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ABSTRACT

Millimeter-wave (mmWave) large-scale antenna arrays, standardized for the fifth-

generation (5G) communication networks, have the potential to estimate channel

parameters with unprecedented accuracy, due to their high temporal resolution and

excellent directivity. However, most existing techniques have very high complexi-

ties in hardware and software, and they cannot effectively exploit the properties of

mmWave large-array systems for channel estimation. As a result, their application

in 5G mmWave large array systems is limited in practice.

This thesis develops new and efficient solutions to channel parameter estimation

using large-scale mmWave uniform cylindrical arrays (UCyAs). The key contribu-

tions of this thesis are on the following four aspects:

We first present a channel compression-based channel estimation method, which

reduces the computational complexity substantially at a negligible cost of estimation

accuracy. By capitalizing on the sparsity of mmWave channel, the method effectively

filters out the useless signal components. As a result, the dimension of the element

space of the received signals can be reduced.

Next, we extend the channel estimation to the hybrid UCyA case, and design

new hybrid beamformers. By exploiting the convergence property of the Bessel

function, the designed beamformers can preserve the recurrence relationship of the

received signals with a small number of radio frequency (RF) chains.

We then arrange the received signals in a tensor form and propose a new tensor-

based channel estimation algorithm. By suppressing the receiver noises in all dimen-

sions (time, frequency, and space), the algorithm can achieve substantially higher

estimation accuracy than existing matrix-based techniques.

Finally, to reduce cost and power consumption while maintaining a high net-

work access capability, we develop a novel nested hybrid UCyA and present the

corresponding parameter estimation algorithm based on the second-order channel



statistics. Simulation results show that by exploiting the sparse array technique to

design the RF chain connection network, the angles of a large number of devices can

be accurately estimated with much fewer RF chains than antennas.

Overall, this thesis presents several applicable UCyA design schemes and propos-

es the efficient channel parameter estimation algorithms. The presented new UCyAs

can significantly reduce the hardware cost of the system with a marginal accuracy

loss, and the proposed algorithms are capable of accurately estimating the chan-

nel parameters with low computational complexities. By employing the presented

UCyAs and implementing the proposed novel algorithms cohesively, the different

communication and deployment requirements of a variety of mmWave communica-

tion scenarios can be met.

KEYWORDS: Channel parameter estimation, millimeter-wave communications,

large-scale antenna array, tensor processing, hybrid beamforming.
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Abbreviation

1-D - One-Dimensional

2-D - Two-Dimensional

3-D - Three-Dimensional

5G - Fifth-Generation

ADC - Analog-to-Digital Converter

AoA - Angle of Arrival

AoD - Angle of Departure

AP - Access Point

AWGN - Additive White Gaussian Noise

B5G - Beyond Fifth-Generation

BS - Base Station

CMOS - Complementary Metal Oxide Semiconductor

CP - CANDECOMP/PARAFAC

CRLB - Cramér-Rao Lower Bound

CS - Compressed Sensing

CWSSM - Coherent Wideband Signal-Subspace Method

DAC - Digital-to-Analog Converter

DFT - Discrete Fourier Transformation

DoA - Direction-of-Arrival

DoF - Degree of Freedom

ESPRIT - Estimation of Signal Parameter via Rotational Invariance Technique

EVD - Eigenvalue-Decomposition

GPS - Global Position System
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HOSVD - Higher-Order Singular Value Decomposition

LoS - line-of-sight

IoT - Internet of Things

ISSP - Incoherent Signal-Subspace Processing

IWSSM - Incoherent Wideband Signal-Subspace Method

MHA - Minimum Hole Array

mIoT - Massive Internet of Things

ML - Maximum Likelihood

mmWave - Millimeter-Wave

MRA - Minimum Redundancy Array

MS - Mobile Station

MUSIC - Multiple Signal Classification

NLoS - Non-Line-of-Sight

OBA - Open Box Array

OFDM - Orthogonal Frequency Division Multiplexing

OMP - Orthogonal Matching Pursuit

Q-DFT - Quasi-Discrete Fourier Transform

RF - Radio Frequency

RMa - Rural Macro

RMSE - Root Mean Square Error

RSS - Received Signal Strength

SNR - Signal-to-Noise Ratio

TDoA - Time Difference of Arrival

TLS - Total-Least-Squares

UCA - Uniform Circular Array

UCAMI - Unitary Constrained Array Manifold Interpolation

UCyA - Uniform Cylindrical Array
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ULA - Uniform Linear Array

URA - Uniform Rectangular Array

UMa - Urban Macro

UMi - Urban Micro

WSSM - Wideband Signal-Subspace Method



Nomenclature and Notation

a, a, A, and A stand for a scalar, a column vector, a matrix, and a set, respectively.

IK denotes a K ×K identity matrix.

0M×K denotes an M ×K zero matrix.

‖A‖F denotes the Frobenius norm of A.

invec(·) denotes the inverse algorithm of vectorization.

det(A) is the determinant of A.

Tr(A) denotes the trace of A.

vec(A) is the vectorization of A.

A∗ denotes the conjugate of A.

AT denotes the transpose of A.

AH denotes the conjugate transpose of A.

A−1 denotes the inverse of A.

A† denotes the Moore-Penrose pseudo inverse of A.

A⊗B denotes the Kronecker products of A and B.

A �B is the Khatri-Rao product of A and B.

E {·} denotes the expectation of a random variable.

� is the Hadamard product operator.
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d·e and mod(·) represent the ceiling function and the modulo operator, respectively.

O(·) denotes the computational complexity.

A ∈ CI1×I2×···×IN denotes an order-N tensor, whose elements (entries) are ai1,i2,··· ,iN ,

in = 1, 2, . . . , In, and the index of A in the n-th mode ranges from 1 to In.

A:,:,··· ,:,in=k,:,··· ,: denotes a subtensor of A, where the index of the mode-n is set to k

(0 ≤ k ≤ In).

[A tn B] denotes the tensor concatenation of A and B in mode-n.

A(n) ∈ CIn×(I1I2···IN/In) denotes the mode-n unfolding (also known as matricization)

of A ∈ CI1×I2×···×IN .

Rankn(A) is the rank of the mode-n unfolding of tensor A, i.e., n-rank of A.

C = A ×n B ∈ CI1×···×In−1×Jn×In+1×···×IN is the n-mode product of a tensor A ∈

CI1×I2×···×IN and a matrix B ∈ CJn×In . It can be written in the form of the mode-n

matricized tensor: C(n) = BA(n).

C = A ◦ B ∈ CI1×I2×···×IN×J1×J2×···×JM is the outer product of two tensors A ∈

CI1×I2×···×IN and B ∈ CJ1×J2×···×JM , whose elements are ci1,i2,··· ,iN ,j1,j2,··· ,jM = ai1,i2,··· ,iN ·

bj1,j2,··· ,jM .

Some important properties of tensor operations used in this paper are presented in

Appendix A.
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