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ABSTRACT

Advanced Techniques of Cross Domain Translation Learning

by

Wanming Huang

Cross domain translation, such as image captioning, fashion synthesis from text

descriptions, music composition in a particular style, has attracted considerable

interest in the deep learning community lately. Despite significant progress in this

field, certain drawbacks in previous methods have been identified. First, although

the attention mechanism has been widely applied to domain transfer and achieved

remarkable outcomes, cross-domain translation remains an open research question

on cross domain transfer learning because of the different data structures. Second,

most domain translation algorithms address only a pair of domains, and there is a

need for 2 ×
(
N
2

)
transfer functions given N image domains. This makes training

prohibitively unmanageable. We have proposed a set of solutions to solve these two

problems, as described in detail in Chapter 3. Third, most generative model based

domain-transfer algorithms uses single-mode distribution to model the latent space.

This does not work well on datasets that contain diversified samples that form

multiple clusters. Our study applies mixture models to cross-domain generation,

of which the effects and properties are illustrated in Chapter 4. Finally, cross-

domain translation models usually suffer from long training time and are difficult

to converge. Indeed, this applies to most deep neural network training that involves

complex network designs and large datasets. Our work in Chapter 5 accelerates deep

neural network training with a specially designed mini-batch sampling strategy.

Dissertation directed by Associate Professor Richard Yi Da Xu

School of Electrical and Data Engineering
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Chapter 1

Introduction

1.1 Background

Machine translation was originally applied to natural language processing (NLP)

to investigate the use of software in the translation from one language to another.

The idea of using computers for the translation can be traced back to the 1940s,

when researchers proposed and designed systems to translate between languages.

One of the most influential publications is the memorandum by Warren Weaver

[40]. More work on machine translation emerged over the next 20 years, such as

the Georgetown-IBM experiment which offered the first public demonstration of

machine translation.

In the early 1970s, the concept of the rule-based system was brought into ma-

chine translation. Rule-based systems reply on linguistic information on sources

and languages retrieved from dictionaries and grammar manuals. Several important

rule-based systems were developed in this period, including Systran, Japanese MT

systems, and EUROTRA. Such systems were replaced by statistical methods in the

1990s [12].

Deep learning based algorithms, since the day they were applied to machine

translation, have enabled significant performance gains. The so-called neural ma-

chine translation (NMT) allows a single, large neural network to be trained directly

on source and target sentences. Deep neural networks have proven to be a pow-

erful tool in solving translation tasks. They have been applied to multiple areas

of NLP, such as language translation [93, 65, 5, 19, 100] and text summarisation
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[74, 60, 20, 18, 85], where some of the trained models can deliver even more accu-

rate results than can humans. They have also been applied to translating between

images, such as image super-resolution [58] and image style transfer [27].

The very first NMT model was proposed by Kalchbrenner and Blunsom [46]

in 2013. In 2014, seq2seq was proposed by Sutskever, Vinyals and Le [93], who

performed the translation using two networks: an encoder that understood the

input sentence, and a decoder that outputs the translation outcome. In addition

to the encoder-decoder structure, a crucial module was introduced by Bahdanau,

Cho and Bengio [5]: the attention mechanism. The attention mechanism enables

the decoder to focus on different parts of the input sequence when generating each

word of the output sequence.

The technique of neural translation has later been applied to perform cross-

domain translation tasks in recent years, mostly because of the development of deep

neural networks (DNNs). Cross-domain translation, translates contents between

different media, such as text to image, or from sound to video. Valuable research

has been conducted in several areas: for instance, high-resolution images generation

from a sentence [103], pose guided person image generation [66] and video generation

from text [104, 78].

Generative models, such as generative adversarial network (GAN) [31], varia-

tional autoencoder [51], normalizing flow [84], are often used as the main framework

in DNN based cross-domain translation algorithms. In particular, GAN, a family of

generative models based on game theory, is one of the most widely used frameworks

in cross domain translation, especially in image generation because images gener-

ated by GANs are sharp and can be indistinguishable from real data [48, 11]. While

the attention mechanism was originally devised in the field of language translation,

it has been applied to perform cross-domain translation, such as text to image gen-
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eration in AttnGAN [103]. It was used to guide the generator to focus on certain

words when generating specific image regions and has shown promising results.

1.2 Problems

Despite the valuable achievements made in the cross-domain translation, chal-

lenges still exists that stop these algorithms from being adopted in daily-life scenar-

ios.

Problem 1: Attention mechanism on cross-domain

The first challenge comes from the limitations of the current network design.

Consider text-to-image generation as an example, Algorithms based on the GANs,

specifically deep convolutional GAN (DCGAN) [79] and conditional GAN [71] have

achieved remarkable progress on various datasets. Works from [83] and [103] have

shown promising results in synthesising images that contain a single object, such

as on the Caltech-USCD Bird (CUB) [99] and Oxford-102 [76] datasets. However,

synthesising an image that models human poses or involves multi-object interactions

usually lacks sufficient detail and can easily be distinguished from real images. we

believe that the in-depth connection between individual words and image subregions

is not yet fully utilised in the current network design and the model performance

could be improved upon. Current frameworks build the connection between indi-

vidual words and equal-sized regular-grid regions. This does not work well when

multiple objects are present and multiple words are used to describe each object.

For example, consider this sentence: a man swinging a baseball bat. we would ex-

pect the two phrases: a man and a baseball bat, each defines an identifiable object

in the generated image.
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Problem 2: Transfer across N domains with N > 2

Another limitation of domain transfer algorithms is that once a network is fully

trained, it is only applicable to a dataset that contains limited domains (usually a

pair). Existing unsupervised style transfer methods such as CycleGAN [114] and

DiscoGAN [50] are only able to capture a specific style through a pair of networks.

For multiple styles, they can be extended to train multiple networks, often from

scratch, to form a multistyle transfer system. This creates an unnecessary number

of parameters by treating each pair of styles as completely independent.

Some recent work has made the multistyle transfer system slightly more elegant.

For example Huwe et al. [39] proposed to use a global shared autoencoder and N

domain-specific encoder/decoders to perform domain translation over N domains.

Recently, [14, 96, 37, 15, 62, 17] explored multiple style transfer in a single network.

Vincent, Dumoulin and Kudlur [96] proposed the conditional instance normalisa-

tion, which allowed the style transfer network to learn multiple styles. It shared all

convolutional weights of a style transfer network across many styles, and only tuned

parameters for an affine transformation after normalisation for each style. Huang

and Belongie [37] designed the adaptive instance normalisation (AdaIN) layer, which

performs style transfer in the feature space by adjusting the mean and variance of

the content input to match those of the style input. Chen et al. [15] proposed an

autoencoder network embedded with a StyleBank, consisting of multiple convolu-

tion filter banks and each filter bank represents one style; Lwe et al. [62] took a

noise vector and a selection unit as input to generate diverse image styles. Finally,

Chen et al. [17] designed a gated transformer module based on the encoder-decoder

architecture to help to generate images in multiple styles in a single network.

However, all the above methods require conditional parameters, such as normal-

isation parameters or style banks, to indicate the specific style. Moreover, they need
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to extract explicit style presentations from style images during training. Most im-

portantly, they do not exploit the fact that many databases contain gradual changes

of styles, which can help drastically reduce the parameter numbers. For example,

a set of three-dimensional (3D) objects observed from increasing angles [26], pho-

tographs taken under increasing lighting conditions or drawings containing rough to

fine details. In this case, instead of learning a different transfer function between

every pair of styles, a pair of universal transfer functions can be applied when styles

are properly “sorted”. In this way, the transform achieved by the transfer function

is to correspond to a small style change between the domain pairs. For example,

they may be a minor difference between their lighting, viewing angle, or drawing

details in the applications described earlier.

Problem 3: Latent space modelling of generative models

Apart from the drawbacks of the current network design, the latent distribu-

tions of generative models are mostly modelled with the uniform distribution or the

standard Gaussian distribution. While effective, this method also renders the latent

space non-informative. The choice of distribution is arbitrary and only serves the

purpose of stochasticity (i.e., it only enables one to sample data from it). While

this works well for some datasets, the underlying assumption of the model does

not generalise well for complex datasets, especially for datasets containing multiple

modes.

Using an illustrative example, where z ∼ N (0, 1) and the generator aims to

generate a single-mode, Picasso paintings. Then, a value z = 0 roughly equates

to generating what an “average” Picasso painting may resemble, or more generally:

where p(data) receives the highest probability. This may be doable for single-mode

data distributions; however, it cannot work well for datasets containing multiple

modes. Further, along with the painting images examples, in Figure 1.1a, we denote
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(a) (b)

Figure 1.1 : Illustrative example of the mapping between latent distribution and

data distribution when the latent distribution is modelled with (a) a single-mode

Gaussian distribution; and (b) a mixture of Gaussians.

a′ and b′ to be the two most likely images of each of the two painters. They are

supposed to be farther apart from each other in the data space. Since each receives

a high probability, it is natural to assume their z counterparts (i.e., a and b) should

also do so in p(z). The only way this can happen is for both a and b to be close

and to be zero. Together, it requires the generator to be able to generate images

appearing drastically different from one other from a very similar vector in z. This

burdens the generator, which may contribute to the difficulties in training GAN.

In contrast, we model the latent distribution p(z) using mixture densities, in a way

that each mode in the latent space corresponds to the modes in the data space. This

is shown in Figure 1.1b; a and b become further apart this time, even though they

both receive high P (z). It not only reduces the burden of the generator, but it also

makes the p(z) meaningful.

Recently, Ben-Yosef and Weinshall [7] presented a Gaussian mixture GAN (GM-

GAN), in which the probability distribution over the latent space is a mixture of

Gaussians. However, the properties of the distribution are not fully explored and

utilised in this work. That is, GM-GAN expects to have one-to-one correspondence

between each class of synthetic images and a component of the GMM without any
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supervision. However, situations such as those depicted in Figure 1.2 often occur

in training; latent vectors a1 and a2 that are close in the latent space are forced to

generate samples from different classes because labels are not provided in training.

This burdens the training and slows down the convergence.

Figure 1.2 : Illustrative example of the mismatch between latent distribution and

data distribution.

In addition, given x is the data and k is the (latent) index of the mixture density,

GMM allows us to compute the conditional likelihood p(x|k, θ) and the responsibility

probability p(k|x, θ). In the Bayesian paradigm, one may refer to p(k|x, θ) as the

posterior density, where the prior is p(k) ≡ (α1, . . . , αk). This will further allow us

to retrieve many important statistics and properties about the dataset: for example,

(1) the soft clustering membership of the new and existing data; and (2) the overall

weight of each component in the dataset.

When Euclidean distance can be meaningfully defined over the data x in hand

(typically when it has a low dimensionality), one can compute both p(x|k, θ) and

p(k|x, θ) directly (see Figure 1.3a). However, it will be difficult to do so when

managing complex and high data dimensional data, such as images, because x in its
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raw form does not form mixtures naturally, as shown in Figure 1.3b.

(a) (b)

Figure 1.3 : Illustration of clustering (a) low-dimensional data and (b) high-

dimensional data.

Combining GANs with the GMM provides a way to compute the latent repre-

sentation z associated with the data x. However, unlike variational autoencoder

(VAE), the generative process of GANs from the latent space to the data space is

irreversible and the latent distribution does not necessarily reflect the nature of a

dataset. In particular, densities of p(x|k, θ) and p(k|x, θ) cannot be obtained by

simply modelling the latent space of a Gaussian mixture distribution because:

(1) The generation process is one-directional (i.e., z → x), making it infeasible to

compute p(k|x, θ) by finding its corresponding z. A GAN can be viewed somewhat

like a VAE, with only the decoder z → x, but without the encoder x→ z.

(2) Even if we were able to obtain x → z under GAN, because of its objective

function, some training examples may come close to the generated images but might

still have nearly zero probability under the generator, making them unable to achieve

our goal (i.e., p(x|k, θ) is may not be a true representation of its likelihood).

Another drawback of simply applying a Gaussian mixture to GAN is that the

number of mixtures K needs to be predetermined. The optimal value for K is the
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number of modes in the training dataset. In an unlabelled dataset, it is not obvious

to guess what this value may be from observing p(data) alone (e.g., a very large

clothing dataset containing an unknown number of styles). If we choose K to be

less than the actual number of data modes, it produces a similar scenario to that

depicted in Figure 1.4a. Conversely, if K is chosen to be larger than the actual data

modes, we may potentially produce appearance-wise similar data to have a vastly

different value in their z. This is illustrated in Figure 1.4b.

(a) (b)

Figure 1.4 : Illustrative example of the mapping between latent distribution and

data distribution when the number of modes in the latent distribution is (a) smaller

than; and (b) larger than the actual number of data modes.

Problem 4: High training cost

Training a cross domain transfer algorithm is also complicated by high training

costs and difficulty in convergence. This could apply to other DNNs trained on large

datasets. Mini-batch and stocahstic gradient descent (SGD) are common tools used

in machine learning. Often, the size of training data becomes so large that it is

impractical to render batch optimisation (i.e., using the entire dataset in every

iteration). For example, Kulesza and Taskar [53] trained a CNN to classify 1.2

million images from ImageNet. Sutskever, Vinyals and Le [93] built a sequence-

to-sequence neural translation model with 12 million sentences that contained 348
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million French words and 304 million English words. Therefore, mini-batch training

was employed to reduce communication costs and parallelise the learning process

[61]. As standard SGD employs uniform sampling, the stochastic gradient is an

unbiased estimate of the true gradient. Nonetheless, it introduces variance between

iterations, which negatively affects the performance [113].

To improve the efficiency of SGD convergence without the assumption of any un-

derlying data distributions, Zhang, Kjellström and Mandt [108] proposed a strategy

called Diversified Mini-Batch SGD (DM-SGD) that applied k-DPP to mini-batch

sampling.

Despite the improvement made on the convergence, DM-SGD uses raw input or

feature vectors that are not fine-tuned to measure distances. This is prohibitive when

DNNs are involved because data are non-linearly transformed from their original

space into a layer before the output, such that the features now become much

more expressive. Further, mini-batch selection using the determinantal point process

(DPP) may become prohibitively slow when the entire set of data Ω is used to

compute its Gram-matrix, even if this operation is only computed once. Therefore,

the “fixed” feature approach is somewhat only theoretically plausible. Facing these

four challenges, we have made the following contributions in this thesis.

1.3 Contributions

Our first contribution is the enhancement of domain transfer applications by

improving network structures. A few novel strategies have been proposed to improve

the current attention based mechanism. In particular, we uniquely incorporate

object-grid image features into the learning of text phrase embedding in the encoder.

This embedding is then used to compute a new set of attentions with the image in

the generator. These strategies have delivered three unique outcomes:
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(1) When generating pixels inside an object-grid region, the attention is paid to

the phrases rather than individual words, which makes sense from a natural language

perspective.

(2) Pixels within each region describe the same phrase by sharing the same

attention score so that objects are more easily recognisable.

(3) Moreover, the spatial information of the generated objects is more likely to

be correctly reflected.

In terms of transferring across multiple domains. When natural ordering exists,

we propose a methodology that automatically studies the optimal ordering of styles

while learning a single pair of universal transfer functions without extra conditional

parameters. More concretely, we learn one forward and one backward generator that

can transfer across multiple image domains. we separate discriminator functions

for each domain. The generators, discriminator and chain sorting parameters are

updated in turn. However, the chain sorting function is discrete in nature and even

a single pair of node swaps may undo the learning of the other parameters. To this

end, several learning strategies are proposed to address this issue, which is to be

elaborated upon in section 3.2.

Third, we examine the effects of applying different distributions to model the

latent space of GANs. The first distribution used is the Gaussian mixture model

(GMM). In particular, we propose to use a posterior consistency module (PCM)

as part of end-to-end GAN training. The introduction of PCM has allowed us to

efficiently change p(z) in GAN from a single to a mixture of Gaussian densities while

still being able to compute the responsibility p(k|x, θ). This will further allow us to

retrieve many important statistics and properties about the dataset in addition to

generating high-quality images: for example, (1) the soft clustering membership of

the new and existing data; and (2) the overall weight of each of the components in
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the dataset.

We also notice that applying GMM to GANs can significantly save the compu-

tation cost while achieving a similar outcome. Experimental results suggest that:

1) The size of the GM-GAN network can be reduced while achieving a comparable

image quality to vanilla GANs.

2) With the classifier in the network, the image generation quality can be fur-

ther improved in terms of the inception score [86] and the Fréchet inception distance

(FID) score [35]. So far, the application of GM-GANs is mostly limited to image

generation. In this study, we further extend the GM-GAN to the anomaly detec-

tion problem. We find that our GM-GAN model with classifier results in the best

anomaly detection performance on several datasets in terms of the area under the

ROC Curve (AUC) value.

The second distribution we use is the Dirichlet process Gaussian mixture model

(DPGMM). Compared with the GMM distribution, DP mixtures can be applied

to high-dimensional datasets with an unknown number of mixtures; improvements

are made over the vanilla GANs to achieve enhanced generation quality. Although

this methodology is compelling, adapting it from training traditional DPGMM to

DP-GAN requires some novel strategies. The main reason is that the real data x

cannot be modelled using DPGMM directly because marginalizing z out is infeasible.

Therefore, we model it through their latent counterparts (i.e., z). However, because

vanilla GAN does not provide a backward transformation from x → z, we devised

two innovative approaches to this. Inspired by sequential Monte Carlo (SMC) or

particle filter [22], using SMC terminology, we first “propose” a set of particles z from

the proposal distribution p(z) and then weigh each particle using data x. However,

as opposed to traditional particle filters, in which weights can be achieved easily from

p(x|z) in the case of condensation filter, in our work, we compute them using the
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normalised discriminator D score. In another words, we use normalised D(G(z)) to

approximate the particle weights. To avoid “particle collapse”, a phenomenon that

refers to the situation in which there are only a few particles with higher weights

and the rest are close to zero, we also followed the unbiased particle resampling

strategy. In addition, it is desirable to ensure that the appropriate G is obtained

to ensure consistent posterior responsibility, regardless of using real data x or the

pseudo data z (i.e., we want to ensure that p(c|z) and p(c|x) resemble with each other

for any given pair (x, z), c is the cluster assignment variable). Experiments have

been conducted on both synthetic and real-world datasets. We demonstrate that the

proposed approach can provide an appropriate representation of the latent space in

which each component of the mixture corresponds to a specific image class. Although

the training is performed in a completely unsupervised manner, each component

in the mixture reflects a particular image class at the end. Simultaneously, the

model can also generate high-quality images. This allows us to generate images of

a desirable class by simply sampling the latent vector from a specific Gaussian.

The last contribution we made applies DPP to mini-batch sampling in DNN

training. In particular, our work updates the features to compute the Gram matrix

at each iteration. Given sampling DPP once is already far too much computation,

sampling at each iteration with an updated Gram matrix would further increase

the already-infeasible complexities. Therefore, it is natural to use an approximated

DPP to dramatically improve its computation time. By observing this in the last

or higher layer, we found that features within each class have a higher tenancy to

remain closer and data between classes tend to separate. Therefore, we chose the

last fully connected (FC) layer to construct the Gram-matrix in our algorithms.

We also obtained the so-called class-dependent DPP sampling using hierarchical

sampling to break down a single DPP sampling with large Gram-matrix into many

DPP sampling of much smaller Gram-matrix. In the lower hierarchy, each sampling
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is to be performed on data within its own class. To further improve the computa-

tional efficiency, we also used Markov k-DPP to encourage diversity across iterations.

Accordingly, we propose five separate mini-batch selection algorithms, which are ex-

plained in section 5.1.2. We also show their empirical effectiveness, in which these

mini-batch selection schemes are applied to classification problems on the Oxford

102 [76], Stanford Dogs [49], and Caltech 101 dataset [25].

1.4 Research Objectives

The aims of the project are to:

i. enhance the performance of domain translation algorithms by improving the

design of the current attention mechanism, particularly on the text-to-image

generation.

ii. propose to use a single pair of universal transfer functions to performance

domain transfer over more than two image domains.

iii. study the effects of applying different distributions to model the latent space

of GANs other than the traditional standard Gaussian.

iv. accelerate the convergence of cross domain transfer by applying DPP sampling

to mini-batch SGD.

1.5 Thesis Organisation

This thesis is organised as follows:

• Chapter 1: This chapter has introduced the background and purpose of the

thesis.

• Chapter 2: This chapter presents a survey of previous domain transfer algo-

rithms and other literature upon which our work is based.
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• Chapter 3: This chapter presents our proposed methods in cross domain ap-

plications. The first is the enhanced attention structure built between texts

and images; the second is domain transfer over multiple image domains.

• Chapter 4: This chapter presents latent space modelling with several distribu-

tions and examines their performances.

• Chapter 5: This chapter presents training acceleration we performed on mini-

batch sampling using DPP.

• Chapter 6: A summary of the thesis and its contributions are given in the final

chapter, along with recommendation for future research.
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Chapter 2

Literature Survey

2.1 Introduction

Our work encompasses multiple disciplines, including sentence and image embed-

ding, GAN networks, DPP and computer vision related algorithms. The background

knowledge and previous methods that inspire my work are introduced in this section.

2.2 Cross Domain Translation

Image captioning is one of the first areas in cross domain translation that has

achieved great success with the assistance of DNNs. The sequence-to-sequence

model, in which the input sequence is embedded to a feature vector and fed to

the the second network to generate the output sequence, is one of the first archi-

tectures applied. An early work [97] designed an end-to-end convolutional network

followed by a recurrent neural network. The authors suggested that the network de-

sign is inspired by the vanilla sequence-to-sequence structure except that the RNN

text encoder is replaced by a CNN image encoder. In [68], another multi-model

recurrent based network was used for image captioning. Compared with [97], in

which the image feature is only fed to generate the first word, this time the image

feature was fed to the decoder in every time frame. Later, the attention mechanism

was brought into image captioning. Xu et al. [102] added the attention connection

between word and regular-grid image region to the original framework [97], and has

proved that this way drastically improved accuracy.

These methods are all classic sequence-to-sequence based; later, GANs and VAEs
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were used for image captioning, enabling greater possibilities for the generated cap-

tions. Dai et al. [21] applied conditional GAN to perform the task in which the

generator produced descriptions that were learnt jointly with an evaluator that mea-

sured how well the description fit the image. In [90], the training objective of the

generator changed from reproducing the ground-truth captions to generating cap-

tions that are indistinguishable from human-written ones. Jain, Zhang and Schwing

[43] designed a VAE based network to generate questions for images, in which the

encoder and the decoder are jointly trained to maximise the likelihood of the ques-

tions given the images. Wang, Schwing and Lazebnik [98] proposed conditional VAE

based methods that explicitly structure the latent z space around components that

correspond to different types of image contents and are combined later to create

priors for images.

Style specific music composition has achieved great progress before generative

models were widely applied in this area. Eck and Schmidhuber [23] applied long

short-term memory (LSTM) to generate a form of blue music. A graphical model,

DeepBach, was introduced in [33], which generates highly convincing chorales in the

style of Bach. However, these networks are limited to certain styles of generation;

thus, they are not completely conditional generation. [67] allowed style specific

music generation by constructing biaxial LSTM architecture and enforcing music

style in the output. MidiNet ([105]) utilised a GAN structure and applied CNNs

to both the generator and a discriminator to generate a MIDI score, which is a

symbolic music representation, by following a chord sequence.

Research has also been conducted on texts and videos. [77] provided an end-

to-end video generation from text through encoding sentences by Long-Short Term

Memory (LSTM) and produced video using 3D convolutions. [69] introduced long-

term and short-term dependencies between video frames.
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2.3 GAN and its Variants

DNN based cross domain translation models are mostly built upon two types

of generative models: GAN and VAE [51]. The training target of GANs is to

find an equilibrium between the generator and the discriminator; VAEs aim to

maximise the lower bound of the data log-likelihood. While several variants of

VAEs, such as [92], are also widely employed to perform domain transfer, GANs

generates sharper images compared to VAEs. Thus GAN is used as the core of our

proposed frameworks. This section describes the theory behind the vanilla GAN

and some of its variants.

2.3.1 GAN

GAN has attracted significant attention in the deep learning community for its

wide application in many different areas, such as fashion and advertising [115, 66,

107], animation production [44] and music composition [106]. GAN was originally

proposed in [31]. It involves a two-player non-cooperative game by the generator

G and the discriminator D; the training target is to find an equilibrium between

the two. The generator produces samples from the random noise vector z, and the

discriminator differentiates between true samples and fake samples. Concretely, G

and D play a minimax game, and the objective function of the two networks is as

follows:

Ladversarial = min
G

max
D
V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]. (2.1)

The author proved that a global optimum can be achieved when pg = pdata,

where pg is the distribution of the generated samples G(z).
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2.3.2 GAN Variants

This section introduces several variants of GAN, from which our work is inspired

from.

DCGAN Based on the first proposed GAN network, DCGAN [79] utilises several

layers of convolutional neural networks to encode and decode images. Authors have

proposed several guidelines to stabilise its training. These guidelines included first,

replacing the pooling layer with strided and fractional-strided convolutions; second,

applying batch normalisation in both the generator and discriminator were later

widely employed by other image generation models.

Conditional GAN Conditional GAN ([71]) has opened up more possibilities for

GAN. Unlike the original unconditional GAN, which has no control of the data

generated, conditional GAN produces synthetic samples from a specific conditioning

factor, such as a label or a sentence, rather than from a noise distribution. The

objective function of the minimax game now becomes:

min
G

max
D
V (D,G) = Ex∼pdata(x)[logD(x|c)]

+ Ez∼pz(z)[log(1−D(G(z|c)))].
(2.2)

Here, c is the extra information or the conditioning factor, such as sentence

embedding if the task is text-to-image generation.

The first conditional GAN model can generate MNIST digits conditioned on class

labels. Researchers have extended conditional GAN to even broader applications,

such as conditional face generation [28], future frame prediction [70], and text to

image generation.
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2.3.3 GAN Based Text-to-Image Generation

The GAN network has been employed in multiple cross domain translation cases,

including text to image and video generation, 3D object induction from 2D views

and many other applications. As most of our proposed algorithms were applied to

text-to-image generation, we review previous achievements made in GAN based text-

to-image generation research in Section 2.3.3. Performing text-to-image generation

requires feature vector extraction from texts, thus Section 2.3.3 reviews previous

work on sentence embedding in GANs.

Sentence Embedding in GANs

Conditional generative models can be obtained by feeding a conditional factor

c to both the generator G and the discriminator D. In the case of text-to-image

generation, c is a fixed-length vector of the input sentence.

c can be extracted from raw sentences with a sentence embedding technique.

Previously used techniques included the pre-trained convolutional recurrent network

from [82] and the bidirectional long short-term memory (bi-LSTM) trained end-to-

end with the GAN network.

The convolutional recurrent network from [82] was designed to learn represen-

tations for image descriptions that have a high compatibility with the matching

images. The sentence embedding network is a recurrent network stacked on top of

a mid-level temporal convolutional hidden layer. Thus, it retain advantages of both

temporal dependency from recurrent nets and scalability of convolution nets.

Bi-LSTM involves two hidden LSTM layers of opposite directions. Therefore,

each word corresponds to two hidden states, which are concatenated to represent

the word. The last hidden states are concatenated to be the sentence representation.
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GAN Based Text-to-Image Generation

GAN-CLS On the basis of DCGAN, several text based GAN networks were pro-

posed. The first GAN based text-to-image generation network was GAN-CLS [83].

It generates images based on the corresponding image caption t in addition to the

noise vector z. z is sampled from a Gaussian distribution z ∈ RZ ∼ N (0, 1), and the

text description t is encoded with a pre-trained text encoder ϕ to be ϕ(t). ϕ(t) is

then concatenated with z and processed through a series of transposed convolution

layers to generate the fake image. In the discriminator D, a series of convolution-

batch normalization-leaky ReLU are applied to discriminate between true and fake

images.

In addition to the invention of sentence embedding as the conditioning factor,

the second major contribution from GAN-CLS was the application of the so-called

matching aware discriminator. The original design of the discriminator identified

the sample as real or fake. The matching aware discriminator also indicated if the

sample was falsely aligned with the given text description. This is vital for future

conditional GAN. Later, an explicit metrics is designed to evaluate how well the

generated image reflect its text description.

GAWWN The generative adversarial what-where network (GAWWN) [81] was

the first architecture that is able to provide controllable text-to-image generation

that adopted supplementary information, such as bounding boxes or part locations

of the main object in the image. In the case of provided bounding boxes, each box

is converted to a mask so that regions in convolution layers that are out of the

bounding box are set to zero. It applies to both the generator and discriminator.

Researchers have demonstrated that it allows objects to appear in the place of the

provided bounding box.
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In the case of provided key points, the location key-points are encoded as a spatial

feature tensor in which each channel corresponds to one key point. This tensor is fed

to the text embedding, the generator and the discriminator. The generated image

roughly follows the shape of the provided key points.

StackGAN As previous works failed to generate images with a resolution higher

than 128 × 128, StackGAN [110] employed a two-stage GAN network to generate

photo-realistic 256×256 images from text descriptions. Its architecture consisted of

two stages: Stage-I generated a low-resolution image (e.g., 64 × 64) based on texts

and random noises; Stage-II generated a higher resolution image (e.g., 256 × 256)

based on texts and the lower resolution images from Stage-I.

Apart from the two-stage architecture, one particular important idea from this

work is the use of a Gaussian latent variable c0. It is generated from an indepen-

dent Gaussian distribution N (µ(ϕt),
∑

(ϕt)) whose mean and diagonal covariance

matrices are functions of the sentence embedding. In Stage-I, instead of applying

text embedding to generate images directly, c0 is processed through the generator

in addition to the random noise. A regularisation term is then added to the ob-

jective of generator. This term calculates the Kullback-Leibler divergence between

N (µ(ϕt),
∑

(ϕt)) and a standard Gaussian distribution.

This approach was later utilised in other text-to-image generation methods be-

cause it mitigated the problem of high dimensional text embedding causing discon-

tinuity in the latent data manifold. This is not desirable in the generator training.

AttnGAN AttnGAN [103] is an extension of StackGAN. Although it also uses

multistage GAN design, multiple stages of generator networks are trained simultane-

ously instead of separately, as in StackGAN. AttnGAN uses an attention mechanism

to construct its network in addition to an image-text matching score that encourages
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the close matching between the correct pairs of image and sentence. It can generate

images of better quality and achieve a higher inception score.

The generation process of AttnGAN is based on a multistage attention mech-

anism. At each stage, the generated image receives information from attention

weights. These attention weights are calculated between image features from the

last stage and text features. The attention mechanism is also used to calculate

a deep attentional multimodal similarity model (DAMSM) loss, which encourages

correct matching between sentence-image pairs.

2.3.4 Attention Mechanism and its Applications in Text-to-Image Gen-

eration

Attention mechanism has been widely applied to both classic translation and

cross domain translation tasks [3, 102, 103]. It has been proven to enhance the

performance significantly, and is used in our proposed work. This section introduces

the theory behind the attention mechanism.

Attention mechanism was first proposed in an NMT system [5]. The attention

mechanism defines a probability αij which reflects the importance of an input hidden

state j towards the output last hidden state i − 1 in terms of generating the next

token. The probability is calculated as:

αi,j =
exp(eij)∑Tx
t=1 exp(eit)

, (2.3)

where eij is a defined score between input hidden state j and output hidden state

i− 1. Tx is the number of elements in the input.

Therefore, for each output position i, there is a context vector ci defined as the

weighted sum of all input hidden states:
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ci =
Tx∑
j=1

αijhj. (2.4)

where hj represents the feature vector for the hidden state with index j.

The attention mechanism was applied to text-to-image generation in AttnGAN

[103]. It is used to guide the generator to focus on certain words when generating

specific image regions.

Self-attention is a specific attention mechanism that computes a sequence rep-

resentation by relating different positions of the sequence itself [95]. Therefore, no

convolution or recurrent process is required to encode a sequence. [95] was the first

work to build a sequence transduction models solely on attention mechanisms.

In [95], authors describe an attention function as a mapping query and a set of

key-value pairs to the output. The output is calculated as a weighted sum of values,

where each weight is computed from the query and the corresponding key. In the

case of self-attention, query, keys and values are all transformed representations of

the input sequence itself. In particular, [95] presented self-attention as a “scaled dot-

product attention”. Given a query Q, keys K and values V , the output is computed

as:

Attention(Q,K, V ) = softmax(
QK>√
dk

)V, (2.5)

where dk is the dimension of the query and keys.

Self attention GAN is a recently proposed network that uses the self attention

mechanism to improve the generation quality [109]. It adds an additional self atten-

tion layer in between regular convolution layers in the original GAN structure.

For a convolution feature map x, it is first fed through three separate 1× 1 con-

volution filters to derive f(x), g(x) and h(x), which are equivalent to Q, K and V
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in the sequence self attention. Afterwards, attention probabilities are calculated be-

tween each individual regular-grids using f(x) and g(x). A dot product is performed

between the resulting attention map and h(x), which generates the output atten-

tion feature map. Authors claim that adding such self attention layer improves the

generation quality. They also assert that such a self attention layer can be inserted

between regular convolutional layers to improve GAN generation results. Later in

Section 3.1.5, we compare the image generation performance with or without such

layers in our proposed framework.

2.3.5 Text-to-Image Alignment

Alignment between text to image has been studied in multiple works to enhance

the “precision” of the generation. That is, the synthetic image should reflect exactly

what is described in the caption, or the caption should match exactly the content of

an image. As our first contribution focuses on improving the attention mechanism

built between texts and images, this section reviews several text-image alignment

methods used previous literature.

Region of interest (RoI) pooling Measuring the alignment between texts and

images requires extracting feature vectors from both. Text features can be extracted

via multiple text embedding algorithms. Extracting regional image features is more

difficult when regions have different shapes and sizes, which is why RoI pooling is

applied in our work.

RoI pooling was first introduced in the object detection algorithm regional CNN

[29]. For an image region with spatial size h × w, it was first divided into H ×W

grids of subwindows. Each subwindow was then fed through a max-pooling layer,

which derived a final pooling result with spatial size H×W . The RoI pooling allows

each image region with various sizes to be embedded into a fixed-length vector with
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no additional parameters and training involved.

Text-image alignment Text-image alignment studies the compatibility between

images or image subregions with sentences or words; [47] presented a model that gen-

erate descriptions of an image. This is one of the first works to design an alignment

model that connects words and object-grid image regions.

Object-grid regions in each image are detected via the pre-trained region con-

volutional neural network (RCNN) [30]. RCNN also provides representations for

each object-grid image region detected. Authors chose to use the top 19 detected

locations in addition to the whole image and apply linear transformation to these

feature vectors. Therefore, each image can now be represented as a series of feature

vectors {vi|i = 1, . . . 20}. Word representations are derived from a bidirectional

RNN network.

Given the regional and word representations, the measure of similarity between

the i-th region and t-th word is given as v>i wt. Thus, the similarity score between

an image k and a sentence l is given as:

Skl =
∑
t∈gl

maxi∈gkv
>
i wt. (2.6)

The final alignment objective is defined as a max-margin loss:

C(θ) =
∑
k

[
∑
l

max(0, Skl − Skk + 1) +
∑
l

max(0, Slk − Skk + 1)]. (2.7)

2.3.6 Image Domain Transfers With GANs

CycleGAN [114] performs translation between a pair of image domains using a

cycle consistency loss, in the absence of any paired training examples. In addition
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to the classic adversarial loss in Equation 2.1, CycleGAN defines a cycle consistency

loss as:

Lcyc(G,F ) = Ex∼pdata(x) [||F (G(x))− x||1] + Ey∼pdata(y) [||G(F (y))− y||1], (2.8)

where G and F are forward and backward generators between two image domains

X and Y . DiscoGAN [50] functions similarly to CycleGAN because it translates

between two image domains with unpaired data.

2.3.7 Normalisation Methods and Applications in GANs

GAN training often suffers from mode-collapse and slow convergence. Thus,

normalisation methods, such as batch normalisation, are often employed in GAN to

stabilise the training [79]. This section reviews several normalisation methods that

are commonly applied in DNN training. In Section 3.1.5, the impacts of different

normalization methods are examined on the proposed models.

Batch normalisation

Batch normalisation ([41]) was one of the first normalisation techniques applied

to accelerate DNN training. The motivation for this is that the distribution of

layers’ input keeps changing, which forces each layer to continuously adapt to the

new distribution. This phenomenon is termed “internal covariate shift”. Therefore,

batch normalisation is designed to reduce such internal covariate shift.

The implementation of batch normalisation is broken down into two parts. In

training, for d-dimensional layer input x = (x(1) . . . x(d)), each dimension is nor-

malised as:

x̂(k) =
xk − E[x(k)]√
V ar[x(k)]

, (2.9)
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where the expectation and variance are estimated using mini-batches.

In addition, authors have suggested that simply normalising each input of a layer

may change what the layer can represent. Therefore, a pair of trainable parameters

γ and beta is introduced for each activation x(k) to scale and shift the normalised

value, so as to restore the representation power of the network:

y(k) = γ(k)x̂(k) + β(k). (2.10)

During testing, population statistics (which are computed from training mini-

batches) are used instead:

E[x] = Eβ[µβ] (2.11)

V ar[x] =
m

m− 1
Eβ[σ2

β]. (2.12)

Layer normalisation

Layer normalisation ([4]) is another normalisation technique that accelerates

DNNs. It does not use batch statistics to perform the normalisation. Instead, it

uses statistics from all units within each layer:

µ(k) =
1

H

H∑
i=1

x
(k)
i (2.13)

σ(k) =

√√√√ 1

H

H∑
i=1

(x
(k)
i − µ(k))2, (2.14)

where H is the number of total hidden units in the layer.

In layer normalisation, different training samples can have different normalisation

terms (i.e., no dependencies introduced between samples in a mini-batch).

Weight normalisation
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Weight normalisation [87] performs a reparameterisation of the parameters in a

neural network. Consider a weight vector w; it is now expressed by a new parameter

vector v and a scalar parameter g:

w =
g

||v||
v. (2.15)

Such reparameterisation decouples the length of weight vectors from their direc-

tion. In addition, unlike batch normalisation, it does not introduce dependencies

between samples in a mini-batch; thus, it can be applied in recurrent structures.

2.4 Latent Space Modelling of GANs

This section describes distributions other than the standard Gaussian and uni-

form distributions that have been applied to GANs in previous literature and in the

proposed algorithms.

2.4.1 GMM

GMM is one of the most commonly used probabilistic framework for datasets

with multiple modes. It assumes that all data points come from a mixture of a finite

number of Gaussian distributions. The density function of the GMM is defined as:

pX (x) =
K∑
k=1

αkN (x;µk,Σk), (2.16)

where K is the total number of Gaussians in the mixture and the kth component

is characterised by a Gaussian distribution with weight αk, mean µk and covari-

ance matrix Σk. The parameters of the GMM are commonly estimated by the EM

algorithm or variational Bayesian inference [59].
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2.4.2 GMM in GANs

This section discusses some recent research that is closely related to our work of

applying GMM to GANs. In [24], authors proposed to integrate a GMM into the

GAN framework. Both of the means and covariance matrices are trainable through

the generator loss. Instead of applying the classic adversarial loss as in Equation

2.1, the authors proposed to use GMM likelihood for the minimax game. The

discriminator encodes images to feature vectors and estimates the GMM parameters

from the encodings of real images. The discriminator is updated in each iteration

such that the likelihood of the encoded real images is close to one and the likelihood

of encoded synthetic images is close to zero.

In [7], authors also proposed a method named GM-GAN that used Gaussian

mixture to model the distribution over the latent space, in addition to its variant

for the conditional generation. The supervised GM-GAN modifies the discriminator,

so that instead of a single scalar, it returns a vector o ∈ RN . Each element of o

represents the probability of the given sample being in each class. This ensures

that images generated from the generator will be classified by the discriminator as

a certain class.

2.4.3 Dirichlet Process

One of the drawbacks of modelling the latent space of GAN using standard GMM

is that the number of Gaussians must be predetermined. Therefore, researchers also

tried to use Dirichlet process (DP) in generative models.

The DP is a stochastic process which is specified by a base distribution H and

a concentration parameter α:

G ∼ DP (α,H). (2.17)
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The expectation of the total distinct number of components K in the DPGMM

is determined by α and the number of samples M .

E(K) = α(ϕ(α +M)− ϕ(α)). (2.18)

The DPGMM can be written as follows:

(vi|µ̃i) ∼ N(µ̃i, σ
2) (2.19)

µ̃i ∼ G

G ∼ DP (H(λ), α),

where G is a random prior distribution and G(µ̃i) =
∞∑
k=1

πkδµk(µ̃i). µk are indepen-

dently distributed according to H(λ).

There are multiple approaches to perform DP sampling, our work uses the stick-

breaking process, which is introduced below.

Stick-Breaking Process

One way to draw from the DP is performing the stick-breaking process. The

probability mass function is defined as:

f(θ) =
K∑
k=1

βk · δθk(θ), (2.20)

where δθk is the indicator function. The probabilities βk are calculated as:

βk = β′k ·
k−1∏
i=1

(1− β′i). (2.21)

Distribution of the stick weights βk
K
k=1 is modelled with the beta distribution.

In practice, sampling from a DP mixture is usually performed with variational in-

ference.
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Variational Inference

Blei and Jordan [9] developed a mean-field variational algorithm for the DP

mixture. The variational bound is written as:

log p(x|α, λ) ≥Eq[log p(V |α)] + Eq[log p(η∗|λ)]

+
N∑
n=1

(Eq[log p(Zn|V )] + Eq[log p(xn|Zn)])

− Eq[log q(V, η∗, Z)]. (2.22)

The authors proposed the following factorised family of variational distributions

to approximate the distribution of the infinite-dimensional random measure G:

q(V, η∗, Z) =
T−1∏
t=1

qγt(υt)
T∏
t=1

qτt(η
∗
t )

N∏
n=1

qφn(zn), (2.23)

where qγt(υt) are beta distributions, qτt(η
∗
t ) are exponential family distributions and

qφn(zn) are multinomial distributions.

2.4.4 DP Applications in Generative Models

Nalisnick and Smyth [73] proposed using stick-breaking prior for the variational

autoencoder (SB-VAE) instead of the standard Gaussian distribution as in regular

VAE. As introduced in Section 2.4.3, sampling using the stick-breaking process

requires first sampling from a Beta distribution. However, the beta distribution

does not have a non-centered parametrisation. Therefore, authors propose to use

another distribution, Kumaraswamy distribution, which is a beta-like distribution

with a closed-form inverse CDF:

Kumaraswamy(x; a, b) = abxa−1(1− xa)b−1, (2.24)
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where x ∈ (0, 1), and a, b are non-negative shape parameters. Samples can be drawn

via the inverse transform:

x ∼ (1− u
1
b )

1
a , (2.25)

where u ∼ Uniform(0, 1). Thus, the hidden representation for VAE is made from

the infinite sequence of stick-breaking weights instead of drawing from the standard

Gaussian.

Another work [72] applied Dirichlet Process mixtures to model the latent space

of VAE. The generative process becomes: πi ∼ Dir(α), zi ∼
K∑
k=1

πi,kN(z, θk), xi ∼

pθ(x|zi) where pθ(x|zi) is a density network.

Our work is by far the first to model the latent space of GANs using DPGMM.

Different from VAEs, the architecture of vanilla GANs does not allow the latent

vectors to be learnt directly from the data itself. Therefore, specific approaches are

proposed to properly update the parameters of the latent distribution and provide

a better fit to the data.

2.4.5 Other Latent Space Modelling

[10] models the latent space as a unit sphere and learns the correspondence from

the sphere space to the data space without the adversarial loss. Such a trained model

can achieve smooth linear interpolation output between any two random vectors on

the unit sphere. This means that linear interpolations in the noise space lead to

semantic interpolations in the generated images.

[16] proposed InfoGAN which in addition to the adversarial loss, it learns to

maximise the mutual information between a subset of latent variables and the ob-

servation, i.e. I(c;G(z, c)), where c is the class of the real sample. A learnt InfoGAN

model can disentangle discrete and continuous latent factors. Thus, linear interpo-
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lation can be performed using the continuous latent code (e.g., from a thin digit

to a wide digit); this is not possible for discrete codes, such as across categories of

images.

2.5 Mini-Batch and SGD

Mini-batch and SGD are common tools used in machine learning algorithms.

Often, the size of training data becomes so large that it is impractical to render

batch optimisation (i.e., using the entire dataset in every iteration). For example,

[53] trained a CNN to classify 1.2 million images from ImageNet, while [93] built a

sequence-to-sequence neural translation model with 12 million sentences that con-

tained 348 million French words and 304 million English words from the WMT’14

English to French dataset. Therefore, mini-batch training can be employed to reduce

the communication cost and parallelise the learning process [61].

Despite its wide usage, the most standard form of selecting mini-batches in SGD

is to sample data indices uniformly in each iteration and perform an update as

follows:

wt+1 ← wt −
η

n

n∑
i=1

∇φi(wt), (2.26)

where wt is the parameter at time step t, φ is the loss function, η is the learning

rate and n is the size of the mini batch. Standard SGD employs uniform sampling,

so the stochastic gradient is an unbiased estimate of the true gradient. Nonetheless,

it introduces variance between iterations, which negatively affects the performance

[113].

Using large mini-batches can mitigate the problem by reducing the variance but

this slows down the actual convergence [13]. Several attempts have been made to

optimise the performance of mini-batch training; [61] added a conservative constraint
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to the loss function to control differences between parameters across iterations:

wt = argmin[φ(w) +
γ

2
||w − wt−1||22]. (2.27)

Johnson and Zhang [45] proposed a method named stochastic variance reduced

gradient (SVRG) that replaced the training target with a new random vector that

had the same expectation but a smaller variance. Alain et al. [2] applied distributed

importance sampling, in which the sampling weight was proportional to the L2-norm

of the gradient. Gopal [32] proposed a similar idea by separating the data into bins

using side-information and maintaining the distribution at a class level rather than

at an instance level. Other researchers reduced variances by modifying sampling

methods. These methods are introduced in section 2.5.4. Section 2.5.4 briefly out-

lines the DPP, which is the basis of our work in accelerating model convergence.

2.5.1 DPP

DPP is a random process used to model a subset Y selected from a base set Y .

In particular, DPP encourages Y to contain a diverse set of items; therefore, it is

applied to some sampling and summarisation tasks in which diversity is preferred

(e.g., detecting people and their poses in an image) [55].

Consider a random subset Y drawn from Y according to P , for every subset

A ⊆ Y :

P(Y ⊇ A) = det(KA), (2.28)

where K is called the marginal kernel which is a real, symmetric, positive semidefi-

nite N ×N matrix indexed by elements of Y .

DPPs can be constructed alternatively with a real, symmetric matrix L indexed

by the element of Y instead of the marginal kernel K, in which case L is called

L-ensembles. Let L be the Gram matrix, constructed from B, the feature vector for
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each element in the base set Y , i.e., L = B>B:

L-ensembles directly specifies the probability for a possible subset A as follows:

PL(Y = A) =
det(LA)

det(L+ I)
, (2.29)

where LA is a part of L that is indexed by elements in A.

2.5.2 K-DPP

k-DPP models the distribution over subsets with size k from Y [54], which ensures

that the number of data sampled is of a fixed size.

P k
L(Y ) =

det(LY )∑
|Y ′|=k det(LY ′)

. (2.30)

2.5.3 Markov DPP

Markov DPP further encourages diversity between two subset selections. Sup-

pose Yt is the subset sampled at timestep t and Yt−1 is the subset sampled at timestep

t, Markov DPP tries to maximise the conditional probability of sampling Yt given

Yt−1. In other words, it tries to make the sample diverse from previous samples as

shown in Figure 2.1.

The sampling strategies for normal DPP sampling, k-DPP sampling and Markov

k-DPP sampling are demonstrated in [55] and [1].

2.5.4 DPP for Mini-Batch Sampling

Zhao and zhang [112] proposed an algorithm named SGD with stratified sam-

pling (SGD-ss) that applied clustering to separate the dataset into clusters before

uniformly sampling for mini batches within each cluster. The method requires data

in each cluster to belong to the same category. The weight update formula now

becomes:
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(a) DPP sampling (b) Markov k-DPP sampling

Figure 2.1 : In both figures, magenta points are drawn from k-DPP. Cyan points are

its subsequent draw. Green points are samples selected in both steps, where (a) is

using an independent k-DPP, and (b) is drawn from a Markov k-DPP, conditioning

the first.

wt+1 ← wt −
η

n

k∑ b∑
s=1

∇φs(wt), (2.31)

where k is the total number of clusters and b is the number of samples to be selected

within each cluster.

While most research in SGD variance reduction assumes the loss function to be

convex and smooth [89], recent works by [45] and [80] also demonstrate that SVRG

can be applied to non-convex functions. Although these works can theoretically

accelerate the training process, there is still the requirement for an underlying data

distribution to be known for the weight updates.

To improve the efficiency of SGD convergence without the assumption of any

underlying data distributions, [108] proposed a strategy called DM-SGD in applying

k-DPP to mini-batch sampling. The authors demonstrated that applying DPP

sampling guarantees variance reduction and thereby provides faster convergence
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rates relative to mini-batch SGD.

Given FC feature vectors W and corresponding one-hot labels H, DM-SGD cal-

culates the feature vector for each data sample as a weighted concatenation between

the two (i.e., feature vectors) are calculated as:

F = [(1− w)W wH], 0 ≤ w ≤ 1. (2.32)

The Gram matrix L for the sampling is defined as L = FF>. In addition,

authors proved that for all data points xi and xj and all parameters θ, if:

∀i 6=j : Cijg(xi, θ)
>g(xj, θ) < 0. (2.33)

Then DM-SGD has a lower variance than that of SGD. Here, g represents the

gradient, Cij is the correlation between the two data points, which is negative when

data points are similar and positive when dissimilar. Therefore, applying k-DPP

sampling guarantees variance reduction.

Authors have demonstrated the performance on several datasets including the

MNIST [56] and Oxford Flower 102 datasets [75]. In the MNIST dataset, authors

used the raw image pixels to define feature vectors. In the Oxford Flower 102 dataset,

the feature vector for each image was defined using the first FC layer of the pre-

trained VGG-16 network [91]. Authors then trained a linear softmax classification

with off-the-shelf CNN features.
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Chapter 3

Applications of Cross Domain Transfer

As explained in Chapter 1, the current attention mechanism built for cross domain

transfer has certain limitations. Take text to image as an example, the attention

structure extracts regular-grid region features and word embeddings to decide which

words to examine when generating each image region. This does not work well when

the images contain multiple objects and there are complex interactions between

them because a single word does not provide enough descriptions for an object and

a regular-grid region can contain a part of one or several objects.

Therefore, our work proposes building the attention structure on the phrase and

object-grid region instead. To make this work, we also proposed novel mechanincs

to extract phrase features using a two-layer LSTM structure.

Another drawback of the cross domain algorithms is that they are usually de-

signed to manage a pair of domains and a new set of parameters is required for a

different pair of domains. This is time consuming and the network can be inevitably

large when there are more than two domains involved in the system.

Thus, this chapter also introduces our second contribution, which proposes us-

ing a single pair of universal transfer functions to perform transfer across multiple

domains. Our work manages datasets that contain “natural ordering”; such order

is learnt during the training without any supervision. The details for both contri-

butions are explained in Section 3.1 and 3.2.
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3.1 Realistic Image Generation using Region-Phrase Atten-

tion∗

Our network is inspired by several recent studies, including those of the ar-

chitecture of AttnGAN and the visual-semantic alignment [47]. Our work differs

significantly because we introduce the attentions between phrase and object-grid

features into the network. Compared with Obj-GAN, our framework introduces the

phrases and the overall design is much simpler.

To this end, we show our overall model in Figure 3.1, which consists of an end-

to-end text encoder network, a GAN framework and a bounding boxes prediction

framework. The details for each module are explained in the following sections.

∗This work was published as [38].



41

F
igu

re
3.1

:
N

etw
ork

stru
ctu

re
for

tex
t

em
b

ed
d
in

g
an

d
G

A
N

n
etw

ork
.



42

3.1.1 Text Encoder

The text encoder of current text conditioned GAN network typically extracts a

whole sentence representation and word representations using a bidirectional LSTM.

In addition to those features, our proposed work also extracts the phrase features

to be fed into our algorithm.

We define a phrase as a combination of the closest article (digit), adjective

and noun. Such information can be extracted from applying part-of-speech tag-

ging (POS-tagging) to raw sentences. For example, a sentence “Two black horses

standing with a cart attached to them.” is tagged as [(“Two”, digit), (“black”, ad-

jective), (“horses”, noun), (“standing”, verb), (“with”, preposition), (“a”, article),

(“cart”, noun), (“attached”, verb), (“to”, preposition), (“them”, pronoun)]. We

then group the nearest article (digit)-adjective-noun words as a phrase, which yields

“two black horses” and “a cart’.

Figure 3.2 : Text embedding with a two-layer LSTM networks.

The full text encoder framework is shown in Figure 3.2, which in fact can be

considered as a phrase encoder built on top of a sentence encoder. In addition, our

design incorporates object-grid image features to assist the learning. Such image
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features are extracted from an image encoder. The details are explained in the

following sections.

Sentence Encoder

First, a bidirectional LSTM is applied to each sentence to extract word and

sentence representations. Given a sentence {w1, . . . wT}, the tth word representation

et is a concatenation of a forward eft and a backward hidden state ebt , i.e., et ≡

[eft e
b
t ]. The full sentence embedding ē is defined using the last hidden states (i.e.,

ē ≡ [efT e
b
T ]).

Phrase Encoder

On top of the extracted word representations e where e ≡ {e1, . . . eT}, phrase

representations are extracted by applying a second LSTM in the following way.

Given the t′th phrase, an LSTM is applied over the sequence of words in the phrase.

The last hidden state is used as its feature representation which we refer to as pt′ .

An alternative way to extract phrase embeddings is by taking the average of word

embeddings in each phrase. The performance of both methods is discussed in Section

3.1.5.

Our phrase-based embedding clearly has an advantage over the traditional word-

based mechanism in which each word has one representation. For example, none of

the individual words in the phrase “a green apple” portray an overall picture of the

object; all three words work together to capture its visual meaning.

An Alternative Text Encoder Design

Apart from the proposed stacked LSTM text encoder, we design an alternative

text encoder that is based on convolution layers and self-attention mechanism (i.e.,

no recurrent structure is required.) The network structure is shown in figure 3.3.
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Figure 3.3 : Text embedding with CNN layers. n represents the number of words in

the sentence. “heads = 4” means four scaled dot-product attention run in parallel.

It follows a similar logic as the LSTM version. The input sentence is fed through

three separate convolution layers to generate different versions of query Q, key K

and value V . Details on convolution operations on sequences are provided in Section

2.3.3. In this step, we apply the first multihead attention operation as the rectangu-

lar area ”Self-attention I” shown in the figure. A gated linear unit (GLU) operation

is applied to the concatenated attention outputs to derive the word embeddings. It

is followed by a max pooling operation to derive the sentence embedding.

Phrase embeddings are derived via a second multihead attention from the word

embeddings, which works in a very similar logic to the first one.

In addition, in each convolution operation in this network, we apply a normalisa-

tion function to the input before feeding it to the convolution. We compare between

three methods: weight normalisation, layer normalisation and batch normalisation.

Results are shown in Section 3.1.5.
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Image Encoder

Figure 3.4 : Examples of full image region, the regular-grid region and object-grid

region

The image encoder itself comes from the pre-trained Inception-v3 network [94]

and is not further fine-tuned in our framework. We apply the image encoder to

extract three types of image features from a single image: an object-grid region

feature, a regular-grid region feature and a full image feature. As shown in Figure

3.4, an object-grid region is defined over a single object. Thus, the regions differ in

sizes. Regular-grid regions have equal sizes and each of them can contain half an

object or multiple objects.

Common to all features, each image first undergoes the Inception-v3 model. We

use the last feature layer (i.e, “mixed 6e”) layer as the designated layer for the

regular-grid region. The full image feature is obtained from the last average pool-

ing layer. In addition, both the regular-grid region feature and full image feature

are converted into vectors in the same semantic space using a trainable Fully Con-

nected (FC) layer. Therefore, the resulting features have the following dimensions:

a regular-grid region feature v ∈ R289×D where 289 = 17 × 17 is the dimension for

the ”mixed 6e” layer feature map. The image feature is denoted as v̄ ∈ RD.

To obtain an object-grid region feature, the location and size of each region must
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first be identified. In several open datasets, such as the Microsoft COCO (MSCOCO)

dataset, the manually labelled bounding boxes of object(s) within an image are

readily available. In cases in which the dataset does not provide such information,

they can also be obtained from off-the-shelf image object detectors, such as RCNN

[30]. This makes it possible to apply our algorithm to any image datasets with text

annotations, including the CUB and the Oxford Flower 102 datasets.

The “mixed 6e” layer feature map and its bounding box information is fed

through the Region of Interest (RoI) pooling to generate its object-grid region fea-

ture. These features are fed through a convolution operation with a kernel of an

equivalent size, resulting in a vector in a common semantic space as text features.

We denote the object-grid region feature as b ∈ RK×D where K is the number of

bounding boxes in each image.

Attention-Based Embedding for Text

Text embedding and the perception layer for image and region features are boot-

strapped prior to training the GAN. The training requires an overall loss function,

which is defined as Equation 3.1:

LTEXT = LSENT-IMG + LWORD-REGULAR + LPHRASE-OBJ. (3.1)

The above loss function comprises three separate losses; each of these follows

[103]. Therefore, without loss of generality, the target of the loss function is to

minimise the negative log posterior probability for the correct image-sentence pair.

That is, for a batch of M image-sentence pairs (Si, Ii)
M
i=1, for clarity, we drop the

subscript for L:

L = −
M∑
i=1

(logP (Si|Ii) + P (Ii|Si)), (3.2)
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where P (Si|Ii) is the conditional probability for a text data Si to be matched with

an image data Ii defined as:

P (Si|Ii) =
exp(γ1R(Si, Ii))∑M
q=1 exp(γ1R(Sq, Ii))

. (3.3)

Here, R(Si, Ii) gives the similarity score between the text and the image data.

Text may refer to sentence, word or phrase, and the image may refer to their corre-

sponding “entire image”, “regular-grid region” and “object-grid region” respectively.

γ1 is a manually defined smooth factor. The posterior probability P (Ii|Si) for an

image being matched to a sentence is defined similarly.

The similarity score R(Si, Ii) can be defined in multiple ways using off-the-

shelf methods from the statistics community to suit each situation. In our work,

we apply three R values: RSENT-IMG, RWORD-REGULAR and RPHRASE-OBJ to Equa-

tion 3.2 and Equation 3.3, which derives three corresponding loss values LSENT-IMG,

LWORD-REGULAR and LPHRASE-OBJ.

Choices of R for LSENT-IMG, LWORD-REGULAR and LPHRASE-OBJ

LSENT-IMG describes the similarity between text and image. We have chosen

RSENT-IMG = φ(Si, Ii) to be the cosine similarity between a sentence representation

ē and a whole image feature v̄i.

LWORD-REGULAR utilises the attention mechanism built between the regular-

grid regions and the words. Its similarity score is chosen as RWORD-REGULAR =

log(
T∑
t

exp(γ2φ(ct, et)))
1
γ2 . Here, T is the total number of words and γ2 is a sec-

ond smooth factor. φ(ct, et) is the cosine similarity between a word embedding et

and a regular-grid-region-context vector ct. ct is calculated as a weighted sum over

regular-grid image features: ct =
289∑
j=0

αjvj, where αj is the attention weight for the

jth regular-grid towards the tth word and αj = γ3φ(ct,et)∑289
k exp(γ3φ(ct,ek))

.
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LPHRASE-OBJ is defined using the attention mechanism between the object-grid

regions and the phrases. The similarity score isRPHRASE-OBJ = log(
K∑
t′

exp(γ2φ(ct′ , pt′)))
1
γ2

where ct′ is the object-grid-region context vector. ct′ is calculated in a similar way

as ct except that it is a weighted sum over the object-grid region features instead of

regular-grid features.

Another alternative to define L is using the attention connection between the

object-grid regions and words instead of phrases. We denote such a loss value

LWORD-OBJ.

3.1.2 Overall Text Embedding Loss

Having defined the four loss values above, we applied them to our overall network

architecture, as shown in Figure 3.1. In Section 3.1.5, we illustrated the performance

of different combinations of L. This further demonstrates that object-grid region

and phrases are important conditional information in image generation.

3.1.3 Attentional Text-to-Image Generation

Inspired by previous network designs, our work constructs text-to-image gener-

ation as a multistage process. At each generation stage, images from small to large

scales are generated from corresponding hidden representations.The first stage was

named as “thumbnail generation” which takes sentence embedding ē as the input

and generates images with the lowest resolution. In the following stages, images

with higher resolution are generated from the hidden state of the last stage with an

attention-based structure.

Thumbnail Generation

Thumbnail generation was inspired by the bounding box conditioned sentence

to image design by GAWWN and was modified to suit our network design. The
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generator structure is shown in Figure 3.5, while the discriminator structure is shown

in Figure 3.6.

Figure 3.5 : Thumbnail generator

Figure 3.6 : Thumbnail bounding box conditioned discriminator

The generation process branches into two paths. The global path, which is not

bounding box conditioned, takes the conditioning factor F0 and the noise vector to

produce a global feature tensor. F0 itself is a Gaussian latent variable whose mean

and diagonal covariance matrix come from F ca which is a function of the sentence

embedding. The local path instead uses the sentence embedding directly. It first

combines the sentence embedding and the bounding box by spatially replicating

e and zero out the region out of the bounding box. In cases in which multiple

bounding boxes coexist, the resulting tensor is averaged. The local path then takes
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the combined tensor through another several layers to generate a local feature tensor.

Tensors from both paths are concatenated depth-wise to derive the first hidden

representation h1.

In terms of the discriminator, one naive approach to incorporate the bounding

box information is to follow GAWWN, through which features extracted from an

image is to concatenate with the features extracted from the image-bounding boxes

pair. The discriminator then evaluates this concatenated vector. However, the

experiment results provided an unfavourable outcome using this approach. In our

work, we introduce a three discriminators approach. The details are discussed in

Section 3.1.3.

Super-Resolution I & II

Super-resolution enlarges the previously generated thumbnails by constructing

the attention mechanism between the last hidden state and text features. At stage

n, a hidden representation hn is constructed from the last hidden state hn−1. hn is

later translated to an image with the image generation network in Section 3.1.3.

We incorporate two sets of attentions in the proposed framework. The first is

between individual words and regular-grid regions. The second is between phrases

and object-grid regions.

Given the word embeddings e where e ≡ e1, . . . eT for T words in a sentence

and phrase embeddings p where p ≡ p1, . . . pT ′ for T ′ phrases in a sentence, hn is

calculated as:

hn = Fn(hn−1, F
attn1
n (e, hn−1), F attn2

n (p, hn−1)). (3.4)

Here, Fn is a deep neural network that constructs the hidden representation hn

from given inputs. F attn1 and F attn2 are the DNNs that construct the word-context
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matrix and phrase-context matrix respectively.

The word-context matrix is constructed from word embeddings e and regular-

grid image region features from hn−1. e are first fed through a perceptron layer to

be converted into the common semantic space as image features. The regular-grid

region is defined here in a similar way to that explained in Section 3.1.1, except that

the input feature map is not from the pre-trained Inception-v3.

Given jth regular-grid region feature hjn−1, a word-context vector cj is defined as

the weighted sum over word embeddings:

cj =
T∑
t

ϕj,tet. (3.5)

Here, ϕj,t is the attention weight between the tth word and the jth regular-grid

region and ϕj,t =
exp(hjn−1

>
et)∑T

τ exp(hjn−1

>
eτ )

. Suppose there are J regular-grids, the final word-

context matrix is then defined as the union of the cj value for each regular-grid

region, i.e., F attn1
n (e, hn−1) = (c1, · · · , cJ).

This phrase-context matrix is calculated in a similar way, except that word

embeddings are replaced with phrase features and regular-grids are replaced with

object-grid features. Here, object-grid features are derived from hn−1 by feeding it

through the RoI pooling.

The resulting phrase-context matrix is of length K, where K is the number of

object-grid regions defined in the image. To apply such a matrix to the network,

we let each pixel inside the bounding box carry the same phrase-context vector,

while pixels outside of bounding box carry zeros. As for regions in which multiple

bounding boxes overlap, the phrase context vectors are averaged. Thus, the resulting

phrase-context matrix is of the same shape as the previously defined word-context

matrix.
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Figure 3.7 illustrates examples of attention-weights mapping, from object-grid

image regions to phrases. It is clear to see that our framework encourages the correct

text information to be focused in generating each key objects.

(a) A picture of a stop

and go light with a

stop sign next to it.

(b) A female wearing a

red shirt lies on a bed,

resting.

(c) A metal counter

topped with lots of

cheesy pizzas.

Figure 3.7 : Example of attention being paid to a phrase when generating each

object-grid region. White rectangles on the left figure highlight the object-grid

regions in the image. The matched pair of phrase and object-grid image region is

highlighted in the right image.

Image generation network: Hidden representation to images

As shown in Figure 3.1, the previous thumbnail generation and super-resolution

stages do not produce images directly. Instead, they produce hidden representations

that are fed through an additional convolution layer using kernel size and a depth

dimension 3 to generate images.

Discriminators

In general, we use three types of discriminators. The first evaluates an entire

image as being real or fake, which is named it Dim. The second evaluates a pair of

image and sentence, which is termed Dim-txt. The third evaluates a group of image,

sentence and bounding boxes, which is named Dim-txt-bnd. Collectively, the proposed

discriminator set is: D ≡ {Dim, Dim-txt, Dim-txt-bnd}
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In addition, we incorporate the logic of matching-aware discriminator from [83],

in which the latter two discriminators were fed through real, fake and unmatched

samples. The value function for the generator and the discriminator at each stage

is given below where we denote the bounding box information as b:

min
G

max
D
V (D, G) = Exi∼pdata(xi)[logD(xi)] + Ez∼pz(z)[log(1−D(G(z|ē)))]

+ Exi∼pdata(xi)[logD(xi, ē)] + Ez∼pz(z)[log(1−D(G(z|ē), ē))]

+ Exi∼pdata(xi)[logD(xi, ē, b)] + Ez∼pz(z)[log(1−D(G(z|ē), ē, b))].
(3.6)

In Table 3.1 we report the detailed network architecture for the discriminator

performed on the smallest 64×64 images. Dd = 96, De = 256 are the chosen hyper-

parameters. fD refers to features produced in the network. Upsampling consists of

a nearest neighbour image resize, a convolution, a batch normalisation and a GLU

layer. Down-sampling consists of a convolution, a batch normalisation and a leaky

ReLU layer. The kernel size and the stride value used in both operations are shown

in the parentheses. Identical function/framework applies to all stages with deeper

network designs on larger images. The full network architecture can be found in the

appendix.

3.1.4 Bounding Box Prediction

As the image generation relies on bounding box information which is not avail-

able in the testing phase, a separate bounding box prediction network is trained

based on the sentence embedding. We define two prediction tasks in the network.

The first predicts the coordinates for bounding boxes; the second predicts the total

number of bounding boxes described in the sentence. Both predictions are struc-

tured as regression problems. Therefore, a sentence embedding is first fed through

two multilayer neural networks, in which the final layer of both networks is a mean
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Stage Sub-stage Name Input Tensors Output Tensors

Image + Sentence Discriminator

Convolution + leaky ReLU 64× 64× 3 32× 32×Dd

Down-sampling (kernel=4, stride=2) ×3 32× 32× 96 f IMG
D (4× 4× (Dd × 8))

D(x) Convolution (Image only logits) 4 × 4× (Dd × 8) 1

D(x, ē) \textbf{Sentence conditioned logits} f IMG
D , ē 1

Image + Sentence + Bounding Box Discriminator

Convolution 64× 64× 3 32× 32×Dd

Down-sampling (kernel=4, stride=2) 32 × 32×Dd f IMG2

D (16× 16× (Dd × 2))

Spatial Replicate ē 16× 16×De

Concatenation 16× 16×De, f
IMG2

D 16× 16× (De +Dd × 2)

Apply bounding box mask 16× 16× (De +Dd × 2) 16× 16× (De +Dd × 2)

Down-sampling (kernel=4, stride=2) ×2 16× 16× (De +Dd × 2) f IMG−BBOX
D (4× 4× (Dd × 8))

D(x, ē, b) \textbf{Sentence conditioned logits} f IMG−BBOX
D , ē 1

Sentence conditioned logits

Spatial replicate ē 4× 4×De

Concatenation f IMG
D or f IMG−BBOX

D , ē 4× 4× (De +Dd × 8)

Down-sampling (kernel=3, stride=1) 4 × 4× (De +Dd × 8) 4× 4× (Dd × 8)

Convolution 4× 4× (Dd × 8) 1

Table 3.1 : Network architecture for the discriminators on the 64 × 64 images.

squared error of the predicted value and the real value.

Our work adopts several processing steps for the data in the following manner.

First, the coordinates of bounding boxes are normalised to the proportion of the full

length, so that the maximum value is 1 regardless of the size of the bounding box

or the image. Second, given a predicted number of bounding boxes, coordinates for

the bounding boxes that outnumber the predicted value are considered “invalid”,

and thus, are excluded in computing the loss. In addition, we define words such as

“left”, “right” as position related words. Our work later compares the performance

between using all sentences for the training and using only sentences that contain

position related words.

3.1.5 Experiments

Below, we demonstrate the superior performance of our work, and the perfor-

mance of each of the proposed components (i.e., the text encoder, the GAN network

and the bounding box predictor from Sections 3.1.1, 3.1.3 and 3.1.4 respectively).

The dataset we used is the MSCOCO dataset, which includes various images that
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involve natural scenes and complex object interactions. It contains 82,783 images

for training and 40,504 for validation. Each image has five corresponding captions.

Bounding boxes are provided for objects in 80 categories.

The text encoder is trained over 150 iterations and the learning rate is set as

0.0002. This pre-train phase is followed by the GAN training when the fine-tuned

text encoder is used to train the GAN network over 120 iterations and the learn-

ing rate for both the generator and discriminator is set as 0.0002. Three metrics,

inception scores, FID score and R-precision were utilized to perform the evaluation.

Metrics: Inception score, FID score and R-precision

It is difficult to measure the performance of image generation in a quantitative

way. Thus, the inception score [86] and the FID score [35] were two popular metrics

for automatic image quality evaluation.

The inception score is calculated as:

I = exp(ExDKL(p(y|x)||p(y))), (3.7)

where x is a generated image and y is the label predicted by the inception model

[94]. A higher inception score indicates that the generated images contain clear

objects and include a high diversity of images (i.e., a better generation quality).

Salimans et al. [86] suggested that a good model should be able to generate

diverse images that contain meaningful objects. Thus, the conditional label dis-

tribution p(y|x) should have a low entropy while the marginal
∫
p(y|x = G(z))dz

should have a high entropy. As suggested in [86], the metric should be evaluated

on a sufficiently large number of samples. Thus, the inception is collected from the

30,000 random validation images of the MSCOCO dataset.

The other metric, the FID score measures the difference between real images x
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and generated images x̂ as below:

FID(x, x̂) = ||µx − µx̂||22 + Tr(
∑
x

+
∑
x̂

−2(
∑
x

∑
x̂

)
1
2 ). (3.8)

Hence, a lower score indicates a better generation performance.

Both scores measure only the quality and diversity of images generated, but not

the accuracy of the image in reflecting the description of a sentence. Therefore, a

third metric called R-precision is used in the previous work [103].

R-precision is defined as the top r relevant text descriptions out of R retrieved

texts for an image; candidate sentences are 1 relevant and 99 randomly selected

sentences. Observations made through experiments were that when the sample size

(i.e., number of candidate sentence) is small, the R value has very high variance.

Therefore, two sample sizes were used at 100 and 30, 000, which we named R-

precision(100) and R-precision(30K) respectively.

Despite the limitations of both inception and FID scores as identified in [6] and

[64], there is currently no completely unbiased way to measure the image quality.

Thus the proposed work reports both scores and shows examples of the generation

results versus those in the extant literature. In terms of R-precision, it requires

a pre-trained image-to-text retrieval model that is not available in some previous

methods, and is not reported for StackGAN-v1 [110] and StackGAN-v2 [111].

The experiment results demonstrated below were performed on 30, 000 random

samples from the validation set for the IS score and the R-precision values. The

FID score is reported over the full validation set.

The Text Encoder

The Revised Text Encoder versus the Alternative CNN Based Encoder

To decide which structure the proposed text encoder should use, experiments were
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performed on the proposed CNN based text encoders under different normalisation

functions. These results are also compared with the proposed LSTM based text en-

coder. The performances are measured by the R-precision, LSENT-IMG, LWORD-REGULAR,

LPHRASE-OBJ achieved in the pre-train phase using the text encoders with real image

and sentence pairs (i.e. the generative process is not involved).

Table 3.2 : Text encoder performance of the revised LSTM based text encoder

and CNN based text encoders with three different normalisation functions: weight

normalisation, batch normalisation and layer normalisation.

Algorithm R-precision(100)(%) LSENT-IMG LWORD-REGULAR LPHRASE-OBJ

CNN - WeightNorm 64.52 2.4421 2.4194 2.6214

CNN - BatchNorm 62.59 2.5392 2.7046 2.7741

CNN - LayerNorm 58.86 2.7337 2.8762 2.8357

Proposed LSTM 70.45 2.0486 1.7044 2.1659

As in Table 3.2, the CNN based text encoder under weight normalisation achieves

the highest R-precision score, which is 3.08% higher than that using batch normal-

isation and 9.62% higher than the one using layer normalisation. However, it still

receives 8.42% less R-precision than the proposed 2-layer LSTM network. There-

fore, the final proposed model uses the LSTM based text encoder, as reported in

the following sections.

The Revised Text Encoder In Table 3.3, we demonstrate the performance of

multiple text embedding losses applied to the proposed LSTM based text encoder

as introduced in Section 3.1.1. The comparison is made in terms of the final R-

precision scores on the testing set. When calculating the R-precisions, the relevance

between a pair (an image and a sentence) is calculated using the cosine similarity

between the full feature of both.
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Table 3.3 shows that applying LSENT-IMG +LPHRASE-OBJ achieves the highest R-

precision scores, which are 0.07% higher testing R-precision(100) and 0.12% higher

R-precision(30K) than the baseline model. The score is also higher than that pro-

duced in the two experiments that applying word-regular-grid attention (i.e., using

LWORD-OBJ) to the learning. This shows that firstly, using solely phrase and object-

grid regions to construct the encoder loss is better than applying LWORD-REGULAR

and LPHRASE-OBJ together; second, it indicates that introducing phrases is important

in learning the text representation.

Table 3.3 : The R-precision(100) and R-precision(30K) on the testing set for the

text encoders. LSTM-BASIC is the basic bi-LSTM used in AttnGAN which is our

baseline model. LSTM and LSTM-PHRASE comes from the proposed method.

Experiment R-precision(100)(%) R-precision(30K)(%)

LSENT-IMG + LWORD-REGULAR (baseline) 72.99± 4.50 4.732± 0.018

LSENT-IMG + LWORD-REGULAR + LPHRASE-OBJ 72.39± 4.26 4.481± 0.005

LSENT-IMG + LWORD-OBJ 71.91 ±1.83 4.473± 0.017

LSENT-IMG + LWORD-REGULAR + LWORD-OBJ 70.69± 2.99 4.030± 0.013

LSENT-IMG + LPHRASE-OBJ 73.06± 4.05 4.851± 0.015

The GAN Network

Table 3.4 reports the R-precision, inception score (IS) and FID score achieved

through the previous algorithms and the proposed methods. Apart from the met-

rics for the proposed method, the R-precision(30K) score and the FID score for

AttnGAN, other scores came from previous literature [111]. As StackGAN did not

provide a way to extract image features, so R-precision values were not reported.

We denote the proposed method which embeds the text information with LSTM-

PHRASE in addition to utilising the object-grid regions and phrases in constructing
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the attention mechanism as the method proposed. To demonstrate the importance

of introducing phrase and object-grid attention, Table 3.4 also reports the result

for first, using only word-regular-grid attention and second, using word-regular-grid

and word-object-grid attention. These two are denoted as WORD-REGULAR and

WORD-REGULAR+WORD-OBJ respectively. Both of them use the same text

embedding as the Proposed method.

The proposed method achieves 4.2% higher R-precision (100) and 4.1% higher

R-precision (30K) than the baseline, which shows that the proposed method is able

to generate images that match more closely with the content described in the sen-

tence. In addition, the proposed method achieves better performance than WORD-

REGULAR and WORD-REGULAR + WORD-OBJ. This shows that it is important

to introduce phrases to the learning.

Table 3.4 : R-precision, inception and FID score score between AttnGAN and the

proposed method.

Method R-precision(100)(%) R-precision (30K)(%) IS(30K) FID

StackGAN-v1 8.45± 0.03 74.05

StackGAN-v2 8.30± 0.10 81.59

AttnGAN 85.47± 3.69 6.72± 0.15 25.89± 0.47 32.12

WORD-REGULAR 85.97± 3.01 8.20± 0.16 26.18± 0.30 40.54

WORD-REGULAR+WORD-OBJ 88.25± 3.01 10.37± 0.13 24.81± 0.21 36.51

Proposed 89.69± 4.34 10.80± 1.96 26.92± 0.52 34.52

Below, two aspects are reported with real samples that the generation result

surpasses previous methods. First, as shown in Figure 3.5, the method can generate

images that match closely with a given sentence, which is proven by the higher R-

precision rate. This means that the proposed method is less likely to “miss” objects.

For example, when “stop sign” and “go light” are both mentioned, the proposed

method can generate both objects instead of only focusing on the “stop sign”. In
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addition, when multiple objects / object-grid regions of the same type coexist in the

image, the proposed method can generate the correct number of objects.

Second, the proposed method performs well in displaying identifiable main ob-

ject, such as “A female” or “Large brown cow”. Through feeding the true-grid region

information, the proposed method can focus the attention on a more precise image

region instead of the entire image.

Experiments were also performed to decide whether self-attention layers should

be inserted between convolution layers, as described in [95]. We compared the

thumbnail generation results (i.e., generating 64×64 images) with and without such

layers, which gives on average an inception score of 10.1138 and 10.1588 respectively.

This suggests that inserting self-attention layers does not improve the proposed

approach.

Bounding Box Prediction

In the phase of validation and training, the coordinates of each bounding box

and number of bounding boxes are predicted by separate networks, as explained in

Section 3.1.4. This section compares the performances of multiple alternatives of

both predictions. In Figure 3.8, the two prediction tasks are denoted as “Coordi-

nates Prediction” and “Number Prediction” respectively. Comparisons were made

in terms of the validation losses over the training iterations.

The first comparison is whether to use all sentences in the prediction tasks or to

only use those sentences with position related words. The second is in terms of the

number of layers used for the prediction.

From Figure 3.8 , it is clear to see that the best practice is applying a one-

layer neural network to both predictions, and that the outnumbered bounding boxes

should be excluded when calculating the losses.
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Caption Baseball

players

run after

a ball

during a

game

A picture

of a stop

and go

light with

a stop

sign next

to it

A kitchen

filled with

wooden

cabinets

and a mi-

crowave

oven.

A metal

counter

topped

with lots

of cheesy

pizzas.

A group

of young

men

standing

on top of

a soccer

field.

A pile of

oranges

sitting

inside of

a basket.

AttnGAN

Proposed

Caption A woman

in white

shirt

standing

in kitchen

area.

A busy

traffic

area on

a street

during

the day

A female

wearing a

red shirt

lies on a

bed, rest-

ing

Large

brown

cow

stand-

ing in

field with

small cow

A pizza

with

purple

cabbage

topping

on a table

next to

white

bowl

Black

and white

photo of

a pedes-

trian at a

suburban

crosswalk

AttnGAN

Proposed

Table 3.5 : Examples of images generated by the proposed method and AttnGAN.
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Figure 3.8 : Validation losses of coordinates prediction and number prediction in

terms of whether to use the sentences that include position related words for the

training.

3.2 Transfer of One Thousand Styles†

This section describes the proposed framework that performs style transfer over

multiple image domains using a single pair of transfer function. The overall archi-

tecture is shown in Figure 3.9. In the proposed framework, we perform transfer over

the N styles X1, X2, . . . , XN using only a single pair of universal Generators: G in

the forward direction and F in the backward direction. Obviously, the algorithm

needs to find an optimal ordering, such that a universal generator pairs will suffice.

In this work, no assumption are made for such ordering to be given. Instead, the or-

der of styles is learnt. They are updated in each epoch as in Figure 3.9. In addition,

†This work is currently under review at Pattern Recognition Letters.
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each style has separate discriminator D1, D2, . . . , DN .

Figure 3.9 : Overall architecture of the proposed framework in two epochs. The

graph shows the structure when in tth epoch, the order of styles is 3, 1, 2, . . . , N , the

order is updated to 1, 3, 2, . . . , N in the next epoch. The style ordering shown in the

graph is for illustration only; the actual ordering is decided during training.

We divide the model parameters into three separate sets: θOdr, θG and θD, where

θG here refers to parameters of the universal generators (i.e. network G and F ).

They represent chain ordering, generator, and discriminator parameters respectively.

The overall training flow of the proposed algorithm is summarised in Algorithm 1,

and its details are elaborated upon in the subsequent sections.

3.2.1 Updating Chain Ordering

Neural network parameters are typically learnt through gradient descent. Given

the previous trained parameter θt, a locally optimal direction 4θt+1 for the next

update can be computed through:

θt+1 = θt + λ×

(
argmin
u,u>u=1

u>∇θf(θt)

)
. (3.9)
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Algorithm 1 Overall training flow

for each epoch till convergence do

update θOdr: Decide the optimal ordering of styles

i. Decide potential orders through a chain structure search

ii. Calculate LOdr for potential orders

iii. The current order is decided as the one with the lowest LOdr

update θG and θD: Perform GAN training under current order

end for

Therefore, in each epoch, conditioning on the fixed parameters associated with

GAN, i.e., θG and θD, chain ordering parameters θOdr
t+1 is also updated. However,

unlike θG and θD, θOdr
t+1 is not continuous. Therefore, we propose the following

approximation alternative. Here, we let LOdr(.) to be the objective function after

fixing θG and θD, i.e., we only update θOdr part of the parameters.

θOdr
t+1 = argmin

NOD(u,θOdr
t )=1

{LOdr(u)}, (3.10)

where NOD stands for the “node ordering distance” between two chain configu-

rations, meaning the maximum allowable hops required to swap between the two

nodes.

When NOD = 1, meaning only adjacent node pairs will be swapped (see Figure

3.10a). When setting NOD ≥ N − 1, it means that
(
N
2

)
combinations of node swaps

will be allowed in each step of the chain search.

Updating θOdr causes a sequence of discrete jumps in the overall objective. For

this reason, updating a single step in θOdr may completely undo the progress made

from updating θG and θD previously. The objective values will fluctuate if we take
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(a) NOD=1

(b) NOD=2

Figure 3.10 : NOD=1 and NOD=2. Numbers are the index of each style, the two

nodes being swapped in each step are highlighted in yellow.

the conventional coordinate-descent approach (i.e., take one gradient descent step

for each variable in turn).

Hence, the idea is to try not to “revisit” updating θOdr often. The proposed

method achieves this by continuously update θOdr until it reaches (sub)-optimality

before switching back to update θG and θD. This is illustrated in Figure 3.10 and

Algorithm 2.

An alternative way to update θOdr is to compare LOdr(.) over all N ! possible

orderings. This might be time-consuming when the total number of styles N is
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Algorithm 2 Determine the order θOdr
t+1 for t+ 1

Require: order at time t: θOdr
t ; maximum allowable hops: d

current = θOdr
t

next = argmin
NOD(u,θOdr

t )=d

{LOdr(u)}

while LOdr(current) > LOdr(next) do

current = next

next = argmin
NOD(u,θOdr

t )=d

{LOdr(u)}

end while

θOdr
t+1 = current

large. However, in practice, when the number of styles is small, this approach is

found to be quite manageable and consistent with a good performance.

Ways to Evaluate a Chain

The loss value of each chain order is calculated as the L1 distance between real

samples and the reconstructed samples, i.e. LOdr(.) = Lcyc. Take an example when

the order is (3, 1, 2, 4) over 4 styles. The score for each path is calculated as the

average of cycle consistency loss between three pairs of image domains: 3 ↔ 1,

1↔ 2 and 2↔ 4.

3.2.2 Alternative Mechanic using Scheduled Sampling

Suppose there are in total, N styles, in each epoch training is performed between

2(N−1) pairs of styles. The full training objective is the combination of adversarial

loss and the cycle consistency loss of 2(N − 1) pairs of image domains. The full

training objective is defined as:
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L(G,F, {DX1 , DX2 , . . . , DXN}) =

N−1∑
i=1

LGAN(G,DXOrdi
, XOrdi , XOrdi+1

) + λL(G,F ), (3.11)

where Ordi indicates the index of an image domain in the current order.

Inspired by scheduled sampling [8] from natural language generation (NLG) lit-

erature: where during training, a word at position t can either be generated based

on (1) the real target word at position t− 1, or (2) based on a previously generated

word at t− 1. Scheduled sampling uses some random probability to determine the

step.

A similar mechanic is proposed in our work. Concretely, probability α decides

an input of G or F to be either from the synthetic generation or to use a real image

from the style associated with the previous hop. However, experimental results show

that using only real images from the previous hop provides a better performance as

it may prevent some drift error.

3.2.3 Experiments

Experiment Setup

Experiments are performed on a machine with one 8GB GeForce GTX 1080 GPU

and eight Intel(R) Core(TM) i7-5960X CPUs. Four datasets are used in the experi-

ments: a toy dataset that consists of 2D points, rotated MNIST, cars observed from

different angles and images with different brightness levels. Each dataset is trained

with different network structures. Each experiment is trained over 500 epochs with a

learning rate of 0.0002, and each result is summarised over 10 repeated experiments.

The structure of each network, the statistics of each dataset, and experimental re-

sults are reported in the following sections.
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Toy Dataset

The first dataset we use is a simple toy-dataset, which contains 4, 000 train-

ing samples drawn from a homogeneous mixture of four Gaussians, centred as

(0.5, 0.5), (1.5, 1.5), (2.5, 2.5), (3.5, 3.5). For the toy dataset, generators and discrim-

inators are one-layer neural networks.

Figure 3.11 shows the generation result from the forward and backward direction

(i.e., Given image from the first style x and the last order y). The synthetic samples

are generated as G(x), G2(x), G3(x) in the first direction and F (y), F 2(y), F 3(y).

The figure shows that the synthetic samples match the real data closely even when

the transfer is performed with up to three steps.

(a) forward result (b) backward result

Figure 3.11 : Forward and backward generation results for the toy dataset. Real

samples are in blue and the generated samples are in orange.

Table 3.6 reports the time cost spent to decide the θOdr in one epoch, the number

of epochs required before the order is stable, number of orders compared in each

epoch and the final MSE between real samples and synthetic samples. We define

the order as “stable” when it does not change over a consecutive 50 epochs and is

the final optimal order when the training is completed. The number of orders found

is counted because all unique orders are compared in each epoch.
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Table 3.6 : Performance comparison of NOD = 1, 2, and 3 when the total number

of styles N = 4 on the toy dataset.

duration of deciding ordering (seconds) # epochs before stabilization # orders found MSE

NOD = 1 0.0529± 0.0069 28.6± 7.3 4.0459± 0.3768 0.0165± 0.0195

NOD = 2 0.0569± 0.0067 16.0± 6.8 5.7485± 0.7097 0.0081± 0.0067

NOD = 3 0.0861± 0.0137 9.8± 6.0 7.0347± 0.5623 0.0068± 0.0032

NOD = 1

(scheduled sampling, α = 0.3) 0.0678± 0.0246 34.5± 7.5 4.0150± 0.2463 0.0322± 0.0236

In Table 3.6, NOD=3 achieves 58.79% lower final MSE error with a 0.0332 sec-

onds longer time, to decide the optimal ordering in each epoch. This shows that

with a larger NOD value, more orders are found in each epoch. Although the or-

dering comparison takes slightly longer, the larger NOD value achieves an earlier

stabilisation of the optimal order and better model performance. In addition, Table

3.6 shows that training with the scheduled sampling does not perform as well as

using only real images as the input of the universal generators.

Rotated MNIST

The second dataset we use contains 5, 000 images of digit 7 from the MNIST

dataset and their rotated versions (each image is rotated 15, 30, 45 degrees). Gen-

erators and discriminators are two-layer neural networks in which the intermediate

feature has a length of 49, as shown in Table 3.7.

Table 3.7 : Network structure for Rotated MNIST

Network Layer Input Tensors Output Tensors

Generator Dense + leaky ReLU 28 × 28× 1 7× 7

Dense + Reshape + tanh 7× 7 28× 28× 1

Discriminator Dense + leaky ReLU 28 × 28× 1 7× 7

Dense 7× 7 1
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As Figure 3.12 shows, the synthetic samples are clearly identifiable as digit 7,

even after three steps after the real image. Synthetic samples show a clear pattern

of being rotated from the original images in the order of increasing angles.

(a) forward result (b) backward result

Figure 3.12 : Forward and backward generation results on MNIST. The first row of

both graphs is the real images; the following three rows are synthetic samples by

taking 1, 2, and 3 steps from the real samples.

Table 3.8 reports the time cost for the ordering decision and the performance

with different NOD values. Similar to the result from the toy dataset, NOD =

3 achieves the lowest MSE loss while spending 0.8247 more seconds to decide the

optimal orders and compare 3.011 more orderings than NOD=1. Further, training

with the scheduled sampling does not perform as well as using only real images

despite achieving on average, slightly fewer epochs before the ordering is stable.

Table 3.8 : Performance comparison of NOD = 1, 2, and 3 when the total number

of styles N = 4 on the Rotated MNIST dataset.

duration of deciding ordering (seconds) # epochs before stabilization # orders found MSE

NOD = 1 1.5080± 0.3701 3.5± 1.8 4.0097± 0.2107 0.0381± 0.0015

NOD = 2 1.8408± 0.2665 1.3± 0.4 6.0127± 0.2668 0.0380± 0.0008

NOD = 3 2.3327± 0.3133 1.2± 0.4 7.0207± 0.3962 0.0373± 0.0017

NOD = 1

(scheduled sampling, α = 0.3) 1.7663± 0.1205 2.8± 0.3 4.0090± 0.1699 0.0407± 0.0001

Different from the toy dataset, the average number of epochs before the order
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becomes stable is much smaller. In most of our experiments, the order is stable from

the beginning or after 1 epoch. We believe this is related to the nature of the dataset

and the size of the network. Images can be clearly identified as coming from different

domains after the first epoch and the optimal order that reflects the natural order of

the dataset would achieve a smaller loss value than the alternatives. Training on the

toy dataset for one epoch does not allow synthetic samples from different domains

to be well separated. This causes the ordering decision to fluctuate.

Cars from Multiple Angles

Another experiment was performed on the cars observed from increasing angles

from [26]. We use images in the dataset that have class 2, 3, 4, and 5. The dataset

contains 676 images. The network structure follows the same structure used for

CycleGAN [42], except the first two and last two layers in the generator are excluded.

Therefore, it generates 64 × 64 images instead of 256 × 256 images in the original

network.

(a) forward result (b) backward result

Figure 3.13 : Forward and backward generation results on cars from multiple angles.

The synthetic samples show plausible shapes of cars and match the original

image. In addition, the rotation with increasing angles is shown clearly in the

result.

Table 3.9 reports the time cost of updating chain ordering and compares the
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performance under different NOD values. It shows that on the car dataset, NOD=3

achieves 90.03% lower final MSE error with, on average, 0.0348 seconds longer time

to decide the optimal ordering in each epoch. Similar to the rotated MNIST dataset,

the optimal order stabilises from the beginning or after the first epoch.

Table 3.9 : Performance comparison of NOD = 1, 2, and 3 when the total number

of styles N = 4 on the car dataset.

duration of deciding ordering (seconds) # epochs before stabilization # orders found MSE

NOD = 1 3.8782± 0.2639 1.2± 0.6 4.0100± 0.1608 0.0045± 0.0023

NOD = 2 4.0051± 0.2554 1.0± 0.0 6.0219± 0.3579 0.0038± 0.0035

NOD = 3 4.1130± 0.3267 1.0± 0.0 7.0304± 0.5124 0.0037± 0.0005

Images with different lighting conditions

The last dataset used comprises images with four levels of brightness, which

contains in total 25, 148 images: 6, 287 for each category. The original photographs

were collected from the CycleGAN paper and they are processed with TensorFlow

to images with three different brightness levels. Images with four brightness levels

were combined to be our dataset. The network structure used is the same one from

CycleGAN [114], which generates 256× 256 images from 256× 256 images.

The synthetic samples demonstrate a clear pattern of increasing and decreasing

brightness. However, images in the backward direction are not generated as well

as those in the forward direction, especially images on the last row, which should

theoretically be exactly the same as images with the original brightness. We at-

tribute this to the notion that details of an image are already lost when adjusting

the brightness to the highest level in the pre-processing step. Thus, it is difficult

to recover the image by feeding the brightest image and performing generation in a

backward fashion.
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(a) forward result (b) backward result

Figure 3.14 : Forward and backward generation results on images with multiple

brightness.

Table 3.10 reports the performance over different NOD values. The higher NOD

value still leads to a better generation output and larger time cost to decide the

optimal ordering.

Table 3.10 : Performance comparison of NOD = 1, 2, and 3 when the total number

of styles N = 4 on the multiple brightness dataset.

Duration of deciding ordering (seconds) # epochs before stabilisation # orders found MSE

NOD = 1 12.1168± 1.1031 1.7± 1.6 4.1111± 0.4581 0.0090± 0.0012

NOD = 2 19.6784± 3.4249 1.3± 0.4 7.2778± 2.5778 0.0068± 0.0008

NOD = 3 20.9056± 3.0545 1.0± 0.7 8.8254± 3.7651 0.0032± 0.0012

3.3 Summary

This chapter describes two studies undertaken in terms of applications of cross

domain transfer. Our first work improves state-of-the-art attention based GAN net-

work for text-to-image generation. Using phrase as an additional important encoding

unit into image generation, our proposed work incorporates two innovations: First,

we proposed a new design of text embedding which extracts additional phrase em-

bedding. Second, we incorporate a new set of attentions computed between object-
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grid regions and phrases and bring them into our GAN network design. Through

experimentation on the MSCOCO dataset, the proposed approach is capable of

generating more realistic and accurate images.

The second work addresses transfer across multiple (more than two) domains.

Transfer between image domains is usually performed between a pair of image styles

and transformation between N styles requires 2
(
N
2

)
generators. Observations sug-

gest that a natural sequence of styles exists in some datasets, such as sets of objects

observed from increasing angles or photographs taken under increasing lighting con-

ditions. Therefore, we propose a methodology that automatically determines the

optimal order of image domains, while studying the transfer functions between con-

secutive image domains. In this method, although translation between two domains

might require up to N−1 steps, only two generators are required to perform transla-

tion over N image domains. Experimental results show that the proposed methodol-

ogy is capable of deciding the ordering over image domains while generating plausible

images.
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Chapter 4

Latent Space Modelling in Style Transfer

As introduced in Chapter 1, the current generative models usually model their la-

tent spaces with standard Gaussian or uniform distributions. Use of such single

mode distributions does not work well with datasets that contain diverse samples.

Therefore, our work focuses on studying the effects and properties brought by ap-

plying mixture models to cross domain generation, as described in this chapter.

We start with GMM. In particular, the proposed framework devised a novel poste-

rior consistency module that calculates the responsibility probability of a sample.

This allows exploration of properties on complex datasets that cannot be directly

modelled with a GMM distribution. The performance is first demonstrated on un-

conditional image generation and later extended to text-to-image generation. To

further demonstrate the effectiveness of replacing standard Gaussian with GMM,

our work also investigates the network compression effect achieved for both image

generation and anomaly detection.

In addition, as the number of components in the Gaussian mixture needs to

be predetermined for the GMM based GANs, we also propose that DP-GAN uses

DPGMM to model the latent space. DP-GAN enables the number of distinct classes

studies simultaneously with the distribution parameters during training. As it is not

trivial to study the parameters using a naive application of the DPGMM, we propose

a set of mechanics to mitigate the problem. The details are explained in Section 4.1

to 4.4.
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4.1 GAN-based GMM Responsibility Modelling∗

The proposed architecture consists of three networks: First, we describe PCM, as

well as the loss function that matches it with p(k|z, θ). Second, we have a generator

G that produces synthetic samples from GMM random vectors. Third, a discrim-

inator D which encodes samples to feature vectors and discriminates between real

and synthetic samples. The overall architecture design is shown in Figure 4.1. In

the following sections, we explain the details of the three networks.

Figure 4.1 : The overall architecture. The feed-forward logic of the classifier C, the

generator G and the discriminator D are marked with different colours.

4.1.1 Posterior Consistency Module (PCM)

The PCM comprises a few components. In its core, it comprises a classi-

fier/generator CPCM that outputs p(k|x, θ) given x. When a synthetic data x̂ is

used as its input, the output approximates p(k|x̂, θ) and it needs to be matched

against:

i. p(k|z, θ), this is to ensure that the responsibility probability condition on its

latent variable z (from using Equation 4.5) is similar to the responsibility

∗This work was accepted by ICPR 2020.



77

Table 4.1 : The overall network structure.

Stage Sub-stage Name Input Tensors Output Tensors

idrule C Encoding Network (if shared) Conv (kernel=5, stride=2) + LeakyReLU Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 64

Conv (kernel=4, stride=2) + Batch norm + LeakyReLU + Flatten Dimg/2×Dimg/2× 64 Dimg/4×Dimg/4× 128

Encoding Network (if not shared) Conv (kernel=5, stride=1) + ReLU Dimg ×Dimg ×Dh Dimg ×Dimg × 32

MaxPool (pool size=2, stride=2) Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 32

Conv (kernel=5, stride=2) + ReLU + Flatten Dimg/2×Dimg/2× 32 Dimg/4×Dimg/4× 16

Linear + ReLU Dimg/4×Dimg/4× 16 1024

Classification Network (if shared) Linear Dimg/4×Dimg/4× 128 K

Classification network (if not shared) Linear 1024 K

G Linear + Batch norm + LeakyReLU + Reshape 1 ×Dz Dimg/4×Dimg/4× 256

Transposed Conv (kernel=5, stride=1) + Batch norm + LeakyReLU Dimg/4×Dimg/4× 256 Dimg/4×Dimg/4× 128

Transposed Conv (kernel=5, stride=2) + Batch norm + LeakyReLU Dimg/4×Dimg/4× 128 Dimg/2×Dimg/2× 64

Transposed Conv (kernel=5, stride=2) + Tanh Dimg/2×Dimg/2× 64 Dimg ×Dimg ×Dh

D Encoding Network Conv (kernel=5, stride=2) + LeakyReLU Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 64

Conv (kernel=4, stride=2) + Batch norm + LeakyReLU + Flatten Dimg/2×Dimg/2× 64 Dimg/4×Dimg/4× 128

Discriminator Network Linear Dimg/4×Dimg/4× 128 1

distribution dependent on x (from using the neural network). For obvious

reason, the corresponding loss is named as:

Lx̂,z = E{z1∼N (µ1,Σ1),··· ,zK∼N (µK ,ΣK)}

[ 1

K

K∑
k=1

I(p(k|zk, θ), p(k|G(zk), θ))
]

(4.1)

= E{z1∼N (µ1,Σ1),··· ,zK∼N (µK ,ΣK)}

[ 1

K

K∑
k=1

I(p(k|zk, θ), Cθ
PCM(G(zk))

]
.

where K is the total number of modes in the Gaussian mixture.

ii. p(k|x, θ), this is to ensure that the distribution generated is similar to those

generated by the real data x. The corresponding loss is named as:

Lx̂,x = Exi∼pdata,{z1∼N (µ1,Σ1),··· ,zK∼N (µK ,ΣK)}

K∑
k=1

I
(
p(k|xi, θ), p(k|zk, θ)

)
(4.2)

= Exi∼pdata,{z1∼N (µ1,Σ1),··· ,zK∼N (µK ,ΣK)}

[ K∑
k=1

I
(
Cθ

PCM(xi), C
θ
PCM(x̂)

)]
,

where
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I(X;Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)
. (4.3)

Essentially, all we need is a measure function to compute the distance between

two distributions, so KL or DS divergence can also be used. However, in our exper-

iment, mutual information loss provides the best result.

In terms of the neural network design, the classifier has two plausible alternatives:

to share the feature encoding layers with the discriminator and to build a standalone

network that contains multiple CNN layers to classify images. The shared feature

encoding network encodes each image to a feature vector, and the classifier will be

a simple standard linear softmax classifier built on top of the features.

Details of both network designs can be found below in Table 4.4. In Table 4.4,

we use acronyms for operations in the table: “Conv” is the convolution operation,

of which the kernel and stride size are in the bracket; “Batch norm” is short for

batch normalisation; “Flatten” refers to the operation that flattens a tensor to 1D

array. Dimg, Dh and Dz are related to the datasets we use, the exact value of each

are reported in the experiments.

In Section 4.1.5, we report the results of both classifier designs in terms of gener-

ation performance and computation costs. Parameters of the classifier are optimised

by both the adversarial loss and the mutual information loss. Details of how the

update is performed are introduced in Section 4.1.4.

The CPCM is not required for generating new images after the model is fully

trained. During testing, a random vector is sampled directly from the GMM model

for the generation. The CPCM can then be used to assign an unseen image to

Gaussian and subsequently perform segmentation on the testing set.
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4.1.2 The Generator

The ideal output of the trained generator is that all random vectors sampled from

the same Gaussian of the GMM should generate similar images when fed through the

generator. However, because the training is label independent, one cannot control

the correspondence between which Gaussian is selected and the category of the

generated sample during training. Therefore, instead of sampling a random vector

from one Gaussian during training, our work samples one vector from all Gaussians

during training and uses the classification output to weigh the loss values. The

details are explained below.

One random vector is sampled from each Gaussian as zi = [z1
i , . . . , z

K
i ]. These

vectors are used to generate K synthetic images [x̂1
i , . . . , x̂

K
i ]. The classification

output is used to weigh the adversarial loss calculated from each pair of a generated

sample x̂ki and the real image xi.

In addition, because the design expects the training to be performed in an “end-

to-end” fashion, the reparameterisation trick is applied to the zi sampling process so

that the back-propagation can be used to update the parameters µk and Σk of each

Gaussian. Instead of sampling zki ∼ N (µk,Σk), we define zki = Σkε+µk ∀k ∈ [1, K],

where ε is sampled as ε ∼ N (0, I).

The generator structure used in our experiments is in Table 4.4. In the table,

“LeakyReLU” (short for “leaky rectified linear unit”) and “Tanh” are activation

functions.

4.1.3 The Discriminator

The design of the discriminator has two options: whether or not the image en-

coding layers are shared with the classifier. The image encoding network is followed

by a standard linear logistic regression to identify the given image as real or fake.
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The adversarial loss, which is calculated over K pairs of real and synthetic sam-

ples as:

Ladversarial = Exi∼pdata
( 1

K

K∑
k=1

p(k|xi, θ)× (logD(xi) + log(1−D(x̂k)))
)
. (4.4)

4.1.4 Training Parameters for the Prior Distribution

In our setting, the prior distribution is a GMM, the two trainable variables

are means for K Gaussians µ ∈ RK×Dz and standard deviations for K Gaussians

σ ∈ RK×Dz×Dz . Both variables are updated by the adversarial loss in addition to the

mutual information loss because the training is performed “end-to-end”. Algorithm

3 gives the pseudocode about how the updates are performed on each network in

one iteration.

4.1.5 Experiments

This section evaluates the performance of the proposed method by comparing it

with several baselines.

Experiment setup

The datasets used are the MNIST [57], Fashion-MNIST [101] and Oxford-102

Flower [52] datasets. Details are listed below in Table 4.2. In particular, only a

subset of Oxford-102 is selected to perform the training, which is the images that

belong to the first 10 classes. For experiments performed on each dataset, we used

different hyper-parameters (see Table 4.2).

Linear Interpolation across Gaussian

Figure 4.2 shows samples generated by the proposed model trained on several

datasets in a completely unsupervised manner. We set the number of Gaussians
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Algorithm 3 Training the proposed model for 1 iteration

Require: X = [x1, x2, . . . , xM ] - M training images in one batch

1: for i = 1 . . .M do

2: Classify xi into K Gaussians

3: for k = 1 . . . K do

4: ε ∼ N (0, I)

5: zk = Σkε+ µk

6: x̂ki ← G(zk)

7: Classify x̂k into K Gaussians

8: end for

9: Calculate Ladversarial from xi and [x̂1
i . . . x̂

K
i ] as in Equation 4.4

10: Calculate Lx̂,z as in Equation 4.1

11: Calculate Lx̂,x as in Equation 4.2

12: Update the Discriminator with Ladversarial

13: Update both the Generator and the CPCM with Ladversarial

14: Update the Classifier with Lx̂,x

15: Update the Classifier, parameters for the latent distribution with Lx̂,z

16: end for
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Table 4.2 : Statistics of the different datasets used in the empirical evaluation.

Dataset Number of Classes Data Dimension Train Samples Validation Samples Test Samples Number of Epochs Learning Rate γ Dimg Dh

idrule MNIST 10 28× 28× 1 60,000 - 10,000 200 0.0002 28 1

Fashion-MNIST 10 28× 28× 1 60,000 - 10,000 200 0.0002 28 1

Oxford-102 Flower 102 64× 64× 3 1,020 1,020 6,149 10,000 0.0002 64 3

equal to the total number of classes of the dataset in all experiments. When we are

performing the linear interpolation as in the right panels, the random vector z for

each image generation is calculated as z = Σkε + µk ∀k ∈ {1, . . . , K}, where ε is

sampled as ε ∼ N (0, I). ε is kept the same for all images for each dataset.

Two conclusions can be drawn from the results in Figure 4.2. First, a fully

trained proposed method can learn to “allocate” each class of image to a Gaus-

sian. Second, the trained model can be used to perform smooth linear interpolation

between Gaussians and even among more than two Gaussians. Figure 4.3 demon-

strates the linear interpolation performed over three categories. The proportion of

Gaussians of the synthetic images can be set manually.

Image Generation Quality

The generation performance is measured with two commonly used metrics: IS

[86] and FID score ([35]). IS score is calculated as I = exp(ExDKL(p(y|x)||p(y)))

and a higher value generally indicates a better performance, where x is a generated

image and y is the label predicted by the Inception model [94]. FID score is another

metrics that measures the image generation quality. A lower value shows a better

image quality and greater diversity. It calculates the difference between real images

x and generated images g as FID(x, g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2 ).

Limitations of both inception and FID scores have been identified in the extant

literature [6, 64], and there are currently no “perfect” metrics at this moment. These

two metrics are used as an indication rather than a hard measure.
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Figure 4.2 : Samples generated by the proposed models trained on the MNIST (left

column), Fashion-MNIST (middle column) and CIFAR-10 (right column) datasets.

The top row contains images generated using random vectors sampled from a dif-

ferent Gaussian. The bottom row shows the linear interpolation result from one

Gaussian to another. The index of Gaussian does not necessarily correspond to the

actual digit, generated images are reordered for demonstration purpose.

This evaluation is performed on the Oxford-102 dataset. As the inception score

is suggested to be evaluated on a large enough number of samples, 5K synthetic

samples are generated to calculate both values. Figure 4.4 plots inception scores

and FID scores calculated over the training epochs. As the figure shows, the pro-

posed framework, whether the encoding layers are shared or not, constantly achieves

a higher inception scores and lower FID scores from the start. Applying shared en-

coding layers allows an even superior performance.

Table 4.3 reports the number of trainable parameters and the best inception

and FID score achieved for each algorithm. The proposed framework, with separate
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Figure 4.3 : Linear interpolation over three Gaussians on the MNIST, Fashion-

MNIST and Oxford-102 datasets.

Figure 4.4 : Inception score and FID scores over training epochs on the Oxford

dataset.

feature encoding layers, results in a 10.81% higher IS and 3.48% lower FID score

compared with GM-GAN. The shared encoding layers provide a 5.74% higher IS

and 10.85% lower FID score compared with the one without the shared layers.

From Figure 4.4 and Table 4.3, it is clear that the proposed method can out-

perform previous baseline models in terms of the image generation quality. The

shared feature encoding layers would further improve the performance and reduce

the size of the network.
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Table 4.3 : Number of parameters, Inception scores and FID scores of the proposed

method and the baselines.

number of parameters Inception Score ↑ FID score ↓

Proposed (encoding not shared) 13, 005, 411 2.9664± 0.2188 231.0577± 7.5371

Proposed (encoding shared) 8, 794, 835 3.1368± 0.1596 205.9776± 7.8587

GM-GAN 8, 467, 145 2.6770± 0.1079 239.3936± 6.7672

Vanilla GAN 8, 366, 145 2.4882± 0.1065 247.0610± 7.2361

Network Compression

This section demonstrates that applying Gaussian mixture to GANs can signifi-

cantly reduce the number of parameters while achieving a performance close to the

vanilla GAN. Figure 4.5 plots inception and FID scores over training epochs of the

proposed GMM-based GAN with 1/2, 1/4, and 1/8 the size of the original. The

original size of the network is demonstrated in Table 4.4; 1/2 means that the number

of parameters in each layer is reduced by half. The same applies for 1/4 and 1/8.

These results are compared with the vanilla GAN, which uses the original number

of parameters.

Figure 4.5 shows that the proposed approach, achieves a higher IS and lower

FID score on both the CUB dataset and the Oxford-102 dataset compared with the

vanilla GAN, while using only 1/2 of the number of parameters.

Performance on Highly Imbalanced Dataset

Training GAN networks often suffers from mode collapse. Therefore, we also

demonstrate the performance on the highly imbalanced dataset (see Figure 4.6).

The imbalanced dataset we used is a subset of the original MNIST dataset.

From digit 0 to digit 9, we randomly choose digit d as the dominant category. One

thousand samples are randomly selected from all other categories and the category
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(a) Inception scores on the CUB dataset. (b) FID scores on the CUB dataset.

(c) Inception scores on the Oxford-102

dataset.

(d) FID scores on the Oxford-102

dataset.

Figure 4.5 : Inception and FID scores over epochs for the proposed GMM-based

GAN with various size of the network compared with the vanilla GAN.

d is kept the same. This becomes the imbalanced training dataset. Figure 4.6 shows

the synthetic samples generated by the three algorithms when the digit 1 becomes

the dominant category in the imbalanced dataset. While using both the standard

Gaussian and GMM result in poor generation quality and collapsed output, the

proposed framework is able to deliver digits with clear shape and categorisation.
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(a) Gaussian as the latent

distribution

(b) GMM as the latent dis-

tribution

(c) The proposed frame-

work

Figure 4.6 : Performance on highly imbalanced dataset.

4.2 Compressing GANs with Gaussian Mixture Prior†

In this section, we investigate the network compression effect achieved by ap-

plying Gaussian mixture to GANs. In particular, this section presents a modified

GM-GAN with a classifier to encourage the matching between the component from

the latent distribution and the class from the synthetic data. The application of GM-

GAN has been limited to image generation thus far, so our work further extends the

GM-GAN to the anomaly detection problem.

4.2.1 Method

This section introduces details of the proposed framework, which consists of

three modules: First, a classifier C classifies a given image as one of K classes and C

shares the feature encoding layers with D. Second, a generator G produces synthetic

samples from the GMM random vector z. Third, a discriminator D encodes samples

to feature vectors and distinguishes between real and fake samples. The overall

architecture of the proposed modified GM-GAN is shown in Figure 4.7.

†This work is currently under review at Pattern Recognition Letters.
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Figure 4.7 : The complete architecture of our model. K is the number of Gaussians

in the GMM; zi is the random vector sampled from the GMM. xi and x̂i are the real

and fake sample. G, C and D are the generator, discriminator and classifier.

Table 4.4 : The overall network structure of our model, including the input and

output shape of tensors in each network.

Stage Sub-stage Name Input Tensors Output Tensors

C Encoding Network (shared) Conv (kernel=5, stride=2) + LeakyReLU Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 64/r

Conv (kernel=4, stride=2) + Batch norm + LeakyReLU + Flatten Dimg/2×Dimg/2× 64/r Dimg/4×Dimg/4× 128/r

Classification Network Linear Dimg/4×Dimg/4× 128/r K

G Linear + Batch norm + LeakyReLU + Reshape 1 ×Dz Dimg/4×Dimg/4× 256/r

Transposed Conv (kernel=5, stride=1) + Batch norm + LeakyReLU Dimg/4×Dimg/4× 256/r Dimg/4×Dimg/4× 128/r

Transposed Conv (kernel=5, stride=2) + Batch norm + LeakyReLU Dimg/4×Dimg/4× 128/r Dimg/2×Dimg/2× 64/r

Transposed Conv (kernel=5, stride=2) + Tanh Dimg/2×Dimg/2× 64/r Dimg ×Dimg ×Dh

D Encoding Network (shared) Conv (kernel=5, stride=2) + LeakyReLU Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 64/r

Conv (kernel=4, stride=2) + Batch norm + LeakyReLU + Flatten Dimg/2×Dimg/2× 64/r Dimg/4×Dimg/4× 128/r

discriminator Network Linear Dimg/4×Dimg/4× 128/r 1

Classifier The classifier C is designed to encourage one-to-one correspondence

between each component from the latent distribution and each class from the syn-

thetic data. C outputs p(k|x̂, θ) given a synthetic sample x̂. p(k|x̂, θ) needs to match

against p(k|z, θ) which is the responsibility probability condition on the correspond-

ing latent variable z. p(k|z, θ) can be computed analytically given parameters of the

latent GMM:
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w ≡ (w1, . . . , wK) = (4.5)(
N (z|µ1,Σ1)∑K
k=1N (z|µk,Σk)

, . . . ,
N (z|µK ,ΣK)∑K
k=1N (z|µk,Σk)

)
.

The loss function of the classifier is calculated as:

LC = Ez∼pz(z)[I(p(k|z, θ), p(k|x̂, θ))]. (4.6)

Overall, the function I needs to be a measure function to compute the distance

between two distributions, so KL or JS divergence can be used. However, mutual

information loss provided the best result in our experiments.

C is chosen to share the feature encoding layer with the discriminator, during

training, LC is applied to optimise both the generator G and the simple standard

linear softmax classifier. The feature encoding layers are updated by the Ladversarial

only.

Generator The generator G simply takes a random vector z sampled from the

DPGMM to generate synthetic samples. As the training is performed in an “end-

to-end” fashion (i.e. parameters of the GMM are updated together with the GAN

network), so the reparameterisation trick is applied to the random vector sampling

process. Instead of sampling zki ∼ N (µk,Σk), we define zki = Σkε + µk ∀k ∈ [1, K],

where ε is sampled as ε ∼ N (0, I). the structure of DCGAN is chosen to build the

model, which is reported in Table 4.4.

Discriminator The discriminator D consists of multiple layers of CNN which

is referred to as the feature encoding layers, followed by a standard linear logis-

tic regression to identify the given image as real or fake. The design makes the

discriminator and the classifier share the same feature encoding layers.



90

Table 4.4 reports the size and number of parameters used in each layer. Acronyms

are used for certain operations in the table, “LeakyReLU” which stands for “leaky

rectified linear unit” and “Tanh” are activation functions; “Conv” is the convolution

operation, of which the kernel and stride size are in the bracket; “Batch norm” is

short for batch normalisation; “Flatten” refers to the operation that flattens a tensor

to 1D array. Dimg, Dh and Dz are related to the datasets we use, the exact value of

each are reported in Table 4.5.

The parameter r in Table 4.4, is the compression rate, which is defined as the

ratio of the depth of each layer in a network out of the depth of each layer in the

network used by the baseline model. Apart from the parameters for the latent

distribution, r = 2 indicates a network to be half the size from the original network;

r = 3 indicates 1/3 of the original size. The complete training strategy is summarised

in Algorithm 4.

4.2.2 Experiments

This section empirically evaluates the performance of GM-GAN and the proposed

modified algorithm for image generation and anomaly detection.

Performance on image generation

Datasets Experiments in terms of the image generation quality are performed on

two datasets: the CIFAR-10 dataset [52] and the Oxford-102 dataset [76]. Details

of each dataset and values that determine the size of the network in Table 4.4 are

summarised in Table 4.5.

Original images provided by the Oxford-102 dataset are high-resolution images,

which are resized into 64 by 64 to be our training images. In all our experiments,

we set the number of Gaussians (i.e. K) as 10.
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Algorithm 4 Training Strategy

Require: X = [x1, x2, . . . , xN ] - N training images in the entire training set

K: number of components in the latent GMM distribution

d: the dimension of the latent space

c: the initial value range of Gaussian means

σ: scaling factor of covariance matrices

1: for k = 1 . . . K do

2: µk ∼ U [−c, c]d {Initialize the mean of kth Gaussian}

3: Σk ← Id×d {Initialize the covariance matrix of kth Gaussian}

4: end for

5: for each epoch till convergence do

6: for i = 1 . . . N do

7: Sample k ∼ Categ( 1
K
, . . . , 1

K
) {Select a Gaussian}

8: zi ∼ GMM(µk,Σk) {Sample from kth Gaussian}

9: x̂i ← G(zi) {Generate a synthetic sample}

10: Update G and D with Ladversarial(xi, x̂i) using the loss function described in

Equation 2.1

11: Update G and C with LC using the loss function described in Equation 4.10

12: end for

13: end for
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Table 4.5 : Details of the different datasets used in the empirical evaluation.

Dataset # Classes Samples Dimensions # Train # Val # Test Dimg Dh

CIFAR-10 10 32× 32× 3 50, 000 - 10, 000 32 3

Oxford-102 102 64× 64× 3 1, 020 1, 020 6, 149 64 3

Evaluation metrics It is difficult to measure the performance of image generation

in a quantitative way, so used two popular metrics were used for automatic image

quality evaluation: the IS [86] and the FID score [35]. A higher IS and a lower FID

score indicate a better generation performance.

Inception and FID Scores

This section reports the inception and FID scores of GMM-based GAN with a

various compression rates of r compared with the baseline vanilla GAN. Figure 4.8

shows the inception and FID scores over training epochs for Gaussian based and

GM-GANs. Parameters of the GMM are trainable on all GM-GANs.

As shown in Figure 4.8 (a) for the CIFAR-10 dataset, when the networks have

the same size (i.e. the compression rate r = 1), GM-GAN achieves a constantly

higher IS from the beginning of training compared with the vanilla GAN. When r

is increased to 2, GM-GAN has a similar IS as the vanilla GAN. In addition, our

modified GM-GAN with the additional classifier and r = 1 achieves an even higher

IS compared with the result without the classifier. Similar results of higher IS for

GM-GMM and the highest IS for our model can be found in Figure 4.8 (c) on the

Oxford-102 datasets.

In terms of the FID scores on the CIFAR-10 dataset, GM-GAN constantly yields

a lower FID score than does the Gaussian based GAN when using the same size of

the network, and a network with r = 2. The network with r = 4 produces similar
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(a) Inception scores on the CIFAR-

10 dataset

(b) FID scores on the CIFAR-10

dataset

(c) Inception scores on the Oxford-

102 dataset

(d) FID scores on the Oxford-102

dataset

Figure 4.8 : Inception and FID scores over training epochs under different compres-

sion rates of GM-GAN and vanilla GAN on the CIFAR-10 and Oxford-102 dataset.

FID scores over training epochs compared with Gaussian based GAN, even though

the network size of the latter is three times larger. FID scores on the Oxford-102

dataset also show that GM-GAN achieves a better performance under a smaller

network size than the Gaussian based model (i.e., when r = 2).

The value of the exact number of parameters used, and on average the highest

inception and lowest FID scores in each experiment are summarised in Table 4.6.

Table 4.6 indicates that when using the same size of the network, GM-GAN

achieves a 3.4% higher inception score and 15.3% lower FID score on the CIFAR-10
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Table 4.6 : Number of parameters, final Inception and FID score for each experiment.

Dataset Compression Rate # parameters Inception score ↑ FID score ↓

CIFAR-10 1 + classifier 3, 002, 267 3.9523± 0.1874 62.7941± 3.3387

1 2, 920, 337 3.8809± 0.1955 66.2328± 2.3344

2 1, 153, 969 3.6899± 0.0734 68.4550± 3.2691

4 501, 185 3.3850± 0.1393 76.6934± 2.9099

8 232, 393 2.5700± 1.1925 103.9022± 8.3241

GAUSSIAN 2, 918, 337 3.7555± 0.1285 78.1733± 2.8900

Oxford-102 1 + classifier 8, 286, 107 2.2961± 0.1751 121.6527± 4.0959

1 7, 958, 417 2.2287± 0.0704 124.0927± 13.1122

2 3, 673, 009 2.2164± 0.0704 124.2820± 8.1919

4 1, 760, 705 2.1319± 0.0967 127.2721± 4.9043

8 862, 153 1.9660± 0.1780 128.9227± 7.2831

GAUSSIAN 7, 956, 417 2.1142± 0.0357 126.4798± 1.3708

dataset and a 5.4% higher inception score and 1.9% lower FID score on the Oxford-

102 dataset than the vanilla GAN. This indicates that GM-GAN outperforms the

vanilla GAN with a higher generation quality for both datasets.

In addition, GM-GAN when the compression rate is two, still achieves a 12.4%

lower FID on the CIFAR-10 dataset, 4.8% higher inception score and 1.7% lower

FID score on the Oxford-102 dataset compared with the vanilla GAN. The network

size shrinks 39.5% and 46.2%, respectively.

GM-GAN with additional classifier outperforms those without the classifier for

both datasets. It achieves a 1.8% higher inception score and 5.2% lower FID score

on the CIFAR-10 and a 3.6% higher inception score, and 2.0% lower FID score on

the Oxford-102 dataset.

The experiments in this subsection demonstrate that modelling the latent space

with GMM can significantly reduce the size of the network by at least 50% while
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generating images with similar quality.

Performance on Anomaly Detection

Experiment design The advantage of modelling the latent space with GMM to

perform anomaly detection is further demonstrated on the MNIST [57], Fashion-

MNIST [101], the CIFAR-10 dataset [52] and the KDD-99 10 percent dataset [34].

Statistics of these datasets are reported in Table 4.7.

Table 4.7 : Different datasets used in the empirical evaluation

Dataset # Classes Samples Dimensions # Train # Val # Test Dimg Dh

MNIST 10 28× 28× 13 60, 000 - 10, 000 28 1

FashionMNIST 10 28× 28× 13 60, 000 - 10, 000 28 1

CIFAR-10 10 32× 32× 3 50, 000 - 10, 000 32 3

Oxford-102 102 64× 64× 3 1, 020 1, 020 6, 149 64 3

KDD-99 2 121 198, 361 - 247, 011 - -

The MNIST, Fashion-MNIST and CIFAR-10 datasets contain 10 classes so the

training and evaluation processes are performed on each class individually (i.e. one

class is considered as the anomaly class, and the remaining nine classes are the

normal classes).

We follow the training strategy as described in AnoGAN [88] in our experiments.

Therefore, only the normal data from the training set are used for training, and the

whole test set is used in the evaluation. Once the GAN network is fully trained, 500

iterative steps are taken to map the input sample to the latent space. Given a sample

x and its latent counterpart z, its anomaly score is calculated as the dissimilarity

between x and the reconstructed sample G(z) on the input and the feature level:

A(x) = (1− λ) · ||x−G(z)||1 + λ · ||f(x)− f(G(z))||1, (4.7)
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where f is an intermediate layer of the discriminator, and λ is set to 0.1. A higher

anomaly score indicates that the sample is more likely to be anomalous. In all

experiments, the number of Gaussians (i.e. K) is set to be 10. Tests are made

measuring the AUC value.

Evaluation metric As the anomaly score does not determine whether a sample

is anomalous or not unless a threshold is set, we the Area under the ROC Curve

(AUC) is chosen to evaluate the model performance. AUC measures the area under a

receiver operating characteristic (ROC) curve, which plots true positive rates against

false positive rates with varied discrimination thresholds.

AUC values Figure 4.9 plots the AUC value over anomaly classes 0 to 9 on the

MNIST, FashionMNST and CIFAR-10 datasets.

As shown in Figure 4.9(a), in 6 out of 10 anomaly classes, GM-GAN achieves a

higher AUC value than the vanilla GAN. In 5 out of 10 anomaly classes, GM-GAN

with a compression rate at 2 still outperforms the vanilla GAN. In Figure 4.9(b),

GM-GAN performs better in 8 out of 10 anomaly classes, and the compression rate

= 2 achieves a higher AUC value in 5 out of 10 classes. A similar pattern can also

be found in Figure 4.9(c), that GM-GAN performs no worse than the vanilla GAN

in 6 out of 10 classes, even with a compression rate of two.

In addition, the additional classifier applied to the GM-GAN provides an even

more enhanced anomaly detection result because it achieves the highest AUC value

in 6 out of 10 anomaly classes on the MNIST and Fashion-MNIST dataset and 5

out of 10 on the CIFAR-10 dataset. The number of parameters for each algorithm

and the average AUC value are reported in Table 4.8.

As Table 4.8 shows, GM-GAN can achieve, on average, 3.6%, 0.7%, and 0.8%

higher AUC values on the MNIST dataset, when sizes of the networks are the same
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(a) MNIST (b) Fashion-MNIST

(c) CIFAR-10

Figure 4.9 : Performance of anomaly detection measured by area under curve. (a)

AUC over anomalous classes on the MNIST dataset; (b) AUC over anomalous classes

on the Fashion-MNIST dataset; (c) AUC over anomalous classes on the CIFAR-10

dataset.

for both algorithms. GM-GANs can still achieve higher AUC values on all three

datasets with a compression rate of 2. On the KDD-99 dataset, using GMM with

a compression rate of 8 outperforms the original AnoGAN using only 6.9% of the

number of parameters.

In addition, adding a classifier to the network allows a more accurate anomaly

detection output with a minimal increase in the network size. As Table 4.8 shows,

AUC value is further enhanced by 7.4%, 0.7%, and 4.9% on the three datasets
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compared with the ones without the classifier.

With the results of the experiments in this subsection, we can conclude that

modelling the latent space with GMM allows GAN to achieve a better anomaly

detection performance with only half the number of parameters. This is consistent

with the findings in image generation that GM-GAN and its variant with much

fewer parameters are superior to, or at least competitive with, Gaussian GAN.

4.3 GMM in Text-to-image Generation

This section describes how to apply GMM to domain transfer and report the

performance. In the text-to-image generation, the concatenation of a noise vector z

and sentence vector is fed to GAN network as the input. The vanilla GAN models

z with standard Gaussian, and in our work, the distribution of z is modelled as a

GMM.

The network structure, shown in Figure 4.10, is based on the one described in

Section 3.1: images are generated through a multistage process and the attention

structure built between image and text is utilised to further improve the genera-

tion quality. The attention structure is constructed as twofold: between word and

regular-grid region and between phrase and object-grid region. The only difference

to that described in Section 3.1 is that z is now sampled from a GMM distribution.
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The density function of the latent distribution is defined as p(z) =
∑K

k=1 αkN (z;µk,Σk),

where K is the total number of Gaussians in the mixture, and kth component is

characterised by a Gaussian distribution with weight αk, mean µk and covariance

matrix Σk. We assume that each Gaussian takes equal weight (i,e. αk = 1
K
∀k =

1, . . . , K).

In addition, our work also makes the parameters of the latent distribution,

{µ1, . . . , µK ,Σ1, . . . ,Σk}, to be trainable, and the training is performed “end-to-end”

with the GAN network. Therefore, instead of sampling from the GMM directly dur-

ing training, the reparameterisation trick is applied so that the back-propagation

can be used to update µk and Σk of each Gaussian.

Datasets

Experiments are performed on the CUB-200 [99] and MSCOCO [63] dataset.

The statistics of both datasets are reported in Table 4.9. Processing and training

the MSCOCO dataset are performed in the same way as described in Section 3.1,

where the bounding boxes are used to collect object-grid region features. The test

set in the MSCOCO dataset contains only images and no captions, so the validation

set is used as the test set.

In terms of the bounding box processing, while each image in the MSCOCO

dataset usually contains multiple objects and the dataset provides multiple bound-

ing boxes accordingly, CUB-200 contains only one object in each image. Thus, it

provides only one bounding box. The single bounding box outlines the main bird

object from the background. In addition, captions from CUB-200 describe details

about the bird, such as the colour of the beak or feathers, while the bounding box

of the beak or the feather is not provided accordingly. Thus, the previous con-

struction of the phrase-to-object-grid region, which expects multiple objects in the

image would match multiple phrases in the caption, is not applicable to the CUB
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dataset. Therefore, the object-grid region feature is replaced with the regular-grid

region feature in the attention mechanism. In addition, because the bird object is

the majority of an image and its caption, the single bounding box is used to crop

the image before feeding to the network to simplify the training.

All experiments are performed with the dimension of D as 100 and learning rate

as 0.0002 for both the generator and the discriminator. Experiments on the CUB

dataset are performed over 600 epochs; experiments on the MSCOCO dataset are

performed over 120 epochs.

Evaluation Metrics

The evaluation metrics used are the same as in Section 3.1, inception score [86]

and FID score [35], which measures the generation quality, and R-precision [103],

which measures how closely the generated image fits its exact description.

Experimental Results

Figure 4.11 shows the inception and FID scores of the Gaussian and GMM based

GANs over epochs on the CUB and MSCOCO datasets.

As in Figure 4.11, GMM based GAN achieves a higher IS and a lower FID score

constantly throughout the entire training process compared with the vanilla GAN.

This indicates that using GMM to model the latent space leads to a higher image

generation quality.

4.4 Dirichlet Process GAN

The overall architecture of the proposed DP-GAN is shown in Figure 4.12. We

describe in each iteration how the random noise z is generated via particle filter and

how the parameters of the latent distribution and the network are updated. The

overall training flow of the proposed algorithm is summarised in Algorithm 5, and
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(a) Inception scores on the CUB dataset (b) FID scores on the CUB dataset

(c) R-precision on the CUB dataset

Figure 4.11 : Comparison between the Gaussian and GMM based GANs in terms

of the inception and FID scores over epochs on the CUB and MSCOCO dataset.

its details are elaborated upon in the subsequent sections.

4.4.1 Generate z via Particle Filter

We first need data to train the DPGMM parameters. As explained previously, z

instead of x is used as the data of the DPGMM. However, the vanilla GAN does not

allow a direct transformation from x to its correspondence in latent space. Therefore,

innovative ways are required to evaluate z using the x it generates. Inspired by

particle filter, we generate and then evaluate z in which its overall flow is shown in

Figure 4.13.
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Algorithm 5 Overall training flow of the the proposed DP-GAN

for each epoch until convergence do

Generate z via particle filter as in Section 4.4.1

• proposal (first-part) from DPGMM, z ∼ DPGMM(θ)

• proposal (second-part) G(z)

• weighting using D(G(z))

• resampling from D(G(z))

Update DPGMM parameters

Update rest of parameters

• The responsibility consistency module (RCM)

• Update the generator

• Update the discriminator

end for
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Figure 4.12 : The complete architecture of DP-GAN.

SMC or particle filter is a Monte Carlo technique used to solve Recursive Bayesian

statistical inference. We use the simplest particle filter (i.e., condensation filter) to

illustrate what occurs during each particle filter iteration:

i. Provide a set of particles from the previous iteration t− 1, {zit−1}

ii. Sample from a proposal distribution: zit ∼ p(zt|zit−1)

iii. Compute the weights wit ∝ πit−1p(xt|zit)

iv. Normalise weights πit =
wit∑N
i=1 w

i
t

Here, zi and xt may also refer to the latent and observed.

To show the similarity between traditional particle filters versus our proposed

work, we show them both side-by-side in 4.13 as well.

Proposal from DPGMM After randomly initialising parameters of the DPGMM,

sampling z can be performed as described in Section 2.4.3. The two hyperparame-

ters, α: the concentration parameter and D: the dimension of samples z are defined

manually. Sampling results are fed to the generator G(z) to obtain the proposed

sample x̂.
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Figure 4.13 : The overall flow of how the latent DPGMM distribution is updated.

Notations on the left are the traditional flow of particles; notations on the right are

how it is applied in the proposed architecture.

Weighting and resampling Suppose all random vectors sampled in the last

epoch are grouped as Z ∈ RM×D, where M is the size of the training set. Just like

in particles, each needs to be weighed according to the current observation. Here,

we use the trained discriminator D to do this (i.e., D(G(Z)) are scores produced

by the discriminator D). Higher scores should reflect a better-generated samples,

as judged by the current D. Subsequently, the algorithm increases the weights of

those random vectors that lead to higher scores in the generation and decrease the

weights of those with lower scores.

Just like particle filters, here the proposed approach also faces “particle collaps-

ing”, a phenomenon where there exist only a few dominant particles with significant

weight and the rest are close to zero. Therefore, the off-the-shelf resampling strate-

gies described in [22] are used. Our work proposes to apply multinomial resampling

to all random vectors sampled in the last epoch. The resampling result is used to
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fit the DPGMM and update the parameters. Probabilities of selecting each vector

are calculated by normalising the D score of its corresponding synthetic sample.

4.4.2 Updating DPGMM Parameters

There are many ways to update the DPGMM. Here, we have used the one de-

scribed in [9], which is a mean-field variational algorithm for the DP mixture. The

variational bound is written as:

log p(x|α, λ) ≥Eq[log p(V |α)] + Eq[log p(η∗|λ)]

+
N∑
n=1

(Eq[log p(cn|V )] + Eq[log p(xn|cn)])

− Eq[log q(V ,η∗,C)], (4.8)

where V , η∗, C denote stick lengths, atoms, and the cluster assignment variables

respectively.

Authors have proposed the following factorised family of variational distributions

to approximate the distribution of the infinite-dimensional random measure G:

q(v,η∗, c) =
T−1∏
t=1

qγt(υt)
T∏
t=1

qτt(η
∗
t )

N∏
n=1

qφn(cn), (4.9)

where qγt(υt) are beta distributions, qτt(η
∗
t ) are exponential family distributions and

qφn(cn) are multinomial distributions. For details of the algorithm, please refer to

[9].

4.4.3 Updating Other Parameters

Responsibility Consistency Module We design the RCM to output p(c|x̂),

given a synthetic sample x̂. p(c|x̂) needs to match against p(c|z) = π which is the

responsibility probability condition on its latent variable z. The corresponding loss

is calculated as:
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LRCM = Exm∈pdata [I(p(c|z), p(c|x̂))]. (4.10)

Essentially, all we need is a measurement function to compute the distance be-

tween two distributions, so KL or DS divergence can also be used. However, in the

experiment, mutual information loss provides the best result.

RCM is chosen to share the feature encoding layer with the discriminator, dur-

ing training, LRCM is applied to optimise both the generator G and the simple

standard linear softmax classifier. The feature encoding layers are updated by the

discriminator only.

Other GAN Parameter Updates

Generator The generator G simply takes a random vector z sampled from the

DPGMM to generate synthetic samples. We chose the structure of DCGAN to build

our model, which is reported in Table 4.10.

Discriminator The discriminator D consists of multiple layers of CNN, which

we refer to as the feature encoding layers followed by a standard linear logistic regres-

sion to identify the given image as real or fake. The design makes the discriminator

and the responsibility consistency module share the same feature encoding layers.

Parameters of those layers are updated by the adversarial loss only.

GAN network architecture Details of the network design can be found below in

Table 4.10. In Table 4.10, we use abbreviations for operations in the table: “Conv” is

the convolution operation, of which the kernel and stride size are in the parenthesis;

“LeakyReLU” is short for “leaky rectified linear unit” and “Tanh” are activation

functions. “Batch norm” is short for batch normalisation; “Flatten” refers to the
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operation that flattens a tensor to a 1D array. Dimg, Dh and Dz are related to the

datasets we use, the exact value of each are reported in Table 4.11.

4.4.4 Experiments

Performances of the proposed DP-GAN are demonstrated on a toy dataset, the

MNIST [57] and the Fashion-MNIST [101] dataset. Details of each datasets are

summarised as below in Table 4.11.

Toy Data Generation

The first dataset I use is a simple toy dataset. This dataset is constructed to gain

more intuition regarding the properties of the DP-GAN model. The dataset contains

1, 000 training samples which are generated by sampling from a homogenous mixture

of L Gaussians. Below, I show the result when L = 2, ∀k ∈ {1, . . . , L},Σk = 1, µ =

{5,−5}. For the toy dataset, we do not use the network structure shown in Table

4.4 to perform the training, the three networks, G, D and RCM each contains only

a one-layer neural network.

Figure 4.14 shows samples from the data distribution and the synthetic samples.

As shown in Figure 4.14c, most stick weights are concentrated on two Gaussians.

Therefore, I also fit the synthetic samples to a homogenous mixture of two Gaussians

in Figure 4.14 for demonstration purposes.

As in Figure 4.14a, samples generated by the vanilla GAN are mostly distributed

between the two Gaussians of the data distribution, which makes the distribution

of the synthetic data far from the data distribution. Figure 4.14b shows that the

proposed DP-GAN is able to generate samples that match much closer to the original

distribution than the vanilla GAN. In addition, Figure 4.14c shows that most stick

weights are concentrated on two Gaussians after the model is fully trained. A

threshold can be easily set to predict the correct number of classes even though the
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training is performed in a completely unsupervised manner.

(a) Classic GAN (b) DP-GAN (c) Final stick weights for DP-

GAN

Figure 4.14 : Samples from the toy dataset and generated from (a) GAN and (b) DP-

GAN. Samples from the training set and its PDF are plotted in blue and synthetic

samples and the PDF of their distribution are plotted in red. (c) Stick weights for

the DPGMM when the model is fully trained.

MNIST Generation

I next demonstrate the performance on more complex datasets. The second

dataset used is a subset of the MNIST dataset, which includes all 0, 1 and 2 digits

in the dataset (i.e. the optimal number of clusters of the dataset is 3).

Figure 4.15a shows synthetic samples generated by the proposed DP-GAN. Each

row contains samples generated from each Gaussian of the DPGMM. It shows clearly

that even though the training is performed in a completely unsupervised manner,

each mode in the latent space reflects a particular image class.

In addition, Figure 4.15b reports the final weights for each component of the

DPGMM. Most weights are concentrated on three Gaussians with indices of 8, 9

and 3. A threshold can be easily set to predict the number of classes. Random

vectors from these three Gaussians generate high-quality samples in the top three

rows in Figure 4.15a.
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(a) Synthetic Samples (b) Final stick weights for DP-GAN

Figure 4.15 : (a) Samples generated by DP-GAN after trained on the MNIST

dataset. Each row contains images sampled from a different Gaussian. Rows are

sorted using the components’ weights in the descending order. (b) Stick weights for

the DPGMM when the model is fully trained.

Fashion-MNIST

The third dataset we use is the Fashion-MNIST dataset. Similar to the MNIST

dataset, we select the first three categories of the original dataset as our training

set, and the optimal number of clusters of the dataset is three.

Figure 4.16a shows synthetic samples generated by the proposed DP-GAN. It

indicates that vectors sampled from each component of Gaussian generate a specific

class of clothing images. Rows in Figure 4.16a are sorted using the final weights

of components in the descending order. Top rows, which correspond to Gaussian

indexed by 0, 4 and 7, contain images of higher-quality and the first three rows

match against all three classes from the training set.

In addition, Figure 4.16b reports the final stick weights of the DPGMM. Most
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weights are concentrated on three Gaussians with indices of 0, 4 and 7; a threshold

can be easily set to predict the number of classes.

(a) Synthetic Samples (b) Final stick weights for DP-GAN

Figure 4.16 : (a) Samples generated by DP-GAN after training on the MNIST

dataset. Each row contains images sampled from a different Gaussian. Rows are

sorted using the components’ weights in the descending order. (b) Stick weights for

the DPGMM when the model is fully trained.

4.5 Summary

This chapter describes our contributions in terms of latent space modelling of

GANs. In particular, our work studies the effects and properties learnt by applying

GMM and DPGMM to GANs.

Given a data point x, a Gaussian Mixture Model(GMM) with K components

may assume the existence of a random index k ∈ {1, . . . , K} identifying with which

Gaussian the particular data are associated with. In a traditional GMM paradigm, it

is straightforward to compute in closed-form, the conditional likelihood p(x|k, θ) and

the responsibility probability p(k|x, θ) describing the distribution weights for each
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data. Computing the responsibility allows us to retrieve many important statistics

of the overall dataset, including the weights of each mode/cluster. Modern large

datasets often contain multiple unlabelled modes. For example, a paintings dataset

may contain several styles or fashion images may contain several unlabelled cate-

gories. In its raw representation, the Euclidean distances between the data (e.g.,

images) do not allow them to form mixtures naturally, nor is it feasible to compute

responsibility distribution analytically, making application of GMM not possible.

Our work proposes to utilise the GAN framework to achieve a plausible alternative

method to compute these probabilities. The key insight is they are computed at

the data’s latent space z instead of x. However, this process of z → x is irreversible

under GAN, which renders the computation of responsibility p(k|x, θ) infeasible.

Our paper proposes a novel method to solve it by using a so-called PCM. PCM

acts like a GAN, except its generator CPCM does not output the data; instead, it

outputs a distribution to approximate p(k|x, θ). The entire network is trained in an

“end-to-end” fashion. Through these techniques, it allows us to model the dataset

of very complex structures using GMM and subsequently to discover interesting

properties of an unsupervised dataset, including its segments, and generate new

“out-distribution” data by smooth linear interpolation across any combinations of

the modes in a completely unsupervised manner.

Our work also investigates the network compression effect achieved by GM-GAN.

In particular, we present a modified GM-GAN with a classifier to encourage the

matching between the component from the latent distribution and the class from

the synthetic data. We quantitatively compare the image generation quality of these

GANs with different structures and sizes. We further demonstrate how anomaly

detection is performed using improved GM-GAN with a classifier. Experimental

results show that modelling the latent space with GMM together with the classifier

in GAN can significantly reduce the number of parameters of GANs while achieving
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a similar generation quality and performance in anomaly detection.

We further propose a novel GAN-based algorithm DP-GAN that models the la-

tent space of GANs using the DPGMM distribution. DP has been popularly used

in Bayesian non-parametric (BNP) statistics to simultaneously study the distribu-

tion parameters and number of distinct clusters. However, its application has been

mostly restricted in areas in which the individual component likelihood fθl(x) can

be appropriately defined. Modern datasets, such as large image datasets, do not

usually have ways to define fθl(x), making DP or mixture models unable to apply.

A logical solution is to apply the DP mixture model in the latent space instead.

Many modern generative models offer us such a mechanism. One of them is the

popular Generative Adversarial Networks (GAN). To this end, we have proposed a

framework in which to use GAN to project data from its original representation x

into its latent ones (i.e., z) so that the likelihood is to be defined over fθl(z) instead.

DNN-based GAN has been popularly used in data generation, where historically,

only standard distribution p(z) is used to model the latent space, not only making

it non-informative, but also causes a number of issues, such as mode collapse, a phe-

nomenon in which the samples generated look very similar. Therefore, the proposed

approach has addresses two issues with one solution: First, we have designed a way

to model a potentially unknown number of mixtures over a modern dataset. Second,

improvements are made over the vanilla-GAN to achieve better sample diversities

and have prevented mode collapse.

However, a naive application of the DPMM to z via GAN transformation is pro-

hibitive because GAN, by construction, is only designed to transform latent z to x.

The inverse transformation from data to its latent representation is not trivial. To

solve this problem, we have proposed using a sample reweighting mechanism, often

observed in SMC (i.e., particle filter methodologies). We use the GAN mechanism

itself to “weigh” each sample of z by examining the quality of their corresponding
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x generated. Further, to ensure that in each iteration, the distribution of both the

data and the latent representation is in line, we have devised a novel Responsibility

Consistency Module (RCM) to achieve this alignment. Through a series of exper-

iments performed on both synthetic and real-world datasets, we demonstrate that

our proposed approach can accurately and meaningfully model the dataset via its

latent space: Each mode in the latent space reflects a particular data cluster in an

unsupervised manner. Simultaneously, the model does not comprise GAN’s original

purpose (i.e., it can also generate high-quality, realistic image data).
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Table 4.8 : Number of parameters and AUC on the MNIST, FashionMNIST, CIFAR-

10, KDD-99 dataset. Compression rate = 1, 2, 3, 4 refer to GM-GAN with the

corresponding compression rate.

Dataset Compression Rate # parameters AUC

MNIST 1 + classifier 2, 583, 067 0.6112± 0.1922

1 2, 520, 337 0.5693± 0.2096

2 953, 969 0.5563± 0.1941

4 401, 185 0.5382± 0.1791

8 182, 393 0.5345± 0.1925

GAUSSIAN 2, 518, 337 0.5493± 0.2042

FashionMNIST 1 + classifier 2, 583, 067 0.5676± 0.1581

1 2, 520, 337 0.5636± 0.1740

2 953, 969 0.5621± 0.0949

4 401, 185 0.5564± 0.1689

8 182, 393 0.5491± 0.1718

GAUSSIAN 2, 518, 337 0.5598± 0.1638

CIFAR-10 1 + classifier 3, 002, 267 0.5311± 0.1234

1 2, 920, 337 0.5063± 0.1106

2 1, 153, 969 0.5047± 0.1153

4 501, 185 0.5011± 0.1071

8 232, 393 0.4970± 0.1258

GAUSSIAN 2, 918, 337 0.5025± 0.1155

KDD-99 1 + classifier 114, 452 0.4948± 0.0128

1 113, 162 0.4876± 0.02970

2 43, 306 0.4563± 0.02970

4 19, 130 0.4427± 0.0351

8 9, 730 0.4426± 0.0748

GAUSSIAN 111, 162 0.3987± 0.0331
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Table 4.9 : Statistics of the CUB-200 and MSCOCO dataset.

Dataset train test validation captions per image

CUB-200 5, 994 5, 794 10

MSCOCO 82, 783 40, 775 40, 504 5

Table 4.10 : The overall network structure used for the real-world datasets.

Stage Sub-stage Name Input Tensors Output Tensors

RCM Encoding Network (shared) Conv (kernel=5, stride=2) + LeakyReLU Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 64

Conv (kernel=4, stride=2) + Batch norm + LeakyReLU + Flatten Dimg/2×Dimg/2× 64 Dimg/4×Dimg/4× 128

Classification Network Linear Dimg/4×Dimg/4× 128 K

G Linear + Batch norm + LeakyReLU + Reshape 1 ×Dz Dimg/4×Dimg/4× 256

Transposed Conv (kernel=5, stride=1) + Batch norm + LeakyReLU Dimg/4×Dimg/4× 256 Dimg/4×Dimg/4× 128

Transposed Conv (kernel=5, stride=2) + Batch norm + LeakyReLU Dimg/4×Dimg/4× 128 Dimg/2×Dimg/2× 64

Transposed Conv (kernel=5, stride=2) + Tanh Dimg/2×Dimg/2× 64 Dimg ×Dimg ×Dh

D Encoding Network (shared) Conv (kernel=5, stride=2) + LeakyReLU Dimg ×Dimg ×Dh Dimg/2×Dimg/2× 64

Conv (kernel=4, stride=2) + Batch norm + LeakyReLU + Flatten Dimg/2×Dimg/2× 64 Dimg/4×Dimg/4× 128

Discriminator Network Linear Dimg/4×Dimg/4× 128 1

Table 4.11 : Statistics of the different datasets used in the empirical evaluation.

Dataset # Classes Samples Dimensions # Train # Test Dimg Dh

Toy-Dataset 2 1 1, 000 - - -

MNIST 10 28× 28× 1 60, 000 10, 000 28 1

FashionMNIST 10 28× 28× 1 60, 000 10, 000 28 1
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Chapter 5

Training Acceleration in Style Transfer

As described in Chapter 1, DNN based cross domain training often suffers from

large training costs and is extremely difficult to converge. Previously, researchers

proposed DM-SGD which applied Determinantal Point Process (DPP) to shallow

neural networks and achieved promising outcomes. However, there are two draw-

backs of DM-SGD:

Firstly, when raw input features are used, it measures diversities in terms of

the Euclidean distance in the input space. This is prohibitive; in fact, the very

reason neural network is applied is to transform data non-linearly from its original

space into a layer before the output is so that the features becomes a great deal

more expressive. Therefore, if any features are to be used to guide the mini-batch

selection, we need to use them before the last layer instead of before the first input.

However, this also creates another problem in that the network parameters are

not static and are updated throughout the iterations; Therefore, we must use the

updated features at each iteration as opposed to what DM-SGD proposes.

Second, mini-batch selection using DPP may become prohibitively slow when

the entire set of data Ω is used to compute its Gram matrix, even if this operation

is only computed once. Therefore, the “fixed” feature approach is somewhat only

theoretically plausible.

For these reasons, we must update the features to compute the Gram matrix at

each iterations. Given sampling DPP once is already far too much computation,

sampling at each iteration with an updated Gram matrix would further increase
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the already-infeasible complexities. Therefore, it is natural to use an approximated

DPP to dramatically reduce its computation time.

By observing this in the last or higher layer, we found that features within

each class have a higher tenancy to stay closer and data between classes tend to

separate. Therefore, we chose the last FC layer to construct the Gram matrix in

our algorithms. We also took the so-called class-dependent DPP sampling by using

hierarchical sampling to break down a single DPP sampling with large Gram-matrix

into many DPP sampling of a much smaller Gram matrix. In the lower hierarchy,

each sampling is to be performed on data within its own class. To further improve the

computational efficiency, we also used Markov k-DPP to encourage diversity across

iterations. Accordingly, we propose five separate mini-batch selection algorithms,

which are explained in Section 5.1.2. We also show their empirical effectiveness

when these mini-batch selection schemes are applied to classification problems on

the Oxford 102 Flower [76], Stanford Dogs [49] and Caltech 101 dataset [25].

5.1 Efficient Diversified Mini-Batch Selection Using Vari-

able High-Layer Features∗

DNNs, such as CNN can be thought of as a process of data projection to serve the

functions of its final layer (e.g., a softmax). The learning requires back-propagation,

which can be highly computational when the data size is large. For this reason, a

mini-batch is used instead at every iteration to approximate a “batch method”:

θt+1 = θt − ηE[Of(x, θ)], (5.1)

by using:

∗This work was published as [36]
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{x(i) ∼ p(x)} θt+1 = θt − η
1

Mmb

Mmb∑
i=1

Of(xi, θ), (5.2)

where Mmb is the mini-batch size. In most instances, we do not know the underlying

distribution p(X). Therefore, a uniform sampling of data indices has been used

instead. In our work, we use DPP to select a diversified set of data points within

each category for each SGD iteration.

Although it may be possible to allow the size of mini-batches to vary in each

iteration, it is practical to keep them the consistent across iterations. Therefore, in

this work, we used a k-DPP, where each DPP draw generates a subset having equal

cardinality k.

5.1.1 Gram-Matrix Construction from Variable Higher-Layer Features

DPP sampling requires a Gram-matrix which defines similarities between data

points. The past literature offers two forms of features to construct a Gram matrix,

namely the raw feature and fixed higher layer features.

The raw feature, it uses the input directly as feature vectors. For example,

DM-SGD ([55]) uses the Gram-matrix from raw MNIST image pixels which are

first reshaped into one dimension. This method does not require additional feature

extractions, and the eigen-decomposition for the matrix only needs to be calculated

once without the presence of neural network.

The fixed higher layer feature, it is obtained by feeding each data sample to

a pre-trained DNN such as VGG-16. Like the raw data, the Gram matrix is not

updated during training.

Variable higher-Layer features and the advantages

The first two constructions are computationally effective since the Gram-matrix

and eigen-decomposition only need to be computed once. However, using the raw
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feature, measuring diversities in terms of the Euclidean distance in the input space

can be misleading because the purpose of the neural network is to project data from

its original space to a layer before output, to better serve the function of the output

layer. Therefore, we ought to use data of the last (or higher) layer instead of the

input. Since the parameters changes over iterations, using the fixed higher feature

to construct a fixed Gram-matrix, does not reflect the parameter update and makes

it entirely dependent on the initial parameter guess.

Therefore, we used the output from the last FC layer as the feature vector to

construct the Gram-matrix. These features are recomputed since the network is

updated through back-propagation. Thus, they are named the variable higher-layer

feature.

The advantage of were demonstrated using the variable higher-layer feature,

and its remarkable expressive power over using raw or fixed higher-layer features.

Figure 5.1 plots the feature vectors used to construct the three Gram-matrices for

the Oxford Flower 102 datasets. In terms of variable higher-layer features, we used

the value of the last iteration.

Figure 5.1 : A visualization of three feature vectors being used to construct Gram-

matrices. From left to right, each figure represents raw, fixed higher-layer and

variable higher-layer features respectively. Each category is represented in a unique

colour. Features are dimension reduced using t-SNE.

The figure shows that raw or fixed higher-layer features provide very high intra-
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class variances because data of the same class tend not to be close. Conversely,

variable higher-layer features have much lower intra-class variance. Numerically,

we measured the Calinski-Harabasz score for the three feature vectors as in Table

5.1. The Calinski-Harabasz score is defined as a ratio between the within-cluster

dispersion and the between-cluster dispersion. A higher score shows dense and well

separated clusters, and in a classification problem, the class labels of training data

provide the cluster information. Not surprisingly, the variable higher-layer feature

has much higher Calinski-Harabasz score than the other two.

Table 5.1 : Calinski-Harabasz score for raw, fixed higher-layer and variable higher-

layer features in Oxford 102.

Raw pixels Fixed Features Variable Features

Oxford 102 10.3827 26.7641 78.4164

Computationally feasible way to construct variable Gram matrix

Knowing that the method ought to construct the Gram-matrix using variable

higher-layer features has barely solved any problems because generating random

samples from a DPP with a large Gram-matrix can be prohibitively expensive,

since the operation involves eigen-decomposition. For these reasons, we proposed five

different mini-batch approximation schemes below, which is also the key contribution

of our paper.

In each of these methods, the Gram matrix sizes are drastically reduced, allowing

the algorithm to significantly accelerate training. Remarkably, while the Gram-

matrix construction is updated at each iteration, the experiment shows that our

method achieves much quicker convergence compared with previous approaches. In

this paper, we provide two broad categories of approaches, namely, the full-set DPP
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sampling and class-dependent DPP sampling.

Full-Set DPP Sampling

In this category, one does not consider the class label information when sam-

pling DPP. Subsets are selected independent of their labels. There are two versions

of algorithms, which we named FULL-SINGLE-DPP and FULL-MARKOV-DPP

respectively:

FULL-SINGLE-DPP In here, in each ith iteration, one first samples a larger

subset S̃ uniformly from the full training set Ω, before sampling a random subset Si

using k-DPP from S̃. Compared with DPP sampling from Ω directly, this method

has drastically accelerated its computation. The choice of |S̃| is arbitrary if it is

larger than K: we have chosen it to be a multiple of K. Obviously, a larger |S̃|

results in a longer duration, but simultaneously, it also increases its performance

in terms of a faster convergence and accuracy, and the Calinski-Harabasz score.

Therefore, one may select an optimised and appropriate trade-off value given the

size of the dataset. This approach is summarised in Algorithm 6.

In addition, in order to collect the feature matrix Wi, a feed-forward process is

required for S̃. Thus, Gram-matrix for the k-DPP sampling is calculated as WiW
>
i .

Algorithm 6 FULL-SINGLE-DPP sampling

Require: Data Ω, mini-batch size K

1: for i = 1 to MaxIter do

2: S̃ ∼ Uniform(Ω)

3: Obtain the feature matrix Wi in feed-forward(S̃)

4: Si ∼ k-DPP(WiW
>
i )

5: Perform updates according to equation 5.2

6: end for
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FULL-MARKOV-DPP FULL-SINGLE-DPP only provides samples with di-

versities within a single iteration. However, diversities are also needed between

consecutive iterations. For this reason, we also proposed the cross-iteration di-

versity sampling scheme which we named FULL-MARKOV-DPP. In here, it uses

conditional Markov k-DPP to perform sampling on Si conditioning on all previous

samples {St<i}. Therefore, in addition to encouraging samples in each mini batch

to be as diverse as possible, it also encourages samples to be more diverse across the

iterations. Details are outlined in Algorithm 7.

Algorithm 7 FULL-MARKOV-DPP sampling

Require: Data Ω, mini-batch size K

for i = 1 to MaxIter do

2: S̃ ∼ Uniform(Ω)

Obtain the feature matrix Wi in feed-forward(S̃)

4: if iter = 1 then

Si ∼ k-DPP(WiW
>
i )

6: else

Si ∼ markov-kDPP(WiW
>
i , {St<i})

8: end if

Perform updates according to Equation 5.2

10: end for

The original Markov k-DPP works on a fixed Gram-matrix across time steps.

However, as sampling is applied on a set of randomly selected data points, the

Gram matrix also needs to be recalculated. From the second iteration, the Gram

matrix is calculated from the uniform random subset S̃i and conditioning factors

{St<i} that are mini batch samples from the previous iterations.
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Class-Dependent Stochastic DPP

The second broad category of our proposed methods is class-dependent stochastic

DPP. Given categories 1, . . . , C, it takes a hierarchical approach to sampling: in the

first hierarchy. A sampling is first performed within each class to obtain d initial

data points. In the second hierarchy, a second k-DPP is applied to sample the final

mini-batch with size K. This hierarchical approach of DPP sampling breaks down

a single DPP sample with large Gram matrix into many DPP sampling of much

smaller Gram-matrix, thereby enhancing its performance dramatically.

Three methods are proposed in this category as shown in Algorithm 8, differ-

ing only in terms of the first hierarchy; CLASS-SINGLE-DPP and CLASS-

MARKOV-DPP applies k-DPP and Markov k-DPP respectively, as in the full-set

DPP sampling case in Section 5.1.1.

CLASS-IMBALANCE: This handles scenarios in which there are class-imbalance

problems. Some classes may have significantly more data points than other sets,

therefore, DPP sampling is only applied to “smaller” class data, and uniform sam-

pling is applied to the rest. Here, Markov k-DPP is only applied to classes with

numbers of samples nc below a manually set threshold δ. The class-dependent

Stochastic DPP is summarised in Algorithm 8.

where

SELECT(W c,Ωc) =

kDPP(W cW>
c ) CLASS-SINGLE-DPP

markov-kDPP(W cW>
c , {St<i}) CLASS-MARKOV-DPP

markov-kDPP(W cW>
c ), nc < δ

U(Ωc), nc ≥ δ

CLASS-IMBALANCE

In conclusion, the differences between the proposed methods relative to DM-SGD



125

Algorithm 8 Class-dependent stochastic DPP

Require: Data Ω, number of samples in each categories {n1, . . . , nC}

for i = 1 to MaxIter do

for c = 1 to C do

3: obtain W c
i in feed-forward(Ωc)

Sci ∼SELECT(W c
i ,Ω

c))

end for

6: Obtain the feature matrix Wi by concatenating features of [S1
i , . . . S

c
i ]

sample Si ∼ k-DPP(WiW
>
i )

Perform updates according to Equation 5.2

9: end for

lie in the following perspectives.

i. The feature vectors W used to compute the Gram matrix are not coming

from raw or fixed higher-layer features; instead, they are variable higher-layer

features, which are updated as parameters change in each iteration.

ii. Unlike DM-SGD, as in Equation 2.32, the label information is not used in

defining the feature vector for each data sample.

iii. Various techniques are employed to avoid DPP sampling on the full training

set which significantly saves the time cost of performing sampling.

iv. Markov k-DPP is employed to encourage diversity across iterations as well.

In terms of the variance reduction, [108] proved that DM-SGD, which employs

k-DPP sampling, has a lower gradient variance than does vanilla SGD. The same

proof can be easily applied to our proposed method. The proposed methods also
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employ distance-dependent similarity kernel and sample diverse points, thus, they

naturally inherit the properties of k-DPP.

5.1.2 Computation Complexity Analysis

This section provides the sampling duration computation complexity of the pro-

posed methods and compares it with DM-SGD. Assume that the entire dataset Ω

contains N data samples and each mini-batch contains K items. In each iteration,

DM-SGD requires O(N3) to perform the eigen-decomposition and O(NK +K2) to

perform the sampling in each iteration. The total time cost after I iterations is:

TDMSGD = O(N3 + (NK +K2) · I). (5.3)

Full-set DPP performs sampling on a much smaller subset Si in iteration i.

Assume that the size of Si is T of the original set Ω and T ∈ (0, 1] (e.g. T = 1/3).

The proposed methods do not require the eigen-decomposition to be performed on

the N × N similarity kernel prior to the training. The computation cost in each

iteration is O((NT )3 +NTK +K2). The total computation cost for I iterations is:

TFULL SET = O
((

(NT )3 +NTK +K2
)
· I
)
. (5.4)

If we compare the two values TDMSGD and TFULL SET, we can easily derive that

the condition for TDMSGD > TFull SET is:

(1− T 3I) ·N2 + (1− T ) ·KI > 0. (5.5)

As (1 − T ) · KI is always positive, if we only focus on the first term, then if

T 3 < 1/I, we can have TDMSGD > TFull SET. For example, when I is 10, 000, as long

as Si is smaller than 1/22 of the entire dataset, FULL-set DPP is more time efficient
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than DM-SGD. This is quite an easy constraint to meet. Considering the second

term should further loosen this constraint.

Class-dependent DPP is slightly more complex because it performs separate

sampling in each category of data. If we simplify the problem setting by assuming

that C categories equally split the entire dataset, and the subset Sci sampled from

category c contains T of total samples in this category, the total computation cost

is

TClass-dependent =

((
(
N

C
)3 + (

N

C
) · (N

C
· T ) + (

N

C
· T )2

)
·C+(NT )3+(NT )·K+K2

)
·I.

(5.6)

Therefore, the required condition for TDMSGD > TClass-dependent is:

(
I

C2
+ I · T 3 − 1

)
·N2 +

(
T

C
+
T 2

C

)
·NI + (T − 1) ·KT < 0. (5.7)

If we take the Stanford Dogs dataset, whose statistics are shown in Table 5.2,

as an example and we set K = 50, T < 1/32 is required such that class-dependent

DPP is more computationally efficient than is DM-SGD.

In Figure 5.2, we plot the training duration, which includes the sampling, feed-

forward and back-propagation durations, over different T when the total iterations

I are 10, 000. All experiments are performed on the Oxford 102 dataset using the

full VGG-16 network. DMSGD2 is the baseline model, the details and explanation

of which can be found in Section 5.1.3. It is clear to see that the computation cost

of the proposed algorithms is lower when T is larger. When T < 1/10, all four

proposed methods are more efficient than the baseline model.
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Figure 5.2 : Duration over T on the Oxford 102 Flower dataset.

5.1.3 Experiments

Datasets

Experiments were performed on several image classification problems using the

Oxford 102 Flower [76], Stanford Dogs [49], Caltech 101 datasets [25] and MNIST

datasets. Statistics of these datasets are as below.

Table 5.2 : Statistics of the Oxford 102 Flower, the Stanford Dogs, the Caltech 101

datasets, and the MNIST datasets.

Dataset Oxford 102 Stanford Dogs Caltech 101 MNIST

#categories 102 120 101 10

#samples
train test val train test val 9,145 train test

1,020 6,149 1,020 12,000 8,580 8,580 60,000 10,000

Following the original paper from [108]. The training of the Oxford 102 Flower
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dataset was performed on the 6,149 testing images and the testing was performed

on the 1,020 training images (i.e. the training and testing sets were interchanged

in our experiments). In addition, because the Caltech 101 dataset does not provide

the train-test split, we randomly selected 80% of the data from each category as

the training set and we equally split the rest of the data in each category as the

testing and validation set. Lastly, performing eigen-decomposition on the entire

Gram-matrix generated from MNIST image features is extremely time consuming.

Therefore, we randomly selected 20% from each category to perform the training

and another 20% as the validation set. We used the original test set for the testing.

The results were collected from multiple experiments with random selections.

Baseline Models

We compared the proposed methods against two baseline models on the first

three datasets. The first baseline model is the DM-SGD from [108], which uses

the off-the-shelf last FC features and the label information to construct the Gram-

matrix. The design from the original paper only trains the layer before the softmax

layer, so we also compared the proposed algorithms with the second baseline model,

which we named as “DMSGD2”. DMSGD2 allows all layers of DNNs to be trained

while the sampling still relies on the off-the-shelf last FC features. For both DM-

SGD and DMSGD2, Equation 2.32 is applied to calculate the feature vector F for

each data sample. The proposed methods construct the Gram-matrix using the last

FC features as shown in the pseudo-codes.

For the MNIST dataset, we compared the proposed methods against one baseline

model DM-SGD. Following [108], DM-SGD uses the raw image pixels and the label

information to construct a RBF kernel for the sampling. It also trains a full five-

layer CNN network instead of only the last layer, as for the previous datasets. The

proposed method still uses the Gram-matrix generated from the last FC features
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and trains the same five-layer network.

Performance Evaluation on Oxford 102 Flower

This section evaluates the performances of the proposed methods, by compar-

ing them with the baseline models. Comparisons were made in terms of accuracy,

Calinski-Harabasz scores and time costs. Following the original paper, the results

are demonstrated via fine tuning the pre-trained VGG-16 model. Experiments were

performed with 10, 000 iterations, learning rate was fixed as 1e − 5 and the batch

size was set to be K = 50. The same setting was applied to all datasets.

Figure 5.3 : Calinski-Harabasz scores over iterations and the validation accuracy

over the training duration on the Oxford 102 Flower dataset.

In terms of the accuracy, Figure 5.3 and Table 5.3 shows that the proposed

algorithms were able to achieve faster convergence rates and higher final testing ac-

curacies. The proposed methods achieved up to 3.50% higher accuracy than baseline

models.

In addition, compared with baseline models which used fixed Gram-matrices, we

were able to achieve a much higher Calinski-Harabasz score during training.

Table 5.3 also reports validation accuracies over time costs and the total training

duration. The displayed time costs for the proposed methods include both sampling
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Table 5.3 : The final test accuracy, training duration and Calinski-Harabasz score

achieved by the proposed sampling methods and the uniform sampling on the Oxford

102 dataset.

Experiment Accuracy Duration(seconds) Calinski-Harabasz score

FULL-SINGLE 0.9010± 0.0027 17, 587.096± 77.5 66.4588± 1.6767

FULL-MARKOV 0.9080± 0.0065 24, 867.031± 96.0 68.1966± 2.5753

CLASS-SINGLE 0.9157± 0.0027 24, 671.139± 106.3 72.8985± 3.5527

CLASS-MARKOV 0.9333± 0.0040 28, 760.66± 151.6 78.4164± 2.0534

DM-SGD 0.8852± 0.0038 31, 257.426± 82.8 26.7737

DMSGD2 0.8983± 0.0044 33, 994.164± 143.5 26.7737

and back-propagation duration in each iteration, while omitting the data processing

duration.

Results show that all four proposed methods spent less time in sampling than

the DM-SGD, even when the eigen-decomposition needed to be performed in each

iteration. In particular, FULL-SINGLE spends 56.27% of the time costs of the

original DM-SGD and achieves a higher testing accuracy.

Compared with the four proposed methods on the four datasets, class dependent

stochastic sampling achieves a better performance than full-set sampling on all four

datasets. Methods that employs Markov-kDPP performs better than those using

k-DPP.

Performance Evaluation on the Stanford Dogs Dataset

Figure 5.4 and Table 5.4 report the validation accuracy over training iterations

and the training duration on the Stanford Dogs dataset. The best performing
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CLASS-MARKOV were 5.5% higher in accuracy than DM-SGD and 3.0% higher

than DMSGD2. In terms of the training duration, all four proposed methods require

less training durations than DM-SGD. It is clear in the figure that the proposed algo-

rithms have a faster learning curve and a clear advantage in computation efficiency.

Figure 5.4 : Validation accuracy over the training duration by the proposed sampling

methods and the uniform sampling on the Stanford Dogs dataset.

Table 5.4 : The final test accuracy and training duration achieved by the proposed

sampling methods and the uniform sampling on the Stanford Dogs dataset.

Experiment Accuracy Duration(seconds)

FULL-SINGLE 0.7738± 0.0228 25, 268.7± 110.1

FULL-MARKOV 0.8114± 0.0135 29, 497.8± 83.5

CLASS-SINGLE 0.8130± 0.0072 30, 831.7± 84.8

CLASS-MARKOV 0.8165± 0.0032 36, 814.6± 78.5

DMSGD 0.7612± 0.0115 47, 817.7± 118.0

DMSGD2 0.7867± 0.0014 49, 763.4± 79.1
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Performance Evaluation on the Caltech 101 Dataset

Figure 5.5 and Table 5.5 report the validation F1 score over training iterations

and the training duration on the Caltech 101 dataset. Since the dataset is highly

imbalanced, the results are measured by F1 score rather than accuracy. The best

performing CLASS-SINGLE reported a 7.2% higher F1 than DM-SGD and 2.4%

higher than DMSGD2. In terms of the training duration, FULL-SINGLE requires

approximately of the 49.8% time cost of DM-SGD, and all proposed methods spent

less time than the two baseline models. It is clear to see that the proposed methods

achieve a better performance on this highly imbalanced dataset.

Figure 5.5 : Validation accuracy over the training duration by the proposed sampling

methods and the uniform sampling on the Caltech 101 dataset.

In addition, it can be noted that class-dependent stochastic sampling methods

performed better than the full-set sampling methods on this dataset, while CLASS-

MARKOV performed slightly worse than CLASS-SINGLE in terms of the testing

F1. This is because images in the Caltech 101 dataset have high intra-class vari-

ance. While class-dependent sampling performs separate sampling across categories,

further encouraging diversity across iterations does not necessarily improve the per-
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Table 5.5 : Final test accuracy and training duration achieved by the proposed

sampling methods and the uniform sampling on the Caltech 101 dataset.

Experiment F1 Duration(seconds)

FULL-SINGLE 0.9165± 0.0317 20, 231.5± 96.6

FULL-MARKOV 0.9182± 0.0116 20, 464.8± 108.0

CLASS-SINGLE 0.9232± 0.0093 26, 548.0± 82.1

CLASS-MARKOV 0.9221± 0.0023 26, 809.6± 143.3

CLASS-IMBALANCE 0.9097± 0.0359 26, 250.9± 65.6

DM-SGD 0.8515± 0.0102 40, 604.2± 84.5

DMSGD2 0.8990± 0.0092 45, 491.3± 167.0

formance as with other datasets.

Performance Evaluation on MNIST

Figure 5.6 and Table 5.6 report the performance on the MNIST dataset. The

proposed method still outperforms DM-SGD in terms of the final testing accuracy.

As for the computational cost, class-dependent DPP actually requires a longer dura-

tion. This finding is also supported by our analysis in Section 5.1.2 because MNIST

only has 10 categories. On the contrary, the proposed full-set DPP methods only

require less than 30% of the total training duration of DM-SGD.

5.2 Diversified Mini-Batch Selection in Text-to-Image Gen-

eration

The proposed DPP based mini-batch sampling is further applied to the text-

to-image generation. This section describes how it is applied and compares the

performance of generation under uniform and DPP sampling.
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Figure 5.6 : Validation accuracy over training duration by the proposed sampling

methods and the uniform sampling on the MNIST dataset.

Table 5.6 : Final test accuracy and training duration achieved by the proposed

sampling methods and the uniform sampling on the MNIST dataset.

Experiment Accuracy Duration (seconds)

FULL-SINGLE 0.9704± 0.0025 6, 841.92± 163.57

FULL-MARKOV 0.9703± 0.0011 11, 109.3± 160.67

CLASS-SINGLE 0.9712± 0.0015 36, 204.4± 120.07

CLASS-MARKOV 0.9714± 0.0034 52, 640.0± 247.16

DM-SGD 0.9609± 0.0004 32, 224.8± 202.95

DPP sampling is applied to text-to-image generation in a similar fashion as

described in Section 5.1, in which the mini-batch is sampled using DPP sampling

instead of uniform sampling. In particular, we apply FULL-SINGLE DPP sampling

in the experiments. Experiments are performed on the CUB dataset [99].

DPP sampling requires the construction of feature matrix which determines the

similarity between every two samples. The proposed approaches in Section 5.1
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(a) Inception scores (b) FID scores

(c) R-precision scores

Figure 5.7 : Inception, FID and R-precision over epochs on the CUB dataset. “SGD”

denotes the experiment performed using the conventional SG; “FULL-SINGLE”

denotes the one performed using the FULL-SINGLE DPP sampling.

uses a combination of image feature and labels. As in this case each sample is a

sentence-image pair and each image has a label. Here, the proposed model uses

a concatenation of sentence feature, image feature and image label. The training

is a two-phase process, in which the text encoder is first pre-trained with the true

image-sentence pairs and the GAN network is trained next. The DPP sampling is

only applied to the GAN training.

Figure 5.7 shows the inception, FID and R-precision scores over training epochs.

Training using FULL-SINGLE DPP sampling constantly achieves a higher IS com-
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pared with the one using the conventional SGD. Using FULL-SINGLE-DPP also

results in a lower FID score and R-precision score, as in Figure 5.7. The result

shows that applying DPP sampling to text-to-image generation also enhances the

performance.

5.3 Summary

SGD has been widely adopted in training DNNs of various structures. Instead of

using a full dataset, a so-called mini-batch is selected during each gradient descent

iteration. This aims to accelerate the learning when a large amount of training

data is present. Without the knowledge of its true underlying distribution, one of-

ten samples the data indices uniformly. Recently, researchers applied a diversified

mini-batch selection scheme through the use of Determinantal Point Process (DPP),

in order to avoid having highly correlated samples in one batch [108]. Despite its

success, the attempts were restrictive in the sense that they used fixed features to

construct the Gram matrix for DPP; using the raw or fixed higher-layer features lim-

ited the amount of potential improvement over the convergence rate. In this paper,

we instead proposed using variable higher-layer features that are updated at each

iteration when the parameter changes. To avoid the high computation cost, several

contributions have been made to accelerate the computation of DPP sampling, in-

cluding: (1) using hierarchical sampling to break down a single DPP sampling with

large Gram-matrix into many DPP samplings of much smaller Gram matrix and

(2) using Markov k-DPP to encourage diversity across iterations. Empirical results

show a much more diversified mini batch in each iteration in addition to a much

improved convergence compared with the previous approach.
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Chapter 6

Conclusion

Our work aimed to identify effective approaches to improve the current cross domain

translation algorithms. Based on studies on several applications of cross domain

transfer, latent space modelling of GANs, and accelerating the training by improving

mini-batch SGD, we introduced several methodologies that outperform the previous

baseline models both in terms of the generation performance and the time cost.

The first part of our thesis was dedicated to cross domain transfer applications,

in particular, text to image generation and transfer over multiple image domains.

My work proposed a new design of text embedding that extracts additional phrase

embedding and a new set of attentions computed between object-grid regions and

phrases. The proposed method brings them into the GAN network design and can

generate more realistic and accurate images on the MSCOCO dataset, as reflected by

the inception scores, FID scores, and R-precision. We also proposed a methodology

that automatically determines the optimal order of image domains, while studying

the transfer functions between consecutive image domains. In this method, although

translation between two domains might require up to N−1 steps, only two generators

are required to perform translation over N image domains. Experimental results

show that the proposed methodology is capable of deciding the ordering over image

domains while generating plausible images.

The limitations of our work are that first, the proposed phrase-region attention

structure is only applicable to text-to-image generations. In the future we hope to

extend such a mechanism to other pairs of domains with more complex structures
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(e.g., between sounds and videos or paragraphs and videos). These domains also

consist of sequential data, so a similar attention mechanism is expected to be built.

Secondly, the proposed multiple domain transfer algorithms work only on datasets

that present a consistent change of details across the consecutive domains, as the

universal transfer function is applied. Several alternatives that might enable the pro-

posed method to have stronger generation variety, if the universal transfer function

is built between hidden layers, and each image domain has its own output function.

Therefore, the universal transfer function learns the latent correlation between do-

mains, and the separate output functions can fine-tune the details of each domain.

The second plan is that instead of using only one single pair of transfer functions,

the model learns m transfer functions across N image domains and m << N . This

way, although the network is slightly larger, the generation variety would be much

higher. The third plan is to use a normalising flow model instead of a generator in

the transfer function.

The second contribution we made in this thesis is the latent space modelling

of GANs. Our first work proposed a novel framework to better capture the latent

structure of a complex dataset. Under this framework, the GAN generator’s sim-

ple distribution was replaced by GMM. Subsequently, many technical innovations

were proposed to make this framework trainable in an “end-to-end” fashion. Most

noticeably, a PCM was innovated to help the model to better approximate GMM’s

responsibility distribution when given the data. In addition to GMM modelling, we

also demonstrated the multitude of benefits in the proposed approach:

(1) We demonstrated through experiments that our proposed method retains

GAN’s ability in sharper image generation compared with other GMM GAN meth-

ods.

(2) The proposed approach can significantly save the computation cost as only
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half the number of parameters is required to achieve the same image generation

quality compared to classic DCGAN.

(3) Thanks to the mixed densities, the proposed method surpasses previous base-

lines when dealing with a highly imbalanced dataset.

The performance of applying Gaussian Mixture to GANs was also demonstrated

on the CUB dataset for text-to-image generation. Compared to the vanilla GAN,

Gaussian Mixture GAN delivers a higher image generation quality.

We also provided an empirical evaluation of the performance of modelling the

GAN latent space with GMM. Experiments are performed both in terms of the

generation quality and anomaly detection on multiple datasets. Results show that

GMM-based GAN can significantly reduce the required number of parameters, while

maintaining the same quality of generation. Such a property can bring about many

new image generation functionalities, such as generation on portable devices with

limited computation power. In addition, we proposed to add a classifier in the

network to encourage p(k|x̂, θ) to be closer to p(k|z, θ) where x̂ is a synthetic sample

and z is the random vector the sample is generated from. The experimental result

shows that this can further improve the generation performance with a minimum

increase in the number of parameters.

The GMM expects the number of total components to be predetermined, so we

also proposed a novel GAN-based algorithm DP-GAN that models the latent space

of GANs using the DPGMM distribution. This was motivated by the difficulty of

modelling large complex datasets with DP mixture models directly, and previous

GANs do not perform well on unlabelled datasets that contain highly-diversified

data and the number of distinct classes K is not feasible to be determined before

training. Applying DP allows K to be inferred while the parameters of the distribu-

tion are learnt during training. However, because a vanilla GAN does not provide a
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backward transformation to study the parameters of DP from the data distribution,

we proposed learning the distribution in the following way. We “propose” a set of

particles z from a proposal distribution p(z), and z is weighed by the normalized

D(G(z)). In addition, we encourage p(c|z) and p(c|x) to resemble with each other

for any pair of (x, z) in the training, so that the learned G has a consistent posterior

responsibility regardless of using x or z. In our empirical study performed on both

synthetic and real-world datasets, we demonstrated that the proposed DP-GAN can

accurately model the latent space while producing high-quality images. Given the

weights of all components, a threshold can be easily set to infer the number of dis-

tinct classes after the model is fully trained. Each valid components in the mixture

reflects a particular image class. This will allow generation from a specified image

class by sampling from a specific Gaussian.

There are several extensions we hope to achieve in the latent space modelling

of GANs. Firstly, the initial parameters of the Gaussian Mixture and DP Gaussian

mixture distributions are randomly initialised in the current model. Some unsuper-

vised algorithms can be applied to decide the initial parameters to accelerate the

convergence. We also plan to apply other distributions to the cross domain transfer

learning which enables more flexibility in the generation and useful properties can

be discovered, such as scale mixtures.

The third contribution is in terms of accelerating network convergence by incor-

porating the DPP to mini-batch SGD. We proposed several fast, approximated DPP

sampling strategies by taking advantage of available class-label information, which,

in turn, allowed us to sample DPP using a Gram matrix that is constructed from

the variable higher layer features, updated at each iteration as parameters change.

We detailed the five approaches employed in this paper and the rationale behind

how these methods significantly reduce the time costs. We demonstrated that all

proposed algorithms were able to achieve a faster convergence rate and greater ac-
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curacy compared with previous state-of-the-art “fixed” feature approaches. We also

applied such DPP accelerated mini-batch sampling to perform text-to-image gener-

ation. Experimental results suggest an enhanced generation quality and an earlier

convergence. Such a DPP based mini-batch sampling method is also applied to the

text-to-image generation on the CUB dataset. The result showed a better image

quality with a higher IS and lower FID score. The synthetic samples also reflected

the description more accurately than the vanilla GAN because a higher R-precision

was achieved.

The current experiment was only performed on the CUB dataset using the FULL-

SINGLE-DPP sampling. Although, as demonstrated by the experimental results in

Section 5.1.2, Markov-DPP based sampling methods and class-dependent stochastic

DPP sampling methods are expected to achieve a faster convergence compared with

FULL-SINGLE-DPP sampling. This will be verified in future work. We will also

apply DPP based sampling to larger datasets, such as MSCOCO, and study the

effects of weights between the image features, sentence features, and image labels.

In addition, we plan to extend the proposed mini-batch sampling methods to other

cross domain applications, such as text to sound and text to video.
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Chapter 7

Appendix

7.1 Network Details for the Text-to-Image Generation

This section lists the hyperparameters chosen for the proposed framework, in

addition to the detailed network design (displayed in tables).

7.1.1 Hyperparameters

The hyperparameters chosen for our proposed network are:

i. lS = 15: maximum number of words in a sentence

ii. lP = 5: maximum number of phrases in a sentence

iii. lW = 5: maximum number of words in a phrase

iv. lO = 7: maximum of objects (bounding boxes) in an image

v. Dh = 48: depth of hidden states h0, h1 and h2

vi. De = 256: dimension of sentence, phrase and word embedding

vii. Dd = 96: a chosen hyper-parameter used in the discriminator

viii. Dz = 100: dimension of the noise vector z and F ca

7.1.2 Basic Network Blocks

Some network blocks used in our framework are:
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i. Upsampling block (kernel = a, stride = b): a nearest neighbour upsampling

layer that up-scales the spatial size by 2, a convolution layer with kernel size

a and stride size b, a batch normalisation and a GLU layer

ii. Down-sampling block (kernel=a, stride=b): a convolution layer with kernel

size a and stride size b, a batch normalization layer and a leaky ReLU layer

iii. Spatial replicate: copy the input along an axis

In the below sections, I report the detailed network architecture for the proposed

framework, including the operation in each layer, the input and output tensors.
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7.1.3 Network Architecture for the Generator

Table 7.1 : Network architecture for the generator

Stage Sub-stage Name Input Tensors Output Tensors

G0

Local Path

Spatial Replicate 1×De 16× 16×De

Apply bounding box mask 16× 16×De lO × 16× 16×De

Average lO × 16× 16×De 16× 16×De

Down-sampling (kernel=4, stride=2) × 4 16× 16×De 1× 1× (Dh × 8)

Concatenate with noise vector z 1× 1× (Dh × 8), z 1× 1× (Dh × 8 +Dz)

Linear + batch norm + GLU 1× 1× (Dh × 8 +Dz) 4× 4× (Dh × 16)

Up-sampling (kernel=3, stride=1) ×2 4× 4× (Dh × 16) 16× 16× (Dh × 4)

Apply bounding box mask 16× 16× (Dh × 4) lO × 16× 16× (Dh × 4)

Average lO × 16× 16× (Dh × 4) 16× 16× (Dh × 4)

Global Path

Concatenation z, F ca 1× (Dh × 2)

Linear + batch norm + GLU 1× (Dh × 2) 4× 4× (Dh × 16)

Up-sampling (kernel=3, stride=1) ×2 4× 4× (Dh × 16) 16× 16× (Dh × 4)

Concatenate local and global outputs 16 × 16× (Dh × 8)

Upsampling (kernel=3, stride=1) ×2 16× 16× (Dh × 8) 64× 64×Dh

G1

Regular-grid-Word Attention
Linear e ls ×Dh

F attn1
n h0, ls ×Dh 64× 64×Dh

Object-grid-Phrase Attention
Linear p lp ×Dh

F attn2
n h0, lp ×Dh 64× 64×Dh

Concatenation F attn1
n , F attn2

n , h0 64× 64× (3×Dh)

Up-sampling (kernel=3, stride=1) 64 × 64× (3×Dh) 128× 128×Dh

G2

Regular-grid-Word Attention
Linear e ls ×Dh

F attn1
n h1, ls ×Dh 128× 128×Dh

Object-grid-Phrase Attention
Linear p lp ×Dh

F attn2
n h1, lp ×Dh 128× 128×Dh

Concatenation F attn1
n , F attn2

n , h0 128× 128× (3×Dh)

Up-sampling (kernel=3, stride=1) 128 × 128× (3×Dh) 256× 256×Dh
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7.1.4 Network Architecture for the Discriminators

D0

Table 7.2 : Network architecture for D0

Stage Sub-stage Name Input Tensors Output Tensors

Image + Sentence Discriminator

Convolution + leaky ReLU 64× 64× 3 32× 32×Dd

Down-sampling (kernel=4, stride=2) ×3 32× 32× 96 f IMG
D (4× 4× (Dd × 8))

D(x) Convolution (Image only logits) 4 × 4× (Dd × 8) 1

D(x, ē) \textbf{Sentence conditioned logits} f IMG
D , ē 1

Image + Sentence + Bounding Box Discriminator

Convolution 64× 64× 3 32× 32×Dd

Down-sampling (kernel=4, stride=2) 32 × 32×Dd f IMG2

D (16× 16× (Dd × 2))

Spatial Replicate ē 16× 16×De

Concatenation 16× 16×De, f
IMG2

D 16× 16× (De +Dd × 2)

Apply bounding box mask 16× 16× (De +Dd × 2) 16× 16× (De +Dd × 2)

Down-sampling (kernel=4, stride=2) ×2 16× 16× (De +Dd × 2) f IMG−BBOX
D (4× 4× (Dd × 8))

D(x, ē, b) \textbf{Sentence conditioned logits} f IMG−BBOX
D , ē 1

Sentence conditioned logits

Spatial replicate ē 4× 4×De

Concatenation f IMG
D or f IMG−BBOX

D , ē 4× 4× (De +Dd × 8)

Down-sampling (kernel=3, stride=1) 4 × 4× (De +Dd × 8) 4× 4× (Dd × 8)

Convolution 4× 4× (Dd × 8) 1

D1

Table 7.3 : Network architecture for D1

Stage Sub-stage Name Input Tensors Output Tensors

Image + Sentence Discriminator

Convolution + ReLU 128× 128× 3 64× 64×Dd

Down-sampling (kernel=4, stride=2) ×4 64× 64× 96 f IMG
D (4× 4× (Dd × 16))

Down-sampling (kernel=3, stride=1) f IMG
D (4× 4× (Dd × 16)) f IMG

D (4× 4× (Dd × 8))

D(x) Convolution (Image only logits) 4 × 4× (Dd × 8) 1

D(x, ē) \textbf{Sentence conditioned logits} f IMG
D , ē 1

Image + Sentence + Bounding Box Discriminator

Convolution 128× 128× 3 64× 64×Dd

Down-sampling (kernel=4, stride=2) ×2 64× 64×Dd f IMG2

D (16× 16× (Dd × 4))

Spatial Replicate ē 16× 16×De

Concatenation 16× 16×De, f
IMG2

D 16× 16× (De +Dd × 4)

Apply bounding box mask 16× 16× (De +Dd × 2) lO × 16× 16× (De +Dd × 4)

Average lO × 16× 16× (De +Dd × 4) 16× 16× (De +Dd × 4)

Down-sampling (kernel=4, stride=2) ×2 16× 16× (De +Dd × 2) 4× 4× (Dd × 16)

Down-sampling (kernel=3, stride=1) f IMG−BBOX
D (4× 4× (Dd × 16)) f IMG−BBOX

D (4× 4× (Dd × 8))

D(x, ē, b) \textbf{Sentence conditioned logits} f IMG−BBOX
D , ē 1

Sentence conditioned logits

Spatial replicate ē 4× 4×De

Concatenation f IMG
D or f IMGBBOX

D , ē 4× 4× (De +Dd × 8)

Down-sampling (kernel=3, stride=1) 4 × 4× (De +Dd × 8) 4× 4× (Dd × 8)

Convolution 4× 4× (Dd × 8) 1
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D2

Table 7.4 : Network architecture for D2

Stage Sub-stage Name Input Tensors Output Tensors

Image + Sentence Discriminator

Convolution + leaky ReLU 256× 256× 3 128× 128×Dd

Down-sampling ×3 (kernel=4, stride=2) 128× 128×Dd f IMG
D (16× 16× (Dd × 8))

Down-sampling (kernel=3, stride=1) ×2 f IMG
D (4× 4× (Dd × 16)) f IMG

D (4× 4× (Dd × 8))

D(x) Convolution (Image only logits) 4 × 4× (Dd × 8) 1

D(x, ē) Sentence conditioned logits f IMG
D , ē 1

Image + Sentence + Bounding Box Discriminator

Convolution + leaky ReLU 256× 256× 3 128× 128×Dd

Down-sampling ×3 (kernel=4, stride=2) 128× 128×Dd f IMG2

D (16× 16× (Dd × 8))

Spatial Replicate ē 16× 16×De

Concatenation 16× 16×De, f
IMG2

D 16× 16× (De +Dd × 8)

Apply bounding box mask 16× 16× (De +Dd × 8) lO × 16× 16× (De +Dd × 8)

Average lO × 16× 16× (De +Dd × 8) 16× 16× (De +Dd × 8)

Down-sampling ×2 (kernel=4, stride=2) ×2 16× 16× (De +Dd × 2) 4× 4× (Dd × 32)

Down-sampling (kernel=3, stride=1) ×2 f IMG−BBOX
D (4× 4× (Dd × 32)) f IMG−BBOX

D (4× 4× (Dd × 8))

D(x, ē, b) Sentence conditioned logits f IMG−BBOX
D , ē 1

Sentence conditioned logits

Spatial replicate ē 4× 4×De

Concatenation f IMG
D or f IMGBBOX

D , ē 4× 4× (De +Dd × 8)

Down-sampling (kernel=3, stride=1) 4 × 4× (De +Dd × 8) 4× 4× (Dd × 8)

Convolution 4× 4× (Dd × 8) 1
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