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ABSTRACT

Stacking Ensemble Model for Liver Stiffness Classification with Imbalanced
Data

by
Mingjian Wang

Liver cirrhosis is a significant threat to humans; once the liver reaches the last stage
of cirrhosis, there is no cure for it. Therefore, discovering cirrhosis in the early stage is one
of the effective ways to decrease the mortality rate of cirrhosis. Besides early detection,
increasing the correct cirrhosis diagnosis rate is another desirable method to avoid late
treatment for patients. This thesis developed an automatic diagnosis approach to predict
doctors’ opinions for patients regarding the liver stiffness measurements from FibroScan
tests. ]A model using the Stacking ensemble method was presented to build a classifier
for an imbalanced liver stiffness measurement data-set. The data-set was collected from
13,418 Chinese patients who had liver cirrhosis tests by FibroScan. It recorded 30 sets
of features, also provided professional doctors’ opinions in Chinese. To transfer the Chi-
nese characters to digital, we applied Jieba module in Python which is a natural language
processing method to create 6 labels in classification. Each label presents one doctors’
opinion. Since this data-set is highly imbalanced, sampling methods such as the under-
sampling method and the oversampling method are applied to solve this problem. To
identify the most suitable model for the classification, we performed a study of 7 super-
vised learning algorithms, Logistic Regression (LR), Decision Tree (DT), Naive Bayesian
(NB), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Random Forest (RF)
and AdaBoost; also demonstrated the stacking models based on these supervised learning
algorithms. The results demonstrated that the use of Synthetic Minority Oversampling
Technique (SMOTE) oversampling technique was effective to handle the imbalanced liver
data-set, and the best fitting model was constructed by using DT as meta-classifier with

four base classifiers (KNN, RF, DT, SVM) in the stacking model.

Dissertation directed by Professor Steven Su

School of Biomedical Engineering
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