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ABSTRACT

Advanced Techniques of Cross Domain Translation Learning

by

Wanming Huang

Cross domain translation, such as image captioning, fashion synthesis from text

descriptions, music composition in a particular style, has attracted considerable

interest in the deep learning community lately. Despite significant progress in this

field, certain drawbacks in previous methods have been identified. First, although

the attention mechanism has been widely applied to domain transfer and achieved

remarkable outcomes, cross-domain translation remains an open research question

on cross domain transfer learning because of the different data structures. Second,

most domain translation algorithms address only a pair of domains, and there is a

need for 2 ×
(
N
2

)
transfer functions given N image domains. This makes training

prohibitively unmanageable. We have proposed a set of solutions to solve these two

problems, as described in detail in Chapter 3. Third, most generative model based

domain-transfer algorithms uses single-mode distribution to model the latent space.

This does not work well on datasets that contain diversified samples that form

multiple clusters. Our study applies mixture models to cross-domain generation,

of which the effects and properties are illustrated in Chapter 4. Finally, cross-

domain translation models usually suffer from long training time and are difficult

to converge. Indeed, this applies to most deep neural network training that involves

complex network designs and large datasets. Our work in Chapter 5 accelerates deep

neural network training with a specially designed mini-batch sampling strategy.

Dissertation directed by Associate Professor Richard Yi Da Xu

School of Electrical and Data Engineering
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