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ABSTRACT

The Attention Mechanism in

Vision and Language Analysis

by

Guang Li

In psychology, attention is the cognitive process of concentrating on a par-

ticular aspect of information while ignoring other perceivable elements. Human

visual/linguistic perceptions can eliminate distracting factors and concentrate on the

most relevant components with psychological attention’s guidance. In representation

learning, an operator imitating the psychological attention mechanism in feature

aggregation is also in demand. CNN and RNN are the fundamental frameworks

in representation learning, and they have aptitudes for processing structured data.

However, the recurrent nature of RNN dilutes the long-term information as the

sequence length grows. Moreover, with a fixed kernel size, the convolution has

difficulty modeling the long-range relations between pixels. In order to solve the

problems above, the attention mechanism is introduced to representation learning.

The attention operator treats candidate elements as a set without considering their

order or position; therefore, the attention-based models can concentrate on the

relevant elements flexibly and free from the bondage of data structure.

This thesis mainly focuses on the attention mechanism for vision and language

analysis and researches 1) multimodal attention for image captioning, 2) the positional

awareness in attention, 3) local attention for multi-level feature fusion. We begin

with the benchmark vision & language task – image captioning, and investigate how

to extend the transformer model with the ability to leverage multimodal information

simultaneously. Going beyond the attention mechanism exploring content similarity

solely, we develop the bilateral attention mechanism, which is equipped with positional



awareness. Comprehensive experiments are conducted on two representative tasks,

i.e., semantic segmentation and machine translation, and the encouraging results

show that position-awareness is a beneficial supplement for the attention mechanism.

Furthermore, We explore if it is feasible to replace the standard convolution with

a local attention-based operator based on the attention with positional awareness.

Besides, the dynamic local operator demonstrates its adaptiveness in multi-level

feature fusion for semantic segmentation. Finally, the thesis is concluded with some

future directions on the attention mechanism.

Dissertation directed by Professor Yi Yang

Centre for Artificial Intelligence, School of Software
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