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ABSTRACT

Deep Learning based Human Pose Estimation

by

Yang Li

Human pose estimation is an important research area in vision-based human

activity analysis. Human pose estimation aims to estimate the human articulate

joint positions in 2D/3D space from images or videos. Due to the complexity of

the real environment and the diversity of human poses, vision-based human pose

estimation is challenging. Recently, the rapid development of deep learning has

much promoted the simulation of the analysis and reasoning capabilities of the

human visual system. Therefore, it is of considerable significance to further explore

vision-based human pose estimation using deep learning techniques. Specifically,

this thesis proposes a series of methods for human pose estimation, summarized as

follows:

We propose a video-based 2D pose estimation model, which embeds a multi-scale

TCE module into the encoder-decoder network architecture for explicitly exploring

temporal consistency in videos. The TCE module applies the learnable offset field to

capture the geometric transformation between adjacent frames at the feature level.

In addition, we explore the multi-scale geometric transformations at the feature level

by integrating the spatial pyramid within the TCE module, which achieves further

performance improvements.

We propose a self-supervised approach for 3D human pose estimation, which

only relies on geometric prior knowledge and does not require any 3D human pose

annotations. To this end, we design the transform re-projection loss, which is an

effective technique to exploit multi-view consistency information and constrain the

estimated 3D poses during training. Besides, we introduce a root position regression



branch to restore the global 3D poses during training. In this way, the network

can reserve the scale information of re-projected 2D poses, which can improve the

accuracy of the predicted 3D poses.

We propose a self-supervised 3D human pose estimation method based on the

consistent factorization network, which fully disentangles the 3D human shape and

camera viewpoint to overcome the projection ambiguity problem. To this end, we

design a simple and effective loss function using multi-view information to constrain

the canonical 3D human pose. Moreover, in order to reconstruct robust canonical

3D human poses, we represent 3D human pose as a combination of a dictionary

of 3D pose basis, and adopt geometric information of 3D human poses to learn a

hierarchical dictionary from 2D human poses by solving the NRSfM problem.
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Chapter 1

Introduction

1.1 Aims and Motivations

Computer vision is a classical research topic of artificial intelligence. It aims to

equip the computer with a capability to cognize and understand visual signals in the

surrounding real world like human beings. With the popularity of web cameras and

surveillance cameras, a large number of image and video data are being produced to

record people’s activity. Therefore, understanding human activity has become one

of the most active research areas in the computer vision community. Human pose

estimation is a fundamental task for human activity analysis. It aims to locate the

human anatomical keypoints, which can further locate and reconstruct the human

body and serve for the more advanced analysis of visual signals.

Besides, human pose estimation is also widely used in fields like video surveil-

lance, human-computer interaction, sports analysis, virtual reality, animation gen-

eration, etc. For example, human pose estimation can be used to track human

subjects’ motion for interactive gaming. Popularly, Kinect, launched by Microsoft,

used 3D pose estimation to track the motion of the human player and to use it

to render the action of the virtual character. As for sports analysis, human pose

estimation can reconstruct the athlete’s motion from the daily training videos. The

analyst can then conduct quantitative analysis combined with human physiology,

physics, and other domain knowledge, which is more scientific and gets rid of purely

relying on experience. As for the massive surveillance video data, human pose esti-

mation can automatically detect and localize human bodies in surveillance videos,
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which significantly improves the speed of data processing tasks, such as abnormal

behavior detection. Human pose estimation can also be used for CGI applications.

Graphics, styles, fancy enhancements, equipment, and artwork can be superimposed

if their human pose can be estimated. By tracking the variations of this human pose,

the rendered graphics can naturally fit the person as he/she moves.

Human pose estimation can be divided into two categories: 2D human pose

estimation and 3D human pose estimation. Due to the complexity of the real envi-

ronment and the diversity of human poses, both 2D and 3D human pose estimation

are very challenging tasks. Recently, with the rapid development of Convolutional

Neural Networks (CNNs), deep learning has been increasingly exploited on the task

of human pose estimation. Although deep learning based methods have achieved

significant improvements, they still face some challenges. As for 2D human pose

estimation, most existing methods focus on designing novel network architectures

for image-based 2D pose estimation. Although these methods can be directly ap-

plied to video data, they usually obtain suboptimal performances because the direct

application of image-based methods cannot leverage the rich temporal information

inherent in video data. As for 3D human pose estimation, a typical neural network

model needs a large amount of training data. However, annotating 3D human joint

positions is an expensive process. Moreover, there are well-founded geometrical the-

ories on how to project 2D images to 3D skeletons. Merely using a neural network to

approximate this projection may lead to the network subject to overfitting training

data. Toward the above issues, this thesis researches video-based 2D pose estimation

and self-supervised 3D pose estimation methods. Specifically, we propose a series of

methods for human pose estimation, which are summarized as follows:

1. We propose a video-based 2D pose estimation model, which embeds a multi-

scale TCE module into the encoder-decoder network architecture for explic-
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itly exploring temporal consistency in videos. The TCE module applies the

learnable offset field to capture the geometric transformation between adjacent

frames at the feature level. Compared with the existing model-based methods,

it can explicitly model the temporal consistency information in an end-to-end

network. Compared with the existing post-enhancement methods, it does not

require additional optical flow calculations and is more computationally effi-

cient. In addition, we explore the multi-scale geometric transformations at

the feature level by integrating the spatial pyramid within the TCE mod-

ule, which achieves further performance improvements. Experimental results

demonstrate that the proposed network has achieved state-of-the-art perfor-

mance in both accuracy and computational efficiency.

2. We propose a self-supervised approach for 3D human pose estimation, which

only relies on geometric prior knowledge and does not require any 3D human

pose annotations. To this end, we design the transform re-projection loss,

which is an effective technique to exploit multi-view consistency information

and constrain the estimated 3D poses during training. Moreover, we integrate

the re-projection losses with the 2D joint confidences of different camera views

to alleviate the self-occlusion problem. Besides, we introduce a root position

regression branch to restore the global 3D poses during training. In this way,

the network can reserve the scale information of re-projected 2D poses, which

can improve the accuracy of the predicted 3D poses. Finally, a pre-training

technique is designed to help the two-branch network converge. Experimental

results show that this method achieves better performance compared with

recent weakly/self-supervised methods.

3. We propose a self-supervised 3D human pose estimation method based on

the consistent factorization network, which fully disentangles the 3D human
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shape and camera viewpoint to overcome the projection ambiguity problem.

To this end, we design a simple and effective loss function using multi-view

information to constrain the canonical 3D human pose. Moreover, in order

to reconstruct robust canonical 3D human poses, we represent 3D human

pose as a combination of a dictionary of 3D pose basis, and adopt geometric

information of 3D human poses to learn a hierarchical dictionary from 2D

human poses by solving the NRSfM problem. The hierarchical dictionary can

be learned without the need for 3D human pose annotations, and has a stronger

expression ability compared with the single-level dictionary. Experimental

results show that the proposed method can maximally disentangle 3D human

shapes and camera viewpoints, as well as reconstruct accurate 3D human

poses.

1.2 Literature Review

1.2.1 Overview

Human pose estimation, also known as human keypoint estimation, aims to lo-

cate the anatomical keypoints in the human body. It is a fundamental task in the

computer vision community, which has important theoretical value and broad ap-

plications in many fields such as human activity recognition, sports analysis, and

human-computer interaction. Recently, many world-class research teams and insti-

tutes have invested many resources to study this problem. For example, the Robotics

Institute at Carnegie Mellon University has constructed a large-scale multi-view hu-

man motion capture system named Panoptic Studio [45]. Based on this system,

researchers have proposed multiple datasets for different tasks such as human pose

estimation, hand pose estimation, and social interaction analysis. Microsoft Re-

search has constructed a large-scale 2D human pose dataset named Common Ob-

jects in Context (COCO) [53], which gathers images of complex everyday scenes
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containing common objects in their natural context. At the same time, they or-

ganized competitions and workshops, which greatly promoted the development of

2D pose estimation technologies. Max Planck Institute for Computer Science also

proposed MPII [1] and MPI-INF-3DHP [56] datasets, which are widely used 2D and

3D human pose datasets.

Human pose estimation already becomes one of the hottest topics in top com-

puter vision conferences and journals, such as CVPR (IEEE Conference on Com-

puter Vision and Pattern Recognition), ICCV (International Conference on Com-

puter Vision), ECCV (European Conference on Computer Vision), PAMI (IEEE

Transaction on Pattern Analysis and Machine Intelligence), TIP (IEEE Transac-

tion on Image Analysis), IJCV (International Journal of Computer Vision), CVIU

(Computer Vision and Image Understanding) and PR ( Pattern Recognition), etc.

Human pose estimation can be divided into 2D pose estimation and 3D pose estima-

tion, which estimate human joint positions in two-dimensional and three-dimensional

space, respectively. In the following, we will review the relevant literature in detail.

1.2.2 2D Human Pose Estimation

In this part, we first review the representative works of 2D human pose estima-

tion.

Image-based Approaches

Traditional methods of image-based 2D pose estimation are mostly bottom-up

part-based. These methods represent the human pose as a collection of human body

parts, and they adopt the deformable model to describe spatial relationships of body

parts. In 1973, Fishler et al. [25] proposed the pictorial structure model for visual

object representations. Subsequently, Felzenszwalb et al. [24] proposed a general

object recognition model based on the pictorial structure model. Since then, the
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pictorial structure model was widely used in human pose estimation, and plenty of

part-based methods [2, 101, 68, 69, 83, 50, 76, 94] were gradually proposed. For

example, Yang and Ramanan [101] designed a general, flexible mixture model for

capturing contextual co-occurrence relations between parts, augmenting standard

spring models that encode spatial relations. Pishchulin et al. [68] used the poselet

prior to improve the pictorial structure model. These methods mainly rely on hand-

crafted features, such as Histogram of Oriented Gradient (HoG) and Scale-Invariant

Feature Transform (SIFT), to detect human body parts, and then use the dynamic

programming algorithm to obtain the optimal human pose configuration. However,

these methods lack generalization ability for images of complex everyday scenes

where human joints are truncated or severely occluded.

With the great success of deep learning in object classification and detection,

researchers tried to apply Convolutional Neural Networks (CNNs) to human pose

estimation. Meanwhile, the availability of large-scale human pose datasets, such as

FLIC [73], MPII [1], and Microsoft COCO [53], make it possible to train deep net-

works. Since CNNs can learn high-level visual features through stacked convolution

and pooling layers, these methods can directly predict human joint positions from

input images. In 2014, Jain et al. [42] and Toshev et al. [87] proposed to train

CNNs to regress human joint positions. Compared with traditional methods follow-

ing the multi-stage pipeline that includes extracting hand-crafted features, training

body part detectors, and modeling spatial relations of body parts, deep learning

based methods can be trained in an end-to-end manner, at the same time achieve

better performance for images in complex natural scenes. Mainstream deep learning

based methods are dedicated to designing network architectures that are more suit-

able for the task of human pose estimation. For example, Wei et al. [95] proposed

the Convolutional Pose Machine (CPM), which produces increasingly refined pose

estimations by directly operating on belief maps from previous stages. Newell et
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al. [58] introduced the Stacked Hourglass Network (SHN) that improves the per-

formance by repeating bottom-up, top-down processing. Cao et al. [10] introduced

the Part Affinity Fields (PAFs) to learn the association of body parts based on the

CPM architecture, which significantly outperformed previous works. Belagiannis et

al. [7] designed a recurrent neural network to improve the results iteratively. All

of these networks follow the multi-stage cascading architecture, which can capture

large spatial context information and improve the precision of predicted joint po-

sitions through multi-stage refinement. This multi-stage architecture has achieved

state-of-the-art results in many image-based benchmarks.

Besides, some works [17, 98, 32, 79, 35] explore the fusion of multi-scale features

from different levels of CNNs. For example, He et al. [32] and Chen et al. [17]

applied the feature pyramid structure for pose estimation by adopting the Feature

Pyramid Network (FPN) [52]. Yang et al. [98] designed the Pyramid Residual

Module (RPM) that learns feature pyramids using different subsampling ratios in

a multi-branch network. There are also some methods [99, 86, 19, 23, 92] that

combined CNNs with graphical models to learn both convolutional features and

joint spatial constraints in an end-to-end network. For example, Tompson et al.

[86] combined a CNN and a Markov Random Field (MRF) to exploit the spatial

relationships between human joints in a unified model. Chu et al. [19] proposed

a deep structured feature learning framework that models the correlations among

the convolutional feature maps of body joints for accurate pose estimation. The

success of all the above works demonstrates how a large spatial context is essential

for CNN-based pose estimation methods.

Video-based Approaches

Although image-based methods can be directly applied to video data, they usu-

ally obtain sub-optimal performance because the direct application of image-based
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methods cannot leverage the rich temporal information inherent in video data. We

will summarize the existing video-based methods and analyze how they explore

temporal information in videos. Conventional methods [61, 59, 40, 18, 112, 26, 105]

consider video temporal information by adding connections in the temporal dimen-

sion on the pictorial structure model. For example, Cherian et al. [18] cast the

video-based pose estimation problem as an optimization problem defined on body

parts with spatio-temporal links between frames.

Recent works attempt to integrate temporal cues in advanced deep models to

improve video-based pose estimation performance. Among them, the most com-

mon methods [67, 11, 78, 97] investigate temporal context by using optical flow.

As optical flow defines the distribution of apparent velocities of movement, it can

help capture the geometric transformations between frames to refine the predicted

heatmaps. For example, Song et al. [78] used optical flow to exploit image evi-

dence from adjacent frames. Pfister et al. [67] utilized optical flow to align output

heatmaps from neighboring frames to improve the performance of video pose esti-

mation. Some other methods [28, 54] capture the temporal dependency using Re-

current Neural Networks (RNNs), such as Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU), which have become dominating tools for sequence

tasks thanks to their power in long-range temporal representation. For example,

Luo et al. [54] proposed a recurrent model with LSTM to consider the temporal

information for pose estimation in videos. Gkioxari et al. [28] introduced a chained

model using CNNs, where the pose prediction depends not only on the input but

also on the output of the previous frame. There are also methods of applying 3D

convolution to learn representations of video clips. Girdhar et al. [27] inflated the

2D convolution in the Mask R-CNN into 3D, which leverages temporal information

over video clips to generate more robust pose predictions in videos.
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1.2.3 3D Human Pose Estimation

3D human pose estimation refers to the process of reconstructing 3D human

skeletons from single-view and multi-view images. According to the inputs, 3D

human pose estimation can be divided into multi-view 3D pose reconstruction and

monocular 3D pose estimation.

Multi-view 3D Pose Reconstruction

Multi-view 3D pose reconstruction requires the camera intrinsic and extrinsic

parameters obtained through camera calibration, and then use the 2D skeletons

from multiple corresponding camera views to reconstruct 3D human skeletons. Early

representative works include the 3D Pictorial Structure (3DPS) models [5, 6] and

the multi-view geometry based methods [31]. 3DPS models construct a probabilistic

graphical model in which the nodes represent 3D positions of human joints, and the

edges encode spatial relationships between human joints. Specifically, a node’s state

space is usually represented by a discrete 3D grid, and the conditional probability

of each position is represented by the confidence of the corresponding re-projected

position on the 2D keypoint heatmap. The prior is described by the bone length

constraint or the confidence detected by body part detectors. As a result, 3DPS

models infer 3D human skeletons by maximizing the posterior probability. The

multi-view geometry based methods apply the triangulation algorithm, which solves

overdetermined equations to calculate the homogeneous coordinates of human joints.

Since the 2D coordinates of human joints usually cannot be accurately estimated,

Random Sample Consensus (RANSAC) and Huber loss were used to search for

optimal solutions.

Some recent methods [41, 21, 85, 15, 70] introduced deep learning to improve

the robustness of multi-view 3D pose reconstruction methods. For example, Iskakov

et al. [41] proposed an end-to-end network that can directly reconstruct 3D hu-
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man skeletons from multi-view image inputs. Dong et al[21] proposed a real-time

multi-person 3D pose reconstruction algorithm that focuses on solving the person

matching problem in multi-view multi-person scenarios. Besides, some researchers

[72, 45] attempted to obtain accurate 3D pose annotations in a marker-less motion

capture system, and further provide training data for monocular 3D pose estima-

tion models. Although the above methods use deep learning techniques, such as 2D

human pose estimation and person re-identification, the core algorithm about 3D

skeleton reconstruction is still based on 3DPS or multi-view geometry.

Monocular 3D Pose Estimation

Recent researches focus on estimating 3D human poses using only single-view

inputs. Thanks to the powerful fitting ability of deep neural networks and the

availability of multiple large-scale 3D pose datasets such as Human3.6M [38] and

MPI-INF-3DHP [56], plenty of monocular 3D human pose estimation methods have

been proposed and made significant progress. Unlike multi-view methods, monoc-

ular methods can only estimate the relative 3D positions of human joints [55], and

cannot obtain the absolute positions in the world or camera coordinate. 3D pose an-

notations are generally collected through the marker-based Motion Capture system,

which is labor-intensive and expensive. Therefore, weakly/self-supervised learning

paradigms have been increasingly explored in recent works, where 3D pose estima-

tion networks can be effectively trained with part of or without 3D pose annotations.

Next, we will introduce representative works from two aspects, fully-supervised

approaches and weakly/self-supervised approaches.

Fully-supervised Approaches

Fully-supervised methods concentrate on designing effective 3D pose estimation

network architectures. Existing methods can be generally classified into two cat-

egories: two-stage methods and single-stage methods. Two-stage methods
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[39, 84, 55, 23, 12, 51] first obtain 2D joint locations through the advanced 2D

keypoint detector such as Stacked Hourglass Network (SHN) [58] and Cascaded

Pyramid Network (CPN) [17], and then lifts them into 3D space through a lifting

network. The second stage is the core of two-stage methods, which learns the map-

ping between the 2D and 3D positions of the human joints. To this end, various

2D-to-3D lifting network backbones were designed. For example, Martinez et al.

[55] proposed a simple baseline using a simple neural network with only two fully

connected layers and achieved surprising results. Although this network has a simple

architecture, it achieved good performance and is widely used in subsequent works.

Since human skeletons are with the graph-like structure, hao et al. [107] and Ci et

al. [20] attempted to exploit the novel Graph Convolution Networks (GCNs) to cap-

ture the semantic relationships between human joints for accurate 3D human pose

regression. Besides, there are also works [65, 3, 110, 109] that considers temporal

information from frame sequence to produce more robust predictions.

The single-stage method [82, 63, 30, 81, 80, 104]directly predict depth values

of human joints from monocular images through CNNs. Most of the single-stage

methods [80, 56, 57] adopt the joint position regression strategy. In addition, Sun

et al. [81] proposed an integral regression method, which used the soft-argmax

operation to obtain the joint coordinate vector from the predicted heatmap in a

differentiable way. Pavlakos et al. [63] discretized the 3D space around the target

position, proposed a more natural 3D pose representation, and trained a CNN to

predict the probability value of the voxel corresponding to each human joint.

Weakly/Self-supervised Approaches

Monocular 3D pose estimation is an inverse graphic process. In order to train

the 3D pose estimation network without explicit 3D pose annotations, some works

[89] introduced the prior of camera projection geometry to train the network in
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the weakly or self-supervised manner. Among them, the re-projection loss is the

most widely used technique [46, 96, 90, 65, 93, 8], which projects the 3D skeleton

predicted by the network back to the 2D space through perspective or orthogonal

projection, and calculates the error between the re-projection and input 2D pose

as the training loss. Here, the re-projection process can be regarded as a decoder

without any trainable parameters. However, due to the projection ambiguity prob-

lem [31, 75], using re-projection loss alone cannot effectively constrain the network

outputs. In order to alleviate this problem, existing methods generally adopt the

following strategies:

1. Bone Length Constraint: In order to avoid unreasonable predictions, some

works [30, 65, 72] make the predicted 3D poses satisfy kinematics by enforcing

the bone length similarity between predicted and ground-truth skeletons. For

example, Pavllo et al. [65] added an extra soft constraint of bone length to

the objective function when optimizing the network.

2. Adversarial Loss: Inspired by Generative Adversarial Network (GAN) [29],

adversarial loss [89, 100] is widely used to solve the projection ambiguity prob-

lem. It encourages the output 3D poses on the real human manifold by intro-

ducing a real/fake 3D skeleton discriminator. For example, Tung et al. [89]

proposed the Adversarial Inverse Graphic Network (AIGN), which uses the

adversarial prior to match the distribution between the predictions and a col-

lection ground-truth for the task such as 2D-to-3D lifting and image-to-image

translation. Similarly, Wandt et al. [90] proposed a weakly-supervised method

with the adversarial supervision for 3D human pose estimation. Chen et al.

[13] exploits the geometric self-consistency of the lift-reproject-lift process with

the adversarial prior of 2D poses. These methods require some extra unpaired

3D pose annotations (without 2D-3D correspondence) to make the network
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memorize the distribution of real 3D skeletons during training.

3. Multi-view Constraint: Also, some works [88, 71, 48, 13] introduced multi-

view constraint training human 3D pose estimation network. Unlike multi-

view 3D pose reconstruction, these methods only require multi-view images as

input during the training phase. For example, Rhodin et al. [71] pre-trained

an encoder-decoder network that predicts an image from one view to another.

In this way, the network learned geometry-aware representations and then was

fine-tuned using a small amount of supervision to predict 3D human poses.

Kocabas et al. [48] applied Epipolar geometry to obtain “real” 3D poses from

estimated 2D joint positions of multiple views and used them for training a

3D pose estimator.

4. Dictionary-based Technique: All of the above methods directly regress

depth values or 3D positions of human joints at the corresponding camera

view. Some methods advocate using a dictionary of 3D pose basis elements to

represent a 3D human skeleton. These methods reduce the space of all allowed

3D coordinates, making the predictions within the “human” sub-space. For

example, Tung et al. [89] adopt PCA on the orientation-aligned training set to

obtain a shape dictionary, and represent a 3D human pose as a linear combina-

tion of 3D shape basis. Novotny et al. [60] also represent 3D human poses as

a combination of shape basis. They consider the dictionary as the weights of a

linear layer and learn it with the 3D pose estimation network in an end-to-end

manner. Most recently, some researches make advances in Non-rigid Struc-

ture from Motion (NRSfM), a classical technique to reconstruct 3D shapes of

articulated 3D points. For example, Kong and Lucey [49] proposed the Deep-

NRSfM network architecture as solving a multi-layer block sparse dictionary

learning problem, and achieve high-quality 3D human pose reconstructions.
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Wang et al. [91] proposed a new knowledge distilling algorithm applicable

to Deep-NRSfM based on dictionary learning, and achieves weakly-supervised

learning using solely 2D human joint annotations.

1.3 Thesis Organization

This thesis mainly conducts research on deep learning based human pose esti-

mation, and the thesis is organized as follows:

• Chapter 2: This chapter presents the proposed video-based 2D human pose es-

timation framework, which explores temporal consistency in videos to improve

the performance.

• Chapter 3: This chapter presents the proposed self-supervised 3D pose estima-

tion method. The method follows the two-stage pipeline, where the first stage

is 2D pose estimation and adaptive to the video-based 2D pose estimation

network described in Chapter 2, and the second stage lifts 2D poses into the

3D space through a 2D-to-3D lifting network.

• Chapter 4: This chapter presents the consistent factorization network, where

3D human shape and camera viewpoint are consistently decomposed to over-

come the projection ambiguity problem. Unlike the method proposed in Chap-

ter 3, this method does not require intrinsic and extrinsic camera parameters

during training, which can be considered an extension of the method in Chap-

ter 3.

• Chapter 5: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendation for future works is given as well.
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Chapter 2

Exploring Temporal Consistency for 2D Human
Pose Estimation in Videos

2.1 Introduction

Human pose estimation is a fundamental task in the computer vision community

and has been broadly applied to many fields such as human activity recognition,

sports analysis and human-computer interaction. The purpose of pose estimation

is to locate the anatomical keypoints in human bodies. Previous methods have

traditionally relied on hand-crafted features. They face challenges when handling

unconstrained cases due to the highly articulated human body limbs, occlusion

and change of viewpoint. Recently, as a result of the availability of large-scale

human pose datasets [1, 53] and the rapid development of Convolutional Neural

Networks (CNNs) [34], plenty of deep learning based methods for pose estimation

have been proposed and achieved significant progress. Traditionally, most of these

methods predict human poses from single images. Although these methods can be

directly applied to video data, they usually obtain suboptimal performances because

the direct application of image-based methods cannot leverage the rich temporal

information inherent in video data. In this paper, we focus on improving human

pose estimation in videos by fully exploring the temporal information.

Some works already attempt to integrate temporal information into the deep

models to estimate human poses in videos. These works can be generally classified

into two categories: The first category focuses on model-based methods, which

adopt 3D convolution [27] or RNN [54, 28] techniques to learn spatio-temporal rep-
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resentations of video clips. These methods can model spatial and temporal informa-

tion jointly in an end-to-end framework. However, 3D convolution and RNN have

limited ability to explore the temporal consistency (e.g., geometric transformations

of human body parts) between adjacent video frames. The second category con-

centrates on posterior enhancement methods [67, 11, 78, 97] that adopt optical flow

to warp predicted heatmaps of neighboring frames onto that of the target frame.

Since optical flow defines the distribution of apparent velocities of the movement

of brightness patterns in an image [36], these methods can explicitly exploit the

temporal consistency. Despite their promising results, optical flow estimation is

computationally intensive and susceptible to the occlusion and motion blur prob-

lems in unconstrained videos, which affects the performance of pose estimation to

some extent.

To overcome the problems arising from these methods in the above two cate-

gories, we propose a video-based pose estimation model that effectively explores the

temporal consistency of videos. The core of the model is the novel Temporal Con-

sistency Exploration (TCE) module which has major advantages over the previous

model-based and posterior enhancement methods. On the one hand, the TCE can

explicitly explore the temporal consistency through a learnable module. On the

other hand, it is more efficient as it does not need the post-processing and extra cal-

culation of optical flow. The TCE module captures the temporal consistency at the

feature level based on the fact that the spatial information of body joint locations is

well preserved in feature maps[19]. In a nutshell, the TCE module follows a recur-

rent architecture and predicts the geometric transformations between neighboring

feature maps through the learnable offset field. Then it deforms the neighboring

feature maps, and the resultant deformed feature map is combined with the original

map to produce enhanced feature maps through a temporal aggregation. Moreover,

since the temporal information from both forward and backward directions are com-
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plementary for predicting human joint positions, the TCE module is designed to

capture temporal consistency from both directions. In addition to temporal con-

sistency, at the same time, recent researchers found that rich spatial context has

proven to play an essential role in human pose estimation [17, 10, 58]. Therefore, in

our work, we further design the multi-scale TCE which tightly integrates the spatial

pyramid within the TCE module. The spatial pyramid increases the receptive field

of the TCE module as well as facilitating the TCE module to explore the geometric

transformations at multi-scale spatial levels. Using the powerful multi-scale TCE

module, we extend the encoder-decoder network architecture for exploring temporal

information and achieve significant improvements in video-based pose estimation.

We comprehensively evaluate the proposed model on the public challenging

datasets: sub-JHMDB [43] and Penn [106]. The results demonstrated that our

model outperforms recent methods and achieves state-of-the-art performances on

the two video-based pose datasets. The contributions of our work are summarized

as follows:

1. In this work, we propose a video-based pose estimation model that explicitly

explores the temporal consistency in videos. To achieve that, we design a novel

TCE module that captures geometric transformations between frames at the

feature level using the learnable offset field .

2. We explore the multi-scale geometric transformations at the feature level by

tightly integrating the spatial pyramid within the TCE module, which achieves

further performance improvements.

3. Our model achieves 96.4% and 99.2% average accuracy on Sub-JHMDB and

Penn datasets respectively using the PCK@0.2 metric, which outperforms all

recent approaches.
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2.2 Related Work

2.2.1 Image-based Pose Estimation

Traditional methods for pose estimation in images mostly rely on hand-crafted

features (e.g., SIFT, HOG) and seek powerful graph models, such as pictorial struc-

ture models [2], hierarchical models [83] and non-tree models [50, 76, 94], to rep-

resent the spatial correlations between human joints. However, these methods lack

generalization ability in some cases where joints are either truncated or severely

occluded.

With the availability of large-scale human pose datasets [1, 53] and the rapid

development of CNNs, deep learning based methods have proven to be more robust

and effective for the task of human pose estimation. Mainstream works [95, 10, 58, 7]

commonly employed the multi-stage architecture to refine the output of each net-

work stage iteratively. In particular, Wei et al. [95] proposed the Convolutional

Pose Machine (CPM), which produces increasingly refined pose estimations by di-

rectly operating on belief maps from previous stages. Cao et al. [10] introduced

the Part Affinity Fields (PAFs) to learn the association of body parts based on

the CPM architecture, which significantly outperformed previous works. Newell et

al. [58] introduced a “stacked hourglass” architecture that improves the perfor-

mance by repeating bottom-up, top-down processing. This multi-stage architecture

has achieved state-of-the-art results in many image-based benchmarks. Some other

works [17, 98, 32] attempted to learn the feature pyramid in CNNs to capture the

various spatial relationships across all scales. For example, He et al. [32] and Chen

et al. [17] applied the feature pyramid structure for pose estimation by adopting the

Feature Pyramid Network (FPN) [52]. Yang et al. [98] designed the Pyramid Resid-

ual Module (RPM) that learns feature pyramids using different subsampling ratios

in a multi-branch network. Besides, there are also some methods [99, 86, 19, 23, 92]
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that combined CNNs with graphical models to learn both convolutional features

and joint spatial constraints in an end-to-end network. For example, Tompson et

al. [86] combined a CNN and a Markov Random Field (MRF) to exploit the spatial

relationships between human joints in a unified model. Chu et al. [19] proposed

a deep structured feature learning framework that models the correlations among

the convolutional feature maps of body joints for accurate pose estimation. The

success of all these methods demonstrates how a large spatial context is essential

for CNN-based pose estimation methods.

2.2.2 Video-based Pose Estimation

Compared to pose estimation in images, estimating poses in videos is more chal-

lenging due to the complication in utilizing temporal and motion information. Early

works [61, 59, 40] relying on hand-crafted features take into account temporal in-

formation through adding the temporal links between frames on the graph models.

For example, Cherian et al.[18] cast the video-based pose estimation problem as

an optimization problem defined on body parts with spatio-temporal links between

frames.

Recent works attempt to integrate temporal cues in the advanced deep mod-

els to improve the performance of video-based pose estimation. Among them, the

most common methods [67, 11, 78, 97] investigate temporal context by using optical

flow. As optical flow defines the distribution of apparent velocities of movement,

it can help to capture the geometric transformations between frames to refine the

predicted heatmaps. For example, Song et al. [78] used optical flow to exploit image

evidence from adjacent frames. Pfister et al. [67] utilized optical flow to align out-

put heatmaps from neighboring frames to improve the performance of video pose

estimation. However, optical flow requires extra data pre-processing and cannot

handle large appearance variations due to person occlusions or motion blur. Some
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other methods [28, 54] capture the temporal dependency through LSTM, which has

become a dominating tool for sequence tasks thanks to its power in long-range tem-

poral representation. For example, Luo et al. [54] proposed a recurrent model with

LSTM to consider the temporal information for pose estimation in videos. Gkioxari

et al. [28] introduced a chained model using CNNs, where the pose prediction de-

pends not only on the input but also on the output of the previous frame. There are

also methods applying 3D convolution to learn representations of video clips. For

example, Girdhar et al. [27] inflated the 2D convolution in the Mask R-CNN into

3D, which leverages temporal information over video clips to generate more robust

pose predictions in videos. Although these methods can learn spatio-temporal repre-

sentations in an end-to-end framework, they can not explicitly exploit the geometric

transformation information between adjacent frames.

In our work, we propose a unified video-based pose estimation model, which

explicitly explores multi-scale temporal consistency information at the feature level.

Although our method is also inspired by ASPP and ConvLSTM to some degree, it

focuses on effectively and efficiently capturing temporal consistency in videos. More

concretely, compared with the vanilla ConvLSTM, we equip it with the deform

operation to capture geometric transformations between neighboring frames at the

feature level. Besides, we apply the dilated spatial pyramid module following a

reduce-split-merge principle to reduce the computational cost, and we integrate

it with the proposed TCE module to explore temporal consistency at multi-scale

spatial levels.

2.3 Problem Formulation

Given an input video with T frames as {It ∈ RW×H×3}T
t=1 in which W × H is

the spatial size of frames, the goal of our model is to generate the corresponding

sequence of human joint heatmaps {Mt ∈ Rw×h×K}T
t=1, where w × h is the spatial
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size of heatmaps, and K indicates the number of joints to be estimated. Each

position in the k-th channel of the heatmap corresponds to a score that indicates

how much the position belongs to the k-th joint. Usually, the heatmap resolution is

smaller than the input’s to reduce the number of model parameters. Thus, in order

to obtain the final joint positions, we select the positions with the highest score of

each channel and then re-scale them to the input size. Most recent works treat the

video as a sequence of independent frames. They learn a CNN to project the input

frame into a convolutional feature map Xt, and then use the Fully Convolutional

Network (FCN) to predict joint heatmaps:

Xt = CNN(It), Mt = FFCN(Xt). (2.1)

These methods ignore the temporal information inherent in video data, in particular,

temporal consistency between neighboring frames.

In this work, we focus on exploring temporal consistency to estimate human

poses in videos. Specifically, we propose a Temporal Consistency Exploration (TCE)

module that uses feature maps of the frame It and itsN temporal neighboring frames

as the input. By exploring the temporal consistency of adjacent frames, it associates

the original feature map Xt with an enhanced feature map Ht. Then, the enhanced

feature map Ht is fed into the FCN to predict precise joint heatmaps.

Ht = FTCE(Xt−N , . . . ,Xt, . . . ,Xt+N),

Mt = FFCN(Ht).
(2.2)

In the following sections, we first introduce a simple and effective base network

for pose estimation in images. Then we introduce the details of the proposed TCE

module and the multi-scale TCE module. Finally, we extend the base network with

the proposed multi-scale TCE module to design a novel video-based pose estimation

network.
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Figure 2.1 : The base pose estimation network is based on the encoder-decoder ar-

chitecture, where the encoder network extracts high-level convolutional features and

the decoder network recovers high-resolution heatmaps. In addition, we apply the

spatial pyramid module and the random erasing technique to improve the robustness

of the network.

2.4 Base Pose Estimation Network

In order to build a solid foundation for the video-based pose estimation model, we

first designed a base network for estimating human poses in images. As illustrated

in Figure 2.1, the network is designed based on the encoder-decoder architecture

where the encoder network extracts high-level convolutional features, and the de-

coder network recovers the high-resolution spatial information for producing output

heatmaps. For the encoder, we borrow the first four residual blocks from the Resid-

ual Network (ResNet) [34] that is a powerful CNN framework to extract high-level

convolutional features. After that, the decoder adopts several deconvolutional layers

to gradually enlarge the spatial dimension of the feature map. Finally, we apply a

1× 1 convolutional layer to generate the output heatmap.

In our work, we use traditional encoder-decoder architecture [97], but with two

significant modifications. On the one hand, to capture rich spatial context in images,

a dilated spatial pyramid module is built upon the encoder. Different from the
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Figure 2.2 : Architecture of the dilated spatial pyramid module.

Atrous Spatial Pyramid Pooling (ASPP) [14, 77], our spatial pyramid module follows

a reduce-split-merge principle for reducing computational cost. As shown in Figure

2.2,it first applies the point-wise convolution to project the high-dimensional feature

map to a low-dimensional space. Then, multiple dilated convolution kernels with

increasing dilation rates are parallelly adopted onto the feature map. The dilated

convolution can efficiently compute convolutional features at any receptive field size

without loss of resolution. Finally, the multiple outputs are concatenated and further

combined with the input feature map by residual summation to produce the multi-

scale representation.

We also adopt a random erasing technique inspired by Zhong et al. [108] to

improve the robustness of the occlusion problem, since samples in pose estimation

datasets usually exhibit limited variance in occlusion. Specifically, in the training

phase, an image within a mini-batch is randomly selected to ‘erase’ a rectangle

region of arbitrary size, and assign the pixels within the region with the mean pixel

value of the dataset as shown in Figure 2.1. In this way, augmented images with

various occlusion levels can be generated, and it is a simple yet effective technique

for creating more robust models for the occlusion problem. Actually, other shapes

or even occluding objects are also available for erasing, which has been discussed in
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Figure 2.3 : Illustration of the TCE module. The TCE module follows a recurrent

structure. It predicts the offset field to capture the geometric transformations be-

tween adjacent frames and produces the enhanced feature map through the deform

and aggregation operations.

[74]. In our work, for simplifying the experiment setting, we directly use the random

rectangle boxes for erasing.

2.5 Temporal Consistency Exploration

In this section, we introduce the proposed TCE module in detail. The TCE mod-

ule is designed to capture temporal consistency from both temporal directions, and

it processes the preceding and subsequent adjacent frames in the same way. Here, we

first only consider the preceding adjacent frames to make the technique presentation

clearly and briefly. Specifically, given an input frame It and its preceding temporal

neighborhoods of N frames {It−N , . . . , It−1}, we first produce their corresponding

features maps {Xt−N , . . . ,Xt} using the encoder described above. With the feature

maps of neighboring frames, the TCE module produce an enhanced feature map for

the target frame It. The proposed TCE module follows a recurrent architecture and
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is formulated as:

Hp

t = T (Xt,A(Ht−1)),

Ht−1 = T (Xt−1,A(Ht−2)),

. . . ,

Ht−N = Xt−N ,

(2.3)

where T refers to the aggregation operation, and A indicates the deform operation.

Ht−1, . . . ,Ht−N represent the hidden states, and we initialize the Ht−N using the

original feature map Xt−N . After a series of deform and aggregation operations,

as a result, we can obtain the enhanced feature map Hp

t . The details of the TCE

module are illustrated in Figure 2.3. In the following, we will introduce the deform

operation and aggregation operation separately.

Deform Operation

In order to reinforce the feature map of the target frame, it is important to

capture the geometric transformation between neighboring feature maps. To this

end, we introduce the learnable offset field that is predicted based on the hidden

state. And then, the hidden state is deformed according to the offset field for aligning

it to the next feature map. In detail, we define the deform operation A as follows:

∆P = Wof ∗Ht−1,

Hde

t−1 = Deform(Ht−1,∆P),
(2.4)

where ∗ refers to convolution operation. The offset field ∆P is composed of the

offsets of each spatial position. It is obtained by applying the convolution operation

on Ht−1, and Wof refers to the filter weights of the 2D convolution kernel. The

offset field has the same spatial resolution with Ht−1, and the channel dimension is

2 corresponding to 2-dim offset of each spatial position. With the offset field, we

can obtain the deformed hidden state Hde

t−1. For each spatial position p in Hde

t−1, the
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value can be obtained via bilinear interpolation:

Hde

t−1(p) = Ht−1(p+∆p)

=
∑

q

G(q,p+∆p) ·Ht−1(q),
(2.5)

where q enumerates all integral spatial positions on Ht−1, and G(·, ·) is the bilinear

interpolation operation, which can be separated into two dimensional operation as:

G(q,p) = g(qx, px) · g(qy, py), (2.6)

where g(a, b) = max(0, 1− |a− b|).

Aggregation Operation

The aggregation operation can be implemented in a variety of ways. The most

simple and intuitive way is through the summation operation:

Hp

t = Xt +Hde

t−1. (2.7)

To further improve the capability of the TCE module, we follow the architecture

and gating mechanism of ConvLSTM, which can preserve the spatial details as well

as model long-term temporal aggregation. Thus, T can be formulated as :

it = �(WX

i ∗Xt +W
H

i ∗A(Ht−1))

ft = �(WX

f
∗Xt +W

H

f
∗A(Ht−1))

ot = �(WX

o ∗Xt +W
H

o ∗A(Ht−1))

ct = ft ◦ ct−1 + it ◦ tanh(WX

c ∗Xt +W
H

c ∗A(Ht−1))

H
p

t
= ot ◦ tanh(ct),

(2.8)

where it, ft, ct are the gates, σ and tanh are the activation function of sigmoid and

hyperbolic tangent respectively. For simplicity, bias terms are omitted. ‘∗’ denotes

the convolution operation and ‘◦’ represents Hadamard product. It is worth men-

tioning that the convolutional kernels for generating offset fields and output features

are learned simultaneously in an end-to-end manner. This guarantees the efficiency

of the proposed method.
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Bidirectional Temporal Consistency Exploration

In the above, we only exploit the temporal consistency information from the

preceding frame sequence. However, information from both the preceding and sub-

sequent frames are important and complementary for predicting human joint po-

sitions. As for the original feature maps {Xt+1, . . . ,Xt+N} of the N subsequent

frames, the TCE module processes them in the same way:

Hs

t
= T (Xt,A(Ht+1)),

Ht+1 = T (Xt+1,A(Ht+2)),

. . . ,

Ht+N = Xt+N ,

(2.9)

where Ht+1, . . . ,Ht+N are the hidden states, and Hs

t
is the enhanced feature map

of the subsequent frame sequence. At last, Hp

t and Hs

t
are summed up to formulate

the final enhanced feature map Ht of the frame It:

Ht = Hp

t +Hs

t
. (2.10)

2.6 Multi-Scale Temporal Consistency Exploration

To capture rich spatial context in video data, we extend the spatial pyramid

module described in 2.4 and designed a multi-scale TCE module that explores the

geometric transformation at multi-scale spatial levels. We first apply a point-wise

convolution to project the high-dimensional feature map to a low-dimensional space.

Then, we simultaneously apply M dilated convolution kernels with increasing dila-

tion rates over the feature map Xt. After that, multi-scale feature maps are gener-

ated and fed into their respective TCE modules. Finally, H!

t
that captures multi-

scale spatio-temporal information is generated through concatenating the outputs

of multiple TCE modules:

H!

t
= [H1

t
, . . . ,HM

t
], (2.11)
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Figure 2.4 : Overall architecture of the proposed video-based pose estimation net-

work. The proposed network is based on the encoder-decoder network architecture

and extended with the multi-scale TCE module. The multi-scale TCE model fully

explores the bidirectional temporal consistency information at multi-scale spatial

levels. In this way, our model can generate temporally enhanced feature maps and

obtain more precise human pose results.

where [., .] represents the concatenation operation, and {Hn

t
}M
n=1 indicate the outputs

of M TCE modules.

2.7 Video-based Pose Estimation Network

In this section, we introduce the video-based pose estimation network. As shown

in Figure 2.4, we extend the base network with the multi-scale TCE module. The

overall network architecture is similar with Peng et al. [66], which is an encoder-

decoder network together with RNN-based feature refinement for face alignment.

We present the details about the network architecture below.

At the bottom of the model, we use the ResNet-50 and reserve the first four

residual blocks as the encoder. Given an input frame It ∈ R256×256×3 and its N

temporal neighborhoods of both directions, {It−N , . . . , It−1} and {It+1, . . . , It+N},
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the convolutional feature maps {Xi ∈ R8×8×2048}t+N

i=t−N
are first extracted through

the encoder.

The multi-scale TCE module consists of M = 4 parallel TCE modules, which

take four different scale feature maps as input. To achieve that, a point convolution

is first adopted to project the feature map {Xi}t+N

i=t−N
into a low-dimensional space

R8×8×512. Then, four convolutional kernels, including one 1× 1 convolutional kernel

and three 3× 3 convolutional kernels with increasing dilation rates as {1, 2, 4}, are

parallelly adopted to generate four different scale feature maps. For each TCE

module, we equip the deform operation with 3× 3 convolution kernel and produce

8× 8× 2 offset field. The aggregation operation uses the ConvLSTM equipped with

3 × 3 convolutional kernels, and the hidden state of ConvLSTM cell is with the

size of 8 × 8 × 512. Next, the output features from four TCE modules are further

concatenated to generate the enhanced feature maps H!

t
∈ R8×8×2048.

The multi-scale enhanced feature map H!

t
are then fed into the decoder. The

decoder consists of three deconvolutional layers with batch normalization and ReLU

activation. Each deconvolutional layer has 256 filters with 4 × 4 kernel (stride 2,

padding 1) resulting in 2× 2 up-sampling scale. Finally, a 1× 1 convolutional layer

is adopted to generate the output heatmaps Mt with spatial resolution 64× 64.

Loss Function: The ground truth heatmap of the joint k of frame t, which is

written as M!k

t
, is created by placing a Gaussian peak at the center location of the

joint. In our work, we minimize the l2 distance between the predicted and ground

truth heatmap for each joint, and the loss function is formulated as:

L =
K∑

k=1

∑

p

‖Mk

t
(p)−M!k

t
(p)‖2, (2.12)

where p enumerates all integral spatial positions on the heatmap.
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2.8 Results and Discussion

2.8.1 Datasets

We report our performance on two public video benchmark datasets: Sub-

JHMDB [43] and Penn [106]. The Sub-JHMDB dataset has 316 video clips with

all 11200 frames in the same size. It contains complete bodies with 15 joints anno-

tated, and no invisible joint is annotated. Sub-JHMDB has three different splits of

training and testing. The three splits separately have 227, 236 and 224 video clips

for training and 89, 80 and 92 video clips for testing. We train our model separately

and report the average result over the three splits for fair comparisons with recent

methods. Besides, we also report performance on the Penn Action Dataset, which

is another large video-based dataset for pose estimation. It contains in total 2326

video clips in total, with 1258 clips for training and 1068 clips for testing. 13 joints

including head, shoulders, elbows, wrists, hips, knees and ankles are annotated in all

frames. An additional label indicates whether a joint is visible or not in a single im-

age. The standard evaluation protocol is only considering the visible joints. In order

to further show the robustness of our method on the Penn dataset, we also perform

an additional evaluation where the invisible human joints are also considered.

Even though Sub-JHMDB and Penn are large-scale video datasets, the amount

of training data is still insufficient considering the high correlation among frames

within the same video. Thus, to improve the generalization ability of the model, we

pre-train the base network on the MPII dataset [1], which is a large image-based pose

dataset. The MPII dataset consists of images taken from a wide range of human

activities with a challenging array of widely articulated full-body poses, and it has

around 25k images with annotations for multiple people providing 40k annotated

samples (28k training, 11k testing). We pre-train our model on a subset of training

images.
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2.8.2 Implementation Details

Data Augmentation: Data augmentation can increase the variation of the

inputs and is critical for learning robust pose estimation model. During training, we

crop the frames with the target human boxes centered at images. Here, we use the

person ground-truth locations provided by the datasets. Penn already annotates the

bounding box within each image; the bounding boxes for sub-JHMDB are deduced

from the puppet masks used for segmentation. Then, we extend either the height

or the width of the human boxes to make all boxes have the same aspect ratio

(1 : 1). Next, we further enlarge the boxes to include additional image context

by rescaling the boxes with a fixed factor 1.25. After that, boxes are randomly

rotated with degree [−40◦, 40◦], scaled with degree [−25%, 25%] and flipped for

data augmentation. Finally, all boxes are resized to a fixed resolution (256 × 256).

Note that the transformations will be consistent for the frames within a video.

In addition to these regular data augmentation operations, random erasing is

applied for improving the robustness of the model to the occlusion problem. Specifi-

cally, we set the probability of an image undergoing random erasing is 0.5. The ratio

of the area of the erased rectangle region to the original image is randomly specified

between [0.02, 0.4], and the aspect ratio is randomly initialized between [0.3, 1
0.3 ].

Training Details: The training procedure of our model has two steps. In the

first step, we pre-train the base network on MPII dataset. We set the batch size as

32 images, and optimize the parameters using Adam [47] algorithm. The learning

rate is initialized as 1e − 3 and dropped to 1e − 4 at 90 epochs and 1e − 5 at 120

epochs. We train the image-based network for 140 epochs in total.

In the second step, we fine-tune the video-based network on the Sub-JHMDB

and Penn datasets respectively. We initialize the encoder using the parameters of

the pre-trained base network. And then, we fix the parameters of the encoder and
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Table 2.1 : Comparisons with the state-of-the-art methods on Sub-JHMDB dataset

using PCK@0.2.

Method Pre-train Optical Flow Head Sho Elb Wri Hip Knee Ank Mean

N-best [61] - - 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5

ST-Part [59] - - 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7

ACPS [40] - - 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8

Thin-Slicing [78] - X 97.1 95.7 87.5 81.6 98.0 92.7 89.8 92.1

LSTM PM [54] MPII&LSP - 98.2 96.5 89.6 86.0 98.7 95.6 90.9 93.6

Ours - - 97.5 97.8 88.9 85.7 98.9 94.5 90.1 93.3

Ours MPII - 99.3 98.9 96.5 92.5 98.9 97.0 93.7 96.5

Table 2.2 : Comparisons with the state-of-the-art methods on Penn dataset using

PCK@0.2.

Method Pre-train Optical Flow Head Sho Elb Wri Hip Knee Ank Mean

ST-Part [59] - - 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

ACPS [40] - - 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1

Chain [28] - - 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8

Thin-Slicing [78] - X 98.0 97.3 95.1 94.7 97.1 97.1 96.9 96.5

LSTM PM [54] MPII&LSP - 98.9 98.6 96.6 96.6 98.2 98.2 97.5 97.7

Ours - - 99.3 98.5 97.6 97.2 98.6 98.1 97.4 98.0

Ours MPII - 99.8 99.7 99.2 98.6 99.2 99.2 98.7 99.2

train the multi-scale TCE module and the decoder. The batch size is set to be 24

videos, and the number of neighboring frames N is set to be 6. Adam algorithm is

used to optimize the network parameters. The learning rate is initialized as 1e− 3

and dropped by 10 times every 20 epochs, and there are 50 epochs in total.

Evaluation Metric: For quantitative evaluation, we adopt the PCK metric

[102] to evaluate the results. An estimation is considered correct if it lies within

α ·max(h, w) from the ground truth position, where h and w refer to the height and

width of the person bounding box. In our work, α is set to be 0.2 to compare with

other methods consistently.
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2.8.3 Performance on Video-based Pose Estimation

In this section, we compare our model with recent video-based pose estimation

approaches on the Sub-JHMDB and Penn datasets. Among them, N-best [61],

ST-Part [59] and ACPS [40] are conventional methods that rely on hand-crafted

features. They model video temporal information through the graphical model, such

as spatial-temporal And-Or graph model [59]. Thin-Slicing [78] and LSTM PM [54]

are recent deep learning based models. They use the advanced CNN architecture

to extract deep features of frames and adopt optical flow or LSTM to capture the

temporal information in videos. Note that LSTM PM [54] pre-trained the model

using the combination of two image-based datasets, MPII [1] and LSP [44].

Table 2.1 and Table 2.2 show the result comparisons. To fairly compare, we

predict all joint positions, but only the visible ones are participating in the evalua-

tion. Also, we report the results with and without pre-training on the MPII dataset

respectively. Our model obtains the average accuracy of 96.4% and 99.2% on the

two datasets. This is an improvement over the current supposed best perform-

ing method, LSTM PM [54], by 2.8% and 1.5% respectively. Compared with the

optical flow based method [78], our model without pre-training also obtains largely

accurate results. This demonstrates that our method can effectively exploit the tem-

poral information even if optical flow is not used. When we pre-trained the model

on the MPII dataset, the performance improvement on the Sub-JHMDB dataset

was greater than on the Penn dataset since Sub-JHMDB is a relatively small-scale

dataset. This demonstrates how pre-training the model on the image-based dataset

with high diversity can avoid the risk of over-fitting on relatively small-scale video

datasets and improve the generalization ability of the model. In order to further

show the robustness of our method on the Penn dataset, we have performed an

additional evaluation where the invisible human joints are also considered. We also

perform this evaluation protocol on the most recent method, LSTM PM [23], based



34

(a) (b) 

Figure 2.5 : Precision-recall curves of our method on the Sub-JHMDB and Penn

datasets under different PCK thresholds.

on the author’s open source code. As shown in Table 2, our method also outperforms

the state-of-the-art method in this evaluation protocol.

In Figure 2.5, we present the precision-recall curves of our method (with pre-

training on the MPII dataset) on both datasets. We plot the precision-recall curves

using different PCK thresholds α to show the effect of the threshold on the final

accuracy. Figure 2.6 shows some examples of visual results in challenging settings.

It shows that our model can produce accurate human poses, which demonstrates

our method is robust to the problems, such as motion blur, occlusion background

and scale variations.

2.8.4 Ablation Study

In this section, we present a detailed ablation analysis to show the effectiveness

of our model.

Analysis of the TCE Module

In order to evaluate the effect of the proposed TCE module, we design a baseline

and several variants to compare their performance on the split 1 of the Sub-JHMDB

dataset. The baseline and variants we designed are listed as follows:
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Figure 2.6 : Examples of pose estimation results on the Sub-JHMDB and Penn

datasets. (row 1,2,3,4,5) Results of challenging samples (i.e., occlusion background

and motion blur); (row 6,7,8,9) Results of persons with significant scale variations.

Zoom-in for details.
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Table 2.3 : PCK@0.2 of different variants on the split 1 of Sub-JHMDB dataset.

Model Head Sho Elb Wri Hip Knee Ank Mean

Res50 98.2 96.0 91.2 88.0 98.5 95.0 93.2 94.0

Res50-OF 99.1 97.6 92.8 88.7 98.5 95.5 93.3 94.8

Res50-TCE-S 98.8 97.2 92.5 89.9 98.5 96.4 94.4 95.1

Res50-TCE-C 99.4 97.9 94.1 91.0 98.7 96.8 94.0 95.7

Res50-TCE-BC 99.3 97.9 94.8 91.7 98.8 97.0 94.2 96.0

• Res50: This is the baseline network that considers the video as independent

frames. It is based on the encoder-decoder network described in 2.4 and uses

the ResNet-50 as the encoder.

• Res50-OF: This variant is designed for comparing with the method using op-

tical flow post-processing. Here, we use Flownet v2.0 [37] to extract the back-

ward and forward flow of input videos. Then, we use the technique proposed

by Pfister et al. [67] to warp the heatmaps of the neighboring frames, and

average them with the heatmap of the target frame to get the final heatmap.

• Res50-TCE-S: In this variant, we adopt the proposed TCE module and use

the basic summation operation as the aggregation operation.

• Res50-TCE-C: This variant adopts ConvLSTM for temporal aggregation.

• Res50-TCE-BC: This variant applies bidirectional ConvLSTM to consider

temporal consistency information from both directions.

We initialize them using the parameters of the pre-trained base network and

separately train them on the split 1 of Sub-JHMD dataset. Table 2.3 illustrates the

results. We can observe that even the baseline network can achieve state-of-the-art

results thanks to the solid foundation of the base network. As a post-processing

method, Res50-OF achieves 0.8% improvements compared with the baseline. Over-
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Figure 2.7 : Quantitative analysis of the smoothness of our results.
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Figure 2.8 : Visualization of the predicted offset fields.

all, the variants equipped with the TCE module achieve more significant improve-

ments and outperform the Res50-OF. Res50-TCE-S outperforms the baseline by

1.1%, and Res50-TCE-C equipped with ConvLSTM aggregation function achieves

better results by 1.7%. This illustrates how the proposed TCE module is neces-

sary, which effectively exploits geometric transformations between feature maps of

neighboring frames. The performance of Res50-TCE-BC is further improved and

outperforms the baseline by 2.0% due to the exploration of bidirectional temporal

consistency information.

To validate that our method can obtain smooth results, we present a quantitative

analysis in Figure 2.7. We present the mean error (distance from ground-truth

in pixels) curves over time of two action categories (pull up and shoot ball). It

shows that our method (Res50-TCE-BC) significantly reduces the joint position

errors compared with the frame-based method and optical flow-based method, which

improves the prediction stability over frames. Also, we visualize two examples of

results obtained by the three kinds of methods. We can observe that our method

obtains apparent improvements especially for the joints with severe occlusion (i.e.,

elbow and hand). As a comparison, the optical flow-based method has limited

improvements.

In Figure 2.8, we visualize two examples of the predicted offset field ∆P using
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Table 2.4 : PCK@0.2 of variants with different loss functions on the split1 of the

Sub-JHMDB dataset.

Model
Regression

Loss

Integral

Loss

Heatmap

Loss

Res50 92.0 92.8 94.0

Res50-TCE-BC 93.8 95.4 96.0

the technique [4]. We found that the offset field ∆P is not directly correlated with

the optical flow, and it cannot explicitly indicate the pixel-level motion information

as the optical flow does. This is because the predicted offset field is based on high-

level convolutional feature maps, where each position on the feature map represents

a response value of a large receptive field of the image. Moreover, the TCE module

is trained without explicit alignment between video frames. Thus, the TCE module

can not guarantee that the predicted offset filed has the same semantics as the

image-level optical flow.

Analysis of the Loss Functions

Table 2.4 presents a comparison of different loss functions. It compares the

performance of the variants Res50 and Res50-TCE-BC using three different kinds

of loss functions: heatmap loss, regression loss, and integral loss. Here, heatmap

loss is what we are using in our model. As for the regression loss, we replace the

decoder with a fully connected layer to predict joint coordinates and calculate the

L1 distances between predicted joints and ground-truth ones. Integral loss, which

is proposed by Sun et al. [81], adopts the soft-argmax upon predicted heatmaps to

convert them into joint coordinates in a differentiable way, and then calculates the

joint location loss as supervisions. As shown in Table 4, the heatmap loss is overall

best-performing, and Res50-TCE-BC achieves significant improvement in every loss
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Table 2.5 : Analysis of the random erasing and spatial pyramid on the split1 of the

Sub-JHMDB dataset using PCK@0.2.

Model
Random

Erasing
Head Sho Elb Wri Hip Knee Ank Mean

Res50-TCE-BC
- 99.2 97.7 93.6 90.1 98.5 96.3 93.7 95.3

X 99.3 97.9 94.8 91.7 98.8 97.0 94.2 96.0

Res50-SS-TCE-BC
- 98.9 98.2 93.4 89.5 99.1 96.8 93.9 95.4

X 99.4 98.5 95.6 91.4 98.8 97.5 93.9 96.2

Res50-MS-TCE-BC
- 99.1 97.7 94.2 90.9 97.9 97.0 93.7 95.6

X 99.3 98.9 96.5 92.5 98.9 97.0 93.7 96.5

function compared with Res50. This shows that the TCE module works for different

prediction strategies and loss functions of 2D pose estimation.

Analysis of the Spatial Pyramid and Random Erasing Techniques

Here, we evaluate the effectiveness of the techniques, spatial pyramid and ran-

dom erasing, used in our work. First, we design a variant named Res50-MS-TCE-BC

that is equipped with the multi-scale TCE, and compare the performance between

Res50-MS-TCE-BC and Res50-TCE-BC on the split 1 of the Sub-JHMDB dataset.

Compared with the TCE module, the multi-scale TCE module increases the number

of channels of the feature map fed into the decoder. To validate the performance

improvement is indeed caused by the spatial pyramid, we design another variant

named Res50-SS-TCE-BC. Different from the Res50-MS-TCE-BC, this variant ap-

plies the same convolutional kernel (3× 3 convolutional kernel with dilation rate 1)

for the four parallel TCE modules. Furthermore, we apply different data augmenta-

tion strategies (using random erasing or not) to train all variants for analyzing the

random erasing technique. As the results shown in Table 2.5, Res50-MS-TCE-BC

achieves consistently better performance than Res50-TCE-BC and Res50-SS-TCE-
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Figure 2.9 : Plots of the results with different numbers of neighboring frames and

temporal stride values.

BC. This proves that the fusion of spatial pyramid and the TCE module can further

boost the performance of pose estimation in videos. Besides, the models that are

trained equipped with random erasing can obtain higher accuracy, especially for

joints that are easily obscured like Elbow and Wrist. This illustrates that random

erasing technique can effectively improve the robustness of the model for the occlu-

sion problem.

Analysis of the Number of Neighboring Frames and Temporal Stride

Our model uses the target frame and the neighboring frames as its input. In this

section, we explore the effect of the number of neighboring frames by training the

model with different N , i.e., N = 0, 2, 4, 6, 8. Moreover, we train the model under

two strategies: one only considers the preceding frames, the other considers both

preceding and subsequent frames. The experiment results on the split 1 of Sub-

JHMDB dataset and Penn dataset are shown in Figure 2.9 (a). It is obvious that

bidirectional temporal consistency modeling helps to achieve better performance.

Next, when N = 0, the performance drops a lot since no temporal information is

considered. When N increases to around 4, the performance improves and the rate
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of rising gradually decreases. At last, the accuracy remains stable when N increases

to 6. On the one hand, this illustrates that more neighboring frames can provide

more sufficient temporal information, which helps to predict the offset field from the

hidden state, and as a result, produces better enhanced feature maps. On the other

hand, it shows the frames that are far from the target frame have relatively limited

effects.

The default value of the temporal stride used in the above part is 1. To an-

alyze the influence of using different temporal strides, we consider bi-directional

neighboring frames with N = 6 and set different temporal stride values TS, i.e.,

TS = 1, 3, 5, 7, 9. Here, we run experiments on the split 1 of the Sub-JHMDB

dataset and consider two different settings. The first is training the network with

TS = 1 and testing it using different temporal strides. The second is using the

same temporal stride during training and testing. The results of the two settings

are shown in Figure 2.9 (b). We can observe that the performance drops as the

temporal stride value becomes larger in the first setting. Thus the temporal stride

during training and testing should be identical. In the second setting, the curve

has small fluctuations, which illustrates the temporal stride has a limited effect on

the final performance. Besides, the network obtains the best performance when the

temporal stride sets 1, which shows that the TCE module can better capture the

temporal consistency when the temporal stride is small.

2.8.5 Runtime Analysis

In this section, we present the runtime analysis of our model. On the one hand,

our model is a unified framework and does not need any pre- or post-processing.

This guarantees that the speed of our model is faster than the optical flow based

method such as Thin-Slicing [78], because optical-flow based methods require extra

computation of optical flow calculation. Here, we present the speed of common
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optical flow estimation methods for reference: LDOF [9] takes about 49.64s per

frame, Flownet v2.0 [37] takes about 50ms per frame. On the other hand, we

compare our model with the latest video-based method, LSTM PM, under the same

configuration. The results show that LSTM Pose Machine achieves processing speed

of about 25 ms per-frame, and our method achieves around 28ms per-frame. It means

our model achieves a significant performance improvement at the expense of a little

speed.

2.9 Conclusion

In this work, we have presented a unified deep network for estimating human

poses in videos. To efficiently explore the temporal consistency in videos, we pro-

posed the novel TCE module that captures geometric transformations between

frames at the feature level. On the basis of the TCE module, we further inte-

grated it with the spatial pyramid to explore time consistency at multi-scale spatial

levels. Finally, we designed a video-based pose estimation network by extending the

encoder-decoder architecture with the multi-scale TCE module. The experimental

results showed that our model achieves better performance than recent video-based

approaches on two popular video datasets. Moreover, we showed the effectiveness

and efficiency of our model through a detailed ablative analysis.
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Chapter 3

Geometry-driven Self-supervised Method for 3D
Human Pose Estimation

3.1 Introduction

3D human pose estimation has attracted substantial interest for its vast poten-

tial on various applications including human-computer interaction, virtual reality

and action recognition. With the great success of deep learning, many researchers

[55, 65] applied the neural network to predict 3D human poses from monocular im-

ages. Estimating 3D poses using neural networks mainly faces two main challenges.

First, a typical neural network model needs a large amount of training data. 3D

pose annotations are collected through the marker-based Motion Capture (MoCap)

system, which is an expensive process. Secondly, there are well-founded geometrical

theories on how to project 2D images to 3D skeletons. Simply using a neural net-

work to approximate this projection may lead to the network subject to overfitting

training data.

To alleviate the above challenges, weakly/self-supervised learning paradigms

have been increasingly explored in recent works [72, 96, 13, 71]. Re-projection loss

[89], which does not require explicit 3D ground-truth, has become a commonly used

technique. It re-projects estimated 3D poses back to the 2D space and calculates

the loss between the input and re-projected 2D poses as supervision. However, due

to the depth ambiguity problem where multiple 3D body configurations can explain

the same 2D projection, the re-projection loss cannot yield accurate and realistic

3D poses. For example, as shown in Figure 3.1, since re-projection loss only con-
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esti m at e d b y t h e a b o v e t w o n et w or ks.  T h e r es ults ar e s h o w n i n t w o di ↵ er e nt vi e ws.

str ai ns t h e esti m at e d 3 D p os e at a s p e ci fi c c a m er a a n gl e, it  m a y r es ult i n a n i n v ali d

h u m a n p os e  w h e n o bs er v e d fr o m a n ot h er a n gl e.  Alt h o u g h s o m e t e c h ni q u es s u c h as

a d v ers ari al l oss [ 8 9, 9 0] a n d ki n e m ati c c o nstr ai nts [ 3 0, 6 5], h a v e b e e n pr o p os e d t o

c o nstr ai n t h e esti m at e d 3 D p os es i nt o a s e m a nti c s u b-s p a c e, t h e y us u all y r e q uir e

s o m e e xtr a u n p air e d 3 D p os e a n n ot ati o ns ( wit h o ut 2 D- 3 D c orr es p o n d e n c e) t o  m a k e

t h e n et w or k  m e m ori z e t h e distri b uti o n of r e al 3 D s k el et o ns.

3 D p os e d at as ets [ 3 8, 5 6] ar e us u all y c oll e ct e d u n d er t h e c o n fi g ur ati o n  wit h  m ul-

ti pl e c ali br at e d c a m er as.  T h e c o nsist e n c y i nf or m ati o n b et w e e n  m ulti pl e c a m er a

vi e ws h as n ot b e e n f ull y e x pl or e d i n r e c e nt  w e a kl y /s elf-s u p er vis e d  m et h o ds.  Al-

t h o u g h t h e r e c e ntl y pr o p os e d  w or k [ 4 8] h as e x pl or e d  m ulti- vi e w g e o m etr y t o tr ai n

a n et w or k, t h e y utili z e d tri a n g ul ati o n o n d et e ct e d m ulti- vi e w 2 D p os es t o g e n er at e

‘ gr o u n d-tr ut h’ 3 D p os es,  w hi c h ar e s u bs e q u e ntl y us e d t o tr ai n a 3 D p os e n et w or k.

H o w e v er, t his n ai v e a p pli c ati o n of 3 D  m ulti- vi e w g e o m etr y is s u b- o pti m al d u e t o
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the noises introduced in the 2D pose detection at each individual camera. The de-

tected 2D poses are combined to produce its 3D pose, which may further produce

noisy supervision signals. Besides, the process of generating pseudo ground-truth is

redundant.

In this paper, we propose a novel self-supervised approach to take advantage

of the geometric prior for training a 3D pose estimation model. We formulate 3D

pose estimation as 2D keypoint estimation followed by 2D-to-3D pose lifting. The

first stage is compatible with any state-of-the-art 2D keypoint detector, and our

work concentrates on training the 2D-to-3D lifting network without using any addi-

tional 3D ground-truth data. Specifically, in order to overcome the depth ambiguity

problem, we design the transform re-projection loss. As shown in Figure 3.1(b), it

transforms the lifted 3D poses from current view to another randomly selected view

through rigid transformation, and then calculates the re-projection loss between the

transformed 3D pose and the 2D pose of the target view. As a result, it can ef-

fectively constrain the estimated 3D poses by considering multi-view consistency.

Due to the self-occlusion problem, some 2D joints may be invisible at the frame of

a particular camera angle, which may lead to inaccurate 2D keypoint detections.

However, they may be visible from other camera angles. Thus, the same human

joint will obtain different 2D detection confidences on different camera views. We

acquire the confidence weights from estimated 2D keypoint heatmaps and use them

to integrate losses of different camera views, which makes our method more robust

to noisy 2D detections. Finally, we introduce a root position regression branch to

restore the global 3D poses during training. In this way, we can reserve the scale

information of re-projected 2D poses, which can improve the accuracy of the pre-

dicted 3D poses. Moreover, in order to train the root position branch and lifting

branch simultaneously from scratch, we propose a pre-training technique to help the

network converge.
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We perform extensive experiments on two popular 3D human pose datasets: Hu-

man3.6M [38] and MPI-INF-3DHP [56]. The results demonstrate that our method

achieves state-of-the-art performance. The contributions of our work are summa-

rized as follows:

• We propose a self-supervised approach to train the 2D-to-3D lifting network

without any 3D pose annotations. It only relies on geometry knowledge to

construct supervision signals, which leads to a better generalization ability.

• We design the transform re-projection loss, which is an effective technique

to exploit multi-view consistency information and constrain the estimated 3D

poses during training. Moreover, we integrate it with the 2D joint confidences

of different camera views to alleviate the self-occlusion problem.

• The proposed method achieves state-of-the-art results on two popular 3D pose

benchmarks compared with recent weakly/self-supervised methods.

3.2 Related Work

3.2.1 3D Human Pose Estimation

3D human pose estimation is a long-standing problem and has been consider-

ably studied in the past few years. Recently, following the great success of deep

learning, modern 3D human pose estimation techniques are usually formulated as

learning-based frameworks. These works can be generally classified into two cat-

egories. The first class of methods [82, 63, 56, 30, 81] directly predict the depth

from monocular images through the deep convolutional neural networks (DCNNs).

The second category [39, 23, 84, 55, 23, 12] is the two-stage pipeline, which first ob-

tains 2D joint locations through the advanced 2D keypoint detector such as Stacked

Hourglass (SH) network [58] and Cascaded Pyramid Network (CPN) [17], and then

lifts them into 3D space. In order to learn the mapping between 2D and 3D joint
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positions, various 2D-to-3D lifting network backbones were designed. For exam-

ple, Martinez et al. [55] proposed a simple baseline using a simple neural network

with only two fully connected layers, while achieved surprising results. Since human

skeletons are with the graph-like structure, several works [107] also attempted to

exploit the novel Graph Convolution Networks (GCNs) to capture the semantic re-

lationships between human joints for accurate 3D human pose regression. Besides,

there are also works [65, 3, 110, 109] that considers temporal information from frame

sequence to produce more robust predictions. In our work, we follow the two-stage

pipeline. Moreover the proposed approach is compatible with any recent 2D-to-3D

lifting network backbone.

3.2.2 Weakly/Self-supervised Approaches

Recently, weakly/self-supervised approaches have received much attention due to

the difficulty of gathering 3D pose annotations. In order to train the network with-

out explicit 3D pose annotations, the prior of camera projection geometry was com-

monly explored, and some geometry-driven methods were proposed. Among them,

re-projection loss is one of the most widely used technique [46, 96, 90, 65, 93, 8].

However, using re-projection loss alone cannot accurately constrain the depth of

skeletons due to the depth ambiguity problem. Some works [30, 65, 72] allevi-

ated this problem by enforcing the bone length similarity between predicted and

ground-truth skeletons. Adversarial loss [100, 89, 90, 46] is another popular tech-

nique to regularize the predicted 3D poses. It encourages the output 3D poses on

the real human manifold by introducing a real/fake 3D skeleton discriminator. For

example, [89] proposed the Adversarial Inverse Graphical Network (AIGN), which

uses the adversarial prior to match the distribution between the predictions and a

collection ground-truth for the task such as 2D-to-3D lifting and image-to-image

translation. [90] proposed a weakly-supervised method with the adversarial super-
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O v er all, t h e pr o p os e d  m et h o d f oll o ws a t w o-st a g e pi p eli n e, as s h o w n i n  Fi g ur e

4. 1.  First,  w e us e t h e st at e- of-t h e- art 2 D p os e esti m ati o n n et w or k t o pr e di ct 2 D

p os es fr o m i n p ut fr a m es.  H er e,  w e d e n ot e X 2 R N ⇥ 2 a s N d et e ct e d 2 D j oi nt

l o c ati o ns.  M e a n w hil e,  w e o bt ai n t h eir c orr es p o n di n g c o n fi d e n c e s c or es w 2 R N

fr o m esti m at e d k e y p oi nt h e at m a ps t hr o u g h t h e m a x o p er ati o n.  Wit h t h e d et e ct e d

2 D p os es,  w e l e ar n a n e ur al n et w or k N t o pr oj e ct t h e m i nt o 3 D s p a c e. Si mil arl y,

w e d e fi n e Y 2 R N ⇥ 3 a s t h e o ut p ut 3 D j oi nt l o c ati o ns.  F oll o wi n g t h e pr ot o c ol  wit h

pr e vi o us  w or ks,  w e esti m at e z er o- c e nt er e d 3 d p os es  w h er e t h e v al u es of Y ar e t h e

3 D p ositi o ns r el ati v e t o t h e fi x e d r o ot j oi nt ( p el vis).

T h e ar c hit e ct ur e of t h e lifti n g n et w or k N is d esi g n e d i ns pir e d b y [ 5 5].  T h e i n p ut

l a y er t a k es t h e c o n c at e n at e d c o or di n at es of N h u m a n j oi nts a n d a p pli es a f ull y c o n-

n e ct e d l a y er  wit h 1 0 2 4 o ut p ut c h a n n els.  T h e n it is f oll o w e d b y f o ur bl o c ks t h at ar e
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( 1 0 2 4 c h a n n els) f oll o w e d b y  B at c h  N or m ali z ati o n, r e cti fi e d li n e ar u nits, a n d dr o p o ut,

ar e st a c k e d f or e � ci e ntl y  m a p pi n g t h e 2 D p os e f e at ur es t o hi g h-l e v el f e at ur es.  Fi-

n all y, t h e f e at ur es e xtr a ct e d b y t h e l ast r esi d u al bl o c k ar e f e d i nt o a n e xtr a li n e ar

l a y er (N ⇥ 3 c h a n n els) t o o ut p ut 3 D p os es.

3. 4 S elf- s u p e r vi s e d  A p p r o a c h

I n t his s e cti o n,  w e i ntr o d u c e t h e pr o p os e d s elf-s u p er vis e d a p pr o a c h f or tr ai ni n g

t h e lifti n g n et w or k.  T h e tr ai ni n g pr o c ess t a k es as i n p ut t h e d et e ct e d 2 D p os es of a

p air of fr a m es t h at ar e c a pt ur e d fr o m t w o di ↵ er e nt vi e ws at t h e s a m e ti m e.  Wit h t h e

p air e d fr a m es,  w e first d et e ct t h eir 2 D p os es X v 1 a n d X v 2 a n d t h eir c orr es p o n di n g

c o n fi d e n c e  w ei g hts of e a c h j oi nt w v 1 a n d w v 2 . T h e n, w e f e e d t h e 2 D p os es i nt o t h e

lifti n g n et w or k a n d o bt ai n t h eir esti m at e d 3 D p os es Y v 1 a n d Y v 2 .
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3.4.1 Two-branch Training Architecture

For training the lifting network without 3D ground-truth annotations, we design

the transform re-projection loss. It involves the perspective projection and view

transformation operations, which require global 3D joint positions. Without global

3D joint positions, we can not obtain the absolute depth of the person in the camera

coordinate, which results in unknown scale when re-projecting 3D poses back to 2D

space. Existing methods commonly normalize the scale of 2D skeletons to overcome

the scale ambiguity problem. However, it must be used in conjunction with the

kinematic constraint or adversarial loss to output realistic 3D poses.

In our work, we design another branch, named root position branch, to help train

the lifting network. It predicts root joint positions, rv1 and rv2, which are added

to relative 3D poses predicted by the lifting network to restore global 3D poses,

Ỹv1 and Ỹv2. The root position network has the same architecture with the lifting

network, and they do not share any weights. The two branches can be optimized

simultaneously using multi-view consistency information, and the loss function and

detailed training procedure will be discussed in the following sections.

3.4.2 Loss Function

With the global 3D poses, we first re-project them back to the 2D space following

the perspective projection ρ.

ρ(Ỹv1
i
) =




fv1
x
Ỹv1

i
(x)/Ỹv1

i
(z) + cv1

x

fv1
y
Ỹv1

i
(y)/Ỹv1

i
(z) + cv1

y



 ,

ρ(Ỹv2
i
) =




fv2
x
Ỹv2

i
(x)/Ỹv2

i
(z) + cv2

x

fv2
y
Ỹv2

i
(y)/Ỹv2

i
(z) + cv2

y



 ,

(3.1)

where fx and fy refer to the focal lengths, cx and cy define the principal points,

Ỹv1
i
(x) indicates the value of x coordinate of ith joint position of Ỹv1. And then, we
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calculate the l2 loss between the input and re-projected 2D poses as supervisions,

Lreproj =
N∑

i

wv1
i
‖Xv1

i
− ρ(Ỹv1

i
)‖2

+wv2
i
‖Xv2

i
− ρ(Ỹv2

i
)‖2,

(3.2)

where wv1
i

and wv2
i

are the confidence scores of the ith joints of two views. Here, we

use the confidence scores of detected 2D poses to integrate the re-projection loss of

different views. The view with smaller 2D confidence value makes less contribution

to the loss value, which reduces the impact of the noisy 2D detections for the lifting

network training.

However, simply using the re-projection consistency will encounter the depth am-

biguity problem. To overcome the problem, we design the transform re-projection

loss, which constrains the predicted 3D skeletons from multiple perspectives. Specif-

ically, we transform the estimated 3D pose from one view to another through the

rigid transformation τ as follows:

τ(Ỹv1
i
) = R1to2

(
Ỹv1

i
− t1to2

)
,

τ(Ỹv2
i
) = R2to1

(
Ỹv2

i
− t2to1

)
,

(3.3)

where R1to2,R2to1 ∈ R3×3 are the rotation matrixes, and t1to2, t2to1 ∈ R3 are the

transformation vectors. With the extrinsic parameters of two cameras R1, t1 and

R2, t2, we can directly obtain the rigid transformation parameters,

R1to2 = R2R
T
1 ; t1to2 = R1 (t2 − t1) ,

R2to1 = R1R
T
2 ; t2to1 = R2 (t1 − t2) .

(3.4)

If extrinsic parameters of cameras do not exist, we can use the positions of 2D joins of

two views as calibration targets [48]. We assume the first camera as the center of the

coordinate system, which means R1 is an identity matrix and t1 is a zero vector. For

corresponding joints in Xv1 and Xv2, we find the fundamental matrix F satisfying

Xv1
i
FXv2

i
= 0, i = 1 . . . N , using RANSAC algorithm. From F, we calculate the
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ess e nti al  m atri x E b y E = P T
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t 1 t o 2 a n d t 2 t o 1 ar e u nit v e ct ors,  w e n e e d t o  m ulti pl y t h e m b y t h e dist a n c e b et w e e n

t w o c a m er a c e nt ers.

N e xt, a c c or di n g t o  m ulti- vi e w c o nsist e n c y t h at t h e 2 D pr oj e cti o n of t h e tr a ns-

f or m e d 3 D s k el et o n s h o ul d b e t h e s a m e  wit h t h e 2 D i n p ut of t h e t ar g et vi e w,  w e

d esi g n t h e tr a nsf or m r e- pr oj e cti o n l oss as f oll o ws:

L t- r e p r oj =

NX

i

w v 1
i k X v 2

i � ⇢ (⌧ ( Ỹ v 1
i ))k 2

+ w v 2
i k X v 1

i � ⇢ (⌧ ( Ỹ v 2
i ))k 2 .

( 3. 5)

I n t his  w a y,  w e c o nstr u ct s u p er visi o n si g n als e ntir el y r el yi n g o n c a m er a g e o m etri c

pri or.  C o m p ar e d  wit h e xisti n g t e c h ni q u es t h at r e q uir e u n p air e d 3 D p os e a n n ot ati o ns

or ki n e m ati c c o nstr ai nts, t h e pr o p os e d a p pr o a c h is si m pl e a n d e ↵ e cti v e.
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3.5 Training

It is challenging to train two inter-dependent branches from scratch without

ground-truth annotations. We find that the network cannot converge if we train it

with random initialization. Thus, we design a pre-training technique to warm-up

the network. As shown in Figure 3.4, the pre-training loss can be formulated as:

Lpre-train =
N∑

i

‖τ(Ỹv1
i
)− Ỹv2

i
‖2 + ‖τ(Ỹv2

i
)− Ỹv1

i
‖2. (3.6)

It is designed according to multi-view consistency that the transformed 3D pose

and the estimated 3D pose of the target view should be the same. Although this

loss is not able to guide the lifting network to produce valid 3D poses, it effectively

regularizes the output space of the root position branch. It can be regarded as

an advanced initialization of the root position branch, which greatly reduces the

difficulty of network convergence.

After pre-training, the network is fine-tuned using the re-projection loss and

transform re-projection loss,

LT = Lreproj + λLt-reproj, (3.7)

where λ is a hyper-parameter that is adapted to set under different datasets. We

set λ as 1 and 1.5 respectively in Human3.6M and MPI-INF-3DHP datasets.

3.6 Experiments

3.6.1 Datasets

We perform extensive evaluations on two publicly available benchmarks.

• Human3.6M (H36M) [38] is one of the largest datasets for 3D human pose esti-

mation, which is captured by MoCap system. It consists of 3.6 million images

with 11 actors performing 15 actions such as eating, sitting and walking. They
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are captured from 4 calibrated cameras with known intrinsic and extrinsic pa-

rameters. In our experiments, we follow the standard protocol with 17-joint

subset, use subjects S1, S5, S6, S7, S8 for training and S9, S11 for testing.

• MPI-INF-3DHP (3DHP) [56] is a recently proposed 3D pose dataset con-

structed with both constrained indoor scenes and complex outdoor scenes.

We use the five chest-height cameras and the provided 17 joints (compatible

with H36M) for training, and we use the official test set, which contains 2929

frames from six subjects performing seven actions, for evaluation.

Evaluation Metrics: For the H36M dataset, we consider two popular eval-

uation protocols. Protocol 1 is the Mean Per Joint Position Error (MPJPE) in

millimeters (mm). MPJPE is the mean euclidean distance between the ground-

truth and predicted positions of the joints. Protocol 2 is the Procrustes MPJPE

(P-MPJPE), which aligns the estimated 3D pose to the ground-truth by a rigid

transformation called Procrustes Analysis before computing the MPJPE.

The evaluation metrics for the 3DHP dataset include the adapted Percentage of

Correct Keypoints (PCK) and corresponding Area Under Curve (AUC) [56]. The

PCK indicates the percentage of joints whose estimated position is within 15cm of

the ground-truth.

Data Augmentation: The H36M dataset has only four calibrated camera

views. Training with more camera views can improve model performance and gen-

eralization ability. We follow the technique proposed by [23] to simulate a series

of virtual camera views. We extend the H36M dataset from 4 views to 12 views

containing 8 virtual camera views, and we obtain the corresponding 2D pose of each

sample through perspective projection to augment the training set. The detailed

analysis will be shown in the following sections.
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3.6.2 Implementation Details

In order to enable the proposed two-branch network to converge without any

explicit 3D pose supervision, the training procedure contains two stages. First, we

pre-train the network using the Lpre-train loss. We use the Adam as the optimizer

and train the network for 20 epoches with learning rate 0.001. Next, the network

is trained using the LT loss for 300 epoches. The learning rate starts from 0.001

and drops by 0.1 each 100 epoches. During evaluation, for consistency with other

works, we only use the 2D-to-3D lifting branch to predict the relative 3D poses in

the camera space, and not use the root position branch. We implement our method

using the deep learning toolbox Pytorch.

3.6.3 Ablation Study

Analysis of Transform Re-projection Loss

In order to evaluate the effectiveness of the proposed transform re-projection

loss, we compare it with the existing popular technique, adversarial loss. We design

several variants and compare the results under Protocol #1 (MPJPE) and Protocol

#2 (P-MPJPE) on the H36M dataset. All variants use 2D poses extracted by the

CPN network as inputs. Table 3.1 presents the quantitative results, and Figure

3.5 shows the results of different variants on several hard samples, i.e., with serious

self-occlusion or far from the camera. It is obvious that only using the re-projection

loss will obtain strange 3D skeletons that do not conform the human kinematics.

Although adversarial loss can constrain the 3D poses using unpaired 3D pose an-

notations, it still can not produce precise 3D poses, especially when encountering

samples with serious self-occlusion. Compared with adversarial loss, our method

achieve significant performance improvements, and the MPJPE and P-MPJPE de-

crease by 47.6 and 32.7 (mm). This shows that the transform re-projection loss can

effectively help the network learn geometric knowledge, which further constrains the
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estimated 3D poses to get more accurate results.

3.6.4 Analysis of Data Augmentation

The data augmentation can resolve the depth ambiguity problem to some extent

by introducing more camera views. Specifically, the MPJPE and P-MPJPE will

decrease by extra 2.0 and 1.6 (mm) when using data augmentation. This verifies that

training with more camera views can effectively facilitate the model performance.
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I n p ut F r a m e R e p r oj R e p r oj + A D V  Tr a ns _ R e p r oj( O u rs)  G r o u n d-t r ut h

Fi g ur e 3. 5 :  R es ults of di ↵ er e nt v ari a nts i n s o m e h ar d e x a m pl es.

A n al y si s  o f  B a c k b o n e s

O ur  m et h o d d o es n ot d e p e n d o n a n y p arti c ul ar b a c k b o n e. I n t his p art,  w e i n v es-

ti g at e t h e p erf or m a n c e of o ur  m et h o d  wit h di ↵ er e nt 2 D-t o- 3 D n et w or k b a c k b o n es.

R es Li n e ar [ 5 5] is t h e e arli est a n d  m ost c o m m o nl y us e d b a c k b o n e,  w hi c h c o nsists of

f ull y c o n n e ct e d l a y ers a n d r esi d u al c o n n e cti o ns.  Te m p or al Dil at e d [ 6 5] is t h e l at est

pr o p os e d b a c k b o n e t h at c a n e x pl or e t h e t e m p or al i nf or m ati o n usi n g dil at e d t e m p or al

c o n v ol uti o ns.  We f e e d it  wit h 2 4 3 n ei g h b ori n g fr a m es as i n p uts d uri n g tr ai ni n g a n d

t esti n g.  As s h o w n i n  T a bl e 3. 2, o ur a p pr o a c h c a n a c hi e v e c o m p etiti v e r es ults  w h e n
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T a bl e 3. 2 :  C o m p aris o ns of di ↵ er e nt b a c k b o n es o n t h e  H 3 6 M d at as ets.

B a c k b o n e  Pr ot o c ol 1  Pr ot o c ol 2

R es Li n e ar 5 9. 7 4 5. 0

O urs 5 7. 0 4 4. 1

Te m p or al Dil at e d 5 6. 1 4 3. 2

( a) ( b)

Fi g ur e 3. 6 : ( a) a n d ( b) ar e t h e l oss a n d  M P J P E c ur v es of t h e n et w or k tr ai n e d

wit h o ut a n d  wit h pr e-tr ai ni n g r es p e cti v el y.

usi n g t h e si m pl e  R es Li n e ar b a c k b o n e.  T h er ef or e, t h e i m pr o v e m e nts of o ur  m et h o d

ar e n ot  m er el y d u e t o t h e b ett er b a c k b o n e.  W h e n usi n g t h e  Te m p or al Dil at e d, o ur

m et h o d g ai ns o b vi o us i m pr o v e m e nts,  w hi c h b e n e fits fr o m t h e e x pl or ati o n of t e m p o-

r al i nf or m ati o n.  T h es e r es ults ill ustr at e t h at t h e pr o p os e d s elf-s u p er vis e d tr ai ni n g

t e c h ni q u e h as str o n g v ers atilit y a n d is s uit a bl e f or a n y n o v el 2 D-t o- 3 D n et w or k ar-

c hit e ct ur e.

A n al y si s  o f  N et w o r k  P r e -t r ai ni n g

I n t his s e cti o n,  w e s h o w t h e e↵ e cti v e n ess of t h e n et w or k pr e-tr ai ni n g. Si n c e t h e

pr o p os e d n et w or k is tr ai n e d  wit h o ut a n y 3 D p os e a n n ot ati o n, t h e pr e-tr ai ni n g is
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v er y i m p ort a nt f or o ur t w o- br a n c h n et w or ks.  As s h o w n i n  Fi g ur e 3. 6, t h e l oss a n d

M P J P E c ur v es  wit h o ut pr e-tr ai ni n g vi ol e ntl y os cill at e.  T h e n et w or k f ails t o c o n v er g e

d es pit e o ur b est e ↵ orts at t u ni n g t h e h y p er- p ar a m et ers. I n c o ntr ast, t h e l oss c ur v e

r a pi dl y d e cr e as es, a n d  w e a c hi e v e l o w  M P J P E v al u e  w h e n usi n g t h e pr o p os e d pr e-

tr ai ni n g t e c h ni q u e. It ill ustr at es t h at pr e-tr ai ni n g t e c h ni q u e is vit al a n d e ↵ e cti v e i n

o ur  w or k.

Fi g ur e 3. 7 :  Q u a ntit ati v e r es ults of o ur  m et h o d (tr ai n e d o n t h e  H 3 6 M d at as et) o n

t h e 3 D H P d at as et.

A n al y si s  o f  G e n e r ali z ati o n  A bilit y

T o d e m o nstr at e t h e g e n er ali z ati o n a bilit y of o ur  m o d el,  w e tr ai n t h e n et w or k

o n t h e  H 3 6 M d at as et a n d e v al u at e it o n t h e t est s plit of t h e 3 D H P d at as et,  w hi c h

i n cl u d es c h all e n gi n g o ut d o or s c e n es.  We pr es e nt s o m e e x a m pl es i n  Fi g ur e 3. 7. It

s h o ws t h at o ur a p pr o a c h c a n s u c c essf ull y r e c o v er 3 D p os es o n t h e d at as ets  wit h o ut



62

being trained on them.
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3.6.5 Comparisons with State-of-the-art Methods

In this section, we compare our method with recent weakly/self-supervised meth-

ods. First, we compare with them on the H36M dataset using protocol #1 and

protocol #2 in Table 4.3. Tung et al. [89], Wandt et al. [90], and Zhou et al.[111]

are based on re-projection loss and require additional unpaired 3D pose annotations.

Compared with them, our method has an explicit improvement and obtains average

errors of 59.0mm and 45.7mm under two evaluation protocols. Our method also

outperforms Kocabas et al. [48] that adopts multi-view information. We present

its result obtained in the case of using ground-truth extrinsic parameters for fair

comparisons. It illustrates that the proposed approach is a more effective way to

exploit multi-view information. Table 4.4 shows the comparisons with state-of-the-

art methods on the 3DHP dataset. In this setting, we train the network on the

train set of the 3DHP dataset, and evaluate it on the test set following the PCK

and AUC metrics. As seen, the PCK and AUC of our method reach 74.1 and 41.4

respectively, which outperform previous methods.

Table 3.4 : Comparisons with recent weakly/self-supervised methods on the 3DHP

dataset.

Method PCK AUC

Zhou et al. ICCV’17 69.2 32.5

Kocabas et al. CVPR’19 64.7 -

Chen et al. CVPR’19 71.1 36.3

Ours 74.1 41.4
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3.7 Conclusion

In this work, we proposed a new self-supervised approach for 3D human pose

estimation. The approach explored multi-view consistency to construct supervision

signals for training a 2D-to-3D lifting network, which can effectively overcome the

depth ambiguity problem. Note that our method simply applied multi-view informa-

tion during training, and required only single view inputs during inference. Mean-

while, we designed a two-branch training architecture and pre-training technique

to ensure the network can successfully converge and achieve excellent performance.

Extensive ablation studies on the H36M and 3DHP datasets illustrated the effec-

tiveness and generalization ability of our approach. The experiment results showed

that our method obtained a superior performance over recent weakly/self-supervised

methods.
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Chapter 4

Self-supervised Method for 3D Human Pose
Estimation with Consistent Factorization Network

4.1 Introduction

3D human pose estimation has recently received considerable attention by the

computer vision community, due to its vast potential on various applications, in-

cluding human-computer interaction, virtual reality, and human action recognition.

In particular, with the promise of deep learning methodologies, many researchers

[55, 65] start to adopt neural networks to predict 3D human poses from monocu-

lar images. However, learning 3D human pose estimation networks is bottlenecked

by the lack of large 3D annotated datasets. Thus, weakly/self-supervised learning

paradigm became a practical alternative in recent times.

Most of the works [100, 13] directly regress the depth values or 3D joint posi-

tions at the corresponding 2D camera view, thanks to the powerful fitting capability

of deep neural networks. However, estimating 3D joint positions from monocular

images is an ill-posed problem where there exist multiple 3D human poses for a sin-

gle 2D skeleton. This problem is particularly prominent for weakly/self-supervised

methods that use the re-projection loss [111]. To overcome this challenge, the GAN-

based technique, such as adversarial loss [100], has been proposed, and it becomes

the most commonly used to constraint the predictions and make it appear to be

“human-like”. It does so by encouraging the generated 3D poses to map onto the

real-human manifold using a real/fake 3D skeleton discriminator. However, the ad-

versarial loss usually requires extra unpaired 3D pose annotations (without 2D-3D
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correspondence) to train the real/fake classifier.

On the other hand, some other works [89, 90, 92] represent the 3D human pose as

a linear combination of a dictionary of view-agnostic 3D pose basis. They design the

pose estimation network to predict the coefficients associated with the dictionary and

the camera viewpoint, instead of predicting the 3D joints directly. This technique

reduces the space of all allowed 3D coordinates and makes the predictions within

the “human” sub-space. However, previous methods [89, 23] commonly learn the

dictionary using off-the-shelf dimension reduction techniques, such as PCA or the

sparse coding. These techniques are generic and only focus on the statistical aspect

of the data, but ignore the geometric aspect specific to 3D human pose variations.

Moreover, since these methods cannot guarantee the 3D shape and viewpoint are

to become fully disentangled, they still require the adversarial loss as an additional

constraint to overcome the projection ambiguity.

In our work, we propose a novel self-supervised framework to systematically ad-

dress the above problems. In a nutshell, our method learns a neural network to

consistently factorize the 3D shape and camera viewpoint from the input 2D skele-

ton. Consistent factorization means that 2D projections from different viewpoints

of the same 3D skeleton should have the same canonical reconstruction, and be dis-

tinguished completely by camera viewpoints. Based on this intuitive fact, we design

an effective technique to learn the factorization network, which takes advantage of

multi-view information to constrain the canonical reconstruction. Similar to [89],

we also represent the 3D human pose as a combination of a dictionary of pose basis.

However, in order to reconstruct robust 3D human poses, we exploit the underlying

3D geometry of human pose and learn the dictionary from 2D poses through Non-

Rigid Structure from Motion (NRSfM), which is a classical technique to reconstruct

deformable 3D shapes from monocular scenes. Besides, we follow the prior assump-

tion that 3D shapes are compressible via multi-layer sparse coding [49], and use
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the hierarchical dictionary to reconstruct 3D human poses. Specifically, to obtain

the hierarchical dictionary, we optimize an encoder-decoder network, where neural

network weights serve as the dictionary, through minimizing the NRSfM objective.

It is an efficient way and does not require 3D pose annotations for learning the hi-

erarchical dictionary. Consequently, our method can effectively learn a 3D human

pose estimation network and overcome the projection ambiguity problem with the

hierarchical dictionary and consistent factorization network.

We have performed extensive experiments on two popular 3D human pose datasets:

Human3.6M [38] and MPI-INF-3DHP [56], and the results show that our method

achieves state-of-the-art performance. Finally, we summarize the contributions of

our work as follows:

• We propose a novel self-supervised method for 3D human pose estimation,

which effectively overcomes the projection ambiguity problem by consistently

factorizing the 3D human shape and camera viewpoint using multi-view infor-

mation.

• In order to reconstruct robust canonical 3D human poses, we exploit the under-

lying 3D geometry of human poses to learn a hierarchical dictionary from 2D

poses. It is an effective way and does not require extra 3D pose annotations.

• The proposed method achieves state-of-the-art results on two popular 3D pose

benchmarks compared with recent weakly/self-supervised methods.

4.2 Related Work

4.2.1 3D Human Pose Estimation

3D human pose estimation has been considerably studied in the past few years.

With the great success of deep learning, recent researches mainly focus on the
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learning-based framework. Here, we classify these methods into two categories.

Some of them [82, 63, 56, 30, 81] predict 3D poses directly from single images

through the deep convolutional neural networks (CNNs). For example, Sun et al.

[81] proposed the integral regression approach, which directly regresses 3D joint co-

ordinates through a CNN. Pavlakos et al. [63] trained a CNN to predict the voxel

likelihoods for each human joint through a fine discretization of the 3D space. The

other methods [39, 23, 84, 55, 12] follow the two-stage framework. They first esti-

mate 2D joint positions through an advanced 2D keypoint detector [95, 58, 17], and

then lift them into 3D space. Various 2D-to-3D lifting networks have been designed

to learn the mapping between 2D and 3D joint positions. For example, Martinez et

al. [55] adopted a neural network with only two fully connected layers while achiev-

ing surprising results. It has become the most commonly used baseline. Several

works [107] exploited the novel Graph Convolution Networks (GCNs) to capture

the graph-structure of the human skeleton for accurate 3D human pose regression.

Besides, there are also works [65, 3, 110, 109] that exploit temporal information in

videos to generate more smooth results.

4.2.2 Weakly/Self-supervised Approaches

Recently, weakly/self-supervised approaches have received much attention due

to the lack of large 3D human pose datasets In order to train the network without

explicit 3D pose annotations, re-projection loss has been proposed and become a

common technique [8, 46, 96, 90, 65, 93]. However, re-projection loss faces the

projection ambiguity problem where multiple 3D human poses can explain the same

2D skeleton. In order to alleviate this problem, several kinds of techniques have been

proposed. First, the most intuitive way [30, 65, 72] is to enforce the bone length

similarity between predicted and real human skeletons, which makes the predicted

3D poses conform the human kinematics. Second, the adversarial loss [100, 89, 90,
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46], which is inspired by the recent Generative Adversarial Network (GAN), is the

most commonly used technique. It encourages the output 3D poses on the real

human manifold through a real/fake 3D skeleton classifier. For example, Tung et al.

[89] designed the Adversarial Inverse Graphical Network (AIGN) for the task such as

2D-to-3D lifting and image-to-image translation. They adopted the adversarial loss

to match the distribution between the predictions and a collection ground-truth.

Chen et al. [13] exploited the geometric self-consistency of the lift-reproject-lift

process, as well as added a 2D pose discriminator to output valid 3D poses. Wandt

et al. [90] proposed the RepNet that learns a mapping from a distribution of 2D

poses to 3D poses using the adversarial supervision. The above two techniques

still require extra unpaired 3D pose annotations to constrain estimated 3D human

poses. The third category is geometry-based [16, 103], which introduces multi-view

information for constraining predicted 3D human poses. For example, Rhodin et

al. [71] pre-trained an encoder-decoder network that predicts an image from one

view to another. In this way, the network learned geometry-aware representations

and then was fine-tuned using a small amount of supervision to predict 3D human

poses. Kocabas et al. [48] applied Epipolar geometry to obtain 3D poses from

estimated 2D joint positions of multiple views, and used them for training a 3D pose

estimator. These methods usually explicitly require multi-view inputs as well as the

corresponding extrinsic parameters (rotation matrix or 6-DoF camera extrinsic) that

are calculated through camera calibration or Epipolar geometry. Otherwise, they

still require a 2D/3D pose discriminator as an additional constraint.

4.2.3 Dictionary-based Approaches

Although most of recent methods directly regress depth values or 3D positions

of human joints at the corresponding camera view, some methods advocate using a

dictionary of 3D pose basis elements to represent 3D human skeleton. For example,
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Tung et al. [89] adopt PCA on the orientation-aligned training set to obtain a

shape dictionary, and represent a 3D human pose as a linear combination of 3D

shape basis. Novotny et al. [60] also represent 3D human poses as a combination of

shape basis. They consider the dictionary as the weights of a linear layer and learn it

with the 3D pose estimation network in an end-to-end manner. Most recently, some

researches make advances in Non-rigid Structure from Motion (NRSfM), which is a

classical technique to reconstruct 3D shapes of articulated 3D points. For example,

Kong and Lucey [49] proposed the Deep-NRSfM network architecture as solving a

multi-layer block sparse dictionary learning problem, and achieve high-quality 3D

human pose reconstructions. Wang et al. [91] proposed a new knowledge distilling

algorithm applicable to Deep-NRSfM based on dictionary learning, and achieves

weakly-supervised learning using solely 2D human joint annotations. In our work,

we take advantage of the recent advances in the dictionary learning technique for

NRSfM, and focus on fully disentangling 3D human shape and camera viewpoint

from input 2D poses.

4.3 Problem Formulation

Here, we start by giving a brief problem formulation. We then introduce our main

contributions of the consistent factorization network in Section 4.4 and hierarchical

dictionary in Section 4.5.

Given an image, we denote X ∈ RP×2 as the 2D coordinates of P human joints

of the target person. The target of our method is to predict the corresponding 3D

human pose, and we define Y ∈ RP×3 as the 3D human pose under the camera

coordinate. In our work, we decompose Y as the canonical 3D human pose and

camera viewpoint, which is formulated as:

Y = ŶR, Ŷ = [Dϕ]P×3, (4.1)



72

where Ŷ is the 3D human pose under the canonical viewpoint, which is represented

as the combination of a code vector ϕ ∈ RK and a dictionary of 3D pose basis

D ∈ R3P×K . Operator [ ]P×3 is defined as reshaping the vectorized 3D pose into

matrix form with dimension P × 3. As for the camera viewpoint, it is represented

by a rotation matrix R ∈ SO(3). In order to avoid calculating the orthonormal

constraint, we predict the exponential coordinate of the rotation matrix ω ∈ R3,

and R can be obtained by the Rodrigues’ rotation formula R = expm[ω]×, where

expm is the matrix exponential and [.]× is the hat operator.

However, traditional dictionary learning approaches usually cannot guarantee

sufficient freedom on 3D human pose variations. In our work, we follow the prior

assumption that 3D shapes are compressible via multi-layer sparse coding [49], and

define that the canonical 3D human pose satisfies:

Ŷ = D1ϕ1, ‖ϕ1‖1 ≤ λ1,ϕ1 ≥ 0,

ϕ1 = D2ϕ2, ‖ϕ2‖1 ≤ λ2,ϕ2 ≥ 0,

... ,
...

ϕn−1 = Dnϕn, ‖ϕn‖1 ≤ λn,ϕn ≥ 0,

(4.2)

where Ŷ is the vectorization of Ŷ, D1 ∈ R3P×K1 ,D2 ∈ RK1×K2 , . . . ,Dn ∈ RKn−1×Kn

are the hierarchical dictionary, and ϕi ∈ RKi are multi-layer sparse code vectors that

are constrained to be sparse and non-negative. In this prior, each 3D human pose is

represented by a hierarchical dictionary and corresponding sparse codes. Compared

with the single-level dictionary, codes obtained through the hierarchical dictionary

not only minimize the reconstruction error at their individual levels, but is also

regularized by the codes from other levels. This helps to impose more constraints

on code recovery while having stronger 3D pose expressibility.

Consequently, with the hierarchical dictionary, we can reconstruct the 3D human

pose under the camera coordinate through the 3D pose code ϕn and exponential co-
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Figure 4.1 : Architecture of the consistent factorization network.

ordinate ω. In the following, we will introduce the proposed consistent factorization

network in Section 4.4, and introduce how to obtain the hierarchical dictionary by

solving an NRSfM minimization problem in section 4.5.

4.4 Consistent Factorization Network

In order to predict the coefficients of 3D human poses and camera viewpoints,

we design a deep neural network N to factorize the two components from input 2D

poses. The architecture of the proposed network is shown in Figure 4.1. In detail,

the backbone of the network takes the concatenated 2D coordinates of P human

joints as inputs. And then, it is followed by four blocks that are surrounded by

residual connections. For each block, several fully connected layers (1024 channels)

followed by Batch Normalization, Rectified Linear Units, and Dropout, are stacked

for efficiently mapping the 2D pose features to high-level features. After that, the
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high-level features are fed into two specific networks to estimate ϕn and ω. The two

networks have the same architecture that is composed of two fully connected layers

and a ReLU layer. With ϕn, we feed it to a decoder, which serves as the hierarchical

dictionary, to obtain the canonical 3D human pose Ŷ. Also, we can calculate the

camera rotation matrix R using ω. Finally, we can obtain the 3D human pose under

the camera coordinate Y = ŶR.

4.4.1 Consistent Factorization Contraint

The network will suffer the projection ambiguity problem if training the network

simply using the re-projection loss, because it cannot guarantee the human shape

and camera viewpoint are fully disentangled. Inspired by the fact that 2D projec-

tions from different viewpoints of the same 3D skeleton should have the same canon-

ical reconstruction, we introduce the multi-view information to constrain predicted

canonical 3D human poses. Specifically, the network takes as input the 2D skeletons

X1,X2 of two randomly selected views captured at the same time. We first mea-

sure the re-projection error between input 2D poses and corresponding re-projected

2D poses. Here, we follow the orthogonal projection, and define M = R

[
I2 0

]T
.

Thus, the re-projection loss can be formulated as:

Lre-proj = ‖Ŷ1M1 −X1‖2 + ‖Ŷ2M2 −X2‖2, (4.3)

where Ŷ1, Ŷ2 and M1,M2 are the predicted canonical reconstructions and camera

projection matrixes of two views. Except for the re-projection loss, we design the

consistent factorization loss as follows:

Lcf = ‖Ŷ1 − Ŷ2‖2, (4.4)

which is the l2 loss between the canonical 3D poses of two different views. This loss

forces 2D poses of different views to have the same canonical reconstruction. Mean-

while, the re-projection loss can ensure that the predicted camera rotation matrix
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c a n b e f ull y dis e nt a n gl e d.  T h us t h e pr e di ct e d 3 D p os es c a n b e c o nstr ai n e d fr o m

m ulti pl e vi e ws a n d o v er c o m e pr oj e cti o n a m bi g uit y.

4. 5 Hi e r a r c hi c al  Di c ti o n a r y  L e a r ni n g

Di ↵ er e nt fr o m pr e vi o us  m et h o ds t h at l e ar n t h e di cti o n ar y t hr o u g h  P C A or s p ars e

c o di n g t e c h ni q u es,  w e l e ar n t h e di cti o n ar y b y s ol vi n g a n  N R Sf M  mi ni mi z ati o n pr o b-

l e m.  T his is i ns pir e d b y t h e  m ost r e c e nt  w or k  D e e p- N R Sf M [ 4 9],  w hi c h d esi g ns a

d e e p e n c o d er- d e c o d er n et w or k t o s ol v e t h e hi er ar c hi c al di cti o n ar y l e ar ni n g pr o bl e m,

w h er e t h e f e e d-f or w ar d p ass t hr o u g h t h e n et w or k c a n b e c o nsi d er e d as pr o vi di n g a n

a p pr o xi m at e r e c o v er y of  m ulti-l a y er s p ars e c o d es, a n d t h e b a c k- pr o p a g ati n g t hr o u g h

t h e n et w or k c a n b e c o nsi d er e d as l e ar ni n g t h e hi er ar c hi c al di cti o n ar y. I n d et ail, as

s h o w n i n  Fi g ur e 4. 2, t h e ar c hit e ct ur e of t h e e n c o d er is as f oll o ws:

 1 =  R e L U(( D #
1 ) T X � b 1 ⌦ 1 3 ⇥ 2 ),

 2 =  R e L U(( D 2 ⌦ I 3 )
T  1 � b 2 ⌦ 1 3 ⇥ 2 ),

...

 n =  R e  L U(( D n ⌦ I 3 )
T  n � 1 � b n ⌦ 1 3 ⇥ 2 ),

( 4. 5)
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where D#
1 ∈ RP×3K1 is the reshape of D1, and b1, . . . ,bn are the bias terms.  i =

ϕi ⊗ M, where ⊗ is the Kronecker product. We assume that the camera matrix

M and sparse code ϕn can be extracted from  n through some function, which is

implemented using a linear layer in our work. It is worth mentioning that we predict

the exponential coordinates ω to compute the rotation matrix. This is different

from Chen and Luecy [49] that adopt SVD to ensure the success of the orthonormal

constraint of M, and our implementation is more computationally efficient. With

ϕn, we reconstruct the 3D human pose through a decoder:

ϕn−1 = ReLU(Dnϕn − b′
n
),

...

ϕ1 = ReLU(D2ϕ2 − b′
2),

Ỹ = D#
1 ϕ1.

(4.6)

The encoder and decoder are symmetric and share weights. With the encoder-

decoder network parameterized by the hierarchical dictionary, we can learn the

dictionary by minimizing the re-projection error of all samples in the training set:

min
D1,D2,...,Dn

∑

i

‖ỸiM̃i −Xi‖2, (4.7)

where Ỹi and M̃i are the 3D human pose and camera projection matrix of the i-th

sample. In this way, we can learn the hierarchical dictionary in an elegant manner.

Although the above encoder network can also predict the 3D pose code and

camera viewpoint, it is not robust to the unseen samples.

4.6 Training

During training, we first train the encoder-decoder network to obtain the hier-

archical dictionary. After that, the pre-trained decoder, servers as the hierarchical

dictionary, is shared by the consistent factorization network, and the network is
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optimized using both the re-projection loss and consistent factorization loss:

L = Lre-proj + λLcf, (4.8)

where λ is a hyper-parameter. In the second step, we train the factorization network,

at the same time fine-tuning the hierarchical dictionary with a smaller learning rate

to obtain better performance. More training details can be found in Section 4.7.2.

4.7 Experiments

4.7.1 Dataset

We evaluate our method on two popular datasets, which are presented as follows:

Human3.6M [38] is one of the largest datasets for 3D human pose estimation,

which is captured by the motion capture system. It includes 3.6 million images

captured from 4 calibrated cameras. Moreover, it consists of 15 actions, such as

eating, sitting and walking, performed by 11 actors. In our experiments, we use the

17-joint subset following the standard protocol, and we use subjects S1, S5, S6, S7,

S8 for training, and S9, S11 for testing.

MPI-INF-3DHP [56] is a recently proposed 3D human pose dataset. Different

from Human3.6M, it includes both constrained indoor scenes and complex outdoor

scenes. Here, we use the five chest-height cameras and the provided 17 joints for

training, and we use the official test set containing 2929 frames (six subjects per-

forming seven actions) for evaluation.

Evaluation Metrics:

For quantitative evaluation, we adopt the common protocol, Mean Per Joint

Position Error (MPJPE), which indicates the mean Euclidean distance between the

ground-truth and predicted joint positions. Similar to Novotny et al. [60], we restore

the scale of the predicted 3D pose before calculating MPJPE Also, we calculate the
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Procrustes MPJPE (P-MPJPE), which aligns the estimated 3D pose to the ground

truth by a rigid transformation before calculating the MPJPE.

In order to compare with recent methods on the MPI-INF-3DHP dataset, we

calculate the Percentage of Correct 3D Keypoints (PCK3D) and Area Under Curve

(AUC) [56]. The PCK3D indicates the percentage of joints whose estimated position

is within 15cm of the ground truth.

4.7.2 Implementation Details

Data Pre-processing:

The normalization of the input data is crucial for network training. In our work,

we normalize the input 2D joint positions through the following steps. First, we

set the Pelvis joint as the human central joint. Next, we subtract the value of the

central joint coordinate from all joints. Finally, we divide the value of all joint

coordinates by the scale factor, defined as the mean Euclidean distance of all joints

from the central joint.

The Human3.6M dataset only provides four calibrated camera views. In order

to augment the dataset, we follow the technique proposed by Fang et al. [23] and

simulate a series of virtual camera views. We extend the Human3.6M dataset from

four views to twelve views containing eight virtual camera views, and obtain their

corresponding 2D poses.

Training Details:

In our work, we train the network in two stages. First, we train the encoder-

decoder network on the Human3.6M training data. We set the size of the dictionary

at the last level (ϕn) as 10, and the size of the first level (ϕ1) as 125. At this stage,

we use Adam as the optimizer and train the network for 40 epochs with a learning

rate of 0.001. After that, we initialize the hierarchical dictionary of the consistent
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Table 4.1 : Per-action P-MPJPE of different variants on the Human3.6M dataset.

Direct. Discuss Eating Greet Phone Photo Pose Purch.

Baseline 123.1 135.9 159.0 129.4 151.3 154.7 114.7 152.7

Baseline+HD 96.8 111.2 105.5 101.4 116.4 129.8 98.7 121.1

Baseline+ADV 54.6 65.3 61.2 69.5 68.0 63.0 83.8 52.4

Baseline+CF 41.9 48.0 47.9 49.0 50.6 64.9 50.6 49.0

Sitting SittingD Smoke Wait WalkD Walk WalkT Avg

Baseline 187.7 210.2 146.5 123.8 146.5 113.4 119.7 144.6

Baseline+HD 144.6 181.3 116.8 109.8 128.2 112.7 110.3 118.9

Baseline+ADV 84.4 84.9 125.8 64.9 67.5 73.5 64.0 72.2

Baseline+CF 60.3 71.7 49.5 54.2 54.8 41.6 47.2 52.1

factorization network with the pre-trained decoder. Meanwhile, the parameters of

the consistent factorization network are initialized with Kaiming initializer [33]. For

the second stage, we also use Adam as the optimizer, the batch size is set to 1024,

and the network is trained for 70 epochs in total. The learning rate of the network

backbone starts from 0.001, while the hierarchical dictionary is with smaller value

0.0001 for fine-tuning. The learning rate drops by 0.1 at 50 epochs. The model is

implemented using the PyTorch [62] and trained with Intel Xeon E5-2698 2.2GHz

and one NVIDIA Tesla V100 GPU.

4.7.3 Ablation Study

Analysis of Consistent Factorization Constraint

In this part, we analyze the effectiveness of the proposed consistent factorization

loss. Specifically, we design several variants of our method, and the details of variants

are shown as follows:

• Baseline: The baseline does not consider the consistent factorization con-
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Figure 4.3 : Visualization comparisons of our method versus baseline.

straint and hierarchical dictionary. The baseline is trained simply using the

re-projection loss.

• Baseline+HD: Different from the baseline, this variant adopts the hierarchi-

cal dictionary and pre-trains it using the encoder-decoder network.

• Baseline+ADV: Based on the Baseline+HD, this variant adopts adversarial

loss to further constrain the 3D pose predictions. It is designed for comparison

with the commonly used adversarial loss.

• Baseline+CF: This is our proposed method considering both consistent fac-

torization constraint and hierarchical dictionary.

We train all variants on the Human3.6M train set, and Table 4.1 reports per-action

P-MPJPE of all variants on the Human3.6M test set. Obviously, our method

achieves the best performance among all variants. Compared with the baseline,

the pre-trained hierarchical dictionary helps to obtain better results. However, the

improvement is limited if only using the hierarchical dictionary. The adversarial

loss can further improve performance. In comparison, our method can achieve more
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Table 4.2 : Comparisons with recent dictionary-based methods on the Human3.6M

dataset.

MPJPE P-MPJPE

AIGN [89] - 97.2

C3DPO [60] 95.6 -

Distill [91] 83.0 57.5

Ours-SD 85.8 57.3

Ours 81.9 52.1

significant improvement and reaches 52.1 (mm) P-MPJPE. This illustrates that con-

sistent factorization constraint is an effective technique to train the 3D human pose

estimation network and overcome the projection ambiguity problem. Moreover, our

approach does not require any extra un-paired 3D pose annotations.

In addition, we show the visualization comparisons between our method and

baseline in Figure 4.3. Here, we visualize the predicted 3D poses of both canonical

view and camera view. As we can observe, on the one hand, our approach can

generate much more accurate 3D human poses compared with baseline. On the

other hand, the canonical reconstructions obtained by our approach maximumly

exclude the camera view information. This illustrates that the proposed approach

can effectively disentangle the camera view from the 3D human pose, resulting in

more accurate results.

Analysis of Hierarchical Dictionary

Here, we analyze the effectiveness of the hierarchical dictionary. Table 4.2

presents the comparisons with recent dictionary-based methods on the Human3.6M
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Figure 4.4 : Visualization results of our method (trained on the Human3.6M dataset)

on the MPI-INF-3DHP dataset.

dataset. AIGN [89] learns 3D pose dictionary using PCA and adopts adversarial loss

as an additional constraint. C3DPO [60] uses a single-level dictionary and learns

it with the 3D pose estimation network in an end-to-end manner. Distill [91] is a

weakly-supervised method that learns a 3D pose estimation network based on the

dictionary learned through NRSfM. As shown in Table 4.2, our method achieves the

best result among all.

For further comparisons, we implement a variant (Ours-SD) that replaces the

hierarchical dictionary with a single-level dictionary similar to C3DPO. With the

consistent factorization constraint, Ours-SD can obtain better performance than

C3DPO, 85.8 vs. 95.6 (mm) MPJPE. Moreover, it can be observed that the hierar-

chical dictionary helps to achieve better results than the single-level dictionary, and

MPJPE and P-MPJPE decrease by 3.9 and 5.2 (mm).
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Table 4.3 : Comparisons with recent weakly/self-supervised methods on the Hu-

man3.6M dataset.

Method MPJPE P-MPJPE

Wandt et al. CVPR’19 89.9 65.1

Zhou et al. ICCV’17 - 64.9

Drover et al. ECCV’18 - 64.6

Pavlakos et al. CVPR’17 118.4 -

Rhodin et al. ECCV’18 - 98.2

Chen et al. CVPR’19 - 68.0

Kocabas et al. CVPR’19 77.8 70.7

Tung et al. ICCV’17 97.2 -

Wang el al. ICCV’19 86.4 62.8

Novotny et al. ICCV’19 95.6 -

Ours 81.9 52.1

Ours+DA 76.4 47.7

Analysis of Generalization Ability

In order to evaluate the generalization ability of the proposed model, we train the

network on the Human3.6M dataset and evaluate it on the MPI-INF-3DHP dataset

that includes complex outdoor scenes. We present some visualization results in

Figure 4.4, which shows that our method can successfully recover 3D poses on the

datasets without being trained on them. Moreover, our method can achieve 70.6%

PCK3D and 36.6% AUC in this setting, as shown in Table 4.4.
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Table 4.4 : Comparisons with recent weakly/self-supervised methods on the MPI-

INF-3DHP dataset.

Method Trainset PCK3D AUC

Zhou et al. ICCV’17 H36M 69.2 32.5

Chen et al. CVPR’19 H36M 64.3 31.6

Chen et al. CVPR’19 MPI 71.1 36.3

Kocabas et al. CVPR’19 MPI 71.9 -

Ours H36M 70.6 36.6

Ours MPI 74.6 40.4

4.8 Comparisons with State-of-the-art Methods

In this section, we compare our method with recent weakly/self-supervised meth-

ods. First, we compare with them on the Human3.6M dataset using MPJPE and

P-MPJPE in Table 4.3. Wandt et al. [90], Zhou et al. [111], and Drover et al. [22]

are based on adversarial loss and require additional unpaired 3D pose annotations.

Tung et al. [89], Wang et al. [91], and Novotny et al. [60] are recent dictionary-based

methods. Pavlakos et al. [64], Kocabas et al. [48], Chen et al. [13], and Rhodin

et al. [71] require multi-view frames as inputs during training. Here, we report the

results that are obtained with and without data augmentation. As shown in Table

4.3, our method obtains state-of-the-art performance, in particular, the P-MPJPE

achieves significant improvement compared with previous methods. We found that

the gap between MPJPE and P-MPJPE of our method is mostly due to errors

of camera viewpoint estimation. It is worth mentioning that the performance can

achieve further improvement when using data augmentation, which illustrates that

more camera views during training are helpful to improve network performance.
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Table 4.4 shows the comparisons with recent methods on the MPI-INF-3DHP

dataset. We consider two settings that respectively use Human3.6M and MPI-INF-

3DHP datasets as training data, and evaluate the model on the test set following

the PCK3D and AUC metrics. As seen, the PCK3D and AUC of our method reach

70.6%/36.6% and 74.6%/40.4% respectively, which outperform previous methods in

both settings.

4.9 Conclusion

In this work, we proposed the consistent factorization network for 3D human

pose estimation and learned it in a self-supervised manner. The network can fully

disentangle the 3D human shape and camera viewpoint through the proposed consis-

tent factorization constraint. It is a simple and effective technique to overcome the

projection ambiguity problem, which does not require any extra 3D pose annotations

and camera extrinsic parameters. Besides, we introduced the hierarchical dictionary

to reconstruct more robust canonical 3D human poses. It was learned through an

encoder-decoder network and optimized by an NRSfM minimization problem. After

pre-trained, the hierarchical dictionary was further fine-tuned on the consistent fac-

torization network to obtain more accurate 3D pose predictions. Extensive ablation

studies on the Human3.6M and MPI-INF-3DHP datasets illustrated the effective-

ness and generalization ability of our approach. The experiment results showed that

our method can fully disentangle 3D shape and camera viewpoint, and obtained

superior performance over recent weakly/self-supervised methods.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Human pose estimation is an important research topic in the computer vision

community. This thesis has conducted a study on deep learning based 2D and 3D

human pose estimation, and a series of models, from video-based 2D pose estimation

to self-supervised 3D pose estimation, have been proposed. The main innovative

contributions are summarized as follows:

• We propose the multi-scale TCE module and embed it into the encoder-

decoder network architecture for explicitly exploring temporal consistency in

videos. The TCE module applies the learnable offset field to capture the geo-

metric transformation between adjacent frames at the feature level. Compared

with the existing model-based methods, it can explicitly model the temporal

consistency information in an end-to-end network. Compared with the ex-

isting post-enhancement methods, it does not require additional optical flow

calculations and is more computationally efficient. In addition, we explore the

multi-scale geometric transformations at the feature level by integrating the

spatial pyramid within the TCE module, which achieves further performance

improvements.

• For 3D pose estimation, we propose a self-supervised approach for 3D human

pose estimation, which only relies on geometric prior knowledge and does

not require any 3D human pose annotations. To this end, we design the
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transform re-projection loss, which is an effective technique to exploit multi-

view consistency information and constrain the estimated 3D poses during

training. Besides, we introduce a root position regression branch to restore

the global 3D poses during training. In this way, the network can reserve the

scale information of re-projected 2D poses, which can improve the accuracy

of the predicted 3D poses. Moreover, this method only relies on geometry

knowledge during training, leading to a better generalization ability.

• We propose the consistent factorization network, which fully disentangles the

3D human shape and camera viewpoint to overcome the projection ambiguity

problem. To this end, we design a simple and effective loss function using

multi-view information to constrain the canonical 3D human pose. Moreover,

in order to reconstruct robust canonical 3D human poses, we represent 3D

human pose as a combination of a dictionary of 3D pose basis, and adopt geo-

metric information of 3D human poses to learn a hierarchical dictionary from

2D human poses by solving the NRSfM problem. The hierarchical dictionary

can be learned without the need for 3D human pose annotations, and has a

stronger expression ability compared with the single-level dictionary.

5.2 Future Work

The future research can be conducted in but not limited to the following aspects:

• As for 2D pose estimation, we will attempt to design a unified framework inte-

grating the multi-scale TCE module with the multi-person tracking technique

to improve the performance of 2D pose estimation in multi-person videos.

• Besides, the multi-scale TCE module can be extended to the problem of 3D

human pose estimation. We will try to extend the multi-scale TCE module to
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predict three-dimensional offsets and generate temporally enhanced features

for predicting 3D human poses.

• As for 3D pose estimation, we will explore the depth map and point cloud data

for future work. With the availability of depth cameras and radar sensors on

mobile devices, the cost of collecting depth map and point cloud data will

become lower. The depth map and point cloud can provide absolute depth

information, which can effectively solve the projection ambiguity problem.
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