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ABSTRACT

Millimeter-wave (mmWave) large-scale antenna arrays, standardized for the fifth-

generation (5G) communication networks, have the potential to estimate channel

parameters with unprecedented accuracy, due to their high temporal resolution and

excellent directivity. However, most existing techniques have very high complexi-

ties in hardware and software, and they cannot effectively exploit the properties of

mmWave large-array systems for channel estimation. As a result, their application

in 5G mmWave large array systems is limited in practice.

This thesis develops new and efficient solutions to channel parameter estimation

using large-scale mmWave uniform cylindrical arrays (UCyAs). The key contribu-

tions of this thesis are on the following four aspects:

We first present a channel compression-based channel estimation method, which

reduces the computational complexity substantially at a negligible cost of estimation

accuracy. By capitalizing on the sparsity of mmWave channel, the method effectively

filters out the useless signal components. As a result, the dimension of the element

space of the received signals can be reduced.

Next, we extend the channel estimation to the hybrid UCyA case, and design

new hybrid beamformers. By exploiting the convergence property of the Bessel

function, the designed beamformers can preserve the recurrence relationship of the

received signals with a small number of radio frequency (RF) chains.

We then arrange the received signals in a tensor form and propose a new tensor-

based channel estimation algorithm. By suppressing the receiver noises in all dimen-

sions (time, frequency, and space), the algorithm can achieve substantially higher

estimation accuracy than existing matrix-based techniques.

Finally, to reduce cost and power consumption while maintaining a high net-

work access capability, we develop a novel nested hybrid UCyA and present the

corresponding parameter estimation algorithm based on the second-order channel



statistics. Simulation results show that by exploiting the sparse array technique to

design the RF chain connection network, the angles of a large number of devices can

be accurately estimated with much fewer RF chains than antennas.

Overall, this thesis presents several applicable UCyA design schemes and propos-

es the efficient channel parameter estimation algorithms. The presented new UCyAs

can significantly reduce the hardware cost of the system with a marginal accuracy

loss, and the proposed algorithms are capable of accurately estimating the chan-

nel parameters with low computational complexities. By employing the presented

UCyAs and implementing the proposed novel algorithms cohesively, the different

communication and deployment requirements of a variety of mmWave communica-

tion scenarios can be met.

KEYWORDS: Channel parameter estimation, millimeter-wave communications,

large-scale antenna array, tensor processing, hybrid beamforming.
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Nomenclature and Notation

a, a, A, and A stand for a scalar, a column vector, a matrix, and a set, respectively.

IK denotes a K ×K identity matrix.

0M×K denotes an M ×K zero matrix.

‖A‖F denotes the Frobenius norm of A.
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det(A) is the determinant of A.

Tr(A) denotes the trace of A.

vec(A) is the vectorization of A.

A∗ denotes the conjugate of A.

AT denotes the transpose of A.

AH denotes the conjugate transpose of A.
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A† denotes the Moore-Penrose pseudo inverse of A.

A⊗B denotes the Kronecker products of A and B.

A �B is the Khatri-Rao product of A and B.

E {·} denotes the expectation of a random variable.

� is the Hadamard product operator.
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d·e and mod(·) represent the ceiling function and the modulo operator, respectively.

O(·) denotes the computational complexity.

A ∈ CI1×I2×···×IN denotes an order-N tensor, whose elements (entries) are ai1,i2,··· ,iN ,
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A:,:,··· ,:,in=k,:,··· ,: denotes a subtensor of A, where the index of the mode-n is set to k
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bj1,j2,··· ,jM .

Some important properties of tensor operations used in this paper are presented in

Appendix A.
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Chapter 1

Introduction

1.1 Research Background

Rapid development of wireless transmission and mobile networking techniques

has resulted in tremendous demands for data traffic and network capacity [6,7]. The

millimeter-wave (mmWave) communication, which is promising for achieving high

data rate and low latency communication thanks to its enormous unlicensed band-

width, has drawn great attention in both research community and industry [8, 9].

However, mmWave brings new challenges of increased outage probability due to

high pathloss attenuation. As a key technique in fifth-generation (5G) wireless com-

munication systems, large antenna array can improve the spectrum efficiency of the

systems, and also effectively compensate for the increased propagation losses of the

mmWave communications [10–13]. The use of mmWave, which has short wave-

lengths, in turn, also makes the placement of a relatively large number of antennas

on a small area possible [14,15].

As an essential component in mmWave large antenna systems, precise channel

parameter estimation is indispensable for mobile device localization, beamforming

design, and optimization of power division and/or allocation [16–18]. The large

bandwidth of mmWave systems allows for high-accuracy delay estimation thanks

to its high temporal resolution [19, 20]. The high-directivity large array technique

is also an enabler for accurate angle estimation [21, 22]. Combining with the large

array technique, wideband mmWave large array systems are promising for precisely

estimating channel parameters [23–25]. However, most current researches only fo-
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cus on linear and rectangular arrays. Compared to antenna arrays with linear or

rectangular layouts, circular and cylindrical antenna arrays have many advantages

and are particularly suitable for mmWave communication systems [26–28]. One

prominent advantage is that circular and cylindrical arrays are more robust to the

changes in surrounding environments, in which the changes would lead to so-called

vibration effects [26] on the performance of the mmWave communication systems.

Specifically, due to the very high frequency of the mmWave, blockage occurs fre-

quently due to rough terrains, passing-by vehicles, mobile users, and so on. As a

consequence, the performance of mmWave systems is sensitive to the surrounding

environments. The axial symmetry of the circular arrays enables that their main

lobes have negligible gain fluctuation in any azimuth angle. Such architecture makes

them immune to the angle variations caused by the vibrations. Moreover, the cir-

cular arrays have wider beam widths than other popular layout arrays. With a

wider main lobe (i.e., antenna beam), less gain loss is suffered under the equal beam

misalignment condition. Therefore, for mmWave systems with circular arrays, the

corresponding performance losses caused by beam misalignment are less than those

using other array architectures [26].

The high computational complexity holds back the application of large-scale an-

tenna arrays into practical mmWave systems, due to the use of a large number of

antennas [23–25]. Thanks to the sparsity of mmWave multi-antenna channels, the

channels are expected to be low-rank, which can be exploited to reduce the imple-

mentation complexity of estimation algorithms. However, most existing researches

only focus on mathematics-based ways to reduce the computational complexity of

algorithms rather than the properties of the propagation channels [29–31]. For exam-

ple, by decomposing the received signal components into signal and noise subspaces

for parameter estimation, subspace-based channel parameter estimation algorithms,

such as estimation of signal parameter via rotational invariance technique (ESPRIT)
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and multiple signal classification (MUSIC) [29,30], have much a lower computational

complexity than the maximum likelihood (ML)-based estimation algorithms. Nev-

ertheless, in the context of mmWave large-scale array systems, the computational

complexity of subspace-based algorithms operating in the element space field remain-

s still very high, since the dimension of element space in large-scale array systems

is very large.

High hardware cost and power consumption are also major challengers [32], be-

cause it is unrealistic to provide a radio frequency (RF) chain for each antenna,

as fully digital beamforming techniques would require [33]. Hybrid beamforming

is an appropriate architecture in which a low-dimensional digital beamforming in

the baseband and a high-dimensional analog beamforming at the RF front-end are

used [34, 35], but conventional parameter estimation algorithms are inapplicable

in mmWave hybrid arrays. The state-of-the-art spatial spectrum estimation al-

gorithms, such as ML estimators [36] and subspace-based algorithms [29, 30, 37],

were designed to estimate continuous channel parameters using fully digital arrays,

where each baseband observation is directly sampled from the signal received at an

antenna. The effective operations of these algorithms are based on some important

structures existing in the received signals, such as the multiple-invariance structure.

With hybrid front-end, the received signals of multiple antennas are combined via an

RF phase-shifting network. As a result, the required important structures would be

obscured or even lost, and the algorithms cannot directly apply. On the other hand,

current channel estimation schemes for hybrid beamforming are typically designed

with given channel information [35]. They apply RF networks to directly combine

the received signals from multiple antennas, and would result in estimation accuracy

losses [18, 38].
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1.2 Research Objective

The above-mentioned challenges serve as the main motivation for the general

train of thought of this thesis, which presents high-accuracy but low-complexity

(both in hardware and software) channel parameter estimation methods for large-

scale mmWave uniform cylindrical arrays (UCyAs). The methods complement the

advantages of the large antenna array technique and the mmWave communication-

s, and can be applicable to various mmWave communication scenarios, including

indoor, urban micro (UMi), rural macro (RMa), and Internet of Things (IoT) appli-

cation scenarios, as shown in Figs. 1.1 and 1.2. Apart from finding algebraic-based

signal processing solutions, we exploit the peculiar properties of mmWave large ar-

rays, such as sparse propagation, high angular resolvability and broad bandwidth, to

improve the estimation accuracy and reduce the computational complexity. We also

design effective beamforming architectures to address the problems in mmWave large

antenna array systems, including high hardware cost, severe pathloss of mmWave,

and beam squint (which is caused by wide bandwidths of mmWave signals [39]).

1.3 Thesis Organization

We present four research topics. The research scenarios studied in Chapters 3,

4, and 5 are illustrated in Fig. 1.1, where frequencies are allocated according to the

mmWave channel models constructed in [40–43]. Specifically, mmWave is used in

short-range high-density (such as the indoor scenario and UMi) and long-distance

low-density (such as RMa) wireless communication scenarios. Microwave (below

6 GHz) is applied to long-distance communications in complex environments e.g.,

UMa, where steady and reliable mmWave transmission usually cannot be guaran-

teed. This is because the mmWave propagation suffers from serious attenuation and

frequent blockage [9, 41]. The typical scenarios in Fig. 1.1 are briefly described as

follows:
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UMi scenario
(mmWave) (Chapter 4)

RMa scenario 
(mmWave) 
(Chapter 5)

UMa scenario (microwave)
Indoor scenario (mmWave)

(Chapter 3)

Figure 1.1 : The research scenarios studied in Chapters 3, 4, and 5.
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• Indoor scenario (Chapter 3): The indoor scenarios generally include offices

and shopping malls, whose dimensions range typically from 25 to 150 m. The

typical offices are work spaces enclosed by doors and walls, and the BSs are

mounted at a height of 2-3 m either on the ceilings or the walls. The shopping

malls are typically more than 2 stories high, in which the BSs are installed at

a height of approximately 3 m on the walls or ceilings.

• UMi scenario (Chapter 4): The typical UMi scenarios include street canyons

and open squares, and they are usually with high user density. The lengths

of the street canyons are often over 100 m. The main elements inside street

canyons are roadside buildings, pedestrians, vehicles, and vegetations on both

sides of the road. The open squares are propagation environments in the shape

of squares, rectangles, or circles and usually surrounded by buildings. The cell

radius for open squares are typically less than 100 m and they often contain

pedestrians, vehicles, vegetation, and so on.

• RMa scenario (Chapter 5): The RMa scenarios focus on large and continuous

coverage. The cell radii of RMa are typically above 200 m. Different from

the UMa scenario, the key characteristics of the RMa scenario are flat terrains

and continuous wide area coverage.

• Urban macro (UMa) scenario: The UMa refers to the a coverage scenario that

has larger coverage than UMi and higher user density than RMa. In UMa,

the LoS usually cannot be guaranteed and most part of the signal reaches

terminals via diffraction or scattering.

The research scenario studied in Chapter 6 is the mIoT network, as shown in

Fig. 1.2, which can connect hundreds to billions of IoT devices [44]. The goal of the

mIoT network is to provide high connectivity and efficiently transmit large amounts

of data with vast numbers of devices. As a technique which can significantly increase
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Table 1.1 : The research scenarios and employed front-ends in different chapters.

Chapters 3 4 5 6

Research

Scenarios

Indoor UMi RMa mIoT

Front-end

Structures

Digital

Beamforming

3D Hybrid

Beamforming

Hybrid

Directional

Beamforming

Nested

Hybrid

Beamforming

network capacity, the mmWave large antenna array is particularly useful in mIoT

networks [44].

This subsection provides a brief introduction for the following four chapters and

summarizes the major contributions of each individual chapters. A more detailed

introduction on each chapter is presented at the beginning of each chapter separately.

Table 1.1 shows the research scenarios and employed front-ends in different chapters.

1.3.1 Joint RSS-AoA Estimation and Localization for Digital UCyAs

Chapter 3 is devoted to the channel parameter estimation for the mmWave indoor

scenario, where full digital UCyAs are deployed. As a widely used architecture of

multi-antenna systems, digital beamforming can flexibly assign different powers and

phases to different antennas. It also enables the received signal of every antenna

to be available at the baseband, which prevents the resolution losses of the channel

parameter estimation under consideration in this thesis. Thus, such architecture is

appropriate for the applications which require flexible control of the antennas and

high-accuracy channel parameter estimation.

However, the deployment of a large number of antennas leads to a very high

computational complexity when estimating the channel parameters in large-scale
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Figure 1.2 : The research scenario studied in Chapter 6.

mmWave array systems. To address this problem, in Chapter 3, we propose a new

joint received signal strength (RSS)-angle of arrival (AoA) estimation method for

large-scale, digital, mmWave arrays. The method employs both mathematics-based

and mmWave property-based ways to reduce the computational complexity. We

first provide the motivation and discuss the state of the art in Section 3.1 and

introduce the system model in Section 3.2, including the channel model and the

basic system operation assumptions. In Section 3.3, we propose a novel channel

compression technique, which exploits the particular properties of the mmWave

large array channel, i.e., the quasi-optical and sparse multipath propagation [45,

46], to reduce the dimension of the received signals. The technique is capable of

reserving the principal components of the channel, i.e., the line-of-sight (LoS) and

single-bounce scattering paths, while abandoning the secondary components, such

as higher-order bounces and diffuse scattering paths.

A joint RSS-AoA estimation algorithm is described and analyzed in Section

3.4, where we transform the signals from the element space to a low-dimensional
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Received 
Signal
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Localization

Channel Compression
Angle

Quantization
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Joint RSS-AoA Estimation
RSS Distance

Estimation
Angle

Estimation

Figure 1.3 : The flow diagram of the channel parameter estimation and indoor

localization approach in Chapter 3.

beamspace. As a result, the computational complexity of the proposed method

can be further reduced. Based on the estimated distance and the orientation of

the target mobile station (MS), we propose a new three-dimensional (3-D) indoor

positioning method in Section 3.5 to locate the MS under LoS and non-LoS (NLoS)

propagation conditions. By exploiting the quasi-optical propagation at mmWave

frequencies with the knowledge on the environment, only a single base station (BS)

is required to implement spatial 3-D localization. Performance evaluation results are

provided in Section 3.6, which show that our proposed indoor positioning method

can achieve significantly reduced computational complexity while maintaining high

estimation accuracy.

The new steps developed in Chapter 3 are plotted in Fig. 1.3, and the contribu-

tions of the chapter are summarized, as follows.

• We propose channel compression as a preprocessing technique for the mmWave

parameter estimation. This technique effectively filters and mitigates the re-

ceived multiple reflection and diffuse scattering components. By capitalizing

on the peculiar properties of mmWave channels, i.e., the quasi-optical and

sparse multipath propagation [45, 46], the proposed algorithm is capable of

acquiring the principal components of the channel, i.e., the LoS and single-

bounce scattering paths, while suppressing the secondary components, such as

higher-order bounces and diffuse scattering paths. Consequently, the dimen-

sion of the element space of the received signals is significantly reduced, while
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maintaining the useful signals for obtaining the positioning information.

• A beamspace-based AoA estimation method is introduced. The advantage of

the proposed approach is that it estimates angular parameters in the beamspace

rather than in the element space, which has significantly higher dimensions due

to the employment of a large number of antennas in large-scale antenna ar-

ray systems. Because the number of the beamforming weight vectors is much

smaller than that of antennas, after the beamspace transformation, the AoA

estimation approach operates in a much lower-dimensional space. In this way,

the computational complexity of positioning in large-scale mmWave array sys-

tems is further reduced.

• We design a novel mmWave indoor localization approach, which provides accu-

rate estimates of both the distance and the orientation of the target MS under

LoS and NLoS propagation conditions. By exploiting the quasi-optical propa-

gation at mmWave frequencies and the a-priori knowledge of the environment

(including the position and material of potential reflectors), only a single BS

is required for the proposed approach to implement spatial 3-D localization.

This is different from other previously published methods, for which each prop-

agation area has to be covered by three or more BSs under the requirements

of multilateration/triangulation algorithms [47]. Furthermore, since we con-

sider the case where the LoS path may be blocked in practice, the proposed

approach is applicable to both LoS and NLoS scenarios.

The proposed algorithm and its results are publications in IEEE Transactions

on Communications, i.e., [J2].
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1.3.2 Channel Parameter Estimation for 3-D Wideband Hybrid UCyAs

Chapter 4 contributes to the channel parameter estimation for the UMi scenarios

with hybrid UCyAs. The range of the UMi scenario is typically larger than that of

the indoor scenario, and thus large-scale antenna arrays would be deployed, which,

however, would consume more power and incur higher costs due to a large number

of RF chains. In this sense, hybrid beamforming is a more appropriate architecture

than conventional digital beamforming in the UMi scenarios. It enables the number

of RF chains to be much smaller than the numbers of the antennas. As a result, the

system hardware cost and power consumption can be reduced.

In Chapter 4, a new 3-D wideband mmWave hybrid UCyA is presented for

the UMi scenarios. The designed new array addresses the problem of beam squint

and requires far fewer RF chains than antennas. We first provide the motivation

and overview of channel estimation for hybrid beamforming in Section 4.1, and

introduce the system model in Section 4.2. In Section 4.3, we design a novel two-

step 3-D hybrid beamforming strategy, where we form a small number of vertical

beams to pick up significant energy of received signals, and conduct quasi-discrete

Fourier transform (Q-DFT) on the horizontal plane. We exploit the convergence

of the Bessel function, so that the received signals can be converted to a smaller

dimension. We show that this strategy can reduce the number of required RF

chains while preserving the multiple-invariance structure in array response vectors.

As a result, subspace-based algorithms remain effective for parameter estimation.

To suppress the beam squint, we reconstruct the output signals of the hybrid

beamformer by generalizing linear interpolation into the 3-D space. We show in

Section 4.3.3 that by using this method, we can coherently combine the wideband

signals and achieve consistent array responses across the wideband. As a result, the

high temporal resolution offered by wideband mmWave systems can be utilized to



12

Received
Signal

Wideband Hybrid Beamforming Strategy
Multidimensional Spatial

Interpolation (MDSI)
Parameter Pair

Matching
Vertical Beam

Selection
Horizontal Q-DFT to
the Circular Arrays

Joint Delay and Angle 
Estimation (JDAE)

Figure 1.4 : The flow diagram of the proposed channel parameter estimation ap-

proach in Chapter 4.

improve the delay estimation accuracy. Given the multiple-invariance structure, we

can jointly estimate the delay and AoAs of each path from the combined wideband

signals, as described in Section 4.4. To pair the estimates for each path, we add

perturbation matrices to the eigenvalue matrices to mitigate the mismatch of the

estimated delays and angles caused by noises. In Section 4.5, simulation results

are provided to illustrate the performance improvements of the proposed channel

parameter estimation method. Finally, conclusions are drawn in Section 4.6.

We plot Fig. 1.4 to illustrate the new steps developed in Chapter 4, and the key

contributions of the chapter are summarized, as follows.

• We propose a novel 3-D hybrid beamformer to reduce the number of required

RF chains while preserving the multiple-invariance structure in array response

vectors. As a result, subspace-based algorithms remain effective for parameter

estimation. Specifically, we first form a small number of vertical beams to pick

up significant energy of received signals. The Q-DFT is then conducted on

the horizontal plane to convert the received signals to a smaller dimension by

exploiting the convergence of the Bessel function.

• We generalize linear interpolation to the 3-D space, to reconstruct the output

signals of the hybrid beamformer. By this means, we achieve consistent ar-

ray responses across the wideband and suppress the beam squint effect. The

wideband signals can be coherently combined, and the high temporal reso-

lution offered by wideband mmWave systems can be utilized to improve the
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delay estimation accuracy.

• We jointly estimate the delay and AoAs of each path, and match the estimated

parameters for different paths. Specifically, the elevation AoAs and delays are

estimated by utilizing ESPRIT to exploit the multiple-invariance structure,

followed by the azimuth AoAs estimated by using MUSIC. Perturbation ma-

trices are introduced to mitigate the mismatch between the estimated delays

and angles in the presence of non-negligible noises. As a result, different paths

can be correctly detected.

The proposed algorithm and its results are publications in IEEE Global Com-

munications Conference, i.e., [C-1], and IEEE Transactions on wireless Communi-

cations, i.e., [J-4].

1.3.3 Tensor-based Parameter Estimation for Hybrid Directional UCyAs

Chapter 5 is devoted to high-accuracy channel parameter estimation algorithm-

s in the RMa scenarios. Directional hybrid beamforming is employed, which can

reduce the required number of RF chains and provide sufficient signal power to

support long-distance transmission links. Based on tensor signal processing, Chap-

ter 5 presents a novel multi-dimensional approach to channel parameter estimation

with large-scale mmWave hybrid directional UCyAs, which are immune to mutual

coupling, but also known to suffer from infinite-dimensional array responses and

intractability.

Two salient steps for our new tensor-based parameter estimation are presented

in Sections 5.3 and 5.4, respectively, where we design the hybrid beamformer and

suppress the beam squinting effect in the received signals. Specifically, we first design

a hybrid directional beamformer based on Q-DFT in Section 5.3. By employing

sweeping directional beamforming and exploiting the convergence property of the
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Bessel function, the hybrid directional beamformer can deal with the severe pathloss

of mmWave links and maintain the angular resolution of the hybrid UCyA with a

reduced number of RF chains. The second step, presented in Section 5.4, is a

new low-complexity unitary constrained array manifold interpolation (UCAMI). By

only optimizing the focusing matrices in the elevation angular domain, this step

can suppress the beam squinting effect and enable coherent combining across the

wideband, without quantization in the angular space. Hence, no quantization error

occurs.

After the two preprocessing steps, we construct a truncated higher-order singular

value decomposition (HOSVD) model of the signals and propose a new tensor-based

subspace estimation algorithm in Section 5.5, which jointly estimates the delay, and

the azimuth and elevation angles of each received signal by exploiting the important

shift-invariance relations. The algorithm suppresses the receiver noises in all of the

time, frequency, and space dimensions, and hence accurately estimates the high-

dimensional channel parameters of multiple coherent or incoherent signal sources.

To decorrelate coherent signals at the hybrid UCyA, we also introduce a new way to

rearrange the measurement tensor of the received signals, i.e., spatial smoothing, in

Section 5.5.3. Coherent signals can then be separated and can be estimated indepen-

dently by using the proposed tensor subspace estimation algorithm. In Section 5.6,

validated by the CRLB, simulation results show that the proposed tensor-based al-

gorithm is able to achieve a much higher accuracy than state-of-the-art matrix-based

techniques in the RMa scenario of 5G/B5G systems. The proposed tensor-based al-

gorithm works well even when the signal-to-noise ratio (SNR) is low, credited to the

effective noise suppression in all of the time, space, and frequency domains.

The steps of the proposed novel tensor-based wideband channel estimation ap-

proach are illustrated in Fig. 1.5, and will be elaborated in the Chapter 5. The key

contributions of the chapter are summarized, as follows:
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Figure 1.5 : The flow diagram of the proposed channel parameter estimation ap-

proach in Chapter 5.

• We design the hybrid beamformers by using Q-DFT to maintain the angular

resolution of the hybrid UCyA with a reduced number of RF chains. Develop-

ing and applying a low-complexity UCAMI, we suppress the beam squinting

effect and enable coherent combining across the wideband. These are two

critical steps for our new tensor-based parameter estimation.

• We propose a new tensor-based subspace estimation algorithm to jointly esti-

mate the delay, and the azimuth and elevation angles of each received signal

by exploiting the important shift-invariance relations in the constructed trun-

cated HOSVD model. The algorithm can suppress the receiver noises in all of

the time, frequency, and space dimensions, and hence it accurately estimates

the high-dimensional channel parameters of multiple coherent or incoherent

signal sources.

• We introduce a new way to rearrange the measurement tensor of the received

signals to decorrelate coherent signals at the hybrid UCyA, i.e., spatial s-

moothing. Coherent signals can be separated and estimated independently by

using the proposed tensor subspace estimation algorithm.

The proposed algorithm and its results are publications in IEEE Transactions on

communications, i.e., [J-3], and IEEE International Conference on Communications,

i.e., [C-2].
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1.3.4 Nested Hybrid UCyA Design and DoA Estimation

Chapter 6 focuses on the hybrid UCyA design and its corresponding 2-D DoA

estimation algorithm in mIoT networks. The key physical-layer requirements of

mIoT networks are to reduce cost and power consumption while maintaining a high

network access capability. Deploying the hybrid arrays is a cost- and energy-efficient

means to meet the requirement, but this method would penalize system DoF and

channel estimation accuracy.

In Chapter 6, we exploit the sparse array technique and design a new nested

massive hybrid UCyA in mIoT networks. The corresponding angle estimation algo-

rithm is also proposed based on tensor processing. In Section 6.3.2, we first utilize

the theory of phase-space transformation to transform the nonlinear phase of the

UCyA steering vectors to be linear to the element locations. As a result, the horizon-

tal symmetric structure of UCyA is preserved. Then, we flatten the 3-D RF-chain

connection network into a 2-D plane and design the RF-chain connection network

based on the “Configuration II” nested array [48], as presented in Section 6.3.3.

By deploying the proposed sparse RF-chain connection network, we show that the

proposed nested hybrid antenna array enables the BS to estimate the DoAs of a

large number of devices with much fewer RF chains than antennas. As a result, the

massive access requirement of mIoT can be met with significantly reduced hardware

cost and network overhead.

To improve the accuracy of the channel parameter estimation, we formulate the

received signals in the tensor form and propose a spatial smoothing-based method

in Section 6.4 to enhance the n-rank of the constructed the second-order statistics

of the signal tensor model. Here, n denotes the index of the tensor mode. A new

tensor-based subspace 2-D DoA estimation algorithm for the designed nested hybrid

UCyA is developed in Section 6.5, where the hardware and software complexities of
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Figure 1.6 : The flow diagram of the proposed approach in Chapter 6.

the proposed estimation algorithm are also analyzed.

We plot Fig. 1.6 to illustrate the new steps developed in Chapter 6. The key

contributions of the chapter are summarized as follows.

• We design a new nested hybrid UCyA, which reduces the required number

of RF chains while preserving the inherently horizontal symmetric structure

of the UCyA to maintain a good channel estimation accuracy. The theory of

phase-space transformation is first used to transform the nonlinear phase of the

UCyA steering vectors to be linear to the element locations. Then, we design

the RF-chain connection network by exploiting the sparse array technique,

and utilize its generated difference coarray for parameter estimation.

• We analyze the rank relationship between signal matrix and the signal tensor

model in each dimension, and propose a tensor n-rank enhancement method

which ensures that the signal and noise subspaces can be properly decomposed

in all dimensions.

• We propose a new tensor-based 2-D DoA estimation algorithm, based on our

hybrid array design. We combine the tensor tool with ESPRIT to estimate

the elevation angles. Then, we substitute the estimates to derive the azimuth

angles by using tensor MUSIC. Simulation results show that, by suppressing

the noise components in all tensor modes, the proposed algorithm can signif-

icantly improve the estimation accuracy in the mIoT networks, as compared

to the state of the art.



18

The proposed algorithm and its results are publications in IEEE Journal on

Selected Areas in Communications, i.e., [J-1].



19

Chapter 2

Literature Review

The mmWave communication, with a large amount of available spectrum, has been

considered as a promising approach for achieving high data rate and low latency

communication in the 5G/beyond 5G (B5G) wireless networks [49–51]. Not only

can the wide bandwidth of mmWave systems improve the accuracy of delay estima-

tion by exploit its potentially high temporal resolution, but also reduces the effect of

small scale fading to the level [19,20,52] where the knowledge of the path loss model

can be utilized for accurate and reliable distance estimation. For instance, [53] used a

weighted combination of RSS indicator measurements for 60 GHz indoor localization

applications. It was shown that an accuracy of approximately 1 m can be achieved.

On the other hand, thanks to the very small wavelengths of mmWave signals and

the currently advanced complementary metal oxide semiconductor (CMOS) tech-

nology, nowadays, a massive number of antennas can be integrated into small-scale

areas [14]. It enables the large antenna array, another leading 5G technology relying

on the use of a large number of antennas, to be deployed even at terminals with

restricted sizes and weights [10, 54]. Besides the advantages in cellular communica-

tions, including increased system capacity and high spectral efficiency [9], the large

array technique is also an enabler for high-accuracy angle estimation thanks to its

high directivity [21]. Combining with the large array technique, wideband mmWave

systems are promising to precisely estimate channel parameters [23–25,55].

The ML estimator [56] and the approximate-ML estimator [16] are widely used

channel parameter estimation algorithms, which can achieve optimal or near optimal
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estimation performance. However, the prohibitively high computational costs hinder

their practical implementation in large-scale antenna systems, in particular, for mul-

tidimensional parameter estimations, in which complicated high-dimension searches

need to be conducted. The covariance matching estimation algorithm (COMET)

decomposes the highly dimensional search into multiple successive one-dimensional

versions [57, 58]. As a result, the computational complexity caused by the high-

dimension search can be reduced. Nevertheless, there is a drawback that such

algorithm cannot be extended to the scenario with multiple sources [36]. By ap-

proximating the array covariance matrix, [59] proposed an iterative search-based

multiple sources parameters estimation algorithm, which, however, needs the pre-

liminary estimates of the source directions. Based on the decomposition of signal and

noise subspaces, subspace estimation algorithms [15,29–31,37,60], such as ESPRIT

and MUSIC, not only have lower computational complexities than the ML-based

estimation algorithms [36], but also obtain attractive parameter estimation perfor-

mance. However, in mmWave large-scale array systems, due to the deployment of a

large number of antennas, the computational complexity of the subspace-based al-

gorithms is still too high, because the dimension of the element space in large-scale

array systems is very large. For example, the typical ESPRIT has a cubic complex-

ity with regards to the number of antennas [30], which means that the direct use of

this algorithm in large-scale array systems is not appropriate.

Most existing researches, including COMET, ESPRIT and MUSIC, only focus

on exploring mathematics-based ways to reduce the computational complexity of al-

gorithms, rather than exploring the properties of the propagation channels [61–63].

Due to the sparsity of mmWave, mmWave multi-antenna channels are expected to

be low-rank, and can be exploited to reduce the implementation complexity of esti-

mation algorithms. A few sparse representation techniques were developed in [64,65]

and [66] to exploit the sparsity of mmWave multi-antenna systems for channel esti-
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mation. The techniques first perform DFT to formulate the channel representation

as a sparse signal recovery problem, and then apply compressed sensing (CS) to solve

the problem. However, since their techniques are based on the DFT of the array

steering vectors, where linear recurrence relations exist between the array steering

vectors, their techniques cannot be directly applied to arrays with circular layouts,

e.g., uniform circular arrays (UCAs) and UCyAs, where the recurrence relations be-

tween the array steering vectors are nonlinear. In addition, only 1-D uniform linear

arrays (ULAs) are considered in [64, 65] and [66] and it is not straightforward to

extend their techniques to 2-D arrays, even URAs. This is because a 2-D sparse sig-

nal recovery problem would need to be formulated and solved. The problem would

incur a high computational complexity, if solved with CS techniques.

High hardware cost and high power consumption are also obstacles for apply-

ing large-scale array techniques into actual mmWave systems. Conventional low-

frequency multi-antenna systems mainly use digital beamforming architectures, in

which the numbers of RF chains, digital-to-analog converters (DACs), and analog-

to-digital converters (ADCs) are equal to the number of antennas [9]. However, it

is unrealistic to deploy the same number of expensive RF chains and high power-

consumed ADCs/DACs in large-scale arrays. As a result, it is clearly not feasible

to install a separate RF chain and a data converter for every antenna. One sim-

plest solution is analog beamforming, which, unfortunately, can support only the

transmission of a single user or a single stream. Hybrid beamforming is a more

appropriate architecture, in which a low-dimensional digital beamforming in the

baseband and a high-dimensional analog beamforming (or beam selector) at the

RF front-end are used to process each transmission signal, as illustrated in Figs.

2.1 (a) and (b), where analog beamforming is based on the phase shifters or the

lens arrays. Channel parameter estimation techniques have been well studied in

low-frequency multi-antenna systems, but little results are available for large-scale
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Figure 2.1 : Hybrid beamforming architectures: a) phase shifter-based analog beam-

forming; and b) lens-based analog beamforming.

mmWave antenna arrays using hybrid front-end [34,35]. Current hybrid beamform-

ing schemes are typically based on CS. They need to discretize channel coefficients

and would result in estimation accuracy losses [33, 67]. The state-of-the-art spatial

spectrum estimation algorithms, such as ML estimators [36] and subspace-based

algorithms [29,30,37], were designed to estimate continuous channel parameters us-

ing fully digital arrays, where each baseband observation is directly sampled from

the signal received at an antenna. With hybrid front-end, the received signals of

multiple antennas are combined via an RF phase-shifting network. As a result,

the multiple-invariance structure would be obscured or even lost, and the spatial

spectrum estimation algorithms cannot directly apply [18,38].

Challenges also arise from beam squint [39], due to typically wide bandwidth-

s of mmWave signals; in other words, the beam directions can change markedly

over the different frequencies of a signal bandwidth. Large available bandwidth

of mmWave systems makes accurate range measurements possible thanks to high

temporal resolution, but the beam squint can lead to channel dispersion in a spa-

tial angle across the bandwidth [39]. Most existing channel parameter estimation

methods, e.g., [14, 22, 68], were designed for narrowband signals. They cannot deal

with the beam squint. One existing solution which does support wideband oper-
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ations is applying wideband signal-subspace methods (WSSMs) [65, 69] to prepro-

cess the wideband signals. These methods can remove the frequency dependence

of array steering vectors and suppress the beam squinting effect. Specifically, the

incoherent WSSM (IWSSM) [14, 70] decomposes the received signals into multi-

ple non-overlapping narrowbands, and estimates the parameters independently at

each narrowband. This method requires extra steps to combine the results of all

the narrow bands [71] and does not utilize the high temporal resolution offered by

wideband mmWave systems. In [69, 72], the coherent WSSM (CWSSM) maps the

frequency-dependent array steering matrices to a reference frequency by producing

so-called focusing matrices. The generation of the focusing matrices in this method

requires initial values, and the performance of the methods is susceptible to the

initial values. A variation of CWSSM, named unitary constrained array manifold

interpolation (UCAMI), was proposed in [73, 74]. It eliminates the need for initial

estimates and avoids focusing loss1. However, the focusing matrices of UCAMI are

obtained by solving multi-dimensional optimization problems. Since the dimension

of the problems is equal to the number of frequency-dependent parameters, UCAMI

is computationally expensive.

On the other hand, existing channel parameter estimation algorithms are typ-

ically matrix-based. By those matrix-based algorithms, the relations between d-

ifferent dimensions (i.e., domains) of the signal become obscure, because the re-

ceived multi-dimensional (i.e., space, time and frequency) signals are stacked into

two-dimensional matrices [1, 75]. Tensor-based channel parameter estimations have

been demonstrated to be more powerful than conventional matrix-based techniques

in [75–77]. By arranging and processing the received signals in a tensor form, the

1Focusing loss refers to the ratio between the array signal-to-noise ratios after and before fo-

cusing operations. Focusing loss can be avoided by constraining the focusing matrices that are

unitary [69].
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Figure 2.2 : The illustration of the tensor processing in [1–4].

relations between each dimension/domain of the received signal can be exploited. As

a result, the multi-dimensional parameters can be estimated with super-high accura-

cy [1,75]. The papers [1–4] presented tensor-based algorithms for multi-dimensional

channel parameter estimation, which preserve the multi-dimensional structure of sig-

nals. They constructed channel tensor model and applied HOSVD to decompose the

signal and noise subspaces in every domain (space, frequency, and time), as shown

in Fig. 2.2. As a result, the accuracy of the channel parameter estimation can

be improved in scatter-rich microwave-band channels. The authors of [78] and [79]

exploited the sparsity of mmWave channels to further improve the estimation accu-

racy. However, their algorithms require an alternating-least-squares procedure with

no guarantee of convergence. In addition, the algorithm in [79] is only suitable for

narrowband systems with URAs.

As an emerging technology attracting significant attention, IoT promotes a high

level of situational awareness and has been used in various areas, such as govern-

ments, industry, and academia [80–83]. It is envisioned that more than five billion

devices will be connected in an IoT network by 2025 which will allow new ways of

living and communicating [5]. As one major segment of the IoT network, mIoT

refers to the applications that are capable of connecting a large number of IoT de-
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Figure 2.3 : Expected growth of IoT connections (billion) [5].

vices to an internet-enabled system [32,84–86]. As such, the large network capacity

is an urgent demand for mIoT networks. Combined with advanced multiple access

techniques, large-scale mmWave array, which can significantly increase network ca-

pacity, can be potentially applied to mIoT networks [44]. However, it is unrealistic

to provide an RF chain for each antenna, as digital beamforming techniques would

require [33]. Hybrid beamforming is an appropriate architecture, but most con-

ventional channel estimation schemes for hybrid beamforming were designed with

given channel information [35]. And some of them apply RF networks to directly

combine the received signals from multiple antennas, resulting in resolution losses

of channel estimation accuracy [18, 38]. As a result, the system degree of freedom

(DoF), referring to the number of targets which can be sensed and estimated at the

BS [87], would decrease.

To increase the system DoF with a limited number of antennas, the concept of

sparse array, such as minimum redundancy array (MRA) [88], minimum hole array

(MHA) [89], nested array [87], and coprime array [90], has attracted considerable at-
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tention. By exploiting the second-order statistics of impinging signals, these sparse

arrays are capable of identifying O(N2) uncorrelated sources with only N physical

antenna elements. However, existing sparse array techniques have been typically

used to design linear or square arrays. Compared to square arrays, circular arrays

have a much more compact size, less sensitivity to mutual coupling, and inherently

more symmetric structure [27], and hence, they are more suitable for mIoT appli-

cations. Authors of [91] and [92] proposed nested sparse circular arrays for DoA

estimation. However, they directly computed the autocorrelation of impinging sig-

nals, which unfortunately compromises the original symmetric structures of circular

arrays and penalizes the channel estimation accuracy significantly. Channel estima-

tion is also challenging for sparse arrays. There have been attempts to apply the

MUSIC algorithm to networks equipped with sparse arrays [14,48,87,90,93]. How-

ever, the estimation accuracy of those algorithms is unsatisfactory, depending on

the searching step and signal correlation. Tensor-based multi-dimensional MUSIC

algorithms were proposed in [2,94] for sparse arrays to improve estimation accuracy.

However, since the MUSIC spectrum of their algorithms is a product of multiple

separable second-order spectra, undesirable cross-terms [94] would arise, leading

to incorrect spectral peak search results. To solve this problem, CANDECOM-

P/PARAFAC (CP)-based tensor channel estimation algorithms were proposed [78],

but these algorithms have a very high computational complexity. Table 2.1 shows a

comparison between the existing studies and our work.
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Table 2.1 : A comparison between the existing studies and our work.

Existing studies Our work

Channel

estimation

algorithms

1) ML-based algorithms: [56] and

[16]; 2) COMET: [36, 57, 58]; 3)

Typical subspace estimation algo-

rithms: [29–31,37,60].

Beamspace-based

subspace algorithms

Signal

processing

methods

1) Matrix-based methods: [29–31,

37, 60–66]; 2) Tensor CP decom-

position: [78] and [79]; 3) Tensor

HOSVD (narrowband): [1–3,94].

Tensor HOSVD

(wideband)

Reducing

computational

complexities

1) Exploring mathematics-based

ways: [61–63]; 2) Exploring the

properties of the propagation

channels: [64, 65] and [66].

Exploring both the

mathematics-based

ways and the

sparsity of mmWave

channels:

Beamforming

structures

1) Digital beamforming: [29–31,

36,37,57,58,60]; 2) CS-based hy-

brid beamforming: [33–35].

Subspace-based

hybrid

beamforming.

Wideband

operations

1) IWSSMs: [70]; 2) CWSSMs:

[69,72,73].

Low-complexity

UCAMI

Antenna arrays 1) ULAs: [64,65] and [66]; URAs:

[29,30,60,63,79].

UCyAs
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Chapter 3

Joint RSS-AoA Estimation and Localization for

Digital UCyAs

This chapter is devoted to the channel parameter estimation for UCyAs with digital

beamforming, where the number of RF chains, DACs as well as ADCs are equal to

that of antennas [9]. In this chapter, we consider the mmWave indoor scenario, as

illustrated in Fig. 3.1. Digital beamforming can flexibly assign different powers and

phases to different antennas, and it enables the received signal of every antenna to

be available at the baseband, preventing the resolution losses of channel estimation

and reducing the difficulties in beamforming control. Thus, this architecture has

been widely used in multi-antenna systems.

In this chapter, a novel low-complexity joint RSS-AoA estimation method is

proposed for mmWave large array systems. We first propose a novel channel com-

pression technique by exploiting the sparsity and quasi-optical propagation property

of mmWave. By properly quantizing and selecting the received signals, the technique

reduces the dimension of the received signal space while maintaining the accuracy

of the parameter estimation. After estimating the distance between the BS and the

MS, we apply beamspace transformation to transform signal vectors in the element

space to the low-dimensional beamspace. As a result, the computational complex-

ity of the angle estimation is significantly reduced. We finally present a novel 3-D

indoor positioning approach to estimate the 3-D coordinates of the MS. Simulation

results show that the proposed indoor approach is capable of achieving high accuracy

with significantly lower computational complexity as compared to other previously

known indoor positioning approaches.
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Figure 3.1 : The research scenario studied in Chapter 3.

3.1 Motivation and State of the Art

In mmWave large-scale array systems, the computational complexity of the most

existing parameter estimation methods is very high, due to the deployment of a

large number of antennas. To solve this problem, in this chapter, we propose a low-

complexity joint RSS-AoA estimation method. We first propose a novel channel

compression technique in Section 3.3 to reduce the dimension of the received signals

to be processed. The quasi-optical property of mmWave propagation leads to the

signal path components, which are incident on the surrounding walls, producing

specular reflections and little diffuse scatterings. Due to the surface roughness of

building materials, there are some useless components of diffuse scattering super-

imposed on the deterministic specular part of the received signal, which not only

increases the dimension of the received signal space, but also reduces the parameter

estimation accuracy. By exploiting the sparsity of the mmWave large array channel,

the proposed technique remains the principal components of the channel, i.e., the

LoS and single-bounce scattering paths, and abandons the secondary components,

such as higher-order bounces and diffuse scattering paths. As a result, the estima-

tion accuracy of the proposed estimation method can be improved while reducing
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the computational complexity.

Relying on the aforementioned channel compression technique, a joint RSS-AoA

estimation algorithm is introduced and analyzed in Section 3.4. In particular, we

develop a RSS-based ranging measurement method, Fredi [95], which exploits the

different transmission power of paths and can overcome the measuring error caused

by the multipath effects, to estimate the distance between the BS and the MS.

Then, we propose a low-complexity beamspace-based AoA estimation algorithm.

We apply beamspace transformation to transform signal vectors in the element space

to a beamspace, which has much lower dimensions than the original signal element

space, and thus the computational complexity of the parameter estimation can be

significantly reduced.

Based on the estimated parameters, Section 3.5 presents a novel 3-D NLoS indoor

positioning approach. Most positioning algorithms proposed for mmWave large

array systems, such as [22, 47, 50, 63, 68, 96, 97], assume that the LoS path exists

between the MS and the BS, and they only focused on 2D scenarios. It is well-

known that LoS signal reception is not always guaranteed in practical propagation

environments. NLoS localization was considered in [21], but it is also a 2-D approach,

and it needs to deploy at least four BSs, increasing the overall system complexity.

By exploiting the quasi-optical propagation at mmWave frequencies, we calculate

the angle of departure (AoD) of each path and employ the single-bounce specular

reflection components to accurately locate the MS in 3-D mmWave indoor scenarios

with only a single BS. This section also analyses the computational complexity of the

proposed approach. Compared with the existing methods, the proposed approach

requires significantly less computational complexity, i.e. reductions up to several

orders of magnitude. We also show that the complexity performance improvement of

the proposed approach becomes even higher as the the number of antennas increases.
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Section 3.6 presents extensive simulation results to show that the proposed

method achieves high precision for parameter estimation and indoor localization

applications. We compare the performance of the proposed parameter estimation

algorithm with that of the existing methods, and use the CRLB as a reference.

Results show that the proposed parameter estimation method outperforms the ex-

isting methods in terms of AoA estimation when the number of the antennas is

larger, and the proposed positioning scheme can achieve decimeter-level positioning

accuracy even with low SNR values. In subsection 3.6.3, we also evaluate the sensi-

tivity of the proposed method to the quantization error introduced by the channel

compressing. We show that as long as the values of the resolution parameters are

sufficiently large, the effect on the overall performance of neglecting the quantization

error is minimal.

3.2 System Model

The mmWave large array channel model can be derived from standard large-scale

array channel models used in lower frequency bands [35,98]. Consider a large-scale

array system with Nt transmit and Nr receive antennas. The received narrowband

mmWave signal, y(t) ∈ CNr×1, is given by

y(t) = Hx(t) + n(t), (3.1)

where x(t) ∈ CNt×1 is the transmitted signal vector, H ∈ CNr×Nt represents the

mmWave channel matrix between BS and MS, and n(t) ∈ CNr×1 is the Gaussian

noise corrupting the received signal y(t). For 3-D channel models, H can be math-

ematically expressed as

H =

Np∑
l=0

βla
r(φr

l , θ
r
l )a

tH(φt
l , θ

t
l ), (3.2)

where

ar(φr
l , θ

r
l ) =

1√
Nr

[
ar

1(φr
l , θ

r
l ), a

r
2(φr

l , θ
r
l ), . . . , a

r
Nr

(φr
l , θ

r
l )
]T

(3.3)
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and

at(φt
l , θ

t
l ) =

1√
Nt

[
at

1(φt
l , θ

t
l ), a

t
2(φt

l , θ
t
l ), . . . , a

t
Nt

(φt
l , θ

t
l )
]T

(3.4)

are the array steering vectors of receive and transmit antennas, respectively, with

φt
l/θ

t
l and φr

l/θ
r
l being the azimuth/elevation of AoDs and AoAs of the l-th propaga-

tion path, Np denotes the number of received paths1 and βl represents the complex

amplitude of the l-th propagation path.

We apply the close-in free space reference distance (CI) model [99], which has

the solid physical basis in both frequency f and distance d, to model the path loss

of mmWave indoor scenarios. According to [99], the path loss, PLCI, is given by

PLCI(f, d)[dB] = FSPL(f, d0) + 10α log10

(
d

d0

)
+XCI

σ , (3.5)

where α is the path loss exponent; FSPL(f, d0) = 20 log10 (4πf/c) is the free space

loss at physically-based reference distance d0 = 1 m; c denotes the speed of light;

and XCI
σ is a zero mean Gaussian random variable with standard deviation σ in dB,

which describes the shadow fading term2.

In mmWave large array channel, the highly directional antennas as well as the

small wavelengths are sensitive to the existence of LoS paths. We use the LoS

probability of mmWave channels to determine whether the signal from the LoS

path can be received. Apart from LoS paths, when mmWave signals propagates in

indoor enviroments, the BS can also receive a lot of diffuse scattering and high-order

bounces from all directions. As a result, in a multipath mmWave indoor scenario,

the received paths in (3.2) include LoS, single-bounce specular reflections, diffuse

scatterings and higher-order bounces. Since LoS blockage between the BS and the

MS causes high attenuation at mmWave frequencies, channel characteristics are

usually modeled separately for the LoS and NLoS cases.

1Note that the LoS path in (3.2) corresponds to l = 0.

2According to [99], for 28GHz mmWave NLOS paths, the variance is about 10 dB.
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The LoS probability is defined as the probability that the signal, which propa-

gates from the BS to the MS along the geometrically shortest route, is not blocked

by any objects available in the propagation environment [43]. According to [100], we

use the following exponential LoS probability model for the indoor mmWave large

array channel, as given by

PLoS(d) = (1− P∞) exp (− (d/κ1)κ2) + P∞, (3.6)

where d (in m) is the distance between the BS and the MS, P∞ = PLoS|d→∞, κ1 is

the decay parameter and κ2 is the exponent parameter. Obviously, if the distance

between the BS and the MS can guarantee LoS propagation, PLoS(d) = 1.

In this chapter we assume that, when the distance between the BS and the

MS can guarantee LoS, using the received signal from LoS path for localization is

sufficient. Otherwise, the components of single-bounce specular reflection are used

to ensure positioning accuracy.

3.3 Channel Compression

Before estimating parameters, we first propose a novel channel compression tech-

nique to filter out the unwanted received components while maintaining the useful

signals required for the accurate parameter estimation.

In practical mmWave transmission scenarios, due to the surface roughness of

building materials, there are some components of diffuse scattering superimposed on

the deterministic specular part of the received signal3. If these components cannot be

handled properly, the estimation accuracy would be harmed. This is because diffuse

scattering, defined as the interaction of an impinging wave with a rough surface,

3As stated by the Rayleigh criterion, the roughness of the surface is directly proportional to the

wavelength of the signal [101]. At mmWave frequencies, there are many objects whose roughness

is in the order of the signal wavelength.
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produces a spread of the energy in multiple direction as opposed to specular reflection

from a smooth surface [43]. Taking advantage of the not so well behaving scattering

nature of the mmWave channel, by filtering out the useless diffuse scatterings and

multiple reflection components 4, the proposed channel compression method does

not only yield to very accurate channel parameter information, but it also reduces

the computational complexity of the proposed estimation algorithm.

The rest of the section is organized as follows. Firstly, angle quantization, as

the preprocessing for achieving the channel compression, will be presented. Then,

based on the quasi-optical and sparse multipath properties of mmWave, the method

named virtual path selection will be designed to choose useful paths from the received

signals.

3.3.1 Angle Quantization

The channel matrix H in (3.2) can be rewritten, in a more compact way, as

H = ArΛβA
tH , (3.7)

where the array steering matrices are given by

Ar =
[
ar(φr

1, θ
r
1), ar(φr

2, θ
r
2), . . . , ar(φr

Np
, θr
Np

)
]
∈ CNr×Np (3.8)

and

At =
[
at(φt

1, θ
t
1), at(φt

2, θ
t
2), . . . , at(φt

Np
, θt
Np

)
]
∈ CNt×Np , (3.9)

respectively, and Λβ = diag(β), with β = [β1, β2, . . . , βNp ].

Assume that the φr
l , φ

t
l and θr

l , θ
t
l are taken from uniform grids of G1 and G2 points

respectively, i.e., φr
l , φ

t
l∈ {0, 2π/G1, . . . ,2π(G1 − 1)/G1} and θr

l , θ
t
l ∈{0, π/G2, . . . ,

4From now on, and unless otherwise noted, it will be assumed that the number of multiple

signal reflections is at least 2.
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π(G2 − 1)/G2}, l = 0, 1, . . . , Np, where G = G1G2 � Np is the number of received

virtual paths. The quantized array steering matrices, Ãr and Ãt, are expressed as

Ãr =
[
ar(φ̃r

1, θ̃
r
1), ar(φ̃r

1, θ̃
r
2), . . . , ar(φ̃r

1, θ̃
r
G2

),

ar(φ̃r
2, θ̃

r
1), ar(φ̃r

2, θ̃
r
2), . . . , ar(φ̃r

2, θ̃
r
G2

),

...
...

...
...
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, θ̃r
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G2

)
]

; (3.10)
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1), at(φ̃t

2, θ̃
t
2), . . . , at(φ̃t

2, θ̃
t
G2

),

...
...

...
...

at(φ̃t
G1
, θ̃t

1), at(φ̃t
G1
, θ̃t

2), . . . , at(φ̃t
G1
, θ̃t
G2

)
]
. (3.11)

Thus the virtual representation of the channel matrix based on the quantization

can be expressed as

H̃ = ÃrΛ̃β(Ãt)H , (3.12)

where Λ̃β ∈ CG×G includes the path gains of the corresponding quantized directions.

In this chapter, only the quantized AoAs/AoDs will be further considered. This is

because, as will be explained in Section 3.6, numerical simulations have clearly shown

that the impact of the quantization error on the performance of proposed algorithms

is negligible [33,35]. Therefore, H is equivalent to its virtual representation in (3.12)

, i.e.,

H ≈ H̃ = ÃrΛ̃β(Ãt)H . (3.13)

3.3.2 Virtual Path Selection

Let us construct an NtNr × 1 column channel vector h = vec(H) with the fol-

lowing channel covariance matrix

Rh = E
{
hhH

}
, (3.14)
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which captures the second-order statistics of the mmWave large array channel. Using

the property of Kronecker product, i.e., vec(ABC) = (CT ⊗A)vec(B), we obtain

Rh = E
{
hhH

}
= ((Ãt)∗ ⊗ Ãr)RΛβ((Ãt)∗ ⊗ Ãr)H , (3.15)

where RΛβ = E
{
ΛβΛ

H
β

}
∈ CG2×G2

is a diagonal matrix and Λβ = vec(Λ̃β) ∈ CG2×1.

It is evident from (3.13) that the channel gain appears in Λ̃β, so that according to

(3.15), the estimation of Rh becomes equivalent to estimating RΛβ [102].

In mmWave systems, the received power of the diffuse scattering and multiple

reflection paths is much lower than that in LoS and single-bounce specular reflection

paths, so the covariance matrix RΛβ of the virtual paths possesses a special sparsity

structure. In order to filter out the received diffuse scatterings and multiple reflec-

tions which will interfere with parameter estimation, the paths of LoS and specular

reflections need to be selected from the received paths.

Let σv =
[
RΛβ

]
v,v

with v ∈ V = {1, 2, . . . , G2}, which is the diagonal element of

the matrix RΛβ , and V is the set of the sequence numbers of RΛβ diagonal entries.

We define a selection-set U as

U ,
{
ση(1), ση(2), . . . , ση(G2)

}
, (3.16)

where the index η(u) of ση(u) with u = 1, 2, . . . , G2, represents the sequence number

in V . The index η(u) can be obtained by

η(1) = arg maxv∈V σv,

η(2) = arg maxv∈V\{η(1)} σv,

...

η(G2) = arg maxv∈V\{η(1),η(2),...,η(G2−1)} σv.

(3.17)

Assume that the total number of LoS path and specular reflection paths is N ′p,

with N ′p � Np � G. The following criterion is proposed for selecting the strongest
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N ′p components from U :
N ′p∑
u=1

ση(u) ≥ γtr(RΛβ), (3.18)

where γ is a threshold, which should be close to 1, e.g., 0.95. Then, the following

selection procedure is undertaken. Firstly, the strongest component is selected. If

the value of ση(k) of the strongest component does not satisfy (3.18), the second

strongest component will be selected, and this procedure will continue until the sum

of ση(k) of the strongest N ′p components can satisfy the criterion (3.18).

Assuming that an appropriate threshold γ has been selected, the received signal

used for channel parameter purposes will come from the LoS and single-bounce

specular reflection paths6. Because Λ̃β contains the path gains of the corresponding

quantized directions, and the index η(u) of ση(u) in (3.18) represents the sequence

number of the selected paths, the quantized directions corresponding to the selected

paths can be obtained after channel compression. Given this, the channel matrix Ḣ

can be mathematically expressed as

Ḣ = ȦrΛ̇β(Ȧt)H , (3.19)

5It has been shown in [45] that for indoor scenarios the contributions of the multiple reflections,

i.e., the reflective times are more than two, and that of the diffuse scattering components compared

to the total received energy are very weak, only accounting for about 10% of the total energy. Thus

for our positioning scheme, we have chosen the threshold γ = 0.9 to filter out the received diffuse

scattering or multiple reflection components, and then use the LoS path or single-bounce specular

scattering paths to locate the MS.

6It should be noted that, as already mentioned in Section 3.2, when the path between the BS

and the MS can guarantee LoS, e.g., the scenario is free of blocking objects or the distance between

the BS and the MS is very short, using received signal from LoS path, i.e., l = 0, is sufficient for

channel parameter estimation purposes. In this case, only the strongest LoS component needs to

be selected.



38

where

Ȧr =
[
ar
(
φ̃r
d((η(1)−1)modG+1)/G2e, θ̃

r
((η(1)−1)modG)modG2+1

)
,

ar
(
φ̃r
d((η(2)−1)modG+1)/G2e, θ̃

r
((η(2)−1)modG)modG2+1

)
, . . . ,

ar
(
φ̃r

d((η(N ′p)−1)modG+1)/G2e, θ̃
r
((η(N ′p)−1)modG)modG2+1

)]
; (3.20)

Ȧt =
[
at
(
φ̃t
ddη(1)/Ge/G2e, θ̃

t
(dη(1)/Ge−1)modG2+1

)
,

at
(
φ̃t
ddη(2)/Ge/G2e, θ̃

t
(dη(2)/Ge−1)modG2+1

)
, . . . ,

at
(
φ̃t

ddη(N ′p)/Ge/G2e, θ̃
t
(dη(N ′p)/Ge−1)modG2+1

)]
(3.21)

contain the selected array steering vectors, and Λ̇β = diag(β̃′) ∈ CN ′p×N ′p with

β̃′ = [β̃η(1), β̃η(2), . . . , β̃η(N ′p)] carries the path gains of the corresponding selected

paths. At the t-th time instant, the received signal vector at the BS after the

channel compression is rewritten as

ẏ(t) = Ḣx(t) + ṅ(t). (3.22)

3.4 Joint RSS-AoA Estimation

In this section, we propose a new joint RSS-AoA estimation algorithm to estimate

the distance between the BS and the MS and the arrival angle of each paths. We

first estimate the RSS by exploiting the transmission power of each path, and then,

propose a low-complexity beamspace-based AoA estimation algorithm. The AoDs of

the paths are calculated in the next section by exploiting the quasi-optical property

of mmWave.

3.4.1 RSS Distance Estimation

In multipath propagation environments, the propagated waves of the different

paths will be combined either constructively or destructively depending upon their
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received phases. As these phases depend on the signal frequency, the electromagnetic

waves of the combined paths vary according to the signal frequencies, resulting in

different RSS values.

In this chapter, we employ a RSS-based ranging measurement method, Fredi [95],

which can overcome the measuring error caused by the multipath effects, to estimate

the distance between the BS and the MS. Considering a simple sine radio wave,

according to (3.5), the energy field strength of each propagation path can be modeled

as

E(d, λ,Γ, t) = Γ
GtGrPt√

PLCI
sin

(
2πc

λ
t+ 2π

d

λ

)
=

Γλ

d′

√
C

XCI
σ

sin

(
2πc

λ
t+ 2π

d

λ

)
,

(3.23)

where d′ = (d/d0)
α
2 , and Γ ∈ (0, 1] is a reflection coefficient7. C = GtGrPr/(4π) is

a hardware-dependent constant, where Gt is the gain of the transmitter, Gr is the

receiver gain, and Pt is the transmission power. Assume that there are Nf different

frequencies. The Nf RSS measurements, denoted as ŝnf
, where nf = 1, 2, . . . , Nf,

will be obtained. In order to eliminate the uncertainty introduced by the shadowing

fading, each RSS value is averaged by performing Nt runs. If M different paths

exist, the RSS at the receiver is the averaged power of the received signal, which

can be expressed as

ŝnf
(d1, . . . , dM ,Γ1, . . . ,ΓM , λnf

) =
1

Nt

Nt∑
t=1

(
M∑
m=1

Em(t)

)2

= Cλ2
nf

(
M∑
m=1

Γ2
m

2d′m
2 +

M∑
m6=m′

ΓmΓm′

d′md
′
m′

cos

(
d′m − d′m′
λnf

))
. (3.24)

For a sequence of Nf discrete values, we use Discrete Fourier Transformation

(DFT) to transform them into another sequence of Nf numbers, as given by

Pnk
=

Nf∑
nf=1

ŝnf

Cλ2
nf

exp(−j2πnk

Nf

nf), nk = 1, 2, . . . , Nf. (3.25)

7For the LoS path, Γ = 1.
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Note that we only consider the positive part of P (nk) in this chapter. Substitut-

ing (3.24) into (3.25), we have

Pd′m−d′m′ =
ΓmΓm′

d′md
′
m′
, (3.26)

where d′m − d′m′ is the index of P . In our system, the antenna deployed in the MS

is vertically polarizated, thus the electric field vector, E, is parallel to the plane of

walls, so that Γ1 = Γ2 = . . . = ΓM . Due to the existance of M distinct propagation

paths, there are, in total, M(M − 1)/2 different results for Pd′m−d′m′ , which means

that there are M(M − 1)/2 equation. Then by solving these equations, the distance

estimator, d̂, can be figured out.

3.4.2 Angle Estimation

As explained in Section 3.3, the path components incident on the smooth surfaces

of the surrounding walls mainly produce specular reflections. Assuming that, after

channel compression, the diffuse scattering and multiple reflection components have

been filtered out. Then, the remaining received paths include the LoS and the

specular reflection paths from the surrounding walls. Since the LoS can be dealt

with as a special case of NLoS, the general case of specular reflected signal paths

will be further considered. Such specular reflection paths, which reflect from the

four distinct surrounding walls, can be seen as transmitted paths by four virtual

MSs, and in this sense they can be considered separately. As previously explained,

when considering the single-bounce specular reflection path, there are deterministic

geometrical relationships between AoAs and AoDs, so that by evaluating azimuth

and elevation AoAs the relevant parameters for AoDs can be obtained.

The received signal vector in (3.22) can be mathematically expressed as

ẏ(t) =

N ′p∑
l′=1

Ns∑
ξ=1

βl′,ξa
r(φ̃r

l′,ξ, θ̃
r
l′,ξ)Mξ(t) + ṅ(t), (3.27)
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s(K-1)
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Figure 3.2 : The considered geometric model of the UCyA of the BS consisting of K

vertically arranged and coaxially aligned UCAs, with uniform distance, s, between

them, and each of them is composed of N antennas.
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where

Mξ(t) = atH(φ̃t
l′,ξ, θ̃

t
l′,ξ)x(t) (3.28)

ξ = 1, 2, . . . , Ns represents the number of the specular reflection paths from the four

distinct surrounding walls, and l′ is the sequence number of selected propagation

paths after channel compression8.

Our system employs an UCyA at the BS [15, 29]. The geometric model of the

UCyA is shown in Fig. 3.2. The array consists of K vertically arranged and coaxially

aligned UCAs, each of which has a radius r, and they have equal vertical distances,

s. Each UCA consists of N antennas, so that the total number of antennas in the

UCyA is Nr = NK, and the height of this UCyA is s(K − 1). As illustrated in Fig.

3.2, the N antennas of any UCA are uniformly distributed over the circumference

of a circle, and thus the i-th element of array response vector in the k-th UCA is

given by

ar
i(φ̃

r
l′,ξ, θ̃

r
l′,ξ) = exp

(
j

2π

λ

[
r sin(θ̃r

l′,ξ) cos(φ̃r
l′,ξ − ϕn)− h(k − 1) cos(θ̃r

l′,ξ)
])

, (3.29)

where i = N(k − 1) + n, k = 1, 2, . . . , K, n = 1, 2, . . . , N , and ϕn = 2π(n− 1)/N is

the central angle difference between the n-th antenna and the first antenna, which

is measured counterclockwise.

In the next subsection, we first discuss the beamspace transformation process,

and then we present the estimation of azimuth angle estimation procedure.

Beamspace Transformation

In order to reduce the large dimension of received signal vectors, we first use a

phase-specific beamforming vector to transform the element space into the beamspace.

8Note that ar(φ̃rl′,ξ, θ̃
r
l′,ξ) or at

H
(φ̃tl′,ξ, θ̃

t
l′,ξ) in (3.27) is always different from that in (3.10) or

(3.11), because l′ is the sequence number of paths in each of the N ′p propagation paths obtained

after channel compression.
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Let us rewrite (3.29) in a more compact form as

ar
i(φ̃

r
l′,ξ, θ̃

r
l′,ξ) =

[
ar
k(φ̃

r
l′,ξ, θ̃

r
l′,ξ)
]
n,1
, (3.30)

where

ar
k(φ̃

r
l′,ξ, θ̃

r
l′,ξ) =

1√
N

[ar
N(k−1)+1(φ̃r

l′,ξ, θ̃
r
l′,ξ), . . . , a

r
Nk(φ̃

r
l′,ξ, θ̃

r
l′,ξ)]

T . (3.31)

Define p , −P,−P + 1, . . . , P as the phase mode. We express the beamforming

weight vector, wp, as

wp =
1

N

[
ejpϕ1 , ejpϕ2 , . . . , ejpϕN

]H
. (3.32)

The array pattern fp,k(φ̃
r
l′ , θ̃

r
l′) can be mathematically expressed as

fp,k(φ̃
r
l′,ξ, θ̃

r
l′,ξ) = wH

p ar
k(φ̃

r
l′,ξ, θ̃

r
l′,ξ). (3.33)

Transforming the received signal vector of the k-th UCA from the element space

into the beamspace, we have

ỹk(t) = FH ẏk(t) =

N ′p∑
l′=1

βl′ ã
r
k(φ̃

r
l′,ξ, θ̃

r
l′,ξ)M(t) + ñk(t), (3.34)

where

F =
√
N [j−Pw−P , j

−P+1w−P+1, . . . , j
PwP ],

is the beamforming matrix [103], ñk(t) = FHnk(t) and ãr
k(φ̃

r
l′,ξ, θ̃

r
l′,ξ) are the beamspace

transformed noise and array response vectors, respectively. The beamspace trans-

formed signal vector can be expressed as

ỹ(t) = [ỹT1 (t), ỹT2 (t), . . . , ỹTK(t)]T . (3.35)

If the phase mode satisfies |p| < N , the array pattern in (3.33) can be rewritten

as [103]

fp,k(φ̃
r
l′,ξ, θ̃

r
l′,ξ) =

[
jpJp

(
2π

λ
r sin(θ̃r

l′,ξ)

)
e
jpφ̃r

l′,ξ

+εp

(
2π

λ
r sin(θ̃r

l′,ξ), φ̃
r
l′,ξ

)]
e
−j 2π

λ
h(k−1) cos(θ̃r

l′,ξ), (3.36)
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where

εp

(
2π

λ
r sin(θ̃r

l′,ξ), φ̃
r
l′,ξ

)
=

∞∑
m=1

[
jgJg

(
2π

λ
r sin(θ̃r

l′,ξ)

)
× ejgφ̃

r
l′,ξ

+jg
′
Jh

(
2π

λ
r sin(θ̃r

l′,ξ)

)
e
jg′φ̃r

l′,ξ

]
, (3.37)

with g = Nm − p, g′ = Nm + p, and Jp(·) is the Bessel function of the first kind

of order p. jpJp

(
2π
λ
r sin(θ̃r

l′,ξ)
)
e
jpφ̃r

l′,ξ and εp(
2π
λ
r sin(θ̃r

l′,ξ), φ̃
r
l′,ξ) are the principle

and residual terms of the array pattern, respectively. Since in mmWave large array

systems, the number of antennas, N , at each UCA is typically very large, the residual

term is much smaller than the principle term for any azimuth and elevation AoAs9.

Furthermore, it is shown in Appendix B.1 that when N → ∞, the residual error

tends to zero. As a result, in this case, the residual term can be neglected, and the

space transforming error in the beamspace transformation is very small. The array

pattern can be approximated as

fp,k(φ̃
r
l′,ξ, θ̃

r
l′,ξ) ≈ jpJp

(
2π

λ
r sin(θ̃r

l′,ξ)

)
e
j
[
pφ̃r
l′,ξ−

2π
λ
h(k−1) cos(θ̃r

l′,ξ)
]
. (3.38)

Estimation of Elevation Angle

In this subsection, we propose a beamspace ESPRIT approach to estimate the

elevation AoAs. In particular, by using the Taylor series expansion, the beamspace

array response vector ãr(φ̃r
l′ , θ̃

r
l′) of the UCyA can be expressed as

ãr(φ̃r
l′,ξ, θ̃

r
l′,ξ) = ãr(φ̄r

ξ, θ̄
r
ξ) +

∂ãr(φ̄r
ξ, θ̄

r
ξ)

∂φ̄r
ξ

∆φ̃r
l′,ξ

+
∂ãr(φ̄r

ξ, θ̄
r
ξ)

∂θ̄r
ξ

∆θ̃r
l′,ξ

+ εl′ , (3.39)

where φ̄r
ξ/θ̄

r
ξ is the mean of φ̃r

l′,ξ/θ̃
r
l′,ξ, ∆φ̃r

l′,ξ
/∆θ̃r

l′,ξ
is angular deviations of φ̃r

l′,ξ/θ̃
r
l′,ξ,

and εl′ is the least significant term, which can be neglected for small angular de-

viations. Then, the beamspace received signal vector, ỹ(t), given in (3.35) can be

9As discussed in [15], the number of UCA antennas, N , should satisfy N > 2P and P > 2πr/λ.

Clearly, this is the case for mmWave large array systems.
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expressed as

ỹ(t) = Ab(t) + ñ(t), (3.40)

where

b(t) = [b1,1(t), b2,1(t), . . . , bNs,1(t),

b1,2(t), . . . , bNs,2(t), b1,3(t), . . . bNs,3(t)], (3.41)

A =

[
ãr(φ̄r

1, θ̄
r
1), . . . , ãr(φ̄r

4, θ̄
r
4),

∂ãr(φ̄r
1, θ̄

r
1)

∂φ̄r
1

, . . . ,

∂ãr(φ̄r
Ns
, θ̄r
Ns

)

∂φ̄r
Ns

,
∂ãr(φ̄r

1, θ̄
r
1)

∂θ̄r
1

, . . . ,
∂ãr(φ̄r

Ns
, θ̄r
Ns

)

∂θ̄r
Ns

]
, (3.42)

and bξ,1(t) =
∑N ′p

l′=1 βl′,ξMξ(t), bξ,2(t) =
∑N ′p

l′=1 βl′,ξMξ(t)∆φ̃r
l′,ξ

, bξ,3(t) =
∑N ′p

l′=1 βl′,ξ

×Mξ(t)∆θ̃r
l′,ξ

.

To remove the randomness in the received signal vector, the covariance matrix

of the beamspace received signal vector is calculated as

Rỹ = E
{
ỹ(t)ỹH(t)

}
= AΛbA

H + σ2
nIN ′r , (3.43)

where Λb is a diagonal matrix and Rỹ is a normal matrix according to (3.43). The

eigenvalue-decomposition (EVD) of Rỹ is obtained by

Rỹ = [Es,En]

 Σs 03Ns×(N ′r−3Ns)

0(N ′r−3Ns)×3Ns σ2
nIN ′r−3Ns

 [Es,En]H

= EsΣsE
H
s + σ2

nEnE
H
n , (3.44)

where Es ∈ CN ′r×3Ns and En ∈ CN ′r×(N ′r−3Ns) correspond to the signal subspace and

noise subspace of the UCyA, respectively. As each path contains three parts due

to the use of the Taylor series expansion in (3.39), there are, in total, 3Ns elements

in signal subspace. This means that Σs ∈ R3Ns×3Ns is a diagonal matrix whose

elements are the largest 3Ns eigenvalues of Rỹ. Based on EnE
H
n + EsE

H
s = IN ′r ,

(3.44) is rewritten as

Rỹ = Es(Σs − σ2
nI12)EH

s + σ2
nIN ′r . (3.45)
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According to (3.43), (3.45), and because the diagonal entries of Σs − σ2
nI3Ns

and

Λb have nonzero values, we have

Es = AT, (3.46)

where T ∈ C3Ns×3Ns is a full rank matrix. According to [15], when 2πr/λ < P <

N/2, the linear recurrence relation between the beamspace array response matrices

of each pair of UCAs can be formulated as

Ak′+1 = Ak′Θ. (3.47)

In the above equation,

Θ =


Θ0 0Ns×Ns Θ1

0Ns×Ns Θ0 0Ns×Ns

0Ns×Ns 0Ns×Ns Θ0

 , (3.48)

Θ0 = diag
(
e−j

2π
λ
h cos(θ̄r1), . . . , e−j

2π
λ
h cos(θ̄rNs

)
)
, (3.49)

Θ1 = diag

(
j

2π

λ
h sin(θ̄r

1)e−j
2π
λ
h cos(θ̄r1), . . . , j

2π

λ
h sin(θ̄r

Ns
)e−j

2π
λ
h cos(θ̄rNs

)

)
, (3.50)

where k′ = 1, 2, . . . K−1 and Ak = SkA ∈ CP ′×P ′ is a submatrix of A, while the se-

lection matrix Sk =
[
0p′×p′(l−1), Ip′ ,0p′×p′(Q−1)

]
∈ RP ′×N ′r . Therefore, the submatrix

of the signal subspace matrix can be expressed as

Ek = SkEs = AkT ∈ CP ′×12. (3.51)

Substituting (3.47) into (3.51), one obtains

Ek′+1 = Ak′ΘT = Ek′T
−1ΘT =Ek′Ψ. (3.52)

By using the total least-squares criterion, Ψ can be estimated as Ψ̂k′ , and each

Ψ̂k′ has 12 sorted eigenvalues, i.e., λk′,ξ′ with ξ′ = 1, 2, . . . , 3Ns. Because the eigen-

values of an upper triangular matrix are also the diagonal elements of this matrix,
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the total 3(K − 1) different estimates for each Θ in (3.47) can be obtained. Thus,

the elevation AoA from the ξ-th surrounding wall is estimated as

θ̂r
ξ =

1

3(K − 1)

3ξ∑
ξ′=3ξ−2

K−1∑
k′

[
arccos

(
j ln(λk′,ξ′)

µs

)]
. (3.53)

Estimation of Azimuth Angle

Since the azimuth AoAs does not have the linear relation shown in (3.51), the

ESPRIT is not applicable for our scheme. Instead, we propose the beamspace MU-

SIC to estimate the azimuth AoAs, which also achieves relatively good performance.

Without loss of the generality, we consider the beamspace received signal vector of

the k-th UCA, which has the following covariance matrix:

Rỹk = EskΣskE
H
sk

+ σ2
nk

EnkE
H
nk
, (3.54)

where Esk∈ CP ′×3 and Enk∈ CP ′×(P ′−3) correspond to the signal subspace and noise

subspace of the k-th UCA, respectively. Similar to (3.51), we can obtain

Esk = AkTk. (3.55)

Based on the orthogonality between the columns of Esk and that of Enk , the beamspace

MUSIC spectrum is formulated as

Q(Φr, θ̂r
ξ) =

1∥∥∥EH
nk

ār
k(Φ

r, θ̂r
ξ)
∥∥∥2

F

, (3.56)

where

ār
k(Φ

r, θ̂r
ξ) =

[
ãr
k(Φ

r, θ̂r
ξ),

∂ãr
k(Φ

r, θ̂r
ξ)

∂Φr
,
∂ãr

k(Φ
r, θ̂r

ξ)

∂θ̂r
ξ

]
(3.57)

In the above equation, ãr
k(Φ

r, θ̂r
ξ), ∂ãr

k(Φ
r, θ̂r

ξ)/∂Φ
r and ∂ãr

k(Φ
r, θ̂r

ξ)/∂θ̂
r
ξ can be cal-

culated by substituting the array pattern in (3.38) and its partial derivatives into

(3.39) respectively, and Φr is the azimuth of the AoA. The Φr can be estimated by

1-D search, and the estimator of the azimuth of the AoA from the ξ-th surrounding

wall is given by

φ̂r
ξ = arg max

Φr
Q(Φr, θ̂r

ξ). (3.58)
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Figure 3.3 : The 3-D indoor positioning system under consideration illustrating the

signal propagation in which a single BS is installed on the ceiling at known location

and an unknown MS moving within the room.

3.5 3-D Localization and Complexity Analysis

In this section, we first introduce the considered indoor localization configuration.

We then present an overview of the proposed localization approach and calculate

the AoDs of all the paths by exploiting the quasi-optical propagation property of

mmWave. The computational complexity of the proposed approach is also analyzed.

3.5.1 Indoor Configuration

As illustrated in Fig. 3.3, let us consider a 3-D indoor scenario, consisting of

a BS as the receiver, which employs one large UCyA, located at a known position

on the ceiling of a room, and an MS as the transmitter employing a single antenna

whose location in the room is unknown and needs to be estimated.

We then exploit the the quasi-optical propagation property of mmWave to esti-
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Figure 3.4 : The considered indoor positioning system showing the BS, the MS

and the four Walls (W I-W IV). (a) Top view; (b) Azimuth angular relationships

between AoAs of the BS and AoDs of the MS. Note that the NLoS path is reflected

from the right side wall (W I).

Table 3.1 : Azimuth angle relationships between the BS and the MS for the specular

reflection paths.

Walls Azimuth Angle’s Relationships (l = 1, 2, . . . , Np)

W I φr
l + φt

l = 2π

W II φr
l + φt

l = 3π

W III φr
l + φt

l = 2π

W IV φr
l + φt

l = π
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mate the AoDs of all the paths. As was illustrated in Fig. 3.3, we regard the received

signal angles at the origin of the coordinates as the reference, and the AoAs and

AoDs are measured on an absolute frame of reference. In Fig. 3.4 the localization

system under consideration is further detailed.

For the LoS path, it is clear that the sum of elevation AoAs and AoDs is π 10, and

the difference between AoAs and AoDs for LoS path always equals to π, as shown

in Fig. 3.4(b). For the single-bounce specular reflection paths, the relationships of

azimuth angle between BS and MS are complex due to the reflections from the four

different directional surrounding walls (W I-W IV). We assume that the LoS path

between the BS and the MS is not blocked and the components of diffuse scattering

and multiple reflection have been filtered out. As illustrated in Fig. 3.4(b), the

BS receives the signal not only from the LoS path, but also from the four specular

reflection paths, one of which has experienced the reflection from the right side

wall (W I). In order to locate the MS through AoAs, the specular reflection paths

from the four different surrounding walls are considered separately, as shown in Fig.

3.4(a), and the relationships of the azimuth angle between the BS and the MS are

given in Table 3.1.

In our system, when the LoS cannot be guaranteed, the single-bounce specular

reflection components is employed to ensure the positioning accuracy. Once the

distance, d̂, between BS as well as MS and the estimated azimuth/elevation AoAs,

φ̂r
ξ/θ̂

r
ξ, have been obtained by the above mentioned approaches, the accurate po-

sition of the MS can be easily determined. It is explained in Appendix B.2 that

each reflected path will identify two likely positions. For the case where the spec-

ular reflection path experiences the reflection from the right side wall (W I), 3-D

10For the convenience of the geometrical illustration, the angle relationships between the BS and

the MS discussed here do not consider the received paths after channel compression.
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coordinates of the two likely positions of the MS are calculated as

x̂WI =
±2D1 tan2(φ̂r1)+

√
d̂2 sin2(θ̂r1)(tan2(φ̂r1)+1)−4D2

1 tan2(φ̂r1)

tan2(φ̂r1)+1

ŷWI =

(
2D1∓
√
d̂2 sin2(θ̂r1)(tan2(φ̂r1)+1)−4D2

1 tan2(φ̂r1)
)

tan(φ̂r1)

tan2(φ̂r1)+1

ẑWI = −d̂ cos(θ̂r
1)

, (3.59)

where D1 is the distance between the W I and the BS. Note that for our system

model this distance is assumed to be known a priori, and that the center of the

UCyA of the BS is taken as the origin of the coordinates (see Fig. 3.3). Similarly,

by using the specular reflection paths from other walls , i.e., W II, W III and W IV,

the most probable position of the MS can be obtained from each of these paths.

Since all four estimated positions are expected to be close to each other, they can be

easily selected from two likely positions for the same specular reflection path through

clustering algorithms [104]. By calculating the center of gravity of the tetrahedron

with vertex (x̂ξ, ŷξ, ẑξ) as the estimator of the MS’s position, we have

x̂ = 1
4

∑4
ξ=1 x̂ξ

ŷ = 1
4

∑4
ξ=1 ŷξ

ẑ = 1
4

∑4
ξ=1 ẑξ

. (3.60)

3.5.2 Complexity Analysis

In this subsection, the computational complexity of the proposed localization

scheme is discussed. Firstly, for the mmWave indoor scenario, the diffuse scatter-

ing accounts for approximately 10% of the total received power [43, 45]. Thus the

threshold γ in (3.18) was set to 0.9 to filter out the received diffuse scattering and

multiple reflection components from all directions. Since the number of received

paths, Np, is several orders of magnitude larger than that of the selected paths, N ′p,

(i.e., Np � N ′p), the channel compression, which has been considered as the prepro-

cessing of the proposed localization scheme, significantly reduces the computational
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Figure 3.5 : Comparison of the computational complexity vs. number of antennas.

Note that the y-axis uses a base 10 logarithmic scale.

complexity.

Secondly, the computational complexity of the proposed beamspace-based angle

estimation is compared with that of the generalized MUSIC, the extended ESPRIT,

and the extended propagator method (PM) presented in [29], [31], and [105], respec-

tively. Because the number of the beamforming weight vector wp in (3.32) is much

smaller than the number of the antennas deployed in large-scale array systems, our

proposed method has a significantly reduced computational complexity as compared

to these three methods, all of which estimate angular parameters in the element s-

pace. Note that, by transforming the signal vectors from the element space to the

beamspace, ỹk(t) is obtained by using (3.34) and (3.35). The computational com-

plexity of this step is equal to O(NrP
′Ts), where Ts is the number of snapshots. Since

in practice, the covariance matrix can be estimated as Rỹ = 1
Ts

∑Ts
t=1 ỹ(t)ỹH(t), the
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computational complexity for calculating the sample covariance matrix in (3.43) is

O(P ′2Ts). When performing the EVD on Rỹk according to (3.44), and estimating

φ̂r
ξ with 1-D search using (3.58), the computational complexity is O(P ′3 + P ′2D),

where D is the search dimension of estimating φ̂r
ξ. The complexity of remaining

steps, including performing EVD on Rỹ in (3.43) and estimating Ψ̂k′ and θ̂r
ξ , is

O(P ′3 + K3). Thus, the overall computational complexity of the proposed angle

estimation is O(NrP
′Ts + P ′2Ts + P ′3 + P ′2D). Note that, when the number of

UCyA antennas Nr is large enough, by using the beamspace transformation, the

computational complexity of proposed angle estimation is approximately equal to

O(NrP
′Ts) , while that of the approach used in [29] and [31] is O(N3

r ), and that of

the approach in [105] is O(N2
r (Ts + 4)).

We evaluate the computational complexity performance of all four methods as

a function of the number of antennas at the BS, where Ts = 500 and P ′ = 28, and

the obtained results are provided in Fig. 3.5. For a fair comparison with the other

three methods, the number of snapshots is fixed in our simulations. As the obtained

results clearly show, compared with the existing methods, the proposed approach

requires significantly less computational complexity, i.e. reductions up to several

orders of magnitude. In addition, it is underlined that the complexity performance

improvement becomes even higher as the the number of antennas increases.

3.6 Performance Evaluation and Discussion

This section presents extensive simulation results as an evidence that the pro-

posed method achieves high precision for parameter estimation and indoor localiza-

tion applications. We compare the performance of the proposed parameter estima-

tion algorithm with that of the generalized MUSIC [29], the extended ESPRIT [31]

and the extended PM [105]. We also use the CRLB as a reference to evaluate the

performance of the proposed estimation algorithm. The derivation of the CRLB for
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the system under consideration can be found in Appendix B.3. The performance

of the proposed 3-D positioning approach for both the indoor office and shopping

mall scenarios is evaluated. Additionally, it is shown that the quantization error of

the channel compression method has a negligible effect on the parameter estimation

performance of the proposed method.

As far as the simulation methodology is concerned, various experiments have

been carried out in two different scenarios over the f = 28 GHz mmWave indoor

channel11, namely indoor office and shopping mall with sizes 15 × 20 × 4 m3 and

20 × 50 × 20 m3, respectively. The locations of the BS for two scenarios are set at

(10 m, 9 m, 4 m) and (10 m, 20 m, 20 m). The distance, s, between adjacent UCAs

and the radius, r, of each UCA are 0.5λ and 2λ, where λ is the wavelength of the

mmWave carrier frequency.

3.6.1 Beamspace Angle Estimation

The measurements of azimuth/elevation AoAs of the mmWave signals are gener-

ated in the simulation scenarios by adding the AoA spread, σφ/σθ, whose values are

set according to [106]. The path losses for different indoor wireless channels have

been calculated by using (3.5) and the threshold, γ, in the channel compression was

set to 0.9. The performance of angle estimations is evaluated by using the root mean

square error (RMSE) criterion averaged over all the trials.

In Figs. 3.6 and 3.7, the RMSEs of the estimated azimuth and elevation AoAs

versus the number of received antennas are shown for the indoor office and shopping

mall scenarios, respectively, by considering SNR = 10 dB for both cases. It can

be seen that the RMSEs of the AoA parameters get close to the CRLB as the

number of received antennas at the BS increases. However, it is also noted that

11In this system, for a UCyA with 400 antennas (25× 16), its dimension is about 40× 80 mm2,

which is much smaller than the communication range. Therefore, the far-field condition is fulfilled.
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Figure 3.6 : Comparison of the RMSE performance vs. number of antennas for the

estimation of different angular parameters by the different estimation methods for

the indoor office scenario. (a) Azimuth AoAs; and (b) Elevation AoAs.
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Figure 3.7 : Comparison of the RMSE performance vs. number of antennas for the

estimation of different angular parameters by the different estimation methods for

the shopping mall scenario. (a) Azimuth AoAs; and (b) Elevation AoAs.
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Figure 3.8 : Comparison of the RMSE performance vs. average received SNR for

the estimation of different angular parameters by the different estimation methods

for the indoor office scenario. (a) Azimuth AoAs; and (b) Elevation AoAs.
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Figure 3.9 : Comparison of the RMSE performance vs. average received SNR for

the estimation of different angular parameters by the different estimation methods

for the shopping mall scenario. (a) Azimuth AoAs; and (b) Elevation AoAs.



57

when the number of UCyA antennas is not large, e.g. less then 100, the RMSE

performance of the proposed approach is worse than that of the other three methods

in [29], [31], and [105]. This can be explained because the residual term in (3.36)

cannot be neglected when the number of antennas is small, since in this case the

approximations made for the array pattern in (3.38) are not accurate. However,

when the number of antennas increases, the RMSE performance of our method

decreases faster than that of the other three methods, leading to a better accuracy

of the azimuth angles estimated by the new method. Moreover, the performance

results shown in Figs. 3.6 and 3.7 reveal that the localization precision is higher for

the indoor office as compared to the shopping mall scenario. This is due to the fact

that for the shopping mall scenario, the path losses and angle spreads are especially

high in mmWave frequency bands, which causes this degradation in the estimation

process.

Figs. 3.8 and 3.9 illustrate the performance of the RMSE for the estimated

azimuth and elevation AoAs versus the average received SNR, by setting the number

of receiving antennas to 300. These performance results show that the accuracy

of angle estimation get close to the CRLB as the average received SNR increases

and that the proposed method provides better accuracy than the previously known

methods. Similarly with the previous set of evaluation results, it is also here observed

that the positioning performance of indoor office outperforms that of the shopping

mall scenario.

3.6.2 Position Estimation

In this subsection, we evaluate the performance of the proposed 3-D position-

ing method for both indoor office and shopping mall propagation scenarios. For

each of these two scenarios, the simulations of the MS at three locations have been

carried out under two SNR conditions, i.e. 10 and 0 dB. The number of received
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Figure 3.10 : Positioning performance for the indoor office scenario. (a) SNR=0 dB;

and (b) SNR=10 dB.

antennas at the BS is 200, and the mmWave band (i.e., 28-29 GHz) is divided into

20 channels for RSS measurements. The actual locations of MS-1, MS-2 and MS-

3 for the indoor office scenario are set to (x1, y1, z1)=(11.299 m, 10.750 m, 2.598

m), (x2, y2, z2)=(11.125 m, 11.948 m, 2.681 m) and (x3, y3, z3)=(11.237 m, 11.24

m, 3.031 m), respectively, while for shopping mall propagation scenario, they are

(x1, y1, z1)=(8.66 m, 25.1 m, 17.321 m), (x2, y2, z2)=(7.071 m, 22.247 m, 16.853

m) and (x3, y3, z3)=(6.718 m, 26.7 m, 16.455 m). For each of the considered MS

locations, at least 100 localizations trials have been carried out. The three MSs are

sequentially localized. As it can be clearly seen from the results presented in Figs.

3.10 and 3.11, the proposed positioning scheme achieves decimeter-level positioning

accuracy even with low SNR values, such as 0 dB. For normal operating SNR values,

e.g. 10 dB, this accuracy improves even further.
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Figure 3.11 : Positioning performance for the shopping mall scenario. (a) SNR=0

dB; and (b) SNR=10 dB.
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Figure 3.12 : The performance error due to the quantization assumption is evaluated

under different conditions of received SNR for the indoor office scenario.
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3.6.3 Effect of Quantization Error

In this subsection, the effect of the quantization on the estimation accuracy,

which is introduced by the channel compressing method is evaluated. In order to

validate the sensitivity of the proposed method to the quantization error, the fol-

lowing cases have been considered: i) The AoAs/AoDs are continuous, i.e., without

quantization error; ii) The AoAs/AoDs are quantized, i.e., with quatization error.

The resolution parameters G1 and G2 are set to 600 and 180 for azimuth and eleva-

tion angles, respectively. Note that for making a fair comparison, the virtual path

selection in channel compression is not employed after quantization for the second

case, and the performance simulations have been only performed for the indoor office

scenario. Fig. 3.12 presents the RMSE performance evaluation results under vari-

ous operating conditions with and without quantization. These results clearly show

that, as long as the values of the resolution parameters G1 and G2 are sufficiently

large, then the effect on the overall performance of neglecting the quantization error

is minimal, if not non existent.

3.7 Summary

In this chapter, we have proposed a channel compression-based joint RSS-AoA es-

timation method for mmWave digital UCyAs. A new channel compression technique

has been first designed to overcome the high computational complexity caused by

the large number of antennas used at the BS. The technique filters out the received

multiple reflection and diffuse scattering components, and hence, the accuracy of

the parameter estimation method can also be significantly increased. We have also

shown a beamspace-based channel parameter estimation approach in this chapter,

which can transform the received signal vectors into the low-dimensional beamspace.

As a result, the dimensions of the received signal vectors are reduced. Based on the

estimated parameters, a novel mmWave indoor localization method has been pre-
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sented, which only needs a single BS to achieve 3-D NLoS localization. As we have

shown via simulations, in addition to the advantage of its low-complexity, the pro-

posed indoor mmWave localization method is capable of obtaining a decimeter-level

positioning accuracy even for very low SNR values. In the future, we will research

the channel estimation methods in some realistic scenarios and not be narrowed to

the cuboid scenario considered in this chapter.
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Chapter 4

Channel Parameter Estimation for 3-D Wideband

Hybrid UCyAs

The following chapters of the thesis contribute to the channel parameter estima-

tion for hybrid UCyAs. Compared to conventional digital beamforming, the hybrid

beamforming is a more appropriate architecture for mmWave large array system-

s, in which a low-dimensional digital precoder/combiner at baseband and a high-

dimensional analog precoder/combiner at RF front-end are used to process each

transmission signal. The number of expensive RF chains deployed in hybrid beam-

forming is typically much smaller than the numbers of the antennas and the ADC-

s/DACs. Hence, two major obstacles for applying large antenna arrays into actual

mmWave systems, i.e., large hardware cost and high power consumption, can be

effectively overcome.

In this chapter, we propose a novel channel estimation method using a wideband

mmWave fully-connected hybrid UCyA. We consider the UMi scenario in 5G/B5G

systems, as illustrated in Fig. 4.1. We first design a new hybrid beamformer to

Figure 4.1 : The research scenario studied in Chapter 4.
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reduce the dimension of received signals on the horizontal plane by exploiting the

convergence of the Bessel function, and to reduce the active beams in the vertical di-

rection through preselection. The important recurrence relationship of the received

signals needed for subspace-based angle and delay estimation is preserved, even with

substantially fewer RF chains than antennas. Then, linear interpolation is general-

ized to reconstruct the received signals of the hybrid beamformer, so that the signals

can be coherently combined across the whole band and beam squint is suppressed.

As a result, the subspace-based algorithms can be applied to estimate the angles

and delays of the multi-paths. Simulations show that in the UMi scenario of future

5G/B5G systems, the proposed method can approach the CRLB of the estimation

with a significantly lower computational complexity than existing techniques.

4.1 Motivation and Overview

Current hybrid beamforming schemes are typically based on CS. They exploit the

angular sparsity of mmWave channels to reduce the number of RF chains. However,

they need to discretize channel coefficients and would result in estimation accuracy

losses [33, 67]. In this chapter, we propose a novel channel estimation method for

wideband mmWave hybrid UCyAs. We address the problem of beam squint and the

designed hybrid UCyA only requires a significantly small number of RF chains to

accurately estimate the delay and the azimuth and elevation AoAs of the received

paths. In Section 4.1, we first provide a motivation, the channel parameter esti-

mation for wideband mmWave hybrid arrays, and a review of the state of the art.

The system model is presented in Section 4.2, in which we provide an illustration of

considered hybrid front-end architecture.

In Section 4.3, we propose a new two-step wideband hybrid beamforming s-

trategy, which can reduce the number of required RF chains while preserving the

multiple-invariance structure in array response vectors. At the first step, we se-
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lect the needed beams vertically for angle and delay estimation by exploiting the

sparsity (or low rank) nature of mmWave multi-antenna channels. By this means,

we can estimate the number of paths and determine the number of vertical beams

needed for the parameter estimation in Section 4.4. We then design a new hybrid

beamformer to transform the high-dimensional signals of each UCA to a low di-

mension requiring much fewer RF chains than array elements. This is achieved by

first applying Q-DFT to the signals and then exploiting the convergence property of

the Bessel function to remove insignificant dimensions. Section 4.3.3 also presents a

new spatial interpolation method. By applying the linear interpolation in both the

vertical and horizontal spatial domains, the method combines the signals across the

whole band, so that the subspace-based algorithms can be applied to estimate the

angles and delays of the multi-paths.

In Section 4.4, we estimate the channel parameters by using the processed signals

in Sections 4.3 and 4.3.3. Since all the operations conduced by the beamformer are

linear transforms, the critical invariance structure for the validity of ESPRIT for

the angle and delay estimation, can be recovered without losses between respective

submatrices of the space-time response matrix for the subsequent angle and delay

estimation. By exploiting the recurrence relations in the multiple-invariance struc-

ture, the delay and elevation angle of each path are estimated using ESPRIT. For

the azimuth angles, since the expression for the horizontal array response vectors

(4.23) does not exhibit any recurrence, we use MUSIC to estimate them based on the

obtained corresponding elevation angles. Considering that the estimated parameters

of each path cannot be matched automatically because of noises, a low-complexity

multipath parameter matching is presented in Section 4.4.3. The method adds per-

turbation matrices to mitigate the mismatch of the estimated delays and angles

caused by additive noises, and thus, the conventional high-complexity exhaustive

search can be avoided. The hardware and software complexities of the proposed
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estimation method are analyzed in the end.

Section 4.5 presents simulation results to demonstrate the performance of the

proposed parameter estimation method in the UMi scenario of 5G/B5G systems.

Compared with existing methods, we see that when the number of receive antennas

is large, our proposed approach is better than other methods in terms of angle

estimation accuracy. We also obverse that our approach achieves the best delay

estimation accuracy. This is because, by using the proposed multidimensional spatial

interpolation, the high temporal resolution offered by wideband mmWave signals is

exploited. In this section, we also plot the RMSE of the angle estimation versus

the value of the highest order under different numbers of horizontal array response

vectors. We see that the number of phase-mode vectors needed in our approach

does not depend on the number of array response vectors, which is important for

complexity reduction, as discussed in Section 4.4.4.

4.2 System Model

We consider a mmWave multi-antenna orthogonal frequency division multiplex-

ing (OFDM) system, where a BS with NR antennas receives signals from a MS1.

We assume that the directions and delays of the paths remain unchanged during

parameter estimation. The received signal at subcarrier m (m = 0, 1, . . . ,M − 1) is

given by [64]

rm = Hmxm + nm, (4.1)

1An omnidirectional antenna is deployed at the MSs to maintain connectivity irrespective of

the orientation and posture of the MSs. One of the antenna elements at the BS is set to be the

reference, so that the estimation of the MS would not rotate with respect to the BS. In the case

where a directional antenna is installed at the MSs, the received signal-to-noise ratio (SNR) at

BS could increase if the BS is inside the mainlobes of the MSs, or decrease otherwise. This could

affect the accuracy of the proposed method in either way, while the operation of the method is

unchanged.
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where Hm ∈ CNR×1, nm ∈ CNR×1, and xm denote the channel matrix, the Gaus-

sian noise, and the transmitted signal for subcarrier m, respectively; and Np is the

number of paths. The channel matrix, Hm, can be expressed as

Hm =

Np∑
l=1

βle
−j2πfmτlam(φR,l, θR,l), (4.2)

where βl is the complex amplitude of the l-th path; am(φR,l, θR,l) is the array response

vector with φR,l and θR,l being the azimuth and elevation of the AoAs of the l-th path.

τl is the time delay of the l-th path. fm is the frequency at the m-th subcarrier.

fm = f0 + m∆F, where f0 is the carrier frequency at the lower end of the band

and ∆F is the subcarrier spacing. If the signal bandwidth is much smaller than

the carrier frequency, then fm ≈ f0 and (4.2) reverts to the standard narrowband

channel model.

The BS uses a hybrid UCyA antenna array. It consists of NV horizontal layers

of UCAs, each having NH antennas, i.e., NR = NVNH. The radius of each UCA is

r. The vertical distance between any two adjacent UCAs is h. Therefore, the array

response vector is given by

am(φR,l, θR,l) = aV,m(θR,l)⊗ aH,m(φR,l, θR,l), (4.3)

where

[aV,m(θR,l)]nV,1 =
1√
NV

exp

(
−j 2π

c
fmh(nV −

NV + 1

2
) cos(θR,l)

)
(4.4)

and

[aH,m(φR,l, θR,l)]nH,1 =
1√
NH

exp

(
j

2π

c
fmr sin(θR,l) cos(φR,l − ϕnH

)

)
(4.5)

are the array response vectors on the vertical and horizontal planes, respectively,

with nV = 1, 2, . . . , NV and nH = 1, 2, . . . , NH. c is the speed of light. Here,

ϕnH
= 2π(nH − 1)/NH is the difference between the central angles of the nH-th

antenna and the first antenna of each UCA.
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Figure 4.2 : The block diagram of hybrid beamforming architecture.

We consider a hybrid front-end architecture [107], as shown in Fig. 4.2(b). By

applying a hybrid beamformer, W ∈ CNR×NDS , to the received signal, rm, the output

signal after beamforming can be expressed as

ym = WHrm = WHHmxm + WHnm, (4.6)

where the hybrid beamformer, W = WRFWBB, is composed of an analog combiner,

WRF ∈ CNR×NRF , and a digital combiner, WBB ∈ CNRF×NDS . NRF and NDS are the

numbers of RF chains and data streams, respectively.

We further divide the analog combiner, WRF, into an array combiner set, GAC ∈

CNAC×NRF , and a phase shifter set, GPS ∈ CNR×NAS , i.e., WRF = GPSGAC. NAC

is the number of the combiners deployed in the array combiner set. NR ≥ NAC ≥

NRF ≥ NDS. As illustrated in Fig. 4.2, GPS is a phase shifter matrix with elements

given by [GPS]nR,nAS
= exp(jξ) (ξ ∈ R, nR = 1, 2, . . . , NR, and nAC = 1, 2, . . . , NAC).

GAC is a binary matrix, and its entry [GAC]nAC,nRF
∈ {0, 1}(nRF = 1, 2, . . . , NRF).

Here, the role of WBB is to guarantee the power constraint.
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4.3 Two-Step Wideband Hybrid Beamforming Strategy

In this section, new hybrid beamformers are designed to select the meaningful

beams needed vertically for angle and delay estimation, and transform the received

high-dimensional signals of horizontal UCAs to be low-dimensional by taking Q-DFT

and the convergence property of the Bessel function. We prove that the number of

low dimensions does not grow with the number of antennas per UCA. The minimal

number of required RF chains is the product of the number of vertical beams and

the number of low dimensions.

It is worth mentioning that all the beamformers we design here are linear trans-

forms. Therefore, the critical invariance structure for the validity of ESPRIT for the

angle and delay estimation, can be recovered losslessly between respective submatri-

ces of the space-time response matrix for the subsequent angle and delay estimation.

4.3.1 Step 1: Vertical Beam Selection

We first propose a new hybrid beamformer, denoted by Ws1, in the vertical

beamspace. By exploiting the sparsity (or low rank) nature of mmWave multi-

antenna channels, the vertical beams can be selected: i) to estimate the number of

paths; and ii) to determine the number of vertical beams needed for the angle and

delay estimation (to be developed in Section 4.4).

The output signal after the vertical beamforming is ys1,m = WH
s1rm ∈ CNDS,1×1.

The hybrid beamformer conducts vertical beamspace transforming and can be con-

structed as Ws1 = GPS,s1GAC,s1WBB,s1, where WBB,s1 = 1√
NV

INV
∈ CNV×NV ,

GPS,s1 = Ud ⊗ INH
∈ CNR×NR , and GAC,s1 =

[
INV
⊗ 1TNH

]T ∈ CNR×NV . Here, Ud

contains NV orthogonal array response vectors corresponding to NV vertically, an-
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gularly evenly spaced beams. Ud = [Ud,1,Ud,2, . . . ,Ud,NV
] ∈ CNV×NV , where

Ud,i = [exp(−j 2π

NV

(−NV − 1

2
)i), exp(−j 2π

NV

(−NV − 3

2
)i),

. . . , exp(−j 2π

NV

(
NV − 1

2
)i)]T , i = 1, 2, . . . , NV. (4.7)

Thus at this step, the numbers of both data streams and RF chains are equal to

that of beams, i.e., NDS,1 = NRF,1 = NV. The number of array combiners is equal to

that of receive antennas, i.e., NAC,1 = NR. The i-th element of ys1,m can be written

as

[ys1,m]i,1 =
[
(GPS,s1GAC,s1WBB,s1)H rm

]
i

=
1√
NV

UH
d,i(INV

⊗ 1TNH
)rm. (4.8)

The total beam power at the m-th subcarrier is given by

σ2
m = yHs1,mys1,m =

NV∑
i=1

σ2
m,i, (4.9)

where σ2
m,i =

∣∣∣[ys1,m]i,1

∣∣∣2 is the power of the i-th beam which depends on the AoA of

the impinging signal inside the beam. Given the sparsity of mmWave multi-antenna

channels, the signal power is concentrated in a small number of beams. We select

the dominant beams at the m-th subcarrier by defining an index selection set Um,

as given by

Um , {η(1), η(2), . . . , η(NB,m)} , (4.10)

where NB,m is the number of selected beams, and η(um) is the index for σ2
m,η(um)

with um = 1, 2, . . . , NB,m. η(um) can be obtained as

η(1) = arg maxi∈{1,...,NV} σ
2
m,i,

η(2) = arg maxi∈{1,...,NV}\{η(1)} σ
2
m,i,

...

η(NB,m) = arg maxi∈{1,...,NV}\{η(1),...,η(NB,m−1)} σ
2
m,i.

(4.11)
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The following criterion can be used to decide NB,m and select the NB,m strongest

beams:
NB,m∑
um=1

σ2
m,η(um) ≥ ησ2

m, (4.12)

where η is a power threshold which can be empirically specified. η can be selected

close to 1, e.g., η = 0.9, as paths reflected more than once, and diffuse scatter-

ing, account for less than 10% of the total energy, as found in [45]2. Moreover,

mmWave signals fade rapidly when reflecting off a surface [108], and become barely

distinguishable from noises after two reflections [35,45,97].

There is dispersion in the angular domain across the bandwidth in multi-antenna

wireless systems [39]. We first assume that the transmission channel at each subcar-

rier is narrowband. Because of small dispersion in narrowband systems, the number

of orthogonal beams in the vertical beamspace is equal to the number of received

paths, i.e., NB,m = Np [39]. However, the dispersion can have a non-negligible effect

in broadband systems such as the one considered in this chapter, where a point

source spreads across spatial angle and time. A strong dispersion would result in

severe power loss and pulse distortion, if not addressed properly, and affect the

follow-on angle and delay estimation. The dispersion effect can be characterized by

the channel dispersion factor, γ, as specified by [39]

γ =
1

Np

Np∑
l=1

γl =
1

Np

Np∑
l=1

NVα |χc,l| , (4.13)

where α = W/fc is the fractional bandwidth, χc,l = fch cos(θR,l)/c is the normalized

beam angle, W is the signal bandwidth, and fc is the center frequency.

To illustrate the impact of the dispersion, we assume that the system operates

at fc =30 GHz and the transmitted signal has unit amplitude. For simplicity, it

2It is shown in [45] that for mmWave systems, the contributions of paths reflected more than

once, and the diffuse scattering components are weak, only accounting for less than 10% of the

total energy.
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Figure 4.3 : The normalized beam power as a function of the normalized frequency.

(a) The power of the14-th, 15-th, and 16-th beams; (b) The power of the combined

three beams.
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is assumed that only one path with βl = 1 and θR,l = 60◦, and the number of

beams is NV = 60. Thus we have χc,l ≈ 0.25, which corresponds to the i0 = 15-

th beam. Fig. 4.3(a) shows the normalized power, |ys1,i(f)|2 /NV, of the 14-th,

15-th, and 16-th beams versus the normalized frequency, fnormal = f/fc, for f ∈

[−W/2,W/2]3. We can see that, if the normalized frequency fnormal < 0.033, i.e.,

the channel dispersion factor γ < 1, the beams in Fig. 4.3(a) do not affect one

another within the bandwidth, W . If γ is larger than 1, power loss and interference

may occur. To prevent this from happening, the γ adjacent beams centered at i0

need to be taken into consideration. In the case of γ = 3, Fig. 4.3(b) plots the

normalized power of the combined one from three beams, i.e., the 14-th, 15-th, and

16-th beams. It can be seen that, by combining the three beams, the normalized

power becomes approximately flat across the operating band.

Because of the dispersion, we have to jointly consider NB = γNp vertically spaced

beams to include all possible beams, as the normalized beam angle, χc,l, is unknown.

The overall index selection set U is given by

U = U0 ∪ U1 ∪ . . . ∪ UM−1, (4.14)

where the element of U is η(u) with u = 1, 2, . . . , NB. It is possible that the same

indices are picked up at different subcarriers because of the dispersion, e.g., η(um) =

η(um′) for m′ ∈ {0, . . . ,M − 1} \ {m}. We have NB = γNp ≤
∑M−1

m=0 NB,m to avoid

missing significant paths in the subsequent channel parameter estimation process.

Algorithm 14 summarizes the procedure of the beam selection at this step.

3For convenience, here we only plot the beam power as a function of continuous frequency for

illustration.

4Card(U) in Algorithm 1 denotes the cardinality of the set U .
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Algorithm 1 Beam selection algorithm

• Input: The processed signals, ys1,m,(m = 0, 1, . . . ,M − 1), the beam number,

NV, and the threshold, η.

• Output: The overall selection set, U , and the estimated number of significant

beams, NB.

• Initialization: U = U0 = U1 = . . . = UM−1 = ∅,

• For m = 0 to M − 1 do

– Set V = ∅.

– For i = 1 to NV do

∗ σ2
m,i = |ys1,m,i|2, and updateV = V ∪ {σ2

m,i}.

– End for

– σ2
m =

∑NV

i=1 σ
2
m,i.

– While
∑

η(um)∈Um σ
2
m,η(um) < ησ2

m do

∗ Find the largest σ2
m,i from V , and update Um = Um ∪ {i} and V =

V \ {σ2
m,i}.

– End while

– Update U = U ∪ Um.

• End for

• NB =Card(U).
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4.3.2 Step 2: Horizontal Q-DFT Beamforming

We proceed to design a new hybrid beamformer to transform the high-dimensional

signals of each UCA to a low dimension requiring much fewer RF chains than ar-

ray elements. This is achieved by first applying Q-DFT to the signals and then

exploiting the convergence property of the Bessel function to remove insignificant

dimensions.

We first derive an approximate expression for the array response vector to explain

the design rationale of this step. According to the Jacobi-Anger expansion [109],

the nH-th array response vector on the horizontal plane can be written as

[aH,m(φR,l, θR,l)]nH,1 =
1√
NH

ej$m,l cos(φR,l−ϕnH )

=
1√
NH

∞∑
q=−∞

jqJq($m,l)e
jq(φR,l−ϕnH ), (4.15)

where $m,l = 2π
c
fmr sin(θR,l) and Jq($m,l) is the Bessel function of the first kind of

order q.

We notice that the last multiplier in (4.15), i.e., ejq(φR,l−ϕnH ) = ejqφR,l−j2πq(nH−1)/NH ,

which is of strong resemblance to the weight vectors in the DFT. We take the Q-

DFT [110] to transform the horizontal array response vectors (4.15) to offset ϕnH
.

The p-th order Q-DFT of (4.15) can be expressed as

APM,p =

NH∑
nH=1

([aH,m(φR,l, θR,l)]nH,1) e
−j 2π(nH−1)

NH
p

=
1√
NH

NH∑
nH=1

∞∑
q=−∞

jqJq($m,l)e
jq(φR,l−ϕnH )−jpϕnH

=
1√
NH

NH∑
nH=1

(
∞∑

q=−∞

jqJq($m,l)e
−jϕnH (p+q)ejqφR,l

)
. (4.16)
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Let p+ q = QNH, i.e., q = QNH − p. Then, (4.16) can be rewritten as

APM,p =
1√
NH

∞∑
Q=−∞

NHj
(QNH−p)J(QNH−p)($m,l)e

j(QNH−p)φR,l

(?)
=
√
NH

[
jpJp($m,l)e

−jpφR,l +
∞∑

Q=−∞,Q6=0

εp,Q($m,l, φR,l)

]
, (4.17)

where

εp,Q($m,l, φR,l) = j(QNH−p)J(QNH−p)($m,l)e
j(QNH−p)φR,l .

(?) is obtained by the property of the Bessel function J−v(x) = (−1)vJv(x) [109].

Lemma 1. For the Bessel function Jv(x), when its order v is larger than its ar-

gument x, i.e., |v| > |x|, the amplitude of Jv(x) is so small and negligible, i.e.,

|Jv(x)| ≈ 0.

Proof. See Appendix C.1.

From Lemma 1, we can derive the following theorem on the approximation of

the horizontal array response vector.

Theorem 1. If NH ≥ 2P , the NH-dimensional array response vectors on the hori-

zontal plane can be transformed to a much smaller (2P + 1)-dimensional space with

negligible loss, i.e., p ∈ [−P, P ] ∩ Z, where P = b2πf0r/cc is the highest order.

The p-th order of the (2P + 1)-dimensional vector, APM,p, can be approximated as

APM,p ≈
√
NHj

pJp($m,l) exp (−jpφR,l) .

Proof. See Appendix C.2.

According to Theorem 1, we see that, by using the Q-DFT, the NH-dimensional

array response vectors of the horizontal UCA can be transformed to only (2P + 1)

dimensions, and each element of the vector can be approximately expressed as an
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exponential function weighted by a Bessel function of the same order, as long as the

conditions in Theorem 1, i.e., NH ≥ 2P , is met5.

We note that Q-DFT is a linear transform and hence can preserve the multiple-

invariance structure of the array response vectors for the subsequent angle and delay

estimation, as will be elaborated on in Section 4.4; see (4.33) and (4.40). Thus,

combining with the beams selected at Step 1, we can design the values of the phase

shifters based on the Q-DFT and the beamspace transform to convert the array

response vectors to a low dimension. Only a small number of RF chains are needed

for channel parameter estimation.

At this step, the hybrid beamformer is Ws2 = GPS,s2GAC,s2WBB,s2. Then we

have

ys2,m = WH
s2rm = (GPS,s2GAC,s2WBB,s2)Hrm ∈ CNDS,2×1, (4.18)

where WBB,s2 =
√
NV/NHI(2P+1)NB

∈ C(2P+1)NB×(2P+1)NB , JB = [JB,1,JB,2, . . . ,

JB,NB
] ∈ RNV×NB , and GAC,s2 = JB ⊗ I(2P+1) ∈ R(2P+1)NV×(2P+1)NB . The element of

JB,u ∈ RNV×1 is

[JB,u]nV,1
=


1, if nV = η(u);

0, otherwise.

(4.19)

We design the phase shifter set of the analog part of the hybrid array, as GPS,s2 =

Ud ⊗ UsH ∈ CNR×(2P+1)NV , where Ud is given in (4.7) and the element of UsH ∈

CNH×(2P+1) can be expressed as [UsH]nH,p+P+1 = ej2π(nH−1)p/NH . Hence, the analog

combiner of the hybrid array can be constructed as

WRF,s2 = GPS,s2GAC,s2 = (Ud ⊗UsH)(JB ⊗ I(2P+1))

(?)
= (UdJB)⊗ (UsH1I(2P+1)) = UsV ⊗UsH, (4.20)

5In general, this condition can be met in large-scale antenna array systems, where a large

number of antennas are deployed.
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where (?) follows a property of the Khatri-Rao product, i.e., (A ⊗ B)(C ⊗ D) =

AC ⊗ BD. The element of UsV ∈ CNV×NB can be calculated as [UsV]nV,u
=

exp(−j 2π
NV

(NV+1
2
− nV)η(u)). As a result, at this step we have NDS,2 = NRF,2 =

(2P + 1)NB data streams and RF chains, and NAC,2 = (2P + 1)NV array combiners.

The processed received signal in (4.18) can be written as

ys2,m = WH
s2rm = (Gs2WRF,s2WBB,s2)HHmxm + WH

s2,mnm

=

√
NV

NH

(UsV ⊗UsH)H
Np∑
l=1

βlxme
−j2πfmτlam(φR,l, θR,l) + WH

s2,mnm

(?)
=

√
NV

NH

Np∑
l=1

βlxme
−j2πfmτl(UH

sV ⊗UH
sH)(aV,m(θR,l)⊗ aH,m(φR,l, θR,l)) + WH

s2,mnm

=

Np∑
l=1

βlxme
−j2πfmτl(

√
NVUH

sVaV,m(θR,l))⊗ (
1√
NH

UH
sHaH,m(φR,l, θR,l)) + WH

s2,mnm

=

Np∑
l=1

βlxme
−j2πfmτl(ãV,m(θR,l)⊗ ãH,m(φR,l, θR,l)) + WH

s2,mnm, (4.21)

where (?) stems from another property of the Khatri-Rao product, i.e., (A⊗B)H =

AH ⊗ BH . According to Theorem 1, the elements of the resulting vertical and

horizontal array response vectors ãV,m(θR,l) and ãH,m(φR,l, θR,l) are given by

[ãV,m(θR,l)]u,1 =
√
NVUH

sVaV,m(θR,l)

=

NV∑
nV=1

exp

(
−j 2π

c
fmh(nV −

NV + 1

2
) cos(θR,l)

)
exp

(
j

2π

NV

(
NV + 1

2
− nV)η(u)

)
=

sin (NV(2πfmh cos(θR,l)/c− 2πη(u)/NV)/2)

sin ((2πfmh cos(θR,l)/c− 2πη(u)/NV)/2)
(4.22)

and

[ãH,m(φR,l, θR,l)]p+P+1,1 =
1√
NH

UH
sHaH,m(φR,l, θR,l)

=
1√
NH

APM,p ≈ jpJp($m,l)e
−jpφR,l . (4.23)

Steps 1 and 2 are indispensable, reducing the number of required RF chains sub-

stantially from NR to (2P + 1)NB.
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4.3.3 Multidimensional Spatial Interpolation

When the fractional bandwidth or the scale of the antenna array is large, the

aforementioned beam squint effect arises [39]. This is because the array response

vectors (4.22) and (4.23) depend on the frequency of the specific subcarrier fm. The

beam squint effect would compromise the capability of jointly utilizing the received

signals at all frequency bands to estimate the path parameters. As a result, the

high temporal resolution of wideband mmWave systems could not be effectively

exploited.

One could keep the array response matrices consistent across all frequencies,

by transforming the array response vectors (4.22) and (4.23) associated with the

frequency fm, ∀m = 0, 1, . . . ,M − 1, into the corresponding array response vectors

at the reference frequency f0 [71]. For continuous signals, this could be ideally

achieved by the Shannon-Whittaker interpolation [111], which sets different vertical

distances and radii at different frequencies, i.e., hvi,m = f0h/fm and rvi,m = f0r/fm.

Then, from (4.22) and (4.23), the virtual vertical and horizontal response vectors,

ȧV,m(θR,l) and ȧH,m(θR,l), can be constructed as

[ȧV,m(θR,l)]u,1 =
sin (NV(2πfmhvi,m cos(θR,l)/c− 2πη(u)/NV)/2)

sin ((2πfmhvi,m cos(θR,l)/c− 2πη(u)/NV)/2)

=
sin (NV(2πf0h cos(θR,l)/c− 2πη(u)/NV)/2)

sin ((2πf0h cos(θR,l)/c− 2πη(u)/NV)/2)

= [ãV,0(θR,l)]u,1 (4.24)

and

[ȧH,m(φR,l, θR,l)]p+P+1,1 = jpJp(
2π

c
fmrvi,m sin(θR,l))e

−jpφR,l

= jpJp(
2π

c
f0r sin(θR,l))e

−jpφR,l = [ãH,0(φR,l, θR,l)]p+P+1,1. (4.25)
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The signal reconstructed by using (4.24) and (4.25) can be expressed as

ẏs2,m =

Np∑
l=1

βlxme
−j2πfmτl(ȧV,m(θR,l)⊗ ȧH,m(φR,l, θR,l)) + WH

s2,mnm

=

Np∑
l=1

βlxme
−j2πfmτl(ãV,0(θR,l)⊗ ãH,0(φR,l, θR,l)) + WH

s2,mnm

=

Np∑
l=1

βlxme
−j2πfmτl ã0(φR,l, θR,l) + WH

s2,mnm. (4.26)

In practice, unfortunately, the Shannon-Whittaker interpolation could hardly achieve

perfect signal reconstruction for time-limited signals, and it also has a high compu-

tational complexity [111].

In this chapter, we extend linear interpolation [112] (which is a low-complexity

and effective method for data point construction) to the multidimensional spatial

interpolation. The multidimensional array response matrices consistent across all

frequencies can be constructed by using the received time-limited signals. By ap-

plying the linear interpolation in both the vertical and horizontal spatial domains,

we can reconstruct the signal in (4.21) and obtain an approximation of (4.26). The

reconstructed signal is calculated as

[ỹs2,m]nDS,2,1
= [ys2,m]nDS,2,1

+
rvi,m

r
∆ys2,H,m

+
hvi,m

h
∆ys2,V,m

, (4.27)

where nDS,2 = (2P + 1)(u − 1) + p. If nDS,2 ≤ (2P + 1)(NB − 1), ∆ys2,H,m
and

∆ys2,V,m
are constructed as ∆ys2,H,m

= [ys2,m](nDS,2+1),1 − [ys2,m]nS,1
and ∆ys2,V,m

=

[ys2,m](nDS,2+2P+1),1− [ys2,m]nDS,2,1
, respectively. Otherwise, ∆ys2,H,m

= [ys2,m]nDS,2,1
−

[ys2,m](nDS,2−1),1 and ∆ys2,V,m
= [ys2,m]nDS,2,1

− [ys2,m](nDS,2−2P−1),1 .

By using (4.27), all the subcarrier signals can be coherently combine, and thus

the high temporal resolution offered by wideband mmWave systems can be utilized

to improve the delay estimation accuracy. However, if we directly use the OFDM

channel model (4.1), we process the signals at each subcarrier separately, which

cannot exploit the high temporal resolution of wideband mmWave systems.
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4.4 Wideband JDAE Algorithm

In this section, we estimate the path parameters of the MS based on the processed

signals in Sections 4.3 and 4.3.3. Since the beamformers developed in Section 4.3

are linear transforms, the multiple-invariance structure required for ESPRIT can

be recovered losslessly between respective submatrices of the space-time response

matrix. By exploiting the recurrence relations in the multiple-invariance structure,

the delay and elevation angle of each path can be estimated using ESPRIT. For the

azimuth angles, the expression for the horizontal array response vectors (4.23) does

not exhibit any recurrence. Hence the azimuth angles are estimated by using MUSIC

after obtaining the corresponding elevation angles. The hardware and software

complexities of the proposed estimation method are analyzed in the end.

Collecting the received signals at all frequencies, we have ỹ = [ỹs2,1, ỹs2,2, . . . , ỹs2,M ] .

Assume that the same signals are transmitted at all subcarriers. We can vectorize

ỹ as

ỹvec = vec(ỹ) =
[
Γ � Ã

]
d + vec(ñ) = Ud + ñv, (4.28)

where Ã =
[
ã0(φR,1, θR,1), . . . , ã0(φR,Np , θR,Np)

]
, ñ = WH

s2 [n1, . . . ,nM ] , [Γ]m,l =

e−j2πfmτl and d = x
[
β1, β2, . . . , βNp

]T
. Here, U ∈ CNDS,2M×Np , also known as the

space-time response matrix in [113], collects the set of AoAs and path delays. The

covariance matrix of ỹvec can be calculated as

Rỹvec = E
{
ỹvecỹ

H
vec

}
= UΛdUH + σ2

nI(NDS,2M), (4.29)

where Λd = E
{
ddH

}
is a diagonal matrix. The EVD of Rỹvec can be obtained by

Rỹvec = [Es,En]

 Σs 0Np×(NDS,2M−Np)

0(NDS,2M−Np)×Np σ2
nINDS,2M−Np

× [Es,En]H

= EsΣsE
H
s + σ2

nEnE
H
n , (4.30)
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where Es ∈ CNDS,2M×Np and En ∈ CNDS,2M×(NDS,2M−Np) correspond to the signal

subspace and noise subspace, respectively. Σs ∈ RNp×Np is a diagonal matrix whose

elements are the Np largest eigenvalues of Rỹvec . Based on EnE
H
n +EsE

H
s = INDS,2M ,

(4.30) can be rewritten as

Rỹvec = Es(Σs − σ2
nINp

)EH
s + σ2

nINDS,2M . (4.31)

By letting (4.29) equal to (4.31), we obtain

Es = UT, (4.32)

where T ∈ CNp×Np is a full rank matrix.

As noticed below, U in (4.32) has a multiple-invariance structure with a linear

recurrence relationship. The relationship can facilitate utilizing the ESPRIT method

to estimate the delay and elevation angle of each path.

4.4.1 Delay Estimation

Define the delay-selection matrix as JD = diag (JD,1, . . . ,JD,M) ∈ RM×NDS,2M ,

where JD,m = 1TNDS,2
. We can obtain the delay-related submatrix UD = JDU ∈

CM×Np . By defining J̃D,m = [01×(m−1), 1, 01×(M−m)] ∈ R1×M , the delay-related

submatrix associated with the frequency fm can be calculated as UD,m = J̃D,mUD ∈

C1×Np . Thus, we can obtain a linear recurrence relation between the delay-related

submatrices of each frequency as

UD,m̃+1 = UD,m̃ΘD, (4.33)

where ΘD = diag
(
e−j2π∆Fτ1 , . . . , e−j2π∆FτNp

)
∈ CNp×Np and m̃ = 1, 2, . . .M − 1.

According to (4.32), the delay-related submatrix of the signal subspace matrix

at the frequency fm can be given by

ED,m = J̃D,mJDEs = UD,mT. (4.34)
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Substituting (4.33) into (4.34), we obtain

ED,m̃+1 = ED,m̃T−1ΘDT = ED,m̃ΨD. (4.35)

By using the total least-squares (TLS) criterion [37], we estimate ΨD = T−1ΘDT

as Ψ̂D,m̃, each of which has in total Np sorted eigenvalues, i.e., λD,m̃,Np . Due to the

fact that the eigenvalues of an upper triangular matrix are also diagonal elements

of the matrix, we can obtain (M − 1) different estimates for each ΘD. As a result,

the delay of the l-th path, τl, can be estimated as

τ̂l =
1

M − 1

M−1∑
m̃

[j ln(λD,m̃,l)/2π∆F] . (4.36)

4.4.2 Angle Estimation

We first use the processed vertical array response vector (4.24) to estimate the

elevation angle. According to (4.22), the (u+1)-th element of ãV,0(θR,l) can be given

by

[ãV,0(θR,l)]u+1,1 =
sin (NV(2πf0h cos(θR,l)/c− 2πη(u+ 1)/NV)/2)

sin ((2πf0h cos(θR,l)/c− 2πη(u+ 1)/NV)/2)
. (4.37)

Comparing [ãV,0(θR,l)]u+1,1 with the u-th element in (4.24), we see that two succes-

sive components of the processed vertical array response vector, [ãV,0(θR,l)]u,1 and

[ãV,0(θR,l)]u+1,1, are related as follows.

(−1)η(u) sin ((g(θR,l)− 2πη(u)/NV)/2) [ãV,0(θR,l)]u,1

= (−1)η(u+1) sin ((g(θR,l)− 2πη(u+ 1)/NV)/2)× [ãV,0(θR,l)]u+1,1, (4.38)
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where g(θR,l) = 2π
c
f0h cos(θR,l). By trigonometric manipulations, we rewrite (4.38)

as

(−1)η(u) sin

(
η(u)

π

NV

)
[ãV,0(θR,l)]u,1

+ (−1)η(u+1)+1 sin

(
η(u+ 1)

π

NV

)
[ãV,0(θR,l)]u+1,1

= tan

(
g(θR,l)

2

)[
(−1)η(u) cos

(
η(u)

π

NV

)
[ãV,0(θR,l)]u,1

+(−1)η(u+1)+1 cos

(
η(u+ 1)

π

NV

)
[ãV,0(θR,l)]u+1,1

]
. (4.39)

Stacking all (NB − 1) equations together yields

tan

(
g(θR,l)

2

)
F0ãV,0(θR,l) = F1ãV,0(θR,l), (4.40)

where

[F0]ũ,u =



(−1)η(ũ) cos(2πη(ũ)/NV), if u = η(ũ);

(−1)η(ũ+1)+1 cos(2πη(ũ+ 1)/NV), if u = η(ũ+ 1);

0, otherwise.

(4.41)

[F1]ũ,u =



(−1)η(ũ) sin(2πη(ũ)/NV), if u = η(ũ);

(−1)η(ũ+1)+1 sin(2πη(ũ+ 1)/NV), if u = η(ũ+ 1);

0, otherwise.

(4.42)

with ũ = 1, 2, . . . , NB − 1.

The processes of selecting the angle-related submatrices are similar to that of

selecting the delay-related submatrices. Define the angle selection matrix as JA =

1TM ⊗ INDS,2
∈ RNDS,2×NDS,2M . Then the angle-related submatrix can be formulated

as UA = JAU ∈ CNDS,2×Np . Based on the recurrence relation in (4.40), we can

construct

F0UVΘV = F1UV, (4.43)
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where ΘV = diag
(
tan(g(θR,1)/2), . . . , tan(g(θR,Np)/2)

)
and UV = JVUA ∈ CNB×Np

is a submatrix of UA, where JV = I(2P+1) ⊗ 1TNB
∈ RNB×NDS,2 . Thus, the vertical

array response-related submatrix can be calculated as

EV = JVJAEs = JVJAUT = UVT. (4.44)

Substituting (4.44) into (4.43), we can obtain

F0EVT−1ΘVT = F0EVΨV = F1EV. (4.45)

With reference to the delay estimation in Section 4.4.1, the elevation angle of

the l-th path, θ̂l, can be estimated as

θ̂R,l = arccos (arctan(λV,l)/πf0h) , (4.46)

where λV,l is the l-th eigenvalue of Ψ̂V, and Ψ̂V is the estimated matrix of ΨV =

T−1ΘVT.

According to (4.23), the expression for each horizontal response vector, which

does not have the invariance structure, is an exponential function weighted by the

Bessel function. There is no recursive relationship for the azimuth angle estimation.

After obtaining the elevation angles, we use MUSIC to estimate their corresponding

azimuth angles.

Define JH = JHAJA ∈ R(2P+1)×NDS,2M , where JHA,u =
[
I(2P+1),0(2P+1)×(2P+1)(NB−1)

]
∈ R(2P+1)×NDS,2 .We can obtain the corresponding horizontal signal ỹvec,H = JHỹvec ∈

C(2P+1)×1. As done in (4.30), the covariance matrix of ỹvec,H can be calculated as

Rỹvec,H
= Es,HΣs,HEH

s,H + σ2
nEn,HEH

n,H, where Es,H and En,H are the signal and noise

subspaces of ỹvec,H, respectively.

By substituting the estimate of the l-th path, θ̂R,l, in the MUSIC estimator, the

azimuth angle of the path can be estimated by

φ̂R,l = arg max
Φ

∥∥∥EH
n,HãH,0(Φ, θ̂R,l)

∥∥∥−2

F
, (4.47)

where Φ is the azimuth of the AoA, and can be estimated by 1D search.



85

4.4.3 Multipath Parameter Matching

As described above, the estimated channel parameters of each path can be

matched automatically in the case of negligible noise. This is because they have

the common factor T, as shown in (4.32). In the presence of non-negligible noise,

there can be a mismatch between the estimated parameters. We take the delay

and the elevation AoA for an example. According to (4.35) and (4.45), we have

ΨD = T−1
D ΘDTD and ΨV = T−1

V ΘVTV, but TV 6= TD 6= T because of the noise.

Most existing pair matching methods would require the approximate values of the

estimates first, and then use an exhaustive search to match all possible parameter

pairs [63]. Such methods would lead to prohibitive computational complexity if the

numbers of paths and parameters are large.

We note that in our approach, the estimated elevation angles, θ̂R,l, are used for

the estimation of the azimuth counterparts, φ̂R,l, so that the azimuth and elevation

angles of each path are always matched; see (4.47). Since a mismatch of the esti-

mated delays and angles is primarily caused by additive noises, the mismatch can be

mitigated by adding perturbation matrices [114]. Provided two perturbation matri-

ces PD and PV with Ψ̃D = ΨD+PD = T̃−1
D ΘDT̃D and Ψ̃V = ΨV+PV = T̃−1

V ΘVT̃V,

we can obtain T̃D = T̃V = T̃. The parameter pair matching in (4.35) and (4.45)

can be achieved. The perturbation matrices PD and PV can be obtained by solving

the following problem [114]:

min
PD,PV

‖PD‖2
F + ‖PV‖2

F (4.48)

s.t. (ΨD + PD) (ΨV + PV) = (ΨD + PV) (ΨV + PD) , (4.49)

where (4.48) is formulated due to the fact that PD and PV need to obey the minimum

Frobenius norm constraint [114]. The exact solution to this non-linearly constrained
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problem (4.48) is hard to find. To solve the problem, we rewrite (4.49) as

PDPV −PVPD = ΨDΨV + PVΨV + ΨDPD −ΨDΨV −ΨDPV −PDΨV. (4.50)

We assume that the perturbations are much smaller than ΨD and ΨV, then the term

(PDPV − PVPD) in (4.50) can be suppressed [115]. We only add the perturbation

to ΨD, i.e., letting PV = 0. Then PD can be obtained as

vec(PD) = [ΨT
V ⊕ (−ΨV)]†vec(ΨVΨD −ΨDΨV). (4.51)

By adding the perturbation matrix PD to the elevation angle eigenvalue matrix ΨD,

the delay and the elevation angles can be matched. The parameters of each path

can be associated correctly.

4.4.4 Complexity Analysis

We proceed to analyze the hardware and software complexities of the proposed

channel parameter approach. For a large-scale antenna array system using fully

digital beamforming, its hardware complexity is O(NR). In our proposed approach,

the use of the hybrid beamformer allows for a dramatic reduction of the hardware

complexity from O(NR) to O(NRF), where NRF = max(NV, (2P + 1)NB).

In terms of signal processing complexity, we compare the proposed approach with

existing techniques, including quadric rotational invariance property-based method

(QRIPM) [29], generalized beamspace method (GBM) [14], and Quasi-Maximum-

Likelihood estimator (Q-MLE) [116]. For the proposed approach, after hybrid beam-

forming, the dimension of the received signal is reduced to NDS,2, so the computation-

al complexity of MDSL processing is O(NDS,2M) = O((2P+1)NBM) = O(γPNpM).

The computational complexity of calculating the covariance matrix, Rỹvec , in (4.29)

and performing the EVD on Rỹvec according to (4.30) is O(γ2P 2N2
pM

2Ts) and

O(γ3P 3N3
pM

3), respectively, where Ts is the number of snapshots. The complex-

ities of computing the delay τ̂l and the elevation angle, θ̂R,l, are O(MN3
p) and
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Figure 4.4 : Variation of the software complexity vs. the number of antennas.

O(γ2N2
p + N3

p), respectively. When estimating φ̂R,l with 1D search using (4.47),

the computational complexity is O(γ2N2
pD), where D is the size of the search di-

mension. For the pair matching operation, the computational complexity is O(N3
p).

Thus, the overall computational complexity of our proposed estimation approach is

O(γPNpM+γ2P 2N2
pM

2Ts+γ
3P 3N3

pM
3+MN3

p +γ2N2
p +N3

p +γ2N2
pD+N3

p), which,

in fact, has no dependence on the number of receive antenna NR. The computational

complexities of QRIPM and GBM increase rapidly, as the number of receive antennas

increases. When the number of receive antennas NR is large, the computational com-

plexities of QRIPM and GBM are O(N3
RM

4) and O(P 3N3
VM

4), respectively. The

computational complexity of Q-MLE is O(N2
RM

2NAZINELENDEL + (NpNRM)3.5),

where NAZI, NELE, and NDEL are the search grids of azimuth angle, elevation angle,

and delay, respectively.
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Fig. 4.4 compares the computational complexities of the four methods with

the growing number of antennas NR = NHNV, where γ = 2, Np = 3, M = 20,

and P = 12. We set D = NAZI = NELE = NDEL = 100. The figure shows that,

compared with the existing methods, the proposed approach has a substantially

lower computational complexity. In addition, the reduction is increasingly significant

with the growing number of receive antennas at the BS.

4.5 Simulation Results

This section presents simulation results to demonstrate the performance of the

proposed approach under different parameters in the UMi scenario of future 5G/B5G

systems. We set f0 = 30 GHz and B = 2 GHz6, and assume that there are a total

of Np = 3 NLoS paths and M = 20 consecutive subcarriers. The distance, h,

between adjacent receiving UCAs and the radius, r, of each UCA are 0.5λ0 and 2λ0,

respectively.

Fig. 4.5 shows the RMSE of the angle and delay estimates, and compares the

proposed approach with QRIPM [29], GBM [14], Q-MLE [116], and the CRLB7.

Figs. 4.5(a) shows the RMSE of the estimated azimuth AoAs versus the number

of receive antennas under different signal-to-noise ratio (SNR) conditions. In Fig.

4.5(a), we see that the RMSE of the estimated azimuth AoAs approaches the CRL-

B, as the average received SNR or the number of receive antenna increases. We

observe that, when the number of antennas is not large, the RMSE of GBM and

the proposed approach is worse than that of QRIPM. The reason is that the condi-

tions in Theorem 1 may not be satisfied, and the approximation in (4.23) may not

hold. However, when the number of antennas increases, the RMSE of GBM and the

6In this system, for a UCyA with 400 antennas (25× 16), its dimension is about 40× 80 mm2,

which is much smaller than the communication range. Therefore, the far-field condition is fulfilled.

7The CRLB is calculated according to [47,117].
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proposed approach decreases faster than that of QRIPM, and our approach quickly

outperforms QRIPM and GBM. The RMSE of the estimated elevation of the AoAs

by using different estimation methods is shown in Fig. 4.5(b). We see that when the

number of receive antennas is smaller than 100, GBM, and the proposed approach

are still inferior to QRIPM. When the number of antennas is large, our proposed

approach is better than QRIPM and GBM in terms of angle estimation accuracy.

It is observed in Figs. 4.5(a) and 4.5(b) that Q-MLE outperforms the other three

approaches, including the proposed approach, in terms of angle estimation. As ana-

lyzed in Section 4.4.4, Q-MLE has a much higher signal processing complexity than

our approach. In addition, it is shown in Fig. 4.5(c) that our approach achieves the

best delay estimation accuracy. The reason is that, by using the proposed multidi-

mensional spatial interpolation, the high temporal resolution offered by wideband

mmWave signals is exploited. As also shown in Fig. 4.5(c), we can see that the de-

lay estimation accuracy does improve when the antenna number increases, but the

improvement is not evident. This is because the delay estimation precision primarily

depends on the signal bandwidth, instead of the number of receive antennas.

In order to validate Theorem 1, Fig. 4.6 plots the RMSE of the angle estima-

tion versus the value of the highest order, P , under different numbers of horizontal

array response vectors. We see that when the highest order P ≤ 11, our proposed

approach cannot perform satisfactorily, since the number of phase-mode vectors is

not sufficient to represent the transformed array response vectors in Section 4.3.2.

Fig. 4.6 also shows that, if P ≥ 12, whatever the number of array response vectors

is, increasing the phase-mode vectors has little influence on the angle estimation

performance. This means that the number of phase-mode vectors needed in our

approach does not depend on the number of array response vectors, which is im-

portant for complexity reduction, as discussed in Section 4.4.4. In addition, we also

see that because the condition in Theorem 1, NH ≥ 2P , is unlikely to be satisfied
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Figure 4.6 : The RMSE vs. the value of the highest order. (a) Azimuth AoA; (b)

Elevation AoA.

when NH = 10, the RMSE is much poorer than those applying more array response

vectors.

4.6 Summary

This chapter has presented a novel channel estimation method for mmWave UMi

environments with wideband hybrid UCyAs. We have introduced a new 3D hybrid

beamformer, which can reduce the number of required RF chains while maintaining

the critical recursive property of the space-time response matrix for angle and delay

estimation. We also have also generalized linear interpolation to reconstruct the

output signals of the 3D hybrid beamformer. We have shown that this method

can achieve consistent array response across the wideband and suppress the beam

squint effect. As a result, the delay and the azimuth and elevation angles of every

multi-path component can be estimated. Simulation results have shown that, in the

UMi scenario of large-scale mmWave antenna array systems, when a large number

of antennas is deployed, our proposed method is capable of precisely estimating the



92

channel parameters even under low SNR conditions. In this chapter, we assume

that the bandwidth is continuous. In practical scenarios where the bandwidth is

intermittent, we can first employ some filters to obtain the signals at equal-spacing

subcarriers, and then use the proposed algorithm for parameter estimation.
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Chapter 5

Tensor-based Parameter Estimation for Hybrid

Directional UCyAs

This chapter is devoted to high-accuracy channel parameter estimation algorithm

for hybrid UCyAs with directional beamforming. 5G mmWave communications,

in general, is applied for short-distance communication applications, such as in-

door environments and UMi, due to severe free-space pathloss. To support long-

distance links in some specific mmWave communication scenarios, e.g., RMi, di-

rectional beamforming is deployed with large antenna arrays, which appears to be

inevitable to provide sufficient signal transmission power. Moreover, the very short

wavelengths of mm-Wave signals enables large antenna arrays to be packed into

small form factors, which, fortunately, makes realization of the large arrays needed

for high beamforming gains feasible.

In this chapter, we present a novel tensor-based method for multi-dimensional

wideband channel estimation in large-scale mmWave hybrid UCyAs. We consider

the RMi scenario in 5G/B5G mmWave systems, as illustrated in Fig. 5.1. We design

a new resolution-preserving directional hybrid beamformer and a low-complexity

Figure 5.1 : The research scenario studied in Chapter 5.
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beam squinting suppression method, and reveal the existence of shift-invariance

relations in the tensor models of received array signals at the UCyA. Exploiting

these relations, we propose a new tensor-based subspace estimation algorithm to

suppress the receiver noises in all dimensions (time, frequency, and space). The

algorithm can accurately estimate the channel parameters from both coherent and

incoherent signals. Corroborated by the CRLB, simulation results show that, in the

RMa scenario of future 5G/B5G systems, the proposed algorithm is able to achieve

substantially higher estimation accuracy than existing matrix-based techniques, with

a comparable computational complexity.

5.1 Motivation and Overview

In this chapter, we arrange and process the received signals in the tensor form

to exploit the relations between each dimension/domain of the received signal. As

stated in Section 5.1, tensor-based channel parameter estimations have been demon-

strated to be more powerful than conventional matrix-based techniques [75–77].

However, traditional multiparameter estimation is typically matrix-based, which

needs to stack and process the received multidimensional data in a two-dimensional

space-time matrix. As a result, the relations between each dimension/domain (e.g.,

space, time, and frequency) of the received signal would be damaged [118]. On the

other hand, since the parameters (e.g., AoA, AoD, and delay) are coupled in the

space-time matrix, before using subspace-based algorithms, the space-time matrix

has to be divided into multiple (≥ 6) subarrays to decouple them, increasing the

estimation complexity.

Specifically, in Section 5.3, we first design a hybrid directional beamformer to

synthesize the received signals. The beamformer sweeps on the vertical plane and

operates omnidirectionally on the horizon plane. We use Q-DFT to reduce the

dimension of the received signals with a negligible cost of the channel estimation
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accuracy, and design the digital beamforming coefficients to make the beamformer

sweep on the vertical plane to deal with the severe free-space pathloss of mmWave

links. In this way, the signals can be processed with much fewer RF chains (than

antennas) and an acceptable communication quality can be obtained.

We then develop a low-complexity UCAMI in Section 5.4, which can suppress

the beam squinting effect and enable coherent combining of measurement signals

across wideband. The conventional UCAMI [73] needs to solve a computational-

ly expensive multi-dimensional optimization problem whose dimension is equal to

the number of estimation parameters. After being processed by the RF network,

we see that only the elevation angular-related array steering vectors depend on the

subcarrier frequency. Therefore, the proposed new UCAMI only optimizes the fo-

cusing matrices in the elevation angular domain. There are only 1-D optimization

problems in our method, whose computational complexity is much lower than the

conventional UCAMI.

By stacking the received signal in the multidimensional tensor model, all the

subsequent processing in this chapter are operated in the tensor form. In particular,

we construct the truncated HOSVD model of the measure tensor in Section 5.5.1 and

propose a new tensor-based joint delay-angle estimation algorithm to estimate the

delay and azimuth and elevation angles in Sections 5.5.2 by revealing and exploiting

the inherent linear recurrence relations in the first mode of the measure tensor.

We also extend the spatial smoothing technique to the designed hybrid UCyA in

Section 5.5.3 to decorrelate the coherent signals. By this means, the signal and noise

subspaces of the received signal can be correctly decomposed in all dimensions.

Simulation results are provided in Section 5.6 to demonstrate the performance of

the proposed algorithm. Validated by the CRLB, simulation results show that, in the

RMa scenario of large-scale mmWave array systems, the proposed algorithm is able
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to achieve much higher accuracy than state-of-the-art matrix-based techniques for

wideband mmWave hybrid UCyAs. This is because the noise is multi-dimensional

with the same dimensions as the received signal. It is important to take all di-

mensions of the received signal into consideration, and suppress the noises in all

the dimensions. However, when applying the matrix-based alternative, the noise is

only suppressed in one of the dimensions (or modes) of the measurement tensor,

hence degrading the estimation accuracy. We also plot the RMSE of the estimated

parameters with an increasing number of received paths. We show that the perfor-

mance gap between the matrix and tensor forms of the proposed algorithm decreases

with the increasing number of received paths. This is because the noise components

which can be suppressed by using the tensor-based algorithms in all modes of the

measurement tensor, depend on the difference between the number of paths and the

tensor dimension in each mode. As the number of received paths increases, the gain

of the tensor-based algorithm diminishes.

5.2 System Model

In our system, a BS is equipped with a large-scale hybrid mmWave UCyA with

Mbs antennas, consisting of Mv vertically placed UCAs each with Mh antenna ele-

ments, and Mbs = MvMh. Let r be the radius of the UCyA, and h be the vertical

distance between any two adjacent vertical elements. A hybrid front-end is adopted

(i.e., there are fewer RF chains than antennas) with consideration of hardware cost,

energy consumption, weight and size. Consider a wideband OFDM system, with Mf

subcarriers. There are a total of K 3-D sources, each of which is equipped with a

single antenna with an isotropic beam pattern.

We apply vertical beam sweeping to obtain the signals from the sources, as shown

in Fig.5.2(a). Mb evenly spaced elevation angles are swept successively. For each

elevation angle, signal samples of Mt time frames are collected within a sweeping
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Figure 5.2 : Illustration on the proposed system and signal models. (a) System

configuration; (b) Signal tensor model.
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time interval τb. In the mb-th sweeping beam (mb = 1, . . . ,Mb), the signals from

Kmb
sources are captured at the BS (and K ≤

∑Mb

mb=1 Kmb
, due to the partially

overlapping sweeping beams). The signal sample associated with the mf-th subcar-

rier (mf = 1, . . . ,Mf) at the mt-th time frame (mt = 1, . . . ,Mt) can be expressed

as [64]:

xmf,mt,mb
=

Kmb∑
kmb

=1

smt,kmb
afds,mf,mb

(τkmb
)BH

mf,mb
abs,mf,mb

(φkmb
, θkmb

) + nmf,mt,mb
,

(5.1)

where φkmb
and θkmb

are the azimuth and elevation angles-of-arrivals (AoAs) of the

kmb
-th path, respectively; abs,mf,mb

(φkmb
, θkmb

) ∈ CMbs denotes the steering vector

of the hybrid UCyA; smt,kmb
= αkmb

s̃mt,kmb
/
√
ρkmb

, where s̃mt,kmb
is the transmitted

symbol, αkmb
is the signal power, and ρkmb

is the pathloss from the kmb
-th source

to the BS; nmf,mb,mt ∈∈ CMbsd denotes the additive white Gaussian noise (AWGN);

Bmf,mb
= BabBdb,mf,mb

∈ CMbs×Mbsd is the hybrid beamforming matrix, composed of

an analog beamforming matrix Bab ∈ CMbs×Mbsr and a digital beamforming matrix

Bdb,mf,mb
∈ CMbsr×Mbsd ; Mbsr is the number of RF chains; Mbsd is the number of

data streams after hybrid beamforming; and

afbs,mf,mb
(τkmb

) = af,mf
(τkmb

)bf,mb
, (5.2)

where af,mf
(τkmb

) = e−j2πfmf
τkmb and bf,mb

= e−j2πfmf
(mb−1)τb with τkmb

being the

delay of the kmb
-th signal and fmf

being the mf-th subcarrier frequency. The delay

τkmb
can be used to estimate the source distance.

Given the structure of UCyA, the array steering vector, i.e., abs,mf,mb
(φkmb

, θkmb
),

can be given as the Kronecker product of the vertical and horizontal array steering

vectors:

abs,mf,mb
(φkmb

, θkmb
) = av,mf,mb

(θkmb
)⊗ ah,mf,mb

(θkmb
, φkmb

). (5.3)
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The elements of av,mf,mb
(θkmb

) and ah,mf,mb
(θkmb

, φkmb
) are:[

av,mf,mb
(θkmb

)
]
mv,1

= av,mv,mf,mb
(θkmb

)

=
1√
Mv

exp

(
−j 2π

c
fmf

h(mv − 1) cos(θkmb
)

)
, (5.4)

[
ah,mf,mb

(θkmb
, φkmb

)
]
mh,1

= ah,mh,mf,mb
(θkmb

, φkmb
)

=
1√
Mh

exp

(
j

2π

c
fmf

r sin(θkmb
) cos(φkmb

− ϕmh
)

)
, (5.5)

where c is the speed of light, and ϕmh
= 2π(mh − 1)/Mh is the difference between

the central angles of the mh-th antenna and the first antenna of each UCA.

5.3 Hybrid Directional Beamforming Design

In this section, we design the analog and digital beamforming matrices, Bab and

Bdb,mf,mb
, for the hybrid directional beamformer, as the first step shown in Fig. 5.2.

The number of required RF chains is reduced while the angular resolution of the

UCyA is not compromised as compared to its fully digital counterparts.

We decouple Bab between the vertical and horizontal planes, i.e., Bab = Bvab ⊗

Bhab with Bvab ∈ CMv×Mvr and Bhab ∈ CMh×Mhr . By decoupling the beamformers

into the Kronecker products of horizontal and vertical matrices, we preserve the

shift-invariance relations on the vertical and horizontal planes, as will be revealed

later in Section 5.6. To maintain the angular resolution of the hybrid UCyA, we

design Bhab based on the following theorem.

Theorem 2. Suppose that Mh ≥
⌊
4πfmf

r/c
⌋
. The array response vector ah,mf,mb

(θkmb
,

φkmb
) can be transformed into a beamspace by using Q-DFT. If the index for a

beamspace dimension, p, is larger than
⌊
2πfmf

r/c
⌋
, the element in the dimension

is negligible and can be suppressed. The expression for the elements in the other

dimensions is given by:

aQDFT,p,mf,mb
(θkmb

, φkmb
) ≈

√
Mhj

pJp
(
γmf

(θkmb
)
)

exp
(
−jpφkmb

)
, (5.6)
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where γmf
(θkmb

) = 2πfmf
r sin(θkmb

)/c, p = −P,−P + 1, . . . , P , and Jp
(
γmf

(θkmb
)
)

is

the Bessel function of the first kind of order p.

Proof. See Appendix D.1.

Theorem 2 shows that, with the application of Q-DFT [110], the Mh-dimensional

array response vector of each UCA, ah,mf,mb
(θkmb

, φkmb
), can be transformed to be

(2P + 1)-dimensional, where P = b2πfmf
r/cc. As a result, only Mhr = (2P + 1)

RF chains are required on the horizontal plane. Specifically, according to Theorem

2, we design Bhab as [Bhab]mh,mhr+P+1 = e−j2π(mh−1)mhr/Mh , where mhr = −P,−P +

1, . . . , P . We set Bvab = IMv to preserve the recurrence relation between the UCAs,

i.e., the shift-invariance relation. The relation is crucial for the subspace-based

estimation algorithms, and exploited to estimate the elevation AoAs in this chapter.

With this design, the number of required RF chains is only Mbsr = MvrMhr =

Mv(2P + 1).

Then, we design the digital beamformer Bdb,mf,mb
as

Bdb,mf,mb
= diag (bdb,1,mf,mb

, . . . , bdb,Mbsr,mf,mb
) , (5.7)

where bdb,mbsr,mf,mb
(mbsr = 1, 2, . . . ,Mbsr) is the beamforming weight coefficients.

Since Bdb,mf,mb
is diagonal, we have Mbsr = Mbsd. Considering that sweeping beams

on both the vertical and horizontal planes would take a longer time, we design the

beamformers to sweep on the vertical plane only, and operate omnidirectionally on

the horizon plane. The beamforming weight coefficients can be configured according

to the beamforming response, Pmf
(θ̄mb

), as given by

Pmf
(θ̄mb

) = bHdb,mf,mb
BH

ababs,mf,mb
(θ̄mb

, φ), (5.8)

where

bdb,mf,mb
= [bdb,1,mf,mb

, . . . , bdb,Mbsr,mf,mb
]T (5.9)
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is the normalized digital beamforming vector, i.e., bHdb,mf,mb
bdb,mf,mb

= 1, and θ̄mb

is the mb-th beamforming sweeping direction. Assume that the vertical angular

sweeping interval is π
Mb

. The elevation angle of the mb-th angular sample ranges

from π
Mb

(mb − 1) to π
Mb
mb.

We also decouple the digital beamforming matrix Bdb,mf,mb
in (5.7) between

the vertical and horizontal planes, i.e., Bdb,mf,mb
= Bvdb,mf,mb

⊗ Bhdb,mf,mb
, where

Bvdb,mf,mb
∈ CMvd×Mvd and Bhdb,mf,mb

∈ CMhd×Mhd are diagonal matrices with ele-

ments bvdb,mvd,mf,mb
and bhdb,mhd,mf,mb

, respectively. Thus, after hybrid beamforming,

the array steering vectors abs,mf,mb
(θkmb

, φkmb
) can be written as:

ahd,mf,mb
(θkmb

, φkmb
) = BH

mf,mb
abs,mf,mb

(θkmb
, φkmb

)

= ((Bvab ⊗Bhab) (Bvdb,mf,mb
⊗Bhdb,mf,mb

))H abs,mf,mb
(θkmb

, φkmb
)

(a)
= ((BvabBvdb,mf,mb

)⊗ (BhabBhdb,mf,mb
))H abs,mf,mb

(θkmb
, φkmb

)

(b)
=
(

(BvabBvdb,mf,mb
)H ⊗ (BhabBhdb,mf,mb

)H
) (

av,mf,mb
(θkmb

)⊗ ah,mf,mb
(θkmb

, φkmb
)
)

=
(
BH

vdb,mf,mb
BH

vabav,mf,mb
(θkmb

)
)
⊗
(
BH

hdb,mf,mb
BH

habah,mf,mb
(θkmb

, φkmb
)
)

= avhb,mf,mb
(θkmb

)⊗ ahhb,mf,mb
(θkmb

, φkmb
), (5.10)

where avhb,mf,mb
(θkmb

) ∈ CMvd , ahhb,mf,mb
(θkmb

, φkmb
) ∈ CMhd , Mvd = Mvr = Mv, and

Mhd = Mhr = 2P+1. In (5.10), (a) and (b) are based on two important properties of

the Kronecker product, i.e., (A⊗B)(C⊗D) = AC⊗BD and (A⊗B)H = AH⊗BH

[119]. We have

avhb,mf,mb
(θkmb

) = BH
vdb,mf,mb

av,mf,mb
(θkmb

). (5.11)

According to Theorem 2, the mhd-th element of ahhb,mf,mb
(θkmb

, φkmb
) is given by:

ahhb,mhd,mf,mb
(θkmb

, φkmb
)

≈
√
Mhj

mhdbhdb,mhd,mf,mb
Jmhd

(
γmf

(θkmb
)
)

exp
(
−jmhdφkmb

)
. (5.12)

Given our hybrid beamforming design, we can present the beamspace signals of

the mmWave UCyA in a tensor form. Considering the observations at all sweeping
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intervals, subcarriers and time frames, the beamspace signals can be modeled as:

xmvd,mhd,mf,mt,mb
=

Kmb∑
kmb

=1

(smt,kmb
avhb,mvd,mf,mb

(θkmb
)ahhb,mhd,mf,mb

(θkmb
, φkmb

)

× afbs,mf,mb
(τkmb

)) + nmvd,mhd,mf,mt,mb
, (5.13)

where nmvd,mhd,mf,mt,mb
is the additive noise.

We consider the samples from the mb-th vertical sweeping beam, and (5.13) can

be rewritten in the following tensor form [1]

X:,:,:,:,mb
= Amb

×4 Smb
+Nmb

∈ CMvd×Mhd×M f×Mt , (5.14)

where all the angle and delay parameters at the mb-th sweeping beam are collected

in the space-time response tensor Amb
∈ CMvd×Mhd×M f×Kmb ; Smb

∈ CMt×Kmb collects

the received symbols smt,kmb
; andNmb

∈ CMvd×Mhd×M f×Mt collects the noise samples.

5.4 Low-Complexity Coherent Preprocessing for Wideband

Signals

As the second step in Fig. 5.2, a new low-complexity UCAMI is developed in

this section to suppress the beam squinting effect and enable coherent combining

of measurement signals across wideband. The conventional UCAMI [73] needs to

solve a computationally expensive multi-dimensional optimization problem whose

dimension is equal to the number of estimation parameters. Different from the

conventional UCAMI, there are only 1-D problems in our proposed approach.

As shown in (5.11) and (5.12), the array steering vectors depend on the frequency

and so do the beamspace signals. As a consequence, the signals can suffer from the

beam squinting effect, due to the wide bandwidth of mmWave signals. It is critical

to preprocess the beamspace signals in order to suppress the frequency dependence

of the array steering vectors. The suppression of frequency dependence is performed
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by designing the so-called focusing matrix, which focuses the array steering vectors

at each frequency to a reference frequency, denoted by f0 [69, 72]. From (5.12), we

see that after being processed by the RF network, the subcarrier frequency fmf
in

(5.5) is transformed into the Bessel function, Jmhd

(
γmf

(θkmb
)
)
, which only depends

on fmf
and θkmb

, and is independent of φkmb
. We only need to optimize the focusing

matrices in the elevation angular domain, since fmf
is decoupled from the azimuth

angle φkmb
in (5.12). Moreover, by taking the vertical array steering vector in (5.11)

into consideration, we find that both Jmhd

(
γmf

(θkmb
)
)

and avhb,mf,mb
(θkmb

) depend

only on the elevation angle θkmb
.

We first design the optimization problem for the horizontal array steering vectors

in (5.12). Because the measurement samples in (5.14) are collected from the Mb

vertical sweeping beams, the optimization can be conducted in each vertical angular

sweeping interval separately. Define

gmf
(θ) = [J−P (γmf

(θ)) , J−P+1 (γmf
(θ)) , . . . , JP (γmf

(θ))]T , (5.15)

which collects all the Bessel functions in (5.12) at the mf-th subcarrier. We discretize

each sweeping interval into Nb elevation angular values. Then, the horizontal fac-

tor matrices associated with the subcarrier frequency, fmf
, for the mb-th sweeping

interval can be written as:

Gh,mf,mb
=
[
gmf

(θmb,1), gmf
(θmb,2), . . . , gmf

(θmb,Nb
)
]
, (5.16)

where θmb,nb
= π

Mb
(mb − 1) + π

MbNb
(nb − 1) is the discretized elevation angle.

We directly use avhb,mf,mb
(θkmb

) to optimize the vertical array steering vectors

by constructing

Gv,mf,mb
= [avhb,mf

(θmb,1), avhb,mf
(θmb,2), . . . , avhb,mf

(θmb,Nb
)] . (5.17)

We then obtain the focusing matrices on the vertical and horizontal planes, de-
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noted by Tv,mf,mb
and Th,mf,mb

, by formulating the following optimization problems:

Tv,mf,mb
= arg min

Tv,mf,mb

‖Tv,mf,mb
Gv,mf,mb

−Gv,mf0,mb
‖2

F ,

s.t. TH
v,mf,mb

Tv,mf,mb
= IMv ; (5.18)

Th,mf,mb
= arg min

Th,mf,mb

‖Th,mf,mb
Gh,mf,mb

−Gh,mf0,mb
‖2

F ,

s.t. TH
h,mf,mb

Th,mf,mb
= I2P+1, (5.19)

where mf0 is the index to the subcarriers at the reference frequency f0, and the

constraints prevent focusing losses [73].

The solutions to Problems (5.18) and (5.19) are given by [69]

Tv,mf,mb
= Vv,mf,mb

UH
v,mf,mb

; Th,mf,mb
= Vh,mf,mb

UH
h,mf,mb

, (5.20)

where the columns of Uv,mf,mb
(or Uh,mf,mb

) and Vv,mf,mb
(or Vh,mf,mb

) are the left

and right singular vectors of Gv,mf,mb
GH

v,mf0,mb
(or Gh,mf,mb

GH
h,mf0,mb

), respectively.

We construct b̃f,mb
= b−1

f,mb
, B̃v,mf,mb

= B−1
vdb,mf,mb

, and B̃h,mf,mb
= B−1

hdb,mf,mb
to

offset the impact of beam sweeping on the received signals. The focusing matrices

(5.20) suppress the frequency dependence of the array steering vectors. After this

coherent wideband processing, in the mb-th sweeping beam, the received signal at

the mf-th subcarrier in (5.14) can be calculated as

X̃:,:,mf,:,mb
= X:,:,mf,:,mb

b̃f,mb
×1

(
Tv,mf,mb

B̃v,mf,mb

)
×2

(
Th,mf,mb

B̃h,mf,mb

)
. (5.21)

The elements of X̃:,:,mf,:,mb
can be expressed as

x̃mvd,mhd,mf,mt,mb
=

Kmb∑
kmb

=1

ãvhb,mvd,mb
(θkmb

)ãhhb,mhd,mb
(θkmb

, φkmb
)af,mf

(τkmb
)smt,kmb

+ ñmvd,mhd,mf,mt,mb
, (5.22)

where ãvhb,mvd,mb
(θkmb

) and ãhhb,mhd,mb
(θkmb

, φkmb
) are the resultant array manifolds

in (5.13). ñmvd,mhd,mf,mt,mb
is the transformed noise sample, which still yields the
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zero-mean Gaussian distribution due to the constraints on the beamforming weights

and focusing matrices.

We note that there are two-dimensional variables, φkmb
and θkmb

, in the frequency-

dependent array steering vectors av,mf,mb
(θkmb

) and ah,mf,mb
(θkmb

, φkmb
). UCA-

MI [73] would have to optimize the focusing matrices on the elevation and azimuth

angular domains simultaneously, resulting in a two-dimensional problem with a high

complexity. In contrast, our proposed method only needs a one-dimensional opti-

mization problem, i.e., (5.18) and (5.19), reducing the complexity significantly.

5.5 Tensor-based Parameter Estimation

With the received signals preprocessed (in Sections 5.3 and 5.4), the resultant ar-

ray steering vectors are frequency-independent in (5.22). Only the delay-dependent

factor, af,mf
(τkmb

), depends on the carrier frequency. In this section, we propose

a new tensor-based joint delay-angle estimation algorithm which is the last step

in Fig. 1.5, and a new spatial smoothing method which is the second-to-last (op-

tional) step in the figure. Despite the use of the existing truncated HOSVD, the

proposed joint delay-angle estimation algorithm involves new estimation processes.

Specifically, the matrix TLS problem formulation is generalized to the tensor case.

The azimuth angles are estimated by substituting the estimated elevation angles,

which avoids potential mismatches between the estimated results of the elevation

and azimuth AoAs. By revealing and exploiting the recurrence relations between

the UCAs at different layers of the UCyA, the proposed spatial smoothing method is

developed to decorrelate the coherent signals to correctly decompose the signal and

noise subspaces in all dimensions. The computational complexity of the proposed

algorithm is analyzed at the end.
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5.5.1 Truncated HOSVD Model of Measurement Samples

With no a-priori knowledge of the number of signals in each sweeping beam,

Kmb
, we collect all the sweeping results in (5.22) to jointly process the signals from

the K signal sources. The element of the received signal tensor model is given by

ymvd,mhd,mf,mt =

Mb∑
mb=1

x̃mvd,mhd,mf,mt,mb

=

Mb∑
mb=1

 Kmb∑
kmb

=1

ãvhb,mvd,mb
(θkmb

)ãhhb,mhd,mb
(θkmb

, φkmb
)

×af,mf
(τkmb

)smt,kmb
+ ñmv,mp,mf,mb,mt


=

K∑
k=1

ãvhb,mvd
(θk)ãhhb,mhd

(θk, φk)af,mf
(τk)smt,k + ṅmv,mp,mf,mt , (5.23)

which can be expressed concisely as:

Y =

Mb∑
mb=1

X̃:,:,:,:,mb
= Ã ×4 S + Ṅ ∈ CMvd×Mhd×M f×Mt , (5.24)

where S = [S1,S2, . . . ,SMb
] ∈ CMt×K collects all the symbols and Ṅ =

∑Mb

mb=1Nmb

collects all noise samples. An illustration of the received signal tensor model is

shown in Fig. 5.2(b). In (5.24), Ã ∈ CMvd×Mhd×M f×K is known as the space-

time response tensor [113], and obtained by concatenating the K response tensors,

Ãk ∈ CMvd×Mhd×M f , as given by:

Ã =
[
Ã1 t4 Ã2 t4 . . . t4 ÃK

]
. (5.25)

Because the array steering vectors are frequency-independent after the coherent

wideband preprocessing (as described in Section 5.4), the space-time response tensor

of the k-th signal source, Ãk, is given by

Ãk = ãvhb(θk) ◦ ãhhb(θk, φk) ◦ af(τk), (5.26)

where [ãvhb(θk)]mvd,1
= ãvdb,mvd

(θk), [ãhhb(θk, φk)]mhd,1
= ãhhb,mhd

(θk, φk), and [af(τk)]mf,1

= af,mf
(τk).
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By substituting (5.25) and (5.26) into (5.24), we obtain

Y =
K∑
k=1

ãvhb(θk) ◦ ãhhb(θk, φk) ◦ af(τk) ◦ sk + Ṅ , (5.27)

where sk = [S]:,k. (5.27) indicates that, in a noiseless case, Y can be regarded as

the sum of K rank-one tensors. Therefore, (5.27) is the CP decomposition of Y (see

Property 3 in Appendix A). Rank(Y) = K1. According to Property 3 in Appendix

A, (5.27) can be written as

Y =
r
Zs; Ãvhb, Ãhhb,Af,S

z
+ Ṅ (5.28)

where
[
Ãvhb

]
:,k

= ãvhb(θk),
[
Ãhhb

]
:,k

= ãhhb(θk, φk), [Af]:,k = af(τk), and Zs ∈

CK×K×K×K is an identity superdiagonal tensor.

Given the typically sparse multipath propagation of mmWave, the number of

received paths is much smaller than the numbers of antennas, subcarriers, and time

frames, i.e., K < min(Mvd,Mhd, Mf,Mt). Thus, the ranks of Ãvhb, Ãhhb, Af and

S are all K. According to the CP model (5.28), in the presence of non-negligible

noises, Ãvhb, Ãhhb, Af and S correspond to the factor matrix of the measurement

tensor Y in each mode. The ranks of the mode-n unfoldings of tensor Y , i.e., the

n-ranks of Y (n = 1, 2, 3, 4), are all K.

As a high-dimensional generalization of matrix SVD, the HOSVD (see Property

2 in Appendix A) conducts the SVD of the unfolding of Y in each mode separately.

This can suppress the received noise in each mode. The HOSVD of the measurement

tensor Y is given by

Y = L ×1 Uv ×2 Uh ×3 Uf ×4 Ut = JL; Uv,Uh,Uf,UtK , (5.29)

where the unitary matrices, Uv ∈ CMvd×Mvd , Uh ∈ CMhd×Mhd , Uf ∈ CMf×Mf , and

Ut ∈ CMt×Mt , are the left singular matrices of the mode-n unfoldings of tensor

1According to (5.27), we have Rank(Y) ≤ K. Rank(Y) < K only occurs when the locations of

two coherent sources are the same, which rarely happens.
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Y , and the core tensor L ∈ CMvd×Mhd×M f×Mt is obtained by moving the singular

matrices to the left-hand side of (5.29):

L = Y ×1 UH
v ×2 UH

h ×3 UH
f ×4 UH

t . (5.30)

Because the n-ranks of tensor Y are K, the SVD of the mode-1 unfolding Y(1) ∈

CMvd×(M/Mvd) can be written as

Y(1) = UvΣvV
H
v = [Uv,s Uv,n]

 Σv,s 0K×( M
Mvd
−Kvd)

0(Mvd−Kvd)×Kvd
Σv,n

 [Vv,s Vv,n]H ,

(5.31)

where Kvd = min(K,Mvd) and M = MvdMhdM fMt. The signal subspace Uv,s ∈

CMvd×Kvd and the noise subspace Uv,n ∈ CMvd×(Mvd−Kvd) of the mode-1 unfolding

Y(1) correspond to the Kvd largest and the (Mvd − Kvd) smallest elements of the

diagonal matrix Σv = diag(σv,1, σv,2, . . . , σv,Mvd
), respectively. σv,1, σv,2, . . . , σv,Mvd

are the non-zero singular values of the mode-1 unfolding Y(1), and calculated by

σv,mvd
= ‖Lmvd,:,:,:,:‖. The signal subspace matrices of the mode-2,3,4 unfoldings of

Y , i.e., Uh,s ∈ CMhd×Khd , Uf,s ∈ CMf×Kf , and Ut,s ∈ CMt×K can be obtained in the

same way, where Khd = min(K,Mhd) and Kf = min(K,Mf) .

By removing the noise subspace in each mode of Y , we construct a low-rank

truncated HOSVD model of the noise-free measurement tensor Ys [76], as given by

Ys = Ls ×1 Uv,s ×2 Uh,s ×3 Uf,s ×4 Ut,s ∈ CMvd×Mhd×M f×Mt , (5.32)

where Ls ∈ CKvd×Khd×Kf×K is obtained by discarding the insignificant singular values

of the mode-n unfoldings of Y .

5.5.2 Joint Angle-Delay Estimation

We propose a tensor-based joint delay-angle estimation algorithm by exploiting

the shift-invariance relations between the elements in each mode of the measurement
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tensor. By comparing (5.24) with (5.28), we first obtain

Ã = Zs ×1 Ãvhb ×2 Ãhhb ×3 Af. (5.33)

According to the truncated HOSVD model (5.32), we define the signal subspace

tensor:

Us = Ls ×1 Uv,s ×2 Uh,s ×3 Uf,s ∈ CMvd×Mhd×M f×K . (5.34)

By comparing (5.24), (5.32), (5.33) and (5.34), we have Us×4 Ut,s = Ã×4 S. Because

Ut,s ∈ CMt×K and S ∈ CMt×K are full column rank matrices, we obtain

Ã = Us ×4 D, (5.35)

where D ∈ CK×K is a full rank matrix. Based on (5.35), we generalize the matrix-

based subspace algorithm to the tensor, and estimate the delay and angles of each

signal path.

Estimation of Elevation Angle

We first propose a tensor-based total-least-squares ESPRIT (TLS-ESPRIT) al-

gorithm to estimate the elevation angle and delay. To estimate the elevation angle

of each signal path, we first reveal and then exploit the shift-invariance relations

underlying the vertical array steering matrix Ãv, according to (5.4) and (5.23).

To select the elevation angle-related subtensors, we define two selection matrices:

Jv1 = [IMvd−1,0(Mvd−1)×1] ∈ R(Mvd−1)×Mvd ; Jv2 = [0(Mvd−1)×1, IMvd−1] ∈ R(Mvd−1)×Mvd ,

(5.36)

which are two auxiliary matrices. We reveal the following shift-invariance relation

among the selected subtensors:

Ã ×1 Jv2 = Ã ×1 Jv1 ×4 Θv, (5.37)
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where Θv = diag
(
e−j

2π
c
f0h cos(θ1), . . . , e−j

2π
c
f0h cos(θK)

)
∈ CK×K . The shift-invariance

relation is the key to our design of the following tensor-based TLS-ESPRIT algo-

rithm2. The algorithm estimates the elevation angle of each signal in the tensor

form.

By substituting (5.35) into (5.37), we have

Usv2 ×4 D = Usv1 ×4 (ΘvD) , (5.38)

where Usv1 = Us×1Jv1 ∈ C(Mvd−1)×Mhd×M f×K and Usv2 = Us×1Jv2 ∈ C(Mvd−1)×Mhd×M f×K

are the selected subtensors of the signal subspace tensor Us. Since D is a full rank

matrix, we can left-multiply its inverse to both sides of (5.38) and obtain

Usv2 = Usv1 ×4 Ψv, (5.39)

where Ψv = D−1ΘvD ∈ CK×K .

To obtain the estimate of Ψv in (5.39), we define Υv = [Υv1 Υv2] ∈ CK×2K .

According to the standard TLS [119], the estimate of Ψv is Ψ̂v = −Υ̂v1Υ̂
−1
v2 , where

the K eigenvalues of Ψ̂v, i.e., λv,k, k = 1, 2, . . . , K, are sorted in descending order.

We now generalize the matrix TLS problem formulation [119] to the tensor case, as

given by:

Υ̂v = arg min
Υv

‖Usv1 ×4 Υv1 + Usv2 ×4 Υv2‖ , s.t. ΥvΥ
H
v = IK , (5.40)

which finds a unitary matrix Υv whose submatrices are orthogonal to Usv1 and Usv2

in mode-4.

According to (A.7), the mode-4 unfoldings of Usv1 is given by

Usv1(4) = Us(4) (Jv1 ⊗ IMhd
⊗ IMf

)T , (5.41)

2The least-squares (LS) procedure can also be used for solving the invariance equation (5.39),

but has slightly lower accuracy than TLS. Section 5.6 will provide the results of performance

comparison between the proposed algorithm (T-CTLS), which applies TLS-ESPRIT for parameter

estimation, with its variation (T-CLS), which uses LS-ESPRIT.
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where Us(4) ∈ CK×MvdMhdM f is the mode-4 unfolding of Us. The mode-4 unfoldings of

Usv1 can be formulated in the same way. Since ‖A‖ =
∥∥A(n)

∥∥
F

(n = 1, 2, . . . , N) [76],

we rewrite the tensor TLS problem (5.40) in a matrix format as:

Υ̂v = arg min
Υv

∥∥∥Υv1Us(4) (Jv1 ⊗ IMhd
⊗ IMf

)T +Υv2Us(4) (Jv2 ⊗ IMhd
⊗ IMf

)T
∥∥∥

F

= arg min
Υv

∥∥WvΥ
T
v

∥∥
F
, (5.42)

where

Wv =
[
(Jv1 ⊗ IMhd

⊗ IMf
) Us

T
(4) (Jv2 ⊗ IMhd

⊗ IMf
) Us

T
(4)

]
∈ C(Mvd−1)MhdM f×2K .

(5.43)

The SVD of WH
v Wv is written as WH

v Wv = U̇vΛ̇vV̇v, where U̇v ∈ C2K×2K and

V̇v ∈ C2K×2K are the left and right singular matrices, respectively; and Λ̇v ∈ C2K×2K

contains singular values. We partition U̇v into four blocks:

U̇v =

 U̇v11 U̇v12

U̇v21 U̇v22

 ∈ C2K×2K . (5.44)

Let Υ̂v1 = U̇T
v12 ∈ CK×K and Υ̂v2 = U̇T

v22 ∈ CK×K .

According to the array steering expression in (5.4), the elevation angle of the

k-th path can be finally estimated as

θ̂k = arccos

(
jc ln(λv,k)

2πf0h

)
. (5.45)

Estimation of Delay

We can estimate the delays by exploiting the shift-invariance relation between the

delay-related subtensors. We express the delay-dependent shift-invariance relation,

as follows.

Ã ×3 Jf2 = Ã ×3 Jf1 ×4 Θf, (5.46)

where Θf = diag
(
e−j2π∆Fτ1 , . . . , e−j2π∆FτK

)
with ∆F being the subcarrier spacing.

Jf1 and Jf2 are two selection matrices to select the delay-related subtensors. Jf1 and
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Jf2 can be constructed in the same way as in (5.36). By using TLS-ESPRIT (5.40),

the delay of the k-th path, τk, can be estimated as

τ̂k =
j ln(λf,k)

2π∆F

, (5.47)

where λf,k is an eigenvalue of the delay-related matrix Ψf = DΘfD
−1. In the

presence of non-negligible noises, the estimates of the elevation angle and delay of

each source may be paired incorrectly. After obtaining the estimates of Ψ̂v and Ψ̂f

with (5.40), joint SVD methods [120] can be used to obtain the joint eigenvalues of

Ψ̂v and Ψ̂f, and then the correctly matched pairs of estimated parameters can be

obtained.

Estimation of Azimuth Angle

We design the tensor-MUSIC algorithm [78] to estimate the azimuth angle of

each path. From (5.12), there are nonlinear Bessel functions in the expression for

the horizontal array steering matrix Ãh, and therefore there is no shift-invariance

relation for the azimuth angle estimation, as opposed to (5.37).

According to (5.32), we discard the largest K singular values of the mode-n

unfoldings of the measurement tensor Y , i.e., setting the corresponding parts of L

to zero. Then we obtain the noise subspace tensor as3:

Yn = Ln ×1 Uv,n ×2 Uh,n ×3 Uf,n ×4 Ut,n, (5.48)

where Uv,n ∈ CMvd×(Mvd−K) is constructed by the last (Mvd − K) columns of Uv;

Uh,n ∈ CMhd×(Mhd−K) is the last (Mhd−K) columns of Uh; Uf,n ∈ CMf×(Mf−K) is the

last (Mf −K) columns of Uf; and Ut,n ∈ CMt×(Mt−K) is the last (Mt −K) columns

of Ut. The core Ln can be evaluated by

Ln = Yn ×1 UH
v,n ×2 UH

h,n ×3 UH
f,n ×4 UH

t,n. (5.49)

3It is well known that this solution for estimating the noise subspace is not optimal in the least

squares sense. However, it is a good approximation in most cases [2,75] and it is easy to implement.
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Based on the subspace estimation of Y (5.34), we generalize the matrix-based MU-

SIC, and the tensor MUSIC spectrum of the azimuth angle is defined as

SPMUSIC(Φ) =
∥∥∥Ã ×2 UH

h,n

∥∥∥−2

, (5.50)

where Φ = [φ1, φ2, . . . , φK ].

According to (A.7), the mode-2 matricization of Ã in (5.33) can be expressed as

Ã(2) = ÃhhbZs(2)

(
Af ⊗ IMt ⊗ Ãvhb

)T
. (5.51)

We substitute (5.51) into (5.50) and obtain the mode-2 matricization of (5.50),

as given by

SPMUSIC(Φ) =

∥∥∥∥UH
h,nÃhhbZs(2)

(
Af ⊗ IMt ⊗ Ãvhb

)T∥∥∥∥−2

F

. (5.52)

By substituting the estimated elevation angle of each path, i.e., (5.45), into (5.52),

the corresponding azimuth angle φk can be estimated by searching the prominent

peaks of the tensor MUSIC spectrum (5.52).

Remark 1. When applying the tensor-based TLS-ESPRIT and MUSIC algorithms

to estimate the parameters, we first apply the HOSVD evaluates the SVD of the

unfoldings of Y in all modes, and then suppress the noise components by discard-

ing the singular vectors and slices of the core tensor that correspond to insignificant

singular values of the matricized tensor in each mode. The uniqueness and identifi-

ability of the proposed algorithm inherits from that of the matrix-based counterpart

of the algorithm, due to the fact that the proposed algorithm can be regarded as the

high-dimensional generalization of the matrix-based counterpart [76]. In particular,

to achieve the unique parameter estimates of the K sources would need to construct

the signal subspace tensor Us with a smaller number of sources K than time frames

Mt. Our method is suitable for multi-dimensional parameter estimation problem-

s in mmWave systems, where K � min(Mvd,Mhd,M f,Mt) due to the sparsity of
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mmWave4.

When applying the matrix-based alternative, the noise is only suppressed in one

of the dimensions (or modes) of the measurement tensor, hence degrading the es-

timation accuracy. This is because the noise is multi-dimensional with the same

dimensions as the received signal. It is important to take all dimensions of the re-

ceived signal into consideration, and suppress the noises in all the dimensions. Thus,

the use of tensors can better suppress the noises than matrices, hence improving the

estimation accuracy of the elevation and azimuth angles and the delay, i.e., θ̂k, φ̂k,

and τ̂k.

5.5.3 Tensor-based Spatial Smoothing for UCyA

The parameter estimation presented in Sections 5.5.1 and 5.5.2 is actually the

last step in Fig. 1.5. In this subsection, we propose the necessary optional second-

to-last step. The decomposition of the signal and noise subspaces in (5.31) is under

the assumption that all the received signals are incoherent, as typically required

in the subpace-based parameter estimation algorithms, such as MUSIC [29] and

ESPRIT [63]. The rank of the signal subspace is assumed to be the number of

received signals K. In practice, coherent signals are often received. The rank of the

signal subspace decreases, leading to incorrect decomposition of the subspaces. An

effective method to restore the rank is a spatial smoothing technique [119] which

divides an antenna array into several subarrays and exploits the inherent linear

recurrence relations (i.e., shift invariances) among the subarrays to decorrelate the

coherent signals. Unfortunately, the spatial smoothing technique is only applicable

4In rich multipath environments, i.e., K ≥ max(Mvd,Mhd,M f), no singular values and core

slices of the mode-n unfoldings can be discarded, because all these belong to the signal subspace.

Thus, in this case, the tensor-based subspace estimation is equivalent to the matrix-based coun-

terpart [118].
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Figure 5.3 : An illustration of the proposed spatial smoothing for a five-layer UCyA,

where we need to construct three “subarrays” on the horizontal plane, the second

and third UCAs are seen as the translations of the first UCA at the same layer.

After the spatial smoothing, the original first, second, and third UCAs are at the

first layer of the “new” UCyA, the second layer accommodates the original second,

third and fourth UCAs, and the third layer of the “new” UCyA accommodates the

original third, fourth and fifth UCAs.

to systems with uniformly and linearly spaced antenna elements [119].

We extend the spatial smoothing technique to our hybrid UCyA to decorrelate

coherent signals. This is not trivial, as the array manifolds of the UCyA in the

horizontal space domain (i.e., the second mode of Y) are UCAs, not linear arrays.

It is difficult to split subarrays and obtain the required recurrence relations, as

existing spatial smoothing techniques would require. We propose to utilize the

recurrence relations between the UCAs at different layers of the UCyA to create

the required recurrence-relation subarrays in the horizontal space domain. In other

words, we regard each UCA as a subarray, and use these vertically arranged and

coaxially aligned subarrays to construct the “virtual” subarrays in the horizontal

space domain. The nh-th subarray in the horizontal space domain can be constructed
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as

Y(nh)
ss = Y ×1 Jssh,nh

, (5.53)

where Jssh,nh
= [0Mhd×(nh−1), IMhd

,0Mhd×(Nh−nh)].

Then, we can generate the required linear recurrence relation between two adja-

cent subarrays: Y(nh+1)
ss = Y(nh)

ss ×4 Θh, where

Θh = diag
(
e−j

2π
c
f0h cos(θ1), . . . , e−j

2π
c
f0h cos(θK)

)
. (5.54)

The numbers of subarrays and elements per subarray are determined in the following

theorem:

Theorem 3. If both the numbers of subarrays and elements per subarray are larger

than the number of signals, i.e., Nh ≥ K and Mhd ≥ K, the rank of the signal

subspace in the mode-2 of the concatenated tensor Yssh =

[
t4

nh=1,...,Nh

Y(nh)
ss

]
is K.

Proof. The proof can be developed in the same way as in [1], and hence omitted.

According to Theorem 3, we need to construct subarrays in all domains for the

correct decomposition of the subspaces, and apply the HOSVD in all modes of Y .

Because some of the vertically arranged UCAs are used to construct the “virtual”

subarrays in the horizontal space domain, the number of subarrays in the vertical

space domain decreases. Take the five-layer UCyA in Fig. 5.3(a) for an example.

The original five-layer UCyA shown in Fig. 5.3(a) becomes a three-layer virtual

array, which constructs the subarrays in the vertical space domain, as shown in Fig.

5.3(b).

We propose to meticulously arrange the virtual subarrays. Nv subarrays are con-

structed in the vertical space with M̃v elements per subarray, and Nh subarrays are

constructed in the horizontal space with Mhd elements per subarray. Because there

are linear recurrence relations among subcarrier frequencies, the standard spatial
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smoothing technique can be used in the frequency domain (i.e., the mode-3 of Y).

We decouple the mode-3 of Y into Nf subarrays with M̃f elements each. As a result,

the spatially smoothed tensor is given by

Yss =

[
t4

nv=1,...,Nv

t4
nh=1,...,Nh

t4
nf=1,...,Nf

Y(nv,nh,nf)
ss

]
∈ CM̃v×Mhd×M̃f×(MtNvNhNf), (5.55)

which is obtained by concatenating the subarrays in mode-4:

Y(nv,nh,nf)
ss = Y ×1 Jssvh,nvh

×3 Jssf,nf
, (5.56)

where nvh = nv + nh − 1. Jssvh,nvh
and Jssf,nf

are two subtensor selection matrices,

as given respectively by

Jssvh,nvh
= [0M̃v×(nvh−1), IM̃v

,0M̃v×(Nvh−nvh)]; Jssf,nf
= [0M̃f×(nf−1), IM̃f

,0M̃f×(Nf−nf)
].

(5.57)

The number of subarray elements in the mode-1 and mode-3 can be computed by

M̃v = Mvd−Nv−Nh +2 and M̃f = Mf−Nf +1, respectively. To decorrelate coherent

signals in each domain, we use Yss to replace Y in (5.24). The parameter estimation

of coherent signals follows the rest of the steps recorded in the earlier part of Section

5.5, which is the last step in Fig. 5.2.

Note that the proposed smoothing method is needed to guarantee that the rank

used for parameter estimation is the actual rank. If we conduct the HOSVD based

on a smaller rank (due to coherent signals) than the actual rank, the estimation

performance of the azimuth and elevation angles, and delays would degrade. This

is because when the smaller rank is used, signal components can be incorrectly

decomposed into the noise subspace, reducing the dimensions of the constructed

truncated HOSVD model of Ys in all modes. As a result, we would not be able to

correctly estimate the azimuth and elevation angles, and delays.

Also note that by using the proposed method, the antenna apertures in the first

and third modes are reduced, as the elements in the two modes of the original mea-

surement tensor Y are used to construct a sufficient number of subarrays according
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to Theorem 3. The loss of the antenna aperture in the first mode is nearly one third.

The antenna aperture in the second mode does not change, because the subarrays

in the mode are constructed by the the spatial shift of UCAs at the other layer-

s. Algorithm 2 summarizes the procedure of the proposed tensor-based subspace

estimation algorithm.

5.5.4 Complexity Analysis

The hardware and software complexity of the proposed tensor-based parameter

estimation algorithm is analyzed. The proposed hybrid beamformers reduces the

hardware complexity to O(Mbsr) = O(PMv), while fully digital beamformers using

the same number of antennas have hardware complexity O(Mbs).

As for signal processing complexity, we compare the computational complexi-

ty of the proposed tensor-based algorithm with its matrix-based counterpart and

the state-of-the-art CP-based orthogonal matching pursuit (CP-OMP) algorithm.

For matrix-based algorithms, the computational complexity of performing SVD on

the measurement sample matrix and truncating its rank to K is O(PMvMfMtK).

The complexities of estimating the delay, elevation angle, and azimuth angle are

O(K3 + PMvMf), O(K3 + PMv), and O(PK2 + P 2KD), respectively. D is the

size of search dimension. Thus, the overall complexity of the matrix-based esti-

mation is O(PMvMfMtK + PMvMf + K3 + PMv + PK2 + P 2KD). For the pro-

posed tensor-based algorithm, the truncated HOSVD of the measurement tensor

evaluates the SVD of its matricized form in each mode and discards insignifican-

t singular vectors. The complexity is O(4PMvMfMtK) = O(PMvMfMtK). The

complexity of computing the core Ln and the tensor signal subspace Us in (5.34) is

O(PMvMfMtK + PMvMfK
2). The complexities of estimating delay, elevation and

azimuth angles are O(PMvMf+K
3), O(PMvMf+K

3) and O(PMvMfMtK+P 2KD),

respectively. The tensor-based algorithm needs slightly more computations, but its
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Algorithm 2 Tensor-based subspace estimation algorithm

• Input: The received signals, xmf,mt,mb
(mb = 1, . . . ,Mb, mt = 1, . . . ,Mt,mf =

1, . . . ,Mf), the number of sources, K, and geometrical parameters of the

UCyA.

• Output: The estimated delay, elevation and azimuth angles, τ̂k, θ̂k, and φ̂k,

k = 1, 2, . . . , K.

• Design the analog and digital beamforming matrices, Bab and Bdb,mf,mb
, and

model the beamspace signals according to (5.14).

• Calculate the focusing matrices, Tv,mf,mb
and Th,mf,mb

, by solving (5.18) and

(5.19), and formulate the signals according to (5.21).

• Collect all the sweeping results in (5.22) and formulate them as Y .

• Construct the spatially smoothed tensor Yss by using (5.55).

• Take HOSVD of Yss and get Us according to (5.32) and (5.34).

• Use TLS-ESPRIT (5.38)-(5.44), and estimate θ̂k and τk by using (5.45) and

(5.47), respectively.

• Calculate the noise subspace tensor Yn in (5.48) and estimate φ̂k by searching

the prominent peaks of (5.52).
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complexity is still in the same order with that of its matrix-based counterpart. The

CP-OMP algorithm [78] applies CP decomposition to decompose the received signal

tensor model, and then uses OMP to estimate the parameters. The complexities

are O(PMvMfMtK + PMvMfK
2 + K4) and O(PMvMfMt(N1 + N2 + N3 + N4)),

respectively, where N1 � K, N2 � K, N3 � K and N4 � K are the dimensions of

the OMP grid. The CP-OMP algorithm has a much higher complexity than that of

our algorithm.

5.6 Simulation Results

In this section, simulation results are provided to demonstrate the performance

of the proposed algorithm in the RMa scenario of future 5G/B5G systems. We

simulate a system with 2 GHz bandwidth and a total of 2,000 subcarriers. Out

of the total 2,000 subcarriers, Mf = 20 evenly spaced subcarriers are selected for

the proposed channel parameter estimation. Each of the subcarriers undergoes flat

fading. The reference frequency f0 = 28 GHz, and the number of time frames is

Mt= 20. To evaluate the performance of the proposed algorithm in typical mmWave

channels, all the channel parameters are set according to 3GPP TR 38.901 [121]. A

RMa scenario is considered in our simulation, and thus, the RMa pathloss model

presented in [121] is applied. We set both the azimuth and elevation angle spreads

to be 31.6◦ and the delay spread to be 32.3 ns. The number of time frames is set

to Mt= 20. We assume that there are K = 5 signals, two of which are coherent.

The actual azimuth angles, elevation angles, and delays of the signals are set up

randomly each time. The distance between vertically adjacent UCAs is h = 0.5λ0

and the radius of the UCyA is r = 2λ0, where λ0 = c/f0.

We compare the proposed tensor-based coherent TLS (T-CTLS) algorithm with

its variation (T-CLS) which applies the LS procedure for solving the invariance e-

quation (5.39); its variation without using smoothing (T-CTLS w/o S); its reduced
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Figure 5.4 : The RMSE vs. the average received SNR for the estimation of different

parameters. (a) Azimuth angle; (b) Elevation angle; (c) Delay.
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version in the matrix form (M-CTLS); the state-of-the-art matrix-based incoherent

generalized beamspace MUSIC (M-IGBM) [14]; the tensor-based incoherent MUSIC

(T-IM) [2]; and the state-of-the-art CP-OMP [78]. The CRLB is derived accord-

ing to [47, 117]. Note that both CP-OMP and our proposed parameter estimation

algorithms are only applicable for additive Gaussian noises, where the noises are

independent between different antennas and the noise power is identical at the an-

tennas. This is because the algorithms which exploit the second-order statistics of

the received signals cannot correctly decompose the signal and (non-Gaussian) noise

subspaces.

Fig. 5.4 plots the RMSEs for the estimates of azimuth angles, elevation angles,

and delays of the signals versus the average received SNR, where the BS has 400

receive antennas. Fig. 5.4 shows that our proposed T-CTLS algorithm outperforms

the other algorithms, and its RMSE approaches the CRLB. In Figs. 5.4(a) and (b),

we see that the tensor-based algorithms provide higher accuracy than their matrix-

based counterparts, especially in low SNR regimes. The matrix-based algorithms are

less robust to noises than the proposed tensor-based algorithms. We also see that

CP-OMP has slightly better performance than our proposed algorithm, due to the

fact that CP decomposition can be regarded as a maximum likelihood method under

the additive Gaussian noise. However, its performance improvement is limited since

OMP can only generate discrete estimates. In addition, CP-OMP also has a much

higher complexity than our algorithm, as analyzed in Section 5.5.4. Fig. 5.4(c) shows

that the methods applying coherent wideband signal preprocessing outperform those

employing incoherent wideband preprocessing, in terms of delay estimation, because

the former fully exploits the high temporal resolution offered by wideband mmWave

systems.

Fig. 5.5 shows the RMSEs versus the number of receive antennas under -5

dB SNR. It is seen that the RMSE of the estimated parameters approaches the
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Figure 5.5 : The RMSE vs. the number of BS antennas for the estimation of different

parameters. (a) Azimuth angle; (b) Elevation angle; (c) Delay.
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CRLB, as the number of antennas increases. However, when the number of antennas

is not very large, e.g. less than 100, the algorithms, including T-CTLS, T-CTL,

and M-CTLS, cannot achieve accurate azimuth angle estimation, as shown in Fig.

5.5(a). The reason is that the conditions of Theorem 2 may not be met, and thus

the approximation in (5.6) becomes inaccurate. Nevertheless, when the number of

antennas is large, the RMSEs of these three algorithms decrease fast, and T-CTLS

rapidly outperforms the others. By comparing Figs. 5.4 and 5.5, we also see that if

the proposed spatial smoothing technique is not applied, the estimation accuracy of

the proposed algorithm decreases noticeably. This is because two coherent signals

are decorrelated, the signal and noise subspaces can be incorrectly decoupled without

spatial smoothing, and the parameters of the coherent signals cannot be precisely

estimated.

In order to validate Theorem 2, Fig. 5.6 plots the RMSE of the parameter

estimation versus the highest order, P , with different numbers of horizontal array

steering vectors. The SNR is -5 dB. We see that when P is less than 10 or the

number of the horizontal array steering vectors in (5.5) is 20, the algorithms applying

Theorem 2 to design the hybrid beamformers (i.e., T-CTLS and M-CTLS), cannot

achieve satisfactory estimation, because the number of the transformed beamspace

vectors (5.6) is not sufficient to represent the array response vectors. When P ≥ 12,

regardless of the number of array response vectors, increasing the beamspace vectors

has little impact on the estimation. By exploiting this property, we can reduce the

number of required RF chains and, in turn, the hardware cost.

Fig. 5.7 shows the RMSE of the estimated azimuth angles, elevation angles, and

delays, with an increasing number of received paths. T-CTLS and M-CTLS are

tested. We set SNR to -5 dB and Mf = 8. We observe that the performance gap

between the matrix and tensor forms of the proposed algorithm, i.e., M-CTLS and

T-CTLS, decreases with the increasing number of received paths. This is because the
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noise components which can be suppressed by using the tensor-based algorithms in

the first, second, and third modes of Y , depend on the difference between the number

of paths and the tensor dimension in each mode of Y . As the number of received

paths increases, the gain of the tensor-based algorithm, T-CTLS, diminishes. The

performance gap remains consistent in Fig. 5.7(a) though. This is because, despite

the number of paths increases, the dimension in the first mode of Y , i.e., Mvd =

2P + 1, is still much larger than the number of paths. Moreover, we estimate the

azimuth angles with tensor-MUSIC in (5.50). The method involves peak search,

and is hardly affected by the number of paths. In conclusion, the new tensor-based

algorithm, T-CTLS, can achieve much better performance than its matrix-based

counterpart, especially under B5G settings where the number of received paths is

small due to the sparsity of mmWave propagation.

5.7 Summary

In this chapter, we have presented a new tensor-based multi-dimensional channel

parameter estimation algorithm for wideband directional hybrid UCyAs. By exploit-

ing the multidimensional structure of the received signals, the algorithm suppresses

the noises across all domains of the received signals, improving estimation accuracy.

Specifically, we have designed the hybrid beamformers, which maintains the angu-

lar resolution and suppresses the beam squint effect. We have also formulated the

received signals in the tensor form. We have shown that by applying tensor signal

processing and developing the new HOSVD model, the noise in all the domains can

be suppressed, and the shift-invariance relations can be revealed for parameter esti-

mation. Given the relations, we have designed the new tensor-based TLS-ESPRIT

algorithm, which can accurately estimate the channel parameters from both co-

herent and incoherent signals. By applying the channel parameters presented by

3GPP TR 38.901 [121], simulations have shown that, in the RMa scenario of future
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5G/B5G systems, the proposed tensor-based algorithm can accurately estimate the

multi-dimensional parameters in typically used mmWave channels, and can achieve

much better performance than its matrix-based counterpart.
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Chapter 6

Nested Hybrid UCyA Design and DoA

Estimation

This chapter is devoted to sparse array-based hybrid beamforming and its corre-

sponding angle estimation algorithm for mIoT networks, as illustrated in Fig. 6.1.

Specifically, we propose a new nested massive hybrid UCyA design and the corre-

sponding tensor-based angle estimation algorithm for of mIoT networks. By ex-

ploiting the sparse array techniques, the proposed hybrid antenna array enables the

BS to estimate the DoAs of a large number of devices with much fewer RF chains

than antennas. As a result, the massive access requirement of mIoT can be met,

with significantly reduced hardware cost and network overhead. Tailored for the

new hybrid UCyA array, we also propose a new tensor n-rank enhancement method

and a new tensor-based 2-D DoA estimation algorithm. The algorithm suppresses

the noise components in all tensor modes and operates on the signal data mod-

el directly, hence improving estimation accuracy with an affordable computational

Figure 6.1 : The research scenario studied in Chapter 6.
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complexity. Corroborated by a CRLB analysis, simulation results show that in the

mIoT networks, the proposed hybrid UCyA array and the DoA estimation algorithm

can accurately estimate the 2-D DoAs of a large number of IoT devices.

6.1 Motivation and Overview

MIoT networks, which enables to connect a large number of IoT devices to an

internet-enabled system [84,85], require to reduce cost and power consumption while

maintaining a high network access capability. Hybrid beamforming is a cost- and

energy-efficient architecture to meet the requirement, but most of them apply RF

networks to directly combine the received signals from multiple antennas, which

would penalize system DoF and channel estimation accuracy [18,38].

In this chapter, we apply the sparse array technique to design the hybrid beam-

forming, which enables the DoAs of a large number of devices to be estimated with

a marginal accuracy loss while significantly reducing the number of required R-

F chains. The details of the proposed hybrid beamforming design are presented in

Section 6.3, where we design the hybrid beamforming based on the 2-D nested array.

Compared to other sparse arrays, such as minimum redundancy array (MRA) [88],

minimum hole array (MHA) [89] and coprime array [90], nested arrays can generate

larger hole-free difference coarrays than coprime arrays under the same setting, and

have simple closed-form expressions for a large number of elements, which cannot

be achieved in MRA and MHA. In particular, we first design the phase shifter ma-

trix to transform the nonlinear phase of the UCyA steering vectors to be linear to

the element locations, so that the horizontal symmetric structure of UCyA can be

preserved. We then flatten the 3-D RF-chain connection network of UCyA into a

2-D plane, and design the sparse RF-chain connection network developed from the

“Configuration II” nested array [48]. By deploying the proposed sparse RF-chain

connection network, we show that the proposed network can provide larger DoF
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than the fully connected beamforming array.

To improve the accuracy of channel parameter estimation, we formulate the

received signals in the tensor form and propose a spatial smoothing-based method

to enhance the n-rank of the constructed the second-order statistics of the signal

tensor model. In Section 6.4, we verify that we can build a signal tensor model

that provides a large enough rank in each mode to perform the DoA estimation

of all the devices, even when all the received signal powers, i.e., the second-order

statistics of the signals, are equal. A new tensor-based subspace 2-D DoA estimation

algorithm for the designed nested hybrid UCyA is developed in Section 6.5, where

we combine the tensor tool with ESPRIT to estimate the elevation angles, and

substitute the estimated elevation angles to derive the azimuth angles by using

tensor MUSIC. The hardware and software complexity of the proposed tensor-based

parameter estimation algorithm is also analyzed in 6.5.3.

In Section 6.6, we provide simulation results to evaluate the performance of our

proposed algorithm in the mIoT networks. We show that although our proposed

tensor-based algorithm provides a better parameter estimation accuracy than its

matrix-based counterparts, because it can suppress much more noise components,

it cannot achieve the same accuracy as the CP-based algorithms. However, the

performance gap is small and the CP-based algorithms have much higher compu-

tational complexities than our algorithm, as discussed in Section 6.5.3. We also

compare the proposed algorithm with the tensor-based 2-D MUSIC algorithm, and

show that the performance degeneration of the tensor-based 2-D MUSIC is larger

than the proposed algorithm when SNR decreases. This is because the 2-D MUSIC

uses signal covariance tensors for the 2-D DoA estimation, and its MUSIC spectrum

is a product of multiple separable second-order mode-n spectra, which results in

undesirable cross-terms [94] and compromises the estimation accuracy.
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6.2 System Model

In this chapter, we consider a BS equipped with an Mbs-antenna large-scale

hybrid mmWave UCyA consisting of Mv vertically placed UCAs. Each of the UCAs

is on a horizontal plane with Mh elements, and Mbs = MvMh. Let r be the radius of

the UCyA, and h be the vertical spacing between any two adjacent vertical elements.

We assume that there are K IoT devices, each equipped with a single antenna1. Each

device has a dominating path and different devices have separable and resolvable

paths. Hence, K signal paths are received by the BS. The received signal sample at

the mt-th time frame (mt = 1, . . . ,Mt) can be expressed as [122]

xmt =
K∑
k=1

smt,kB
Habs(φk, θk) + nmt , (6.1)

where φk and θk are the azimuth and elevation DoAs of the k-th device, respectively;

abs(φk, θk) ∈ CMbs×1 denotes the steering vector of the hybrid UCyA; smt,k is the

received symbol of the k-th device at the mt-th time frame; nmt ∈ CMbs×1 denotes

the AWGN; B ∈ CMbs×Mbsd is the hybrid beamforming matrix; and Mbsd is the

number of data streams.

Given the structure of the UCyA, the array steering vector abs(φk, θk) can be

written as abs(φk, θk) = av(θk) ⊗ ah(θk, φk), where av(θk) and ah(θk, φk) are the

vertical and horizontal array steering vectors with their elements given by

[av(θk)]mv
= av,mv(θk) =

1√
Mv

exp

(
−j 2π

λ
h(mv − 1) cos(θk)

)
, (6.2)

[ah(θk, φk)]mh
= ah,mh

(θk, φk)

=
1√
Mh

exp

(
j

2π

λ
r sin(θk) cos(φk − ϕmh

)

)
, (6.3)

1The proposed technique can be readily applied when multiple antennas are deployed at a device.

In that case, the paths originating from different antennas can be distinguished by transmitting

different pilot signals.
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where λ is the wavelength, mv = 1, . . . ,Mv and mh = 1, . . . ,Mh. ϕmh
= 2π(mh −

1)/Mh is the difference of the central angles between the mh-th antenna and the first

antenna of each UCA. In this chapter, the antenna array can be reasonably treated

as a phased array because the signal bandwidth B is much smaller than the carrier

frequency f , i.e. B � f 2, and the signals are narrowband.

6.3 Proposed Nested 3-D Hybrid UCyA

In this section, we design the hybrid beamformer B for performing channel esti-

mation. B = BrfBbb ∈ CMbs×Mbsd can be decoupled between an analog beamforming

matrix Brf ∈ CMbs×Mrf and a digital beamforming matrix Bbb ∈ CMrf×Mbsd . Here,

Mrf is the number of RF chains. We first briefly review the concept of difference

coarray and sparse array, which are heavily used in this chapter. Then, we introduce

the B design process in detail.

6.3.1 Review of Sparse Arrays

Definition 1 (Difference Coarray): For an antenna array with N elements, wn

is the position of its n-th element, n = 1, 2, . . . , N . Let wn ∈ C3×1 denote the 3-D

coordinate of the n-th antenna array element. The locations of all array elements

are collected in the set Da, i.e., Da = {wn}. The difference coarray of the antenna

array is an (virtual) array with element positions given by the set Ddc:

Ddc = {wn1 −wn2} , ∀n1, n2 = 1, 2, . . . , N. (6.4)

According to (6.4), the element positions of the difference coarray are the (self)

differences between the locations of original physical antenna elements.

2Much smaller is defined by |(f ±B)/f | ≈ 1. When f = 60 GHz and B ≤ 2 GHz, it has

|(f ±B)/f | ∈ [0.97, 1.03].
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subarrays: one with N = 3 elements and separation M = 2, and another one with

2M − 1 elements and separation N ; (b) nested array, which is composed of a dense

subarray with N1 = 3 elements and separation 1, and a sparse subarray with N2 = 3

elements and separation N1 + 1; and (c) 2-D nested array, which is composed of a

3× 3 dense subarray and a 5× 2 sparse subarray.
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Based on the definition of difference coarray, we can define a cross difference

coarray, which corresponds to the cross differences between the element locations of

two arrays with N and M elements:

Dcdc = ±{wn −wm} , ∀n = 1, 2, . . . , N, m = 1, 2, . . . ,M. (6.5)

According to (6.4) and (6.5), we can see that the concept of difference coarray arises

naturally in the second-order statistics of the impinging signals. For example, we

consider that a signal xwn ∈ CN×1 is received at the n-th element of an antenna

array. The cross-correlation between the signals received at the n1-th and n2-th

elements of the array is given by

E
{

xwn1
xHwn2

}
= R(wn1−wn2 ) ∈ CN×N , wn1 ,wn2 ∈ Da (6.6)

where R(wn1−wn2 ) can be viewed as a signal sample received by a (larger) difference

coarray with virtual array elements located at (wn1 −wn2) ∈ Ddc [87].

By adequately designing the element locations, i.e., Da, we can increase the num-

ber of virtual elements in the difference coarray after computing the autocorrelation.

If we use the samples from the difference coarray to perform spectral estimation,

the parameters of much more targets can be estimated.

We proceed to introduce the concept of sparse array. An array is said to be

sparse if the spacing between a majority or all of adjacent elements is more than

one (half-wavelength) [87, 90]. By applying the concept of sparse array to antenna

design, we can significantly improve the number of distinguishable targets using

a small number of physical antenna elements [123]. Some well-known 1-D sparse

arrays include MRA [88], MHA [89], nested arrays [87], and coprime arrays [90].

With O(N) physical array elements, both MRA and MHA can construct difference

coarrays with the size of O(N2). However, their geometries need to be constructed by

using searching algorithms, e.g., integer programming [89,124]. Nested and coprime
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arrays were proposed in [87, 90] with closed-form expressions for element locations,

and both of them can construct difference coarrays with the same DoF as MRA

and MHA. An example of nested and coprime arrays, and their difference coarrays

are shown in Figs. 6.2(a) and 6.2(b). Nested arrays can offer larger difference

coarray than coprime arrays, as shown in Fig. 6.2(b), where both of them have six

physical elements. In addition, the difference coarrays of nested arrays consist of

evenly spaced virtual elements with no holes, so that the subspace-based estimation

algorithms, such as MUSIC and ESPRIT, can be utilized on the coarray domain

without creating ambiguities [124]. For the details of these arrays, interested readers

can refer to [87–90].

In the next subsection, we design the phase shifter matrix Bps. Bps can transform

the UCyA steering vectors from the element space into a phase space, where the

phases of the array steering vectors are linear to the element locations. From (6.6),

we see that if we want to construct a difference coarray with a similar geometry

to that of the original array, e.g., the UCyA in our system, the phase of the array

steering vectors should vary linearly with the element locations. However, due to the

special geometry of the UCyA, if we directly calculate the cross correlation of the

array steering vectors, it would generate a virtual non-UCyA composed of multiple

non-UCAs [92], leading to an increased computational complexity and degraded the

estimation accuracy.

6.3.2 Phase-Space Transformation

The analog beamforming matrix Brf = BpsBrfc ∈ CMbs×Mrf is composed of a

phase shifter matrix Bps ∈ CMbs×Mbsr and an RF-chain connection matrix Brfc ∈

CMbsr×Mrf , where Mbsr is the number of output ports of the phase-shifter matrix.

An illustration of the RF front-end structure is shown in Fig. 6.3. Here, we design

Bps based on circular phase-space transformation [110], to transform the nonlinear
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Figure 6.3 : The block diagram of RF front-end structure.

phase of UCyA steering vectors to be linear to the element locations.

We decouple Bps between the vertical and horizontal planes, i.e., Bps = Bvps ⊗

Bhps with Bvps ∈ CMv×Mvr and Bhps ∈ CMh×Mhr , and thus Mbsr = MvrMhr, where

Mvr and Mhr are the number of the phase-shifter output ports along the vertical and

horizontal directions, respectively. According to the phase-space transformation of

UCAs [110], we design Bhps as [Bhps]mh,mhr+P+1 = e
−j 2π(mh−1)

Mh
mhr , where Mhr =

2P + 1, mhr = −P,−P + 1, . . . , P , and P is the highest phase-space dimension.

Thus, the Mh-dimensional array steering vector ah(θk, φk) can be transformed into

a (2P + 1)-dimensional phase space, i.e., ahps(θk, φk) = BH
hpsah(θk, φk) ∈ C(2P+1)×1.

The value of the highest phase-space dimension, P , can be configured based on the

following theorem.

Theorem 4. Suppose that Mh ≥ b4πr/λc. If the highest phase-space dimension, P ,

is larger than b2πr/λc and smaller than Mhr/2, then the elements in the phase-space

response can be approximated by

ahps,p(θk, φk) ≈
√
Mhj

pJp (γ(θk)) exp (−jpφk) , (6.7)
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where γ(θk) = 2πr sin(θk)/λ, p = −P,−P + 1, . . . , P , and Jp (γ(θk)) is the Bessel

function of the first kind of order p.

Proof. See Appendix E.1.

We set Bvps = IMv to preserve the recurrence relations among UCAs. According

to Theorem 4, the array steering vectors abs(θk, φk) after the hybrid beamformer is

given by

abd(θk, φk) = BHabs(θk, φk)

= (BrfBbb)H abs(θk, φk)

= ((Bvps ⊗Bhps)BrfcIMbsr
)H abs(θk, φk)

= BH
rfc (Bvps ⊗Bhps)

H abs(θk, φk), (6.8)

where Bbb is a diagonal matrix used to guarantee the power constraint [125]. With-

out loss of generality, we set Bbb = IMbsr
in this chapter. According to two properties

of the Khatri-Rao product: (A⊗B)H = AH⊗BH and (A⊗B)(C⊗D) = AC⊗BD

[119], (6.8) can be rewritten as

abd(θk, φk) = BH
rfc

(
BH

vps ⊗BH
hps

)
(av(θk)⊗ ah(θk, φk))

= BH
rfc

[(
BH

vpsav(θk)
)
⊗
(
BH

hpsah(θk, φk)
)]

= BH
rfc [avps(θk)⊗ ahps(θk, φk)] , (6.9)

where avps(θk) ∈ CMvr×1, ahps(θk, φk) ∈ CMhr×1, Mvr = Mv, and Mhr = 2P + 1.

According to Theorem 4, we have

avps(θk) = av(θk) = IMvav(θk), (6.10)

ahps,mhr
(θk, φk) =

[
BH

hps

]
mhr+P+1,:

ah(θk, φk ≈
√
Mhj

mhrJmhr
(γ(θk)) exp (−jmhrφk) .

(6.11)
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From (6.10) and (6.11), we see that, through the proposed Bps, the phases of the

array steering vectors become linear to the element locations. This is important to

exploit the property of the sparse array theory to design the RF-chain connection

matrix Brfc.

6.3.3 RF-Chain Connection Network Design

In this subsection, we apply the sparse array technique to design Brfc, which

enables the DoAs of a large number of devices to be estimated with a marginal

accuracy loss while significantly reducing the number of required RF chains. We

aim to use as few RF chains as possible to achieve the same, or even larger, DoF

than the fully connected beamforming array3. This objective is different from the

previous sparse array researches, which have typically focused on maximizing the

size of difference coarrays under the constraint of a fixed number of physical antenna

elements.

We first flatten the 3-D RF-chain connection network of UCyA into a 2-D plane,

as shown in Fig. 6.4, by disjoining the RF-chain connection network at the first

column phase shifters of every UCA. Different from typical 2-D arrays, due to the

periodicity of UCAs, the first and the last phase-shifter output ports of every row in

the flattened 2-D RF-chain connection network are identical, as shown in Fig. 6.4,

where the dotted circles denote the last-column phase shifters.

After the flattening processing, the 3-D RF-chain connection network becomes a

quasi-2-D rectangular array with size of (Mhr +1)×Mvr, where the increased dimen-

sion is due to the repeated phase-shifter output ports, as shown in Fig. 6.4. The idea

of 2-D sparse arrays can be applied to design a 3-D RF-chain connection network of

3Due to the use of phase shifter network, the antenna DoF of UCyA depends on the scale of

the phase shifter network. Thus, if we use a fully connected beamforming array, (2P + 1)Mv RF

chains are needed, which can provide O(PMv) DoFs.
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Figure 6.4 : An illustration of unfolding phase-shifter output ports of a 3-D UCyA

to be a 2-D array.

UCyA4. In this chapter, we design the RF-chain connection network based on a 2-D

nested array. This is because (1) a nested array can generate larger hole-free differ-

ence coarrays than a coprime array under the same setting, as discussed in Section

6.3.1; and (2) it has simple closed-form expressions for a large number of elements,

which cannot be achieved in MRA and MHA. There are also some other frequently-

used 2-D sparse arrays, e.g., hourglass arrays and open box arrays (OBAs) [124,126].

We will compare the RF-chain connection networks designed based on those array

geometries with our design in Section 6.6.

Our proposed sparse RF-chain connection network is developed from the “Con-

figuration II” nested array [48]. In the general “Configuration II” nested array,

when there are Ndense = NvdNhd − 1 and Nsparse = NvsNhs elements in the dense

and sparse subarrays, respectively, the constructed hole-free difference coarray has

Ndc = NvdcNhdc = (2NvdNvs−1)NhdNhs elements [48], as shown in Fig. 6.2(c). Here,

Nvd and Nhd are the numbers of elements in the dense subarray along the vertical

4Although the RF-chain connection network actually does not have the exact shape, according

to the array steering vectors in (6.10) and (6.11), we can also regard the network as an UCyA.
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and horizontal directions, respectively; Nvs and Nhs are the numbers of elements in

the sparse subarray along the vertical and horizontal directions, respectively; and

Nvdc and Nhdc are the numbers of elements in the difference coarray along the ver-

tical and horizontal directions, respectively. We wish to find the distribution of the

RF chains between the sparse and the dense arrays that use as few RF chains as

possible to achieve the same DoF as the fully connected beamforming array.

Due to the above-mentioned periodicity of UCAs, when we apply the sparse

array technique into our hybrid front-end design, two cases need to be considered

for UCyAs. Fig. 6.5(a) shows the first case, where the first and the last columns

of the difference coarray overlap. From Fig. 6.5(a), we can see that because one

column (first or last) of the difference coarray is redundant, two elements of the

sparse subarray can be omitted to reduce the element number. A drawback is that

this case requires Mhr = (Nhs − 1)Nhd, which would impose a strict requirement on

the number of phase shifters on the horizontal plane. The second case is shown in

Fig. 6.5(b), which requires the constructed difference coarray to be larger than the

original UCyA, to achieve the same DoF as a fully connected beamforming array on

the horizontal space. In this case, NhdNhs ≥Mhr > (Nhs − 1)Nhd/2.

In our system, due to the new phase shifter network designed in Section 6.3.2,

we have Mhr = 2P + 1 (which is an odd number). Since in the Configuration II

nested array, the dense and sparse subarrays are symmetric, i.e., both Nhs and Nhd

are odd, we have (Nhs − 1)Nhd is even, and only the above-mentioned second case
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Figure 6.5 : Two cases of 3-D UCyA unfolding. The locations of the cylindrical

post-phase-shifting ports in sparse and dense subarrays are highlighted with blue

and red dots.
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needs to be considered in our system. We formulate the optimization problem as

min
Nvd,Nhd,Nvs,Nhs∈Z+

Mrf = NvdNhd +NvsNhs − 1 (6.12)

s.t. (C1): 2NvdNvs − 1 ≥Mvr,

(C2): NhdNhs ≥Mhr,

(C3): Nvd, Nhd > 1,

(C4): Nhd is odd and Nvd/Nhd ∈ Z+.

(C1) and (C2) guarantee the DoF requirements for the constructed difference coar-

ray of the RF-chain connection network. (C3) avoids solutions that degenerate to

1-D arrays. (C4) is due to the fact that the dense array in Configuration II is

symmetrical, and Nhd and Nvd are invariant factors [93] of the array distribution

matrix.

The solution for (6.12) can be obtained by adopting the following strategy. Ac-

cording to (C1) and (C2), since Nvs, Nhs ∈ Z+, we can obtainNvs = d(Mvr − 1)/2Nvde

and Nhs = dMhr/Nhde. The optimization problem (6.12) becomes

min
Nvd,Nhd∈Z+

Mrf = NvdNhd +

⌈
(Mvr − 1)/2

Nvd

⌉⌈
Mhr

Nhd

⌉
(6.13)

s.t. (C3) and (C4)

Given Mvr and Mhr, we see that (6.13) exhibits the form of y = x+ a
x
, where a > 0 is

a constant and y = x+ a
x
≥ 2
√
a. Because y = 2

√
a iff x = a

x
, the minimum Mrf can

be obtained when the difference between NvdNhd and d(Mvr − 1)/2Nvde dMhr/Nhde

is the smallest. Since Nvd, Nhd, Nvs, Nhs ∈ Z+, we can determine the approximate

value ranges of NvdNhd and d(Mvr − 1)/2Nvde dMhr/Nhde, and (6.13) is an inte-

ger programming problem. According to (C3) and (C4), the optimal solutions of

Nvd, Nhd, Nvs, and Nhs to (6.13) can be obtained by using brute-force search with

the value range between NvdNhd and d(Mvr − 1)/2Nvde dMhr/Nhde.
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In the proposed sparse RF-chain connection network, the RF chains only need

to connect the phase shifters located in the dense and sparse subarrays. Based

on the calculated values of Nvd, Nhd, Nvs, and Nhs, now we provide the element

locations in the dense and sparse arrays. For illustration convenience, we define the

overlapping point of the sparse and dense arrays as the origin of the nested array5.

Let msp = (mv sp,mh sp) and mde = (mv de,mh de) as the locations of elements in the

dense and sparse arrays (to which the RF chains connect), respectively. We have
mv sp = Nvd(nvs − 1),

mh sp = Nhd(−Nhs/2 + nhs − 1/2),

(6.14)


mv de = −Nvd + nvd,

mh de = −(Nhd − 1)/2 + nhd − 1,

(6.15)

where nvs = 1, 2, . . . , Nvs; nhs = 1, 2, . . . , Nhs; nvd = 1, 2, . . . , Nvd; and nhd =

1, 2, . . . , Nhd. Let Mrf d = {mv de ⊗mh de} and Mrf s = {mv sp ⊗mh sp} denote

the sets of the RF-chain connection points in the dense and sparse arrays, respec-

tively. mv de ∈ CNvd×1 and mh de ∈ CNhd×1 are the element locations of the dense

array along the vertical and horizontal directions, respectively. mv sp ∈ CNvs×1 and

mh sp ∈ CNhs×1 are the element locations of the sparse array along the vertical

and horizontal directions, respectively. The set of RF-chain connection points is

Mrfc = {Mrf d ∪Mrf s} . The constructed RF-chain connection matrix Brfc is given

by

[Brfc]mbsr,mrf
=



1, if mbsr ∈Mrfc and

[Brfc]m′bsr 6=mbsr,mrf
= [Brfc]mbsr,m

′
rf 6=mrf

= 0;

0, otherwise.

(6.16)

5Because the parameter estimation depends on the difference between array elements, the

changed absolute positions of array elements does not effect the estimation performance.
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By deploying the proposed sparse RF-chain connection network and using the

second-order statistics of the received signal for channel estimation, the DoF of the

proposed network is O((2NvdNvs − 1)×Mhr). In other words, according to [93], we

can estimate the channel parameters of (Nvdc − 1)(Nhdc − 1) devices by using the

proposed hybrid front-end. Because there is an overlapping point at the origin, the

total number of RF chains required in our network is Mrf = NvdNhd +NvsNhs−1, as

shown in (6.12)6. Due to the periodicity of UCAs, there are only up to Nhdc = Mhr

virtual elements on the horizontal plane of the constructed 3-D difference coarray

of the RF-chain connection network. Along the vertical direction, the number of

virtual elements is Nvdc = 2NvdNvs − 1.

According to the element locations of the dense and sparse arrays in (6.14) and

(6.15), we also provide the element locations of the constructed difference coarray.

Let mdc = (mv dc,mh dc), where mv dc and mh dc correspond to the locations along

the vertical and horizontal directions, respectively. We have

mv dc = −(Nvdc − 1)/2 + nvdc − 1 = −NvdNvs + nvdc, (6.17)

mh dc = −(Nhdc − 1)/2 + nhdc − 1 = −P + nhdc − 1, (6.18)

where nvdc = 1, 2, . . . , Nvdc and nhdc = 1, 2, . . . , Nhdc. The shape of the constructed

3-D difference coarray RF-chain connection network is the same as the UCyA, but

the former has a larger DoF.

The signals through the proposed RF-chain connection network are given by

xsn,mt =
K∑
k=1

smt,kasn(φk, θk) + nsn,mt , (6.19)

6It can also be proved that the phase shifter at this location is useless and does not need to

be connected [48]. However, for ease of description, here we assume that this phase shifter is

connected in our network, which does not affect the results in this chapter.



146

where

asn(φk, θk) =

 asn,s(φk, θk)

asn,d(φk, θk)

 =

 asn,sv(θk)⊗ asn,sh(θk, φk)

asn,dv(θk)⊗ asn,dh(θk, φk)

 . (6.20)

The elements of asn,sv(θk) ∈ CNvs×1 and asn,sh(θk, φk) ∈ CNhs×1 are asn,sv,nvs(θk) =

avs,mv sp(θk) and asn,sh,nhs
(θk, φk) = ahs,mh sp

(θk, φk), respectively, where avs,mv sp(θk)

and ahs,mh sp
(θk, φk) are the array steering vectors of the sparse subarray along the

vertical and horizontal directions, respectively. The elements of the array steering

vectors of the dense subarray, i.e., asn,dv(θk) ∈ CNvd×1 and asn,dh(θk, φk) ∈ CNhd×1,

can be written in the same way. Here, nsn,mt ∈ CMrf×1 is the noise component

through the RF-chain connection network.

The signal model (6.19) can also be rewritten as

xsn,mt = Asnsmt + nsn,mt , (6.21)

where Asn = [asn(φ1, θ1), asn(φ2, θ2), . . . , asn(φK , θK)] ∈ CMrf×K and smt = [smt,1, smt,2,

. . . , smt,K ]T ∈ CK×1.

By calculating the autocorrelation of xsn,mt , we have

Rsn,mt = E
{
xsn,mtx

H
sn,mt

}
= AsnRss,mtA

H
sn + Rnn,mt , (6.22)

where Rss,mt = diag
(
σ2

s,mt,1, . . . , σ
2
s,mt,K

)
and Rnn,mt = diag

(
σ2

n,mt,1, . . . , σ
2
n,mt,K

)
are

the autocorrelation matrices of smt and nsn,mt , respectively.

We vectorize Rsn,mt as

yvR,mt = vec(Rsn,mt) = [A∗sn �Asn] dmt + vec(Rnn,mt), (6.23)

where [dmt ]k,1 = σ2
s,mt,k

, and σ2
s,mt,k

is the power of the k-th signal. The k-th colum-

n of the matrix [A∗sn �Asn] contains elements representing the cross-differences be-

tween sparse and dense subarrays, i.e., a∗sn,s,msp
(φk, θk)asn,d,mde

(φk, θk) and a∗sn,s,mde
(φk,

θk)asn,d,msp(φk, θk), and the self-differences of sparse and dense subarrays, i.e., a∗sn,s,msp,1
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(φk, θk)asn,s,msp,2(φk, θk) and a∗sn,d,mde,1
(φk, θk)asn,d,mde,2

(φk, θk). Here, msp,1 and msp,2

denote that asn,s,msp,1(φk, θk) and asn,s,msp,2(φk, θk) are different elements in the sparse

subarray, and mde,1 and mde,2 denote that asn,d,mde,1
(φk, θk) and asn,d,mde,2

(φk, θk) are

different elements in the dense subarray.

We sort the rows of yvR,mt in the ascending order of their phases, and then

remove the redundant rows with the same phases. Then, we can obtain the array

steering vector of the difference coarray Adf ∈ CNvdcNhdc×1 from [A∗sn �Asn]. We also

calculate and store the mean of the “nonzero” rows of vec(Rnn,mt)
7, and obtain

ydf,mt = Adfdmt + σ2
nedf, (6.24)

where [Adf]:,k = adf(φk, θk) = adfv(θk) ⊗ adfh(θk, φk) and edf ∈ CNvdcNhdc×1 is a

vector of all zeros except a “1” at the (P + 1)NvdNvs-th entry. The elements of

adfv(θk) ∈ CNvdc×1 and adfh(θk, φk) ∈ CNhdc×1 are given by

adfv,nvdc
(θk) =

1

Mv

exp

(
−j 2π

λ
hmv dc cos(θk)

)
, (6.25)

adfh,nhdc
(θk, φk) = ξmh dc

(θk) exp (−jmh dcφk) , (6.26)

where ξmh dc
(θk) = Mhj

mh dcJmh ds,1
(γ(θk)) Jmh ds,2

(γ(θk)) , and mh dc = mh ds,1 −

mh ds,2 (mh ds,1,mh ds,2 ∈ Mh ds). Mh ds = {mh de,mh sp} collects the horizontal

locations of the elements in the dense and sparse arrays. (6.24) can be viewed as

the signal dmt received at an array with steering matrix Adf.

Now we formulate the received samples in the tensor form. We first decompose

ydf,mt into the vertical and horizontal domains (corresponding to the first and second

modes of the tensor model), as given by Ydf,mt = invec(ydf,mt) ∈ C(2NvdNvs−1)×Mhr .

7All the rows of vec(Rnn,mt) with nonzero value correspond to the phase difference of 0 in the

difference coarray, which are produced by the self difference of sparse and dense subarrays. Because

the noise is temporally and spatially white with power σ2
n, by averaging the value of these rows,

we have σ2
n =

∑K
k=1 σ

2
n,mt,k

.
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Then, we collect Ydf,mt at all time frames, and store them in the time domain

(corresponding to the third mode of the tensor model). Thus, the received samples

can be expressed as

Ydf = [Ydf,1 t3 Ydf,2 t3 . . . t3 Ydf,Mt ] = Adf ×3 D +Ndf ∈ CNvdc×Nhdc×Mt , (6.27)

where D = [d1,d2, . . . ,dMt ]
T ∈ CMt×K , Adf ∈ CNvdc×Nhdc×K is known as the

space-time response tensor [113], and Ndf is the noise tensor model. Due to the

above-mentioned process (6.24)-(6.27), the elements of Ndf are all zeros except σ2
n

at (0, 0,mt), mt = 1, 2, . . . ,Mt. In (6.27), Adf is obtained as

Adf = [adfv(θ1) ◦ adfh(θ1, φ1) t3 adfv(θ2) ◦ adfh(θ2, φ2)

t3 . . . t3 adfv(θK) ◦ adfh(θK , φK)]. (6.28)

By substituting (6.28) into (6.27), we obtain

Ydf =
K∑
k=1

adfv(θk) ◦ adfh(θk, φk) ◦ [D]:,k +Ndf = JZdf; Adfv,Adfh,DK +Ndf, (6.29)

where [Adfv]:,k = adfv(θk), [Adfh]:,k = adfh(θk, φk), and Zdf ∈ CK×K×K is an order-3

identity superdiagonal tensor8.

Eq. (6.27) shows that the elements of the equivalent signal matrix D ∈ CMt×K

are actually the received signal powers due to the autocorrelation calculation (6.22).

To build a full-rank matrix D for DoA estimation, one would need to assume that

the received signal powers change over time, and the power of every signal is different

from each other, as assumed in [127]. However, such assumption is unrealistic in

practice. It is possible that the rank of the equivalent device signal matrix D is

smaller than the number of devices K, i.e., Rank(D) < K, which behaves as if

some of the received signals are coherent, leading to incorrect channel estimation.

8A tensor A ∈ CI1×I2×···×IN is diagonal if ai1i2···iN 6= 0 only if i1 = i2 = · · · = iN . When

I1 = I2 = · · · = IN , A is called as superdiagonal.
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Prevent possible coherent signals, we propose a novel approach in the next section

to construct a signal tensor model with suitable n-ranks in all modes. This allows

us to estimate the 2-D DoAs of K devices.

6.4 Spatial smoothing-based tensor n-rank enhancement

In this section, we analyze the relationship between the rank of D and the n-rank

of Ydf. We propose a spatial smoothing-based method to enhance the n-rank of Ydf.

By using the proposed method, we verify that one can build a signal tensor model

that provides a large enough rank in each mode to perform the DoA estimation of

K devices, even when the received signal powers of all the devices are equal. These

powers are steady temporally across all time frames.

As discussed in Section 6.3.3, the rank of D in (6.29) is typically smaller than the

number of devices, K, in practice. Based on the uniqueness condition of tensor CP

decomposition [75], we first provide the following theorem to evaluate the impact of

Rank(D) on the n-ranks of the tensor Ydf.

Theorem 5. For Ydf = JZdf; Adfv,Adfh,DK + Ndf, if Rank(D) < K, the ranks of

the signal spaces of Ydf in all modes are smaller than the number of devices K, i.e.,

Rank(Uv,n) < K, n = 1, 2, 3, where Uv,n is the mode-n signal subspace of Ydf with

Uv,1 ∈ CNvdc×K, Uv,2 ∈ CNhdc×K, and Uv,3 ∈ CMt×K.

Proof. See Appendix E.2.

According to Theorem 5, when the rank of D in (6.29) is smaller than the number

of devices K, we cannot decompose the tensor model (6.27) into the signal and noise

spaces in all modes. As a result, the subspace-based algorithms cannot be used to

estimate the angles of the devices. To enhance the n-rank of the signal tensor model,

we apply spatial smoothing techniques [72] to build up a sample tensor model whose

signal subspace is full rank in each mode.
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Figure 6.6 : An illustration of the proposed tensor n-rank enhancement method.
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We divide Ydf in (6.27) into Nis identical subtensors in its first mode, as shown

in the left-hand side of Fig. 6.6. The nis-th subtensor (nis = 1, 2, . . . , Nis) can be

constructed as

Y(nis)
ss = Ydf ×1 Jss,nis

∈ CNss×Nhdc×Mt , (6.30)

where Jss,nis
= [0Nss×(nis−1), INss ,0Nss×(Nis−nis)] and Nss = 2NvdNvs −Nis.

We can see that

Y(nis)
ss =

r
Zdf; A

(nis)
dfv ,Adfh,D

z
+N (nis), (6.31)

where A
(nis)
dfv = Jss,nis

Adfv = A
(1)
dfvQ

nis−1
ss ∈ CNss×K , Qss = diag (qss,1, qss,2, . . . , qss,K) ∈

CK×K , qss,k = ej
2π
λ
h cos(θk), and N (nis) = Ndf ×1 Jss,nis

∈ CNss×Nhdc×Mt is the selected

subtensor of the noise model. We can verify that only when NvdNvs − Nss + 1 ≤

nis ≤ NvdNvs, N (nis) has σ2
n at the nss = (NvdNvs − nis + 1)-th entry of the first

mode, while nhdc = P + 1 and mt = 1, 2, . . . ,Mt. In all other cases, N (nis) = 0.

By concatenating the Nis identical subtensors Y(nis)
ss , nis = 1, . . . , Nis, as shown

in the middle block of Fig. 6.6, the spatially smoothed signal tensor model can be

constructed as

Yss =

[
t3

nis=1,...,Nis

Y(nis)
ss

]
∈ CNss×Nhdc×(MtNis), (6.32)

which has a rank large enough in each mode to perform DoA estimation of the K

devices.

Now, we proceed to verify the n-ranks of Yss. Define Y(nis)
ss,s =

r
Zdf; A

(nis)
dfv ,Adfh,D

z
.

We have

[
Y (nis)

ss,s

]
nss,nhdc,mt

=
K∑
k=1

[
A

(nis)
dfv

]
nss,k

[Adfh]nhdc,k
[D]mt,k

=
K∑
k=1

([
A

(1)
dfv

]
nss,k

qnis−1
ss,k

)
[Adfh]nhdc,k

[D]mt,k

=
K∑
k=1

[
A

(1)
dfv

]
nss,k

[Adfh]nhdc,k

(
[D]mt,k

qnis−1
ss,k

)
. (6.33)
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Hence,

Y(nis)
ss,s =

r
Zdf; A

(nis)
dfv ,Adfh,D

z
=

q
Zdf; Adfv0,Adfh,D

(nis)
y
, (6.34)

where Adfv0 = A
(1)
dfv and D(nis) = DQnis−1

ss . Therefore, (6.32) can be rewritten as

Yss =

[
t3

nis=1,...,Nis

Y(nis)
ss

]
= JZdf; Adfv0,Adfh,DssK +Nss, (6.35)

where

Dss =
[(

D(1)
)T
,
(
D(2)

)T
, . . . ,

(
D(Nis)

)T]T ∈ C(MtNis)×K , (6.36)

and Nss =

[
t3

nis=1,...,Nis

N (nis)

]
∈ CNss×Nhdc×(MtNis) is a tensor of all zeros except σ2

n

at (nss, 0, m̃t), where nss = (NvdNvs − nis + 1), Mt(nis − 1) ≤ m̃t ≤ Mtnis, and

nis = 1, . . . , Nis.

An illustration of (6.35) is shown at the right of Fig. 6.6, where the recurrence

relations among the divided subtensors in the mode-1 is equivalent to those in the

mode-3. A
(nis)
dfv and D(nis) are the factor matrices [76] of mode-1 and mode-3, re-

spectively. This property can be used to enhance the n-ranks of the signal tensor

model.

We consider the extreme case where the received powers of all the devices are

equal, and these powers are steady temporally across all time frames, i.e., σ2
s,mt,k

=

σ2
s , mt = 1, 2, . . . ,Mt, and k = 1, 2, . . . , K. Then, D = σ2

s 1Mt×K . As a result, Dss

can be rewritten as Dss = σ2
s Q̃ss⊗1Mt , where Q̃ss = [1K ,qss,1,qss,2, . . . ,qss,Nis−1]T ∈

CNis×K , qss,n′is
=
[
q
n′is
ss,1, q

n′is
ss,2, . . . , q

n′is
ss,K

]T
, and n′is = 1, 2, . . . , Nis − 1.

Because the paths are from different directions, Q̃ss is an Nis×K Vandermonde

matrix and Rank(Q̃ss) = min (Nis, K) . Rank(Q̃ss) = K iff Nis ≥ K. According to

Theorem 5, Rankn(Ỹss) = K, when Rank(Dss) = K. Thus, the signal and noise

spaces of Yss in (6.32) can be decomposed in each mode.

We note that the number of Y(nis)
ss needs to be larger than the number of devices,

i.e., Nis ≥ K, to guarantee that Yss is full rank. Also, the system DoF available
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after spatial smoothing is proportional to the size of Y(nis)
ss . Since the total number

of elements in Ydf is constant, increasing the number of Y(nis)
ss implies that the

size of each Y(nis)
ss is smaller, while a larger size of each Y(nis)

ss means there is a

smaller number of recurrence shifts available. In this sense, the best strategy is

to minimize the difference between Nis and Nss. Since in our system, we have

Nis +Nss − 1 = Nvdc = 2NvdNvs − 1, we set Nss = Nis = NvdNvs.

Remark 2. After spatial smoothing, the system DoF becomes half of that in (6.12),

because we divide Ydf into multiple Y(nis)
ss . Therefore, to prevent the system DoF from

decreasing and achieve the target set in Section 6.3.3, we modify (C1) in the opti-

mization problem (6.12) to NvdNvs ≥Mvr. Applying the analytical strategy developed

in Section 6.3.3, we formulate the modified optimization problem (6.12) as

min
Nvd,Nhd∈Z+

Mrf = NvdNhd +

⌈
Mvr

Nvd

⌉⌈
Mhr

Nhd

⌉
(6.37)

s.t. (C3) and (C4).

We see that the minimum Mrf can be obtained when NvdNhd and dMvr/Nvde dMhr/Nhde

are close or equal. Because Nvd, Nhd, Nvs, Nhs ∈ Z+, the optimal value of Nvd, Nhd, Nvs,

and Nhs can be obtained.

6.5 2-D DoA estimation

In this section, the 2-D DoAs are estimated by developing a new tensor-based

subspace estimation algorithm. By exploiting the recurrence relations among the

UCAs, the elevation DoAs are estimated first, and then the corresponding azimuth

angles are estimated by using the tensor MUSIC. The hardware and software com-

plexities are analyzed in the end.
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6.5.1 Estimation of Elevation Angle

We first propose a tensor-based total least-squares (TLS)-ESPRIT algorithm to

estimate the elevation angle of each device. The HOSVD of the measurement tensor

Yss is given by

Yss = L ×1 Udfv0 ×2 Udfh ×3 Uss = JL; Udfv0,Udfh,UssK ∈ CNss×Nhdc×(MtNis), (6.38)

where Udfv0 ∈ CNss×Nss , Udfh ∈ CNhdc×Nhdc , and Uss ∈ C(MtNis)×(MtNis), are the

left singular matrices of the mode-n unfoldings of tensor Yss, and the core tensor

L ∈ CNss×Nhdc×(MtNis) is obtained by moving the singular matrices to the left-hand

side of (6.38):

L = Yss ×1 UH
dfv0 ×2 UH

dfh ×3 UH
ss . (6.39)

Define Ỹss = JZdf; Adfv0,Adfh,DssK , which contains the noise-free components

of Yss. By removing the noise subspace component in each mode, we obtain the

HOSVD model of Ỹss, as given by

Ỹss = Lss ×1 Udfv0,s ×2 Udfh,s ×3 Uss,s ∈ CNss×Nhdc×(MtNis), (6.40)

where Udfv0,s ∈ CNss×K , Udfh,s ∈ CNhdc×K , and Uss,s ∈ C(MtNis)×K are the signal

subspaces in the first, second, and third modes, respectively; and Lss ∈ CK×K×K is

obtained by discarding insignificant singular values of Yss in all the modes.

Define the signal subspace as

Us = Lss ×1 Udfv0,s ×2 Udfh,s ∈ CNss×Nhdc×K . (6.41)

Because Ỹss can be rewritten as Ỹss = Ass ×3 Dss with Ass = Zdf ×1 Adfv0 ×2 Adfh,

we obtain

Ass = Us ×3 Dss. (6.42)

where Dss ∈ C(MtNis)×K is a full column rank matrix. According to the shift-

invariance relation among the subtensors in mode-1, we have

Ass ×1 Jv2 = Ass ×1 Jv1 ×3 Θv, (6.43)
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where Θv = diag
(
e−j

2π
λ
h cos(θ1), . . . , e−j

2π
λ
h cos(θK)

)
, Jv1 = [IMvr−1,0(Mvr−1)×1], and

Jv2 = [0(Mvr−1)×1, IMvr−1]. Let

Usv1 = Us ×1 Jv1 and Usv2 = Us ×1 Jv2. (6.44)

By substituting (6.42) into (6.43), we have Usv2 = Usv1 ×3 Ψv, where Ψv ∈ CK×K

is a full rank matrix. To obtain the estimate of Ψv, we define Υv = [Υv1 Υv2] ∈

CK×2K . We now generalize the matrix TLS problem formulation [119] to the tensor

setting, as follows.

Υ̂v = arg min
Υv

‖Usv1 ×3 Υv1 + Usv2 ×3 Υv2‖ , (6.45)

s.t. ΥvΥ
H
v = IK ,

which finds a unitary matrix Υv with orthogonal submatrices to Usv1 and Usv2 in

mode-3.

The mode-3 unfoldings of Usv1 is given by

Usv1(3) = Us(3) (Jv1 ⊗ INhdc
)T , (6.46)

where Us(3) ∈ CK×MvrMhrM f is the mode-3 unfolding of Us. The mode-3 unfoldings of

Usv2 can be formulated in the same way. Since ‖A‖ =
∥∥A(n)

∥∥
F

(n = 1, 2, . . . , N) [76],

we rewrite the tensor TLS problem (6.45) as

Υ̂v = arg min
Υv

∥∥∥Υv1Us(3) (Jv1 ⊗ INhdc
)T + Υv2Us(3) (Jv2 ⊗ INhdc

)T
∥∥∥

F

= arg min
Υv

∥∥WvΥ
T
v

∥∥
F
, (6.47)

where

Wv =
[
(Jv1 ⊗ INhdc

) Us
T
(3) (Jv2 ⊗ INhdc

) Us
T
(3)

]
∈ C(Nss−1)Nhdc×2K . (6.48)

The SVD of WH
v Wv is written as WH

v Wv = U̇vΛ̇vV̇v, where U̇v ∈ C2K×2K and

V̇v ∈ C2K×2K are the left and right singular matrices, respectively; and Λ̇v ∈ C2K×2K
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contains the singular values. We partition U̇v into four blocks:

U̇v =

 U̇v11 U̇v12

U̇v21 U̇v22

 ∈ C2K×2K . (6.49)

Let Υ̂v1 = U̇T
v12 ∈ CK×K and Υ̂v2 = U̇T

v22 ∈ CK×K . According to the standard

TLS [119], the estimate of Ψv is given by Ψ̂v = −Υ̂v1Υ̂
−1
v2 , where the K eigenvalues

of Ψ̂v, i.e., ψv,k, k = 1, 2, . . . , K, are sorted in descending order. According to

the array steering expression (6.2), the elevation angle of the k-th device can be

estimated as

θ̂k = arccos (jλ ln(ψv,k)/(2πh)) . (6.50)

6.5.2 Estimation of Azimuth Angle

We use the tensor-MUSIC algorithm [78] to estimate the azimuth angle of each

device. According to (6.40), we can discard the largest K singular values of the

mode-n unfoldings of Yss and obtain the noise subspace in mode-2, Udfh,n. Then, we

generalize the matrix-based MUSIC to the tensor, and the tensor MUSIC spectrum

of the azimuth angle can be defined as

SPMUSIC(Φ) =
∥∥Ass ×2 UH

dfh,n

∥∥−2
, (6.51)

where Φ = [φ1, φ2, . . . , φK ]. The mode-2 unfolding of Ass can be expressed as

Ass(2) = AdfhZdf(2) (IMtNis
⊗Adfv0)T , (6.52)

where Zdf(2) is the mode-2 unfolding of Zdf. According to a property of tensor

multiplication and unfolding: ‖A‖ =
∥∥A(n)

∥∥
F
, n = 1, 2, . . . , N , we can rewrite the

tensor MUSIC spectrum (6.51) as

SPMUSIC(Φ) =
∥∥∥UH

dfh,nAdfhZdf(2) (IMtNis
⊗Adfv0)T

∥∥∥−2

F
. (6.53)

By substituting the estimated elevation angle of each device (6.50) into (6.53), the

corresponding azimuth angle φk can be estimated by searching the prominent peaks
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Algorithm 3 Tensor-based subspace estimation algorithm

• Input: The processed signal, Yss, and the number of devices, K.

• Output: The estimated elevation and azimuth angles, θ̂k and φ̂k, k =

1, 2, . . . , K.

• Take the HOSVD of Yss and obtain Us, Usv1, and Usv2 according to (6.41) and

(6.44).

• Estimate Ψ̂v by solving the tenosr TLS problem (6.45).

• Calculate the eigenvalues of Ψ̂v, i.e., ψv,k, k = 1, 2, . . . , K, and estimate θ̂k by

using (6.50).

• Calculate Udfh,n and estimate φ̂k by searching the prominent peaks of (6.53).

of the tensor MUSIC spectrum (6.53). Algorithm 3 summarizes the procedure of

the proposed tensor-based subspace estimation algorithm.

6.5.3 Complexity Analysis

We analyze the hardware and software complexity of the proposed tensor-based

parameter estimation algorithm.

For the hardware complexity, the use of the proposed hybrid array reduces the

hardware complexity to O(Mrf) = O(NvdNhd + NvsNhs), while a fully digital array

using the same number of antennas would have a hardware complexity of O(Mbs).

We compare the system power consumption between our system, and the systems

using hourglass arrays [124] and OBAs [126]9. According to [128], the power of a

9For a fair comparison, all these systems do not consider using spatial smoothing, and the

periodicity of UCAs is considered here.
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Figure 6.7 : Variation of the software complexity vs. DoF.

hybrid array is consumed by its RF chains, analog-to-digital converters (ADCs),

local oscillators, power amplifiers, and phase shifters. Since the proposed method,

and the methods using hourglass arrays and OBAs, are only different in terms of

the design of RF connection matrices, the numbers of required phase shifters, local

oscillators, and power amplifiers are the same across these three methods. As a

result, the difference of system power consumption between the methods depends

on the numbers of RF chains and ADSs. Also note that the number of RF chains is

equal to the number of ADCs. Assume that the dimension of phase-shifter output

ports is Mhr×Mvr = 29× 17. In our system, only Mrf = NvdNhd +NvsNhs− 1 = 32

RF chains (and ADSs) are required by solving (6.12). However, in the systems

using hourglass arrays and OBAs, the numbers of required RF chains are 37 and 35,

respectively.

As for the signal processing complexity, we compare the computational complexi-

ty of the proposed tensor-based algorithm with its matrix-based counterpart, which
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formulates the signal model in the matrix form and uses matrix-based ESPRIT-

MUSIC algorithm for DoA estimation. For matrix-based algorithms, the compu-

tational complexity of performing SVD to the measurement sample matrix and

truncating its rank to K is O(NssNhdcMtNisK). The complexities of estimating

the elevation and azimuth angles are O(K3 +NssNhdc) and O(NhdcK
2 +N2

hdcKD),

respectively. D is the size of search dimension. For the proposed tensor-based al-

gorithm, the computational complexity of taking the HOSVD of the tensor model

is O(NssNhdcMtNisK). The computational complexities of estimating elevation and

azimuth angles are O(NssNhdc +K3) and O(NssNhdcMtNisK+N2
hdcKD), respective-

ly. The new tensor-based algorithm needs slightly more computations, but is in the

same order as its matrix-based counterpart.

We also compare our algorithm with the CP-based simultaneous-orthogonal

matching pursuit (S-OMP) algorithm [78]. The algorithm first applies CP decom-

position to decompose the received signal tensor model, and then applies S-OMP to

estimate the parameters. The complexities of the CP decomposition and S-OMP are

O(NssNhdcMtNisK+NssNhdcK
2 +K3) and O(NssNhdcMtNis(N1 +N2)), respectively,

where N1 � K and N2 � K are the dimensions of the OMP grid. The complexi-

ty of CP-based subspace algorithm is much higher than that of our HOSVD-based

algorithm.

Note that all the operations in our DoA estimation algorithm are on the signal

data tensor model directly. If our algorithms operate on the signal covariance tensor,

we need to calculate the signal covariance tensor model [2, 79,94]

Rss =
1

MtNis

MtNis∑
m=1

Yss,m ◦ Y∗ss,m ∈ CNss×Nhdc×Nss×Nhdc , (6.54)

where Yss,m ∈ CNss×Nhdc is the m-th subtensor of Yss, m = 1, 2, . . . ,MtNis, and

then, take the HOSVD of (6.54). The computational complexity of this process

is O(MtNisN
2
ssN

2
hdc + N2

ssN
2
hdcK), which needs much more computations than our
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algorithms.

The results of the computational complexities of our algorithm, its matrix-based

counterpart, CP-based S-OMP algorithm, and the proposed algorithm operating on

the covariance tensor, as a function of the system DoF, O(NssNhdc), are presented

in Fig. 6.7, where Mt = 20, Nis = 20, K = 15, and N1 = N2 = 50. The figure

shows that our proposed algorithm requires more computations than its matrix-

based counterpart at the gain of significantly improved DoA estimation performance,

as will be seen in Section 6.6. However, compared to the other two algorithms, the

computational complexity of our algorithm is much lower.

6.6 Simulation Results

In this section, simulation results are provided to demonstrate the performance

of the proposed algorithm in the mIoT networks. The system bandwidth is B = 1

GHz. The number of time frames is set to Mt= 20. The reference radial frequency

f = 28 GHz. The vertical spacing between adjacent receiving UCAs is h = 0.5λ

and the radius of the UCyA is r = 2λ, where λ = c/f and c is the speed of light.

The geometry parameters of the UCyA are Mv = 25 and Mh = 30. For the hybrid

beamforming, we set Nvd = 5, Nhd = 5, Nvs = 5, and Nhs = 6, so there are

Mrf = NvdNhd +NvsNhs − 1 = 54 RF chains in our system.

Fig. 6.8 plots the root mean square errors (RMSEs) for the estimates of the

azimuth and elevation angles versus the average received SNR, where the DoAs

of K = 50 devices are estimated. By using the proposed nested sparse hybrid

beamforming, we compare the proposed HOSVD-based ESPRIT-MUSIC (HB-H-

EM) algorithm with its reduced version in the matrix form (HB-H-EM (M)), the

CP-based S-OMP (HB-C-SO) algorithm [78], the HOSVD-based 2-D MUSIC (HB-

H-2DM) algorithm [94], and the proposed algorithm but using OBA to design the

RF connection matrix (HB-H-EM (OBA)). We also apply the proposed algorithm



161

for fully digital beamforming (DB-H-EM), and provide the CRLB [117] as a ref-

erence. We can see that all the estimated algorithms approach the CRLB, as the

average received SNR increases. Fig. 6.8 also shows that our proposed tensor-based

algorithm provides a better accuracy than its matrix-based counterparts. This is

because the tensor-based algorithm can suppress the noise components in each mod-

e of the signal tensor model, while the matrix-based algorithm can only suppress

the noise in the time domain corresponding to the third mode in this chapter. By

applying CP to decompose the signal tensor model, HB-C-SO achieves better esti-

mation performance than other HOSVD-like algorithms. However, the performance

improvement is limited because HB-C-SO uses S-OMP to estimate the parameters,

generating quantized estimates only. We also observe that the precision of the angle

estimation of our proposed algorithm is a bit lower than that of DB-H-EM. However,

both DB-H-EM and HB-C-SO have a much higher complexity than our algorithm,

as analyzed in Section 6.5.3. In addition, the estimation accuracy is nearly the same

between the proposed HB-H-EM and HB-H-EM (OBA). This is because the DoA

estimation accuracy depends on the dimension of the difference coarray, not the

dimension of the RF chain network, while the constructed difference coarrays of the

two methods are identical.

Fig. 6.9 shows the RMSEs for the estimates of DoAs versus the average received

SNR. The number of devices is K = 200. By comparing Figs. 6.8 and 6.9, we see

that for the fixed SNR and a fixed number of RF chains, the estimation accuracy

of all the tested algorithms decreases as K increases. This is because as K grows,

more signal components need to be estimated and distinguished. Compared with

Fig. 6.8, Fig. 6.9 also shows that the performance degeneration of HB-H-2DM

is larger than other algorithms. This is because HB-H-2DM uses signal covariance

tensors for the 2-D DoA estimation, and its MUSIC spectrum is a product of multiple

separable second-order mode-n spectra, which results in undesirable cross-terms [94]
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Figure 6.8 : The RMSE vs. the average received SNR for the estimation of DoAs

for identifying K = 50 devices. (a) Azimuth angle; (b) Elevation angle.
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Figure 6.9 : The RMSE vs. the average received SNR for the estimation of DoAs

for identifying K = 200 devices. (a) Azimuth angle; (b) Elevation angle.
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Figure 6.10 : 2-D DoA estimation by using the proposed algorithm for 100 devices.

and compromises the estimation accuracy.

Fig. 6.10 evaluates the performance of our proposed algorithm. Without loss

of generality, here we estimate the 2-D DoAs of K = 100 devices, where SNR = 5

dB. As seen from the results, the proposed algorithm can accurately estimate the

azimuth and elevation angles of 100 devices. All the estimates are well matched

with the actual values, while we only use 54 RF chains in our system.

6.7 Summary

In this chapter, we have proposed a novel sparse nested hybrid UCyA for mIoT

networks. A corresponded 2-D DoA estimation algorithm has also been presented,

based on the second-order statistics of the received signals. We have shown that by

exploiting the difference coarray technique and tailoring for the UCyA, the designed

hybrid array only requires a small number of RF chains to achieve DoA estimation
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for a massive number of IoT devices. We have also proposed a spatial smoothing-

based method to enhance the n-ranks of the signal tensor model. By using the

method, a large enough rank in each mode of the signal tensor model can be pro-

vided for the DoA estimation of K devices. By processing the signals in the tensor

form and operating on the signal data tensor model directly, we have demonstrated

that the proposed DoA estimation algorithm can significantly improve the estima-

tion accuracy while reducing the computational complexity. We have also shown

via simulations that, in the mIoT networks, the proposed hybrid array system can

accurately estimate the 2-D DoAs of a large number of IoT devices.
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Chapter 7

Conclusion and Outlook

In this thesis, we investigated channel parameter estimation methods for mmWave

systems with large-scale UCyAs. To meet the different communication and de-

ployment requirements of various scenarios, namely, indoor, UMi, RMa, and mIoT,

both digital and hybrid beamformers were considered. Our goal was to find ef-

fective solutions which can improve the accuracy of the estimation methods while

reducing the system complexity (in both hardware and software). We showed that

both mathematics-based and mmWave property-based means can be employed to

achieve the target. For example, we reduced the computational complexity of the

estimation methods by transforming the signals into a low-dimensional beamspace.

We also applied wideband signal-subspace methods to combine the signals across

the wideband, so that the high temporal resolution offered by wideband mmWave

systems can be exploited to improve delay estimation accuracy.

Chapter 3 was devoted to the channel parameter estimation for the indoor sce-

nario with digital UCyAs. To reduce the computational complexity of the estima-

tion method, we first exploited the sparsity and quasi-optical propagation mmWave

and proposed a novel channel compression technique. We showed that by proper-

ly quantizing and selecting the received signals, the proposed technique can remain

the necessary principal signal components, i.e., the LoS and single-bounce scattering

paths, and mitigate the useless secondary components. As a result, the dimension

of the received signal space can be reduced while improving the parameter estima-

tion accuracy. We also developed a joint RSS-AoA estimation algorithm, which
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exploits the different transmission power of paths to estimate the distance between

the BS and the MS, and is based on the beamspace transformation to estimate

the arrival angle of each paths. We showed that the beamspace transformation

can transform signal vectors in the element space to a low-dimensional beamspace,

so that the computational complexity of the parameter estimation can be further

reduced. We finally described a novel indoor positioning approach based on the

estimated parameters. We demonstrated that by exploiting the quasi-optical prop-

agation at mmWave frequencies, only a single BS is required to implement spatial

3-D localization. This is particularly applicable for the mmWave indoor scenario,

where high-accuracy parameter estimation and target localization are required in

limited spaces.

Next, we extended the channel parameter estimation to outdoor mmWave com-

munication scenarios, e.g., UMi and RMa, where hybrid UCyAs were considered.

The hybrid UCyAs have lower hardware cost and power consumption than the

UCyAs with digital front-end, as demonstrated in Chapter 4. We first designed a

new two-step wideband hybrid beamforming strategy for the UMi scenario. The

strategy reduces the dimension of received signals on the horizontal plane by ex-

ploiting the convergence of the Bessel function, and reduces the active beams in the

vertical direction through preselection. We showed that by using this strategy, we

can preserve the important recurrence relationship of the received signals needed for

subspace-based angle and delay estimation, although a dramatically small number of

RF chains is deployed. This is particularly useful for the UMi scenario, where large-

scale UCyAs are deployed and high costs caused by the beamformers need to be

reduced. Then, we generalized the conventional linear interpolation to reconstruct

the received signals of the hybrid beamformer. We showed that this method can

coherently combine the signals across the whole band and suppress the beam squint.

As a result, the subspace-based algorithms can be applied to estimate the angles
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and delays of the multi-path components. In Chapter 4, we also introduced a novel

multi-parameter matching method. Compared to conventional exhaustive search

methods, the proposed method only needs to add perturbation matrices to mitigate

the mismatch of the estimated parameters, which has a much lower computational

complexity.

In Chapter 5, we discussed the channel parameter estimation for hybrid di-

rectional UCyAs. We first designed a hybrid directional beamformer, which em-

ploys sweeping directional beamforming and exploits the convergence property of

the Bessel function. We showed that the designed hybrid directional beamformer

can deal with the severe free-space pathloss of mmWave links and maintain the

angular resolution of the hybrid UCyA with a reduced number of RF chains. We

then presented a new UCAMI to suppress the beam squint effect. We demonstrated

that the proposed new UCAMI only needs to optimize the focusing matrices in the

elevation angular domain, which has a much lower complexity than the convention-

al UCAMI [73], in which computationally expensive multi-dimensional optimization

problems need to be solved. In Chapter 5, we also introduced the tensor-based

signal processing method and employ it for the designed hybrid directional UCyAs.

We showed that by employing tensor signal processing for channel parameter es-

timation, the receiver noises in all dimensions (time, frequency, and space) can be

suppressed. As a result, the proposed tensor-based subspace estimation algorithm is

able to achieve substantially higher estimation accuracy than existing matrix-based

algorithms, with a comparable computational complexity in the RMa scenario.

In Chapter 6, we focused on the mIoT networks. We studied the sparse array-

based hybrid beamformer and its corresponding 2-D angle estimation algorithm. We

first introduced the sparse array technique, which is conventionally used to improve

the system DoF with a limited number of antennas. We applied this technique to the

hybrid beamforming design, and showed that the designed sparse hybrid beamform-



168

ing is capable of providing larger DoF than the fully connected beamforming array

with much fewer RF chains. We also employed tensor signal processing in Chapter 6

and proposed a new spatial smoothing-based method to ensure that the signal and

noise spaces in all modes of the signal tensor model can be decomposed. We evalu-

ated the impact of the rank of the signal power matrix on the n-ranks of the signal

tensor model, and verified that by using the proposed method, we can construct a

signal tensor model that provides a large enough rank in each mode to perform the

DoA estimation of all devices, even when the received signal powers of all the devices

are equal. Tailored for the new hybrid UCyA array, we then proposed a new tensor-

based 2-D DoA estimation algorithm, which is based on the second-order statistics

of the signals and operates on the signal data model directly. Corroborated by the

simulation results and the complexity analysis, we demonstrated that the algorithm

can improve the estimation accuracy with an affordable computational complexity.

This is particularly useful for the mIoT networks, where the high network access

capability is required to support the connection of a large number of devices, and the

requirement of accurate channel parameter estimation is also needed to be achieved

while guaranteeing a low computational complexity.

Overall, this thesis provided practical design schemes for large-scale UCyAs and

proposed the corresponding efficient channel parameter estimation algorithms. The

presented hybrid UCyAs can significantly reduce the number of required RF chains

with a marginal accuracy loss, and the proposed algorithms are capable of accurately

estimating the channel parameters with low computational complexities. In this

thesis, there are also some important scientific-technical findings. For example, we

find that the number of required phase-mode vectors does not depend on the number

of array response vectors, which is important for hardware complexity reduction (see

Chapter 4). We also find that when emplying tensor signal processing, the ranks of

signal spaces in all dimensions are dependent on the rank of the received signal.(see
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Chapter 6).

The methods presented in this thesis have addressed the topics of high hardware

and software complexities in mmWave large-scale antenna array systems, but several

issues are yet to be considered and will be our future research directions. First of all,

it is necessary to investigate the proposed channel estimation and positioning meth-

ods in some more realistic scenarios. In this thesis, we only provide the numerical

simulations to demonstrate the proposed methods. We assume that the communi-

cation scenarios are simple, where all the transmitted signals can be received by the

BSs. However, practical scenarios are complicated and the antenna arrays are not

perfectly manufactured. In realistic scenarios, we cannot guarantee that the received

noises are AWGNs, the transmitted signal power of the omnidirectional antennas

is the same, the beams of antenna arrays can be precisely controlled, and so on.

And regarding to NLOS paths, the single-bounce specular reflection components of

mmWave signals would not be specular reflections. To improve and evaluate the

practicalities of our work, we plan to construct testbeds and make experiments to

demonstrate the proposed methods in the future. Specifically, we will construct

a simple multi-antenna Universal Software Radio Peripheral (USRP) experimental

system firstly, and then, develop it by mmWave large antennas. To obtain the explic-

it estimates of channel parameters and target positions in practical NLoS scenarios,

some efficient and easy-implemented environment reconstruction methods will also

be investigated.

Secondly, finding effective ways to address the source enumeration problem is

important. The subspace-based channel parameter estimation algorithms, such as

ESPRIT and MUSIC [15,29–31], have a much lower computational complexity than

the ML-based estimation algorithms [36], and can also achieve attractive param-

eter estimation performance. However, the high accurate estimation provided by

the subspace-based channel parameter estimation algorithms relies on the correct
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decomposition of the signal and noise subspaces. The process of subspace decom-

position needs the a-priori knowledge of the dimensions of the signal and noise

subspaces, which depends on the number of incoherent signals. Currently, many

methods, based on Information Theoretic criteria, gerschgorin disks, matrix decom-

position, etc., have been proposed to determine the number of incoherent sources,

but these methods cannot achieve acceptable estimation performance in low SNR

regions. In this sense, effective source enumeration methods has been a necessity.

Finally, we also plan to extend our work to antenna arrays with arbitrary ar-

chitectures. In B5G and 6G wireless communication systems, cell-free and reconfig-

urable antenna arrays are promising for wide applications. To improve the practica-

bility and applicability of the proposed methods, we will design universal applicable

channel estimation methods adopted for B5G/6G mmWave communication systems

with general applicability to a wide range of antenna array types and specifications.
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Appendices

A Properties of Tensor Operation

The important properties of tensor operations used in this chapter are provided

below.

Property 1. The n-mode product satisfies the following properties:

A×n B×n C = A×n (CB) ; (A.1)

A×n B×m D = A×m D×n B, (A.2)

where A ∈ CI1×I2×···×IN , B ∈ CJn×In, C ∈ CKn×Jn, and D ∈ CJm×Im (n,m =

1, 2, . . . , N and n 6= m).

Property 2. The Tucker decomposition decomposes a tensor A ∈ CI1×I2×···×IN into

a core tensor G ∈ CR1×R2×···×RN multiplied by a factor matrix C(n) = [c
(n)
rn=1, c

(n)
rn=2, . . . ,

c
(n)
rn=Rn

] ∈ CIn×Rn (c
(n)
rn ∈ CIn×1 and n = 1, 2, . . . , N) in each mode, i.e.,

A =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑
rN=1

gr1r2···rN
(
c(1)
r1
◦ c(2)

r2
◦ · · · c(N)

rN

)
=

q
G; C(1),C(2), . . . ,C(N)

y
. (A.3)

The higher-order singular value decomposition (HOSVD) is a special case of the

Tucker decomposition, where the core tensor is all-orthogonal [76], and the factor

matrices are the unitary left singular matrices of the mode-n unfolding of A.

Property 3. The CANDECOMP/PARAFAC (CP) decomposition decomposes a

tensor A ∈ CI1×I2×···×IN into a sum of rank-one component tensors b
(n)
r ∈ CIn, as
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given by

A =
R∑
r=1

λrb
(1)
r ◦ b(2)

r ◦ · · ·b(N)
r , (A.4)

where R = Rank(A) is the rank of A1. Following [76], CP can be viewed as the

special case of the Tucker decomposition, where the core tensor is superdiagonal.

Thus, the CP model in (A.4) can be rewritten as a multilinear product:

A = D ×1 B(1) ×2 B(2) · · · ×N B(N) =
q
D; B(1),B(2), . . . ,B(N)

y
, (A.5)

where B(n) =
[
b

(n)
1 ,b

(n)
2 , . . . ,b

(n)
R

]
∈ CJn×R is the factor matrix of b

(n)
r , and D ∈

CR×R×···×R is a superdiagonal tensor2 with dr,r,··· ,r = λr.

Property 4. The multilinear product of a tensor A ∈ CI1×I2×···×IN with matrices

B(n) ∈ CJn×In, n = 1, 2, . . . , N , is a sequence of contractions, each being an n-mode

product, i.e.,

C = A×1 B(1) ×2 B(2) · · · ×N B(N) ∈ CJ1×J2×···×JN . (A.6)

Its mode-n unfolding is given by

C(n) = B(n)A(n)(B
(n+1) ⊗B(n+2) ⊗ · · · ⊗B(N) ⊗B(1) ⊗B(2) ⊗ · · · ⊗B(n−1))T .

(A.7)

1The rank of a tensor, A, denoted Rank(A), is defined as the smallest number of rank-one

tensors that yield A in a linear combination [76].

2A tensor A ∈ CI1×I2×···×IN is diagonal if ai1i2···iN 6= 0 only if i1 = i2 = · · · = iN . When

I1 = I2 = · · · = IN , A is called as superdiagonal.
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B Proofs and derivations for Chapter 3

B.1 Proof of the asymptotic property in Chapter 3 Section 3.4.2

Substituting (3.29)-(3.32) into (3.33), we have

fp,k(φ̃
r
l′,ξ, θ̃

r
l′,ξ) =

1

N

N∑
n=1

ejpϕnej
2π
λ
r sin(θ̄rξ) cos(φ̄rξ−ϕn)

× e−j
2π
λ
h(k−1) cos(θ̃r

l′,ξ). (B.8)

When the number of antennas in each UCA tends to infinity, i.e., N →∞, (B.8)

is reformulated as

fp,k(φ̃
r
l′,ξ, θ̃

r
l′,ξ) =

1

2π

∫ 2π

0

ejpϕnej
2π
λ
r sin(θ̄rξ) cos(φ̄rξ−ϕn)

× e−j
2π
λ
h(k−1) cos(θ̃r

l′,ξ)dϕ

= jpJp

(
2π

λ
r sin(θ̃r

l′,ξ)

)
e
j
[
pφ̃r
l′,ξ−

2π
λ
h(k−1) cos(θ̃r

l′,ξ)
]
. (B.9)

Compared (3.36) with (B.9), it can be found that the residual term εp(
2π
λ
r sin(θ̃r

l′,ξ),

φ̃r
l′,ξ)→ 0, when N →∞.

B.2 Illustration of two likely positions of each path in Chapter 3 Section

3.5.1

Without loss of generality, we use the Fig. B.1, which is a top view of one of the

NLoS paths, for illustration. Based on the geometry between the positions of BS

and MS shown in Fig. B.1, we can establish the following equations
y2 + x2 = r′2

y = D tanφ+ (D − x) tanφ

. (B.10)

It is obvious that r′ = d̂ sin(π − θ̂r) and φ = 2π − φ̂r, where θ̂r, φ̂r, and d̂ are the

results of ranging and angle estimation. Because there is a quadratic equation, we
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Figure B.1 : Top view of the MS and BS.

can have two solutions. From Fig. B.1, we find that both the MS and the MS’ have

the same θ̂r, φ̂r, and r′, where r′ is the horizontal distance between the MS and the

BS. Thus, the solutions of the above equations are given by
x̂MT =

2D tan2(φ̂r)+
√
d̂2 sin2(θ̂r)(tan2(φ̂r)+1)−4D2 tan2(φ̂r)

tan2(φ̂r)+1

ŷMT =

(
2D−
√
d̂2 sin2(θ̂r)(tan2(φ̂r)+1)−4D2 tan2(φ̂r)

)
tan(φ̂r)

tan2(φ̂r)+1

(B.11)

and 
x̂MT′ =

−2D tan2(φ̂r1)+
√
d̂2 sin2(θ̂r)(tan2(φ̂r)+1)−4D2 tan2(φ̂r)

tan2(φ̂r)+1

ŷMT′ =

(
2D+
√
d̂2 sin2(θ̂r)(tan2(φ̂r)+1)−4D2 tan2(φ̂r)

)
tan(φ̂r)

tan2(φ̂r)+1

. (B.12)

It is obvious that we can obtain two likely positions, i.e., a “true” one and a “false”

one. Due to estimation error, all “true” positions have different but adjacent coor-

dinates. Finally, we use clustering algorithms to fuse the “true” positions.
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B.3 Derivation of the CRLB in Chapter 3 Section 3.6

The i-th array response vector of the k-th UCA in (3.29) can be approximated

as [129]

ar
i(φ̃

r
l′,ξ, θ̃

r
l′,ξ) ≈ ej

2π
λ [r sin(θ̄rξ) cos(φ̄rξ−ϕn)−h(k−1) cos(θ̄rξ)]

× e
j 2π
λ

∆θ̃r
l′,ξ

[r cos(θ̄rξ) cos(φ̄rξ−ϕn)+h(k−1) sin(θ̄rξ)]

× e
j 2π
λ

∆φ̃r
l′,ξ

[−r sin(θ̄rξ) sin(φ̄rξ−ϕn)]
. (B.13)

Using the above approximation, the covariance matrix of the received signal vector

in (3.27) can be calculated as

Rẏ = E
{
ẏ(t)ẏH(t)

}
≈

4∑
ξ=1

σ2
ξΞξ + σ2

nINr , (B.14)

where σ2
ξ = σ2

Mξ
σ2
βξ

. Ξξ can be written as

Ξξ =
(
ãr(φ̄r

ξ, θ̄
r
ξ)ã

rH(φ̄r
ξ, θ̄

r
ξ)
)
� Bξ = DξBξD

H
ξ , (B.15)

where Dξ = diag
(
ãr(φ̄r

ξ, θ̄
r
ξ)
)
. Each element of Bξ is

[Bξ]nr1,nr2
= exp

(
−2π2

λ2

(
%2
ξ,nr1,nr2

+ Υ 2
ξ,nr1,nr2

))
, (B.16)

where

%ξ,nr1,nr2 = σθ̃rξ

[
r cos(θ̄r

ξ)
(
cos(φ̄r

ξ − ϕnr1)

− cos(φ̄r
ξ − ϕnr2)

)
+ h(k1 − k2) sin(θ̄r

ξ)
]
, (B.17)

Υξ,nr1,nr2 = σφ̃rξ
r sin(θ̄r

ξ)
(
sin(φ̄r

ξ − ϕnr1)− sin(φ̄r
ξ − ϕnr2)

)
, nr1 = N(k1 − 1) + n1,

and nr2 = N(k2 − 1) + n2. We have σ2
θ̃rξ

= 1
N ′p

∑N ′p
l′=1 ∆2

θ̃r
l′,ξ

, σ2
φ̃rξ

= 1
N ′p

∑N ′p
l′=1 ∆2

φ̃r
l′,ξ

n1 = 1, 2, . . . , N , n2 = 1, 2, . . . , N , k1 = 1, 2, . . . , K known as the azimuth and el-

evation angular spreads. By defining u ,
[
uT
φ̄r
,uT

θ̄r

]T
, v = [σ2

1, . . . , σ
2
4, σ

2
n], where

uφ̄r =
[
φ̄r

1, φ̄
r
2, φ̄

r
3, φ̄

r
4

]T
and uθ̄r =

[
θ̄r

1, θ̄
r
2, θ̄

r
3, θ̄

r
4

]T
, the Fisher information matrix can

be expressed as

[Jχ,χ]f,f ′ = Tstr

(
R−1

ẏ

∂Rẏ

∂ [χ]f
R−1

ẏ

∂Rẏ

∂ [χ]f ′

)
, (B.18)
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where f and f ′ = 1, 2, . . . , 21. The partial derivatives in (B.18), i.e., ∂Rẏ/∂φ̄
r
ξ,

∂Rẏ/∂θ̄
r
ξ, ∂Rẏ/∂σ

2
ξ , and ∂Rẏ/∂σ

2
n, can be obtained based on (B.14) and (B.15).

Ju,u , Ju,v, and Jv,v can be defined similarly to Jχ,χ as shown in (B.18) and they

are related as

Jχ,χ =

 Ju,u Ju,v

JTu,v Jv,v

 . (B.19)

Invoking the block matrix inversion lemma, the CRLB concerning the covariance

matrix of the error of the estimated signal parameter vector u is obtained as

C =
(
Ju,u − Ju,vJ−1

v,vJTu,v
)−1

, (B.20)

which implies

E
{

(û− u) (û− u)T
}
≥ C. (B.21)
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C Proofs and derivations for Chapter 4

C.1 Proof of Lemma 1 in Chapter 4 Section 4.3.2

According to the property of Bessel function, i.e., J−v(x) = (−1)vJv(x), we

have |J−v(x)| = |Jv(x)|, so here we only use Jv(x) with v ∈ Z+ for illustration

convenience. Let x = vρ, ρ ∈ (0, 1]. The Bessel function, Jv(x), whose order v

exceeds its argument, x, can be written in the form [109]

Jv(vρ) =
1

π

∫ π

0

exp (−vF (ϑ, ρ)) dϑ, (C.22)

where

F (ϑ, ρ) = log

(
ϑ+

√
ϑ2 − ρ2 sin2 ϑ

ρ sinϑ

)

− cotϑ

√
ϑ2 − ρ2 sin2 ϑ. (C.23)

The partial derivative of (C.22) with respect to ρ is calculated as

∂

∂ρ
Jv(vρ) = −v

π

∫ π

0

∂F (ϑ, ρ)

∂ρ
exp (−vF (ϑ, ρ)) dϑ

=
v

πρ

∫ π

0

g(ϑ, ρ) exp (−vF (ϑ, ρ)) dϑ, (C.24)

where g(ϑ, ρ) = (ϑ− ρ2 sinϑ cosϑ) /
√
ϑ2 − ρ2 sin2 ϑ. Considering that

g(ϑ, ρ) =
ϑ− ρ2 sinϑ cosϑ√
ϑ2 − ρ2 sin2 ϑ

≥ ϑ− sinϑ cosϑ√
ϑ2 − ρ2 sin2 ϑ

≥ ϑ− sinϑ√
ϑ2 − ρ2 sin2 ϑ

≥ 0, (C.25)

we have ∂Jv(vρ)/∂ρ > 0, and conclude that Jv(vρ) is a positive increasing function

of ρ. Thus, Jv(vρ) < Jv(v).

On the other hand, the partial derivative of (C.22) with respect to v is calculated

as

∂

∂v
Jv(vρ) = − 1

π

∫ π

0

F (ϑ, ρ) exp (−vF (ϑ, ρ)) dϑ. (C.26)
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Because

∂

∂ϑ
F (ϑ, ρ) =

(1− ρ cotϑ)2√
ϑ2 − ρ2 sin2 ϑ

+

√
ϑ2 − ρ2 sin2 ϑ ≥ 0 (C.27)

and ∂F (0, ρ)/∂ρ = −
√

1− ρ2/ρ ≤ 0, we have F (ϑ, ρ) ≥ F (0, ρ) ≥ F (0, 1) = 0, and

hence ∂Jv(vρ)/∂v < 0. This means that Jv(vρ) is a positive decreasing function

of v, i.e., Jv(vρ) ≤ J1(ρ). Therefore, we have Jv(vρ) < Jv(v) ≤ J1(1) ≈ 0.44 with

ρ ∈ (0, 1] and v ∈ Z+. When |v| > |x|, |Jv(x)| ≈ 0, v ∈ Z.

C.2 Proof of Theorem 1 in Chapter 4 Section 4.3.2

According to Lemma 1, we observe that Jp($m,l) cannot be omitted if |p| ≤

|$m,l| = |2πfmr sin(θR,l)/c| ≤ 2πfmr/c. Because f0 ≤ fm and p ∈ Z, we set the

highest order P = max(|p|) = b2πf0r/cc.

On the other hand, in the case of Q 6= 0, because p ∈ [−P, P ]∩Z and NH ≥ 2P ,

we have |p−QNH| ≥ |$m,l|. According to Lemma 1, we obtain

|εp,Q($m,l, φR,l)|

=
∣∣j(QNH−p)J(QNH−p)($m,l) exp (j(QNH − p)φR,l)

∣∣
=
∣∣J(p−QNH)($m,l)

∣∣ ≈ 0. (C.28)

In this case, (4.17) can be approximated by

APM,p =
√
NH

[
jpJp($m,l)e

−jpφR,l

+
∞∑

Q=−∞,Q6=0

εp,Q($m,l, φR,l)

]

≈
√
NHj

pJp($m,l)e
−jpφR,l . (C.29)

This concludes the proof of Theorem 1.
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D Proofs and derivations for Chapter 5

D.1 Proof of Theorem 2 in Chapter 5 Section 5.3

Let γmf
(θkmb

) = 2π
c
fmf

r sin(θkmb
). The Q-DFT of ah,mf,mb

(θkmb
, φkmb

) can be

expressed as

aQDFT,p,mf,mb
(θkmb

, φkmb
) =

Mh∑
mh=1

(
1√
Mh

ejγmf
(θkmb

) cos(φkmb
−ϕmh

)

)
e
−j 2π(mh−1)

Mh
p

(a)
=

Mh∑
mh=1

(
1√
Mh

∞∑
q=−∞

jqJq(γmf
(θkmb

))ejq(φkmb
−ϕmh

)

)
e
−j 2π(mh−1)

Mh
p

(b)
=

1√
Mh

∞∑
Q=−∞

Mhj
(QMh−p)J(QMh−p)(γmf

(θkmb
))ej(QMh−p)φkmb

(c)
=
√
Mh[jpJp(γmf

(θkmb
))e−jpφkmb +

∞∑
Q=−∞,Q6=0

εp,Q(γmf
(θkmb

), φkmb
)] (D.30)

where

εp,Q(γmf
(θkmb

), φkmb
) = j(QMh−p)J(QMh−p)(γmf

(θkmb
))ej(QMh−p)φkmb . (D.31)

In (D.30), (a) and (c) follow the important properties of the Bessel function, i.e.,

ejx cos y =
∑∞

v=−∞ j
vJv(x)ejvy and J−v(x) = (−1)vJv(x), respectively; (b) is obtained

by letting p + q = QMh; and (c) stems from the property of the Bessel function

J−v(x) = (−1)vJv(x) [109].

Consider that the number of antennas per UCA, Mh, is large, i.e, Mh � P .

Let Mh = αP and γmf
(θkmb

) = βP, where α � 1 and 0 < β < 1. According

to [109], we have Jv(vρ) < Jv(v) and Jv1(v1ρ) < Jv2(v2ρ), where v1 > v2 and

ρ ∈ (0, 1). Since P ≥ b2πfmf
r/cc, we have J(QMh−p)(γmf

(θkmb
)) < J(α−1)P (βP ) and

JP (βP ) ≤ Jp(γmf
(θkmb

)). Set α = 3 and β = 0.5 for an example. In general, P > 3.

Hence,Jp(γmf
(θkmb

)) ≥ J3 (1.5) ≈ 0.06 and

J(Q2Mh−p)(γmf
(θkmb

)) < J(Q1Mh−p)(γmf
(θkmb

))

< J(Mh−p)(γmf
(θkmb

)) < J6 (1.5) ≈ 0.0002, (D.32)
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where Q2 > Q1 > 1. Compared with Jp(γmf
(θkmb

)), the amplitude of J(QMh−p)(γmf

(θkmb
)) is so small and can be omitted. We suppress εp,Q(γmf

(θkmb
), φkmb

) and ap-

proximate (D.30) as

aQDFT,p,mf,mb
(θkmb

, φkmb
) ≈

√
Mhj

pJp(γmf
(θkmb

)) exp(−jpφkmb
). (D.33)

This concludes the proof of Theorem 2.
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E Proofs and derivations for Chapter 6

E.1 Proof of Theorem 4 in Chapter 6 Section 6.3.2

Let γ(θk) = 2πr sin(θk)/λ. The phase-space transformation of ah(θk, φk) can be

expressed as

ahps,p(θk, φk) =

Mh∑
mh=1

(ah,mh
(θk, φk)) e

−j 2π(mh−1)

Mh
p

=

Mh∑
mh=1

(
1√
Mh

ejγ(θk) cos(φk−ϕmh
)

)
e
−j 2π(mh−1)

Mh
p

(a)
=

Mh∑
mh=1

(
1√
Mh

∞∑
q=−∞

jqJq (γ(θk)) e
jq(φk−ϕmh

)

)

× e−j
2π(mh−1)

Mh
p

(b)
=

1√
Mh

∞∑
Q=−∞

Mhj
(QMh−p)J(QMh−p) (γ(θk))

× ej(QMh−p)φk

(c)
=
√
Mh

[
jpJp (γ(θk)) e

−jpφk

+
∞∑

Q=−∞,Q6=0

εp,Q (γ(θk), φk)

]
(E.34)

where

εp,Q (γ(θk), φk) = j(QMh−p)J(QMh−p) (γ(θk)) e
j(QMh−p)φk . (E.35)

In (E.34), (a) and (c) follow the important properties of the Bessel function, i.e.,

ejx cos y =
∑∞

v=−∞ j
vJv(x)ejvy and J−v(x) = (−1)vJv(x), respectively. (b) is obtained

by letting p+ q = QMh [109].

Let x = vρ, ρ ∈ (0, 1) and v ∈ Z+. The Bessel function, Jv(x), whose order v

exceeds its argument, x, can be written in the following form [109]

Jv(vρ) =
1

π

∫ π

0

exp (−vF (ϑ, ρ)) dϑ, (E.36)
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where

F (ϑ, ρ) = log

(
ϑ+

√
ϑ2 − ρ2 sin2 ϑ

ρ sinϑ

)
− cotϑ

√
ϑ2 − ρ2 sin2 ϑ. (E.37)

The partial derivative of (E.36) with respect to ρ is given by

∂

∂ρ
Jv(vρ) = −v

π

∫ π

0

∂F (ϑ, ρ)

∂ρ
exp (−vF (ϑ, ρ)) dϑ

=
v

πρ

∫ π

0

g(ϑ, ρ) exp (−vF (ϑ, ρ)) dϑ, (E.38)

where g(ϑ, ρ) = (ϑ− ρ2 sinϑ cosϑ) /
√
ϑ2 − ρ2 sin2 ϑ. Given that

g(ϑ, ρ) =
ϑ− ρ2 sinϑ cosϑ√
ϑ2 − ρ2 sin2 ϑ

≥ ϑ− sinϑ cosϑ√
ϑ2 − ρ2 sin2 ϑ

≥ ϑ− sinϑ√
ϑ2 − ρ2 sin2 ϑ

≥ 0, (E.39)

we have ∂Jv(vρ)/∂ρ > 0, and conclude that Jv(vρ) is an increasing function of ρ.

Thus, Jv(vρ) < Jv(v).

On the other hand, the partial derivative of (E.36) with respect to v is given by

∂

∂v
Jv(vρ) = − 1

π

∫ π

0

F (ϑ, ρ) exp (−vF (ϑ, ρ)) dϑ. (E.40)

Because

∂

∂ϑ
F (ϑ, ρ) =

(1− ρ cotϑ)2√
ϑ2 − ρ2 sin2 ϑ

+

√
ϑ2 − ρ2 sin2 ϑ ≥ 0 (E.41)

and ∂F (0, ρ)/∂ρ = −
√

1− ρ2/ρ ≤ 0, we have F (ϑ, ρ) ≥ F (0, ρ) ≥ F (0, 1) = 0

and hence, ∂Jv(vρ)/∂v < 0. This means that Jv(vρ) is a decreasing function of

v, i.e., Jv(vρ) < J1(ρ). Therefore, we have Jv(vρ) < Jv(v) < J1(1) ≈ 0.4 with

ρ ∈ (0, 1) and v ∈ Z+. For |v| > |x|, |Jv(x)| ≈ 0 with v ∈ Z+. Based on this

property, , both εp,Q (γ(θk), φk) and Jp (γ(θk)) in (E.34) can be suppressed in the

case of |p| > P > γ(θk), since P ≥ b2πr/λc > 2 and Mh ≥ b4πr/λc > 2. When

|p| ≤ P , we can only ignore εp,Q (γ(θk), φk). Thus, (E.34) can be approximated by

(6.7). This concludes the proof.
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E.2 Proof of Theorem 5 in Chapter 6 Section 6.4

Define Ydfs = JZdf; Adfv,Adfh,DK, which is the noise-free model of Ydf. Thus,

Ydfs consists of all the signal space components.

Because Adfv ∈ CNvdc×K and Adfh ∈ CNhdc×K are Vandermonde matrices, and in

our system, we have Nvdc ≥ K and Nhdc ≥ K, according to uniqueness condition of

the CP decomposition, the n-ranks of Ydfs depends on the rank of D.

On the other hand, the SVD of the mode-n unfolding of Ydfs, Ydfs(n), can be

written as Ydfs(n) = Uvs,nΣvs,nV
H
vs,n, where n = 1, 2, 3, and we have Rank(Ydfs(n)) =

Rank(Uvs,n) = Rank(Σvs,n) = Rank(Vvs,n).When Rank(D) < K, we have Rank(Ydfs(n))

< K, and thus Rank(Uv,n) < K.

This concludes the proof of Theorem 5.
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