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Abstract—Accurately crude oil price prediction remains 

challenging so far. Despite the abundant research 
achievements of crude oil price prediction, most of them 
emphasize the linear and deterministic modeling, which 
cannot adequately capture the complex nonlinear 
characteristics and uncertainties involved, thus impeding 
further developments in the field. In this study, a novel 
learning system with the aim of obtaining deterministic and 
probabilistic predictions is presented to model the 
nonlinear dynamics in crude oil price, composed by the 
modules of recurrence analysis, outlier detection, data 
preprocessing, feature selection, predictive modeling 
based on deep learning, and system evaluation. In 
particular, the temporal convolution is developed to 
perform the feature selection, thus improving the 
generalization of the system. Additionally, the extensions, 
including the predictive performance test evaluation, 
convergence investigation, and sensitivity analysis, are 
carried out. The experimental simulations show that the 
proposed system can yield the deterministic and 
probabilistic predictions with higher accuracy and 
feasibility compared with the benchmarks considered, 
further indicating its effectiveness. 
 

Index Terms—Deep learning, Oil price, Deterministic and 
probabilistic prediction, Temporal convolution 

I. INTRODUCTION 
RUDE oil, as an important form of non-renewable energy, 
is usually considered “the blood of modern industries” due 

to its great socio-economic significance to facilitate national 
security [1], international economy, and financial sectors being 
aligned with crude oil markets. However, dramatic fluctuations 
of crude oil price (COP) caused by geopolitical conflicts [2], 
economic growth [3], weather situations, and exchange rate [4] 
will destroy the balance between the supply-side and 
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demand-side in the oil market, further having a significant 
negative impact on these aspects listed above. In fact, the 
predictive modeling of COP, with the aim of minimizing 
prediction bias, is one of the most effective solutions to 
alleviate the negative impacts above, which can facilitate the 
decision-making relevant to this field. For example, oil price 
prediction with a desired accuracy is needed for governments to 
formulate scientific strategies of oil development, which is also 
of significance to develop risk-management strategies in 
response to oil shocks for relevant financial institutions. 
However, performing the COP prediction has remained 
challenging due to its nonlinear and chaotic characteristics. 

Although some complex factors aforementioned render 
crude oil price prediction to be a great challenge, the relevant 
studies being carried out in academia have achieved lots of 
research results. More specifically, the mainstream relevant to 
the crude oil price prediction can be divided into two 
categories, namely, traditional econometric models and 
artificial intelligence models. Models from the first category 
can be characterized by statistical distribution theory and linear 
regression theory. The main econometric models usually 
contain the error correction model [5], autoregressive 
integrated moving average model (ARIMA) [6], generalized 
autoregressive conditional heteroskedasticity (GARCH) [7], 
and hybrid econometric model (i.e., ARIMA-GARCH) [8].  

Although these econometric models above have high 
computational efficiency, the linear type and limited 
distribution assumption being difficult to model nonlinear time 
series, such as the COP, render them difficult to obtain desired 
predictive performance. Additionally, the further improvement 
of predictive performance using econometric models faces 
technological difficulties. For example, they cannot be 
incrementally learned and can only re-estimate its parameters 
when the studied dataset is updated. 

Currently, the state-of-the-art methods of the crude oil price 
prediction depend on artificial intelligence models, including 
artificial neural network (ANN) [9], artificial optimization 
algorithms [10], and other data-driven methods, such as 
empirical mode decomposition (EMD) [11]. Besides, some 
hybrid models [12] based on econometric models and artificial 
intelligence models above were presented in previous studies to 
perform the crude oil price prediction. However, most of ANNs 
suffer from the following drawbacks: 1) over-fitting problem; 
2) easy to fall into local optimum. Further, the EMD-type 
models are theoretically based on an iteration algorithm, 
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lacking mathematical foundations, and being sensitive to noise 
and sampling [13]. More importantly, most of the models based 
on artificial intelligence models focus mainly on deterministic 
prediction (i.e., point prediction) and lack of uncertainties 
analysis and modeling of COP, which cannot effectively 
provide accurate quantifications of uncertainties surrounding 
the deterministic prediction. 

Deep learning, as an excellent alternative, is a promising 
direction for the crude oil price prediction due to its excellent 
ability to model complex nonlinear time series. However, the 
deep learning has not received enough attention for the 
probabilistic and deterministic prediction of COP, which may 
hinder further development in the field. Therefore, a novel 
learning system based on deep learning and temporal 
convolution, including the modules of recurrence analysis, 
outlier detection, data preprocessing, feature selection, 
deterministic and probabilistic prediction, and system 
evaluation, is presented in this study to model the nonlinear 
relationship in COP, with the aim of yielding the desired 
deterministic and probabilistic predictive results. This study 
focuses on addressing the following problems: 

1) Investigating the inherent recurrent behavior of a dynamic 
system is challenging due to its complex nonlinearity and 
chaotic properties. Recurrence analysis, which can reveal its 
inherent properties from both qualitative and quantitative 
perspectives, has not received enough attention in the field 
relevant to COP. 

2) Performing outlier detection for nonlinear time series is of 
significance for improving the generalization and effectiveness 
of the predictive model. In fact, it is necessary to carry out the 
outlier detection for COP because of the fact that the 
uncertainties caused by multiple factors in COP usually bring 
significant fluctuations of the COP, thus increasing the 
probability of outliers occurring. However, outlier detection for 
the COP has not become the focus of current research in the 
field. 

3) Feature selection when performing time series prediction 
of COP has remained limited because of its complex dynamics. 
In previous studies, partial autocorrelation function (PACF) 
was usually utilized to determine appropriate input features. 
However, the linear computational mechanism of the PACF 
limits its ability to address complex nonlinear time series. 

4) Financial time series usually have long-term memory and 
complex nonlinearity, which renders its predictive modeling 
challenging. The ability of traditional econometric models to 
model the financial time series with nonlinear characteristics is 
usually restricted due to their linear type. 

5) The previous studies of the crude oil price prediction 
being carried out focused primarily on the deterministic 
prediction of the COP with the lack of the probabilistic 
prediction and uncertainty analysis, which largely increases the 
risk of decision-making in the field. 

To facilitate the current research in the field, the following 
five modules of the proposed learning system are proposed to 
address the problems above. Further, the physical 
interpretations of each module are presented as follows. 

1) Recurrence Analysis Module: In the module, the 
embedding dimension and time delay of the COP were 
calculated using the C-C method. Further, the recurrence plot 
(RP) and recurrence quantification analysis (RQA) were 

developed to investigate the complex dynamics in the COP, 
indicating the presence of outliers from the texture of the RP. 

2) Outlier Detection Module: Isolation forest (IF), as an 
ensemble method, was developed in the learning system to 
perform outlier detection of the COP. There are two steps when 
using the IF. In detail, the first step is to establish isolation trees 
(ITs) based on sub-samples; further, the second step is to 
calculate the score based on these established ITs, and finally, 
an outlier can be identified according to its corresponding score 
under a preset threshold. 

3) Data Preprocessing Module: A novel frequency 
decomposition method (i.e., VMD) was developed in this study 
to perform the data preprocessing of the COP. In detail, the 
COP was decomposed into some IMFs. Further, the 
high-frequency IMF was eliminated to reduce the negative 
effects of outliers, which is conducive to enhancing the 
generalization of the prediction model. 

4) Automatic Feature Selection: In this study, a temporal 
convolution model (TCM) is developed to perform automatic 
feature selection. Further, the output from the TCM will be 
compressed using a pooling operator, with the aim of reducing 
the computational complexity of the proposed learning system. 

5) Prediction Module: Developing a novel learning system 
based on deep learning for deterministic and probabilistic 
prediction of the COP is also a significant focus of this study, 
which can effectively learn the long-term relationship in the 
COP, based on its recurrent learning mechanism. Importantly, 
the properties of the errors yielded by the proposed learning 
system are investigated based on the theory of probabilistic 
density estimation in-depth, further producing high-quality 
prediction intervals of the COP. 

The rest of this paper is organized as follows. Section II 
presents the preliminaries concerning the proposed learning 
system. The performance evaluation of the learning system is 
established in Section III. The studied data and its recurrence 
analysis are investigated in Section IV. Further, the outlier 
detection of COP is carried out in Section V. Then, two cases 
are performed to test the performance of the proposed learning 
system in Section VI. The extensions, including model 
performance testing, convergence analysis, and sensitivity 
analysis, are discussed in Section VII. Finally, the conclusions 
and future scope are put forth in the final section. 

II. PROPOSED LEARNING SYSTEM FOR CRUDE OIL PRICE 
PREDICTION 

In this section, the relevant preliminaries concerning the 
proposed learning system of crude oil price prediction are 
presented. 

A. Recurrence Analysis 
The recurrence analysis can effectively characterize the 

complex dynamics inherent in a nonlinear time series, such as 
non-stationarity and periodicity. In this study, the RP and RQA 
are developed to perform the qualitative and quantitative 
analysis of the COP, respectively. 

1) Recurrence Plot 
The RP can be carried out in the phase space of a time series 

( ) ( ) ( ){ }1 , 2 , ,x x x x n=  , based on the two parameters embedding 
dimension (m) and time delay (τ) calculated by the C-C method 
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[14]. Further, the corresponding phase space of the time series 
(PS) can be constructed, specified as 
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where each column in the matrix PS represents a point in the 
phase space. 

Further, the matrix PS can be translated into an RP according 
to the following formula. 

           ( )( ) = - - , = 1,2, ,i, j i jΘ η x x i, j NηR                 (2) 

where ix  and jx  represent the different points in the phase 
space. η is the threshold that controls whether the point ix  in 
the phase space can be considered the recurrence point of jx , 
usually set to 0.4–0.5 times the standard deviation of the COP 
[15]. ( )Θ ⋅  denotes the Heaviside function, defined as 
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Notably, if ( )xΘ  is equal to 1, a recurrence point will 

appear on this point ( ),i jx x  in the RP. The identification 
methods of the RP can refer to [15-16]. 

2) Recurrence Quantification Analysis 
Although the RP can reveal the complex characteristics of a 

dynamic system, it cannot facilitate the quantitative 
characterization of the recurrence phenomenon in the RP. Thus, 
some quantitative indicators used for quantifying the RP were 
developed in this study, including the recurrence rate (RR), 
determinism (DET), entropy (ENT), laminarity (LAM), and 
trapping time (TT) [15-16]. 

The RR is a crucial metric measuring the percentage of 
recurrence points in the RP, mainly indicating the recurrence 
density (i.e., predictability) of a dynamic system. The formula 
of the RR can be specified as 

                 ( )2
, 1

1 ,
N

i j
i j

RR x x i j
N

Θ η
=

= − − ≠∑                   (4) 

where N denotes the number of recurrence points. 
In the RP, the longer the diagonal, the more deterministic the 

dynamic system is. The determinacy of the dynamic system can 
be measured by the metric DET, defined as the following 
formula. 
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where l denotes the length of a diagonal line, ( )P l  is the 

corresponding probability, and ( )P l  can be formulated as 

( ) ( )( ) ( )( ) ( )
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, 1 0
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i j i l j l i k j k
i j k
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−

− − + + + +
= =

= − −∑ ∏R R R . Additionally, 

minl  denotes the length of the shortest diagonal, set to 2 in this 
study. 

The metric ENT measures the complexity of the RP from the 
diagonal lines, which can be formulated as 

                       ( ) ( )( )
min

N

l l
ENT p l In p l

=
= − ⋅∑                       (6) 

where ( ) ( ) / lp l P l N=  and lN  denotes the number of 
diagonal lines. 

The metric LAM reflects the percentage of recurrence points 
from the vertical lines, which can be defined as follows. 
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where v  denotes the length of vertical line. minv  represents 
minimum length of vertical line, which was set to 2 in this 
study. Besides, 

( ) ( )( ) ( )( ) ( )
1

, , ,
, 1 0
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i j i j v i j k
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−

+ +
= =
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Finally, the metric TT calculates the average of the vertical 
lines, which can be presented as 

                               
( )
( )

min

min

N

v v
N

v v

vP v
TT

P v
=

=

=
∑
∑

                               (8) 

B. Outlier Detection based on Isolation Forest 
Outlier detection is a necessary procedure when performing 

time series prediction, which facilitates improving predictive 
performance and reducing the probability of the “over-fitting” 
problem. The IF model [17] with the advantage that it can 
effectively avoid the problems of swamping and masking was 
developed in this study to perform the outlier detection of the 
COP. In the IF, each data point has a score according to the 
corresponding average path length, and the score is used for 
identifying outliers according to the set threshold. The smaller 
the path length of a data point, the more the corresponding data 
point will be isolated. The studied IF has some distinguished 
merits [17], as compared to principal component analysis [18], 
the six-sigma rule [19], including  

●The IF model has high efficiency with linear computational 
complexity;  

●The IF model can effectively address large-scale dataset, 
with high dimensions;  

●The IF model effectively avoids the effects of swamping 
and masking. 

C. Variational Mode Decomposition 
Decomposing a complex nonlinear time series into some 

intrinsic mode functions, with the aim of removing the 
redundant components inherent in the time series, is of 
important significance to improve the generalization of 
predictive models. Variational mode decomposition (VMD) 
[13] is a novel approach of signal decomposition, widely 
applied into the fields of the power systems [20], 
electrocardiogram analysis [21], and intelligent fault diagnosis 
[22]. The VMD has the following merits [13] compared to other 
data decomposition methods, such as the family of EMD, 
including (1) it has the ability to address the data with noise; (2) 
it effectively avoids the problem of recursive sifting; (3) it has 
an adaptative mechanism to determine the corresponding filter 
boundaries. The essential computational mechanism of the 
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VMD can be specified as follows. 
The VMD model can be considered a constrained variational 

problem: 
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where ( )δ ⋅  denotes the Dirac distribution. m and c represent 
the mode set and the corresponding center frequency, 
respectively. km  denotes k-th mode decomposed. f  
represents the original time series to be decomposed. 

The constrained variational problem above can be translated 
into the following unconstrained problem based on the two 
parameters quadratic penalty η and Lagrangian multipliers λ, 
which can be presented as 
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The alternating direction method was utilized to solve (10) 
by updating km , kc , and λ , as shown in (11), (12), and (13), 
respectively, until (14) is satisfied. After the iteration is 
completed, km  can be obtained. 

              ( )
( )  ( )

 ( )

( )

1

1
2

ˆ
2

1 2

n
n
ki kn

k
k

c
f c m c

m c
c c

λ

α

+
≠+

− +
=

+ −

∑
            (11) 

                            

 ( )

 ( )

2
1

1 0

2
1

0

n
k

n
k

n
k

c m c dc
c

m c dc

∞
+

+
∞

+

=
∫

∫
                             (12) 

             ( )  ( ) ( )  ( )1 1n n n
k

k
c c f c m cλ λ τ+ + = + − 

 
∑            (13) 

                                
 



2
1

2

n n
k k

n
k

m m

m
ε

+ −
<                                    (14) 

where ε  denotes a set tolerance. 

D. Deep Convolutional Gated Recurrent Unit Model 
In this section, a novel deep convolutional gated recurrent 

unit (DCGRU) model is presented based on one-dimensional 
temporal convolution. The preliminaries of the proposed 
DCGRU are introduced as follows. 

1) One-dimension Temporal Convolution (Conv1D) 
Considering the input sequence ( ),

M N
i jx ×= ∈X , 

1, 2, ,i M=  , 1, 2, ,j N=  , and D filters with the length of E 
and the depth of N in the Conv1D, the weight matrix of each 
filter can be obtained as 

( ), , 1, 2, , , 1, 2, , , 1, 2, ,k k E N
i jw i E j N k D×= ∈ = = =W     , 

and the corresponding bias of each filter can be expressed as 

kb ∈ . Meanwhile, the filter traverses the length of X by the 
step s for T positions. Further, the output of the Conv1D layer 
(i.e., the matrix ( ) 1,2, ,

, 1,2, ,
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where ( )f   is the activation function, set to ReLU function in 
this study. 

After the procedure of one-dimension convolution, 
performing the pooling operation for the results from the 
Conv1D layer is a crucial step to improve the efficiency of the 
predictive model. Further, the results of the pooling operation 
can be expressed as ( ) 1,2, ,

, 1,2, ,

j N

t j t T
h

=

=
=H




, where the definition of 

,t jh  is shown as (16). 
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2) Gated Recurrent Unit (GRU) 
The GRU [23] is an improved version of the long short-term 

memory model (LSTM), which has a more compact structure, 
implying a higher computational efficiency. The GRU is 
composed of the update gate (U) and the reset gate (R). In 
detail, the update gate controls the extent to which the hidden 
state in the previous moment affects the current moment; 
further, the reset gate is used to control the extent of forgetting 
the information in the previous moment. Importantly, the reset 
gate and update gate are used to learn the short-term and 
long-term dependency in time series, respectively. The 
definitions of the update gate and reset gate are presented as 
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where W  denotes recurrent weight. Further, tH  and  tH  are 
the hidden state and candidate hidden state, respectively. b  is 
the bias vector. The ( )ReLU   represents the activation 
function. 

3) Fully Connected Layer (FCL) 
In this study, the information stream from the DCGRU is 

further addressed in FCL, finally obtaining the final predictive 
results, as shown in (18). 
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where ijW  and jkW  denote the input-hidden weight matrix and 
hidden-output weight matrix, respectively. Further, the 
parameters a and b signify the thresholds of hidden layer and 
output layer, respectively. { }1,2, ,ix i n= =X   is the input 
matrix. Finally, these parameters n, l, m represent the size of 
input layer, hidden layer, and output layer, respectively 
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III. PERFORMANCE EVALUATION FOR THE LEARNING SYSTEM 
In this section, the predictive performance assessment of the 

proposed learning system is carried out for the deterministic 
and probabilistic prediction results. 

A. Deterministic Prediction Evaluation 
The statistical indicators, including mean absolute error 

(MAE), mean absolute percent error (MAPE), root mean 
square error (RMSE), direction accuracy of forecasts (DA), 
Pearson’s correlation coefficient (R), and the index of 
agreement of forecasts (IA) were employed to test the 
predictive accuracy of the deterministic prediction yielded by 
the proposed learning system, which were widely applied in 
other fields, such as air quality forecasting [24]. Notably, the 
MAE, MAPE, and RMSE are negative indicators, while the 
DA, IA, and R are positive indicators. 

B. Probabilistic Prediction Evaluation 
To measure the performance of the probabilistic prediction 

results (i.e., prediction intervals), some popular metrics, 
including prediction interval coverage probability (PICP), 
prediction interval normalized average width (PINAW) 
[25-28], coverage width criterion (CWC) [25], Winkler score 
(Score) [29], and accumulated width deviation (AWD) [30], 
were used to evaluate the quality of the constructed prediction 
intervals. Therein, the resolution and reliability of the 
prediction intervals can be quantified by the metrics PINAW 
and PICP, respectively; further, the indicators CWC, AWD, 
and Score can evaluate the sharpness of the prediction intervals. 

IV. STUDIED DATA AND RECURRENCE ANALYSIS 
In this study, the studied data (i.e., daily and weekly COP), 

collected from Europe Brent spot price (Dollars per Barrel), 
was utilized to validate the performance of the proposed 
learning system. To train the learning system with the aim of 
learning the nonlinear dynamics in the COP, the daily COP 
with the length of 7883 (sampling from May 20, 1987 to June 
11, 2018) and the weekly COP with the length of 1622 
(sampling from May 15, 1987 to June 8, 2018) were divided 
into the training set and test set. In detail, the daily COP from 
May 20, 1987 to December 31, 2009 and the weekly COP from 
May 15, 1987 to December 25, 2009 were considered the 
training sets. Further, the daily COP covering from January 4, 
2010 to June 11, 2018 and weekly COP ranging from January 1, 
2009 to June 8, 2018 were considered the test sets. 

To investigate the complex nonlinear characteristics of the 
COP, the RPs and their recurrence density of daily and weekly 
COP, as shown in Fig. 1, were carried out based on these 
parameters calculated by the C-C method in Table I. From Fig. 
1, the discoveries can be obtained as follows. 

TABLE I 
RESULTS OF C-C METHOD 
Dataset m τ 

Daily oil price 19 6 
Weekly oil price 14 8 

 
Fig. 1.  Recurrence plot of the daily and weekly COP. 

1) In the RP of daily COP, there are some vertical navy-blue 
lines and its clusters, indicating that the presence of laminarity 
(i.e., weak volatility). Further, some isolated points occur in the 
RP, which illustrates that the daily COP has chaotic property. 
Besides, the carmine vertical lines indicate the non-stationarity 
(i.e., dramatic change) in the daily COP, implying the presence 
of outliers. 

2) From the RP generated by the weekly COP, it can be 
observed that there are fewer recurrence points in the RP, as 
compared to the RP of daily COP, thereby indicating that the 
weekly COP has lower predictability compared to the weekly 
COP. The interpretation of the carmine vertical lines in the RP 
of weekly COP is similar to that of the RP of daily COP. 

However, the analysis concerning the RPs above is intuitive, 
lacking quantitative analysis. Therefore, RQA, as shown in 
Table II, was carried out to obtain the results of quantitative 
analysis for the RPs. From Table II, it can be observed that the 
predictability of the daily COP is higher than that of the weekly 
COP according to these metrics in Table II. 

TABLE II 
RESULTS OF RQA 

Dataset RR DET ENT LAM TT 
Daily COP 33.8512 98.6962 5.8064 99.1409 98.6380 

Weekly COP 18.4311 95.6662 4.9087 96.9953 32.8381 

V. OUTLIER DETECTION FOR COP 
Effectively detecting the outliers in the studied dataset is an 

important procedure of data cleaning, which facilitates 
improving the generalization ability of a prediction model to 
model nonlinear time series. Based on the analysis in Section 
IV, there is a high probability that outliers exist in the daily and 
weekly COP. Therefore, IF model was developed in this section 
to detect the outliers of the daily and weekly COPs. In detail, 
the score of each data point of the daily and weekly COPs was 
presented in Fig. 2; further, the outliers, as shown in Fig. 2, can 
be identified based on the corresponding score, according to the 
set threshold 5. In this study, the outliers detected were replaced 
by their interpolated values using cubic spline interpolation, 
which is beneficial to improve the explanatory ability and 
generalization of a prediction model and to ensure high 
prediction accuracy. 
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Fig. 2.  Results of outlier detection. 

VI. CASE STUDY 
In this section, the daily and weekly COPs are preprocessed 

using the VMD model to remove high-frequency noise 
involved. Further, the preprocessed COPs are utilized for 
training the proposed learning system, aiming to produce 
high-quality deterministic and probabilistic predictions. 

A. Data Preprocessing 
Based on the analytical results from Section V, the COPs 

contain some outliers, actually reducing the predictive 
performance. Therefore, the COPs were decomposed into some 
IMFs in this study, further eliminating the high-frequency IMF 
(i.e., IMF7), considered as noise component, in the experiments 
based on the daily and weekly COPs. Additionally, Fig. 3 
displays the decomposed IMFs based on the daily COP. 

 
Fig. 3.  The results of data decomposition based on VMD. 

B. Deterministic Modeling 
Deterministic prediction usually produces the single-point 

forecasts with certain biases, which can be further improved 
using denoising methods and other strategies. In this section, 
the daily and weekly COPs were utilized to verify the 
predictive accuracy and effectiveness of the proposed learning 
system. The built-in parameters of the learning system were 
configured, as shown in Table III. Further, the experimental 
results of the deterministic prediction were quantified using the 
following metrics MAE, MAPE, RMSE, DA, R, and IA, as 
shown in Table IV. From the information provided by Table 
IV, the conclusions can be obtained as follows: 

1) The MAE, MAPE, and RMSE are negative indicators. 
The smaller the values of these indicators, the better the 
performance of the prediction model. According to the 
evaluative results reported in Table IV, the proposed learning 

system can yield more accurate deterministic prediction of the 
COPs, as compared to the benchmarks, including persistence 
model (PM), wavelet neural network (WNN), generalized 
regression neural network (GRNN), Conv1D-GRU, and EMD- 
Conv1D-GRU. 

2) The DA, R, and IA are positive indicators, which means 
that the larger their values, the better the performance of the 
predictive model. From the evaluations displayed in Table IV, 
the proposed system performs best compared to the 
benchmarks considered. 

3) To validate the effectiveness of the VMD, EMD, coupled 
with Conv1D-GRU, was designed as a benchmark. In 
accordance with the evaluative results, the proposed learning 
system has a significant advantage over EMD-Conv1D-GRU, 
thus demonstrating the superiority of the VMD. 

4) Based on the above analysis, the proposed system has the 
best prediction performance compared to the five benchmarks, 
which demonstrates that the deep learning model (i.e., 
Conv1D-GRU), cooperated with the VMD, has great potential 
and promising application prospects in crude oil price 
prediction. 

Finally, the result visualizations of the proposed learning 
system (VMD-Conv1D-GRU) and its benchmarks were carried 
out in Fig. 4, from which it can be observed that the predictive 
results yielded from the learning system are closer to the 
corresponding actual values compared to the benchmarks, 
which verifies the effectiveness of the proposed learning 
system further. 

TABLE III 
PARAMETERS SETTING OF THE LEARNING SYSTEM 

Model parameters Default value 
Number of the filters in the Conv1D 64 
Size of the kernel in the Conv1D 2 
Size of the pool in the Conv1D 2 
Number of neurons in GRU 600 
Number of neurons in the first FCL 600 
Number of neurons in the second FCL 200 
Size of the input 5 
Size of the output 1 
The training iteration 300 
Batch size 1024 
Activation function ReLU 
Optimizer Adam 
The moderate bandwidth constraint in VMD 2000 
The tolerance ε  of VMD 10-7 
Number of modes to be decomposed in VMD 7 

TABLE IV 
EVALUATION RESULTS OF DETERMINISTIC PREDICTION 

Case I based on daily crude oil price 
Models MAE MAPE RMSE DA R IA 

PM 2.5976 3.55 3.3583 - 0.9927 0.9963 
WNN 2.2970 2.94 3.0994 0.4873 0.9963 0.9966 
GRNN 1.6025 2.17 2.0764 0.4892 0.9973 0.9986 

Conv1D-GR
U 

1.0976 1.49 1.4717 0.4969 0.9986 0.9993 

EMD-Conv1
D-GRU 

0.9851 1.39 1.2892 0.6002 0.9987 0.9992 

Proposed 0.9691 1.33 1.2798 0.6202 0.9989 0.9995 
Case II based on weekly crude oil price 

PM 1.9260 2.64 2.4973 - 0.9960 0.9980 
WNN 5.7344 6.33 9.8701 0.5310 0.9378 0.9663 
GRNN 4.0050 5.23 5.3200 0.4989 0.9843 0.9909 

Conv1D-GR
U 

3.3122 4.49 4.1156 0.4309 0.9896 0.9943 

EMD-Conv1
D-GRU 

2.2621 3.07 3.0508 0.6574 0.9944 0.9969 

Proposed 1.7929 2.40 2.3273 0.6636 0.9968 0.9982 
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Fig. 4.  Results visualization of predictive results based the daily and weekly 
COPs. 

C. Uncertainty Analysis of Prediction Error 
In fact, there are inevitable prediction errors surrounding the 

deterministic prediction when performing predictive modeling 
of the COPs, which can be caused by many uncertain factors, 
such as uncertainties from data measuring, parameter selection 
of a predictive model, and some macroeconomic factors. 
Notably, the uncertainties will have a significant negative 
impact on the risk management and decision-making of the 
crude oil market. Therefore, quantifying the uncertainties has 
an important practical significance and necessity for financial 
management. In the previous studies, the predictive errors were 
usually assumed to be Gaussian distribution. However, the 
assumption may lead to some risks for the uncertainty analysis 
because of lacking sufficient understanding of the statistical 
characteristics of the predictive error. In this study, to 
effectively quantify the uncertainties above, the statistical 
properties of the predictive errors from the proposed learning 
system were investigated in-depth based on the kernel density 
estimation. In addition to Gaussian distribution, Stable and t 
Location-scale (t L-S) distributions, which have gained 
popularity in previous studies [30] related to the error modeling 
due to their excellent statistical properties, such as the ability to 
effectively characterize the peak-to-tail characteristics of 
prediction errors and estimate the skewed data well, were also 
developed in this section to model the predictive errors. The 
corresponding parameters of each distribution above were 
presented in Table V. Further, the corresponding distribution 
fitting of each distribution function is illustrated in Fig. 5, from 
which it can be observed that the fitting performances of the 
Stable and t L-S distributions are superior to that of the 
Gaussian distribution. However, there is a phenomenon in Fig. 
5 that the performance of the Stable is similar to that of the t 
L-S. Thus, the comprehensive performances of constructed 
prediction intervals based on Stable and t L-S were discussed in 
the next section, respectively. 

 
Fig. 5.  Distribution fitting of the predictive errors. 

 
 
 

TABLE V 
RESULTS OF ERROR MODELING 

Case I: Errors based on daily oil price 
Gaussian Stable t L-S 

Location -0.0158 α 1.8290 Location 0.0500 
Scale 1.2800 β -0.8301 Scale 1.0669 

‒ ‒ Scale 0.8099 nu 6.6410 
‒ ‒ Location 0.1359 ‒ ‒ 

Case II: Errors based on weekly oil price 
Gaussian Stable t L-S 

Location -0.0202 α 1.3165 Location -0.0191 
Scale 1.3018 β 0.0600 Scale 0.5906 

‒ ‒ Scale 0.4998 nu 1.8728 
‒ ‒ Location -0.0267 ‒ ‒ 

Note: α and β denote the first and second shape parameter, respectively. nu is degree of freedom. 

D. Probabilistic Modeling 
After the uncertainty analysis of the predictive errors, the 

prediction intervals of the COPs can be constructed via an 
optimal distribution (OP) based on (19), where Lα  and U α  
denote the lower and upper bound of the constructed prediction 
intervals at the significance level of α , respectively; F  and 
E  represent the forecast values and fitting errors, respectively, 
where both F  and E  are produced by the proposed learning 
system. 

  ( )  ( )/2 /2, ,L U F OP var E F OP var Eα α
α α

   = − +       (19) 

where ( )var   represents the function of calculating the 
variance. 

Further, the prediction intervals with different significance 
levels, including 5%, 10%, and 20%, can be constructed 
according to (19). Table VI provides the quantitative 
evaluations of these constructed prediction intervals using a 
series of statistical metrics, including PINAW, PICP, AWD, 
Score, and CWC. From Table VI, the findings can be obtained 
as follows. 

1) Theoretically, the constructed prediction intervals are 
effective if PICP is greater than the corresponding significance 
level. However, the constructed prediction intervals based on 
Gaussian at the significance level of 5% for the daily COP are 
of little value in practical applications, although their PINAWs 
are smaller compared to that of prediction interval based on 
other distribution functions, which also applies to Case II based 
on Gaussian at the significance levels of 5% and 10%. Besides, 
the prediction intervals based on the Gaussian distribution is 
valid in the remaining experiments. Therefore, selecting 
Gaussian distribution to model error distribution needs further 
consideration in practice. 

2) The aim of probabilistic prediction in this study is to 
construct the prediction intervals with desired resolution (i.e., 
PINAW) and reliability (i.e., PICP). However, there is a 
trade-off between resolution and reliability. Therefore, the 
metrics AWD, Score, and CWC, as comprehensive indicators 
integrating the resolution and reliability, were applied to assess 
the overall performance of the proposed learning system and its 
benchmarks. From the evaluations from Case I in Table VI, the 
proposed learning system based on the Stable distribution has a 
significant advantage over the benchmarks according to the 
metrics AWD, Score, and CWC at different significance levels. 
However, the comprehensive performance of the constructed 
prediction intervals based on t L-S distribution is superior to 
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that of the prediction intervals based on other distributions for 
most experiments in Case II. 

3) Based on the analysis above, it can be concluded that there 
is currently no optimal distribution of modeling prediction 
errors, and the performance of different distribution functions 
need to be analyzed under specific application scenarios. 
Therefore, the research results obtained in this paper can 
provide a valuable reference for the uncertainty modeling of the 
crude oil price in the future. 

4) To illustrate the performance of the proposed learning 
system, Fig. 6 visualizes the constructed prediction intervals 
generated by the proposed learning system, from which it can 
be observed that these intervals based on different confidence 
levels (i.e., 1‒α) can cover the true values with high coverage 
probability, further indicating that it has great application 
potential. Besides, it is noteworthy that the average width of 
prediction intervals based on weekly COP is larger than that of 
the intervals based on daily COP due to its lower resolution and 
larger uncertainty. 

 
Fig. 6.  Prediction intervals of the daily and weekly COPs. 

TABLE VI 
PERFORMANCE EVALUATION OF PROBABILISTIC PREDICTION 

Case I based on daily crude oil price 
α Distribution PINAW PICP AWD Score CWC 

5% t L-S 0.0644  98.12% 0.0026 0.7263 0.0644 
Gaussian 0.0491  94.97% 0.0084 0.7630 1.0657 

Stable 0.0695  98.87% 0.0019 0.6697 0.0625 
10% t L-S 0.0505  95.34% 0.0075 1.1860 0.0505 

Gaussian 0.0412  91.49% 0.0162 1.2877 0.0583 
Stable 0.0583  97.27% 0.0041 1.1143 0.0412 

20% t L-S 0.0370  87.68% 0.0239 1.8720 0.0370 
Gaussian 0.0321  83.07% 0.0385 2.0660 0.0454 

Stable 0.0454  93.93% 0.0113 1.8179 0.0321 
Case II based on weekly crude oil price 
5% t L-S 0.1933  98.62% 0.0011  1.9977  0.1933  

Gaussian 0.1474  93.79% 0.0068  1.8514  1.9758  
Stable 0.2084  99.08% 0.0007  2.1143  0.2084  

10% t L-S 0.1515  94.25% 0.0058  3.3405  0.1515  
Gaussian 0.1237  88.74% 0.0163  3.2403  2.0054  

Stable 0.1749  97.47% 0.0022  3.6126  0.1749  
20% t L-S 0.1110  86.44% 0.0250  5.4857  0.1110  

Gaussian 0.0964  81.38% 0.0404  5.3490  0.0964  
Stable 0.1363  91.95% 0.0102  5.9362  0.1363  

VII. EXTENSIONS 
In the section, the predictive performance test, model 

convergence analysis, sensitivity test, and computational 
complexity analysis are performed to discuss further the 
effectiveness and feasibility of the proposed learning system 

A. Model Performance Test 
To further validate the superiority of the proposed learning 

system, the performance test based on the D-M test [31] was 
conducted, with the aim of testing the significance of the 
difference in the prediction errors from the proposed learning 

system and its benchmarks. The results of the D-M test are 
presented in Table VII, from which there is a significant 
difference between the error produced by the proposed learning 
system and its benchmarks. As a result, the superiority of the 
learning system can be further confirmed. 

TABLE VII 
RESULTS OF THE D-M TEST 

Case PM WNN GRNN Conv1D-GRU EMD-Conv1D-GRU 
Case I -26.14* -20.69* -22.33* -8.82* -1.99** 
Case II 7.73* -5.99* -5.63* -5.47* -3.62* 

B. Convergence Analysis 
The model convergence is of significance to investigate the 

practical feasibility of the proposed learning system. The 
convergence analysis of Case I-II was performed in this study, 
as shown in Fig. 7. From Fig. 7, the proposed learning system 
has excellent convergence in the process of training iteration 
for the two cases. 

 
Fig. 7.  Convergence visualization of the proposed learning system. 

C. Sensitivity Analysis 
Investigating the sensitivity of the proposed learning system 

can reveal its robustness. In this study, the sensitivity analysis 
based on the perspectives of the iteration and the number of 
neurons in the GRU was conducted, and the corresponding 
results are illustrated in Fig. 8. From Fig. 8, the proposed 
learning system is less sensitive to the training iterations and 
the size of the neurons after the iteration exceeds 200. 

 
Fig. 8.  Sensitivity analysis of the proposed learning system. 

D. Computational Complexity Analysis 
The computational complexity of the proposed learning 



9 
Tong Niu, et al., A Learning System Integrating Temporal Convolution and Deep Learning for Predictive Modeling of Crude Oil Price 

system in this study is demonstrated as follows: 
1) Complexity of the VMD 
The complexity of the VMD depends on the initialization of 

the center frequency of each mode and the recursive fast 
Fourier transform [32]. The computational steps mainly 
include: (1) initialization ( ( )( )22 log 2O N N ); (2) update km  

( ( )( )6 2 2 2O A M D K MI N+ + ⋅ ⋅ ⋅ ); (3) update kc  

( ( )( )2 3 2O C M A K MI N+ + ⋅ ⋅ ⋅ ); (4) convergence 

( ( )( )4 2 2O A M MI N+ ⋅ ⋅ ); (5) data reconstruction 

( ( )( )22 log 2O N N ). Therein, M, D, C, and A represent 
multiplication, division, comparison, and addition, 
respectively. Besides, N, K, and MI denote the length of the 
studied data to be decomposed, the modes to be decomposed, 
and maximum iterations. Overall, the computational 
complexity of the VMD is ( )( )22 log 2O N N . 

2) Complexity of the Conv1D 
Considering the sizes of convolution kernel, input channel, 

and out channel are M N⋅ , IC, and OC, respectively, the 
number of the filters in the Conv1D is M N IC⋅ ⋅ , and the 
filters will be mapped to new channels with a bias. Therefore, 
the Conv1D needs to take ( )( )1O M N IC OC⋅ ⋅ + ⋅  
computational efforts.  

3) Complexity of the GRU 
The GRU has complexity of ( )( )2O S H HK+  [33], where 

S, H, and K are the number of items, hidden units, and output 
units, respectively. 

VIII. CONCLUSION AND FUTURE SCOPE 
This study proposes a novel learning system based on the 

VMD, Conv1D, and GRU-based deep recurrent neural 
network, aiming to construct deterministic and probabilistic 
predictions of the daily and weekly COPs. In detail, in order to 
ensure the generalization of the proposed learning system, the 
recurrence analysis, outlier detection, and VMD are carried out 
to cleanse the studied data. In the next, the Conv1D is 
developed to perform automatic feature selection based on the 
theory of temporal convolution, and the information from 
Conv1D is further learned by the GRU structure. The 
experimental results of deterministic and probabilistic 
predictions of the COP are evaluated using some indicators, 
such as MAE, MAPE, Score, and CWC. The corresponding 
conclusions indicate the superiority of the proposed learning 
system, as compared to its benchmarks. For example, based on 
MAPE in the deterministic prediction, the proposed learning 
system in Case I has the improvement of 62.54%, 54.76%, 
38.71%, 10.74%, and 4.32%, respectively, compared to the 
benchmarks PM, WNN, GRNN, Conv1D-GRU, and 
EMD-Conv1D-GRU; Besides, the proposed system reflects the 
improvement of 9.09%, 62.09%, 54.11%, 46.55%, and 21.82% 
in Case II, respectively, compared to the benchmarks above.  

Given the excellent performance of the proposed system, it 
has great potential to be applied to existing risk management 
systems of the crude oil market to contribute to better managing 
the risk of the crude oil market, reducing the transaction costs 

and improving corresponding transaction efficiency. 
However, this study still remains some limitations, 

including: (1) lack of an analysis on the properties of complex 
network of the crude oil price; (2) univariate time series 
prediction; (3) single deep learning model; (4) offline model 
learning strategy. 

To address the limitations above and facilitate the 
development of this field further, our research directions in the 
future will focus mainly on the following issues. 

●Investigating the properties of recurrence network of the 
COP based on the theory of complex network; 

●Exploring the influencing factors of crude oil prices to 
improve its predictive accuracy further; 

●Developing effective ensemble approaches with 
time-varying weight for the crude oil price prediction; 

●Formulating a feasible prediction model based on online 
learning. 
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