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ABSTRACT

The computational approach for identifying promot-
ers on increasingly large genomic sequences has
led to many false positives. The biological signifi-
cance of promoter identification lies in the ability
to locate true promoters with and without prior
sequence contextual knowledge. Prior approaches
to promoter modelling have involved artificial neural
networks (ANNs) or hidden Markov models (HMMs),
each producing adequate results on small scale
identification tasks, i.e. narrow upstream regions.
In this work, we present an architecture to support
prokaryote promoter identification on large scale
genomic sequences, i.e. not limited to narrow
upstream regions. The significant contribution
involved the hybrid formed via aggregation of
the profile HMM with the ANN, via Viterbi scoring
optimizations. The benefit obtained using this
architecture includes the modelling ability of the
profile HMM with the ability of the ANN to associ-
ate elements composing the promoter. We present
the high effectiveness of the hybrid approach in
comparison to profile HMMs and ANNs when used
separately. The contribution of Viterbi optimizations
is also highlighted for supporting the hybrid archi-
tecture in which gains in sensitivity (+0.3), specifi-
city (+0.65) and precision (+0.54) are achieved over
existing approaches.

INTRODUCTION

Motif identification in biological sequences is a common and
growing task in bioinformatics, arising from ever growing
numbers of genomic sequences. Specific motif identification
tasks such as in this case promoter element recognition, ena-
ble context to be placed on raw sequences and aid knowledge

discovery through autonomous sequence annotation. The pro-
blem specific to promoter identification centres on the ability
to recognize consensus sequences often of short length, in
large context unaware background sequences. In this manner
a two-tiered issue arises, namely, sequence deviation from
consensus and the shortness of signal relative to the back-
ground. The biological reality of promoter structure imposes
these challenges, to which many computational techniques
have attempted to answer.

The promoter is the key regulatory region which enables
gene transcription. Its composition is dependent upon the tax-
onomic classification of the organism and the category of the
gene under its control. Whilst conservation does exist broadly
in promoters i.e. prokaryotic �35 and �10 boxes and the
TATA box in eukaryotes, significant variability exists,
including the absence of these sequences. Such sequences
and associated upstream elements are very short and are eas-
ily lost when analysing large regions of nucleotides without
prior context knowledge. In a study conducted by (1), a con-
clusion was drawn which stated that only 20% of the known
promoters had scoring above the false positives for a 0.1 Mb
genomic sequence. The question of search domain arises
whereby 90.31% of sigma 70 promoters fall within 250 bp
of the transcription start site (TSS) (2). These authors using
a weight matrix approach and 250 bp window upstream
from the TSS concluded that >50% of promoter sequences
had false signals (promoter like) that score better than the
true promoter. The �35 and �10 signal detection yielded
38 signals per 250 bp using 3 SDs. The discovery of so
many potential RNA polymerase (RNAP) binding signals
would suggest promoter degeneracy over evolutionary time
due to mutations which lead to up and down effects on the
promoter strength. Alternatively, another hypothesis for the
prevalence of false signals was proposed by (3) in which
the multitude of candidate promoters serve in negative com-
petition or positively towards the channelling of the RNAP
to the promoter.

In our study, such an accessory ‘up’ element was used.
Other such elements exist, including the process whereby
a false promoter element attracts the RNAP to the true
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promoter for the RNAP to then be relocated by an activator
as in the CRP–MalT system (4).

Techniques to achieve promoter identification typically
rely on the detection of consensus motifs. This scheme works
well when identifying highly conserved motifs in short bio-
logical background sequences, however, motifs quickly get
lost and produce many false positives in larger background
sequences. The most effective use of consensus identification
is toward seeking relatively large motifs, e.g. CpG islands, as
by the classical hidden Markov models (HMMs) (5).

HMMs are statistical models based on a double stochastic
process with hidden underlying states and observable emis-
sions. The purpose of this model is to represent a motif in
a stochastic framework which is then used for the classifi-
cation of candidate sequences. Many applications in bioin-
formatics have benefited from HMMs, including binding
site prediction (6), protein families and homology modelling
(7), conserved sequence recognition (8), gene finding (9) and
alignment (10). Another approach to motif identification
involves artificial neural networks (ANNs). An ANN is a
graph which is composed of computational elements that
are loosely designed to model the human nervous system.
ANNs have generally been applied to the identification of
regulatory sequences (11–15). The purpose of this technique
is to form associations in the data under analysis, which can
be used to model motifs in situ.

To address the situation of incorporating additional neigh-
bouring biological information into computational models, an
effective motif extraction technique, such as the HMM, needs
its results placed in a biological context, as can be achieved
by the ANN. By filtering HMM results via an ANN, the false
positives obtained by an HMM-only scheme can be reduced.
This approach effectively builds a profile for the regulatory
region using two of the most powerful pattern searching
techniques available. The stimuli for this hybrid approach is
founded in the properties of each model. Profile HMMs (5)
model biological sequences and account for variation, whilst
ANNs learn association between entities, in this case, pro-
moter elements. Using these properties, it is logical to
model and associate promoter elements to form a prediction
algorithm. The first such use of HMM/ANN hybrids has
been towards speech processing (16). In this case, the ANN
applied contextual knowledge to the raw HMM scores.
Hybrid architectures that are composed of HMMs and ANNs
have been used in bioinformatics recently. Such applications
involve (17), whereby an ANN is used primarily for eukary-
ote secondary structure prediction with a HMM then applied
to filter the results. This is inverse to what our process
involves. When compared with other techniques in the field
of secondary structure prediction, such an approach meets
current performance levels. Using an architecture similar to
the model developed by the authors of this study, prediction
of G-protein coupled with receptor specificity has been
achieved (18). The reported finding indicates a 94% classi-
fication rate. Another application of the hybrid approach
included (19), whereby an NN-HMM-ENSEMBLE is com-
bined to predict all-alpha proteins with prediction accuracy
better by 7–9% than other techniques.

The unified hybrid model developed by the authors for the
purpose of promoter element recognition has proved a
concept thematic in n-motif functional region identification.

The ability to model composition variability and motif relat-
ive location was enabled by utilizing the attributed of pHMMs
(motif composition) and ANNs (locality validation). The
resultant property was a model that could identify motifs
and further justify their predicted score by incorporating
their positional arrangement. Performance outcomes involve
improvements of sensitivity (+0.3), specificity (+0.65) and
precision (+0.54) over existing techniques (20,21).

In this study, both pHMMs and ANNs are shown to be
ineffective toward genomic promoter identification, therefore
highlighting the need for an improved model. False positives
and narrow signal detection in short backgrounds are the
key motivations taken by the authors. The result is the devel-
opment of an architecture for the integration of these two
approaches, whereby the performances of either approach is
extended through novel integration strategies. By combining
the modelling and scoring optimizations of the pHMM with
the associative power of ANN’s, this architecture will more
accurately represent the motifs under consideration in gen-
omic contexts. The architecture of our model is comprised
of a three-layer feed-forward neural network with a pHMM
acting as the input neurons via a Viterbi scoring determina-
tion which is shown to provide more discriminative pHMM
scoring optimization. The outcome is a hybrid model capable
of locating promoters in large sequence backgrounds a goal
which neither pHMM nor ANN can achieve when used in
isolation.

MATERIALS AND METHODS

Combining the pHMM and ANN architectures to accomplish
genomic scale promoter identification is the function of the
hybrid architecture. The first stage in modelling specific regu-
latory regions involves pHMM construction and training. The
promoter regions of prokaryote ‘housekeeping’ genes were
used as an example system. The composition of such regions
includes the �35 and �10 promoter elements. To incorporate
such elements into the hybrid architecture, each conserved
sequence requires modelling via a pHMM. Each pHMM is
trained using 100 promoter element annotated Escherichia
coli �10 and �35 signals, respectively, obtained from
NCBI GenBank (22) which are aligned using ClustalW
(23). These sequences were obtained using the query
‘�10_SIGNAL AND E.coli [ORGANISM] NOT PLASMID’
and then filtered to remove insertion sequences, therefore
focusing on native chromosomal promoters (Supplementary
Data ‘Core Promoter Data’). The outcome of the data mining
task results in two profiles representing the �35 and �10 core
signals respectively via pHMMs. Scoring follows a sliding
window of size 6 bp for each position in the sequence.
Numeric scores from the pHMMs are sent to the input layer
of a three-layer feed-forward neural network which uses a
sigmoidal transfer function as described below:

f ðvÞ ¼ 1

1 þ e�v
1

where v represents the Viterbi score for the final state k in the
optimal path p though the pHMM for the candidate sequence
x ¼ (1. . .N). The requirement of integrating two disparate
models falls upon the prerequisite modelling foundations of
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the pHMM. In order to achieve the best predictive outcomes,
the pHMM scoring scheme has to be optimized for the prob-
lem under analysis. In this study, a pHMM is used to model
each promoter element. The short motif e.g. 6 bp is repre-
sented by the pHMM by consensus, insert and delete states.
The problem under analysis regards the determination of
the candidate sequence being of a promoter element modelled
by the pHMM. Two scoring schemes are classically applied
to HMM analysis, the forward algorithm and the Viterbi algo-
rithm. The forward algorithm generates a score indicating
the likelihood of the observed sequence given in the model,
an obvious choice. The Viterbi algorithm determines the opti-
mal path through the model, given the observed sequence
and effectively aligns the candidate sequence to the model.
Upon analysis, the forward algorithm encompasses all paths
through the model to generate the scoring outcome, however,
the Viterbi algorithm only uses the maximal path. The desired
property of the pHMM lies in its ability to model, as closely
as possible, to the promoter element and discriminately score
candidate sequences. The forward algorithm, when compared
with the Viterbi algorithm as shown below, has lower dis-
crimination ability, whereby forward values produce many
false predictions, however the Viterbi scoring produces only
1 significant prediction, see Figure 1.

Traditionally, the forward algorithm is used to answer the
question surrounding candidate outcome for a given model,
however, our investigation has found the Viterbi algorithm
to be more discriminative. The underlying algorithm of
taking the best path through the model is a more desirable
property which is produced by the Viterbi algorithm. This
property serves the pHMM portion of the hybrid better than
traditional scoring via the forward algorithm. Capitalizing on
this outcome, the Viterbi output serves as the bridge linking
pHMM to ANN.

The HMM-ANN hybrid transfer function for the hidden
layer that receives the pHMM values is:

f ðvÞ ¼ 1

1 þ e�vkðNÞ2p 2

The ANN training set was composed of 75 pHMM score
distributions for positive genomic sequences which contain a
promoter and 75 distributions for genomic sequences which

do not contain a promoter sequence (Supplementary Data—
‘ANN Training Data’). The test data, both positive and nega-
tive sequences, were obtained from the NCBI GenBank (22),
which consisted of E.coli promoter (positive set) and E.coli
coding sequence (negative dataset). The database queries for
the positive dataset remained as before however the query
for the negative dataset included a ‘NOT—xx_signal’ clause
to reflect the absence of a promoter. Error backpropagation
was used in these training epochs. The ANN output repre-
sents a score which indicates the likelihood of the candidate
sequence score being a promoter.

In the example of the architecture Figure 2, there are three
pHMMs, each modelling separate prokaryote promoter ele-
ments. The pHMMs scores serve as input to the three-layer
feed-forward ANN whose purpose is to classify the sequences
based on its trained network parameters. The numeric classi-
fication of putative promoter sequence is achieved via initial
ANN parameters whose input node values are initialized to
the mean pHMM score for their respective promoter motif,
with zeroed hidden and output neuron initial values. Error
backpropagation values involve a momentum term of 0.001
and a threshold of 0.1. The determination regarding the num-
ber of hidden neurons was achieved via plotting the effect
neuron count had on positive-negative dataset discrimination.
The discrimination measure was calculated via computing
the mean hybrid score for 25 promoter and 25 non-promoter
motifs. The desirable trait of distinguishing promoter from
non-promoter versus the required number of hidden neurons
to achieve the maximal discrimination is shown in Figure 3.

Figure 1. pHMM scoring algorithm discrimination ability for Sequence AB102735.

UP -35 -10 input

hidden
(5 neurons)

output

Figure 2. pHMMs as input to three-layer ANN, shaded ‘UP’ element
indicates this profiles inclusion at a later stage in the investigation.
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The decision to implement a five-neuron hidden layer was
based on the experimental evidence as shown in Figure 3,
whereby additional neurons provided limited discrimination
advantage whilst five neurons maintained computational
efficiency and discrimination ability. The plateau trends in
discrimination via adding more hidden neurons, suggest five
neurons represent a balance between discrimination ability
and computational efficiency.

Hybrid model testing data was obtained from the NCBI
GenBank database (22) and represented prokaryote rRNA
other coding genomic sequences. Incrementally obtained
results from core promoter identification discussed later in
this paper led to the requirement of modelling an additional
promoter component motif. The ‘UP’ element was chosen
for its role in transcription and spatial proximity to the core
promoter. Due to the limited annotation of such UP elements
containing genomic sequences, all available sequences (in
total 10) at the time of writing were chosen for the positive
test dataset (Supplementary Data—‘UP element data’). The

UP element motifs from these same sequences were used in
generating the UP element pHMM. This lack of annotation
regarding UP elements is a task upon which our model has
the ability to contribute through sequence discovery. The
retrieval of E.coli genomic sequences for the test dataset
followed the previous signal scheme however now utilizing
the specific feature ‘UP Element’, e.g. UP element AND�
35_signal AND�10_signal

To contrast the known UP element promoter-containing
genomic sequences, the NCBI GenBank database (22) was
again utilized to retrieve 10 non-promoter containing seq-
uences (Supplementary Data—Test Set).

The integration of pHMM with ANN is achieved via an
aggregation scheme in the JAVA programming language.

RESULTS

Motif identification classically suffers from a high degree of
false positives. In terms of promoter elements such as the
�10 or �35 elements, such a small motif is easily hidden
in larger sequence backgrounds. Signal conservation is a
major factor in locating signals. Prokaryote promoter signals
are relatively conserved, however and on closer analysis the
�35 box is significantly less conserved than its paired �10
box (refer scoring trends Figures 4 and 5). The problem lies
in the fact that a 6 bp consensus �10 box does not possess
sufficient information content to accurately distinguish it
from the sequence background. ‘Boosting’ is a term used to
aid in scoring but finding signals in the same locality is
often exploited to great effect. On the promoter level, such
surrounding signals are constrained to a very specific region
and the conservation level introduces further complications.
Using the classic prokaryote E.coli promoter as an example,
a relatively weak �35 signal is followed by a stronger �10
signal. These signals have a 6 bp conserved length and there-
fore pose a significant challenge when locating a genomic
sequence, contrast 250 bp considered as the default window
(2) especially when coupled with lower conservation. To reit-
erate, there are three factors under consideration, (i) signal
length, (ii) signal conservation, (iii) spacer length between

Mean Score ANN Diference vs Hidden Layer
Neurons

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5
Hidden Layer Neurons

Figure 3. Effect of hidden neurons on dataset discrimination.

Figure 4. �35 Box HMM Scoring for Sequence AB102735.
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signals. Signal length and composition have typically been
modelled by position weight matrices (24) and HMMs
(25,26). ANNs, whose major feature is association, have
been used to model spacer length between the promoter sig-
nals (13). Acting alone, these techniques produce acceptable
results on small background sequences—98% positive and
90.2% negative identification of the ANN approach (13)
whilst the HMM approach of (25) yielded 74.1% accuracy.

Our approach firstly investigated the algorithms in isolation
and then as a hybrid. When applying such singular techniques
on large sequences, false positives severely limit the useful-
ness of the model, as indicated by the images shown in
Figures 4 and 5.

Neither scoring outcome is useful in promoter recognition
and thus concur with the prior findings of (1,2) regarding the
number of false signals in the promoter region. Positive bars
indicate a closer match to consensus whilst negative bars
indicate poor matching. Figure 4 would additionally suggest
much lower conservation of the �35 signal, a fact determined
by others (11).

For the GenBank (22) sequence ‘AB102735’, Figures 4 and
5 show a high level of false positives. When the HMM results
are placed in spatial context via the ANN, the number of false
positives are reduced significantly, as seen in Figure 6 when
compared with Figures 4 and 5. Whilst the hybrid model
showed an improvement in lowering false predictions, it
was not deemed a useful model in its current form, certainly
not for large sequences as shown in Figure 6. The key con-
cern centred on what it means to be a promoter and why
there were so many false signals (scoring better than the
real promoter elements). RNAP is a biological complex with
specific binding ability, i.e. transcription initiation is not
a random process. The biological neighbourhood therefore
needed to be examined to place the true promoter in context
of the genomic region. Biological reference was sought in the
form of a conserved sequence that could aid in correct RNAP
targeting to the true promoter. Our focus centred on the rRNA
coding genes due the realization that these genes contained
regulatory elements termed ‘UP elements’ located up to 82 bp
upstream of the TSS. This element is recognized by the a

Figure 5. �10 Box HMM Scoring for Sequence AB102735.

Figure 6. pHMM-ANN Hybrid scoring for AB102735.
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subunit of the RNAP (27). By training a pHMM and incorp-
orating it into the ANN, the results as shown in Figure 7,
were accurate and displayed excellent discrimination ability.
As seen in Figure 7, there is only one prediction in the
>6500 bp sequence, the prediction being the true promoter.
This is a highly significant achievement when compared
with HMMs used in isolation (Figures 4 and 5) and in part the
ANN result shown Figure 6 (Supplementary Data—Results).

To place this result in context for future research in this
area of genomic context promoter identification, the follow-
ing is a summary of the results achieved in this study as
compared with existing promoter identification tools: NNPP
version 2.2 (20) based on ANN and SAK (21) based on sup-
port vector machines. The test data comprised of 20 sequen-
ces: 10 containing prokaryote promoters and 10 containing no
prokaryote promoter. All the sequences were sourced from
the NCBI GenBank (22) using query sequences inline with
prior examples as stated previously (Supplementary Data—
Test Set).

The 20 sequence test set represented an average sequence
length of 3667 bp including genomic sequences of Sinorhizo-
bium meliloti, Agrobacterium tumefaciens, Azospirillum
brasilense, Shewanella violacea and E.coli. Performance
measures as per Tables 1 and 2.

The results highlight the discrimination ability of the hybrid
approach, hence justify the decision to combine pHMM and
ANNs via a Viterbi integration which produces a clear imp-
rovement over the current tools. Performance measures fol-
lowed the commonly accepted approaches as defined below.

DISCUSSION

False positives are a significant disadvantage to many algo-
rithms in motif extraction. By combining the modelling
ability of pHMMs with the associative learning capability
of the ANN, this architecture serves to address this important
issue. When placed in the context of previous research, our
approach extends beyond current techniques via the imple-
mented hybrid architecture and the application target, gen-
omic context promoter identification. We therefore do not
require explicit search windows to carry out analysis. Alone,
each technique of HMM or ANN has long been used in
promoter identification, the majority of which centre around
identification of the conserved �35 and �10 hexamers. Our
approach differs from other studies on molecule type and

Figure 7. ANN-HMM Hybrid scoring ‘using Up elements’ AB102735.

Table 1. Data summary

Method TP TN FP FN

NNPP 4 1 15 6
SAK 4 3 13 6
Hybrid 7 10 2 3

FP, false positive: non-promoter predicted as promoter.
FN, false negative: promoter predicted as non-promoter.
Sn, sensitivity: proportion of true promoters correctly identified as promoters
as given in Equation 3.
Sp, specificity: proportion of non-promoters predicted as non-promoters as
given in Equation 4.
P, precision: proportion of promoter predictions being true promoters as given
in Equation 5.

Sn ¼ TP

TP þ FN
3

Sp ¼ TN

TN þ FP
4

P ¼ TP

TP þ FP
5

Table 2. Performance measure comparison

Method Sn Sp P

NNPP 0.4 0.0625 0.210526316
SAK 0.4 0.1875 0.235294118
pHMM-ANN hybrid 0.700 0.833 0.777

FP, false positive: non-promoter predicted as promoter.
FN, false negative: promoter predicted as non-promoter.
Sn, sensitivity: proportion of true promoters correctly identified as promoters
as given in Equation 3.
Sp, specificity: proportion of non-promoters predicted as non-promoters as
given in Equation 4.
P, precision: proportion of promoter predictions being true promoters as given
in Equation 5.
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topology. At the time of writing, this hybrid approach to
genomic promoter identification is considered novel to the
best of our research. The trend observed in our research indi-
cates that scoring such small motifs in isolation results in a
negative effect on prediction. Even when combined into an
ANN, the �35 and �10 signals were not significant enough
to provide a useful model. The key focus in overcoming this
problem was to concentrate on the biological purpose of the
promoter and understand why so many false signals exist. By
studying the neighbourhood and the properties of the RNAP,
we were able to achieve a result that sets our scoring model
apart from previous works in terms of discrimination ability
at such large genomic contexts. Our model has the power to
predict the correct promoter element in a >6500 bp segment
of genomic data with virtually no competing false signals,
an achievement that other approaches cited in this paper
have failed to accomplish. For the GenBank (22) sequence
‘AB102735’, the NNPP (20) algorithm produced 21 predic-
tions and the SAK (21) method 24 predictions above default
(0.8-NNPP) and reasonable thresholds (0.5-SAK). By con-
trast, the hybrid model produced one prediction which
located the promoter correctly.

This achievement is facilitated by the discovery whereby
the Viterbi algorithm provides beneficial discrimination abil-
ity to the pHMM component of the hybrid. We are therefore
confident that our model extends the state-of-the-art in model
design for promoter recognition and delivers greater discrim-
ination for promoter prediction in genomic contexts.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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