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ABSTRACT

Research on Key Technologies of Low-Latency Uplink Non-Orthogonal

Multiple Access

by

Jie Zeng

5G is expected to significantly reduce latency in numerous emerging services in

the Internet of Things (IoT). Non-orthogonal multiple access (NOMA) has been

widely regarded as one promising technology to enable 5G. NOMA can allow multi-

ple users to send signals in the same radio resource simultaneously, and can distin-

guish the signals of users with multi-user detection (MUD) at the receiver. NOMA

can be combined with multiple-input and multiple-output (MIMO), advanced modu-

lation and coding, and full-duplex (FD) to ensure low latency communications with

high reliability. Generally speaking, the non-orthogonal superposition of signals

from access users and grant-free scheduling can reduce the access latency; MIMO

and FD can shorten the transmission latency by increasing spectrum efficiency. This

thesis studies the design and enhancement of NOMA to guarantee low latency in

the uplink (UL), under the assumption of massive accessed users, a few transmit

antennas, shadow fading, and imperfect channel state information, which reflect

the characteristics of IoT services. Meanwhile, the effectiveness of the proposed

schemes is evaluated via the novel finite blocklength information theory, thereby

complying with the small packet size in IoT. The main contributions of this thesis

are summarized as follows.

1. The rate splitting algorithms and successive interference cancellation detection

in multi-user MIMO (MU-MIMO) NOMA are proposed to minimize the maximum

transmission latency of users. The achievable data rates are derived, and two corre-

sponding rate splitting algorithms are proposed. Numerical results validate that the



rate splitting MU-MIMO NOMA can efficiently shorten the transmission latency

and processing latency.

2. The sparse code multiple access enhanced FD (FD-SCMA) scheme is designed

to operate UL and downlink (DL) simultaneously. This thesis derives the error

probability with imperfect self-interference suppression in FD. FD-SCMA is proved

to achieve lower transmission latency than existing SCMA and FD schemes in time-

invariant flat-fading channels and time-invariant frequency-selective fading channels

by theoretical calculation and simulation.

3. Low latency transmission of the emerging MU-MIMO NOMA is studied. Un-

der log-normal shadow fading, this thesis derives the probability density function

of effective SNRs, and calculates the error probability given transmission latency.

Further, the error probability can be minimized by adjusting the length of pilots.

Simulation results verify that the MU-MIMO NOMA enables low latency transmis-

sions under moderate shadow fading for massive accessed users.

Overall, NOMA can remarkably lower access latency, transmission latency, and

processing latency in UL.
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