UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

The Attention Mechanism in Vision and Language Analysis

by

Guang Li

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2021

Certificate of Authorship/Originality

I, Guang Li declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy , in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: Mar 15, 2021

ABSTRACT

The Attention Mechanism in Vision and Language Analysis

by

Guang Li

In psychology, attention is the cognitive process of concentrating on a particular aspect of information while ignoring other perceivable elements. Human visual/linguistic perceptions can eliminate distracting factors and concentrate on the most relevant components with psychological attention's guidance. In representation learning, an operator imitating the psychological attention mechanism in feature aggregation is also in demand. CNN and RNN are the fundamental frameworks in representation learning, and they have aptitudes for processing structured data. However, the recurrent nature of RNN dilutes the long-term information as the sequence length grows. Moreover, with a fixed kernel size, the convolution has difficulty modeling the long-range relations between pixels. In order to solve the problems above, the attention mechanism is introduced to representation learning. The attention operator treats candidate elements as a set without considering their order or position; therefore, the attention-based models can concentrate on the relevant elements flexibly and free from the bondage of data structure.

This thesis mainly focuses on the attention mechanism for vision and language analysis and researches 1) multimodal attention for image captioning, 2) the positional awareness in attention, 3) local attention for multi-level feature fusion. We begin with the benchmark vision & language task – image captioning, and investigate how to extend the transformer model with the ability to leverage multimodal information simultaneously. Going beyond the attention mechanism exploring content similarity solely, we develop the bilateral attention mechanism, which is equipped with positional awareness. Comprehensive experiments are conducted on two representative tasks, i.e., semantic segmentation and machine translation, and the encouraging results show that position-awareness is a beneficial supplement for the attention mechanism. Furthermore, We explore if it is feasible to replace the standard convolution with a local attention-based operator based on the attention with positional awareness. Besides, the dynamic local operator demonstrates its adaptiveness in multi-level feature fusion for semantic segmentation. Finally, the thesis is concluded with some future directions on the attention mechanism.

Dissertation directed by Professor Yi Yang Centre for Artificial Intelligence, School of Software

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Yi Yang, for the guidance, support, and advice he has provided throughout my Ph.D. Study. Prof. Yi gave me enough freedom to pursue the research topics I was interested in and always expressed his patience and encouragement, which is a great fortune in my Ph.D. study. I also want to express my gratitude to my advisors and collaborators: Dr. Yunchao Wei, Dr. Linchao Zhu, Dr. Ping Liu, Dr. Yahong Han, and Dr. Wu Liu. I was fortunate to work with them and engage in intellectual discussions with them.

I would also like to thank my colleagues at the University of Technology Sydney and the ReLER lab. I am very grateful to have worked with so many wonderful people during my Ph.D. study, who have provided so many insightful discussions on my research and various kinds of help in my personal life.

I would also like to thank Data to Decision CRC for supporting my research.

Finally, and most essentially, I am grateful for all the support from my parents, sister, and best friends. They are the source of my strength.

Guang Li Sydney, Australia, 2021.

Contents

	Certificate	ii
	Abstract	iii
	Acknowledgments	v
	List of Figures	ix
	List of Tables	xii
1	Introduction	1
	1.1 Background	1
	1.2 Research Contribution	4
	1.3 Thesis Organization	6
2	Entangled Transformer for Image Captioning	7
2	Entangled Transformer for Image Captioning 2.1 Introduction	7 7
2		
2	2.1 Introduction	7
2	2.1 Introduction	7 10
2	2.1 Introduction	7 10 11
2	2.1 Introduction	7 10 11 13
2	2.1 Introduction	7 10 11 13 13
2	2.1 Introduction	7 10 11 13 13 15

	2.5.1	Datasets and Evaluation	9
	2.5.2	Implementation Details	0
	2.5.3	Comparision with State-of-the-Art Methods	1
	2.5.4	Ablation Study	4
2.6	Conclu	sion	7

3	Bilateral Attention: Rethinking the Positional Awareness	
	in Self-Attention	28
	3.1 Introduction	28
	3.2 Related Work	30
	3.3 Preliminary: Bilateral Filter	32
	3.4 Bilateral Attention	33
	3.4.1 General Formulation	33
	3.4.2 Formulation of Distance Functions	37
	3.4.3 Distance Function in 2-D Mode	39
	3.4.4 Instantiations	40
	3.5 Experiments for 2-D Bilateral Attention	42
	3.5.1 Comparison Results	44
	3.5.2 Comparison to Relative Position Encoding	44
	3.5.3 Controlled Experiments	45
	3.5.4 Visualization of Attention Maps	48
	3.6 Experiments For 1-D Bilateral Attention	49
	3.6.1 Comparison to the State-of-the-art Methods	49
	3.6.2 Controlled Experiments	50
	3.7 Conclusion	52

4 Localized Bilateral Attention with Iterative Refinement	
for Image Segmentation	53
4.1 Introduction	53
4.2 Background	55
4.2.1 The General Formulation	55
4.2.2 Content Attention	58
4.2.3 Geometric Attention	58
4.3 Localized Bilateral Attention	60
4.3.1 Bilateral Combination	60
4.3.2 Iterative Refinement	61
4.3.3 Computational Complexity	62
4.4 Experiments	63
4.4.1 Experiments on DeepLabv3+ \ldots \ldots \ldots	64
4.4.2 Experiments on U-Net	67
4.4.3 Detailed Configuration for U-Net	70
4.5 Conclusion	71
5 Future Directions	72
	12
Bibliography	74

List of Figures

1.1	The illustration of human visual attention. Observers favor focusing	
	on the faces when regarding the age. In contrast, visual attention	
	tends to observe the outfits and snowy background when curious	
	about the activity shown in the picture	2

2.1 [The image captioning results when given different modality
i	information. (a) provides an unsatisfactory caption result only using
l	low-level visual features. When provided with high-level visual
i	information guided from region proposals, (b) can make some
i	improvement, e.g., predict "two children" in the picture. However, it
S	still fails to grab abstract concepts in the image, e.g., "skiing". (c) is
t	the result when utilizing information from complementary modalities:
	• 1 1
V	visual and semantic. It is the most accurate result among the three
(descriptions

2.2 The overall architecture of ETA-Transformer. Our model consists of

three components: the visual sub-encoder, the semantic sub-encoder,

and the multimodal decoder. The generation procedure has three

steps: (1) detecting region proposals and semantic attributes;

(2) encoding the visual and semantic features separately; (3) decoding

word by word to obtain the final caption. Notice that the Residual

Connections, Layer Normalizations, and Embedding Layers are omitted. 12

2.3 The multimodal representations are first fed into ETA to conductEnTangled Attention, then to GBC to obtain the final representation. 16

2.4 Qualitative examples of different methods. Compared with
Transformer _v (T_v) and Transformer _s (T_s) , the
ETA-Transformer (ETA) generates more descriptive and more
accurate captions

3.1 The permutation-invariant property will hurt the capability of
self-attention in modeling structured data. e.g., there are eight blue
rectangles in both of the images above. The self-attention will
generate the same output for the position i , ignoring the local
positional relationships are different for a sharp edge and a blurred
<u>surface.</u>

- 3.2 The detailed comparison of a) dynamic convolution, b). bilateral
 attention, c). self-attention. Our proposed bilateral attention can be
 viewed as a combination of the self-attention and non-localized
 position attention, which is adapted from dynamic convolution by
 replacing the light-weight convolution (LConv) operation with a
 logit-realignment operation. The logits generated by two components
 are joined together bilaterally.
 34
 - 3.3 The generated content logits and position logits for position *i*. For current position *i*, each of the small yellow rectangle denotes content logit in position *j* and each of the small blue or pink rectangle

denotes position logits.

3.4 The detailed comparison of a) dynamic convolution, b). bilateral
attention, c). self-attention. Our proposed bilateral attention can be
viewed as a combination of the self-attention and non-localized
position attention, which is adapted from dynamic convolution by
replacing the light-weight convolution (LConv) operation with a
logit-realignment operation. The logits generated by two components
are joined together bilaterally.
47

39

4.1	Illustration of the attention mechanism. The feature maps are shown
	as the shape of their tensors, e.g., $d \times H \times W$ for d channels. \bigotimes
	denotes matrix multiplication. Given an input feature map X , the
	attention mechanism transforms each of its feature vector x_i to y_i by
	dynamically aggregating the contents from a $k \times k$ neighborhood of
	x_i via an attention weight map. Specifically, the target feature x_i and
	its neighborhood features $x_j; \forall j \in \Omega_i$ are first mapped to the common
	space via function γ and ϕ (γ and ϕ are usually implemented as
	linear transformation), respectively, to generate the query-key feature
	pairs. Meanwhile, the neighborhood features are further transformed
	to values via function β . Considering the appearance similarity of the
	query-key pairs, the attention model generates an attention map,
	which are then used as pixel-wise weighting scalar to aggregate the
	transformed values and output the final feature y_i
4.2	A bilateral attention module. The bilateral attention operation
	includes two parts: the content attention part and the geometric
	attention part. The content attention generates appearance-based
	attention priors by measuring the similarity of the appearance
	between the target feature and its surrounding features. We further
	incorporate a geometric attention to generate geometry-based

attention priors based on the embedding of features' positions.

Finally, the two independently generated attention priors are

4.3 Qualitative comparison on Helen dataset. The first and the second

row shows parsing results on face images with and without the

pre-processing of face alignment, respectively. For each image pair,

the left and side shows the result of the U-Net-BA model and the

original U-Net, respectively.	
	-

List of Tables

2.1	MSCOCO Offline Evaluation. The ETA denotes the	
	ETA-Transformer. \checkmark indicates the corresponding features (region	_
	proposals or semantic attributes) are applied, and \boldsymbol{X} means otherwise.	
	All values are reported as percentage (%). $\ldots \ldots \ldots$	19
2.2	The results on single modality. The ETA denotes the	
	ETA-Transformer. Subscript indicates that the visual modality or	
	semantic modality is applied	20
2.3	MSCOCO Online Evaluation. The ETA denotes the	
	ETA-Transformer. cX means evaluation on X captions. All values are	
	reported as percentage (%). $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2$	21
2.4	Comparison with different model structures. And "-Encoder" implies	
	the Encoder is removed from the model. All results are reported in	
	token-level training	22
2.5	Ablation experiments. ETA is denotes the ETA-Transformer. And all	
	results are trained on sequence-level criterion	25
2.6	The effect of activation functions in GBC. All results are reported in	
	token-level training.	26
3.1	Comparison results on Cityscapes and ADE20K, and multiple-scale is	
		14

3.2	Comparison of bilateral attention with relative position encoding	
	(RPE) on Cityscapes.	 45

	3.3	Ablation experiments on Cityscapes.	46
	3.4	The controlled comparison of different kernel size of the bilateral	
[criss-cross attention.	48
	3.5	Translation quality evaluation (BLEU scores).	50
	3.6	Ablation experiments on IWSLT'14	51
	3.7	The effect of the kernel size in geometric attention	51

4.1	Complexity analysis for the convolution operation and proposed
	attention operations. "IR" represents Iterative Refinement algorithm,
	d_i and d_o represents the input/output dimension of the feature,
	respectively. M denotes the number of heads in attention. Our
	analysis is based on the fact that $k \ll d_i$ and $k \ll d_o$, and some
	inessential terms are omitted
4.2	Ablation study on the Cityscapes dataset of the proposed bilateral
	attention module with mean IOU.
4.3	Face parsing results on the HELEN dataset with class-wise F1-score
	and overall accuracy.
4.4	Face parsing results on the LFW-PL dataset with class-wise F1-score
	and overall accuracy.
4.5	The detailed configuration for the decoder in the U-Net-BA. "res- i "
	denotes the output of the <i>i</i> -th stage in the Resent-18. "up- i "
	represents the <i>i</i> -th upsampling-fusion blocks in the decoder 7