 7 8 91011
0

50

100

t

Av
er

ag
e 

R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

t

Se
m

i-l
oc

al
 R

an
ki

ng

2 3 4 5 6 7 8 91011
0

50

100

t

A
ve

ra
ge

 R
an

ki
ng

2 4 6 8 10
0

100

200

300

400

500

t

Se
m

i-l
oc

al
 R

an
ki

ng

2 3 4 5 6 7 8 91011
0

50

100

t

A
ve

ra
ge

 R
an

ki
ng



51 
 

(a)                              (b)                         (c) 

Fig 4.8 The node's ranking and the average ranking of n implementations by semi-local centrality (CL) for 

artificial networks with exponential degree distributions, with n = 100, and different values of the coefficient of 

assortativity r. (a) r = -0.1, (b) r = 0, (c) r = 0.2, respectively. 
 

  
(a)                     (b)                    (c)                     (d) 

Fig 4.9 The node's ranking and the average ranking of n implementations for email network by four different 

centralities, (a) BC, (b) CC, (c) DC, (d) CL, respectively, with n = 100. 
 

  
(a)                     (b)                    (c)                     (d) 

Fig 4.10 The node's ranking and the average ranking of n implementations for Caltech Facebook network by four 

different centralities, (a) BC, (b) CC, (c) DC, (d) CL, respectively, with n = 100. 

 

We can see from figures above that the results among different ranking measures on identifying 

high-influence nodes are high-related. For example, the high-influence nodes under degree centrality will 

be relatively high-influence under other ranking measures. The results are shown in Table 4.3-Table 4.5. 

Table 4.3 The top-10 ranked nodes by degree centrality and their corresponding ranks by betweenness, closeness 

and semi-local centralities in SF networks with different assortativities. 

  SF network with assortativity1 SF network with assortativity2  SF network with assortativity3 

N DC BC CC CL  DC BC CC CL  DC BC CC CL 

5 1 1 1 1  1 1 1 1  1 1 2 2 

1 2 2 3 2  2 2 2 2  2 2 1 1 

25 3 5 6 6  3 4 4 5  3 3 4 5 

7 4 3 4 5  4 3 3 3  4 4 3 3 

8 5 4 5 4  5 5 5 4  5 5 5 4 

12 6 8 8 7  6 10 10 6  6 10 9 9 

11 7 9 12 13  7 6 6 7  7 7 9 9 

37 8 7 7 9  8 7 8 10  8 6 8 10 

29 9 11 19 24  9 9 9 9  9 9 12 16 

6 10 6 2 3  10 8 7 8  10 8 6 7 
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Table 4.4 The top-10 ranked nodes by degree centrality and their corresponding ranks by betweenness, closeness 

and semi-local centralities in SF networks with different clustering coefficients. 

     SF network with clustering1       SF network with clustering2      SF network with clustering3 

N DC BC CC CL N DC BC CC CL N DC BC CC CL 

6 1 1 2 1 4 1 1 1 1 10 1 2 2 2 

4 2 2 1 2 3 2 2 2 2 3 2 1 1 1 

8 3 4 4 4 11 3 4 5 5 4 3 3 4 3 

7 4 3 5 5 8 4 3 3 3 6 4 4 5 5 

1 5 5 3 3 12 5 6 7 6 5 5 5 3 4 

18 6 6 7 7 7 6 5 6 7 12 6 6 7 6 

5 7 7 8 8 5 7 7 4 4 22 7 7 9 8 

3 8 9 9 9 17 8 9 9 9 20 8 8 15 16 

9 9 8 6 6 6 9 8 8 8 15 9 10 11 7 

2 10 10 10 10 8 10 11 11 10 1 10 18 10 25 
 

Table 4.5 The top-10 ranked nodes by degree centrality and their corresponding ranks by betweenness, closeness 

and semi-local centralities in real networks. 

      Email network            Caltech Facebook network 

N DC BC CC CL  N DC BC CC CL 

105 1 2 3 1  619 1 1 1 1 

333 2 1 1 3  561 2 4 2 2 

16 3 22 40 4  205 3 2 3 6 

23 4 3 2 5  403 4 7 6 5 

42 5 10 4 2  409 5 16 7 4 

41 6 8 5 8  60 6 3 4 12 

196 7 15 19 7  124 7 26 10 3 

233 8 6 7 22  455 8 12 5 7 

21 9 16 20 9  82 9 11 11 10 

76 10 5 6 19  644 10 8 9 11 

Based on the above results, we set m = 5, k = 10, in each k + 1 step, nodes in step 3-step 7 are chosen, 

then the 25 nodes we found are ranking according to degree, the top 5 nodes are chosen as the target 

nodes. We show the target nodes ranking rate in top 5/10/15 individually under different centralities in 

artificial networks and real networks in Table 4.6. 

Table 4.6 The target nodes ranking rate in top 5/10/15 individually under different centralities in artificial networks 

and real networks. The results are the average ranking of 200 implementations. 

Networks Rate in DC 

Top 5/10/15 

Rate in BC 

Top 5/10/15 

Rate in CC 

Top 5/10/15 

Rate in CL 

Top5/10/15 

SF network with clustering1 0.9872/1/1 0.9912/1/1 0.7955/1/1 0.7972/1/1 

SF network with clustering2 0.9645/0.9798/10.7617/0.9862/10.7649/0.9856/0.97 0.7607/0.9813/0.9836 

SF network with clustering3 1/1/1 1/1/1 1/1/1 1/1/1 

SF network with assortativity1 0.9852/1/1 0.9918/1/1 0.7950/1/1 0.8/1/1 

SF network with assortativity2 0.9632/1/1 0.9571/1/1 0.9564/1/1 0.9507/1/1 
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SF network with assortativity3 0.9951/1/1 1/1/1 1/1/1 1/1/1 

Email 0.9956/1/1 0.6/0.8/0.8132 0.8019/0.8/0.8081 0.9913/1/1 

Facebook 1/1/1 0.6/0.8/0.8 0/0.6/1 0.8/1/1 

 
4.4 Evaluation in SIR Epidemic Model 

To evaluate the performance of our method, we use the SIR model to examine the spreading 

influence of the target nodes. At each step, susceptible neighbor gets infected with probability (here 

we set =0.1 ). Infected nodes recover with probability  at each step (here we set =0.1 ). To 

investigate the influence of target nodes we found in the network, we set these nodes to be infected or to 

be protected initially. The proportion of infected and recovered nodes at time t, denoted by i(t), can be 

considered as an indicator to evaluate the influence of the target nodes at time t. 

The results are shown in Fig 4.11-Fig 4.16. As the infection resources, show the proportion of 

infected and recovered nodes as a function of time, with the initially infected nodes we find by our 

method. In Fig 4.11-Fig 4.13, compared with those appear in the top-5 nodes list by different centralities 

in different network structures, our method can also effectively identify the nodes that lead to faster and 

wider spreading than the case that infection resources are randomly chosen. We can see from the results 

that, when multiple spreaders are considered simultaneously, the effectiveness of different ranking 

methods are almost the same in different network structures. 

Different results are shown in the case of nodes being protected. In Fig 4.14-Fig 4.16, we can see 

that, compared with those appear in the top-5 nodes list by different centralities in different network 

structures, our method can also effectively identify the nodes that retard the spreading behavior than the 

case that of the protected nodes are randomly chosen. But the effectiveness differs from different ranking 

methods. 

 
(a)                           (b)                            (c) 

Fig 4.11 The spreading process as a function of time, with the initially infected nodes we find by our method, 

compared with those appear in the top-5 list by different centralities in artificial networks with exponential degree 

distributions, and different values of the clustering coefficient C. (a) C = 0.05, (b) C = 0.27, (c) C = 0.55, 

respectively. Results are obtained by averaging over 100 implementations. 
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(a)                           (b)                            (c) 

Fig 4.12 The spreading process as a function of time, with the initially infected nodes we find by our method, 

compared with those appear in the top-5 list by different centralities in artificial networks with exponential degree 

distributions, and different values of the coefficient of assortativity r. (a) r = -0.1, (b) r = 0, (c) r = 0.2, 

respectively. Results are obtained by averaging over 100 implementations. 
 

 

(a) Caltech Facebook network 

 
(b) Email network 

Fig 4.13 The spreading process as a function of time, with the initially infected nodes we find by our method, 
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compared with those appear in the top-5 list by different centralities in real networks. (a) Caltech Facebook 

network, (b) Email network, respectively. Results are obtained by averaging over 100 implementations. 
 

 
(a)                           (b)                            (c) 

Fig 4.14 The spreading process as a function of time, with the protected-nodes we find by our method, compared 

with those appear in the top-5 list by different centralities in artificial networks with exponential degree 

distributions, and different values of the clustering coefficient C. (a) C = 0.05, (b) C = 0.27, (c) C = 0.55, 

respectively. Results are obtained by averaging over 100 implementations. 
 

 
(a)                           (b)                            (c) 

Fig 4.15 The spreading process as a function of time, with the protected-nodes we find by our method, compared 

with those appear in the top-5 list by different centralities in artificial networks with exponential degree 

distributions, and different values of the coefficient of assortativity r. (a) r = -0.1, (b) r = 0, (c) r = 0.2, 

respectively. Results are obtained by averaging over 100 implementations. 
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(b) Email network 

Fig 4.16 The spreading process as a function of time, with the protected-nodes we find by our method, compared 

with those appear in the top-5 list by different centralities in real networks. (a) Caltech Facebook network, (b) 

Email network, respectively. Results are obtained by averaging over 100 implementations. 

 
4.5 Conclusion 

This chapter considered the facts of uncertainty of network scale and topology, the timeliness of 

dynamic behaviors in real networks and proposed a method without ranking all nodes. To evaluate the 

performance, the SIR model is used to estimate the spreading influence of the target nodes we identified 

by our methods, comparing with the top-ranked nodes by different centrality measures. It is expected 

that with the influential nodes being initially infected the spreading are faster and wider than with the 

random nodes being initially infected, the experimental results on artificial networks (networks with 

different values of the clustering coefficient and the coefficient of assortativity) and real networks (the 

email communication network, the Caltech Facebook network) show that the proposed method can well 

identify high-influential nodes. The newly proposed measure performs almost as well as the well-known 

centrality measures, while with much lower computational complexity. 

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

i(t
)

 

 

0 20 40 60
0

0.01

0.02

0.03

t

v(
t)

 

 
Random
Betweenness
Closeness
Degree
Semi-local
Our method



57 
 

Chapter 5 

Study on Cascading Failure of Complex Networks Considering Local Real-time 

Information 

5.1 Introduction 

Cascading failure [71]-[75], [78] is a very common phenomenon in real-life systems, e.g., power 

transmission, computer networking, finance, human body systems and transportation systems. Normally, 

the failure of one or several parts in the network may trigger the failure of other parts, resulting in the 

paralysis of large-scale network in a very short time. For example, in power grids, the failed (completely 

or partially) elements who are beyond their capacity become overloaded and shift their load to nearby 

elements in the system. The cascading process can make a large power grid collapse under certain 

conditions. Along with the explosive growth of real-life systems, the extensive and complex 

interconnection has not only brought the source sharing and optimal allocation, but also brought new 

challenges to the security and stability with the complexity of network dynamics. Therefore, the network 

robustness facing cascading failure becomes a very significant topic from the perspective of complex 

networks. 

The real-life system can be represented by a complex network, a graph (network) with non-trivial 

topological features, e.g., a heavy tail in the degree distribution [27], a high clustering coefficient [26], 

assortativity or disassortativity among vertices [110]. Recently, based on the study of complex network, 

a lot of cascading failure models are proposed, which can further explore the mechanism of occurrence, 

prevention and control of cascading failures in depth. Motter et al. [75] studied cascading failure of scale-

free networks for the first time, and proposed a capacity load cascading failure model. It was found that 

the robustness of scale-free networks was very weak in the face of cascading failures, that is, removing 

a small number of nodes with the largest load was enough to paralyze the whole network. In view of the 

actual cascading failure, Goh et al. [111] found that there is a long-range correlation between cascading 

failures, which is represented by an approximate power-law function. After that, Dobson et al. [112] 

derived the critical capacity value of power-law cascading failure scale. Based on the heterogeneity of 

the network, Peng et al. [113] studied the influence of attacking different nodes on the network robustness 

threshold. Liu et al. [114] considered the adjustable point capacity according to the importance of nodes, 

and proposed a cascading failure resistance strategy based on node capacity optimization, which 

effectively improved the resistance ability of scale-free networks to cascading failures. 

In fact, although the existing model can well describe the cascading failure process in real-life 

systems, new challenges emerge due to the continuous evolution of the networks and the new features 

developed during the evolution. One of the most important challenges is the timeliness of network 

information. Network information is updated as the network evolved. Therefore, the initial information 

is not accurate for the current network due to the updates. The information of current network is necessary 

to the redistributions of excess loads. The second challenge is that along with the explosive growth of 



58 
 

networks, huge volumes of data have been generating [115]. In this case, it is unrealistic to redistribute 

the excess loads based on the global information of the current networks. Instead, it is more reasonable 

to redistribute the loads caused by node’s failed based on local information of the current networks. 

Considering the timeliness of network information and rationality of redistribution strategy, this 

chapter presents a new cascading failure model with the redistribution strategy based on local real-time 

information. The key contributions of the chapter can be summarized as follows: 

1) We develop a new cascading failure model to analyze the robustness of networks under the node’s 

failure, and redistribution strategy based on local real-time information is proposed.  

2) We carry out the theoretical analysis of the robustness and the redistribution strategy, where the 

relationship between network robustness and redistribution strategy parameters are discussed in 

different cases. 

3) The numerical simulations implemented in artificial networks and real-life networks confirm the 

validity of the robustness threshold, as well as the analysis of the redistribution strategy. 

The rest of this chapter is organized as follows. In Section 5.2, the proposed cascading failure model 

of adaptive weighted network is presented. In Section 5.3, the theoretical analysis of the model is carries 

out, followed by the discussion of the network robustness in different cases. In Section 5.4, numerical 

results are provided, followed by conclusions in Section 5.5. 

 
5.2 Cascading Failure Model 

Consider a network of N nodes connected by M links, each node has an initial load L(0) and load 

capability C, At the initial stage, L(0) < C, the network is in the steady state. After the node is removed 

(attacked or mechanical failure), the load on the failed node is redistributed to its neighbors. When the 

load capacity of the neighbor is not enough to handle the extra loads, the neighbor would collapse. The 

continuation of this process creates cascading failures in the network. Assume that the potential cascading 

failure is caused by the removal of one single node, then we pay attention to the following dynamic 

process of the network. Our model is briefly described as follows, 

The initial load of node i is set as 

1
1(0) , 1, 2, ...,i iL k i N ,                         (5.1) 

where ki is the degree of node i. 1 and 
1

are the adjustable parameters that govern the strength of 

initial loads, 1 0 and 1 0  The initial load of the node is proportional to its degree, which 

means the nodes with larger degree can take more load. For example, the transportation hubs with more 

routes across can accommodate more passengers. 

At the initial stage, the network is in steady state, Li is lower than its load capability Ci, as given by 

(1 ) (0)i m iC L ,                              (5.2) 

where m  ( 0m ) is the tolerance parameter and suggests the upper bound of the ability that node i 
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withstands risks, i.e., the network shows better robustness against cascading failures as m  grows. 

However, the continuous grow of load capacity is unreasonable, considering the cost of real networks. 

Therefore, we aim to minimum the upper bound of m , i.e., the critical threshold *
m , to reach the 

global robustness. If *
m m , the cascading failure happens. Otherwise, the network is robust. 

When the node realizes that it is malfunctioning or is being attacked, it will transfer his load to his 

neighbor. It is very important to develop a reasonable redistribution strategy as quickly as possible to 

ensure network functionality. On the one hand, it is unrealistic to get the global information of the 

network considering the scale and complexity of the network. Instead, we only consider local information 

to ensure the timeliness of the strategy. On the other hand, network information is updating as the network 

evolving, it is unreasonable to set the redistribution the same strategy as the initial allocation. Considering 

the timeliness of redistribution strategies and the updating of information, the probability that the failed 

node i transfer the load to the neighbor j is set as 

2

2

i

j
i j

mm V

k
P

k
,                           (5.3) 

where Vi is the set of node i’s neighbors, and ij V . The transfer proportion depends on the degree, 

which is a local property of the network. The larger the degree is, more risks the node will be redistributed. 

2 ( 02 ) is a tunable parameter and governs the power of load redistribution. 2  is different from 

1  due to the fact of information updating and lack of information of initial case. The load transferred 

from i to j at time t is set as 

 ( 1)i j i i jL L t P .                            (5.4) 

The equations of (5.1)-(5.4) above form the new cascade failure model we proposed. We can 

describe cascading failures as a propagation behavior: When node i breaks down, its load (risk) Li(0) 

propagate along with the collaboration relations. Its neighbors take the risks. After taking the extra risk 

i jL  from node i, node j fails if the updated risk goes beyond the capacity ( ( )j jL t C . In turn, risks 

of node j will propagate, following the same rules. The cascading failure stops until the whole network 

collapses or there are no more failed nodes. 

5.3 Theoretical Analysis 

In this section, we proceed to derive the critical threshold of m  denoted by *m . If *m m , 

the cascading failure happens. Otherwise, the network is robust. The smaller *m  is, the more resilient 

the network is, e.g., against cascading failures. To derive *m , we analyze the critical condition of 

cascading failure. To guarantee the global robustness, the model ought to satisfy 

       (1) (0) (1) (0) (0) (1)j j i j j i i j jL L L L L P C .  (5.5) 
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By substituting (5.1)-(5.3) into (5.5), (5.5) can be rewritten as

     
2

1 1 1

21 1 1(1 )
i

j
j i m j

mm V

k
k k k

k
,                    (5.6) 

then we have 

2

1 1

2

i

j
i m j

mm V

k
k k

k
.                           (5.7) 

Therefore, m  satisfies 

2 1

1

2

i

j
m i

mm V

k
k

k
.                              (5.8) 

As shown in [116], 
max

2 2

min'
= ( ' | ) '

i

k

m i im V
k k

k k P k k k , (5.8) can be rewritten as 

2 1 1 2 1

1

max max
2 2

min min

1

' '
( ' | ) ' ( ' | ) '

j i j
m i k k

i i i
k k k k

k k k
k

k P k k k P k k k

.                      (5.9) 

Assuming that the degrees are irrelevance, ' ( ')( ' | )i
k P kP k k

k
, we can have 

1 2 1 1 2 1 1 2 1

max 2 2
2

min

1 1 1

1 1

'

=
' ( ') '

i j i j i j
m k

k k

k k k k k k k
k P k k kk

k k

.               (5.10) 

From (5.10) we can obtain the critical threshold *
m by adjusting 1 and 2  Here we focus 

on the situation where the risk occurs and discuss the impact of redistribution parameter 2  on the 

cascading failure. 

When 2 1 , the critical threshold satisfies 

2

2

2

2

1 2 1

2

1
min

11

1
* min

11

1
max min

11

, 1

, 1

, 1

m

k k
k

k k
k

k k k
k

.                          (5.11) 

When 2 1 , the critical threshold satisfies 
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1 2 1

2

2

2

2

2

1
min max

11

1
* max

11

1
max

11

, 1

, 1

, 1

m

k k k
k

k k
k

k k
k

.                           (5.12) 

Specially, when 2 1 , the critical threshold satisfies 

1

2

1

2

1
min

11

*
12

1
max

11

, 1

, 1

, 1

m

k k
k
k
k

k k
k

.                               (5.13) 

We can find in (5.11)-(5.13) that the critical threshold can be different in different cases. We proceed 

to discuss the relationship between *
m and the load-redistribution parameter 2 . 

(1) 1=1  

When 2 1 , 

2 2

2
2 2

1 1
* min min

1 2
1 12 2

1 1 1min

=
1 1 1( )

i i i

m N N N
i

i i i

k k k k k k k
k kk k k k

N N k N

.         (5.14) 

In the same way, we can deduce that when 2 1 , 

1 2 1 2 2

2 2
2 2

1 1 1
* min max min min

1 1 2
1 12 2

1 1 1min

=
1 1 1( )

i i i

m N N N
i

i i i

k k k k k k k k k k
k kk k k k k

N N k N

.   (5.15) 

In this case, we find that when 2 1 1 , we can get the minimum value of *
m , and 

*
min 2=m

k
k

. This concludes that when the initial load-distribution and load-redistribution strategy of 

the network are both linearly proportional to degree, the network shows better robustness under cascading 

failure. 

(2) 1 1  

When 2 1 , 

2 2

2
2 2

1 1
* min min

1
1 12 2

1 2
1 1 1min

=
1 ( ) ( )

i i i

m N N N
i

i i i

k k k k N k N k
kk k k k f

N k

,              (5.16) 
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where 2 1
1 2

min

( ) ( )ik
f

k
. 2 1

1 2
min min

( ) ' ( ) ln( ) 0i ik k
f

k k
, 1 2( )f  is monotonically increasing, and 

*
m  is monotonically decreasing since 1 2( )f  is on the denominator. 

In the same way, when 2 1 , 

1 2 1

2
1 2 1 1

1
* min max

1
1 12 2

2 2
1 1min max min

= =
( ) ( ) ( ) ( )

i i

m N N
i i i

i i

k k k N k N k
k k kk k k f

k k k

,          (5.17) 

where 2 1
2 2

max

( ) ( )ik
f

k
. 2 1

2 2
max max

( ) ' ( ) ln( ) 0i ik k
f

k k
, 2 2( )f  is monotonically decreasing, 

and *
m  is monotonically increasing since 2 2( )f  is on the denominator. 

We find that when 2 1 , we can get the minimum value of *
m . The same conclusion as the 

case 1=1  is when the initial load-distribution and load-redistribution strategy of the network are the 

same, the network shows better robustness under cascading failure. 

(3) 1 1  

When 2 1 , 

1 2 1

2
1 2 1 1

1
* max min

1
1 12 2

3 2
1 1max min max

= =
( ) ( ) ( ) ( )

i i

m N N
i i i

i i

k k k N k N k
k k kk k k f

k k k

,       (5.18) 

where 2 1
3 2

min

( ) ( )ik
f

k
. 2 1

3 2
min min

( ) ' ( ) ln( ) 0i ik k
f

k k
, 3 2( )f  is monotonically increasing, and 

*
m  is monotonically decreasing since 3 2( )f  is on the denominator. 

when 2 1 , 

2 2

2
2 2

1 1
* max max

1
1 12 2

4 2
1 1 1max

=
1 ( ) ( )

i i i

m N N N
i

i i i

k k k k N k N k
kk k k k f

N k

,             (5.19) 

where 2 1
4 2

max

( ) ( )ik
f

k
. 2 1

4 2
max max

( ) ' ( ) ln( ) 0i ik k
f

k k
, 4 2( )f  is monotonically decreasing, and 

*
m  is monotonically increasing since 4 2( )f  is on the denominator. 

We find that when 2 1 , we can get the minimum value of *
m . 

From our analysis we can conclude that when 2 1 , i.e., the initial load-distribution and load-

redistribution strategy of the network are the same, we can get the minimum value of *
m . In the 

following section, we apply numerical simulations in artificial networks and real-world networks to 

visually observe the results of our discussion and analysis. 
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5.4 Simulation Results 

In this section, numerical simulation results are provided to validate our proposed model and 

theoretical analysis. As discussed in Section 5.3, when 2 1 , we can get the minimum value of *
m , 

i.e., the network is the most robustness. We first validate our model on a 1000-node scale-free network, 

the average degree is 6. Fig 5.1 plots the robustness threshold *
m , with the grows of 2 . The 

simulation results in Fig 5.1 show intuitively that the value of *
m  is the smallest when 2 1  in 

each case. 

Fig 5.1. The relation between critical threshold *
m of artificial network model and 2

Fig 5.2. The relation between critical threshold *
m and  under the special case: 2 1= = . 
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further validated through Fig 5.2. Simulations are carried out in 200 different networks. Fig 5.2 shows 

the robustness threshold *
m , with the grows of . The solid point (black) in Fig 5.2 is the average 

result of 200 different networks, and dashed lines (blue) represent the results in each of the 10 networks 

we randomly chosen. 

An interesting finding is that when 1 =1 , the value of *
m  is smaller than the other 2 cases. That 

means when the initial load distribution is linearly proportional to the degree, the network shows the 

greatest robustness against the node’s failure. We further notice from Fig 5.3 that, when 1 1 , the 

value of *
m  becomes smaller as 2  decreases, and when 1 1 , the value of *

m  becomes 

smaller as 2 grows. Therefore, without the knowledge of initial load information, it is effective to 

improve the network robustness with the load-redistribution linearly proportional to the degree. 

(a) 1 1   

(b) 1 1  

Fig 5.3. The relation between critical threshold *
m  of artificial network model and 2  under two different 

cases: (a) 1 1 , (b) 1 1 . 
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In practice, cascading failures show in many real systems as we discussed. We proceed to carry out 

numerical simulations on Neural network and power grid [26], as shown in Fig 5.4 and Fig 5.5. We can 

see that the value of critical threshold *
m  is the smallest when 2 1  in both networks. And when 

1 =1 , the value of *
m  is smaller than the other 2 cases. 

(a) Neural network 

(b) Power grid 

Fig 5.4. The relation between critical threshold *
m of real networks and 2 , (a) Neural network, (b) Power 

grid
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In general, our simulation results show that bond exists between the initial load and load-

redistribution. The network shows better robustness against cascading failure when the initial load-

distribution and load-redistribution strategy of the network are the same. Specially, when both of the 

initial load-distribution and load-redistribution are linearly proportional to the node’s degree, the network 

shows the greatest robustness against the cascading failure. In addition, regardless of the initial load, the 

network also shows good robustness against cascading failure when load-redistribution is linearly 

proportional to the node’s degree. Our simulation results show a very good guiding role to study the 

network robustness optimization strategy in the future. 

(a) 1 1        

(b) 1 1  

Fig 5.5. The relation between critical threshold *
m  of real networks and 2  under two different cases: (a) 

1 1 , (b) 1 1 . 
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5.5 Conclusion 

In this chapter, a new cascading failure model to analyze the robustness of networks under the 

node’s failure is developed, and redistribution strategy based on local real-time information is analyzed. 

Theoretical analysis of the robustness and the redistribution strategy are carried out, and the relationship 

between network robustness and redistribution strategy parameters are discussed in different cases. Our 

analysis shows that when the initial load-distribution and load-redistribution strategy of the network are 

the same and linearly proportional to degrees, the network shows better robustness under cascading 

failure. Furthermore, without the knowledge of initial load information, it is effective to improve the 

network robustness with the load-redistribution linearly proportional to the degree. The numerical 

simulations implemented in artificial networks and real-life networks confirm the validity of the 

robustness threshold, as well as the analysis of the redistribution strategy. 
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Chapter 6 

Study on the Quantification of Social Network Robustness under the Virus 

Attacks 

6.1 Introduction 

As one of the typical scenarios of attacks, epidemic spreading in social network has exterted an influence 

on our daily activities. At present, the COVID-19 has spread all over the world within six months [117]-

[120]. Based on the Situation Report-133 of World Health Organization (WHO) [121], the data as 

received by WHO from national authorities by 10:00 CEST, 01 June 2020 has shown that there are 

6057853 cases confirmed as infected globally and 371166 people dead. The robustness of complex 

networks against virus attacks has become one of the most concerned topics in complex network study 

[122]-[127]. 

The study on epidemics has a very long history and classic epidemic models are built to describe 

the virus spreading, such as the SI model, SIS model, and the SIR model [124]. Besides the epidemics, 

plenty of other cyberattacks can also be found in almost any kind of networks, for example, the DDoS 

attacks on the Internet [128], [129], the cascading failures in the power grids [130] and the epidemic 

spread in social networks [124]. As a malicious and deliberate attempt by an individual (organization) to 

breach the information system of another individual (organization), the attacks spread from one node to 

another in the network. Once one or some components are attacked, it may cause incalculable losses to 

the entire network and other related networks. Recently, the epidemic models have been adapted to study 

the spread of the above cyberattacks. 

Robustness of the network refers to the ability of the network to maintain a certain degree of 

structural integrity and function after being subjected to a fault or attack [131]. Epidemic spreading 

models have been used to study the network robustness with respect to the virus attacks. Epidemic 

threshold is the most commonly used measure for the network robustness in regard to virus attacks, i.e., 

the larger the epidemic threshold, the more robust a network is against the spread [127], [132]. Recently, 

Mina Youssef [125]-[127] put forward a new measure to make an evaluation on the robustness of 

complex networks with respect to the spread of SIS epidemics. The results demonstrated that the 

proposed measure of network robustness with respect to the virus attacks is of great effectiveness for the 

epidemics with different final infection scales. 

Since the network robustness is measured in the epidemic threshold and the final infection scale, 

the spread velocity [133]-[135], as another important indicator describing the epidemics, should also be 

taken into account to measure network robustness. On the one hand, many epidemics will eventually 

achieve network-wide infection or immunity, such as the epidemic process described by SI or SIR model. 

In this case, the final infection scale of the epidemics remains the same in different networks. On the 

other hand, network structures have a great effect on the spread velocity, i.e., the virus spread velocity 

differs in different networks. In addition, differences can be observed in the trends of spread velocity, 

epidemic threshold and the final infection scale in the network. Therefore, the spread velocity is one of 



69 
 

the key factors that cannot be ignored to measure the network robustness with respect to the epidemics. 

In this chapter, a novel metric, combined with the spread velocity, the infection scale at the steady 

state and the epidemic threshold, is proposed to measure the robustness in regard to virus attacks in social 

networks. First, we show some examples of networks where the epidemic threshold and/or infection 

scale at the steady state fail to assess their robustness. Then the new robustness metric is introduced, 

based on which the network robustness concerning virus spreading are analyzed. In addition, it is 

demonstrated by the simulation results that as the average degree grows in both homogeneous and 

heterogeneous networks, the network becomes more vulnerable to the attacks. Moreover, in 

homogeneous networks, the network robustness improves due to the increasing numbers of random-

connected links. 

The rest of this chapter is organized as follows. In Section 5.2, we analyze the necessity of putting 

forward the new metric, and then introduce the novel metric to quantify the network robustness based on 

epidemic spread in Section 5.3. We present the simulation results in Section 5.4, and the main conclusions 

and future work are summarized in Section 5.5. 

 

6.2 The Network Robustness with respect to Epidemic Spread 

Epidemic threshold is the most commonly used measure for the network robustness with respect to 

the spread of epidemic, i.e., the larger the epidemic threshold, the more robust a network is against the 

epidemics. The existed literatures shown that large BA networks [27] consequently are more vulnerable 

to epidemic spreading than WS networks [26] based on the epidemic threshold. Then the researchers 

found that the epidemic threshold may fails to assess the network robustness, a new metric to quantify 

the network robustness considering both epidemic threshold and fraction of infection at steady state was 

proposed in SIS epidemic model [126]. 

In fact, it is not comprehensive to use epidemic threshold and/or infection scale to measure network 

robustness with respect to the virus attacks. For example, Fig 6.1 shows the SIS epidemic spreading 

process in 3 different networks. Supposing that in the SIS epidemic model, the rate of a susceptible node 

being infected by a single infected neighbor is , and the infected node recovered with the rate . 

We observe that the final density of the infection nodes in BA network is smaller than the final density 

of the infection nodes in WS network and Regular network, i.e., Regular WS BAI I I . From the 

perspective of the infection scale of the steady state, BA network is more robustness than WS network 

and Regular network. However, comparison of the spread velocities shows that the spread velocity in 

BA network is the fastest, and that of regular network is much slower than in other two networks, i.e., 

( ) ( ) ( )BA WS RegularV t V t V t  . That is, one single indicator, for example, the fraction of infection at 

steady state or the spread velocity, cannot accurately measure the network robustness with respect to 

virus attacks. 
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Fig 6.1. The SIS epidemic spreading process ( = =0.3 ). 

And when the final infection densities at the steady state are the same, such as in the SI model shown 

in Fig 6.2, we can see that the same results of the spread velocity of different networks in SIS epidemic 

model, i.e., ( ) ( ) ( )BA WS RegularV t V t V t . As we all know, the epidemic threshold in the homogeneous 

network is larger than in the heterogeneous network. Therefore, even in the models with the same 

infection scale at the steady state, it is still inappropriate to apply one single indicator to measure the 

network robustness. 

 
Fig 6.2. The SI epidemic spreading process ( =0.3 ). 

Moreover, due to the difference of the spread velocity, the time to reach a stable state of epidemic 

spread is different. We did simulations on WS network and BA network. Fig 6.3 counts the time points 

when the epidemics reach steady state (T(i_max)) under different infect rates   in BA and WS 

networks. We can see more intuitively from Fig 5.3 that the time points of reaching the steady states are 

different in the 2 networks, and as the infection rate decreases, this gap becomes more and more obvious. 

Therefore, under the condition of low infection probability, the difference of spread velocity in the 

networks is very large. 
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Fig 6.3. The time of reaching the steady states of different networks. 

It can be seen from the above analysis that epidemic threshold, fraction of infection at steady state 

and spreading velocity are all important factors to measure the network robustness under virus attacks. 

Comparing the propagation processes in the three networks, we can conclude that the spread velocity in 

the BA network is the fastest, but the final infection scale is the smallest. In the WS network and the 

regular network, although the spread velocity is slower, the final infection scale is larger. Therefore, it is 

necessary to propose a network robustness measurement considering of multiple indicators with respect 

to virus attacks. 

 

6.3 The Novel Metric to Quantify the Network Robustness under the Virus Attacks 

Combining the epidemic threshold, propagation scale and spreading velocity together, we propose 

a multiple-indicator-based measurement to quantify the network robustness with respect to virus attacks. 

We first set the parameters in SI and SIS epidemic models. For the sake of simplicity, we set = 1  in 

the rest of this chapter, and then the effective infection rate can be defined as = =  in SI and SIS 

model. The density of infected nodes at time t is described as i(t), the steady state of the infection under 

the effective infection rate  can be written as 

. 

We first define the cumulative infection ( )
ti

C  as the sum of infection density at each time slot 

under the effective infection rate ,  

'
' 0

( )= ( )
t

t

i t
t

C i . 

Taking into account of all values of , supposing that ts is the first time the network reaches the 

steady state, the new robustness measure with respect to virus attack, RVA, can be written as 
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'
' 0

1 1( ) = ( )
t

s s

t

VA i t
t

R C d i d
t t

, st t                   (6.1) 

where s  is the epidemic threshold. 

Introducing the effective cure rate 1s  in [126], (6.1) can be rewritten as  

'0 0
' 0

1 1( ) = ( )
t

t

VA i t
t

R C s ds i s ds
t t

, st t .                    (6.2) 

When t = ts, the robustness of network G can be written as 

'0 0
' 0

1 1( ) = ( )
s

ts

t
G

VA i t
ts s

R C s ds i s ds
t t

.                      (6.3) 

In (6.3), the length of ts represents the spreading velocity, and ( )ti s   represents the density of 

infected nodes at time t. Then the proposed G
VAR  considering of epidemic threshold, the infection scale 

and the spread velocity. Since ts changes under different effective cure rate, it is hard to make statistics 

of ts. In order to avoid the impact of the density of stable infection within the time period [ ,  ]st t  on 

the network robustness, we use the ( ) ( )max ti s i s   instead of ( )ti s  in (6.3). Therefore, the network 

robustness at t-time can be written as 

'0
' 0

1) ( )( ( ))mA a

t

V
t

x tR t i i s ds
t

s ,                      (6.4) 

the robustness of network G can be written as 

'0
' 0

1= ( ))( )
st

G
VA tmax

ts

R i i s ds
t

s .                      (6.5) 

We can see from (6.4) and (6.5) that, when st t , the network robustness at t-time, ( )VAR t , depends 

on the epidemic threshold and the infection scale at time ',  ' [0, ]t t t . While the robustness of network 

G depends on the length of st  , besides the epidemic threshold and the infection scale at time 

',  ' [0, ]st t t . Therefore, the shorter time it takes to reach steady state and/or the larger the infection 

scale at time 't , the larger the G
VAR  is, and the more vulnerable of the network under the virus attack, 

accordingly. 

We choose two epidemic models to analyze the network robustness, one is the epidemic process 

that the whole network is infected finally, i.e., the SI epidemic model, the other one is that the infection 

density is stable at a non-1 value, i.e., the SIS epidemic model. 

Case 1. The robustness of homogeneous network with respect of SI epidemic spreading 

The state of each node in the SI model is infected or healthy, and the change of infected individuals 

over time can be described as 
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(1 )di k i i
dt

.                               (6.6) 

By separating variables, (6.6) can be written as 

(1 )
di k dt

i i
,                               (6.7) 

integrating both sides of (6.7), we can obtain 

1 ( )ln
( )
i t k t c

i t
.   

The density of the infected nodes at time t can be written as 

0
1

1( )
1 ( 1) k t

i

i t
e

.                            (6.8) 

The final density of the infection of SI model equals to 1, i.e., 1i . Based on (6.8), the robustness 

of homogeneous network G with respect of SI epidemic spreading can be written as 

0

' 0

'1' 0

1 ( ( ) ( ))

1 1              = (
1)

)1
1 (

s

s

s

s

t
SI

VA t
ts

t

k t
ts i

R i i d
t

d
t e

.                   (6.9) 

Case 2. The robustness of homogeneous network with respect of SIS epidemic spreading 

Ignoring the degree correlations of nodes in homogeneous network, the density of infected nodes at 

time t, i.e., i(t), satisfies (6.10)  

(1 )di i k i i
dt

.                          (6.10) 

Integrating both sides of (6.10), 

0

( )

0

1
(1 )

t i t

i
dt di

i k i i
,                        (6.11) 

then (6.11) can be rewritten as 

0 0

( ) ( )1 1 1
1 1 1

i t i t

i i

k
t di di

k i k k k i
,                (6.12) 

we can obtain that 

( 1) 0

0

( )
( ) 1 1

k t ii te
k k i t k k i

, 
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( 1)
0

0

( )
( ) 1 1

k ti ei t
k k i t k k i

, 

( 1)
0 0( )( 1) ( ( ) 1)k ti t k k i i e k k i t . 

The density of the infected nodes at time t can be written as 

( 1)
0

( 1)
0 0

( 1)
( )

1

k t

k t

k i e
i t

k k i i k e
.                   (6.13) 

Let (6.10) equals to 0, we can get 

(1 )=0di i k i i
dt

, 

when = = c , the infection density of the final stable state is  

11i
k

.                                  (6.14) 

Based on (6.13) and (6.14), the robustness of homogeneous network G with respect of SIS epidemic 

spreading can be written as 

( 1) '
0

' 0

' 0
( 1) '

0 0

1 ( ( ) ( ))

1 1           
(

   
1)

)
1

= (1

s

s

s

s

t
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VA t

k t

s

t

ts
k t

t

k i e
k k i i k e

R i i d
t

d
t k

.        (6.15) 
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(b) SIS model 

Fig 6.4. The robustness of homogeneous networks at t-time with respect to SI epidemic spreading (Fig 6.4(a)) 

and SIS epidemic spreading (Fig 6.4(b)) ( 0.2,  =1). 

We present the numerinal solutions of (6.9) and (6.13) in Fig 6.4 and Table 6.1. We can see that as 

the average degree of the network grows, the network becomes more vulnerable to the virus attack. Fig 

6.4 shows the robustness at t-time (t < ts) in homogeneous network with respect to SI and SIS epidemic 

spreading. 

Table 6.1. The robustness of homogeneous network G with respect to SI and SIS epidemic spreading. 

   Network 

Robustness   
<k>=4 <k>=6 <k>=8 

RVASI 0.1454 0.2798 0.3502 

RVASIS 0.1261 0.2106 0.2777 

 

6.4 Simulations 

In this section, Monte-Carlo simulations are used to further explore the robustness of different 

networks with respect to the virus attacks. Simulations are carried out in different networks with N=500 

nodes. All the simulations are averaged over 500 runs. 

First, the simulations are carried out in WS small world networks with the rewiring rate p. Based on 

the construction algorithm of the WS model, at the beginning, the network is a regular graph, and then 

randomly reconnects each edge in the network with probability p, that is, one endpoint of the edge 

remains unchanged, and the other endpoint is taken as the network. In the above model, p=0 corresponds 

to a completely regular network, p=1 corresponds to a completely random network, and the transition 

from a completely regular network to a completely random network can be controlled by adjusting the p 
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value. We capture a set of networks where the rewiring rate p changes from 0 to 1 and analyze the 

robustness of these networks. The examples of networks are of the same average degree, i.e., <k> = 6, 

and almost have the same epidemic thresholds, in which the epidemic threshold hardly works on 

measuring the network robustness. 

 
Fig 6.5. The robustness of WS networks with respect of SIS/SI epidemic model. 

Fig 6.5 shows the network robustness RVA
G

 of different networks. In SIS epidemic model (red circle), 

we can see that as p grows, RVA becomes larger, that is, the network becomes more vulnerable. When p = 

0, the network has a small value of RVA, that is because in regular network (p = 0), the virus spreads very 

slowly, as shown in Fig 6.2, that is to say, the spread velocity plays a greater role on measuring the 

network robustness than the steady infection. In SI model (blue circle), both the epidemic threshold and 

the steady infection are the same, then our robustness measure of network is only related to the spread 

velocity. We can see that from Fig 6.5 that the robustness of regular network is smaller than other 

networks due to the slow spread velocity. However, the WS networks and random network are almost 

have the same robustness as the difference of spread velocity is small in these networks. 

We further count the network robustness at time t (t < ts) the result in Fig 6.6 shows a better 

robustness at time t in regular network. As p increases, the robustness of network at time t increases, i.e., 

the network becomes more fragile. 
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(a) SIS epidemic model 

 
(b) SI epidemic model 

Fig 6.6. The robustness of WS networks at t-time with respect to SI epidemic spreading (Fig 6.6(a)) and SIS 

epidemic spreading (Fig 6.6(b)) 0.25 . 

The simulations are also carried out in BA networks with different average degree <k>, we can see 

from Table 6.2 that BA network becomes more vulnerable to the virus attacks as the average degree of 

the network grows. Fig 6.7 shows the robustness at t-time (t < ts) in BA networks with respect to SI and 

SIS epidemic spreading. 

Table 6.2. The robustness of BA network with respect to SI and SIS epidemic spreading. 

2 4 6 8 10 12 14 16
t

0

0.02

0.04

0.06

0.08

0.1

R
V

A
(t)

p=0
p=0.1
p=0.2
p=0.4
p=0.6
p=0.8
p=1

2 4 6 8 10 12 14 16
t

0

0.1

0.2

0.3

0.4

0.5

R
VA

(t)

p=0
p=0.1
p=0.2
p=0.4
p=0.6
p=0.8
p=1



78 
 

   Network 
Robustness  <k>=4 <k>=6 <k>=8 <k>=10 

RVASI 0.5589 0.5594 0.6035 0.7053 

RVASIS 0.0101 0.0115 0.1223 0.1643 

 

(a) SIS epidemic model 

 
(b) SI epidemic model 

Fig 6.7. The robustness of BA networks at t-time with respect to SI epidemic spreading (Fig 6.7(a)) and SIS 

epidemic spreading (Fig 6.7(b)) 0.15 . 
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networks with respect to virus spreading decreases as p increases, i.e., the regualr network shows better 

robustness than other homogeneous networks. 

 

6.5 Conclusion 

Considering the spread velocity, the epidemic threshold and steady infection, a new robustness 

measure with respect to virus attacks in social networks is proposed. The robustness of homogeneous 

network with respect of SI and SIS epidemic spreading are analyzed. Simulation results show that the 

network becomes more vulnerable to the virus attacks as the average degree of the network grows. In 

homogeneous networks, the network becomes more robustness improves due to the increasing numbers 

of random-connected links.  

The research in the above three chapters is carried out in static network. As we discussed in Chapter 

1-Chapter 3, in most of the real-world network, the structure is changing all the time, especially when 

the propagation process occurs in the network. In the following chapters, the research is carried out in 

dynamical networks. The relationship between the dynamic state of nodes and the network structure is 

explored.
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Chapter 7 

Study on the Reliability of Large-Scale Adaptive Weighted Network 

7.1 Introduction  

Allowing nodes to adaptively connect to reliable neighbors and disconnect those unreliable, a self-

healing adaptive network is able to operate based on the credibility and reliability of individual nodes, 

and inhibit virus spread and cascading failures. Adaptive (weighted) networks have become increasingly 

important, as a result of the proliferation of the cloud computing [136]-[138], vehicular ad-hoc networks 

(VANETs) [139], and social networks [141]. Adaptive (weighted) networks are of particular interest in 

practice, where attacks are often strategic and responsive to defenders’ actions. The networks can combat 

strategic attacks [142], by rewiring to bypass attacked nodes [36], [141]. As a result, the topology of the 

network keeps changing in response to the attacks, confusing the attackers, counteracting strategic 

attacks (e.g., to strategically critical nodes with high degrees in static networks), and transferring the 

strategic attacks to exhibit stationarity. 

An example of adaptive weighted networks is network function virtualization (NFV) on cloud 

computing platforms, where a large number of virtual machines (VMs) are installed, running virtual 

network functions (VNFs) [143]-[145]. The VMs are connected through virtual links. Network services 

need to be processed at different VMs running different VNFs in correct orders. The VMs and virtual 

links can be configured in response to requests of network services, and the weight of a virtual link can 

indicate the workload of services that a VM partially completes and forwards to another VM for further 

processing. In the case where some VMs are congested due to distributed denial-of-service (DDoS) 

[148]-[150] attacks or infected due to computer viruses, new virtual links can be established to bypass 

these VMs. The weights (or in other words, the workloads) of the disconnected virtual links can be 

transferred to the new links. The VMs that are neither attacked nor infected can check their routing tables, 

decide to rewire their virtual links. The number of the new connections can be set to be equal to the 

number of links disconnected, so as to maintain the consistency of workload execution and the 

controllability of NFV. 

Studies have been carried out to design rewiring protocols and analyze rewiring effects, typically in 

adaptive unweighted networks, where rewiring is random and independent of the logical or geographical 

closeness between a specific pair of nodes. In practice, there are great potentials for a healthy node to 

disconnect suspicious neighbors based on the frequency of communication occurrences. A healthy node 

may preferentially disconnect a frequently communicated, suspicious neighbor, so as to prevent 

cascading failures, such as DDoS attacks and virus infection, in NFV. Alternatively, a healthy node may 

choose to disconnect infrequently communicated, suspicious neighbors, so as to maintain the 

functionality of the network for intensive urgent tasks at the cost of network failures in the long term. 

The conditions inhibiting and facilitating virus spread or cascading failures are important to the analysis 

of network reliability. Extensive studies have been carried out on the conditions in conventional networks 

without rewiring or weighting of network links, by using the susceptible-infected-susceptible (SIS) 
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models [151], [152]. To the best of our knowledge, however, there has been no rigorous analytical study 

on the emerging adaptive weighted networks. A key challenge is that not only can the nodes change 

states (as modeled in typical SIS models [7]), but the links connecting the nodes can also rewire and 

change over time (as opposed to the typical SIS models). Another critical challenge is that the links can 

be differently weighted. These challenges cannot be straightforwardly addressed by existing SIS models. 

Nontrivial extensions of the models are required. 

This chapter presents a new mean-field model to analyze the resistance of adaptive weighted 

networks against cascading failures, such as DDoS attack and computer virus. As a consequence of the 

new challenges, new derivations are necessary to extend the SIS model and evaluate the impact of 

rewiring and of weighted network links on the reliability of the adaptive weighted networks: 

1) A new set of differential equations are formulated to model the continuous-time Markov chain process 

of the rewiring of weighted links in adaptive weighted networks. The differential equations are linearized. 

The largest eigenvalue of the Jacobian matrix of the linearization is the key to the study of the network 

reliability, but is not readily achievable. 

2) We judiciously decompose the Jacobian matrix, evaluate the eigenvalues of the different parts by 

using determinant transformations and spectral analysis, and finally unveil the range of the largest 

eigenvalue of the Jacobian matrix. The upper and lower bounds of the range provide the sufficient 

conditions for the inhibition and proliferation of virus or cascading failures in adaptive weighted 

networks. 

3) Two case studies verify the conditions, with exponentially and log-normally distributed link weights. 

By exploiting Order Statistics and Taylor expansion, we reveal that the condition of proliferation of virus 

or cascading failures is inversely proportional to both the network degree and average link weight. 

Extensive simulations confirm the validity of the identified conditions, as well as the effectiveness of 

adaptive weighted networks in terms of suppressing cascading failures. An important finding is that the 

distributions of the link weights can have a strong impact on network reliability against virus spread or 

cascading failures in adaptive weighted networks. 

This is distinctively different from the existing conclusions on current static weighted networks 

[153]. We also find that the higher upper bound the rewiring rates of the weighted network links have, 

the more robust the adaptive weighted networks are against outbreaks of virus or failures. In the case of 

non-uniform rewiring rates, the distributions of the rewiring rates can also have a marked impact on the 

network reliability. 

The rest of this chapter is organized as follows. In Section 7.2, the related works are reviewed. In 

Section 7.3, the structure of adaptive weighted network is described. The proposed mean-field model of 

adaptive weighted network is presented in Section 7.4, followed by the stability analysis of the adaptive 

weighted networks. Two rewiring strategies are discussed and evaluated in Section 7.5. In Section 7.6, 

numerical and simulation results are provided, followed by conclusions in Section 7.7. 
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7.2 Adaptive Weighted Network Structure 

Consider a generic network of N nodes connected by L weighted bidirectional links. The weights of 

the links are collected in W = {w1, w2, ··· , wM}, wi > 0, i = 1, 2, ··· , M, where M is the number of different 

weights, measuring the closeness between two connected nodes (e.g., in terms of distance or 

communication frequency). The higher a weight is, the closer two connected nodes are. The probability 

distribution of wi is denoted by g(wi). With reference to the SIS epidemic models, each node of the 

network can be in either a healthy/susceptible (S) or unhealthy/infected (I) state, indicating the node is 

reliable or not, respectively. We assume stationary random infections or failures which are reasonable in 

adaptive weighted networks, as discussed in Section 7.1. Moreover, the assumption of stationary random 

infections has been extensively assumed in the existing SIS models, even in the case where the networks 

are static and could be vulnerable to strategic attacks. At any instant, for a w-weighted link connecting 

an unreliable node and a reliable node (SI/IS link), the reliable node can become unreliable with the rate 

. τ is a coefficient known in prior. The unreliable node can recover with rate γ as the result of 

patching or antivirus software updating. 

We consider that the reliable nodes can protect themselves by disconnecting from unreliable 

neighbors and reconnecting to other reliable nodes, thereby preserving network reliability. With 

probability rw for an SI link weighted w, the reliable node breaks the link to the unreliable one and forms 

a new link to another randomly selected reliable node. The rewiring rate rw is a random variable in general 

cases. The weights of the disconnected links can be transferred to the new links, while the weights of 

other links remain unchanged. rw can depend on w, e.g., the closeness of the nodes. In the case of NFV, 

the weight of a virtual link can indicate the workload from one VM to another, as described in Section 

7.1. The virtual links to the congested/failed VMs can be rewired to other VMs, and the weights (or 

workloads) of the links can be transferred to the new links. We assume that the number of links is fixed, 

as predominantly assumed in the literature on adaptive (un)weighted networks, e.g., [36], [142]. In many 

cases, the assumption is reasonable and practical to maintain the connectivity and controllability of the 

networks. In a special case where the entire network becomes alert to threats (e.g., known virus or 

failures), the rewiring rate can be independent of the link weight, i.e., , w . 

Fig 7.1 presents the operations of a node in an adaptive weighted network, where DDoS attacks or 

computer viruses can propagate to explore vulnerabilities in the network. The weight of the link between 

a pair of nodes can account for the frequency the nodes interact; or in other words, the workload the 

nodes send to each other. A susceptible (or healthy) node is more likely to be infected by an infected 

neighbor it interacts frequently, than by one it interacts infrequently. Once one of its neighbors is infected 

or fails, the node can observe the misbehaviors of the neighbor and rewire its link to bypass the infected 

neighbor, thereby preventing propagation of the attacks or failures. As a result, the topology of the 

network keeps changing in response to attacks or failures, quarantining infected individuals and 

counteracting the vulnerability explorations. 

Other notations are defined as follows: [ ]( { , })A A S I  denotes the number of nodes in state A, and 

[S] + [I] = N. [AB]w denotes the number of edges weighted w, connecting two nodes in states A and B, 

=wr r
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and 2[ ] [ ] [ ] ( )w w wSI SS II kNg w . k is the average degree of the network, and 2[ ] =[ ] +[ ]w w wSI SI IS . 

[ ]=[ ]+[ ]k A A A A B
1

[ ] [ ]
i

M
wi

AA AA
1

[ ] [ ]
i

M
wi

AB AB . '[ ]wwABC  denotes the number of triplets A-

B-C, with edge AB weighted w and edge BC weighted w’. 

 
Fig 7.1. The flowchart of a node in regards of a w-weighted link. The model is continuous-time and therefore the 

flowchart runs continuously. 

 

7.3 Proposed Mean-field Model of Adaptive Weighted Network 

The research approach we take is to first model a new continuous-time Markov chain process to 

capture the rewiring and weighting of network links in adaptive weighted networks, and then analyze the 

conditions of the equilibriums of the model. The equilibriums considered in this chapter are: (1) a disease-

free equilibrium in which virus infections or cascading failures are completely eliminated; and (2) an 

outbreak equilibrium in which the infections or failures are insuppressible. In other words, the whole 

adaptive weighted network stabilize, either free of infections/failures, or with insuppressible 

infections/failures. By applying the Hartman-Grobman theorem [154], the conditions of the equilibriums 

are analyzed by linearizing the model and evaluating the largest eigenvalue of the Jacobian matrix of the 

linearization. With mathematical manipulation, we derive the upper and lower bounds of the largest 

eigenvalue, which provide the sufficient conditions respectively for the proliferation and inhibition of 

virus or cascading failures in adaptive weighted networks. 

Mean-field approximations are taken to improve the tractability of the continuous-time Markov 

Chain process. Mean-field theory studies the behavior of large and complex stochastic models where a 

large number of small individual components can interact with each other [103]. The mean-field 

approximations use a single average effect to approximate the effect of all the other individuals on any 
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given individual. As a result, the interactions between individuals can be decoupled for analytical 

tractability, and the populations of individuals with different characteristics can be studied. The mean-

field approximation is suitable for large-scale networks [155]. 

The time-varying populations of the nodes and the links are captured by a set of differential 

equations, as given by (7.1). 

 [ ] [ ] [ ]i w i w
i i w

d S I S I
dt

,                                  (7.1a) 

  [ ] [ ] [ ]i w i w
i i w

d I I S I
dt

,                                   (7.1b) 

' ' '
'

[ ] ([ ] [ ] ) ([ ] [ ] )

                ([ ] [ ] )

w
i j w i j w w i j w i j w

i j i j

w i j ww i j w w
w i j

d SS S I I S r S I I S
dt

S S I IS S

,             (7.1c) 

' ' '
'

[ ] 2 [ ] ([ ] [ ] )

                ([ ] [ ] )

w
i j w w i j w i j w

i j i j

w i j ww i j w w
w i j

d II I I S I I S
dt

I S I IS I

,                  (7.1d) 

' ' '
'

[ ] ([ ] [ ] ) [ ]

                ([ ] [ ] ) [ ]

w
i j w i j w w i j w

i j i j

w i j ww i j w w w i j w
w i j i j

d SI S I I I S I
dt

S S I IS I r S I

,          (7.1e) 

,            (7.1f) 

where [Ai] represents the probability that the node i’s state is A, [AiBj] represents the probability that a 

link connecting a pair of nodes in states A and B, . Here, (7.1a) captures the time-changing 

population of nodes in the healthy (or susceptible) state. The first term on the right-hand side (RHS) of 

(7.1a) corresponds to the part of the population recovering from the infected state with the probability of 

γ. The second term corresponds to the part of the population infected by their infected neighbors with the 

probability . Likewise, (7.1b) captures the time-changing population of nodes in the infected state. 

Eqs. (7.1c) and (7.1d) characterize the time-varying numbers of links weighted by different weights 

and connecting nodes in different states. For instance, (7.1c) captures the changing number of the w-

weighted links connecting two healthy nodes. The first term on the RHS of (7.1c) is the increased part 

of the link number, resulting from the recovery of the infected ends of the links with the probability of γ. 

The second term is another increased part of the link number, resulting from rewiring to bypass an 

infected node with the probability of rw. The third term is the number of the previous w-weighted SS 

links which become SI links due to the infection at one end of the links through a w’-weighted link with 

the probability of βw’. Likewise, (7.1d) captures the time-changing number of w-weighted II links 

connecting a pair of infected nodes, (7.1e) and (7.1f) capture the time-changing number of w-weighted 

SI and IS links, respectively. 

By taking the mean-field approximation, the expectation of infected nodes in the network can be 

' ' '
'

[ ] ([ ] [ ] ) [ ]

                ([ ] [ ] ) [ ]

w
i j w i j w w i j w

i j i j

w i j w w i j ww w i j w
w i j i j

d IS I S I I I S
dt

IS S I S I r I S

, { , }A B S I

w
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written as the sum of the probability that each node in the network is infected, i.e.,
 

. 

Similarly, the expectation of w-weighted SI links can be written as [ ] = [ ]w i j w
i j

AB AB , by assuming all 

the w-weighted edges exhibit the same state. The temporal changes in the population of healthy nodes 

and infected nodes can be written as 

[ ] [ ] [ ]w w
w

d S I SI
dt

,                         (7.2a) 

[ ] [ ] [ ]w w
w

d I I SI
dt

,                        (7.2b) 

where (7.2a) captures the time-changing population of nodes in the healthy (or susceptible) state. The 

first term on the RHS of (7.2a) corresponds to the part of the population recovering from the infected 

state with the probability of γ. The second term corresponds to the part of the population infected by their 

infected neighbors with the probability of βw. Likewise, (7.2b) captures the time-changing population of 

nodes in the infected state. 

The temporal change of a link depends on its weight and the states of the nodes at both ends of the 

link. By taking the mean-field approximation, the expectation of the w-weighted AB links in the network 

can be written as the sum of the probability that each link connecting a pair of A node and B node, i.e., 

[ ] = [ ]w i j w
i j

AB A B , A, B {S, I}. The temporal changes in the numbers of links of different types 

can be written as 

' ' '
'

[ ] [ ] +[ ] [ ] +[ ] ([ ] [ ] )w
w w w w w w ww w w

w

d SS SI IS r SI IS SSI ISS
dt

,         (7.3a) 

' ' '
'

[ ] 2 [ ] [ ] +[ ] ([ ] [ ] )w
w w w w w ww w w

w

d II II SI IS ISI ISI
dt

,              (7.3b) 

' ' '
'

[ ] [ ] [ ] [ ] ([ ] [ ] ) [ ]w
w w w w w ww w w w w

w

d SI SI II SI SSI ISI r SI
dt

,            (7.3c) 

.       (7.3d) 

Eqs. (7.3a) and (7.3b) characterize the time-varying numbers of links weighted by different weights 

and connecting nodes in different states. For instance, (7.3a) captures the time-changing number of the 

w-weighted links connecting two healthy nodes. The first term on the RHS of (7.3a) results from the 

recovery of the infected ends of the links with the probability of γ. The second term on the RHS of (7.3a) 

results from rewiring to bypass an infected node with the probability of rw. The third term is the number 

of previous w-weighted SS links which become SI links due to the infection at one end of the links 

through a w′-weighted link with the probability of βw′. Likewise, (7.3b) captures the time-changing 

number of w-weighted II links connecting a pair of infected nodes; and (7.3c) and (7.3d) capture the 

time-changing number of w-weighted SI and IS links, respectively. 

We assume that the weight of a link is symmetry, i.e., . Then 

[ ]= [ ] [ ]i i
i

A A N A

' ' '
'

[ ] [ ] [ ] [ ] ([ ] [ ] ) [ ]w
w w w w w w w ww w w

w

d SI IS II IS ISS ISI r IS
dt

( , ) ( , ),  w i j w j i i j
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. (7.2) and (7.3) can be rewritten as 

[ ] [ ] [ ]w w
w

d S I SI
dt

,                                             (7.4a) 

[ ] [ ] [ ]w w
w

d I I SI
dt

,                                           (7.4b) 

' '
'

[ ] 2 [ ] 2 [ ] 2 [ ]w
w w w w ww

w

d SS SI r SI SSI
dt

,                           (7.4c) 

' '
'

[ ] 2 [ ] 2 [ ] 2 [ ]w
w w w w ww

w

d II II SI ISI
dt

,                          (7.4d) 

,   (7.4e) 

which is the mean-field approximation of the continuous-time Markov chain model for the adaptive 

weighted networks. The time-varying states of both the nodes and links are captured. 

We note that the linear expressions in (7.4) are due to the fact that the system of interest is 

continuous-time. At every time instant ∆t → 0, the probability of a healthy node being infected by more 

than one infected neighbor approaches zero. We can apply the moment closure approximation to evaluate 

[A] and [AB]w, and the number of triplets [ABC]ww′ can be written as [153]: 

'
'

[ ] [ ][ ]
[ ]
w w

ww
AB BCABC

B
,                      (7.5) 

where . Based on (7.5), we can have 

'
'

[ ] [ ][ ]
[ ]
w w

ww
SS SISSI

S
,                           (7.6) 

'
'

[ ] [ ][ ]
[ ]
w w

ww
SI SIISI

S
.                         (7.7) 

By substituting (7.6) and (7.7) into (7.4), we can rewrite (7.4) as 

[ ] [ ] [ ]w w
w

d S I SI
dt

,                                     (7.8a) 

[ ] [ ] [ ]w w
w

d I I SI
dt

,                                   (7.8b) 

 
' '

'

[ ] [ ]2( )[ ] 2 [ ]
[ ]

w w
w w w w

w

d SS SIr SI SI
dt S

,                    (7.8c) 

' '
'

[ ] [ ]2( [ ] [ ] [ ] )
[ ]

w w
w w w w w

w

d II SIII SI SI
dt S

,                (7.8d) 

' '
'

[ ] [ ] -[ ]( )[ ] [ ] [ ]
[ ]

w w w
w w w w w w

w

d SI SS SIr SI II SI
dt S

.         (7.8e) 

For the purpose of cross-validation of the proposed model, we consider a special case where the 

rewiring rate rw = r is a constant. When rw = 0, i.e., the network is static, and (7.8) can be rewritten in the 

[ ] [ ]w wSI IS

' ' ' '
' '

[ ] [ ] [ ] [ ] [ ] [ ] [ ]w
w w w w w w w w w w ww

w w

d SI SI II SI r SI ISI SSI
dt

1k
k
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exactly same way as [156], eq.6] describing static weighted networks. In other words, (7.8) is cross-

validated by the special case. 

 

7.4 Stability Analysis of Adaptive Weighted Network 

We proceed to derive the reliability threshold of , denoted by * based on (7.8). * is the 

evaluation of the reliability of the adaptive weighted networks against cascading failures. If * , the 

adaptive weighted network can eventually become reliable, i.e., all nodes eventually become reliable. 

Otherwise, the network is unreliable, i.e., the unreliability proliferates. The larger *  is, the more 

resilient the network is, e.g., against virus spread and cascading failures. To derive *, we analyze the 

stability of the equilibrium of the adaptive weighted networks. 

As stated in the Lyapunov’s first method [157], the behavior of a dynamical system in a domain 

near an equilibrium point is qualitatively the same as the behavior of its linearization near this equilibrium 

point. If and only if the Jacobian matrix of the linearization has all negative eigenvalues, a nonlinear 

dynamical system is stable at the equilibrium. The equilibrium point of interest, also known as the 

disease-free equilibrium point, is [ ] [ ]( , ) 0, 0w wd II d SI
dt dt

, at which all nodes are reliable [158]. By 

exploiting the Lyapunov’s first method, we linearize (7.8) in the vicinity of the equilibrium, evaluate the 

eigenvalues of the linearization at the equilibrium, and study the condition under which the Jacobian 

matrix of the linear system has all negative eigenvalues [159]. As a result, we are able to establish the 

thresholds to preserve stability or undergo instability at the equilibrium. 

Based on the aforementioned condition ,  and 

, (7.8d) and (7.8e) can be respectively rewritten as 

,                     (7.9a) 

.  (7.9b) 

By suppressing all higher order terms of [II]w and [SI]w, (7.9) can be linearized, as given by 

[ ] 2 [ ] +2 [ ]w
w w w

d II II SI
dt

,                            (7.10a) 

' '
'

[ ] ( 1) ( ) [ ] ( )[ ] [ ]w
w w w w w w

w

d SI k g w SI r SI II
dt

.         (7.10b) 

The linear stability analysis of (7.10) is carried out in the vicinity of the equilibrium. By the 

Hartman-Grobman theorem [160], the behavior of the system around an equilibrium point can be 

evaluated through the eigenvalues of the Jacobian matrix of (7.10). Let J = [Jij] denote the Jacobian 

matrix of (7.10) at the equilibrium, as given by [156] 

[ ] [ ]S I N 2[ ] [ ] [ ] ( )w w wSI SS II kNg w

2[ ] =[ ] +[ ]w w wSI SI IS

' '
'

[ ] 2( 1)[ ]2 [ ] +2 [ ] + [ ]
[ ] [ ]

w w
w w w w w

w

d II k SIII SI SI
dt kN SI II

' '
'

[ ] ( ) 3[ ] -[ ]( 1) [ ] ( )[ ] [ ]
[ ] [ ]

w w w
w w w w w w

w

d SI kNg w SI IIk SI r SI II
dt kN SI II
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                          (7.11) 

where 

, 

, 

, 

 

Note that the matrix block  is an M-by-M diagonal matrix. By block matrix multiplication, we 

can get 

111 12 1111 12

21 22 21

0
0
M

M

J J JI J J
J J J HI

,                     (7.12) 

where  is the identity matrix, and . 

Let row vector μ be the spectrum of the square matrix J, i.e., collects all eigenvalues of J, and 

 be the i-th (largest) eigenvalue of J, i = 1, 2, …, 2M. The characteristic polynomial of J can be 

written as 

1111

2 2 2121

00
det( ) det det i M

i M i M
i M

J IJ
J I I

J H IJ H
,         (7.13) 

where λi and ηi are the i-th eigenvalues of λ and η, i.e., the spectra of the square matrices J11 and H, 

respectively. Then we have , so that 

, , 

in other words, [λ, η] is also the spectrum of J from (7.13). 

In [159], the linear state model (7.10) is stable at the equilibrium, if and only if the real parts of all 

the eigenvalues of J are negative. Since J11 is an M-by-M diagonal matrix with all the main diagonal 

entries equal to −2γ, all of the M eigenvalues of J11 are −2γ < 0. To this end, we can have max{μ} < 0, 

if and only if the maximum eigenvalue of H, denoted by ηmax(H) < 0. Let H = [Hij], we have 

( 1) ( ) ,                                
=

( ) ( 1) ( ) ,              
j

i i

i w

ij
w i w

k g w if i j
H

r k g w if i j
. 

To evaluate ηmax(H), we decouple H as H = H(1) +H(2), and rewrite H(1) = [Hij
(1)] and H(2) =[Hij

(2)]. 

Then, 

11 12

21 22

J J
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J J
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1 2
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Mw w wJ
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=
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j
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Hij = Hij
(1) + Hij

(2),                            (7.14) 

where 

(1)
( 1) ( )                      

=
( 1) ( )              

j

i

i w

ij
i w

k g w if i j
H

k g w if i j
,                   (7.15) 

(2) 0             
=

         
i

ij
w

if i j
H

r if i j
.                          (7.16) 

By substituting (7.15), we can write det[H(1)], as given by 

,            (7.17) 

where for notational simplicity, we define 

, 1,2,...,
( 1) ( )

i

i
i w

x i M
k g w

According to basic determinant transformations, we can have 

,  (7.18) 

where (a) is achieved by subtracting the first row from all the rest of rows; (b) is achieved by adding all 

the other columns to the first column; (c) is obtained by multiplying the elements of the first column to 

their respective minors. 

As a result, (7.17) can be rewritten as 

,              (7.19) 

where , takes the expectation of βw. 
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The spectrum of H(1), denoted accordingly by η(1), satisfies . According to (7.19), 

we have 

.                  (7.20) 

By solving (7.20), one can obtain 

(1) , 2,...,i i M , 

. 

where ηmax
(1) is the largest eigenvalue of H(1) and ηi

(1) is any other eigenvalue. 

Let , then , where all the entries are positive. Since H = H(1) + H(2) 

and H(2) is a diagonal matrix, we can get 

, 

where , . Matrices P ≤ Q stands for that entry of P is no less than the 

corresponding entry of Q. 

By Perron-Frobenius theorem [161], for any matrices A and B with 0 ≤ A ≤ B, the spectral radii of 

A and B satisfy ρ(A) ≤ ρ(B). For A = [aij] with aij > 0, i, j, the spectral radius ρ(A) is equal to the largest 

eigenvalue. Therefore, ηmax(H) satisfies 

(1) (2) (1) (2)
1 max 1 1( )m H , 

i.e., 

.                      (7.21) 

From [159], the equilibrium is stable, if ; and the equilibrium can be 

unstable, if . Since βw = τw, βw  = τ w , we have 

, 

. 

The network is reliable if 

,                           (7.22) 

where  gives the lower bound of  in reliable states. 

The network is unreliable if 
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,                            (7.23) 

where  gives the upper bound of  in unreliable states. 

In the special case where , we have , and  can be written 

explicitly in a closed-form, as given by 

.                             (7.24) 

We can see in (7.24) that  increases with the growth of the rewiring rate r, and decreases with 

the growth of the average link weights w  in the case of uniform rewiring rates. It is also shown that the 

distribution of weight wi has little impact on  when . Moreover, we can see in (7.23) that, 

with non-uniform rewiring rates, the bounds of  depend on  which, in turn, depends on wi. As 

the network becomes unreliable when τ > , we conclude that the higher the upper bound of  is, 

the more resistant the network is against the outbreak. To this end, in the case of non-uniform rewiring 

rates , the distribution of wi can have a strong impact on the upper bound of  and thus the 

resistance of the network. 

We note that our analysis is distinctively different from the existing studies. As discussed in Section 

II, the existing study of adaptive weighted networks, i.e., [151], [152], is based on numerical evaluations 

and provides no analysis of the reliability of the networks. In different yet relevant contexts of (static) 

weighted networks and adaptive unweighted networks, analyses do avail, and may also evaluate the 

reliability by assessing the eigenvalues of the Jacobian. However, the analysis of weighted networks does 

not capture the rewiring rate rw which is key to the reliability threshold of adaptive weighted networks 

; see (7.22) and (7.23). The analysis of adaptive unweighted networks cannot account for the non-

uniform weights and the subsequent infection rates of adaptive weighted networks, which require new 

mathematic manipulations and lead to the new bounds of . In contrast, we consider a new adaptive 

weighted network, where links can be rewired on-the-fly and the weights of disconnected links can be 

transferred to the new links. We develop a new continuous-time Markov model to characterize the 

changing states of the links, capturing the real-time rewiring process of the networks. With the non-trivial 

analysis of the Jacobian of the linearization of the model, the largest eigenvalue of the Jacobian is 

analyzed to specify the respective thresholds under which cascading failures can be inhibited or 

proliferate. 

We also note that the link weights may not be symmetric in the presence of DDoS attacks. Our 

model can be readily applied to asymmetric link weights. As a matter of fact, (7.3) divides all the w-

weighted links into four different types: SSw, IIw, SIw and ISw, and provides the temporal changes in the 

numbers of links of the different types. [IS]w does not have to be equal to [SI]w, or in other words, the 

*
max{ }

( 1)
iwi

u

r

k w

*
u

iwr r min{ } max{ }
i iw wi i

r r r *

*
( 1)

r
k w

*

*
iwr r

*
iwr

*
iwr

iwr
iwr

*

*



92 
 

link weights can be asymmetric. The above analysis, involving the linearization of differential equations, 

the derivation of the Jacobian of the linearized, and the evaluation of the eigenvalues of the Jacobian, 

can be readily based on (7.3). 

 
7.5 Rewiring Strategies and Network Stability 

As discussed in Section 7.4, the rewiring rate  can be designed in different ways which can 

have a strong impact on the bounds of . This section studies the impact by taking two different but 

simple linear designs of  under two classical distributions of wi for example. Let w(i) denote the i-th 

smallest of W RM×1. 

The first design (Design 1) specifies the positive correlation between the rewiring rate and wi, i.e., 

. This is the case where a reliable node preferentially breaks its heavily loaded links 

with frequently interacted neighbors, especially in the case of cascading failures. The second design 

(Design 2) specifies the negative correlation between the rewiring rate and wi, i.e., 

2 2= (1 , 0
max{ }i

i
w

i

wr
w

. This is the case where a reliable node preferentially breaks its infrequently 

used (or lightly loaded) links, especially for the purpose of alleviating interruptions to ongoing network 

operations. 

The two example distributions of W are: (a) exponential distribution (ED)[162], [163], and (b) log-

normal distribution (LD)[164]-[166]. Both distributions are non-negative and suitable to describe the 

nonnegative link weights of adaptive weighted networks. For the purpose of fair comparisons between 

the strategies, the mean of the exponential distribution is set to be equal to that of the log-normal 

distribution. Given the same mean, denoted by w , the two distributions have different dispersions, and 

so are the expectations of w(1) and w(M) under different distributions. Order statistics[167]-[169] are 

exploited to evaluate w(1) and w(M), and in turn the lower bounds of  in (7.23). This helps provide 

insight on the importance of dispersion on the reliability of the adaptive networks. 

 

7.5.1 Exponential Distribution 

The probability density distribution (PDF) and cumulative distribution function (CDF) of wi i are 

 and , respectively. By exploring order statistics, the PDFs of w(1) and w(M) 

can be written as 

, 

. 

We can find that w(1) has an exponential distribution with parameter λM. As a result, 
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(1)
1[ ]w
M

                          (7.25) 

The PDF of w(M) can be rewritten as 

.                 (7.26) 

By exploiting order statistics, the expectation of  is given by 

.                            (7.27) 

For Design 1 where , , the network is unreliable if

. 

For Design 2 where ,  , the network is 

unreliable if . 

 

7.5.2 Log-normal Distribution 

Let  and  be the PDF and CDF of wi. Then we have 

, 

, 

where μ and σ are the mean and the standard deviation, respectively, and ϕ(·) and Φ(·) denote the PDF 

and CDF of the normal distribution respectively. The mean m and the variance v are functions of μ and 

σ, as given by 

.                        (7.28) 

By exploring order statistics, the PDF of w(M) can be written as 
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The expectation of w(k) is 

, k = 1, 2, …, M.            (7.30) 

By submitting (7.29) to (7.30), we have  

.               (7.31) 

By exploiting order statistics, the expectation of w(M) is given by 

,                  (7.32) 

where , . 

For Design 1 where , , the network is 

unreliable if 

. 

For Design 2 where -
iw ir w , , 

the network is unreliable if 

. 
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(b) of the log-normal distributions 

Fig 7.2. The PDF and E[w(M)] of the log-normal distribution, where the mean of the distribution is m = 1.5, and v is 

the variance of the distribution. We plot v = 0.125, 0.25, 0.5, 1 and 2.25 for the log-normal distribution to show the 

impact of the variance on the E[w(M)]. 

We note that E[w(M)] varies with different weight distributions. Fig 7.2(a) plots the PDFs of the log-

normal distributions under different variances v. Given the same mean, m, we can see that the log-

normal distribution becomes increasingly dispersive, as v increases. According to (7.27) and (7.30), Fig 

7.2(b) plots E[w(M)] for the log-normal distribution with the growth of M. We see that, as the dispersion 

of the distribution increases, E[w(M)] increases accordingly. Considering Design 1 and 2, we can 

conclude that: (1) for Design 1, as E[w(M)] gets larger,  becomes larger and the threshold of τ 

that inhibits outbreaks becomes larger. Therefore, the more dispersive the distribution is, the more 

resistent the network is against outbreaks in Design 1; and (2) for Design 2, as E[w(M)] gets larger, 

 becomes smaller and the threshold of τ that inhibits outbreaks occur decreases. Therefore, 

the more dispersive the distribution is, the less resistent the network is against outbreaks in Design 2. 

In addition to the reliability threshold τ , another evaluation of the reliability of adaptive weighted 

networks against cascading failures is the steady-state density of unreliable nodes and the spreading 

speed of the infection/failures at an outbreak equilibrium of the adaptive weighted network. At a 

disease-free equilibrium point, [ ] [ ]( , ) 0, 0w wd II d SI
dt dt

, and [I] = 0, and the cascading failure is 

inhibited. The population of infected nodes becomes zero. The entire population of nodes is healthy. 

At an outbreak equilibrium, the average populations of susceptible (or healthy) and infected nodes 

stop changing over time, i.e., , , and [I] > 0. As a result, the average number of links 

connecting different types of nodes, i.e., infected and susceptible nodes, stabilizes. , , 

and . The populations of infected and healthy nodes are non-zero. By substituting these 

steady-state conditions into (7.8), we have 
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[ ] [ ] 0w w
w

I SI ,                                       (7.33a) 

[ ] [ ] 0w w
w

I SI ,                                     (7.33b) 

' '
'
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w
w w w w

w

SIr SI SI
S

,                       (7.33c) 

' '
'

[ ][ ] [ ] [ ] 0
[ ]

w
w w w w w

w

SIII SI SI
S

,                    (7.33d) 

.    (7.33e) 

By rewriting (7.33a) as , and then substituting into (7.33c) and (7.33d), we obtain 

[ ]( )[ ] [ ] 0
[ ]

w
w w

SSr SI I
S

,                       (7.34a) 

.                      (7.34b) 

Since , , we can rewrite (7.34) as 

[ ][ ] [ ] [ ] 0
[ ]w w

w

SSSI r SI I
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,                       (7.35a) 

.                    (7.35b) 

By substituting  and  into (7.35) we can obtain 

2
2

[ ][ ] [ ] [ ] [ ] 0
max{ } [ ]

SSSI SI I I
w S

,                  (7.36a) 

,                               (7.36b) 

which can be rearranged to provide the steady-state degrees of infected and healthy nodes, as given by  

2
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wSS SI

II I
,                    (7.37a) 

.                               (7.37b) 

By substituting (7.37) and  into , we can obtain 

.             (7.38) 

By substituting (7.37b), then (7.38) can be rewritten as 

.         (7.39) 
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Together with constraints  and , (7.39) provides the sufficient condition 

of the mass of infections/failures at an outbreak equilibrium of the networks.  can be 

accordingly evaluated from (7.39) to show the degree of infected/failed nodes at the equilibrium, 

indicating changes in the topology of adaptive weighted networks in response to virus spread and 

cascading failures, as well as the effect of rewiring of weighted links. 

 

Fig 7.3. The relations between [I] and [SI] (and [II]). Plotted are the numbers of [SI] (red) and [II] (blue) with 

respect to [I], under different values of α2. N = 1000, k = 6, τ = 0.1, γ = 0.5, and max{w} = 10. 

Fig 7.3 plots [SI] and [II] with the growth of [I], where different values are tested for α2. We can see 

that [SI] exhibits concavity with regards to [I], while [II] exhibits convexity. In other words, the adaptive 

rewiring can increasingly isolate infected/failed nodes by breaking the links which can potentially infect 

healthy nodes. As a result, infections/failures become increasingly concentrated within the small set of 

infected/failed nodes. We also see that the average degree of infected/failed nodes remains consistent, 

as the growth of [I] in an outbreak equilibrium, but the average degree does decrease with the growth 

of α2. Moreover, the average degree of infected/failed nodes is lower than the average degree of all 

nodes, indicating the infected/failed nodes are less connected and are prone to be separated from other 

nodes. 

 
7.6 Numerical and Simulation Results 

In this section, numerical and simulation results are provided to validate our proposed model and 

stability analysis. Figures are plotted based on discrete-time Monte-Carlo simulations of 100 iterations. 

Therefore, each data point in the figures is the average result of 100 independent runs. For each of the 

runs, a single infected node is randomly chosen at t = 0, as the initial point of infection. 

As discussed in Section VI, the rewiring process is intimately associated with the closeness between 

nodes. Here we analyze two different linear designs of : namely Design 1 with ; 
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and Design 2 with 
2 2= (1 , 0

max{ }i

i
w

i

wr
w

. In the simulations, only one of the designs is taken 

across the network. Two distributions of the link weights wi are compared: the exponential distribution 

and the log-normal distribution. For comparison fairness, the means of the exponential and the log-

normal distributions are both set to be  (so that the average value of  is identical 

in both designs), and their variances are both set to be 2.25 (by configuring  and 

 for the log-normal distribution; see (7.28) in Section 7.5). α1 and α2 are 

preconfigurable coefficients. We set  and  to ensure the average value of  is 

identical in both designs. In addition, we also plot the curves where the variance of the log-normal 

distribution is v=0.125, 0.25, 0.5 and 1 to show the impact of the variance on the propagation of 

cascading failure or virus spread. The simulations are carried out in an ER random network [25] of 1000 

nodes connected by randomly generated 1997 links, where the weights of the links follow the 

exponential or log-normal distributions, ED and LD, as discussed in Section 7.5, respectively. For fair 

comparison, the distributions of W have identical mean w . Other properties of the random network 

are summarized in Table 7.1. 

Table 7.1 basic properties of the random network with two exemplary distributions of link weights. 

Distribution      

 0.125 3.994 1.5 0.6757 3.0985 

 0.25 3.994 1.5 0.4082 4.4738 

Log-normal(LD) 0.5 3.994 1.5 0.2035 7.6161 

 1 3.994 1.5 0.1579 10.2048 
 2.25 3.994 1.5 0.0626 15.0701 

Exponential(ED) 2.25 3.994 1.5 0.00085 15.296 

Fig 7.4 plots the percentile of unreliable nodes I with the growth of τ in the steady-state network, 

where both the two rewiring strategies are presented. We can see that  increases in Design 1 as the 

dispersion of the link weights increases; see Fig 7.4(a), and in Design 2,  increases as the dispersion 

of the weights decreases; see Fig 7.4(b). Moreover, the simulation results are consistent with the 

analysis in Section VI. Our analysis is validated with accuracy. As the weight distribution becomes 

more dispersive, the maximum value of the link weights in the network becomes increasingly larger, 

and the minimum value of the weights becomes smaller. To this end, the preferential disconnections of 

the links with frequently communicated neighbors are likely to take place on the SI links with large 

weights, with the growth of the diversity of the weights. This can defer the outbreak of cascading 

failures or virus spread as the diversity of the weights grows in Design 1. On the contrary, in Design 2, 

the preferential disconnections of links with infrequently communicated neighbors are likely to take 

place on links with small weights, with the growth of the diversity of the weights. This can defer the 

outbreak of cascading failures or virus spread as the diversity of the weights decreases in Design 2. 

Furthermore, based on (7.22), the network can eventually become reliable if τ < 0.223 in Designs 1 and 
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2, consistent with the analytical results of the lower bound as shown in Fig 6.4. Based on (7.23), the 

outbreaks occur if τ > 0.445 in Design 1 and τ > 0.297 in Design 2, consistent with our analytical results 

of the upper bound as shown in Fig 7.4. In both designs, the network is reliable if τ is smaller than the 

analytical lower bound, and the network is unreliable if τ is larger than the analytical upper bound. 

 
(a)                               (b)  

Fig 7.4 The steady-state density of unreliable nodes I as a function of  under non-uniform rewiring rate, where 

(a) , (b)  with α1 = 0.2 and α2 = 0.3326. 

We note that our reliability analysis provides an upper bound for τ in reliable states (denoted by 

) and a lower bound in unreliable states (denoted by ). Under the condition of , the 

cascading failures can be eventually inhibited and the network is reliable; and under the condition of 

, the cascading failures would proliferate and the network is deemed to be unreliable. These 

conditions are the sufficient conditions of the network reliability and unreliability, and may not be the 

necessary conditions. Confirmed by extensive simulations, we demonstrate that these sufficient 

conditions are effective, even though they can be loose in some circumstances, as shown for Design 1. 

In other circumstances, the sufficient conditions can be very tight, as shown for Design 2.  

An interesting finding is that our designs can have a strong impact on the steady-state density of 

unreliable nodes in the network. In Fig 7.4(a), we see that the steady-state density of unreliable nodes 

decreases, as the dispersion of the link weights increases. In the case that the SI links with large weights 

are disconnected preferentially, only the SI links with small weights are left intact, leading to the 

reduction of the average transmission rate of the network. As a result, the steady-state density of 

unreliable nodes declines in Design 1. In contrast, in the case that the SI links with small weights are 

disconnected preferentially, the SI links with large weights are left intact and this can increase the rate 

of turning reliable nodes to be unreliable. In other words, the steady-state density of unreliable nodes 

increases, as the dispersion of the weights grows. Finally, by assessing Fig 7.4, we can notice that, given 

the same mean and variance, an exponential distribution of the links weights is preferred over the log-

normal distribution in regards of network reliability under Design 1; and the other way around under 
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Design 2. 

 

    (a)                            (b)  

Fig 7.5. The spreading velocity of infection v(t) at each time slot t under the two rewiring designs, where (a) 

Design 1: , (b) Design 2: , with α1 = 0.2, α2 = 0.3326 and τ = 0.5. 

The spreading velocity of the virus or failure is an important measure of the designs. We define the 

spreading velocity as the difference of infection density between consecutive time slots, denoted by 

v(t)=i(t)-i(t-1). Fig 7.5 plots the spreading velocity under two designs, as the time elapses. We can see 

that in both designs, the more dispersive the distribution of the link weights is, the lower the velocity 

peak is. This indicates larger dispersion of the link weights can result in slower spreading. In Design 1, 

the disconnections of SI links with large weights remove the fast propagation paths of virus or failures, 

hence slowing down the propagation of virus or failures. And in Design 2, although the SI links with 

small weights are disconnected preferentially, the density of those links decreases as the dispersion of 

the link weights grows. As a result, large dispersion of the weights can also reduce the spreading 

velocity of virus or failures in Design 2. In the special case where , we can calculate the accurate 

value of τ by using (7.24). Fig 7.6 shows the impact of the rewiring process and the weight distribution 

on the reliability threshold  in the special case. The figure confirms the validity of the analytic results 

of  from (7.24) by comparing with Monte-Carlo simulations. With the identical value of w , we 

can see that the distribution of the weight wi has little impact on , and hence validates our analysis. 

We also see that  increases with the growth of the rewiring rate r. That is because, as the rewiring 

rate r grows, the SI links can be increasingly likely to be disconnected. This leads to the reduction of 

the transmission paths. Therefore, the interruption of infection by the rewiring process can make the 

transmission increasingly difficult, or in other words, inhibits the transmission. 
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(a) The steady-state density of infected nodes I as a function of τ in random networks, where r = 0.2, 

γ = 1. 

 

(b) The reliability threshold  as a function of rewiring rate r in random networks. 

Fig 7.6. The special case of uniform rewiring rate, where the theoretical results of reliability threshold 

 are given by (6.24). 

In practice, networks can display a small-world effect [26] and a scale-free property [27]. These 

networks are particularly relevant to NFV. As a matter of fact, these networks have been widely used 

to portray actual virtual network characteristics. It has also been proposed to construct virtual networks 

to comply with scale-free or small-world models, in attempts to reduce network average path length 

and to simplify NFV [170]-[172]. In this sense, our simulation settings align with the virtual network 

characteristics. We proceed to carry out Monte-Carlo simulations on weighted networks with small-

world effect and scale-free property, respectively. The properties of the two types of networks with 500 

nodes connected by 1500 links are summarized in Table 7.2. Fig 7.7 shows the density of infected nodes 

i(t) under the types of two sets of networks. It is clear that, in both WS small-world and BA scale-free 

networks [26], [27], increasing the dispersion of the link weights can lead to a decline of the infected 
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population in the steady-state network in Design 1, while decreasing the dispersion can do so in Design 

2. 

Table 7.2 Basic properties of WS network and BA network. 

Network  Distribution       

  0.125 6 1.5 0.6365 3.067 
  0.25 6 1.5 0.4512 4.4048 

WS Log-normal 0.5 6 1.5 0.2993 6.5457 
Network   1 6 1.5 0.1915 8.4185 

  2.25 6 1.5 0.0863 17.1523 
 Exponential  2.25 6 1.5 0.00081 10.5253 
  0.125 6 1.5 0.7015 3.1527 
  0.25 6 1.5 0.5291 4.4506 

BA Log-normal 0.5 6 1.5 0.2548 6.4403 
Network   1 6 1.5 0.1284 8.4293 

  2.25 6 1.5 0.0694 15.2284 
 Exponential 2.25 6 1.5 0.0005 11.2972 

In general, our simulation results show that the reliability threshold τ  depends on the distribution 

of the link weights and the specific rewiring strategy in the adaptive weighted networks. Preferentially 

disconnecting links to unreliable neighbors can effectively inhibit the spread of virus or failures, e.g., 

by increasing the reliability threshold, and reducing the steady-state population of unreliable nodes, and 

the spreading velocity of instability. The conclusion drawn is that the larger the dispersion of the link 

weights is, the more effectively the instability can be prevented from proliferation. On the other hand, 

preferential disconnections of the links with small weights can inhibit the spread as the dispersion of 

the weights decreases, e.g., increasing the reliability threshold and reducing the steady-state population 

of unreliable nodes. Unexpectedly, the dispersion of the link weights slows down the spread velocity 

as the links with small weights are preferentially disconnected. 

 
7.7 Conclusion 

In this chapter, a mean-field approximated dynamic system is proposed to model the time-varying 

populations of failed nodes and risky links in adaptive weighted networks. A linear stability analysis 

was conducted upon the dynamic system, and the threshold was identified for the network to inhibit 

failures and remain reliable in the steady state. Validated by simulations, our analysis revealed that the 

threshold depends on both the distribution of the link weights and the adopted rewiring strategy. It is 

also shown that preferentially disconnecting frequently communicated, suspicious peers can effectively 

inhibit failures and virus spread. As cascading failures, DDoS, computer virus and malware, can be 

potentially analyzed by using our analysis which is generic with an emphasis on theoretical insights and 

understanding. The presented analysis is not closely coupled with real behaviors of specific 

vulnerability exploration of particular attacks and viruses though. In the future, we will take the anatomy 

of different attacks into account and evaluate network reliability under specific types of attacks. 

v k w minw maxw
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Chapter 8 

Study on the Dynamical Rewiring in Adaptive Weighted Heterogeneous 

Networks 

8.1 Introduction 

Virus spreading on networks is one of the main issues in complex network research. Both of the 

biological virus and computer virus spreading have attracted many studies through using the classic 

infectious disease models [6], [30], [31]. These studies have made it clear that certain topological 

properties have a strong impact on virus spreading. In fact, the dynamic process in turn will affect the 

network structure. For example, humans tend to respond to the emergence of an epidemic by avoiding 

contacts with infected individuals in a social network. In this way, a feedback loop between the state and 

topology of the network begins to take shape and networks that exhibit such an interplay between the 

dynamics and topology are called adaptive networks. 

Based on the SIS epidemic model, the adaptive network was first proposed by Gross et al [36]. In 

this model, the network structure changed all the time according to the states of neighboring nodes and 

this in turn affected epidemic dynamics. An extensive research on the coupling between epidemic 

processes and the underlying network topology has been carried out after the seminal-work of Gross et 

al. Shaw et al. studied epidemic dynamics on an adaptive network based on the Susceptible–Infected–

Recovered–Susceptible (SIRS) model [37]. Vincent et al. studied the interplay and outcomes of disease 

and topology on adaptive networks with various initial configurations by introducing an improved 

compartmental formalism [141]. Ilker et al. studied the spread of an epidemic on an adaptive network 

with community structure [90]. Based on the dynamic interaction, many effective epidemic spreading 

control strategies were proposed in adaptive networks. Shaw et al. studied vaccine control for disease 

spread on an adaptive network and shown that vaccine control is much more effective in adaptive 

networks than in static networks due to feedback interaction between the adaptive network rewiring and 

the vaccine application [93]. Yang et al. paid attention to the emergence of community structure in the 

transient process and the effects of community-based control strategies on epidemic spreading [91]. Song 

et al. introduced a new preferentially reconnecting edge strategy of adaptive networks depending on 

spatial distance [92].  

For simplicity, most of the existing studies on adaptive networks ignore the link weights between 

nodes and assume that the weights are uniform. However, the relationship between individuals in real 

networks, e.g., the distance between the two cities in traffic networks, the intimacy between individuals 

in social networks and the communication radius in communication networks, are significantly different. 

Therefore, the various relationships between individuals are closely related to the virus spreading 

behaviors in many real networks. Considering the fact that the contact strengths among individuals are 

diverse, novel weighted adaptive network models were developed recently [151], [152]. Many interesting 

results were found in the study of virus spreading on weighted adaptive networks. Zhou et al. found that 

this weight adaption process could significantly aggravate the prevalence of an epidemic and examined 



104 
 

the effectiveness of the link-removal strategy with their model, and the results shown that the weight 

adaption process may weaken the efficiency of the strategy [151]. Chao et al. demonstrate that the 

rewiring strategy has a close relationship with the epidemic spreading, and this strategy cannot always 

suppress the disease, which is different from some previous studies [152]. Yun et al. considered epidemic 

spreading on a weighted adaptive network in which the network topology varies according to the global 

and local infective information of individuals [173]. It was found that greater interacting strength could 

effectively inhibit virus spreading. 

As those weighted adaptive network models have greatly enriched the existing real network models, 

many challenges arise and need to be solved. Existing studies have shown that a lot of real networks are 

of heterogeneous weight distribution, such as friendship networks, scientists collaboration networks, 

technical networks, which can strongly affect the epidemic spreading in static networks [153]-[156]. 

Therefore, the first challenge is the influence of weight distribution on epidemic spreading in a weighted 

adaptive network. The second challenge is the rewiring process. Due to the individual difference, e.g., 

relationships, individuals’ knowledge level on the disease, the adaptability of individuals dynamically in 

response to the epidemics should be different from each other. Correspondingly, in our model, the 

individual behaviors are heterogeneous according to the link weights. In addition, the network structures 

are always dynamically evolving, how to design more feasible and reasonable rewiring strategies to 

inhibit epidemics is also a very meaningful challenge. 

Considering the diversity of interpersonal relationships and the ability to adapt the network topology 

dynamically in response to the dynamic state of nodes, a novel SIS model on a weighted adaptive 

heterogeneous network is proposed in this chapter. In our model, the epidemic dynamics on weighted 

adaptive heterogeneous networks is studied and the influence of network structure on epidemics is 

discussed. Furthermore, we design effective rewiring strategies based on the individual behaviors for the 

inhibition of epidemics. 

The main contributions of this study include three aspects. First, we propose a novel SIS model on 

a weighted adaptive heterogeneous network, where network structure, weights and virus spreading 

behavior are dynamically interacted. Second, individuals’ behaviors and interpersonal relation have 

significant influence on epidemic spreading. Our analysis shows that larger dispersion of weight of initial 

networks leads to slower spreading in a weighted adaptive network while the adaptive rewiring process 

during the dynamics can also effectively inhibit epidemic spreading. Third, based on individuals’ 

behaviors, the rewiring strategies dynamically related to the real-time link weights are proposed for the 

inhibition of epidemics and the results show the effectiveness of the rewiring strategies with our models. 

The rest of this chapter is organized as follows. In Section 8.2, we introduce our model in detail, 

including nodes states dynamics, network topology dynamics and present the mathematical description. 

Simulation results are given in Section 8.3. In Section 8.4, the influence of individual spontaneous 

behaviors on epidemics are analyzed, rewiring strategies based on spontaneous behaviors are presented. 

Finally, we conclude this chapter in Section 8.5. 
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8.2 Adaptive Weighted Heterogeneous Network Model 

Consider a generic network of N nodes connected by L weighted bidirectional links. We can separate 

the whole dynamic process into two sub-processes: 1) the dynamics on networks and 2) the dynamics of 

networks. The first process specifies epidemic spreading. The nodes are either susceptible (S) or infected 

(I). In every time step and for every link connecting an I node with a S one (SI-link), the susceptible 

becomes infected with the probability  . The infected recovers from the virus with probability  , 

becoming susceptible again. =  is defined as the effective infection rate. In weighted networks, we 

assume that the probability of a susceptible node getting infected through an SI-link with weight w is 

. When there are more than one infected neighbor, the probability for node i being infected is

( )
( ) 1 (1 ( ))i jj Nb i
t t , Nb(i) respects the number of infected neighbors of node i. 

The second dynamics specifies rewiring process. When epidemics outbreaks, awareness of the 

presence of the virus will prompt individuals to change their behavior to avoid being infected. 

Correspondingly, in our model, we allow susceptible individuals to protect themselves by rewiring their 

links. With probability rw, one susceptible node breaks the link to infected and forms a new link randomly 

select susceptible. Double connections and self-connections are not allowed to form in this way. After 

the rewiring, the weight of the broken link is transferred to the new-formed link while the weights of the 

other links remain constant. During the rewiring process, the weights are transferring locally due to the 

disconnection and reconnection of the links. 

Many real networks are not homogeneous networks, instead, their connectivity is heterogeneous. 

Both of their node-degree distributions and the link-weight distributions have a power-law form, and are 

independent of the connectivity scale. An example of adaptive weighted heterogeneous networks is NFV 

on cloud computing platforms. The VMs are connected through virtual links, the link numbers of each 

VM and the weights of links are different due to the different positions and workloads of services. When 

some VMs are congested due to DDoS attacks or infected due to computer viruses, new virtual links can 

be established to bypass these VMs. The weights (or the workloads) of the old virtual links to the 

bypassed VMs can be transferred to the new links. To achieve this, the VMs that are neither attacked or 

infected can check their routing tables, and spontaneously decide and activate the new virtual links. 

Meanwhile, the establishment of a new link (or the vanish of an existed link) brings a total increase (or 

decrease) of traffic and the weight redistribution. 

We apply the pair-based mean-field approach to describe the changes of the number of nodes and 

edges in different states in the adaptive weighted heterogeneous network. 

 

8.2.1 The Dynamics on Network 

 

 ;                                       (8.1a) 
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;                                       (8.1b) 

;           (8.1c) 

  ;      (8.1d) 

;      (8.1e) 

.     (8.1f) 

where '
'

[ ] [ ]k w k k w
k

A B A B , ' ' ' '' '
''

[ ] [ ]k k ww k k k ww
k

A B C A B C . [Ak] ( { , }A S I ) denotes the number of 

nodes with degree k in state A, and [ ] [ ]k
k

S S  , [ ] [ ]k
k

I I  and [ ] [ ]S I N  . '[ ]k k wA B  denotes the 

number of edges weighted w, connecting two nodes in states Ak and Bk’. ' '' '[ ]k k k wwA B C denotes the number 

of triplets ' ''- -k k kA B C , with edge 'k kA B weighted w and ' ''k kB C weighted w′. 

Eqs (8.1a)-(8.1f) capture the time-changing population of nodes in the healthy and infected state 

and links weighted by different weights and connecting nodes in different states due to the infection and 

recovery. In (8.1a) and (8.1b), the first term at the right-hand side (RHS) corresponds to the part of the 

population which recover from the infected state with the probability of  . The second term 

corresponds to the part of the population which become infected by their infected neighbors with the 

probability w . (8.1c) captures the changing population of the w-weighted links connecting two healthy 

nodes kS  and 'kS . The first term at the RHS of (8.1c) is the increased part of the population, resulting 

from the recovery of the infected ends of the links with probability of . The second term is the number 

of previous w-weighted 'k kS S  links which become 'k kS I ( 'k kI S ) links due to the infection at one end of 

the links through a w′-weighted link with the probability of 'w . Likewise, (8.1d) captures the changing 

population of w-weighted 'k kI I  links connecting a pair of infected nodes, and (8.1e)-(8.1f) captures the 

changing population of w-weighted 'k kS I  and 'k kI S  links. 

 

8.2.2  The Dynamics of Network 

For the dynamics of networks, the evolution of weights is accompanied by the rewiring process. On 

the one hand, the weight of the former SI-link is transferred to the new SS-link, which can be called as 

weight replacement process. On the other hand, the weights of links connected to the nodes whose 

degrees changed are redistributed, which can be called weight redistribution process. The two processes 

can be described as follows: 

;               (8.2a) 



107 
 

;                      (8.2b) 

.                      (8.2c) 

In Eqs 8.2, the first term of each equation at the RHS corresponds to the link rewiring process 

accompanying weight transferring, i.e., the exchange between '[ ]k k wS S  and '[ ]k k wS I   ( '[ ]k k wI S  ). The 

second term '[ ]k k wA B  represents the exchanges of w-weighted 'k kA B  links and 'w -weighted 'k kA B  

links due to the weight redistribution, , { , }A B S I   and 'w w , for example, the exchange between 

'[ ]k k wS S  and ' '[ ]k k wS S . 

The rules of weight redistribution are as follows: When an edge linked to an existing vertex i 

disappears, the local rearrangement of weights between i and its neighbor j according to the simple rule 

,ij ij ijw w w                                (8.3) 

meanwhile, when a new edge links to vertex i, the local rearrangement of weights between i and its 

neighbor j according to the rule 

+ ,ij ij ijw w w                                (8.4) 

where  

.ij
ij

i

w
w

s
                                (8.5) 

is   represents the strength of node i, expressed by i ijj
s w  . The rules consider that the 

establishment of a new edge (or the vanish of an existed edge) of weight w with the vertex i induces a 

total increase (or decrease) of traffic  that is proportionally distributed among the edges departing 

from the vertex according to their weights. 

The rewiring process depends on the dimensionless parameter , that is the fraction of weight 

which is caused by the vanish of existed links and creation of new links. The value of  represents the 

intensity of the node’s reaction to its edge increasing or decreasing. In the case of 1 , we mimic 

situations in which an appreciable fraction of traffic generated by the connection newly added or 

disappeared will be dispatched in the already existing connections. For example, in the airport networks 

where the transit traffic is rather relevant in hubs. When 1, we face situations such as the scientific 

collaboration network where it is reasonable to consider that the birth of a new collaboration (co-

authorship) or the disappear of an existed collaboration is not triggering a more intense activity on 

previous collaborations. After one rewiring process, the average weight of the network remains 

unchanged. 

A simple network with 6 nodes and 4 edges marked w1-w6 as links’ weights at time t is shown in Fig 

8.1. From time t to t+1, some dynamics appear in the network: Node F is infected by node B. To keep 
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healthy, node A escapes from node B with rate wr , and then reconnects to node E. During the process, 

the weight (the workloads) of the link between A and B is transferred to the new link between A and E. 

Meanwhile, as the numbers of neighbors of both nodes B and E change, the traffic burden increases on 

E while decreases on node B. The weight redistribution occurs on the links of the nodes B and E. 

 

Fig 8.1. A simple example of dynamic processes in a weighted adaptive heterogeneous network. 

8.3 Dynamical Rewiring Strategies 

The rewiring process is composed of two parts: link-disconnection and link-reconnection. During 

the process, the weights of the links change. The adaptabilities of individuals dynamically in response to 

the epidemics are different from each other due to individual differences in social networks. For example, 

if one of your families gets flu, you will not disconnect the connection since you two contact each other 

very closely. By contraries, it is unlikely that you will keep the contact with the unfamiliar infected 

neighbor. Based on these dynamic changes of links and weights, we discuss the real situations and make 

some reasonable strategies to inhibit the virus spreading. 

8.3.1  Link-disconnecting Strategies 

The first design specifies the positive correlation between the rewiring rate and w, i.e., rw = a1w, a1 > 

0. This is the case the adaptabilities of individuals dynamically in response to the epidemics are different 

from each other due to individual differences in social networks. For example, if one of your families 

gets flu, you will not disconnect the connection since you two contact each other very closely. By 

contraries, it is unlikely that you will keep the contact with the unfamiliar infected neighbor. This 

behavior of healthy individuals is defined as a Spontaneous Defense Behavior (SDB) here. Meanwhile, 

infected individuals try to avoid contacting with healthy ones, especially with the familiar individuals. 

This behavior leads to another kind of link-break rule: SI-link will be cut off easier when the individuals 

in both ends are more familiar, which is called Spontaneous Quarantine Behavior (SQB). 

Correspondingly, the rewiring rates are heterogeneous in our models. We assume that  as 

the probability of disconnecting the link with weight wl, representing SDB (SQB). 

 
8.3.2  Link-reconnecting Strategies 

After the disconnecting, the susceptible node forms a new link to another susceptible one, which is 

generally chosen randomly in homogeneous networks. Since the nodes are divided into different 

categories based on their degree in heterogeneous networks, we propose a preferential link-reconnecting 
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strategy based on the degrees of nodes. After link-disconnecting process, the healthy node pi  first 

choose a susceptible neighbor p
Ni   randomly, then preferentially choose p

Ni  ’s neighbor with largest 

degree to reconnect. Make sure it is not connected with pi   in the current time. During the whole 

process, all we need to know is the local information of the neighbors of nodes pi and p
Ni , which reduce 

the computational complexity to the utmost and ensure the feasibility of our link-reconnecting strategy 

in large-scale networks. 

 
8.4 Simulations 

Based on the model we proposed and the rewiring strategies we design, we apply the Monte-Carlo 

simulation to explore the impact of dynamical changes of network structure, including links and weights, 

on epidemic spreading in this section. We investigate the impact of heterogeneity of weight distribution 

and the inhibitory effects of different rewiring strategies on epidemic spreading. Without specific 

statement, we use the density of infected nodes and the epidemic threshold to denote the epidemic 

spreading. i(t) and I are the density of the infection at time t and in the steady state, respectively. The 

larger the I/i(t) is, the severer the disease is. The epidemic threshold of  is denoted by * . If * , 

the adaptive weighted network can eventually become healthy, i.e., all nodes eventually become healthy. 

Otherwise, the network is not healthy, i.e., the epidemic breaks out. Each data is obtained by averaging 

over 100 independent runs. 

The weighted SF network model used in our simulations is one of the most well-known models 

introduced by Barrat, Barthelemy, and Vespignani (BBV networks) [95], whose degree, strength and 

weight distributions are power-law distributions with heavy tails. The basic properties of the artificial 

network models in our simulations are presented in Table 8.1. As  grows, the dispersion of weights 

becomes larger.  

Table 8.1.  Basic properties of BBV network models. 

Network  N M k <w> Max_w 

BBV Network1 0.1 1000 1997 3.994 1.4764 16.687 

BBV Network2 0.5 1000 1997 3.994 1.4764 22.567 

BBV Network3 2 1000 1997 3.994 1.4764 77.431 

 

First, we study the impact of rewiring rate on virus spreading in BBV networks. We can see from 

Fig 8.2 that, as the rewiring rate increases, the epidemic size at time t has been decreasing, which means 

the rewiring process can significantly inhibit the epidemic spreading. The rewiring process promotes the 

isolation of infected individuals, which can significantly inhibit the infection. 
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(a) BBV network1 

 
(b) BBV network2  

 
(c) BBV network3 

Fig 8.2. The evolution of the fraction of infected nodes i(t) under different cases of wr in weighted adaptive 
networks. 

As the probability of rewiring rate increases, the probability of isolation of the infected individual 
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is also increasing. At the beginning of the infection, a small fraction of infected nodes is scattered in the 

network, who can be isolated more easily with a larger rewiring rate. Therefore, the outbreak of infection 

becomes harder as wr  grows. Moreover, our simulation results are consistent with the analysis. The 

infection density at steady state under different cases of wr  are shown in Fig 8.3. We can find that, as 

wr  increases, *  becomes larger, which makes the infection less likely to erupt. Besides, in each 

network model, the final fraction of infection I(τ) becomes smaller. As a result, the results in Fig 8.2 

verify our conclusions in Fig 8.3 and further prove that the increase of rewiring rate can significantly 

increase the epidemic threshold and reduce the infection density, i.e., inhibit the epidemic spreading. 

 
(a) BBV network1 

 
(b) BBV network2   
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  (c) BBV network3 

Fig 8.3. The infection density at steady state under different cases of rw in weighted adaptive heterogeneous 
networks. 

It is shown in Table 8.1 that larger value of  induces larger dispersion of weight of networks. 

Then an important question is that how the value of  impacts epidemic spreading. We notice that by 

comparing the results from the three networks in Fig 8.2, the final size under the same rewiring rate 

decreases as the dispersion of weights becomes larger. To further confirm this conclusion, we calculate 

the infection scale in the BBV networks under different rewiring rates. Fig 8.4 plots the percentile of 

infected nodes I with the growth of wr in BBV network models. We can see that the final infection 

decreases as the dispersion of weights grows. 

  

Fig 8.4. The final fraction of infected nodes I as a function of rewiring rate wr in BBV network models. 

The simulation results show that the weight distribution and rewiring process have a very important 

impact on virus spreading. In fact, the rewiring process is closely related to the weights as we discussed 
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above. Based on the link-disconnecting and link-reconnecting process, we propose strategies of adjusting 

the individual behaviors to dynamically respond to the epidemics. In the following part, we study the 

impact of the rewiring strategies on epidemic spreading by taking different but simple designs of rewiring 

process. 

 Link-disconnecting Strategy 

Since the weights between individuals are different, the adaptability of individuals should be 

different from each other. SDB and SQB in Section 8.3 are defined to describe the disconnecting 

behaviors of healthy and infected individuals respectively. For healthy individuals, it is easier to cut off 

the links with less familiar infected neighbors, while the infected individuals try to avoid contacting with 

closer healthy individuals. Therefore, we design two disconnecting strategies based on the weights to 

represent SDB (SQB). 

The first design (SDB) is specifies the negative correlation between the rewiring rate and w, i.e., 

1
w

ar
w

, a1 > 0. This is the case where a healthy node preferentially breaks its unfamiliar links to protect 

itself. The second design (SQB) specifies the positive correlation between the rewiring rate and w, i.e., 

2w
m

wr a
w

, a2 > 0, wm is the maximum weight value of the networks. This is the case where an infected 

node preferentially breaks its high-weight links with frequently interacted neighbors. Without loss of 

generality, a1 and a2 are preconfigurable coefficients. In our simulation, the average value of rewiring 

rate wr  is identical in both designs, 0.1wr , a1 = 0.14764 and a2 = 5.2446. 

By using Monte-Carlo simulation, we analyze the dynamics in weighted adaptive network models 

with heterogeneous rewiring rates. Fig 8.5 shows the density of infected nodes i(t) in the BBV networks, 

where both of the two disconnecting strategies are presented. It is clear that both of our disconnection 

strategies can effectively inhibit the epidemic spreading, the heterogeneous disconnection process leads 

to a significant decline of the infected population in the steady-state networks by comparing with the 

homogeneous rewiring rate, rw = 0.1. An interesting finding is that Fig 8.5 shows that the second design 

(SQB) can better inhibit the virus spreading than the first one (SDB) as the dispersion of weights becomes 

larger. That is because, as the dispersion of weights grows, links with extremely large value of weight 

appear in networks, who would be disconnected easier under the second design. The virus spreading 

behavior is well inhibited since there are only links with lower value of weight left in the networks. 
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(a) BBV network1 

 
(b) BBV network2 

 
(c) BBV network3 

Fig 8.5. Epidemic spreading in weighted adaptive heterogeneous networks under heterogeneous link-disconnecting 
strategies. 
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Following the rules made for our link-reconnecting strategy in Section 8.3, simulations are carried 

out in the artificial network models. Fig 8.6 shows the constraint of link-reconnecting strategies on 

epidemic propagation. We can find that our strategy is more effective on inhibiting the epidemic 

spreading, especially in the network with larger dispersion of weights. Our priority link-reconnecting 

strategy is based on the degree of each node. In BBV networks, the more dispersed the weight distribution, 

the more dispersed the degree of the network. Since the degree distribution and the strength distribution 

are directly proportional, the inhibition of virus spreading is more effective in networks with larger 

dispersion of weight. 

 
(a) BBV network1 

(b) BBV network2 

 
(c) BBV network3 

Fig 8.6. Epidemic spreading in weighted heterogeneous adaptive networks under link-reconnecting strategies. 

In general, our simulation results show that the epidemic spreading depends on the distribution of 

the link weights and the specific rewiring strategy in the adaptive weighted networks. The weight 
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distribution and rewiring process have a very important impact on virus spreading. The conclusion drawn 

is that the larger the dispersion of the link weights or/and the rewiring rate is, the more effectively the 

infection can be prevented from proliferation. Our rewiring strategies can effectively inhibit the spread 

of virus, i.e., by reducing the steady-state population of infected nodes. 

 
8.5 Conclusion  

When infectious virus outbreak in the social networks, humans tend to respond to the emergence of 

an epidemic by avoiding contacts with infected individuals. These behavioral responses to epidemic 

situation have significant impacts on virus spreading. Considering the diversity of interpersonal 

relationships, the interaction between network topology and epidemic spreading, we propose a novel SIS 

model on a weighted adaptive heterogeneous network, where we describe the interplay between dynamic 

behaviors and epidemic spreading. Based on the dynamical model, effective rewiring strategies are 

proposed for inhibition of epidemics. Our results show that network topology and individuals’ behaviors 

have significant influence on virus spreading in a weighted adaptive heterogeneous network. The 

adaptive rewiring process during the dynamics can effectively inhibit virus spreading. Large dispersion 

of weights can significantly decrease the final epidemic size. Moreover, our proposed rewiring strategies 

are effective for the inhibition of epidemics. 
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Chapter 9 

Contributions and Future Work 

9.1 Work Summary 

The thesis focuses on the application of complex network structure metrics in propagation dynamics and 

their interaction. As important tools study on complex network theory, Markov chain method, mean-

field method and Monte-Carlo simulation are used to study the influence of network structure 

measurement on propagation dynamics. The influence of node degree on these applications are studied 

from two applications, node influence identification and cascading failure, and a novel metric based on 

the network dynamical behavior measurements is proposed to quantify the network robustness in regard 

to virus attacks. In addition, the thesis also studies the co-evolution process between network structure 

and propagation dynamics, and proposes dynamic adaptive strategies to suppress virus and fault 

propagation in the network. 

The main research contents and achievements are summarized as follows: 

(1) Study on the rapid identification of high-influence nodes in complex networks 

Considering the uncertainty of network scale, topology structure and the timeliness of dynamic 

behavior in the actual network, a method based on node degree value to quickly find high impact nodes 

is proposed. By this method, a small number of high impact nodes in the network can be quickly found 

to further control the network. The results show that the proposed method can find high impact nodes in 

the network in a quick and effective way. In addition, the propagation process in different network 

structures is also studied. The results show that the proposed method has a very positive impact on the 

propagation process in the network. 

(2) Study on cascading failure of complex networks considering local real-time information 

Considering the real-time performance of network information and the rationality of load 

redistribution strategy, a new cascading failure model is proposed to analyze the robustness of network 

under node failure, and a load redistribution strategy based on local real-time information is proposed. 

The influence of load redistribution strategy on network robustness is analyzed theoretically, and the 

relationship between network robustness and parameters of redistribution strategy under different 

conditions is discussed. The analysis shows that when the initial load allocation and load redistribution 

strategies remain the same and have a linear relationship with the degree value of nodes, the network 

shows better robustness under cascading failures. In addition, the initial load information remains 

unknown. It is an effective load redistribution strategy to distribute load proportion according to node 

degree value to improve network robustness. 

(3) Study on the quantification of social network robustness under the virus attacks 

A new robustness measure with respect to virus attacks in social networks is proposed in view of 

the spread velocity, the epidemic threshold and the infection scale under the steady state. Simulation 
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results show that the network becomes more vulnerable to the virus attacks as the average degree of the 

network grows in both homogeneous networks and heterogeneous networks. Our new measure confirms 

that the irregularity in node degrees decreases the robustness of the homogeneous networks. 

(4) Study on the reliability of large-scale adaptive weighted network 

Considering the real-time characteristics of network information and the rationality of load 

redistribution strategy, a mean-field approximate dynamic system is proposed to simulate the time-

varying population of failure nodes and risk links in adaptive weighted networks. An analysis on the 

linear stability of the dynamic system is carried out, and the threshold value of the network is determined 

to suppress the fault and maintain the reliability in the steady state. The simulation results show that the 

network reliability threshold depends on the distribution of edge connection weight and the strategy of 

edge broken reconnection. The results also show that the priority to disconnect suspicious individuals 

with frequent communication can inhibit the transmission of faults and viruses in an effective way. 

(5) Study on the dynamical rewiring in adaptive weighted heterogeneous networks 

Based on SIS propagation model, a new adaptive weighted non-uniform network is proposed, where 

the network structure, weight and virus propagation behavior are dynamically interactive. Personal 

behavior and interpersonal relationship in the process of virus transmission exterted profound effects on 

the spread of the epidemic. The analysis shows that the greater the degree of weight dispersion of the 

initial network, the slower the propagation in the adaptive weighted network, and the adaptive broken 

edge reconnection process can also suppress the epidemic transmission in an effective way. Finally, in 

accordance with the individual behavior, the edge breaking and reconnecting strategy produced, which 

is dynamically related to the weight of real-time edge connection, so as to suppress the epidemic. The 

results show the effectiveness of the strategy and model. 

9.2 Research Prospects 

Although the work of the thesis has achieved some phased results, in the process of research, we 

also found more work to be explored. According to the research content of the thesis, the following 

further key research contents are put forward: 

(1) Research on node influence prediction method based on big data 

With the increasing complexity of the real network, the network presents the characteristics of big 

data [174]-[177]. First of all, the number of nodes and connected edges in the network increases 

dramatically, and the nodes and connected edges are becoming increasingly diversified. Secondly, the 

network functionality is becoming increasingly powerful, and there are more and more complex dynamic 

behaviors running in the network. In addition, the close coupling among networks makes the network 

with higher complexity. Therefore, the prediction or ranking of node influence based on big data network 

becomes a very difficult problem to solve. New challenges are nowhere from the data collection of node 

information to the selection and extraction of node features, and then to the evaluation of the effectiveness 

of node importance methods. In particular, in recent years, the rise of machine learning [178]-[180] and 

deep learning [181], [182] provides solutions for these problems and challenges. Therefore, the research 
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of node influence based on network big data is a very noteworthy issue. 

(2) Research on cascading failures in multilayer networks 

As mentioned in the previous chapter, when a cascading failure occurs in a network, it will not only 

spread to the whole network, but also to other related networks. For example, when the power network 

is damaged and cascaded failure happens, all the power related networks will be damaged in varying 

degrees, such as the Internet, traffic network, etc. This cascading failure across the network will bring 

catastrophic losses. It is of great practical significance to study cascading failures in a variety of coupled 

networks, analyze the propagation mechanism and propagation rules, and propose effective strategies to 

resist cascading failures. 

(3) Modeling and analysis of communication dynamics 

Nowadays, the real-world networks show amazing changes, including network structure and 

dynamic behaviors on the networks, especially the emergence of online networks, showing many new 

features that the traditional networks don’t have. Therefore, the traditional modeling methods based on 

the former are not enough to describe the new characteristics of network structure and dynamic behaviors. 

Based on machine learning and other methods, the new evolution rules of network structure are worth 

exploring. In light of these more realistic network models and real network data, a more realistic 

communication dynamics model can be established and the propagation dynamics processes in the 

networks can be explored. 
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