

Collaborative Dual-Stream Modeling for Video Understanding

by Xiaohan Wang

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Yi Yang

University of Technology Sydney
Faculty of Engineering and Information Technology

February 2021

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis. This research is supported by the Australian Government Research Training Program.

Production Note:

Signature removed prior to publication.

February 2021

ABSTRACT

Collaborative Dual-stream Modeling for Video Understanding

by

Xiaohan Wang

Most existing video recognition systems classify the input video to coarse-grained labels with single-stream architectures or combine multi-modal predictions by simple late fusion. However, real-world video applications usually require understanding complex human-object interactions and fine-grained content. It expects a video analysis system to be able to conduct meticulous reasoning. Besides, the urgent need for multi-modal alignment and communication among different models requires multi-stream video modeling, which is beyond single-stream architectures' capacity.

In this thesis, I argue that we should tackle video understanding with collaborative dual-stream modeling in several challenging scenarios. The interaction between the different information in videos can encourage the video understanding system to exploit the spatio-temporal relation. The idea has been applied to three tasks. First, for egocentric action recognition, symbiotic attention mechanism and interactive prototype learning scheme are developed to explore the relationship between the motion stream and appearance stream. Second, we design a T2VLAD framework for text-video retrieval to align the text stream and video stream. Third, for efficient video recognition, the communication between the lightweight model and heavyweight model is enabled by a parallel sampling network to sample more salient frames. Extensive experiments on popular video datasets demonstrate the effectiveness of the proposed approaches.

Dissertation directed by Professor Yi Yang School of Computer Science

Acknowledgements

I would like to thank my principal supervisor Prof. Yi Yang. He motivates me to set a high standard for my research and gives considerate advice on both research and career planning. Without his continuous and invaluable support, the Ph.D. degree can not be attainable.

I would like to thank my co-supervisor Dr. Linchao Zhu. He introduced me to the video understanding area and taught me a lot of research skills. He gave inspirational advice on my research and helped me a lot on paper writing and presentations.

I want to thank my main collaborators, Mr. Yu Wu at UTS, Dr. Heng Wang at FaceBook AI, Dr. Ping Liu at Singapore A*STAR and Mr. Haitian Zeng at Baidu Research. Thank you all for discussing with me on interesting ideas and helping me with paper writing.

Thanks to all my colleagues and friends in UTS and Baidu Research.

Finally, I would like to thank my parents Mr. Xun Wang and Ms. Xuechun Wang for their unconditional love over so many years. I want to thank my girlfriend Ms. Yang Su for her love, support, and encouragement during the past eight years.

Xiaohan Wang

Sydney, Australia, 2021.

List of Publications

Journal Papers

- J-1. X. Wang, L. Zhu, Y. Wu and Y. Yang, "Symbiotic Attention for Egocentric Action Recognition with Object-centric Alignment," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, doi: 10.1109/TPAMI.2020.3015894. (Published)
- J-2. Y. Wu, L. Zhu, **X. Wang**, Y. Yang, F. Wu, "Learning to Anticipate Egocentric Actions by Imagination," in *IEEE Transactions on Image Processing*. (Accepted)

Conference Papers

- C-1. X. Wang, Y. Wu, L. Zhu, Y.Yang, "Symbiotic Attention with Privileged Information for Egocentric Action Recognition," in AAAI, pp. 12249-12256, 2020. (Published)
- C-2. X. Wang, Y. Wu, L. Zhu, Y.Yang, "Baidu-UTS Submission to the EPIC-Kitchens Action Recognition Challenge 2019," in CVPR Workshop, 2019. (Published)
- C-3. X. Wang, L. Zhu, H. Wang, Y.Yang, "What Are You Cutting? Recognizing Active Objects in Egocentric Videos via Interactive Prototype Learning." (Under Review)
- C-4. **X. Wang**, L. Zhu, Y.Yang, "T2VLAD: Global-Local Sequence Alignment for Text-Video Retrieval," (**Under Review**)
- C-5. **X. Wang**, L. Zhu, P. Liu, Y.Yang, "Parallel Sampling Network: A Differentiable Framework with Context Relation Mining for Efficient Video Recognition." (**Under Review**)

C-6. H. Zeng, Y. Dai, X. Yu, **X. Wang**, Y.Yang, "Learning Deep Clustered Representation in Shape Space for for Non-rigid Structure-from-Motion." (**Under Review**)

Contents

	Certificate	ii
	Abstract	iii
	Acknowledgments	iv
	List of Publications	V
	List of Figures	xi
1	Introduction	1
	1.1 Egocentric Action Recognition	2
	1.2 Text-video Retrieval	4
	1.3 Efficient video recognition	4
2	Literature Survey	6
	2.1 Deep Video Recognition	6
	2.2 Egocentric Action Recognition	7
	2.2 Egocentric Action Recognition	7 8
	2.3 Human-Object Interaction	8
	2.3 Human-Object Interaction	8
	2.3 Human-Object Interaction 2.4 Visual Attention 2.5 Efficient Computing 2.6 Text-Video Retrieval	8 9

	٠	•	•
V	1	1	1

	3.1	Introdu	action
	3.2	Method	d
		3.2.1	Overview
		3.2.2	Preliminaries
		3.2.3	Object-centric Feature Alignment
		3.2.4	Symbiotic Attention
		3.2.5	Training and Objectives
	3.3	Experi	ments
		3.3.1	Datasets
		3.3.2	Experiment Settings
		3.3.3	The Effectiveness of SAOA
		3.3.4	Comparison with State-of-the-art Results
		3.3.5	EPIC-Kitchens Action Recognition Challenge 2020 38
		3.3.6	Visualization
	3.4	Summa	ary
4	Re	cogni	zing Active Objects in Egocentric Videos via In-
			e Prototype Learning 42
	4.1	Introdu	action
	4.2	Interac	tive Prototype Learning
		4.2.1	Overview
		4.2.2	Verb Classification
		4.2.3	Noun Classification
		4.2.4	Training and Inference
	4.3	Experi	ment

•	
1	v
-1	Λ

4.3.1	Dataset	. 51
4.3.2	Implementation Details	. 52
4.3.3	Comparison with State of the Arts	. 53
4.3.4	Ablation Studies	. 57
4.3.5	Qualitative Results	. 58
4.4 Summ	ary	. 60
	•	
work wi	th Context Relation Mining for Efficient Vid	eo
Recogni	tion	61
5.1 Introd	uction	. 61
5.2 The P	roposed Approach	. 64
5.2.1	Problem Setting	. 64
5.2.2	Parallel Video Sampling Network	. 65
5.2.3	Training Objectives	. 69
5.2.4	Inference Strategy	. 71
5.3 Experi	iments	. 71
5.3.1	Experimental Setup	. 71
5.3.2	Ablation Studies	. 74
5.3.3	Comparison with the State-of-the-Art	. 78
5.3.4	Analysis on the sampling scores	. 80
5.3.5	Qualitative Results	. 82
5.4 Summ	ary	. 83
T2VLA	D: Global-Local Sequence Alignment for Tex	ct-
Video R	Retrieval	84
	4.3.2 4.3.3 4.3.4 4.3.5 4.4 Summ Parallel work wi Recogni 5.1 Introd 5.2 The P 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4 5.3 Experi 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.4 Summ T2VLA	4.3.2 Implementation Details 4.3.3 Comparison with State of the Arts 4.3.4 Ablation Studies 4.3.5 Qualitative Results 4.4 Summary Parallel Sampling Network: A Differentiable Fram work with Context Relation Mining for Efficient Vide Recognition 5.1 Introduction 5.2 The Proposed Approach 5.2.1 Problem Setting 5.2.2 Parallel Video Sampling Network 5.2.3 Training Objectives 5.2.4 Inference Strategy 5.3 Experiments 5.3.1 Experimental Setup 5.3.2 Ablation Studies 5.3.3 Comparison with the State-of-the-Art 5.3.4 Analysis on the sampling scores.

	Bibliography				
7	Co	nclusi	ion and Future Directions	1	03
	6.4	Summa	ary	•	101
		6.3.4	Qualitative Results	•	99
		6.3.3	Ablation Study		96
		6.3.2	Comparison to State-of-the-art	•	94
		6.3.1	Experimental Details		93
	6.3	Experi	ments	•	93
		6.2.5	Global Alignment		92
		6.2.4	Local Alignment	•	90
		6.2.3	Text Representation	•	90
		6.2.2	Video Representations		88
		6.2.1	Overview		87
	6.2	Method	d		87
	6.1	Introdu	action	•	84

List of Figures

3.1	The illustration of the object-centric feature alignment. For verb	
	classification, the spatial location provided by the detector can	
	possible reduce the object-irrelevant motions. Local motion features	
	aligned with object features serve as possibly action candidates. For	
	noun classification, global alignment inject the local object features	
	into the context-aware global feature. These location-aware feature	
	candidates from the two branches are beneficial to the subsequent	
	meticulous reasoning.	13
3.2	The proposed SAOA framework. Our framework consists of three	
	feature extractors and one interaction module. The detection model	
	generates a set of local object features and location proposals. This	
	location-aware information is injected to the two branches by an	
	object-centric alignment method For the Verb branch, the feature	
	map is locally aligned with the objects by combining the local	
	motion features with corresponding object detection features. For	
	the Noun branch, the object features are aligned with the global	
	noun representation. Subsequently, the fused features from each	
	branch interact with the global feature from the other branch by a	
	symbiotic attention mechanism. The two object-centric feature	
	matrices are first normalized by a cross-stream gating operation.	
	After that, the matrices are attended by the other branch to select	
	the most action-relevant information. The outputs of SAOA are	
	used to classify the verb and noun, respectively	18

3.3	The illustration of symbiotic attention on the noun branch. The	
	object-centric noun feature matrix is first normalized by the global	
	verb feature. After that, the feature matrix interacts with the global	
	verb feature to generate attention weights. The final noun	
	representation is the weighted sum of the normalized object-centric	
	features	23
3.4	Qualitative results of our SAOA I3D (Flow) model. The colored	
	boxes show the top-5 detected regions and the numbers are the	
	corresponding attention weights generated by our action-attended	
	relation module. Red indicates the failure case	39
4.1	The motivation of Interactive Prototype Learning (IPL) framework	
	is to collaboratively learn judicious location-aware spatio-temporal	
		43
4.2	Our Interactive Prototype Learning (IPL) framework. The feature	
	map of size $T \times H \times W \times C$ is extracted from the last convolutional	
	layer of the 3D CNN backbone. To facilitate the interaction between	
	the verb branch and the noun branch, we introduce a set of verb	
	prototypes shared across the two branches. A background prototype	
	is introduced to filter the action-irrelevant information from the	
	spatio-temporal feature map. Each prototype is a C -dimensional	
	vector and is random initialized during training. Verb prediction is	
	obtained by computing the cosine similarity between the average	
	pooled verb feature and the verb prototypes. For noun prediction,	
	the feature map is decomposed and grouped by soft-assigning each	
	feature to the prototypes. We select the most relevant K groups	
	based on verb predictions to generate the final noun representation.	
	The 3D CNN backbone and IPL are jointly trained in an end-to-end	
	manner	45

4.3	Qualitative results of our IPL model. We illustrate the sum of	
	assignments on the top-K verb prototypes for each feature vector on	
	the spatio-temporal feature map. For each input clip, we uniformly	
	sample four frames and plot the corresponding assignment map.	
	Higher assignment values shows in red. We also print the predicted	
	label and the ground-truth label above the images (Green for	
	correct predictions and Red for failure cases)	59
5.1	An overview of our proposed parallel sampling network. Given an	
	input video, we pre-sample N candidate frames. The sampler CNN	
	processes the N frames in a parallel manner. The features are fed	
	into a Context Relation Mining (CRM) module to produce ${\cal N}$	
	importance scores. We illustrate three instantiations of the CRM	
	module: Non-local Block, Encoder-Decoder TCN, and Vanilla TCN.	
	After that, we utilize the Top-K sampling strategy to select the	
	highest M scores and their corresponding frame indices. The	
	classification model only takes the sampled ${\cal M}$ frames as input and	
	produces M prediction vectors. Finally, the prediction vectors are	
	multiplied by the selected M weights and averaged as the final	
	prediction	64
5.2	Context Relation Mining Module Instantiations	68
5.3	Mean Average Precision vs. Computational Cost on AcitivityNet.	
	Comparison with state-of-the-art methods	79
5.4	The left is the histogram of relative sampling location. The right is	
	the histogram of scores produced by the sampler	81

5.5	Visualization of the Uniformly Sampled 10 frames and the 10 frames	
	sampled by our PSN. The ground truth actions for the videos are	
	"Swimming", "Playing beach volleyball" and "Futsal", respectively.	
	The red box indicates that the frame is irrelevant to the action class	
	empirically.	82
6.1	Global and local alignment between texts and videos	85
6.2	Our T2VLAD framework for text-video retrieval. "TA" is a	
	temporal aggregation method. For simplicity, we use a max-pooling	
	operation to aggregated each expert	88
6.3	Visualization of the assignment weights. We take Video 7060 in the	
	MSRVTT 1K-A test set as an example. We plot the text	
	assignments to the three centers as black lines. The thickness of the	
	line indicates the relative value on the same center. The numbers	
	next to the line are the assignment values. We only illustrate the	
	top text assignments for better visualization. The Top-10 frames	
	(the padding features have been removed.) correspond to the	
	appearance features assigned to the centers are shown at the bottom. 1	100
6.4	The text-video retrieval results on the MSRVTT 1K-A test set. The	
	left are the videos ranked by our T2VLAD, and the right are the	
	results from the model only with global alignment	101