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Abstract 
 

Sleep apnea, a common sleep disorder, can significantly decrease the quality of life and is 

closely associated with major health risks such as cardiovascular disease, sudden death, 

depression, and hypertension. It also elicits brain and physiological changes that vary across the 

night. Conventional diagnosis of sleep apnea using polysomnography (PSG) is costly and time-

consuming, requiring manual scoring of sleep stages and respiratory events. Current automatic 

diagnostic algorithms used to detect sleep apnea vary in approaches with the use of different 

physiological signals. An effective, reliable, and accurate automatic method for the diagnosis of 

sleep apnea will be time-efficient and economical.  

This thesis is a narration of the work that led to the development of a novel algorithm suitable 

for the automatic diagnosis of sleep apnea. A systematic literature review of the existing methods 

(approaches and algorithms) was performed before designing the algorithm. This review 

presented an overview of methods to diagnose sleep apnea using respiratory and oximetry signals. 

The review identified the research gaps with indicating the major concerns, challenges, benefits, 

and limitations of using respiratory and oximetry signals for the diagnosis of sleep apnea. 

This thesis examined the electroencephalogram (EEG) spectral powers resulting from apnea 

duration of varying length and reported the changes in the relative powers in EEG frequency 

bands before and at apnea termination. The study was carried out for the purpose of justifying the 

usability of EEG for the automatic diagnosis of sleep apnea. It investigated the spectral power 

changes in delta, theta, alpha, sigma, and beta frequency bands of EEG as a function of apnea 

duration from 375 events.  The study revealed a significant reduction in EEG relative powers (the 

low frequency theta, alpha, and sigma powers) both before and at apnea termination. The findings 

from the EEG spectral analysis suggests that the application of EEG signal in sleep apnea 

diagnosis is not reliable due to the random variations in spectral powers as well as the major 

challenges associated with EEG acquisition and its processing. Due to the limitations associated 

with the EEG for an unattended home diagnosis of sleep apnea, the EEG signal was excluded 

from the automatic detection approach.  

An automatic method that employed an airflow (AF) envelope tracking and subsequent 

digitization approach for the diagnosis of sleep apnea was developed. The automatic detection 

process includes the detection of apnea, hypopnea, sleep time, and apnea hypopnea index (AHI). 

In designing the algorithms, 988 PSG records were randomly selected from a recognized database 

of the Sleep Heart Health Study (SHHS). The dataset was further divided into a development (n 

= 45) and a validation (n = 943) set. Total sleep time (TST) was estimated from the analysis of 

AF and oximetry (SpO2) signals. The algorithm detected apnea events by a digitization process, 
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following the determination of the peak excursion from AF envelopes. Hypopnea events were 

determined from the AF envelope and oxygen desaturation with a correction to a time lag in SpO2. 

The AHI was estimated from the number of detected events divided by the estimated TST. For 

performance evaluation, the estimated AHI was compared to the SHHS manually scored data. 

The automatic algorithm showed strong correlations between the estimated and actual AHI. In 

addition, the Bland-Altman plot showed very good agreements between estimated and actual 

AHI, with small mean bias and narrow limits of agreement. Binary (two) class diagnosis was 

reported where positive (sleep apnea) and negative (normal) classes were identified using 

different AHI cut-offs (≥5, ≥15, and ≥30 events/h). In addition, 4 classes (normal, mild, moderate, 

and severe) of diagnosis were estimated for performance evaluation. The overall 2 class diagnostic 

accuracies were found to be 90.7%, 91%, and 96.7% for AHI cut-offs ≥5, ≥15, and ≥30 events/h 

respectively. Moreover, good accuracy (78.9%) and kappa (0.70) were observed for 4 class 

diagnosis. Though the envelope-based automatic approach performed well, some possible 

limitations were addressed. 

        A modified method was developed for the automatic diagnosis of sleep apnea where all 

possible limitations in the previous envelope-based designed method have been addressed and 

minimised. The modified approach used a sample-to-sample encoding of the AF signal for the 

precise detection of apnea events. The per-sample encoding approach accurately detected peak 

excursion by the exact detection of peak and trough amplitudes. Thus, the limitation (incorrect 

detection of peak excursion due to fluctuations in the upper boundary) found in the envelope 

tracking method was minimized. In addition, per-sample encoding of SpO2 signals correctly 

identified the start and end of each oxygen desaturation phase, whereas a fixed window method 

may overestimate the duration of desaturations. Moreover, the adjustment of all possible time lags 

(0, 10, 20, and 30 s) made the modified algorithm more accurate than the envelope tracking 

method. The overall 2 class diagnostic accuracies were found 93.5%, 92.4%, and 96.6% for AHI 

cut-offs ≥5, ≥15, and ≥30 events/h respectively. Moreover, excellent overall accuracy (83.4%) 

and kappa (0.77) were observed for 4 class diagnosis. Comparing to envelope-based approach, 

the overall increments in 2 and 4 class diagnostic accuracies were 1.4% and 4.5% respectively, 

whereas 4 class kappa significantly improved from 0.70 to 0.77. Thus, the modified algorithm 

performed significantly better than the envelope-based approach.  

        The new algorithm overperformed than any other existing methods for the automatic 

diagnosis of sleep apnea. It is applicable to any portable sleep screeners especially for the home 

diagnosis of sleep apnea. 
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