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Abstract 
 

Sleep apnea, a common sleep disorder, can significantly decrease the quality of life and is 

closely associated with major health risks such as cardiovascular disease, sudden death, 

depression, and hypertension. It also elicits brain and physiological changes that vary across the 

night. Conventional diagnosis of sleep apnea using polysomnography (PSG) is costly and time-

consuming, requiring manual scoring of sleep stages and respiratory events. Current automatic 

diagnostic algorithms used to detect sleep apnea vary in approaches with the use of different 

physiological signals. An effective, reliable, and accurate automatic method for the diagnosis of 

sleep apnea will be time-efficient and economical.  

This thesis is a narration of the work that led to the development of a novel algorithm suitable 

for the automatic diagnosis of sleep apnea. A systematic literature review of the existing methods 

(approaches and algorithms) was performed before designing the algorithm. This review 

presented an overview of methods to diagnose sleep apnea using respiratory and oximetry signals. 

The review identified the research gaps with indicating the major concerns, challenges, benefits, 

and limitations of using respiratory and oximetry signals for the diagnosis of sleep apnea. 

This thesis examined the electroencephalogram (EEG) spectral powers resulting from apnea 

duration of varying length and reported the changes in the relative powers in EEG frequency 

bands before and at apnea termination. The study was carried out for the purpose of justifying the 

usability of EEG for the automatic diagnosis of sleep apnea. It investigated the spectral power 

changes in delta, theta, alpha, sigma, and beta frequency bands of EEG as a function of apnea 

duration from 375 events.  The study revealed a significant reduction in EEG relative powers (the 

low frequency theta, alpha, and sigma powers) both before and at apnea termination. The findings 

from the EEG spectral analysis suggests that the application of EEG signal in sleep apnea 

diagnosis is not reliable due to the random variations in spectral powers as well as the major 

challenges associated with EEG acquisition and its processing. Due to the limitations associated 

with the EEG for an unattended home diagnosis of sleep apnea, the EEG signal was excluded 

from the automatic detection approach.  

An automatic method that employed an airflow (AF) envelope tracking and subsequent 

digitization approach for the diagnosis of sleep apnea was developed. The automatic detection 

process includes the detection of apnea, hypopnea, sleep time, and apnea hypopnea index (AHI). 

In designing the algorithms, 988 PSG records were randomly selected from a recognized database 

of the Sleep Heart Health Study (SHHS). The dataset was further divided into a development (n 

= 45) and a validation (n = 943) set. Total sleep time (TST) was estimated from the analysis of 

AF and oximetry (SpO2) signals. The algorithm detected apnea events by a digitization process, 
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following the determination of the peak excursion from AF envelopes. Hypopnea events were 

determined from the AF envelope and oxygen desaturation with a correction to a time lag in SpO2. 

The AHI was estimated from the number of detected events divided by the estimated TST. For 

performance evaluation, the estimated AHI was compared to the SHHS manually scored data. 

The automatic algorithm showed strong correlations between the estimated and actual AHI. In 

addition, the Bland-Altman plot showed very good agreements between estimated and actual 

AHI, with small mean bias and narrow limits of agreement. Binary (two) class diagnosis was 

reported where positive (sleep apnea) and negative (normal) classes were identified using 

different AHI cut-offs (≥5, ≥15, and ≥30 events/h). In addition, 4 classes (normal, mild, moderate, 

and severe) of diagnosis were estimated for performance evaluation. The overall 2 class diagnostic 

accuracies were found to be 90.7%, 91%, and 96.7% for AHI cut-offs ≥5, ≥15, and ≥30 events/h 

respectively. Moreover, good accuracy (78.9%) and kappa (0.70) were observed for 4 class 

diagnosis. Though the envelope-based automatic approach performed well, some possible 

limitations were addressed. 

        A modified method was developed for the automatic diagnosis of sleep apnea where all 

possible limitations in the previous envelope-based designed method have been addressed and 

minimised. The modified approach used a sample-to-sample encoding of the AF signal for the 

precise detection of apnea events. The per-sample encoding approach accurately detected peak 

excursion by the exact detection of peak and trough amplitudes. Thus, the limitation (incorrect 

detection of peak excursion due to fluctuations in the upper boundary) found in the envelope 

tracking method was minimized. In addition, per-sample encoding of SpO2 signals correctly 

identified the start and end of each oxygen desaturation phase, whereas a fixed window method 

may overestimate the duration of desaturations. Moreover, the adjustment of all possible time lags 

(0, 10, 20, and 30 s) made the modified algorithm more accurate than the envelope tracking 

method. The overall 2 class diagnostic accuracies were found 93.5%, 92.4%, and 96.6% for AHI 

cut-offs ≥5, ≥15, and ≥30 events/h respectively. Moreover, excellent overall accuracy (83.4%) 

and kappa (0.77) were observed for 4 class diagnosis. Comparing to envelope-based approach, 

the overall increments in 2 and 4 class diagnostic accuracies were 1.4% and 4.5% respectively, 

whereas 4 class kappa significantly improved from 0.70 to 0.77. Thus, the modified algorithm 

performed significantly better than the envelope-based approach.  

        The new algorithm overperformed than any other existing methods for the automatic 

diagnosis of sleep apnea. It is applicable to any portable sleep screeners especially for the home 

diagnosis of sleep apnea. 
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1 
 

Chapter 1 

Introduction 
 

1.1 Sleep Apnea 
 

1.1.1 Sleep apnea event 

Sleep breathing disorders, defined by disturbances of the normal breathing process during 

sleep, can cause the development of central nervous, organic, physical, and metabolic disorders 

(Varady, Micsik, Benedek, & Benyo, 2002). There are various types of sleep breathing disorders, 

namely obstructive sleep apnea (OSA), central sleep apnea (CSA), and mixed sleep apnea (MSA). 

Figure 1.1 depicts the different types of apnea events. An episode of OSA occurs when there 

is complete obstruction of the air passage and cessation of airflow but continued respiratory efforts 

(abdominal and thoracic) against a closed airway. A CSA episode occurs when there is a complete 

cessation of breathing with no respiratory efforts. Both these events must last 10 seconds or more 

during sleep for them to be scored as such in adults (Berry et al., 2017; Berry et al., 2012). MSA 

is defined by a central respiratory pause followed, in a relatively short duration of time, by 

obstruction of the airway (Koves, 1999;Berry et al., 2017; Berry et al., 2012). OSA is the most 

prevalent sleep disorder (Berger et al., 1997) with CSA and MSA being relatively less 

predominant. There are major differences in sleep and respiratory physiology between children 

and adults. Sleep apnea in children is defined as the cessation of airflow for at least two respiratory 

cycles, and it is different from the definition of apneas in adults (Alsubie & BaHammam, 2017). 

 
Figure 1.1. Sleep apnea event types with physiological signals. 
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OSA is the most serious form of sleep disorder and it is the focus of this thesis. 

OSA affects about 2-5% of the total human population and over 30% of the elderly male 

population (Koves, 1999). The prevalence of sleep apnea is approximately 3% in children (Chang 

& Chae, 2010), 9% in women, and 17% in men with age ranging from 50 to 70 years (Peppard et 

al., 2013). 

OSA is a serious sleep disorder, where patients stop breathing repeatedly during sleep, 

sometimes more than hundreds of times due to airways obstruction. Figure 1.2 depicts the 

anatomical location of an obstructive apnea at the level of the pharynx. An apnea that is prolonged 

results in a progressive lack of oxygen to the brain and the rest of the body. 

 
Figure 1.2. Airway pattern during normal breathing and an obstructive sleep apnea event. 

An obstructive apnea event can be detected by employing physiological signals that detect 

airflow (e.g., use of nasal pressure or thermal sensor) and respiratory effort (e.g., use of inductance 

plethysmography) (Figure 1.3). 

 
Figure 1.3. Sleep apnea event with physiological signals (Pleth = Plethysmography). 



3 
 

The respiratory disturbances due to sleep apnea may cause arousal from sleep (Gleeson, 

Zwillich, & White, 1990). Sleep disruption and excessive daytime sleepiness are the most 

common presenting complaint (Slater & Steier, 2012). Other major symptoms include snoring, 

fatigue, falling asleep, headaches, weight gain, and memory loss. Because of such complications, 

the quality of life can be significantly decreased as well as an increased major risk of associated 

health problems (Ben-Israel, Tarasiuk, & Zigel, 2010). In addition, sleep apnea may go 

undiagnosed for years because of a person’s unawareness (Kryger, Roos, Delaive, Walld, & 

Horrocks, 1996). Notably, there are around a hundred million people in the world who are 

suspected to have sleep apnea but undiagnosed (Cruz, 2007). In this regard, several challenges 

regarding sleep apnea diagnosis, assessment, and treatment are of major concerns in public health. 

1.1.2 Sleep hypopnea event 

Shallow breathing, also known as hypopnea, is often associated with partial obstruction (or 

high airway resistance) of the upper airway. Hypopnea is typically defined by a decreased amount 

of air movement into the lungs and can cause oxygen level in the blood to drop as illustrated in 

Figure 1.4. Hypopnea during sleep is considered a sleep breathing event, although less severe than 

apnea. During severe hypopnea, sleep is disturbed such that despite a full night’s sleep, patients 

did not feel rested because they were aroused frequently during sleep. This breathing disruption 

causes a drop in blood oxygen level, which may in turn disrupt the stages of sleep. 

 

Figure 1.4. Sleep hypopnea event with physiological signals. 

          People with sleep breathing disorder (apnea/hypopnea) often have loud and heavy snoring. 

The most common symptom of sleep breathing disorder is excessive sleepiness, which results 

from constant sleep interruption. Not all people with hypopnea experience all these symptoms 
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and not everyone who has these symptoms has hypopnea. Other symptoms may include loss of 

energy, depression, nervousness, forgetfulness, morning headaches, mood or behavior changes, 

and trouble concentrating. These symptoms may cause traffic accidents and may lead to 

diminished productivity in the workplace and emotional problems, thus compromising the quality 

of life. Cardiovascular consequences of apnea/hypopnea events may include hypertension, 

myocardial infarction and coronary heart disease as well as other problems such as stroke, 

psychiatric problems, impotence, cognitive dysfunction, and memory loss. 

 

1.2 Conventional Diagnosis of Sleep Apnea 
 

1.2.1 Polysomnography 

Polysomnography (PSG), considered the gold standard and reliable method for sleep apnea 

diagnosis, is a multichannel signal recording process throughout the night. The major parameters 

of a standard diagnostic nocturnal PSG (Chesson et al., 1997; Kushida et al., 2005) include 

recording of electrocardiogram (ECG), electroencephalogram (EEG), electrooculogram (EOG), 

electromyogram (EMG), nasal airflow (NAF), abdominal and/or thoracic efforts (AE and/or TE), 

body position, snoring sounds, and pulse oximetry (SpO2). In portable devices, a limited-channel 

Level 3 or 4 home study is also frequently used for apnea diagnosis. A limited-channel study 

includes one or more of the following signal channels: NAF, abdominal, and/or thoracic 

movements, SpO2, and heart rate (HR) derived from ECG (Ferber et al., 1994). 

A sleep apnea test with PSG involves an overnight diagnostic study in a sleep laboratory, 

where electrodes are attached to the skin surface and scalp to record physiological signals as 

illustrated in Figure 1.5. Patients may not be able to sleep well due to wires hanging from one’s 

head and body. Sleep technologists monitor and manually review the overnight study for 

designating sleep stages and apnea type and length according to the American Academy of Sleep 

Medicine (AASM) guidelines. 

1.2.2 Scoring an apnea event 

According to the last update of the American Academy of Sleep Medicine (AASM) 

guidelines (Berry et al., 2017; Berry et al., 2012), scoring a respiratory event as apnea is done 

when both of the following criteria are met: 

➢ There is a drop in the peak signal excursion by ≥90% of the pre-event baseline using an 

oronasal thermal sensor (diagnostic study), positive airway pressure (PAP) device flow 

(titration study), or an alternative apnea sensor (diagnostic study). 



5 
 

➢ The duration of the ≥90% drop in sensor signal is ≥10 seconds. 

 
Figure 1.5. Complete setup for polysomnography. 

(https://www.alamy.com/stock-photo/polysomnography.html) 

The pre-event baseline is defined as the mean amplitude of stable breathing and oxygenation 

in the 2 minutes preceding onset of the event (in individuals who have a stable breathing pattern 

during sleep) or the mean amplitude of the 3 largest breaths in the 2 minutes preceding onset of 

the event (in individuals without a stable breathing pattern). When baseline breathing amplitude 

cannot be easily determined (and when underlying breathing variability is large), events can also 

be terminated when either there is a clear and sustained increase in breathing amplitude, or in the 

case where a desaturation has occurred, there is event-associated resaturation of at least 2%. When 

the oronasal thermal airflow sensor is not functioning or the signal is not reliable during the 

diagnostic study, one of the alternative apnea sensors such as nasal pressure transducer, 

respiratory inductance plethysmography sum (RIPsum), respiratory inductance plethysmography 

flow (RIPflow), or polyvinylidene fluoride sum (PVDFsum) can be used. For scoring either apnea 

or a hypopnea, the event duration is measured from the nadir preceding the first breath that is 

clearly reduced to the beginning of the first breath that approximates the baseline breathing 

amplitude as illustrated in the red brackets of Figure 1.3 and Figure 1.4. 

Scoring an apnea as obstructive if it meets apnea criteria and is associated with continued or 

increased inspiratory effort throughout the entire period of absent airflow. Scoring an apnea as 

central if it meets apnea criteria and is associated with absent inspiratory effort throughout the 

entire period of absent airflow. Scoring an apnea as mixed if it meets apnea criteria and is 
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associated with the absent inspiratory effort in the initial portion of the event, followed by the 

resumption of inspiratory effort in the second portion of the event. There is insufficient evidence 

to support a specific duration of the central and obstructive components of a mixed apnea; thus, 

specific durations of these components are not recommended (Berry et al., 2017). 

The identification of apnea does not require a minimum desaturation criterion. If a portion 

of a respiratory event that would otherwise meet the criteria for a hypopnea meets the criteria for 

apnea, the entire event should be scored as an apnea (Berry et al., 2017). If the apnea or hypopnea 

event begins or ends during an epoch that is scored as sleep, then the corresponding respiratory 

event can be scored and included in the computation of the apnea hypopnea index (AHI). This 

situation usually occurs when an individual has a high AHI with events occurring so frequently 

that sleep is severely disrupted that resulted in epochs being scored as wake, even though <15 

second of sleep is present during the epoch containing that portion of the respiratory event (Berry 

et al., 2017). However, if the apnea or hypopnea occurs entirely during an epoch scored as wake, 

it should not be scored or counted towards the apnea-hypopnea index because of the difficulty of 

defining a denominator in this situation. If these occurrences are a prominent feature of a 

polysomnogram and/or interfere with sleep onset, their presence should be mentioned in the 

narrative summary of the study. 

1.2.3 Scoring a hypopnea event 

According to updated AASM guidelines (Berry et al., 2017; Berry et al., 2012), scoring a 

respiratory event as a hypopnea is done if all of the following criteria are met: 

➢ The peak signal excursions drop by ≥30% of the pre-event baseline using nasal pressure 

(diagnostic study), PAP device flow (titration study), or an alternative hypopnea sensor 

(diagnostic study).  

➢ The duration of the ≥30% drop in the signal excursion is ≥10 seconds.  

➢ There is a ≥3% oxygen desaturation from pre-event baseline or the event is associated 

with an arousal. 

       The criteria used to score a respiratory event as a hypopnea (≥3% oxygen desaturation with 

or without arousal) should be specified in the PSG report. It is the responsibility of the individual 

practitioner to confirm and follow the criteria that should be used for reporting to the patient’s 

payer to be reimbursed and qualify the patient for therapy. When the nasal pressure transducer is 

not functioning or the signal is not reliable during a diagnostic study, one of the alternative 

hypopnea sensors such as an oronasal thermal sensor, RIPsum, RIPflow, dual thoracoabdominal 

RIP belts, or PVDFsum can be used. Supplemental oxygen may blunt desaturation. There are 

currently no scoring guidelines for when a patient is on supplemental oxygen and no desaturation 
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is noted. If the diagnostic study is performed while the individual is on supplemental oxygen, its 

presence should be mentioned in the narrative summary of the study. 

1.2.4 Scoring a hypopnea event with EEG arousal 

Electroencephalography (EEG) is an electrophysiological monitoring signal that records the 

electrical activity of the brain. It is typically non-invasive, with the electrodes placed on the scalp, 

although invasive electrodes are sometimes used, as in electrocorticography. EEG measures 

voltage fluctuations resulting from ionic current within the neurons of the brain (Niedermeyer & 

da Silva, 2005). Clinically, EEG refers to the recording of the brain’s spontaneous electrical 

activity over a while, as recorded from multiple electrodes placed on the scalp (Niedermeyer & 

da Silva, 2005). Diagnostic applications generally focus either on event-related potentials or on 

the spectral content of EEG. The analyses of neural oscillations (popularly called ‘brain waves’) 

that can be observed in EEG signals in the frequency domain.  

EEG is usually used to score arousal from sleep. An EEG arousal is an abrupt shift in EEG 

frequency, which may include alpha and/or theta waves and/or delta waves and/or frequencies 

greater than 16 Hz lasting at least 3 seconds and starting after at least 10 continuous seconds of 

sleep. An EEG arousal often occurs at the termination of an apnea event (Figure 1.6). An EEG 

arousal is required for scoring a hypopnea event when the peak excursion of airflow drops ≥30% 

from the pre-event baseline with a duration of ≥10 s but not associated with ≥3% oxygen 

desaturation (Berry et al., 2017; Berry et al., 2012). 

     
(a)                                                                     (b) 

Figure 1.6. EEG arousals corresponding to (a) CSA and (b) OSA events. 

1.2.5 Scoring total sleep time and AHI 

An overnight PSG record usually contains sleep and wake segments that are scored using 

EEG signal. Sleep and wake portions can be distinguished based on EEG rhythms/frequency 
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bands according to Rechtschaffen and Kales criteria ((Berry et al., 2017; Berry et al., 2012). Thus, 

the analysis of EEG can provide the total sleep time (TST) by subtracting the wake durations from 

the PSG recording duration. The AHI is calculated from the total number of apnea and hypopnea 

events divided by TST. 

 
1.2.6 Severity of sleep apnea 

The severity of sleep apnea is measured by the number of episodes per hour, using several 

indexes such as the apnea index (AI), hypopnea index (HI), and apnea-hypopnea index (AHI) or 

respiratory disturbance index (RDI). AHI is the most used severity index. In individuals with 

apnea or hypopnea throughout the night, there can be 5 to 15 episodes per hour in mild cases, 15 

to 30 episodes per hour in moderate cases, and more than 30 episodes per hour in severe cases in 

adults (Grover & Pittman, 2008; Kryger, 2000). The severity of sleep apnea is also different in 

children with 1 to 5 episodes per hour classified as Mild, 5 to 10 episodes per hour as Moderate, 

and more than 10 episodes per hour as Severe (Alsubie & BaHammam, 2017; Kljajic et al., 2017). 

 

1.3 Automatic Diagnosis of Sleep Apnea 

Sleep apnea is a serious sleep disorder that affects the quality of sleep. Early diagnosis is 

the pre-requisite to the proper treatments for sleep apnea. Conventional/manual diagnosis (visual 

scoring) is time-consuming and costly and requires skilled personnel. Automatic diagnosis can 

remove the drawbacks of manual diagnosis. Thus, a robust and most accurate automatic 

diagnostic method needs to be developed that can produce a reliable diagnosis of sleep apnea. 

An automatic method can analyze the respiratory-related physiological signals and detect 

the episodes of apnea and hypopnea events for proper diagnosis without any involvement of 

humans. Though automatic processes have been developed obviating the manual process, they 

are not sufficiently robust for reliable and accurate diagnosis of sleep apnea. Thus, a new 

automatic method (algorithm) is required for the accurate diagnosis of sleep apnea. 

This thesis developed an automatic algorithm for the diagnosis of sleep apnea from AF and 

SpO2 signals. A systematic literature review of the existing methods (approaches and algorithms) 

was required for designing a reliable automatic algorithm. In addition, the analysis of the 

electroencephalogram (EEG) spectral powers from apnea duration of varying length was required 

to justify the use of the EEG for the automatic approach for home application.  

An automatic method that employed an airflow (AF) envelope tracking and subsequent 

digitization approach for the diagnosis of sleep apnea was developed. The automatic detection 

process includes the detection of apnea, hypopnea, sleep time, and apnea hypopnea index (AHI). 
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A modified method of the AF envelope tracking method developed for the automatic diagnosis 

of sleep apnea where all possible limitations in the previous designed method have been addressed 

and minimised. 

 

1.4 Research Questions, Hypotheses, and Study Approach 

Three main research questions were raised in this thesis with relevant hypotheses and study 

approach. 

 

Question 1: Are the EEG spectral features effective for sleep apnea diagnosis?    

Hypothesis 1: The features of spectral power may not be used for sleep apnea diagnosis. 

Study approach: 

➢ Analysis of the EEG spectral powers to investigate the changes related to apnea 

termination. 

➢ Comparison of spectral powers in different apnea duration groups. 

➢ Justification of the use of EEG for the automatic diagnosis of sleep apnea. 

 

Question 2: Is the envelope tracking approach with subsequent digitization, based on AF 

and SpO2 signals, effective for the automatic diagnosis of sleep apnea?    

Hypothesis 2: An envelope tracking and subsequent digitization approach would be effective 

for reliable diagnosis of sleep apnea. 

Study approach: 

➢ Detection of apnea and hypopnea events using AF envelope tracking with subsequent 

digitization. 

➢ The estimation of TST from the auto-analysis of AF and SpO2 signals. 

➢ Validation of the automatic algorithm with a large dataset. 

➢ Comparison of the performance with the existing approaches. 

 

Question 3: Can per-sample encoding of AF and SpO2 produce better performance than 

envelope-based approach?    

Hypothesis 3: Sample-to-sample encoding would be superior to detecting apnea and 

hypopnea events compared to the envelope-based approach. 

Study approach for Hypothesis 3: 
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➢ Detection of apnea events by sample-to-sample encoding of AF signal with satisfying the 

updated AASM guidelines. 

➢ Detection of the timing of oxygen desaturations from per-sample encoding of SpO2 

signal. 

➢ Detection of hypopnea events by applying all possible amount of time lags in SpO2 signal. 

➢ Estimation of AHI from overall detected apneas and hypopneas and validate the 

algorithm with a large dataset. 

➢ Comparison of the performance with envelope-based and other existing approaches. 

 

1.5 Contribution to Knowledge 

This thesis contributed significantly to knowledge as follows: 

➢ A review of the literature that led to identifying the major concerns, challenges, and 

limitations of the existing automatic methods. In addition, the potential research gaps and 

possible directions were addressed for developing a new and reliable automatic approach. 

➢ Description of EEG spectral power resulting from apnea of different durations. The EEG 

spectral power in sleep apnea episodes varied significantly with the change of apnea 

durations. The spectral analysis showed the link between spectral power changes and 

varying apnea duration and suggested the effectiveness of using EEG signal for the 

automatic diagnosis of sleep apnea. 

➢ Development of algorithms for the automatic diagnosis of sleep apnea using an envelope 

tracking technique and a sample-to-sample encoding technique. Envelope tracking was 

proposed as a new technique for the diagnosis of sleep apnea though some limitations 

exist throughout the automatic diagnostic process. A modified algorithm minimized the 

problems associated with envelope-based approach and outperformed over other 

automatic approaches. This novel algorithm is proposed for the ease of computational 

implications in event scoring and applicable to used-friendly home diagnosis of sleep 

apnea. 

 

1.6 Thesis Outline 

This thesis is a narration of the work that led to the development of a novel algorithm suitable 

for the automatic diagnosis of sleep apnea:   

Chapter 1 provided an overview of the basic physiology and terms linked to sleep apnea. 

Chapter 2 is a systematic literature review of the existing methods (approaches and 

algorithms) used for sleep apnea diagnosis. 
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Chapter 3 examined the electroencephalogram (EEG) spectral powers resulting from apnea 

duration of varying length and reported the changes in the relative powers in EEG frequency 

bands before and at apnea termination. 

Chapter 4 reported an automatic method that employed an airflow (AF) envelope tracking 

and subsequent digitization approach for the diagnosis of sleep apnea. The automatic detection 

process includes the detection of apnea, hypopnea, sleep time, and apnea hypopnea index (AHI).  

        Chapter 5 reported a modified method of the AF envelope tracking method developed for 

the automatic diagnosis of sleep apnea where all possible limitations in the previous designed 

method have been addressed and minimised.  

Chapter 6 provided a summary, final discussion and addressed future works for developing 

new algorithms for the diagnosis of sleep apnea. 
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Chapter 2 

Literature Review 
 

2.1    Introduction 

A systematic review of existing literature based on sleep apnea diagnosis is required where 

computerized techniques may overcome the limitations of manual processes. In addition, the 

systematic review addresses the research gaps for future investigations. 

Physiological signals also referred to as biological or biomedical signals, are elemental in 

sleep apnea diagnosis. They are the measurements or recordings that are generated in the 

physiological process of human beings, e.g., heart rate, respiratory frequency, skin conductance, 

electric muscle current, and brain electrical activity. Respiratory signals (nasal airflow/pressure) 

along with efforts generated by respiratory muscles (thoracic and abdominal effort manifest as 

pressure waves), and pulse oximetry (SpO2) are fundamental signals employed to detect sleep 

apnea. Obstructive, central, and mixed apnea types can be easily distinguished by airflow, thoracic 

and abdominal efforts. Besides, sleep apnea severity (mild, moderate, and severe) can be 

calculated using the number of events per hour. In addition, every apnea event of 10 seconds or 

more results in a reduction of oxygen level. Thus, the level of oxygen desaturation is applied to 

detect apnea/hypopnea cases. Other physiological signals such as EEG, ECG, and snore sound 

are also used to detect sleep apnea but the reliability of sleep apnea detection using these signals 

is very poor. 

Many researchers have employed different classification methods to detect sleep apnea using 

physiological signals. The common signals used include oxygen saturation (Oeverland, Skatvedt, 

Kvaerner, & Akre, 2002; Zamarron, Romero, Gude, Amaro, & Rodriguez, 2001), airflow (Morsy 

& Al-Ashmouny, 2006; Nazeran, Almas, Behbehani, Burk, & Lucas, 2001), snore sounds (Ben-

Israel, Tarasiuk, & Zigel, 2012), ECG (Song, Liu, Zhang, Chen, & Xian, 2016; Travieso, Alonso, 

del Pozo, Ticay, & Castellanos-Dominguez, 2014), EEG (Tagluk & Sezgin, 2011), or a 

combination of these signals (W. Huang, Guo, Shen, & Tang, 2017; Kaimakamis et al., 2016; 

Varady et al., 2002). The cost of the detection system is proportional to the number of sensors 

used to collect physiological signals. Many studies have used only one physiological signal to 

detect sleep apnea (Mendez et al., 2010; Selvaraj & Narasimhan, 2013), whereas others have used 

multiple physiological signals (Al-Mardini, Aloul, Sagahyroon, & Al-Husseini, 2014; Alvarez-

Estevez & Moret-Bonillo, 2009; Kaimakamis, Bratsas, Sichletidis, Karvounis, & Maglaveras, 
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2009; Otero, Felix, Barro, & Zamarron, 2012). Reducing the processing cost is not the primary 

target of sleep apnea detection, but the accuracy of the system designed is the first priority. 

Detecting sleep apnea using the main signals, respiratory and oximetry, would be more 

realistic and result in better detection accuracy. There are several reasons for selecting these 

signals. Firstly, the manual scoring of sleep apnea events is based on respiratory and oximetry 

signals, where data segments or epochs are annotated using these signals. Secondly, sleep apnea 

detection that uses additional signals of EEG, ECG, and snore sound is done using the same 

annotations based on these signals. Finally, the detection accuracy found in different classification 

methods is the measure that is based on these annotations. 

In addition, adults and children are two distinct entities in sleep apnea detection. Sleep 

architecture, respiratory physiology, apnea definition, and apnea severity in adults differ from 

children/pediatric subjects (Alsubie & BaHammam, 2017; Kljajic et al., 2017). Besides, the 

algorithms for sleep apnea detection in pediatric subjects are quite different and usually need 

special consideration or criteria to obtain better detection results. According to these differences 

between adults and pediatric subjects, this review focuses only on the adult population. 

       Detection of sleep apnea using respiratory and oximetry signals often includes a four-stage 

methodology as illustrated in Figure 2.1: acquisition of respiratory and oximetry signals, features 

extraction, features selection, followed by apnea detection. One or more respiratory and oximetry 

signals are recorded from the adult population (healthy and apnea or both types). Features are 

extracted from respiratory and oximetry signals and in some cases with a large set of features; the 

features selection step is applied to select more distinctive features. Finally, features are applied 

to the classifiers to detect sleep apnea. 
 

 

Figure 2.1. The conceptual workflow of decision-making. 

Detection of sleep apnea using respiratory and oximetry signals often includes a four-stage 

methodology Respiratory and oximetry signals are the most effective physiological signals on 

which a reliable and accurate sleep apnea detection system is based. To design such a system, a 

review of the existing literature on respiratory and oximetry signals has shown greater 

acceptability in sleep apnea detection. However, the benefits, drawbacks, and challenges 

associated with the use of these signals as well as the existing classification methods in sleep 

apnea detection are unknown. Thus, this systematic review will address these issues to advance 

Apnea 
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Features 
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Features 
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the techniques of sleep apnea detection to enable the development of a reliable and accurate 

system. In addition, this paper will address the rationales for and the process of decision-making 

on the multiple sleep apnea scenarios, including their concept, model, performance, plus 

beneficial and challenging outcomes. The main research questions were (1) Which respiratory 

and/or oximetry signals provide the best discriminatory support for decision-making on sleep 

apnea? (2) Which classification methods result in high accuracy in sleep apnea detection with 

respiratory and oximetry signals? (3) What are the beneficial and challenging effects associated 

with the use of these physiological signals and classification methods? 

 

2.2 Methods 
 

2.2.1 Inclusion and exclusion criteria 

Studies were included in this review if they met the following criteria: (1) presented a method 

or systematic approach to detecting sleep apnea, (2) written in English, (3) included adult 

participants only, (4) classification methods based on the use of one or more respiratory and 

oximetry signals, (5) decisions made on normal or apnea (or different classes of apnea or their 

severity), and (6) presented definitive overall detection results in the form of accuracy, sensitivity, 

specificity, and other parameters. These criteria were also applied to studies obtained from cross-

reference tracking. Studies that satisfied the above criteria were extracted and included in this 

review. Articles from conference proceedings were reviewed critically and only extended 

versions that were published as journal articles were included. Studies were also excluded even 

though they met the above inclusion criteria: (1) case report of a single subject, and (2) studies 

where participants have co-morbidities of chronic heart and kidney diseases, diabetes, stroke, etc. 

2.2.2 Search strategy 

The phrase ‘Sleep apnea detection’ is inter-related to the research fields of Health, 

Engineering (Biomedical), and Information Technology. sleep apnea is a medical or health 

complication where knowledge of Engineering and Information Technology is applied to detect 

or solve this problem. In this regard, the selection of specific databases to extract related articles 

is a crucial factor. A systematic search was conducted on the following five major electronic 

databases that are basic sources of articles in the fields of Health, Engineering, and Information 

Technology: Medline (Ovid), Scopus (Elsevier), ACM Digital Library, IEEE Xplore Digital 

Library, and ProQuest Science & Technology. Studies published in English from January 2001 

to July 2017 were included in this study according to the inclusion and exclusion criteria 

mentioned above. 
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Databases search was performed using the following words or phrases and all possible 

combinations: apnea or sleep apnea or obstructive sleep apnea or sleep apnea-hypopnea syndrome 

or sleep-disordered breathing, and the noun or verbal form of classification or detection or 

identification or prediction or recognition or screening. Following limiting conditions were 

applied as well during the search: English language, adult human subject, and the stated range of 

years of publication. All references found in five databases were imported to EndNote for rigorous 

manual screening after deleting duplicates. Thus, identified articles were screened for eligible 

studies. Detailed investigation of eligible studies and their bibliographies retrieved additional 

pertinent references. Finally, inclusion and exclusion criteria were applied to extract desired 

articles for qualitative synthesis. 

The flow diagram of the systematic review process is presented in Figure 2.2. The combined 

electronic searches identified 4111 studies. Rigorous screening of titles and abstracts excluded 

3963 studies due to irrelevancy. The remaining 148 full-text articles were eligible for detailed 

investigation. 

A rigorous manual search of bibliographies of mentioned full-text articles was performed to 

extract eligible additional references and new full-text studies. In this way of cross-reference 

tracking, 7 new full-text articles were added. Of 155 full-text articles, 93 failed to satisfy the 

eligibility criteria. The remaining 62 full-text articles that met the inclusion criteria but not met 

the exclusion criteria were included for qualitative synthesis. 

2.2.3 Extraction of study characteristics 

The data extracted from the included studies through qualitative synthesis were studies with 

the year of publication, the number of subjects, type of respiratory and/or oximetry signals used, 

main decision, classification methods, and metrics for classification method evaluation (detection 

rate). The metrics (based on per-subject or per-recording and per-segment or per-epoch detection) 

appear in the last four columns (Table 2.2). The parameters and equations used to evaluate the 

metrics (accuracy, sensitivity, specificity, and other parameters) are set out in Table 2.1. True 

positive (TP) represents a positive input detected as positive, whereas true negative (TN) 

represents a negative input detected as negative. False positive (FP) represents a negative input 

detected as positive, whereas false negative (FN) represents a positive input detected as negative. 

The main outcome measuring parameters (accuracy, sensitivity, and specificity) are 

evaluated based on TP, TN, FP, and FN. Other parameters are positive predictive value (PPV), 

negative predictive value (NPV), F-measure, g-means, and area under ROC (receiver operating 

characteristic) curve (AUC). The qualitative analysis of included articles based on respiratory and 

oximetry signals (single signal or multiple signals) is tabulated in Table 2.2. 
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Figure 2.2. Flow diagram of the systematic review process. 

Table 2.1. Parameters for evaluating metrics used in classification methods. 

Parametersa Definitionb 

Accuracy (Ac) 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% 

Sensitivity (Se) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

Specificity (Sp) 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% 

Positive predictive value (PPV) 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% 

Negative predictive value (NPV) 𝑇𝑁

𝑇𝑁 + 𝐹𝑁
× 100% 

F-measure 
2 ×

𝑃𝑃𝑉 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

g-means √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

Receiver operating characteristic (ROC) curve A plot of sensitivity versus 1-specificity 

Area under ROC curve (AUC) A performance measurement for the 

classification problems at various threshold 

settings. AUC represents the degree of 

separability between classes. 

Id
en

tif
ic

at
io

n Relevant studies identified through 
database searching 

(n = 4111) 

Sc
re

en
in

g 

Studies screened 
(n = 4111) 

Studies excluded 
(n = 3963) 

El
ig

ib
ili

ty
 

Full-text studies assessed for 
eligibility 
(n = 148) 

Cross-reference tracking 
(n = 7) 

Full-text studies excluded 
(n = 93) 

In
cl

us
io

n 

Studies included for qualitative synthesis 
(N = 62) 
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aParameters symbols: AUC = Area under ROC curve, NPV = Negative predictive value, PPV = Positive 

predictive value, ROC = Receiver operating characteristic 
bDefinition terms: FN = False negative, FP = False positive, TN = True negative, TP = True positive 



Table 2.2. Included studies to detect sleep apnea based on respiratory and oximetry signals. 

Study No. of 

subjects 

Signala Decisionb Classification methodc (*) best 

when multiple mentioned 

Metricsd,e (%) 

Ac Se Sp Other 

Nazeran et al. (2001) 9 AF A/H FIS (Fuzzy rules) 83.0    

Zamarron et al. (2001) 197 SpO2 O+/O– Threshold-based (77.0) (58.0) (92.0) PPV (87.0) 

Oeverland et al. (2002) 100 SpO2 Mi/Mo-Se Threshold-based  (88.6) (76.9)  

Varady et al. (2002) 16 AF+TE+AE A/H/N ANN 90.0    

Varady, Bongar, and Benyo 

(2003) 

6 TE+AE C/O PLA    PPV 90.6 

Y. K. Lee, Bister, 

Blanchfield, and Salleh 

(2004) 

7 SpO2 O/N Threshold-based 96.6 95.7 97.0  

Fontenla-Romero, Guijarro-

Berdinas, Alonso-Betanzos, 

and Moret-Bonillo (2005) 

6 AF+TE C/M/O ANN 83.8    

Morsy and Al-Ashmouny 

(2006) 

10 AF A/N FIS (fuzzy rules) + CGE  100 97.0  

Tian and Liu (2006) 30 AF+SpO2 A/H/N TDNN  83.7 82.9  

Alvarez, Hornero, Abasolo, 

del Campo, and Zamarron 

(2006) 

187 SpO2 O+/O– Threshold-based (87.2) (90.1) (82.9) AUC (96.7) 

Alvarez, Hornero, Garcia, et 

al. (2006) 

74 SpO2 O+/O– 

 

 

  

Threshold-based (86.5) (95.5) (73.3) AUC (87.0) 
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del Campo, Hornero, 

Zamarron, Abasolo, and 

Alvarez (2006) 

187 SpO2 O+/O– Threshold-based  (88.3) (82.9) AUC (92.1) 

Alvarez, Hornero, Garcia, 

del Campo, and Zamarron 

(2007) 

187 SpO2 O+/O– Threshold-based (87.2) (90.1) (82.9) AUC (92.4) 

Alvarez, Hornero, Marcos, 

del Campo, and Lopez 

(2007) 

74 SpO2 O+/O– CA (KM*, FCM, Hierarchical) (90.5) (95.5) (83.3)  

Hornero, Alvarez, Abasolo, 

del Campo, and Zamarron 

(2007) 

187 SpO2 O+/O– Threshold-based  (82.1) (87.0)  

Marcos, Hornero, Alvarez, 

del Campo, and Lopez 

(2007) 

187 SpO2 O+/O– NN (MLP, RBF*) (86.3) (89.9) (81.1) AUC (96.0) 

Salisbury and Sun (2007) 34 AF O/N Threshold-based  93.3 100  

Han, Shin, Jeong, and Park 

(2008) 

24 AF A/N Threshold-based  92.4 88.3  

Marcos, Hornero, Alvarez, 

del Campo, Lopez, et al. 

(2008) 

187 SpO2 O+/O– NN (KM*, FCM, OLS) (86.1) (89.4) (81.4) AUC (91.0) 

Marcos, Hornero, et al. 

(2008b) 

187 SpO2 O+/O– NN (MLP) (85.5) (89.8) (79.4) AUC (90.0) 

Marcos, Hornero, et al. 

(2008a) 

157 SpO2 O+/O– GLM (88.0) (79.6) (100) AUC (92.0) 
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Ng et al. (2008) 26 TE+AE A/N Threshold-based    AUC 90.9 

Otero, Felix, Alvarez, and 

Zamarron (2008) 

5 AF A/H Fuzzy rules 95.0    

Alvarez-Estevez and Moret-

Bonillo (2009) 

12 AF+TE+AE+SpO2 A/H Fuzzy rules  88.5 88.5 AUC 88.0 

Kaimakamis et al. (2009) 86 AF+TE+SpO2 O/N Decision tree (C4.5) (84.9)    

Marcos, Hornero, Alvarez, 

del Campo, and Zamarron 

(2009a) 

187 SpO2 O+/O– LDA*, QDA, KNN, LRA (87.6) (91.1) (82.6) AUC (92.5) 

Marcos, Hornero, Alvarez, 

del Campo, and Zamarron 

(2009b) 

149 SpO2 O+/O– SVM (88.0) (84.4) (93.3) AUC (92.1) 

Morillo, Rojas, Crespo, 

Leon, and Gross (2009) 

117 SpO2 Mi/Mo-Se Threshold-based  (90.9) (84.0) AUC (95.0) 

Sezgin and Tagluk (2009) 21 TE+AE C/M/O ANN 86.8    

Akin and Sezgin (2010) 21 AE C/M/O ANN 77.9    

Alvarez, Gutierrez, Marcos, 

del Campo, and Hornero 

(2010) 

148 AF+SpO2 O+/O– Threshold-based (84.5) (84.0) (85.4) AUC (90.4) 

Alvarez, Hornero, Marcos, 

and del Campo (2010) 

148 SpO2 O+/O– LRA (89.7) (92.0) (85.4) AUC (96.7) 

Burgos, Goni, Illarramendi, 

and Bermudez (2010) 

8 SpO2 A/N Bagging with ADTree 93.0 92.4 93.5 AUC 98.5 

Caseiro, Fonseca-Pinto, and 

Andrade (2010) 

41 AF O/N Threshold-based  (81.0) (95.0)  



21 
 

Marcos, Hornero, Alvarez, 

del Campo, and Aboy (2010) 

214 SpO2 O+/O– LDA (93.0) (97.0) (79.3) AUC (95.0) 

Tagluk and Sezgin (2010) 21 AE C/M/O ANN 85.6    

Marcos, Hornero, Nabney, 

Alvarez, and del Campo 

(2011) 

96 SpO2 O+/O– Threshold-based (81.3) (81.3) (81.3) AUC (87.0) 

Guijarro-Berdinas, 

Hernandez-Pereira, and 

Peteiro-Barral (2012) 

6 AF+TE C/M/O ANN 93.5 90.3 95.1  

Gutierrez-Tobal, Hornero, 

Alvarez, Marcos, and del 

Campo (2012) 

148 AF O+/O– LRA (82.4) (88.0) (70.8) AUC (90.3) 

Otero et al. (2012) 10 AF+SpO2 A/N Fuzzy rules 90.0    

Gutierrez-Tobal, Alvarez, 

Marcos, del Campo, and 

Hornero (2013) 

148 AF O+/O– MLR, NN (MLP*, RBF) (91.5) (92.5) (89.5) PPV (94.9) 

Koley and Dey (2013) 36 AF A/N SVM 94.9    

Maali and Al-Jumaily (2013) 5 AF+TE+AE A/N ANN    AUC 87.0 

Morillo and Gross (2013) 115 SpO2 O+/O– PNN (93.9) (92.4) (95.9) AUC (96.1) 

Selvaraj and Narasimhan 

(2013) 

200 AF A/N Logical algorithm  (83.6) (100) PPV (72.3) 

Thommandram, Eklund, and 

McGregor (2013) 

8 TE A/N KNN  95.7 88.1 AUC 96.0 

J. Zhang, Zhang, Wang, and 

Qiu (2013) 

40 SpO2 A/N SVM 90.0    
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Bianchi, Lipoma, Darling, 

Alameddine, and Westover 

(2014) 

116 TE+AE A/N Event detection algorithm    AUC (92.0) 

Carmes, Kempfner, 

Sorensen, and Jennum 

(2014) 

109 TE+AE+SpO2 A/N Elastic net  (86.8) (95.4) AUC (97.9) 

Koley and Dey (2014) 34 SpO2 A/N SVM 95.4    

Sanchez-Morillo, Lopez-

Gordo, and Leon (2014) 

115 SpO2 Mi/Mo/Se/N BHC (82.6)    

Avci and Akbas (2015) 8 AF+TE+AE A/N RFC*, AdaBoost, RSS  98.7   F-measure 98 

Ciolek, Niedzwiecki, 

Sieklicki, Drozdowski, and 

Siebert (2015) 

30 AF A/H Envelope detection algorithm 95.0 90.0 96.0  

S. H. Huang et al. (2015) 387 SpO2 O/N Decision tree (C4.5) (94.7) (98.7) (90.7) g-means (94.6) 

Jin and Sanchez-Sinencio 

(2015) 

5 AF A/N Threshold-based  100 85.9  

Gutierrez-Tobal, Alvarez, 

del Campo, and Hornero 

(2016) 

317 AF A/N AdaBoost (LDA, CART*) (86.5) (89.0) (80.0)  

Kagawa, Tojima, and Matsui 

(2016) 

35 TE+AE Mi/Mo-Se Threshold-based  96.4 100 AUC 100 

Kaimakamis et al. (2016) 100 AF+TE+SpO2 O/N LRM*, Decision tree (88.6) (92.9) (71.4)  

H. Lee, Park, Kim, and Lee 

(2016) 

50 AF A/H Rule-based algorithm  (86.4)  PPV (84.5) 

W. Huang et al. (2017) 30 AF+SpO2 A/H Respiratory events algorithm  97.6  PPV 95.7 
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Morales et al. (2017) 79 SpO2 A/N KNN*, LS-SVM (93.7) (96.9) (78.6)  

Rolon, Larrateguy, di Persia, 

Spies, and Rufiner (2017) 

954 SpO2 Mi/Mo-Se NN (MLP) (85.8) (85.6) (85.9) AUC (93.7) 

aSignal symbols: AF = Airflow, AE = Abdominal effort, TE = Thoracic effort, and SpO2 = Pulse oximetry. 
bDecision symbols: A/N = Apnea or Normal, A/H = Apnea or Hypopnea, A/H/N = Apnea or Hypopnea or Normal, O/N = OSA or Normal, O+/O– = OSA positive or OSA negative, C/O = 

CSA or OSA, C/M/O = CSA or OSA or MSA, Mi/Mo-Se = Mild OSA or Moderate-to-Severe OSA, Mi/Mo/Se/N = Mild OSA or Moderate OSA or Severe OSA or Normal. 
cClassification methods symbols: ANN = Artificial neural network, BHC = Binary hierarchical, CA = Clustering algorithm, CART = Classification and regression trees, CGE = Center of 

gravity engine, FCM = Fuzzy c-means, FIS = Fuzzy inference system, GLM = Generalized linear models, KM = k-means, KNN = k-nearest neighbors, LDA = Linear discriminant analysis, 

LRA = Logistic regression analysis, LRM = Linear regression model, LS-SVM = Least squares support vector machine, MLP = Multi-layer perceptron, MLR = Multiple linear regression, NN 

= Neural network, OLS = Orthogonal least squares, PLA = Piecewise linear approximation, PNN = Probabilistic neural network, QDA = Quadratic discriminant analysis, RBF = Radial basis 

function, RFC = Random forest classifier, RSS = Random subspace, SVM = Support vector machine, TDNN = Time-delay neural network. 

dMetrics: Results based on per-recording detection are enclosed by brackets, whereas results without brackets indicate per-epoch detection. 

eDecision symbols: Ac = Accuracy, AUC = Area under ROC curve, PPV = Positive predictive value, ROC = Receiver operating characteristic, Se = Sensitivity, Sp = Specificity. 



 

2.3 Results 

A year on year distribution of published articles for sleep apnea detection is shown in Figure 

2.3. The number of published articles concerning each publication year is illustrated here. The bar 

chart shows an increasing tendency of use of respiratory and oximetry signals by year to detect 

sleep apnea in adults. The highest number of publications (11.3%) was found in the year 2010 

and 2013 each. Table 2.3 displays the number and percent of articles found to detect sleep apnea 

using respiratory and oximetry signals and the number of articles used to make decisions on the 

types of sleep apnea. Of the 62 studies retrieved, 70.97% (44 articles) were categorized based off 

single respiratory or oximetry signal, whereas 29.03% (18 articles) based off multiple respiratory 

and oximetry signals (Table 2.3). Sleep apnea detection based on single signals was further 

clustered as: airflow (AF) signal based detection (22.58%, 14 articles), thoracic effort (TF) signal 

based detection (1.61%, 1 article), abdominal effort (AE) signal based detection (3.23%, 2 

articles), and pulse oximetry (SpO2) based detection (43.55%, 27 articles). 

 

Figure 2.3. The proportion of articles employing respiratory and oximetry signals for sleep 

apnea detection. 

In addition, as presented in Table 2.3, the decision-making process is substantiated by the 

following scenarios: applying a binary decision (in 54 articles, 87.09%) such as apnea or normal, 

apnea or hypopnea, OSA or normal, OSA positive or OSA negative, CSA or OSA, and mild OSA 

or moderate-to-severe OSA; a three-option decision (in 7 articles, 11.29%) such as apnea or 

hypopnea or normal and CSA or MSA or OSA; and a four-option decision (in 1 article, 1.62%) 

such as mild OSA or moderate OSA or severe OSA or normal. 
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Table 2.3. Decisions made based on single/multiple respiratory and oximetry signals. 

Decisiona Single-signalb Multi-signal Number of 

articles (%) AF TE AE SpO2 

A/N 6 1  4 6 17 (27.42%) 

A/H 4    2 6 (9.68%) 

A/H/N     2 2 (3.23%) 

O/N 2   2 2 6 (9.68%) 

O+/O– 2   17 1 20 (32.26%) 

C/O     1 1 (1.61%) 

C/M/O   2  3 5 (8.06%) 

Mi/Mo-Se    3 1 4 (6.45%) 

Mi/Mo/Se/N    1  1 (1.61%) 

Number of articles 14 1 2 27 18 62  

% 22.58 1.61 3.23 43.55 29.03 (100%) 
aDecision symbols: A/N = Apnea or Normal, A/H = Apnea or Hypopnea, A/H/N = Apnea or Hypopnea or 

Normal, O/N = OSA or Normal, O+/O- = OSA positive or OSA negative, C/O = CSA or OSA, C/M/O = CSA 

or OSA or MSA, Mi/Mo-Se = Mild OSA or Moderate-to-Severe OSA, Mi/Mo/Se/N = Mild OSA or Moderate 

OSA or Severe OSA or Normal. 
bSignal symbols: AF = Airflow, AE = Abdominal effort, TE = Thoracic effort, and SpO2 = Pulse oximetry. 

 

2.3.1 Decision-making combined with classification methods 

Decision-making on the sleep apnea types according to different classification methods is 

tabulated in Table 2.4. Sixty-two studies revealed single or a combination of classification 

methods that were clustered as follows: machine learning methods (64.52%), threshold-based 

methods (27.42%), and other methods (8.06%). A conceptual mind-map of different 

classification methods used in this review is depicted in Figure 2.4. 

Machine learning (ML) has revolutionized the possibility to deal with large and complex 

data sets. Different ML approaches were applied to detect sleep apnea using respiratory and 

oximetry signals. Out of sixty-two, four studies applied multiple approaches of ML for detection 

purposes. In total, forty out of sixty-two studies applied different ML approaches that included 

64.52% of total classification methods. ML approaches were further segmented as follows: 

neural networks (22.58%), linear methods (14.52%), regularization (1.61%), instance-based 

(11.29%), clustering (1.61%), dimensionality reduction (3.23%), ensemble learning (6.45%), and 

decision trees (3.23%). 

The neural network (NN) is a powerful tool for data analytics. The aim of artificial neural 

networks (ANNs) is to perform tasks analogous to biological brains based on the connections 
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among many simple processing elements, known as neurons. These neurons are organized into 

layers, where outputs from one layer are used as inputs into the following layer. Other neural 

networks techniques reported in this review are time-delay neural network (TDNN), radial basis 

function (RBF) neural network (Haykin, 1994), multilayer perceptron (MLP) neural network, 

and the probabilistic neural network (PNN). A TDNN can recognize features independent of 

time-shift (Waibel, Hanazawa, Hinton, Shikano, & Lang, 1995). The RBF neural network is 

commonly used for modeling nonlinear problems through a fixed nonlinear transformation 

(Pombo, Garcia, Felizardo, & Bousson, 2014). An MLP is a class of feedforward ANN that 

utilizes a supervised learning technique and can distinguish data that are not linearly separable 

(Cybenko, 1989). Finally, the PNN introduced by Specht (1990) is also a feedforward NN that 

uses probability distributions. 

Support vector machine (SVM) and least squares support vector machine (LS-SVM) 

(Suykens & Vandewalle, 1999) are the most popular linear methods for data analytics. Other 

linear methods found in this review are the logistic regression analysis (LRA) (Harrell Jr, Lee, 

Califf, Pryor, & Rosati, 1984), the multiple linear regression (MLR) (Draper & Smith, 2014), the 

linear regression model (LRM) (Efron, Hastie, Johnstone, & Tibshirani, 2004), the piecewise 

linear approximation (PLA) (Hamann & Chen, 1994), and the generalized linear model (GLM) 

(Nelder & Baker, 1972).  

Another ML approach included in this study is the instance-based that includes the k-nearest 

neighbors (KNN) (Dudani, 1976) and the fuzzy rules (Zadeh, 1965). Less information is used in 

dimensionality reduction models to summarize or describe data. Two such techniques are the 

linear discriminant analysis (LDA) (Belhumeur, Hespanha, & Kriegman, 1997) and the quadratic 

discriminant analysis (QDA).   
       Ensemble learning obtains the overall detection by combining multiple independent models. 

Several methods observed are the AdaBoost (Bishop, 2006), the Bagging (Breiman, 1996), the 

binary hierarchical (BHC) (Casasent & Wang, 2005), the random forest classifier (RFC), and the 

random subspace (RSS). Decision tree (C4.5), clustering, and regularization (elastic net) 

techniques are also reported in this review. 

The threshold-based classification methods are dependent on the selection of appropriate 

values (Coenen & Leng, 2007) or different limits (typically support and confidence thresholds). 

Seventeen articles out of sixty-two included in this study were based on threshold-based 

classification methods (Uddin et al., 2018). Five articles employed different algorithms for sleep 

apnea detection. The algorithms included in this study are the logical algorithms, event detection 

algorithms, envelope detection algorithms, rule-based algorithms, and respiratory events 

algorithms.



 

Table 2.4. Decision-making according to classification methods. 

Decisiona Machine learning Threshold-

based 

Other 

methods Neural 

networks 

Linear 

methods 

Regularization Instance- 

based 

Clustering Dimensionality 

reduction 

Ensemble 

learning 

Decision 

tree 

A/N 1 4 1 4   3  3 2 

A/H    3      3 

A/H/N 2          

O/N  1      3 3  

O+/O– 5 6  1 1 2   8  

C/O  1         

C/M/O 5          

Mi/Mo-Se 1        3  

Mi/Mo/Se/N       1    

% 22.58 14.52 1.61 11.29 1.61 3.23 6.45 3.23 27.42 8.06 
aDecision symbols: A/N = Apnea or Normal, A/H = Apnea or Hypopnea, A/H/N = Apnea or Hypopnea or Normal, O/N = OSA or Normal, O+/O- = OSA positive or OSA negative, C/O = 

CSA or OSA, C/M/O = CSA or OSA or MSA, Mi/Mo-Se = Mild OSA or Moderate-to-Severe OSA, Mi/Mo/Se/N = Mild OSA or Moderate OSA or Severe OSA or Normal. 
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Figure 2.4. Mind map of the observed classification methods (machine learning, threshold-based, and other techniques).  
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2.3.2 Sleep apnea detection based on single signals 

In this section, sleep apnea detection based on the single respiratory signals of AF, TE, and 

AE, and SpO2 is discussed in the following four sub-sections considering the published articles. 

The AF signal is the most important respiratory signal used to detect sleep apnea because 

the impact of airway obstruction is reflected in this signal. The authors of this review found 14 

articles that used only an AF signal to detect sleep apnea as indicated in Table 2.2 and Table 2.3. 

Most of those articles distinguished between apnea and normal events using binary classification 

methods. Nazeran et al. (2001) reported poor performance of fuzzy inference systems (FIS) to 

detect apnea events using a respiratory AF signal from nine adults. Another approach to 

detecting sleep apnea applied an adaptive fuzzy logic to the AF signal of ten subjects (Morsy & 

Al-Ashmouny, 2006). Two classification engines (fuzzy logic-based and center of gravity) were 

used in series to distinguish normal and abnormal (apnea) events. This two-step, the adaptive 

approach allowed high accuracy and permitted testing with a large clinical dataset.  

A daytime AF recording of short duration (5 min), as opposed to the occurrence of night-

time apnea events, was proposed to separate obstructive and normal events (Salisbury & Sun, 

2007). A nonlinear and nonstationary signal analysis technique (Hilbert–Huang transformation) 

was applied to extract features from the AF signal and a threshold-based technique resulted in 

significant advantages over the previous methods. Han et al. (2008) introduced a new algorithm 

to detect apneic events based on the mean magnitude of the second derivatives of the NAF signal. 

The suggested algorithm was found to be robust and useful due to a good overall agreement rate 

between the algorithm and manual scoring. An automated method was proposed by Otero et al. 

(2008) to distinguish apnea from hypopnea events by applying fuzzy set theory. Further 

evaluation of this proposed approach was needed due to the use of very small sample size (five 

subjects).  

Caseiro et al. (2010) screened and separated OSA patients from normal using 5 min 

oronasal airway pressure signal during waking. Though the approach did not require a whole 

night of recording, the performance of the separation technique was poor. Two studies published 

by Gutierrez-Tobal et al. (2013) and Gutierrez-Tobal et al. (2012) used the same large dataset 

(148 patients) to distinguish between OSA positive and OSA negative. In the first study, an LRA 

model was used but performance improved using an MLP model in the second study. A real-

time adaptive apnea event detection method was proposed by Koley and Dey (2013) using a 

two-stage classifier model. An SVM classifier was used to distinguish normal and abnormal 

(apnea) episodes that resulted in good accuracy. A per-second basis logical algorithm separated 
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apnea and normal patients but further improvement in the classification approach was needed to 

get acceptable performance (Selvaraj & Narasimhan, 2013). 

Ciolek et al. (2015) reported an automated detection approach of apnea and hypopnea 

events using AF envelope tracking and achieved good accuracy that can be implemented in 

portable sleep apnea monitoring devices. A micro-electro-mechanical systems sensor-based 

home sleep apnea screening device was proposed by Jin and Sanchez-Sinencio (2015) that 

detected apnea and normal events using a threshold-based classification method. An AdaBoost 

algorithm reported by Gutierrez-Tobal et al. (2016) to distinguish normal and apnea patients 

with classification and regression trees (CARTs) resulted in good accuracy over LDA. H. Lee 

et al. (2016) proposed a rule-based algorithm for automatic real-time detection of apnea and 

hypopnea events using a NAF signal. The proposed approach achieved good performance for 

detecting apnea and hypopnea events regardless of AHI severity. 

Sleep apnea detection using only a TE signal appears almost impossible and only one article 

was found that used a TE signal for the mentioned purpose (Table 2.2 and Table 2.3). 

Thommandram et al. (2013) used a chest movement waveform (also known as respiratory 

impedance signal) for sleep apnea detection. Four clinical features were extracted from each 1 

min epoch of respiratory impedance waveform and a KNN classifier was used to separate apnea 

from normal epochs. The results of this study were promising but the size of the sample was 

small (only eight records) and demands further testing using a much larger dataset. 

Two studies reported the application of an AE signal to distinguish central, mixed, and 

obstructive sleep apnea events (Table 2.2 and Table 2.3). In one study, AE signals were 

separated into spectral components using a multi-resolution wavelet transform (Akin & Sezgin, 

2010). The coefficients of discrete wavelet transform were fed to the input of the ANN to 

separate the apnea types. Tagluk and Sezgin (2010) used sub-band spectral energy instead of 

wavelet coefficients to minimize the size of the input vector and reported improved performance. 

It should be mentioned here that the above two studies were not solely dependent on the AE 

signal but also used the AF signal in the initial stage. AF signals were used to select the 

corresponding sections of the AE signals related to sleep apnea events, and then the selected AE 

sections were used to extract features as well as to detect apnea events. It is almost impossible 

to distinguish sleep apnea types using an AE signal only. 

Like the AF signal, SpO2 is another important physiological signal used to detect sleep 

apnea. We found 27 articles that used only the SpO2 signal to detect sleep apnea as listed in 

Tables 2.2 and Table 2.3. Zamarron et al. (2001) distinguished OSA positive and OSA negative 

patients with HR analysis from nocturnal pulse oximetry recording with poor accuracy, whereas 

Oeverland et al. (2002) reported comparatively improved performance separating mild and 
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moderate-to-severe patients using a threshold-based technique. Y. K. Lee et al. (2004) reported 

good detection accuracy using wavelet transform and global threshold with a very small sample 

size (seven subjects). Several articles used nonlinear analysis of nocturnal oximetry signal to 

distinguish OSA positive and OSA negative patients (Alvarez, Hornero, Abasolo, et al., 2006; 

Alvarez, Hornero, Garcia, et al., 2007; Alvarez, Hornero, Garcia, et al., 2006; Alvarez, Hornero, 

Marcos, et al., 2007; del Campo et al., 2006; Hornero et al., 2007; Marcos et al., 2011), whereas 

Marcos et al. (2007) and Alvarez, Hornero, et al. (2010) added spectral analysis with nonlinear 

analysis to improve performance. Marcos, Hornero, Alvarez, del Campo, Lopez, et al. (2008) 

and Marcos, Hornero, et al. (2008b) proposed NN, whereas Marcos, Hornero, et al. (2008a) 

applied a GLM-based classification method using features from linear and nonlinear analyses. 

The performance of different classifiers to detect OSA positive and OSA negative patients were 

reported by Marcos et al. (2009a), Marcos et al. (2009b), and Marcos et al. (2010), whereas 

Morillo et al. (2009) separated mild OSA from moderate-to-severe OSA patients using the 

threshold method. 

An alternative proposal that promoted not only a transmission of oximetry data but also a 

real-time analysis of those data locally with a mobile device was presented by Burgos et al. 

(2010) and reported the best performance when using the Bagging classifier with an ADTree 

classifier. A novel multivariate system using PNN was proposed by Morillo and Gross (2013) 

that over-performed the existing univariate and multivariate approaches. J. Zhang et al. (2013) 

presented a real-time auto-adjustable smart pillow system for apnea detection and treatment but 

the approach needs further improvement in event detection. Koley and Dey (2014) used an SVM 

classifier to detect apnea from normal events, whereas Sanchez-Morillo et al. (2014) used a BHC 

classifier to detect four classes (mild, moderate, severe, and normal). A decision tree (C4.5) was 

applied to detect a large set of the obstructive and normal populations and reported good 

detection accuracy (S. H. Huang et al., 2015). A recent study (Rolon et al., 2017) reported a 

discriminative method to detect mild and moderate-to-severe patients using MLP NN. Another 

recent study by Morales et al. (2017) performed better with KNN than LS-SVM to detect apnea 

and normal subjects. 

2.3.3 Sleep apnea detection based on multi-signals 

A combination of different respiratory signals (AF, TE, and AE) and an oximetry or SpO2 

signal has been also used to detect sleep apnea. A combined application of AF, TE, and AE 

signals was used to detect apnea, hypopnea, and normal events (Varady et al., 2002), whereas 

only TE and AE signals were applied to distinguish central and obstructive events (Varady et 

al., 2003). Fontenla-Romero et al. (2005) detected different apnea types (central, mixed, and 

obstructive) using an ANN applying AF and TE signals, whereas Tian and Liu (2006) applied 
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AF and SpO2 signals to detect apnea and hypopnea events using TDNN. Ng et al. (2008) used a 

threshold-based technique to separate apnea and normal events using AE and TE signals. 

Alvarez-Estevez and Moret-Bonillo (2009) applied three respiratory signals (AF, TE, and AE), 

and a SpO2 signal to detect apnea and hypopnea events using fuzzy logic, whereas Kaimakamis 

et al. (2009) applied two respiratory signals (AF and TE) and a SpO2 signal to separate 

obstructive and normal patients using a decision tree (C4.5) algorithm. Energy-based features 

were applied to an ANN to detect central, mixed, and obstructive events using TE and AE signals 

(Sezgin & Tagluk, 2009). Alvarez, Gutierrez, et al. (2010) applied a nonparametric threshold-

based method to distinguish OSA positive and OSA negative subjects using AF and SpO2 

signals. 

Guijarro-Berdinas et al. (2012) reported a good detection accuracy with an ANN. They used 

AF and TE signals with a small sample size to separate apnea types. Apnea and normal events 

were separated by a multivariable fuzzy temporal profile model (Otero et al., 2012) and an ANN 

(Maali & Al-Jumaily, 2013) using the different combinations of respiratory and oximetry 

signals. Combined signals were used to separate apnea and normal patients using an event 

detection algorithm (Bianchi et al., 2014) and elastic net classifier (Carmes et al., 2014). Avci 

and Akbas (2015) reported an outstanding detection accuracy where RFC was applied to detect 

apnea and normal events. Though the detection accuracy was very high, the sample size was 

small (eight subjects). Kagawa et al. (2016) using Doppler radar proposed a non-contact 

diagnosis of mild and moderate-to-severe OSA from TE and AE signals. LRM resulted in better 

than decision trees to detect obstructive and normal subjects (Kaimakamis et al., 2016). A very 

recent study by W. Huang et al. (2017) reported good precision in detecting apnea and hypopnea 

events using a respiratory events detection algorithm. 

2.3.4 Per-epoch and per-recording based detection 

Per-epoch- and per-recording-based detection is another distinguishing point of interest in 

this review. This review found 27 articles based on per-epoch detection (last four columns of 

Table 2.2, numbers not in brackets), whereas the remaining 35 articles were based on per-

recording detection (indicated with brackets, Table 2.2). Per-recording detection was used to 

detect patients as OSA positive or OSA negative without addressing sleep apnea severity. On 

the other hand, per-epoch detection was used to detect each epoch as apnea or normal, and OSA 

positive or OSA negative. In the case of per-epoch detection, varying epoch length (5 s, 15 s, 30 

s, 1 min, and so on) was applied. The selection of epoch length is critical. However, it is 

challenging to determine an epoch length that is suitable for good reliability and accuracy since 

it also depends on classification methods. It is currently not possible to guide how best to select 

epoch length or the entire recording that is equally applicable to all situations. 
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2.4 Discussion 

In this study, the authors presented an overview of the respiratory and oximetry signals used 

to detect sleep apnea. The authors also presented the metrics (accuracy, sensitivity, specificity, 

and other parameters) of corresponding classification methods by conducting a systematic 

review study on articles published from 2001–2017. From a high-level overview, the observed 

detection of sleep apnea fell into two categories, single-signal (only one respiratory or oximetry 

signal) based and multi-signal (i.e. a combination of more than one respiratory and oximetry 

signal) based. Detection based on a single-signal was further sub-divided into the four signals 

of AF, TE, AE, and SpO2. This review reveals that respiratory and oximetry signals have 

increasingly been used in sleep apnea detection. On the other hand, as presented in Table 2.3, 

decision-making was based on both respiratory and oximetry signals as well as classification 

methods (ML, threshold-based, and other techniques) (Table 2.4). The most common scenario 

observed was based on the use of the SpO2 signal (43.55%) to detect sleep apnea and most of 

the decisions were made on binary classes.  

2.4.1 Single and multi-signals for apnea detection 

Single respiratory- or oximetry signal-based sleep apnea detection was done more in the 

case of binary classes (Ciolek et al., 2015; Gutierrez-Tobal et al., 2013; Y. K. Lee et al., 2004; 

Marcos et al., 2010), whereas multi-signal application was done to detect multi-classes 

(Guijarro-Berdinas et al., 2012; Sanchez-Morillo et al., 2014; Sezgin & Tagluk, 2009; Varady 

et al., 2002). AF and SpO2 signals used separately to detect sleep apnea were effective, whereas 

TE and AE signals alone were almost unable to detect sleep apnea. A combined application of 

TE and/or AE with AF was effective for multiclass detection (Avci & Akbas, 2015; Varady et 

al., 2002), which was challenging when using a single respiratory or oximetry signal. A 

combination of the respiratory signals with the SpO2 signal resulted in good detection accuracy 

(W. Huang et al., 2017; Otero et al., 2012).  

Evidently, signals from both single-channel and dual-channel devices are used for binary 

decision-making (e.g., decision-making between apnea and normal) but not for multi decision-

making (e.g., decision-making between CSA, OSA, MSA, and normal). Signals from multi-

channel devices would be more effective because multi decision-making is also applied 

automatically to binary decision-making. Thus, the application of multi-signals from multi-

parameter systems (e.g., acquisition of AF, TE, and AE with/without SpO2) would be 

systematically better than a single-channel (e.g., acquisition of AF or SpO2) or dual-channel 

(e.g., acquisition of AF and SpO2) devices. 
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2.4.2 Major concerns and benefits 

In addition to the use of respiratory and oximetry signals to detect sleep apnea, sample size 

and classification methods are the two major concerns for the evaluation of any sleep apnea 

detective systems. This review found the intensive use of ML methods for sleep apnea detection 

using respiratory and oximetry signals. Some ML methods (SVM, RFC, AdaBoost, and KNN) 

were comparatively better than other methods (FIS, ANN, LRA, and LDA). The choice of 

appropriate ML methods is critical with the use of respiratory and oximetry signals to get high 

detection accuracy. Despite high detection accuracy with certain classifiers, the sample size used 

was often small (Avci & Akbas, 2015; Guijarro-Berdinas et al., 2012; Jin & Sanchez-Sinencio, 

2015). Studies that used highly specific datasets, which were confined to small samples, suffered 

from limitations of generalizability of results and thus, further investigation is needed to validate 

the generality of classification models to detect sleep apnea on large datasets or within different 

populations. Apart from yielding high performance, an automated system with acceptable 

accuracy remains a major concern. 

The benefit of using oximetry signal to detect sleep apnea is its ease of use. The finger-tip 

pulse oximeter is comfortable for the patient, where respiratory sensors are not. Respiratory 

sensors are worn around the nose. These sensors can be uncomfortable and annoying for some 

patients. Though the respiratory sensors are uncomfortable, the respiratory signals are the 

fundamental signals for the reliable diagnosis of sleep apnea. Respiratory and oximetry signals 

without artefacts are reliable. The number of electrical cables required to acquire respiratory and 

oximetry signals is less than the other physiological signals such as EEG, ECG, and EMG. 

Moreover, the latter signals are easily affected by noise and complex processing is required to 

remove signal noise. On the other hand, the reliability of using respiratory and oximetry signals 

for sleep apnea detection is very high. Different devices have been developed which can record 

overnight respiratory and oximetry signals with good signal quality and less noise. Acquisition 

of good quality respiratory and oximetry signals would result in better detection of sleep apnea 

events and diagnosis.  

2.4.3 Main challenges and limitations 

PSG requires an exhaustive test in a hospital setting, skilled experts, high cost, and 

discomfort to the patient, so the implementation of a non-invasive, accurate, and home-based 

automated technique based on a simple set of respiratory and oximetry signals would be 

recommended. The main challenge of using respiratory and oximetry signals is to develop an 

accurate automated system to detect sleep apnea events. Acquisition of reliable, noise- and 

distortion-free respiratory and oximetry signals is paramount for an accurate sleep apnea 
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detection system. The acquisition of NAF using a nasal pressure transducer is superior to using 

thermal-based oronasal AF sensors. Thermal sensors detect a change in the temperature of 

exhaled air. However, they may fail to detect minor, although significant, changes in AF. Thus, 

they may underestimate hypopneas (Norman, Ahmed, Walsleben, & Rapoport, 1997). SpO2 

acquisition usually uses finger-based sensors rather than a forehead reflectance oximeter. 

Overnight recording of SpO2 using forehead sensors is quite challenging and can cause patient 

discomfort and thus affect sleep quality. On the other hand, a finger-based oximeter is less 

obtrusive and easy to incorporate in a home-based sleep apnea detection system.  

Despite a higher sleep apnea detection rate reported in several articles using different 

classification methods (Avci & Akbas, 2015; Guijarro-Berdinas et al., 2012; Jin & Sanchez-

Sinencio, 2015), some major challenges exist with ML techniques. Firstly, a high detection rate 

was reported mostly in articles that used a small sample size or a fixed number of records from 

a fixed database. The overall detection accuracy changes with the sample size and database used. 

For this reason, the accuracy of those detection methods may deviate when the same methods 

are applied to other datasets or a greater proportion of records. Secondly, each ML technique is 

linked to a basic step of feature extraction. Features selection is an optional stage used when the 

number of features extracted is numerous and some of them are redundant. Extraction and 

selection of many weakly relevant and redundant features are the key reasons for poor detection 

accuracy. On the other hand, efficient feature extraction and sometimes robust feature selection 

should result in good detection of sleep apnea events. It is difficult to extract 

relevant and distinguishing features as well as to manage efficient and robust features from a 

wide range of features sets. Thirdly, selecting an appropriate classification method to provide 

reasonable, reliable, and consistent decisions is very critical. The selection of any classification 

method is need-based and depends on the nature of the extracted and selected features set. 

Finally, appropriate training of ML classifiers is a pre-requisite to getting better testing accuracy. 

Inappropriate training of ML classifiers results in poor performance. If the ML classifiers 

are poorly trained or overtrained, the testing accuracy will be affected. In addition, parameter 

selection and training time are two crucial points when training a classifier. Training time 

increases when new samples are added and thus affect the performance of the classifier. It is 

challenging to manage the above criteria that deal with ML classifiers to obtain acceptable 

detection accuracy. 

Several automated methods of sleep apnea detection have already been developed (Bianchi 

et al., 2014; Ciolek et al., 2015; Marcos et al., 2010) but the reliability reported is not quite high 

enough to implement in practical cases. In addition, many researchers have employed a single 

oximetry signal to detect sleep apnea (Alvarez, Hornero, Abasolo, et al., 2006; Alvarez, Hornero, 

et al., 2010; Marcos et al., 2007; Marcos, Hornero, Alvarez, del Campo, Lopez, et al., 2008; 
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Marcos et al., 2009a) and reported accuracy close to 90%. It is challenging to achieve a higher 

accuracy (e.g. over 90%). However, further improvement in accuracy would be possible, for 

example, by (1) employing multiple signals such as AF and SpO2. In addition, in the case of 

apnea type detection, the inclusion of respiratory efforts (TE and/or AE) with an AF signal is 

mandatory in designing an automatic algorithm and (2) incorporating multiple logics into an 

automatic algorithm. Multiple logics should be designed in such a way that they can accurately 

detect the apnea changes readily. Inclusion of accurate and multiple logics based on updated 

scoring rules of respiratory events (Berry et al., 2012) is mandatory to design more efficient 

automatic algorithms for sleep apnea detection, and (3) by using large clinical datasets for 

validation of automated system performance. 

Some limitations of this review should be mentioned. Firstly, some studies included in this 

review did not report clearly on the performance metrics used for sleep apnea detection. 

Secondly, only English-language publications were included. 

 

2.5 Sleep Apnea Diagnosis using EEG 

In an attempt to identify existing literature that addressed sleep apnea diagnosis using EEG 

signals and to inform the timing of EEG arousal and total sleep time, a brief systematic search of 

the literature was conducted. We found limited studies where the EEG signals were used. Liu, 

Pang, and Lloyd (2008) reported a neural network method to detect OSA based on the EEG signal 

with a 91% accuracy. Another study performed by Alvarez, Hornero, Marcos, del Campo, and 

Lopez (2009) investigated EEG signal in addition to SpO2 signal to diagnose sleep apnea and 

reported sensitivity (91%), specificity (83.3%), and accuracy (88.5%). Tagluk and Sezgin (2011) 

reported an artificial neural network to detect sleep apnea from the EEG signal. The detected 

global accuracy was 96.15% with a low sample size (n = 20).  

Not only a very limited number of studies employed EEG to diagnose sleep apnea, but the 

performance of the detection approaches was also poor. Whilst one study reported high accuracy 

(96.15%), the sample size (n = 20) was very small. In addition, no studies reported the detection 

and incorporation of EEG arousal for the automatic diagnosis of sleep apnea. For the proper 

diagnosis of sleep apnea, respiratory (especially AF) and oximetry signals are indispensable for 

apnea and hypopnea detection. In addition, inclusion of an EEG signal permits evaluation of 

arousal from sleep. Moreover, total sleep time estimation requires the EEG analysis of sleep and 

wake epochs. The spectral analysis of EEG would be a possible option to link respiratory events 

(apnea and hypopnea) with its corresponding arousals. 
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2.6 Summary 

The systematic literature review has synthesized and summarized the existing methods 

based on respiratory and oximetry signals to diagnose sleep apnea. Sixty-two studies were 

examined and the main findings are summarized as follows. A single respiratory signal, AF or 

SpO2, provided good support for binary class decision-making, whereas multiple respiratory 

signals (AE, TE, and AE) combined with SpO2 signal resulted in better multi-class decision-

making in sleep apnea diagnosis. Several ML techniques, specifically the SVM and KNN, were 

by far more accurate than other methods and thus selection of appropriate ML approaches with 

appropriately selected respiratory and oximetry signals would be effective for sleep apnea 

detection. Despite certain benefits associated with the use of respiratory and oximetry signals, 

major concerns remained: high accuracy is yet to be achieved with the automated detection 

technique. In addition, large and/or multiple samples of data should be included especially from 

a clinical perspective. Moreover, the inclusion of EEG signal along with AF and SpO2 would 

result in improved performance by detecting arousals. Thus, the next chapter, Chapter 3, 

addresses the power spectral analysis of EEG signal during and after apnea termination. 
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Chapter 3 

Sleep Apnea duration and its effect on EEG 

 

3.1    Introduction 

The automatic analysis of AF and SpO2 can detect apnea and hypopnea events but 

hypopneas associated with arousal cannot be identified without EEG analysis. In addition, the 

EEG spectral power would vary with the duration of respiratory events, since arousal from sleep 

usually occurs after an event is terminated. This chapter examined if EEG spectral power was 

altered with varying apnea durations before and after apnea termination. This study was carried 

out for the purpose of justifying the usability of EEG for the automatic diagnosis of sleep apnea. 

The power spectral changes for all apnea duration groups before and after apnea termination 

were not significantly different. Thus, the inclusion of EEG signals in automatic diagnosis would 

not be helpful to distinguish apnea from normal epochs. 

3.1.1 EEG rhythms/frequency bands      

        Electroencephalography (EEG) is usually described in terms of rhythmic activity that is 

divided into frequency bands. These frequency bands are extracted using spectral methods (for 

instance Welch) as implemented in EEG software. Most of the cerebral signals observed in the 

scalp EEG fall in the range of 0.5-30 Hz. Activity below or above this range is considered 

artefacts, under standard clinical recording techniques. EEG is subdivided into bandwidths known 

as delta, theta, alpha, sigma, beta, and gamma. 

        Delta is the frequency range up to 4 Hz. It tends to be the highest in amplitude and the slowest 

waves. It is seen normally in adults in slow-wave sleep (Figure 3.1a). Theta is the frequency range 

from 4 to 8 Hz. Theta is seen normally in young children. It may be seen in drowsiness or arousal 

in older children and adults; it can also be seen in meditation (Figure 3.1b). Alpha is the frequency 

range from 8 to 12 Hz. It emerges with closing of the eyes and with relaxation and attenuates with 

eye opening or mental exertion (Figure 3.1c). Stage 2 sleep is characterized by sleep spindles 

(transient runs of rhythmic activity in the 12-14 Hz range). These sleep spindles are sometimes 

referred to as the sigma band (Figure 3.1d). Beta is the frequency range from 14 to 30 Hz. Beta 

activity is closely linked to motor behavior and is generally attenuated during active movements. 

Low-amplitude beta with multiple and varying frequencies is often associated with active, busy, 

or anxious thinking, and active concentration (Figure 3.1e). Gamma is the frequency range 

approximately above 30 Hz. Gamma rhythms are thought to represent binding of different 
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populations of neurons together into a network for the purpose of carrying out a certain cognitive 

or motor function (Figure 3.1f). 

 

Figure 3.1. EEG rhythms or frequency bands (time in second and amplitude in mV are shown in 

x and y-axis respectively). 

3.1.2 EEG spectral power        

        EEG, the recording of electrical activity generated by the cortex and thalamus, provides an 

objective method for detecting dynamic changes in cortical function. The EEG shows different 

patterns of electrical activity, which is characterized by typical frequency bands. The EEG of a 

normal human shows activity over the range of 1–30 Hz with amplitude in the range of 20–100 

μV (Muthuswamy & Thakor, 1998). The ranges of delta (δ), theta (θ), alpha (α), sigma (σ) and 
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beta (β) frequency bands are 0.5–4 Hz, 4–8 Hz, 8–12 Hz, 12–14 Hz and 14–30 Hz, respectively 

(Yang et al., 2010). 

Spectral analysis is a very useful tool to assess the EEG power in different frequency bands 

(Muthuswamy & Thakor, 1998). The delta wave (0.5–4 Hz), a high amplitude brain wave, appears 

in non‐rapid eye movement (NREM) stage N3 slow‐wave sleep (SWS) or deep sleep (Schulz, 

2008). Theta waves (4–8 Hz) are usually observed at the first stage of sleep (Dement & Kleitman, 

1957) when people are mentally fatigued or drowsy (Scher, 2017), whereas sigma waves (12–14 

Hz) (known as sleep spindles) appear in NREM stage N2 light sleep and play an essential role in 

both sensory processing and long‐term memory consolidation (Holz et al., 2012). Alpha waves (8–

12 Hz) are generally considered the dominant frequency in human adults (Broughton & Hasan, 

1995) and observed best during wakeful relaxation with closed eyes (Aminoff, 2012). Beta waves 

(14–30 Hz) are high‐frequency, low‐amplitude brain waves that are commonly observed in an 

awakened state and linked to increased alertness and arousal (Abhang, Gawali, & Mehrotra, 2016).  

During an apnea episode, airway obstruction results in a reduced O2 level with a 

corresponding rise in CO2. Respiratory arousal occurs when a certain (threshold) level of 

inspiratory effort is reached (Gleeson et al., 1990). Thus, an altered degree of chemoreceptor 

stimulation (reduced O2 and increased CO2) has a direct influence on the timing of apnea 

termination (Kimoff et al., 1994). Respiratory-induced cortical arousal is associated with EEG 

desynchronization. These cortical arousals often follow rather than precede an airway opening (the 

resumption of breathing) (Younes, 2004). The changes in the EEG are usually visible in the EEG 

records. For some apneas, these changes are not visible. Despite the lack of visible changes, cortical 

activity fluctuates at apnea termination (Dingli et al., 2002). EEG is extremely useful for 

investigating the dynamic changes of cortical activities, especially at apnea termination. 

3.1.3 Previous work and research question 

Several studies investigated the changes in EEG power before, during, and after apnea 

episodes. Dingli et al. (2002) studied the changes in cortical activity at apnea termination in 15 

sleep apnea patients (aged 51 ± 9 years). No significant changes were found in spectral bands other 

than theta between two 10‐s EEG epochs before and after apnea termination. Normalized theta 

power (4–8 Hz) decreased significantly after the termination of apnea. The changes in theta powers 

were found to be consistent during NREM and rapid eye movement (REM) sleep. In contrast to 

these findings, (Xavier, Behbehani, Watenpaugh, & Burk, 2007), in 13 subjects (aged 49.08 ± 8.82 

years) previously diagnosed with OSA, found a significant decrease in normalized delta power (1–

4 Hz) and a significant increase in normalized theta (4–8 Hz), alpha (8–12 Hz) and sigma (12–16 

Hz) power after apnea termination. These discrepant findings require further investigation. 
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In a group of male OSA patients (aged 55 ± 6.10 years, N = 15), a significant decrease in delta 

(<4 Hz) power was observed during OSA compared to before and after OSA (Coito, Belo, Paiva, 

& Sanches, 2011). In eight children (aged 2–8 years) with OSA, a significant decrease in delta 

(0.5–4.5 Hz) power was also observed during OSA, but with a rebound increase after OSA 

termination (Bandla & Gozal, 2000). Finally, Yang et al. (2012) observed a significant fall in delta 

(0.75–4 Hz) and theta (4.1–8 Hz) powers after event termination in 20 children (aged 7–12 years). 

These EEG changes were associated with cortical arousals. 

The dynamic changes in EEG spectral power are well investigated across apnea events 

(before, during, and after) as well as at apnea termination (before and after). The apnea duration 

increases with the progression of the night (Charbonneau et al., 1994). It remains unknown if 

the dynamic changes that occur in the EEG spectral power at apnea termination vary as the 

duration of the apnea episode is prolonged. The present study tests the hypothesis that EEG 

spectral power at apnea termination will vary according to changes in apnea duration. To 

investigate the changes related to apnea termination, the power spectrum of the EEG signal has 

been analyzed. The dynamic changes in EEG spectral powers were compared between apnea 

duration groups. 

 

3.2 Methods 
 

3.2.1 PSG records 

The Sleep Heart Health Study (SHHS) is a multi-center cohort study implemented by the 

National Heart Lung & Blood Institute to determine the consequences of sleep disorders (Quan 

et al., 1997; G. Q. Zhang et al., 2018). Participants were recruited from nine existing 

epidemiological studies in which data on cardiovascular risk factors had been collected 

previously. The participants who met the following inclusion criteria were invited to participate 

in the examination of the SHHS: 

➢ age 40 years or older 

➢ no history of the treatment of sleep apnea 

➢ no tracheostomy 

➢ no current home oxygen therapy 

 Polysomnograms (PSG) were obtained in an unattended setting, usually in the homes of the 

participants, by trained and certified technicians. The recording montage consisted of: 

➢ C3/A2 and C4/A1 electroencephalograms (EEGs), sampled at 125 Hz 

➢ right and left electrooculograms (EOGs), sampled at 50 Hz 



 

42 
 

➢ a bipolar submental electromyogram (EMG), sampled at 125 Hz 

➢ thoracic and abdominal excursions, recorded by inductive plethysmography bands 

and sampled at 10 Hz 

➢ airflow, detected by a nasal-oral thermocouple and sampled at 10 Hz 

➢ finger-tip pulse oximetry sampled at 1 Hz 

➢ electrocardiogram (ECG) from a bipolar lead, sampled at 125 Hz 

➢ Heart rate derived from the ECG and sampled at 1 Hz 

➢ body position 

 

3.2.2 Demographics and apnea scoring 

PSG records (anonymous) were collected from freely available, large, and recognized 

datasets of the SHHS. The present study included nocturnal PSG records of patients who had been 

diagnosed with sleep apnea and excluded records of patients with tracheostomy and oxygen 

therapy. The records of patients who had major medical illnesses (e.g., hypertension, diabetes, or 

neurological disorders) or who had taken medications (e.g., EEG active drugs) were excluded. 

Thirty PSG records were chosen according to the selection criteria stated above. The mean ± SD 

(standard deviation) of age and body mass index (BMI) of selected records of corresponding 

patients (20 male, 10 female) were 68.17 ± 9.95 years and 26.95 ± 4.04 kg m-2 respectively.  

The University of Technology Sydney Human Research Ethics Committee considered the 

research Nil/Negligible risk and provided an ethics application number [UTS HREC ETH17-

2041] for tracking purposes. 

According to the American Academy of Sleep Medicine (AASM) updated scoring rules 

(Berry et al., 2017; Berry et al., 2012), an experienced sleep physiologist who was blind to the 

objective of this investigation verified all apnea events scored from each record. The sleep 

physiologist also reported the event duration for each apnea event. Based on event duration, all 

apnea events from each record were categorized into three groups: Short (between 10 and 20 s), 

Moderate (between 20 and 30 s), and Long (between 30 and 40 s). Five apnea events from each 

duration group were randomly selected, yielding 15 apnea events from each record. This selection 

process yielded an equal distribution of apnea events for each duration group over the 30 PSG 

records. Of these, there were two records where the number of apnea events in the Moderate apnea 

duration group was less than five. Moreover, in seven records, apnea events of Long-duration 

were not found, resulting in an unequal sample size among the apnea duration groups. Thus, a 

total of 375 apnea events were selected from all the records for power spectral analysis.  

Each selected apnea event from the 375 episodes was further checked for corresponding 

sleep state and apnea type. For accurate determination of the sleep state and apnea type, the 
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AASM updated manual (Berry et al., 2017; Berry et al., 2012) was followed. Thus, each selected 

apnea event was labeled with its corresponding sleep state (i.e., NREM or REM sleep) and apnea 

type (i.e., obstructive, central, or mixed) for all apnea duration groups (Table 3.1). No mixed 

apnea event was found in this study. 

Table 3.1. Number of apnea events for apnea duration groups, apnea types, and associated sleep 

states. 

Groups No. of 

apnea 

events 

 No.a  No. of apnea events associated with 

their respective sleep statesb 

 OSA CSA MSA  NREM sleep REM sleep 

Short 150  107 43 0  122 28 

Moderate 144  116 28 0  102 42 

Long 81  81 0 0  52 29 

Total 375  304 71 0  276 99 
aApnea types: OSA = Obstructive sleep apnea, CSA = Central sleep apnea, MSA = Mixed sleep apnea 
bSleep states: NREM = Non-rapid eye movement, REM = Rapid eye movement 

3.2.3 EEG processing and spectral power calculation 

Using a finite impulse response (FIR) low‐pass filter with a cut‐off frequency at 32 Hz 

(Oppenheim, Willsky, & Young, 1983), artefact‐free C3/A2 and C4/A1 EEGs were filtered to 

remove unwanted frequency responses. Two 10‐s EEG epochs (immediately before and after the 

apnea termination) were clipped from all apnea events for power spectral analysis, as shown in 

Figure 3.2. The power spectral analysis was performed separately for each 10‐s epoch using the 

Welch method of averaged periodograms (Welch, 1967), as shown in Figure 3.3. Using the 

Simpson's rule (Cartwright, 2016) instead of the trapezoidal rule (Atkinson, 2008) for the better 

spectral approximation, the areas under the spectral curve that corresponded to the average power 

of delta (δ: 0.5–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–12 Hz), sigma (σ: 12–14 Hz) and beta (β: 

14–30 Hz) frequency bands were calculated. The relative (percentage) powers of each frequency 

band were calculated for each 10‐s epoch. 

3.2.4 Statistical analysis 

To determine whether there are any statistically significant differences between the means 

of two or more independent groups, statistical analysis was performed using SPSS software (Nie, 

Bent, & Hull, 1970). For the comparison of relative spectral powers between the Short, Moderate 

and Long apnea duration groups, a Kruskal–Wallis H test (Corder & Foreman, 2009) was applied, 

satisfying all assumptions. The distribution of relative spectral powers of all spectral bands was 

similar for all apnea duration groups, as assessed by visual inspection of a boxplot. The Kruskal–
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Wallis test was also conducted to compare the proportion of apnea events associated with the 

sleep states and apnea types between apnea duration groups. A p‐value <0.05 was considered 

statistically significant. The selection procedure for the Kruskal–Wallis H test and the associated 

statistical analysis are described in Appendix A. 

 
Figure 3.2. Apnea duration with corresponding 10‐s EEG epochs at apnea termination. 

 

Figure 3.3. Estimating power spectral density of a 10‐s EEG epoch using the Welch method. 

 

3.3 Results 
 
3.3.1 Spectral powers 

Delta power. Before apnea termination (BAT): the median relative delta powers showed non‐

significant differences between apnea duration groups. After apnea termination (AAT): a 
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marginal significance was observed for C3 and C4 EEGs, with non‐significant differences 

between groups (Table 3.2) (Uddin, Su, Chen, & Chow, 2019).  

Table 3.2. Statistical findings of different frequency bands with their apnea duration groups. 

Frequency 

bands 

EEG 

channels 

Epoch 

Positiona 

Median spectral powersb (%)  Significance 

Short Moderate Long  χ2(2) p 

Delta C3 BAT 58.39 59.59 64.72  2.009 0.366 

AAT 60.90 56.66 64.25  5.033 0.081 

C4 BAT 56.60 58.89 62.46  3.407 0.182 

AAT 57.09 55.20 61.29  4.953 0.084 

Theta C3 BAT 18.95 18.37 19.80  0.347 0.841 

  AAT 15.64 16.56 15.52  1.440 0.487 

 C4 BAT 20.68 18.53 19.86  1.161 0.560 

  AAT 17.60 17.49 13.86  10.982 0.004 

Alpha C3 BAT 10.57 9.11 8.47  5.732 0.057 

  AAT 9.98 11.60 7.62  6.286 0.043 

 C4 BAT 11.03 10.56 8.73  7.941 0.019 

  AAT 10.62 11.25 8.86  4.669 0.097 

Sigma C3 BAT 2.91 2.62 2.04  8.052 0.018 

  AAT 2.44 2.68 1.95  15.028 0.001 

 C4 BAT 2.83 2.77 2.34  1.474 0.479 

  AAT 2.80 3.16 2.37  5.828 0.054 

Beta C3 BAT 5.68 5.18 4.42  1.254 0.534 

AAT 6.31 7.71 5.84  1.046 0.593 

C4 BAT 6.70 5.90 6.26  1.814 0.404 

AAT 7.41 8.99 7.96  2.291 0.318 
aPositions of 10s EEG epochs: BAT = Before apnea termination, AAT = After apnea termination 
bSpectral powers: median values are expressed instead of the mean for nonparametric analysis. 

 

Theta power. BAT: differences in the median relative theta powers between groups were not 

statistically significant for C3 and C4 EEGs. AAT: the median relative theta powers were 

significantly different (p = 0.004) between the apnea duration groups for C4 EEG (Table 3.2). 

Subsequent post hoc analysis (Dunn's test with a Bonferroni correction) revealed statistically 

significant differences between the Short and Long (p = 0.009), and Moderate and Long (p = 

0.007) groups, but not between the Short and Moderate groups (Figure 3.4b) (Uddin et al., 2019). 

Alpha power. BAT: the median relative alpha powers were significantly different (p = 0.019) 

between the apnea duration groups for C4 EEG. Subsequent post hoc analysis revealed 

statistically significant differences in median relative alpha powers between the Short and Long 
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(p = 0.016) groups, but not between the Short and Moderate, and Moderate and Long groups 

(Figure 3.5b). AAT: the median relative alpha powers were significantly different (p = 0.043) 

between the groups for C3 EEG. Subsequent post hoc analysis revealed statistically significant 

differences between the Moderate and Long (p = 0.037) groups, but not between the Short and 

Moderate, and Short and Long groups (Figure 3.5a) (Uddin et al., 2019). 

 

(a)                                                                                       (b) 

Figure 3.4. Median relative theta powers in apnea duration groups for (a) C3 and (b) C4 EEG. 

Sigma power. BAT: the median relative sigma powers were significantly different (p = 0.018) 

between the apnea duration groups for C3 EEG. Subsequent post hoc analysis revealed statistically 

significant differences between the Short and Long (p = 0.033), and Moderate and Long (p = 0.028) 

groups, but not between the Short and Moderate groups (Figure 3.6a). AAT: the median relative 

sigma powers were significantly different (p = 0.001) between the groups. Subsequent post hoc 

analysis revealed significant differences between the Short and Long (p = 0.008), and Moderate 

and Long (p < 0.0005) groups, but not between the Short and Moderate groups (Figure 3.6a) (Uddin 

et al., 2019). 

Beta power. BAT: the median relative beta powers showed non-significant differences 

between apnea duration groups. AAT: the differences between groups were not significantly 

different for C3 or C4 EEG (Table 3.2) (Uddin et al., 2019). 

Apnea event-wise relative spectral powers (for delta, theta, alpha, sigma, and beta bands) 

at BAT and AAT for C3 EEG are tabulated in Appendix B and Appendix C respectively. 

Similarly, Appendix D and Appendix E respectively indicate the event-wise relative spectral 

powers at BAT and AAT for C4 EEG.  

0

5

10

15

20

25

BAT    AAT BAT    AAT BAT    AAT

Th
et

a 
po

w
er

 (
%

)

Short         Moderate         Long

0

5

10

15

20

25

BAT    AAT BAT    AAT BAT    AAT

Th
et

a 
po

w
er

 (
%

)

Short         Moderate         Long

p = 0.007

p = 0.009



 

47 
 

 
(a)                                                                                       (b) 

Figure 3.5. Median relative alpha powers in apnea duration groups for (a) C3 and (b) C4 EEG. 

 

(a)                                                                                        (b) 

Figure 3.6. Median relative sigma powers in apnea duration groups for (a) C3 and (b) C4 EEG. 

3.3.2 Apnea events as a function of sleep state 

In NREM sleep, the proportion of apnea events decreased as the apnea duration increased, 

reflecting a significant linear trend from the Short to Moderate to Long apnea duration groups (p 

= 0.002), whereas an increased but non‐significant trend was observed for REM sleep (p = 0.451) 

(Figure 3.7a). The differences between apnea duration groups were statistically significant (p = 

0.004) for NREM sleep but were not significant (p = 0.483) for REM sleep as shown in Table 3.3. 

Pairwise comparisons revealed statistically significant differences in the proportion of apnea 

events between the Short and Long (p = 0.002) groups, but not between the Moderate and Long 
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(p = 0.134), and Short and Moderate (p = 0.452) groups (Figure 3.7a) (Uddin et al., 2019). Apnea 

event-wise sleep states are tabulated in Appendix F. 

3.3.3 Apnea events as a function of apnea type 

The proportion of CSA events decreased as the apnea duration increased, reflecting a 

significant trend from the Short to Moderate to Long apnea duration groups (p = 0.001) with zero 

Long apnea episodes found, whereas an increased but non‐significant trend was observed for OSA 

events (p = 0.977) (Figure 3.7b). The differences between apnea duration groups were significant 

(p = 0.001) for CSA events but were not statistically significant (p = 0.591) for OSA events as 

shown in Table 3.4. Subsequent post hoc analysis revealed statistically significant differences in 

the proportion of CSA events between the Short and Long (p < 0.0005) groups, but not between 

the Moderate and Long (p = 0.053), and Short and Moderate (p = 0.342) groups (Figure 3.7b) 

(Uddin et al., 2019). Apnea event-wise apnea types are tabulated in Appendix F. 

 
(a)                                                                                   (b) 

Figure 3.7. The proportion of apnea events as a function of (a) sleep states and (b) apnea types. 

Table 3.3. Statistical findings for the analysis of sleep states between apnea duration groups. 

Sleep statesa Sample size  Significance 

Short Moderate Long  χ2(2) p 

NREM 122 102 52  11.216 0.004 

REM 28 42 29  1.454 0.483 
aSleep states: NREM = Non rapid eye movement, REM = Rapid eye movement 
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Table 3.4. Statistical findings for the analysis of apnea types between apnea duration groups. 

Apnea typesa Sample size  Significance 

Short Moderate Long  χ2(2) p 

OSA 107 116 81  1.054 0.591 

CSA 43 28 0  14.834 0.001 
aApnea types: OSA = Obstructive sleep apnea, CSA = Central sleep apnea 

 

3.4 Discussion 

In this study of EEG spectral power as a function of apnea duration, we report two original 

observations. (a) Changes in apnea duration greatly influenced the relative powers of EEG 

frequency bands, where the spectral powers differ between brain regions (C3 and C4). 

Significantly, lower theta, alpha, and sigma powers (low‐frequency bands) were observed for the 

Long compared to the Moderate and Short apnea duration groups. However, no significant 

differences were found for the lowest (delta) and highest (beta) frequency bands for both EEG 

channels. (b) The proportion of apnea events showed a significantly decreased trend with 

increased apnea duration for NREM sleep but not REM sleep. In addition, the proportion of CSA 

events decreased with increased apnea duration but not OSA (Uddin et al., 2019). 

3.4.1 Apnea duration and relative EEG powers 

It would be expected that long-duration apneas caused a more marked decrease in end‐apnea 

arterial O2 saturation and increased CO2 (Bowes, 1984; Kimoff et al., 1994). These chemical 

stimuli (hypoxemia and hypercapnia) increased the chemoreceptor drive that led to end-apnea 

arousal (Bowes, 1984). Thus, the longer the apnea duration, the greater the chemoreceptor stimuli, 

serving to arouse an individual faster. Our data confirmed that physiological changes were 

associated with changes in brain EEG. 

Our data reported a significant reduction in EEG powers for lower frequency alpha and sigma 

bands in the Long (between 30 and 40 s) compared to the Moderate (between 20 and 30 s) and 

Short (between 10 and 20 s) apnea duration groups before apnea termination (BAT), consistent 

with a greater level of EEG arousal for apneas of longer duration (>30 s). It was not surprising 

that beta power did not show significant increases. Non‐significant changes in beta powers 

between apnea duration groups indicate that the patients were not in an alert state regardless of 

apnea duration length, in line with a low level of beta activity observed (Table 3.2). These findings 

suggest that for longer duration apneas, transient arousals occurred in association with lower alpha 

and sigma powers than for the shorter duration apneas. Moreover, the low level of beta power 



 

50 
 

confirmed that awakenings were not experienced before apnea termination. These EEG 

observations are entirely consistent with theoretical expectations. Additionally, outright 

awakenings were scored as awake episodes and were not part of the records analyzed in this paper. 

In addition to the significantly lower alpha and sigma powers seen in the Long than in the 

Moderate or the Short apnea duration groups at BAT, a reduction in theta powers was also seen 

following apnea termination (AAT), which lent support to the previous findings of Dingli et al. 

(2002) but contrasted with the findings of Xavier et al. (2007). It is clear that at apnea termination, 

a more extensive EEG arousal had occurred, coincident with a reduction in the EEG powers of 

all three low‐frequency bands of theta, alpha, and sigma. 

Notably, non‐significant changes were observed for the delta power between apnea duration 

groups. However, in the present study, a relatively low proportion of apnea events was found in 

stage N3 (slow-wave sleep/deep sleep), which may explain why delta power was not altered. It is 

known that sleep apnea severity was reduced markedly during N3 compared to lighter stages (N1 

and N2) of NREM sleep (Marcuse, Fields, & Yoo, 2015).  

Electroencephalogram (EEG) spectral powers at the left (C3) and right (C4) hemispheres 

reveal nearly an identical pattern (Schramm et al., 2000). Sometimes, hemispheric asymmetries 

exist because of the difference in gender (Armitage, 1995) or application of different analysis 

methods (linear and non‐linear) (Cvetkovic, Ubeyli, Holland, & Cosic, 2010). In this study, the 

changes found between C3 and C4 spectral powers may be due to any of the aforementioned 

factors. 

3.4.2 Apnea duration as a function of sleep state and apnea type 

The present study showed that the proportion of apnea events is linked to sleep states and 

apnea types to the change of apnea du‐ ration. Long‐duration apneas were least found in NREM 

sleep (Figure 3.7a). On the other hand, long apneas were more common in REM sleep, although 

the linear trend was not significant. These results confirmed that the threshold for arousal was 

significantly higher in REM sleep (permitting longer apneas with a greater O2 desaturation being 

tolerated) than NREM sleep (Kass, Akers, Bartter, & Pratter, 1996; Series, Cormier, & La Forge, 

1990; Younes, 2004). Besides, as the night progressed, the proportion of REM sleep increased 

(Charbonneau et al., 1994) as a result of circadian timing, along with the appearance of more 

obstructive episodes. It is conceivable that reduced apnea episodes may be recorded because of 

truncated REM sleep, if patients wake earlier under the conditions of a clinical laboratory.  

Long‐duration apneas contained virtually no central apnea events in this sample (Figure 

3.7b). Presumably, an absence of the central respiratory drive could mean the cessation of life, if 
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not restored. Thus, it would be expected that sufficient stimuli (e.g., elevated brain interstitial 

fluid pH) would be necessary to provide a drive to breathe (Nattie & Li, 2009) in response to 

breathing cessation of central origin. The absence of CSA events in the Long apnea group 

contrasted with the highest proportion of OSA, consistent with a previous study (Series et al., 

1990).  

3.4.3 Study limitations 

This study has some limitations. We carried out spectral power calculations in different 

frequency bands of EEG before and after apnea termination. The incorporation of an additional 

method, for example, the Hilbert transform, to check instantaneous frequency would be logical 

and can be addressed in future studies. The sample size among apnea duration groups was 

unequal. In practical cases, it is almost impossible to get an equal sample size for all groups, 

because the PSG records or patient data did not contain all three groups of apnea duration, 

especially the Long group where CSA was absent. The total number of CSA events in all groups 

was small. Thus, it is not possible to make clear statements about CSA events. Because of the 

absence of MSA events, this study has failed to make any comparison of MSA events within the 

apnea duration groups. In addition, the study did not include all apnea events in entirety from each 

overnight sleep recording. Further studies on the relative spectral powers between apnea duration 

groups with large datasets are recommended. 

 

3.5 Summary 

         We examined the EEG spectral power changes, which were not distinguishable with 

varying apnea durations either before or after apnea termination. Thus, EEG spectral power 

analysis would not be effective as a method to detect apneic events. Based on these results, the 

justification was made to exclude the EEG signal for automatic diagnosis of sleep apnea. 
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Chapter 4 

Automatic Diagnosis of Sleep Apnea 

 

4.1    Introduction 

An automatic diagnosis is independent of any human effort. Sleep apnea diagnosis using 

EEG signals is associated with several challenges. The study (Chapter 3) found that the EEG 

spectral power varied for some frequency bands but not for other bands. The EEG spectral 

powers were not uniform for all apnea events. In addition, it would be challenging to link 

hypopnea events with the changes of EEG spectral power or arousal. Moreover, the acquisition 

and processing of EEG for an automatic diagnosis is challenging. Thus, EEG signals are often 

excluded from the automatic approach for sleep apnea diagnosis. Airflow and oximetry are the 

pertinent signals upon which the actual scoring of apnea and hypopnea events is based on. As 

summarized in our systematic review, respiratory (especially airflow) and oximetry signals are 

reliable for sleep apnea diagnosis. In addition, these signals can be easily acquired throughout 

the night and their processing is easy and reliable. This chapter addresses the design and function 

of an automatic algorithm for the diagnosis of sleep apnea using airflow and oximetry signals.  

       Sleep apnea, the most common breathing disorder during sleep, is characterized by the 

complete (apnea) or partial (hypopnea) cessation of breathing (Berry et al., 2017; Berry et al., 

2012). The total number of apnea and hypopnea events per hour of sleep is known as the apnea 

hypopnea index (AHI) that measures the severity of sleep apnea as normal (0≤AHI <5), mild (5≤ 

AHI <15), moderate (15≤ AHI <30), and severe (AHI ≥30) (Grover & Pittman, 2008; Kryger, 

2000). 

Sleep apnea significantly decreases the quality of sleep and can lead to respiratory, 

cardiovascular, and cerebrovascular diseases (Young, Peppard, & Gottlieb, 2002). Early diagnosis 

of sleep apnea is required for appropriate treatment to reduce long-term health risks. Nocturnal 

polysomnography (PSG) is considered the gold standard and a reliable method for sleep analysis 

and sleep apnea diagnosis (Kushida et al., 2005). Skilled personnel in sleep technology monitor 

and manually review the overnight study for scoring apnea and hypopnea events according to the 

American Academy of Sleep Medicine (AASM) guidelines (Berry et al., 2017). This manual 

scoring process, whilst an accepted reference standard, is costly and time-consuming with inter-

scorer variability (Rosenberg & Van Hout, 2014). 
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Automatic processes have been developed obviating the manual process. Different automatic 

techniques employing different physiological signals have been applied for sleep apnea diagnosis, 

although not without limitations: 

Minute-by-minute annotation and classification: In the period 2000-2019, much sleep apnea 

classification techniques focus attention on the ECG signal from the Apnea-ECG database. The 

recordings of this database (Penzel, Moody, Mark, Goldberger, & Peter, 2000) were segmented 

into minutes and each minute was annotated as ‘apnea’ or ‘normal’. It follows that minute-by-

minute annotation was provided as a standard for ECG recordings. Many studies (Al-Angari & 

Sahakian, 2012; de Chazal et al., 2003; Hassan & Haque, 2017; Mendez et al., 2010; Sharma & 

Sharma, 2016; Urtnasan, Park, Joo, & Lee, 2018; Zarei & Asl, 2019) that followed used the 

minute-by-minute annotations as a standard. However, these minute-by-minute annotations yield 

an AHI that greatly deviates from conventional scoring and reporting. The automated minute-

classification approach potentially confuses sleep apnea diagnosis against the established 

guidelines for scoring and interpretation of AHI and make a difficult comparison of AHI between 

studies. 

Exclusion of airflow or oximetry: Apnea and hypopnea events are required for AHI 

computation as per AASM scoring guidelines (Berry et al., 2017), and the detection algorithm is 

based on the recommended signals of airflow (AF) and pulse oximetry (SpO2) (Uddin et al., 2018). 

Although several studies (Han et al., 2008; Otero et al., 2012) have reported automatic detection 

of apnea events, these algorithms are not useful for sleep apnea diagnosis due to exclusion of 

hypopnea events. In addition to AF reduction criteria, at least 3% oxygen desaturation from pre-

event baseline is required for scoring a hypopnea event (Berry et al., 2017). Although several 

studies (Ciolek et al., 2015; H. Lee et al., 2016; Otero, Felix, & Alvarez, 2011) reported an 

automated method for detecting apnea and hypopnea events using only AF reduction criteria. 

Detecting an hypopnea event without satisfying oxygen desaturation criteria is not in alignment 

with the AASM guidelines. Omission of SpO2 would correctly detect apnea events, since oxygen 

desaturation is not included in the AASM criteria for apnea, but would lead to incorrect detection 

of hypopnea events and raise the question of accuracy of these approaches. In contrast, several 

studies reported sleep apnea diagnosis using oximetry signal where the AF signal was omitted 

(Gutiérrez-Tobal, Álvarez, Crespo, Del Campo, & Hornero, 2018; Jung et al., 2018). Oxygen 

saturation, as a single signal, cannot be reliably used to diagnose sleep apnea since it dissociates 

from the basic criteria of AF drop. 

Lag time in oxygen desaturation: A lag time in oxygen desaturation typically of 10 to 30 s 

(Otero et al., 2012) is observed with oximetry. Thus, the effective design of an automatic approach 

using AF and SpO2 signals requires the adjustment of the time lag. W. Huang et al. (2017) reported 
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the detection of apnea and hypopnea events using AF and SpO2 signals from 30 subjects. However, 

the study did not correct for this lag time. Technically, this lag time may interfere with the accurate 

detection of hypopnea events, where a ≥30% drop from baseline AF is not aligned with a ≥3% 

desaturation. 

Hypopnea with arousal: The updated AASM guidelines incorporated the arousal criteria for the 

scoring of hypopnea events (Berry et al., 2017). A hypopnea is scored when the AF reduction 

criteria is associated with a ≥3% oxygen desaturation or an arousal. Designing an automatic 

algorithm using AF and SpO2 signals may be challenging, where hypopnea detection is required 

to satisfy the above criteria. The study by W. Huang et al. (2017) underestimated the hypopnea 

event detection by applying ≥3% oxygen desaturation criteria without incorporating events with 

arousal and thus reported poor agreement between the scored and detected AHI. A reliable method 

is required that can satisfy the updated criteria for hypopnea detection. 

 Total sleep time (TST) approximation: In addition to detecting the total number of apnea and 

hypopnea events, the computation of TST is required for conventional reporting of AHI (total 

events per hour of TST). Though several studies reported AHI, the TST was manually added 

(Ciolek et al., 2015; Koley & Dey, 2013; H. Lee et al., 2016). Thus, these approaches were not 

fully automated. Not surprisingly, most of the single-channel and dual-channel automatic 

approaches that employed total recording time (TRT) had reported poor AHI agreement (de 

Almeida et al., 2006; Grover & Pittman, 2008; Nakano, Tanigawa, Furukawa, & Nishima, 2007; 

Nakano et al., 2008; Ragette, Wang, Weinreich, & Teschler, 2010; Rathnayake, Wood, Abeyratne, 

& Hukins, 2010; Rofail, Wong, Unger, Marks, & Grunstein, 2010; Shochat et al., 2002; Ward et 

al., 2015; Wong et al., 2008). However, Erman, Stewart, Einhorn, Gordon, & Casal (2007) reported 

good performance with an AHI cut-off 15 but the performance greatly decreased with other AHI 

cut-offs.  

       Small validating dataset: The reliability of automatic algorithm depends on the validation 

results with a large dataset. The automatic approaches have been reported with high accuracy, 

where the performance parameters were extracted from a smaller validation dataset e.g., from 78 

to 121 records (Álvarez et al., 2020; Ayappa, Norman, Seelall, & Rapoport, 2008; Chai-Coetzer 

et al., 2011; de Oliveira et al., 2009; Masdeu, Ayappa, Hwang, Mooney, & Rapoport, 2010; Ward 

et al., 2015). Machine-learning and other logic-based diagnostic approaches usually shows 

significantly reduce performance when validated with a different and/or large dataset, and hence 

most of the automatic studies recommended to validate the designed algorithm with a large dataset 

(Álvarez et al., 2020). 
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4.1.1 Research questions 

This study reports a fully automatic algorithm for the diagnosis of sleep apnea from the AF 

and SpO2 signals. The new technique applied resolved the above-mentioned limitations and 

addressed three novel concepts: (1) detection of apnea and hypopnea events using AF envelope 

tracking and a digitization process that aligned with the updated AASM guidelines, (2) application 

of an estimated TST instead of TRT for the automatic determination of AHI, and (3) validation 

of the automatic algorithm with an extremely large dataset of 943 recordings. 

 

4.2 Methods 
 

4.2.1 PSG records and demographics 

The Sleep Heart Health Study (SHHS) provides a wide range of overnight PSG records 

(anonymous) with all severity groups of sleep apnea (normal, mild, moderate, and severe) (Quan 

et al., 1997; G. Q. Zhang et al., 2018). It provides two datasets: shhs1 (5793 records) and shhs2 

(2651 records). The SHHS also provides the manually scored AHI of each PSG record according 

to the updated AASM guideline (Berry et al., 2017; Berry et al., 2012). In short, an apnea event 

was scored when there was a complete cessation of breathing and the duration of the complete 

cessation was ≥10 s. A hypopnea event was scored when the AF peak excursion dropped by ≥30% 

of its baseline (partial cessation of breathing) with a duration of drop ≥10 s and this AF reduction 

is associated with ≥3% oxygen desaturation from the pre-event baseline or an arousal. 

        It is obvious that the inclusion of all PSG records from the SHHS is not an affordable task. 

To avoid bias in the PSG record selection from the SHHS, the present study collected the first 

one thousand PSG records from the shhs1 dataset (records id: shhs-200001 to shhs-201003 that 

includes 3 missing records). The SHHS recorded the airflow signal by an oronasal thermocouple, 

whereas fingertip pulse oximeter was used to detect oxygen saturation. Airflow (AF) and pulse 

oximetry (SpO2) signals were extracted from the above mentioned one thousand records. Twelve 

records were excluded due to the unavailability of AF (i.e., AF was in form of a flat line or random 

noise throughout the night). Thus, 988 records were included in the current study. Forty five out 

of 988 records were randomly selected for the development of the automatic algorithm and the 

remainder 943 records form the validation dataset. No records were excluded due to the poor 

signal quality or insufficient sleep time (TST <3 h). Table 4.1 shows the summary of 

demographics and manually scored data reported in the SHHS. The overall and record-wise 

demographics and scoring details are tabulated in Appendix G. 
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The University of Technology Sydney Human Research Ethics Committee considered the 

research Nil/Negligible risk and provided an ethics application number [UTS HREC ETH17-

2041] for tracking purposes. 

Table 4.1. Demographic and scoring summary of PSG records. 

 Development set Validation set 

Subjects (N) 45 943 

Males n (% of N) 29 (64.4) 461 (48.9) 

Females n (% of N) 16 (35.6) 482 (51.1) 

Age (years) 61.3 ± 10.1 57.2 ± 11.3 

BMI (kg.m-2) 25.7 ± 4.1 27.5 ± 5.1 

TRT (h) 8.2 ± 0.7 8.3 ± 0.7 

TST (h) 6.0 ± 1.0 6.0 ± 1.1  

AHI (events/h) 32.1 (1.7 – 93.5) 16.4 (0 – 121.3) 

Data are presented as n (% of N), mean ± standard deviation or mean (range) unless 
otherwise stated. BMI: Body mass index; TRT: Total recording time; TST: Total sleep time; 
AHI: Apnea hypopnea index. 

 

4.2.2 Designing an automatic diagnostic algorithm 

     The design of the automatic algorithm for the diagnosis of sleep apnea was based on AF and 

SpO2 signals.  The AF and SpO2 signals were loaded as the inputs to the automated process. Total 

sleep time (TST) was estimated from the auto-analysis of input signals. Apnea events were detected 

from AF, whereas hypopnea events were detected from AF and SpO2 signals. Apnea hypopnea 

index (AHI) was estimated from the total number of detected apneas and hypopneas divided by 

estimated TST. The automatic process finally delivered the output in the form of estimated AHI. 

Thus, the overall automatic process can be divided into the following four parts: (i) TST estimation, 

(ii) detection of apnea events, (iii) detection of hypopnea events, and (iv) estimation of AHI, as 

depicted in Figure 4.1. Each part of the automatic process is explained in the next section. 

 

Figure 4.1. Flowchart of the automatic diagnostic process. 
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(i) TST estimation: In this study, an automatic approach is proposed to estimate TST from AF 

and SpO2 signals. Rather than using the TRT for calculating AHI per hour, this study determined 

the timing and duration of major artefact detected in the AF and SpO2 signals. The awake time was 

discounted in two ways: 1) where a recording was not terminated (thus prolonging the recorded 

study time), the potential period of the major artefact was assessed via detection of sensor 

connections. For example, removal of the oximeter sensor showed oxygen saturation clearly fell 

to zero (Figure 4.2a), and thus the ‘major artefact’ was detected and 2) where a signal had dropped 

out near the end of a study with random noise, e.g., in the AF signal (Figure 4.2b), the entire period 

of random noise was detected as the ‘major artefact’. The combined analysis of AF and SpO2 

signals yielded the total duration of the ‘major artefact’, which was then subtracted from the TRT 

to determine the modified recording time (MRT). 

     For the development set, the mean difference between scored TST (reported in the SHHS) and 

TRT was found to be -2.2 h (an overestimation is indicated by a negative sign) (Table 4.2). This 

overestimation was the consequence of incapacity to include in the analysis the awake EEG during 

the sleep period. In addition, any ‘major artefact’ was removed from the TRT, yielding the MRT. 

The mean difference observed between scored TST and MRT was -1.5 h (Table 4.2). The overall 

overestimation was reduced by approximately 32% (the percentage overestimation was calculated 

with respect to the initial overestimation of -2.2 h) when MRT was used instead of TRT.  

 
Figure 4.2. Detecting the duration of major artefacts. 

      This method represented an optimization approach that resulted in improved correlation with 

the scored TST, since an automatic approach cannot recognize the ‘wake’ period during sleep and 

movement arousals. Table 4.2 displays the mean difference between scored TST and %MRT 

against the percentage of MRT. The lowest mean difference of 0.02 h was observed against 

80%MRT, whereas other percentages of MRT resulted in comparatively greater mean differences 
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(overestimation or underestimation). Thus, an 80%MRT (i.e., 0.8MRT) was finally applied as the 

estimated TST. 

Table 4.2. Estimation of total sleep time from total recording time for the development set. 

Parameter Mean difference between 

scored TST and parameter (h) 

Standard 

deviation (h) 

TRT -2.2 1.18 

MRT -1.5 1.02 

90% of MRT (= 0.9MRT) -0.75 0.98 

80% of MRT (= 0.8MRT) +0.02 0.95 

70% of MRT (= 0.7MRT) +0.77 0.93 

60% of MRT (= 0.6MRT) +1.52 0.93 

‘+’ and ‘-’ signs respectively indicate the mean underestimation and overestimation. 
TST = total sleep time (scored), MRT = modified recording time (detected). 

 

(ii) Detection of apnea event: The raw AF was smoothed using a 3-point moving average filter 

to produce the smoothed AF as illustrated in Figure 4.3. In time-domain analysis, this smoothing 

process is very effective in retaining the overall original signal amplitude by reducing the random 

noise. 

 

Figure 4.3. Preprocessing of the raw AF signal.
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      Detection of AF peak excursion: A single breath consists of two phases: inhalation and 

exhalation as depicted in Figure 4.4a. The maximum amplitude of inhalation is known as peak 

(top), whereas the minimum amplitude of exhalation is called trough (bottom). The vertical height 

difference between the peak and trough is called peak-to-trough amplitude or peak excursion. The 

horizontal distance between the peak and trough is called peak-to-trough distance (Figure 4.4a). 
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Figure 4.4. Determination of peak signal excursion from the AF signal. 

      Using a built-in MATLAB command “envelope (AF, 40, ‘peak’)”, the peak envelope of 

smoothed AF (Figure 4.4a) was created that consisted of the upper and lower boundaries (Figure 

4.4b) with the duration of a normal breath being approximately 4 s (i.e., 40 samples; AF sampling 

rate of 10 Hz). The overall and record-wise analysis of the duration of normal breaths are tabulated 

in Appendix H. 
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     The nature of the upper and lower peak boundaries with varying the smoothing interval is shown 

in Figure 4.5. The selection of the smoothing interval was crucial when created the peak envelope, 

as depicted in Figure 4.5. The best performing envelope was resulted when the smoothing interval 

was selected approximately equal to the mean duration of the normal breath. Hence, the smoothing 

interval for creating envelope was selected as 40-samples (4 s) to get optimized performance 

(Figure 4.5c). The upper and lower boundaries respectively represented the peak and trough 

amplitudes (Figure 4.4b). Equation (4.1) was used to derive the peak excursion from the boundaries 

as follows: 

𝐸𝑖(𝑡) = |𝑈𝑖 − 𝐿𝑖+15|                                                            (4.1) 

 

Figure 4.5. Selection of smoothing interval to create envelope of the AF signal. 

where, 𝑈𝑖, 𝐿𝑖+15, and 𝐸𝑖 were the respective magnitudes of the i-th sample of the upper boundary, 

the (i+15)-th sample of the lower boundary, and the i-th sample of the peak excursion. The direct 

subtraction of 𝐿𝑖 from 𝑈𝑖 might not produce accurate peak excursion due to the peak-to-trough 

distance (Figure 4.4a). This study observed a mean peak-to-trough distance of approximately 1.5 

s (15-samples) from the analysis of the development set (Appendix I). Thus, in this algorithm, 
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𝐿𝑖+15 was subtracted from 𝑈𝑖 to generate an optimal peak excursion, Ei. The derived peak 

excursion, the absolute difference between the upper and lower boundaries, represented the peak-

to-trough amplitude of the detected breath (Figure 4.4c). 

      Artefact correction and apnea detection: Sudden body movement or sighs (Perez-Padilla, 

West, & Kryger, 1983) during sleep (as a compensatory breath for inadequate ventilation) may 

create an unexpectedly large variation in AF signal as shown in Figure 4.6a. These sighs may result 

in intrusion of “erroneous” large peaks (Figure 4.6b) in the determination of a peak excursion. The 

location of the sigh and its impact on the peak excursion are represented by the dotted line ‘A’ 

(Figure 4.6). 

 

Figure 4.6. Representation of the correction of peak excursion. 

      The occurrence and impact of sighs were minimized by analyzing the 50 s preceding and 

succeeding epochs of the peak excursion with 10 s separation on either side of the erroneous peak 

(Figure 4.6b). In this algorithm, the minimum distance between two successive sighs was estimated 

to be 60 s and the maximum duration of a single sigh 10 s. Previous study (Huang et al 2017) 

reported the longest duration of a respiratory event (apnea/hypopnea) as approximately 120 s. 

Thus, sigh correction approach was applied with considering 60 s either side of the sigh. In 

addition, the duration of sigh is usually longer than the normal breath. Thus, a maximum duration 
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of sigh of 10 s was set during correction. A corrected peak excursion (CEi) was generated following 

peak truncation that was free from artefacts linked to sighs (inter-event artefacts) (Figure 4.6). 

Though the parameters set during sigh correction are arbitrary, inclusion of such correction may 

improve the automatic determination of the peak excursion. 

A binary digit ‘1’ or ‘0’ was generated against each sample of the corrected peak excursion 

using (4.2) as follows:                                         

𝐵𝐷𝑖(𝑡) = {
1,                  if 𝐶𝐸𝑖 ≤

10

100
𝐶𝐸𝑏,𝑖

0,                              otherwise
                                        (4.2) 

where, 𝐶𝐸𝑏,𝑖 and 𝐵𝐷𝑖 denote the respective baseline amplitude and binary digit for the sample 

amplitude, 𝐶𝐸𝑖. The baseline amplitude for i-th sample was determined from the maximum value 

at 2 minutes preceding the sample as recommended in the updated AASM guidelines (Berry et al., 

2012). Thus, a complete binary sequence (Figure 4.7b) was generated where the binary digit ‘1’ 

represented ≥90% drop in the peak excursion. 

 
Figure 4.7. Representation of the correction of binary digit. 

In ideal cases, an apnea in the AF trace should present as a flat line due to the complete cessation 

of breathing. In practical cases, there may be some small oscillations (Figure 4.7a), with minor 
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intra-event fluctuations during an apnea event. Small oscillation in the AF signal and its 

corresponding binary digit during an apnea event are shown by the dotted line ‘B’ (Figure 4.7). 

Thus, the binary sequence of ‘1’s may not be continuous (Figure 4.7b) during an apnea event with 

such artefacts. An auto-correction step in the binary sequence was applied when two ‘1’s were 

separated by <4s (i.e., the average duration of a normal breath). Thus, the corrected binary sequence 

CDi was generated against the binary sequence BDi which represented a continuous sequence of 

‘1’s against the duration of apnea event (Figure 4.7c). This setting of 4 s during an auto-correction 

has minimal impact on the detection of apnea events since the sudden fluctuations during an apnea 

event may not be frequently found. Inclusion of such correction may enhance the detection of 

apnea events.  

The algorithm can identify an apnea start-point (AStart), i.e., from the binary sequence where ‘0’ 

was detected followed by at least one hundred successive ‘1’s (10 s). Similarly, the apnea end-

point (AEnd) was identified where ‘0’ was detected preceding at least one hundred successive ‘1’s. 

Thus, the difference in interval between AEnd and AStart was calculated for the apnea duration (at 

least 10 s) as depicted in Figure 4.7c. The designed algorithm resulted in a consistent shortening 

of the detected apnea duration by approximately 2 s. The AF envelope cannot respond to the 

immediate sharp amplitude changes at the start and end of an apnea event. Thus, the envelope 

tracking approach is responsible for a consistent shortening of the detected apnea duration and 

hence could miss-detect some apneas if ≥10 s is set for apnea duration. 

      Designing an effective and reliable algorithm depends on the process of optimization that can 

set a specific apnea duration threshold. The SHHS reported the overall AHI against each PSG 

record and provided the PSG analysis files that contained all scored events. The scoring of apnea 

was done using ≥75% drop in airflow reduction. In addition, thoracic or abdominal effort was 

used for scoring apneas where AF was not reliable. Hypopnea was scored using either criteria of 

≥3% oxygen desaturation and an arousal. This study required the number of scored apneas and 

hypopneas against each record in the development set for the optimization process. Since the 

scoring reported in the SHHS did not completely follow the AASM scoring guidelines, the 

comparison of these scored events with the detected events was incompatible. In contrast, this 

study used AF and SpO2 signals for detecting apnea and hypopnea events. For the reliable and 

logical optimization of the designed algorithm, this study considered re-scoring of apnea and 

hypopnea events based on AF and SpO2 signals. The development set of AF and SpO2 was re-

scored for apnea and hypopnea events by an experienced sleep physiologist. In short, an apnea 

was re-scored when AF drops ≥90% with a duration ≥10 s, whereas a hypopnea was re-scored 

when AF drop (≥30% with a duration ≥10 s) associated with ≥3% oxygen desaturation. 

Hypopneas associated with arousal but <3% oxygen desaturation were not scored due to the 

exclusion of EEG signal from this study. The re-scoring reported in 3666 apneas and 4069 
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hypopneas from 45 records of the development set. The overall and record-wise re-scoring is 

listed in Appendix J. It should be mentioned here that this re-scoring was done for the purpose of 

developing the algorithm. 

     To get an optimized apnea duration threshold, the re-scored apneas were compared with 

detected apneas for the development set. An apnea duration threshold of ≥8 s was established 

within the algorithm for apnea detection. This optimization process applying a threshold duration 

of ≥8 s resulted in the highest correlations between re-scored and detected apneas, as indicated in 

Table 4.3. Other apnea duration thresholds were sub-optimal. Thus, ≥8 s apnea duration threshold 

was set within the automatic process and the number of detected apnea events was listed with their 

corresponding duration and timing. 

Table 4.3. Selecting apnea duration threshold for the development set. 

Detected apneas 

[duration threshold] 

Scored apneas Difference r ICC 95% CI 

3839 [≥7 s] 3666 -173 0.990 0.995 0.991 – 0.997 

3574 [≥8 s] 3666 +92 0.991 0.994 0.990 – 0.997 

3340 [≥9 s] 3666 +326 0.989 0.990 0.980 – 0.995 

3096 [≥10 s] 3666 +570 0.986 0.983 0.955 – 0.992 

‘+’ and ‘-’ signs respectively indicate the overall number of miss-detected and over-detected apneas; Correlations was 
resulted from the record-wise analysis of re-scored and detected apneas; r, ICC, and CI respectively represent the 
Pearson’s correlation coefficient, intraclass correlation coefficients, and confidence interval. 

      (iii) Detection of hypopnea event: For hypopnea event detection, AF drop (≥30% that lasts 

≥10 s) must be associated with ≥3% oxygen desaturation or an arousal. Initially, the algorithm 

detected hypopnea event associated with ≥3% oxygen desaturation. Later, the overall number of 

hypopnea event (associated with ≥3% oxygen desaturation or an arousal) was estimated. 

      The raw SpO2 was loaded as the input to the automated process. Due to the setup of the signal 

recording process, the sample values of the SpO2 signal may not always be an integer value (A = 

93.9) as shown in Figure 4.8a. All the sample values of the raw SpO2 signal was then converted to 

its nearest integer value (A = 94) as indicated in Figure 4.8b. After converting to the nearest integer, 

any sudden unstable peaks (A = 94) were corrected to generate a stabilized signal (Figure 4.8c). 

Oximetry signal may sometimes fall to near zero due to body movement or vibration (Figure 

4.9a). These artefacts may interfere with the accurate determination of oxygen desaturation. A 

correction approach was applied, where the faulty sample value (sudden fall to near zero, Figure 

4.9b) of the oximetry signal was imputed to its previous stable value as shown in Figure 4.9c. Thus, 

a preprocessed (rounded, stabilized, and corrected) SpO2 signal was generated (Figure 4.9c). 
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Figure 4.8. Stabilization of oximetry signal. 
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Figure 4.9. Removing sudden fall to zero from oximetry signal.
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Hypopnea detection from AF drop and oxygen desaturation: The corrected SpO2 signal was 

used for the determination of desaturation (≥3%). For hypopnea event detection, alignment 

between the AF drop and SpO2 desaturation was required. To make the alignment, the number of 

sample points must be same for both signals. The AF signal was recorded with a sampling rate of 

10 Hz but the SpO2 of 1 Hz. Though the duration of each recorded signal was the same, but the 

sampling rates (or, total number of samples) were different. The SpO2 signal was converted to 10 

Hz to make equal number of sample that the AF signal has. 

A 40 s moving window was applied to corrected SpO2 signal to determine the level of 

desaturation as shown in Figure 4.10a. The window moved forward by one sample after 

determining a digital bit linked to the desaturation criteria. For example, to determining a digital 

bit for the sample ‘A’ (i.e., i-th sample), the location of the window was ‘X’ (Figure 4.10a). The 

maximum value was determined from the window. Thus, the maximum value of 98 was 

determined from the window for the sample ‘A (=94)’. This maximum value (=98) was designed 

as the ‘Baseline’ for the sample A (=94). A binary digit was generated against the sample ‘A’ using 

(4.3): 

𝐵𝐷𝑖(𝑡) = {
1,                  if 𝐴 ≤ (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 − 3)
0,                              otherwise           

                                 (4.3) 

 
Figure 4.10. Generating digital sequence against SpO2 signal. 

where 𝐵𝐷𝑖(𝑡) denotes the corresponding binary digit for the i-th sample value ‘A’. The value of 

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖 − 3) was found to be 95 which was greater than the value of the i-th sample ‘A’. This 

indicated a ≥3% desaturation for the sample ‘A’. Thus, a binary digit ‘1’ was generated against the 

B
in

ar
y 

di
gi

t

  0                                                           50                                                        100                                                        150

Time (sec)

(b)

98

96

94

C
or

re
ct

ed
 S

pO
2 (

%
)

(a)

1

0

Window: 40 s

Max value = 98 Max value = 98 

A = 94

B = 96

≥ 3% desat

Window 
location: X

Window 
location: Y

Direction of moving window



 

67 
 

sample ‘A’ as shown in Figure 4.10a. Similarly, ‘0’ was generated for the sample ‘B’ when the 

window was in location ‘Y’ (Figure 4.10a). Thus, a continuous digital sequence was generated 

against the corrected SpO2 signal where ‘1’ and ‘0’ represented ≥3% and <3% desaturations 

respectively (Figure 4.10b). 

A tiny deflection during desaturation (Figure 4.11a, dotted circle ‘A’) may create discrete binary 

digits (Figure 4.11b, dotted circle ‘A’). Ideally, there should some difference between the start of 

two successive desaturations. To remove these tiny deflections within the single desaturation 

phase, binary digits were corrected where two successive desaturations were separated by a small 

duration (<10 s). Thus, the corrected binary sequence (Figure 4.11c, dotted circle ‘A’) represented 

a continuous sequence of ‘1’s against the desaturation. 

 

Figure 4.11. Correcting digital sequence of SpO2 signal. 

      The duration of desaturation phase should be detected from the start of desaturation to the end 

of desaturation as shown in Figure 4.12a. The duration of the detected desaturation (23 s, Figure 

4.12b) was significantly lower than the actual duration (32 s, Figure 4.12a). The 40 s moving 

window resulted in displacing the ≥3% oxygen desaturation by ~10 s at start of each desaturation 

phase, thereby shortening the desaturation duration by an equivalent amount. This problem was 

resolved by generating an extended binary sequence, where the start of each detected desaturation 
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was extended backward by 10 s. Thus, the extended sequence depicted a continuous sequence of 

‘1’s against the duration of ≥3% oxygen desaturation (Figure 4.12c). 

       

 
Figure 4.12. Extending digital sequence of SpO2 signal. 

      Figure 4.13b shows two sections of ≥3% desaturations (desat A and desat B) resulted from 

their corresponding ≥30% drops ≥10 s (drop A and drop B). In practice, the SpO2 signal always 

showed a lag with respect to the AF signal that may vary approximately from 10 to 30 s (Otero et 

al., 2012). Thus, a backward time shift of 20 s (i.e., the average time lag) in the oximetry (BS SpO2) 

signal was generated (Figure 4.13c). 

      A binary sequence against the corrected peak excursion was generated using ≥30% drop 

criterion, as similarly done for apnea event detection. The binary sequence of ‘1’s was converted 

to ‘0’s where the duration of ≥30% drop was <10 s. Thus, the corrected sequence (i.e., CDi) 

represented a continuous sequence of ‘1’s for ≥30% drop with a duration of ≥10 s (Figure 4.14a).  

      Using a 40 s moving window, an extended binary sequence (Figure 4.12c) was generated as 

explained above. The extended sequence was backward shifted by 20 s to produce a backward 

shifted binary sequence (i.e., BSDi) as illustrated in Figure 4.14b. Technically, the process of a 

hypopnea event detection mandates a parallel temporal drop in AF signal (≥30%, ≥10 s) and 
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oxygen saturation (≥3%). The resultant binary sequence was generated by parallel sample-to-

sample multiplication using (4.4) as follows: 

 

Figure 4.13. Adjustment to the time lag in the SpO2 signal. 

 

Figure 4.14. Hypopnea detection by multiplication. 
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𝑅𝐷𝑖(𝑡) = 𝐶𝐷𝑖 × 𝐵𝑆𝐷𝑖                                                    (4.4) 

where, 𝑅𝐷𝑖, 𝐶𝐷𝑖, and 𝐵𝑆𝐷𝑖 respectively denote the resultant binary sequence, corrected binary 

sequence generated from the AF, and backward shifted binary sequence generated from the SpO2 

signal. Thus, two hypopnea events were detected from the resultant binary sequence with their 

corresponding duration and timing (Figure 4.14c). Hypopnea events that were overlapped with 

apnea events were removed and the remaining events were finalized as hypopnea events associated 

with ≥3% oxygen desaturation. 

     The selection of window length for the accurate determination of ≥3% oxygen desaturation and 

the duration of backward shifting (time lag) are very crucial for the accurate detection of hypopnea 

events. An optimization was performed where the window length was varied, and the number of 

detected hypopnea event was noted as shown in Table 4.4. 

Table 4.4. Selecting window length for hypopnea detection. 

Detected hypopneas 

[window length] 

Scored 

hypopneas 

Difference r ICC 95% CI 

3634 [20 s] 4069 +435 0.973 0.980 0.945 – 0.991 

4022 [30 s] 4069 +47 0.979 0.989 0.981 – 0.994 

4234 [40 s] 4069 -165 0.979 0.989 0.980 – 0.994 

‘+’ and ‘-’ signs respectively indicate the overall number of miss-detected and over-detected hypopneas; Correlations 
was resulted from the re-record-wise analysis of scored and detected hypopneas; r, ICC, and CI respectively represent 
the Pearson’s correlation coefficient, intraclass correlation coefficients, and confidence interval. 

 

     Table 4.4 shows that the total number of detected hypopneas with 30 s window length closely 

approximate to the total number of re-scored hypopneas. In addition, the false detection is 

minimized, and the highest correlations are achieved with 30 s window length. The optimized 

window length of 30 s resulted in the highest Pearson’s correlation coefficient (r = 0.979) and 

intraclass correlation coefficient (ICC = 0.989) between the re-scored and detected hypopneas. 

Other window lengths (20 and 40 s) were responsible for significant false detection and lower 

correlation coefficients. Thus, a window length of 30 s was finally selected for the accurate 

detection of ≥3% oxygen desaturation. 

     During the above optimization process, we set a backward shifting of 20 s to detect hypopneas. 

An optimization was performed where the window length was fixed to 30 s, but the duration of 

backward shifting was varied, and the number of detected hypopnea event was noted as shown in 

Table 4.5. 

     Table 4.5 shows that the total number of detected hypopneas with 20 s backward shifting closely 

approximate to the total number of re-scored hypopneas. In addition, the false detection is 
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minimized, and the highest correlations are achieved with 20 s backward shifting. An optimized 

adjustment of time lag of 20 s resulted in the highest Pearson’s correlation coefficient (r = 0.979) 

and intraclass correlation coefficient (ICC = 0.989) between the re-scored and detected hypopneas. 

Other durations of backward shifting (0 s, 10 s, 30 s, and 40 s) were responsible for significant 

false detection and lower correlation coefficients. Thus, a duration of 20 s backward shifting was 

finally selected for the accurate detection hypopnea events. 

Table 4.5. Selecting the duration of backward shifting for hypopnea detection. 

Detected hypopneas 

[Backward shifting] 

Scored 

hypopneas 

Difference r ICC 95% CI 

3780 [0 s] 4069 +289 0.966 0.980 0.962 – 0.990 

3983 [10 s] 4069 +86 0.974 0.987 0.976 – 0.993 

4022 [20 s] 4069 +47 0.979 0.989 0.981 – 0.994 

4017 [30 s] 4069 +52 0.977 0.988 0.979 – 0.994 

3835 [40 s] 4069 +234 0.968 0.982 0.967 – 0.990 

‘+’ sign indicates the overall number of miss-detected hypopneas; Correlations was resulted from the record-wise 
analysis of re-scored and detected hypopneas; r, ICC, and CI respectively represent the Pearson’s correlation 
coefficient, intraclass correlation coefficients, and confidence interval. 

      

The above detected hypopneas (associated with ≥3% oxygen desaturation) may or may not 

be linked with an arousal. The designed approach will miss-detect some hypopnea events that are 

associated with arousal but <3% oxygen desaturation. These hypopneas are designated ‘additional 

hypopneas’. Detection of these additional hypopneas from AF and SpO2 signals is challenging 

since arousal may occur with any value of oxygen desaturation (≥1% to <3%). Consideration of 

≥1% to <3% oxygen desaturation may overestimate additional hypopneas since the SpO2 often 

fluctuates by about 1% during normal breathing. Hence, we designed the algorithm to detect the 

addition hypopneas when AF drop (≥30% for a duration ≥10 s) was associated with ≥2% to <3% 

oxygen desaturation with a duration ≥20 s. 

     In setting the duration of ≥2% to <3% oxygen desaturation to ≥20 s, the optimization showed 

the highest correlations (r = 0.958, ICC = 0.975, and 95% CI = 0.955 to 0.986) between the scored 

(reported in the SHHS) and detected AHI (Table 4.6). Additional hypopneas that were overlapped 

with previously detected apneas and hypopneas (with ≥3% oxygen desaturation) were removed. 

The remaining additional hypopneas were added to previously detected hypopneas to compute 

the total number of hypopneas. 
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       Table 4.6. Estimating additional hypopneas with changing the duration of desaturations. 

Duration of ≥2% to <3% 
oxygen desaturation  

Correlations between actual and estimated AHI 

r ICC 95% CI 

≥10 s 0.957 0.967 0.922 – 0.984 

≥20 s 0.958 0.975 0.955 – 0.986 

≥30 s 0.959 0.974 0.952 – 0.986 

AHI: Apnea hypopnea index; Correlations was resulted from the record-wise analysis of actual and estimated AHI; 
r, ICC, and CI respectively represent the Pearson’s correlation coefficient, intraclass correlation coefficients, and 
confidence interval. 

 

    (iv) Estimation of AHI: The algorithm is now ready to compute the AHI from automatically 

detected total number of apneas, total number of hypopneas (associated with ≥3% oxygen 

desaturation or an arousal), and estimated TST. The algorithm computed the AHI using (4.5) as 

follows: 

𝐴𝐻𝐼 =
𝑁𝑜. 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑎𝑝𝑛𝑒𝑎𝑠 + ℎ𝑦𝑝𝑜𝑝𝑛𝑒𝑎𝑠)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑆𝑇
                            (4.5) 

    This fully automatic algorithm requires no human input for respiratory event analysis and TST 

estimation. Once the raw AF and SpO2 are fed to the algorithm, the automatic process takes over 

and delivers the AHI. 

4.2.3 Parameters for performance evaluation 

     The designed algorithm reported the estimated AHI from the automatic analysis of AF and SpO2 

signals. Thus, the AHI estimated by the algorithm was compared to the actual AHI reported in the 

SHHS database for performance evaluation. The parameters used for performance evaluation 

included correlation coefficient, Bland-Altman plot, sensitivity, specificity, accuracy, area under 

ROC curve, Cohen’s kappa coefficient, and confusion matrix (see definitions in Appendix K). 

 

4.3 Results 

4.3.1 Performance in development set 

     Correlation coefficients: The automatic algorithm was developed with a development set of 

45 records. The algorithm detected respiratory events (apneas and hypopneas), sleep period, and 

finally estimated AHI, which was compared to manual scoring reported in the SHHS (actual AHI). 

The record-wise actual and estimated AHI are tabulated in Appendix L). Strong correlations were 
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found between the automatically estimated and actual AHI (r = 0.97, ICC = 0.98, 95% CI = 0.97 

to 0.99) as illustrated in Figure 4.15. 

Bland-Altman plot: The Bland-Altman plot (difference vs average of the actual and estimated 

AHI) illustrates good agreement across a whole range of AHI severity (mean bias, 95% CI, and 

mean bias ± 95% LoA were -1, 0.9 to -2.9, and 11.4 to -13.3 events/h respectively) (Figure 4.16). 

The record-wise actual and estimated AHI and their differences are tabulated in Appendix L). 

 

Figure 4.15. Scatter plot of the correlation between actual and estimated AHI. 

 

Figure 4.16. Bland-Altman plot of AHI. 

     Sensitivity, specificity, and accuracy: The confusion matrices for 2 class (binary) diagnosis 

with commonly used AHI cut-offs are listed in Table 4.7. The overall performance of the 

automatic algorithm for the development set is listed in Table 4.8. The agreement between the 

estimated and actual AHI was determined by using three common AHI cut-offs (≥5, ≥15, and 
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≥30). The overall accuracies of diagnosis were found 97.8%, 95.6%, and 97.8% for AHI cut-offs 

≥5, ≥15, and ≥30 events/h respectively (Table 4.8). 

Table 4.7. Confusion matrices for 2 class diagnosis. 

  Estimated  Estimated  Estimated 

  Positive 

(AHI ≥5) 

Negative 

(AHI <5) 

 Positive 

(AHI ≥15) 

Negative 

(AHI <15) 

 Positive 

(AHI ≥30) 

Negative 

(AHI <30) 
 

Actual 
Positive 40 1  28 2  24 1 
Negative 0 4  0 15  0 20 

AHI: apnea hypopnea index 

Table 4.8. Agreement between estimated and actual classes for 2 class diagnosis. 

Performance parameters Cut-offs 

AHI ≥5 AHI ≥15 AHI ≥30 

TP 40 28 24 

TN 4 15 20 

FP 0 0 0 

FN 1 2 1 

PPV (%) 100 100 100 

NPV (%) 80 88.2 95.2 

Sensitivity (%) 97.6 93.3 96 

Specificity (%) 100 100 100 

Accuracy (%) 97.8 95.6 97.8 

AUC 0.99 0.97 0.98 

k 0.88 0.90 0.96 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value, 
AUC: Area under ROC curve, k: Cohen’s kappa coefficient. PPV, NPV, sensitivity, 
specificity, and accuracy were calculated using (K1) to (K5) respectively, as indicated in 
Appendix K. 

 

     The confusion matrix for 4 classes (normal, mild, moderate, and severe) of diagnosis is listed 

in Table 4.9. The class-wise and overall performances of the automatic algorithm for the 

development set is listed in Table 4.10. The agreement between the estimated and actual classes 

was determined by using the AHI range of the corresponding class. The accuracies of diagnosis 

were found 97.8%, 93.3%, 93.3%, and 97.8% for normal, mild, moderate, and severe class 

respectively (Table 4.10). The overall 4 class accuracy and kappa were found 91.1% and 0.86 

respectively (Table 4.10). 
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Table 4.9. Confusion matrix for 4 class diagnosis. 

   Estimated 

   Normal Mild Moderate Severe 

 

Actual 

Normal  4 0 0 0 

Mild  1 10 0 0 

Moderate  0 2 3 0 

Severe  0 0 1 24 

 

Table 4.10. Agreement between estimated and actual classes for 4 class diagnosis. 

Performance parameters AHI classes/groups 

Normal Mild Moderate Severe 

TP 4 10 3 24 

TN 40 32 39 20 

FP 1 2 1 0 

FN 0 1 2 1 

PPV (%) 80 83.3 75 100 

NPV (%) 100 97 95.1 95.2 

Sensitivity (%) 100 91 60 96 

Specificity (%) 97.6 94.1 97.5 100 

Accuracy (%) 97.8 93.3 93.3 97.8 

4 class accuracy (%) 91.1 

4 class kappa 0.86 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value. TP, 
FP, FN, and TN of the specific class were calculated using (K6) to (K9) respectively; PPV, 
NPV, sensitivity, and specificity of the specific class were calculated using (K1) to (K4) 
respectively; 4 class accuracy were calculated using (K10), as mentioned in Appendix K. 

      

      The overall performance in the development set is outstanding due to the optimizations 

applied throughout the design process. The actual performance was found by testing the automatic 

algorithm with an unknown large validation set of 943 records as described below. 

 

4.3.2 Performance in validation set 

Correlation coefficient: The automatic algorithm was tested with a large and unknown 

validation set of 943 records. The algorithm detected respiratory events (apneas and hypopneas), 

sleep period, and finally estimated AHI, which was compared to manual scoring reported in the 

SHHS (actual AHI). The record-wise actual and estimated AHI are tabulated in Appendix M). 

Strong correlations were found between the automatically estimated and actual AHI (r = 0.91, ICC 

= 0.95, 95% CI = 0.94 to 0.96) as depicted in Figure 4.17. 
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Figure 4.17. Scatter plot of the correlation between actual and estimated AHI. 

Bland-Altman plot: Bland-Altman plot (difference vs average of the actual and estimated 

AHI) illustrates good agreement across a whole range of AHI severity (mean bias, 95% CI, and 

mean bias ± 95% LoA were -1.6, -1.2 to -2, and 10.9 to -14.1 events/h respectively) as illustrated 

in Figure 4.18. The record-wise actual and estimated AHI and their differences are tabulated in 

Appendix M). 

 

Figure 4.18. Bland-Altman plot of AHI. 

      Sensitivity, specificity, and accuracy: The confusion matrices for 2 class (binary) diagnosis 

with commonly used AHI cut-offs are listed in Table 4.11. The overall performance of the 

automatic algorithm for the validation set is listed in Table 4.12. The agreement between the 

estimated and actual AHI was determined by using three common AHI cut-offs (≥5, ≥15, and 

≥30). The overall accuracies of diagnosis were found 90.7%, 91%, and 96.7% for AHI cut-offs 

≥5, ≥15, and ≥30 events/h respectively (Table 4.12). 
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Table 4.11. Confusion matrices for 2 class diagnosis. 

  Estimated  Estimated  Estimated 

  Positive 

(AHI ≥5) 

Negative 

(AHI <5) 

 Positive 

(AHI ≥15) 

Negative 

(AHI <15) 

 Positive 

(AHI ≥30) 

Negative 

(AHI <30) 
 

Actual 
Positive 735 8  359 20  115 16 
Negative 80 120  65 499  15 797 

AHI: Apnea hypopnea index 
 

Table 4.12. Agreement between estimated and actual classes for 2 class diagnosis. 

Performance parameters  Cut-offs 
 AHI ≥5 AHI ≥15 AHI ≥30 

TP  735 359 115 

TN  120 499 797 

FP  80 65 15 

FN  8 20 16 

PPV (%)  90.2 84.7 88.5 

NPV (%)  93.8 96.2 98 

Sensitivity (%)  98.9 94.7 87.8 

Specificity (%)  60 88.5 98.2 

Accuracy (%)  90.7 91 96.7 

AUC  0.79 0.92 0.93 

k  0.68 0.82 0.86 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value, 
AUC: Area under ROC curve, k: Cohen’s kappa coefficient. PPV, NPV, sensitivity, 
specificity, and accuracy were calculated using (K1) to (K5) respectively, as indicated in 
Appendix K. 

 

     The automatic algorithm showed strong agreement between actual and estimated AHI for all 

AHI cut-offs except some special conditions such as- (i) lowest specificity (60%) was observed 

when the sample size of the normal class (AHI <5) was too small (n = 200) with respect to the total 

size of the validation set (n = 943), and (ii) too narrow range of AHI for detecting normal class (0≤ 

AHI <5) was also responsible for the lowest specificity, and hence the lowest kappa of 0.68. The 

automatic algorithm might often overestimate or underestimate around the narrow range of AHI, 

thus producing reduced agreement for the normal class. 

     The confusion matrix for 4 classes (normal, mild, moderate, and severe) of diagnosis is listed 

in Table 4.13. The class-wise and overall performances of the automatic algorithm for the 

validation set is listed in Table 4.14. The agreement between the estimated and actual classes was 

determined by using the AHI range of the corresponding class. The accuracies of diagnosis were 

found 90.7%, 82%, 88.4%, and 96.7% for normal, mild, moderate, and severe class respectively 
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(Table 4.14). The overall 4 class accuracy and kappa were found 78.9% and 0.70 respectively 

(Table 4.14). 

Table 4.13. Confusion matrix for 4 class diagnosis. 

   Estimated 

   Normal Mild Moderate Severe 

 
Actual 

Normal  120 80 0 0 

Mild  8 293 61 1 

Moderate  0 19 216 14 

Severe  0 1 15 115 

 

Table 4.14. Agreement between estimated and actual classes for 4 class diagnosis. 

Performance parameters  AHI classes/groups 

 Normal Mild Moderate Severe 

TP  120 293 216 115 

TN  735 480 618 797 

FP  8 100 76 15 

FN  80 70 33 16 

PPV (%)  93.8 74.6 74 88.5 

NPV (%)  90.2 87.3 94.9 98 

Sensitivity (%)  60 80.7 86.8 87.8 

Specificity (%)  98.9 82.8 89.1 98.2 

Accuracy (%)  90.7 82 88.4 96.7 

4 class accuracy (%)  78.9 

4 class kappa  0.70 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value. TP, FP, 
FN, and TN of the specific class were calculated using (K6) to (K9) respectively; PPV, NPV, 
sensitivity, and specificity of the specific class were calculated using (K1) to (K4) 
respectively; 4 class accuracy were calculated using (K10), as mentioned in Appendix K. 

 

     The automatic algorithm showed strong agreement between actual and estimated classes except 

some special conditions such as- (i) lowest sensitivity (60%) was observed for the normal class, 

where the actual sample size of the normal class was too small (n = 200) with respect to the total 

size of the validation set (n = 943), and (ii) too narrow range of AHI for the normal class (0≤ AHI 

<5) was also responsible for the lowest sensitivity. These special conditions might be responsible 

for the reduced 4 class accuracy (78.9%) and kappa (0.70). 
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4.4 Discussion 

In this study, we reported a novel automatic approach using AF and SpO2 signals for the 

diagnosis of sleep apnea. For performance evaluation, the output of the automatic algorithm was 

compared to the SHHS manually scored data. The automatic algorithm showed strong correlations 

between estimated and actual AHI (Figure 4.17). In addition, the Bland-Altman plot showed very 

good agreement between estimated and actual AHI, with small mean bias and narrow limits of 

agreement (Figure 4.18). The overall accuracies (binary class diagnosis) were found 90.7%, 91%, 

and 96.7% for AHI cut-offs ≥5, ≥15, and ≥30 events/h respectively (Table 4.12). Moreover, good 

accuracy (78.9%) and kappa (0.70) were observed for 4 class diagnosis (Table 4.14). 

4.4.1 Novelties of the designed algorithm 

The current study extensively tested unattended AF and SpO2 signals with an optimized logic-

based automatic algorithm. All the recording included in this study were obtained at patient’s home 

that lay the foundation for an efficient screening process for type 4 portable monitoring. It is 

important to highlight three main novelties of this study. Firstly, this study used an algorithm that 

can detect apnea and hypopnea events from AF and SpO2 signals. AF envelope tracking and 

subsequent digitization approaches were implemented within the algorithm that can satisfy the 

updated AASM scoring rules (Berry et al., 2017). Intra-event fluctuations (transient variation 

during an apnea event) and inter-event abnormalities (sighs) were precisely corrected. In addition, 

the precise detection of hypopnea events was aligned with the updated AASM guidelines (Berry 

et al., 2017). The lag-time in SpO2 was adjusted for the reliable detection of hypopneas. Several 

logical optimizations were performed throughout the algorithm to detect apneas and hypopneas. 

Thus, the designed algorithm precisely estimated AHIs, contrasting other studies that used a single 

channel (AF or SpO2). It is evidential that the single-channel oximetry cannot be an effective 

alternative of combined AF and SpO2 to the accurate diagnosis of sleep apnea (Álvarez et al., 

2020). Single-channel oximetry-based approaches (Chung et al., 2012; Gutiérrez-Tobal et al., 

2018) are somehow responsible for reduced performance, whereas dual-channel (AF and SpO2) 

approaches have been reported with better accuracy (Álvarez et al., 2020). Additionally, most of 

the conventional single-channel AF-based devices like the SleepStrip (Shochat et al., 2002), 

SleepCheck (de Almeida et al., 2006), ApneaLink ( Rofail et al., 2010) reported poor agreement 

(sensitivity and specificity) as well as large mean bias and wider limits of agreement (LoA). 

ApneaLink device developed by Erman et al. (2007) reported good performance with an AHI cut-

off 15 but not impressive for other AHI cut-offs. The reduced performance was attributed to use 

of a single signal (AF or SpO2), whereas both AF and SpO2 are recommended for sleep apnea 

automatic diagnosis. Secondly, the current algorithm identified the estimated TST by analyzing 

the AF and SpO2 signals. Good agreement was found between the scored TST and estimated EST. 
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The incorporation of estimated TST instead of TRT resulted in good agreements for sleep apnea 

diagnosis. Thirdly, the designed algorithm was tested with a large random validation set for 

performance evaluation. 

4.4.2 Comparison with existing methods 

Incorporation of the novel features made the designed algorithm robust and reliable compared 

to other existing approaches. Due to the use of different datasets, number of records, detection 

methods, and performance parameters, it would not be feasible to directly compare our method 

with the existing dual-channel (AF and SpO2) approaches. W. Huang et al. (2017) proposed an 

automatic approach using AF and SpO2, where time lag adjustment and detection of additional 

hypopneas were not estimated. In addition, AHI was estimated using TRT, hence a wider 95% LoA 

(17.8 to -18.6 events/h) resulted. Other similar approaches (Álvarez et al., 2020; Ayappa et al., 

2008; Chai-Coetzer et al., 2011; de Oliveira et al., 2009; Masdeu et al., 2010; Ward et al., 2015) 

shown a wider LoA, where TRT (with or without removing artefact section) was used to estimate 

AHI. Álvarez et al. (2020) reported ICC of 0.93 between scored and detected AHIs, whereas the 

overall accuracies were found 94.8%, 90.6%, and 95.9% using AHI cut-offs ≥5, ≥15, and ≥30 

events/h, respectively. The results indicate the lowest performance (sensitivity 96%, specificity 

72.7%) with commonly used AHI cut-off (≥15) to distinguish normal and disease groups. Thus, 

this approach can significantly underestimate normal group when a cut-off ≥15 events/h is set for 

2-class diagnosis. Ayappa et al. (2008) reported sensitivity of 85% and specificity 91% with AHI 

cut-off ≥15, whereas Masdeu et al. (2010) reported sensitivity of 86%, specificity 84%, and 

accuracy 85% with AHI cut-off ≥10. These results were based on the comparison of AHIs where 

both the scoring and detection of hypopneas were performed using 4% oxygen desaturation 

criteria. Though the approaches implemented simple oxygen desaturation criteria (≥4%) for 

hypopnea detection, the performance was not significantly improved with the use of different AHI 

cut-offs. Chai-Coetzer et al. (2011) reported sensitivity of 88% and specificity 82% with a cut-off 

≥30, whereas de Oliveira et al. (2009) reported sensitivity of 96% and specificity 64% with a cut-

off ≥5. Using a cut-off ≥5, Ward et al. (2015) reported sensitivity of 80% and specificity 83% for 

the diagnosis of sleep apnea in an unattended home setting. 

In addition to binary (2 class) diagnosis using a specific AHI cut-off, a 4-classes (normal, mild, 

moderate, and severe) of diagnosis is very important to assess the overall performance of the 

designed algorithm. A recent study (Álvarez et al., 2020) reported a 4-class accuracy of 81.3% and 

kappa 0.71 from a validation set of 96 AF and SpO2 records, whereas our method resulted in the 

4-class accuracy of 78.9% and kappa 0.70 from a large validation set of 943 records. Machine 

learning-based diagnostic performance reported by Álvarez et al. (2020) may be significantly 

reduced with a large validation set. 
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From the overall comparison with the existing literatures (dual-channel approaches) as 

mentioned above, it is clearly seen that our proposed algorithm outperformed. Moreover, our 

reported algorithm performs better than the existing automatic approaches if we considered the 

following critical issues. Firstly, the number of validation dataset that greatly influence the overall 

performance of the automatic algorithm. The existing algorithms were validated with a smaller 

dataset (78 to 121 records) (Álvarez et al., 2020; Ayappa et al., 2008; Chai-Coetzer et al., 2011; de 

Oliveira et al., 2009; Masdeu et al., 2010; Ward et al., 2015), whereas the present study used 943 

records to validate. Secondly, our proposed algorithm was designed to perform reliably even in the 

presence of noisy signals without unnecessarily discarding valuably collected data. Several 

correction approaches were implemented that significantly minimized the effects of noise or 

artefacts, e.g., smoothing to minimizing random noise, inter-event correction of ‘erroneous peak’ 

during sighs, intra-event correction of sudden signal fluctuations during an apnea event, and 

removal of SpO2 section where O2 level fell to zero. Thus, the proposed algorithm can manage 

recordings with noisy signals. In addition, the algorithm can be applied to studies of short recording 

duration. This contrast existing approaches requiring the exclusion of records of some 8 to 10%, 

for example, studies with SpO2 artefact due to patient movement and low quality (noisy) AF signal 

(Álvarez et al., 2020), and studies with low study recording period (e.g., <4 h, de Oliveira et al. 

(2009); Ward et al. (2015)). 

4.4.3 Applications 

The proposed automatic algorithm can report AHI with other parameters (number and indexes 

for apnea and hypopnea) for detailed diagnosis, where machine-learning based approach fails to 

report detail diagnosis (Álvarez et al., 2020; Jung et al., 2018). Thus, the current dual-channel 

based algorithm is suitable for simple type 4 portable sleep screeners for home applications as well 

as for clinical/laboratory PSG studies. 

4.4.4 Study limitations 

The presented automatic method has been addressed with some possible limitations. Firstly, the 

estimated AHI was compared with the standard reported in the SHHS where the apnea event was 

scored with absent of airflow or ≥75% drop in the peak excursion, whereas the updated AASM 

recommended ≥90% drop for apnea scoring. The basis for a ≥90% drop is entirely arbitrary but is 

an attempt to operationalize the requirement of ‘absent or nearly absent airflow’ (Berry et al., 

2012). For noisy and low-amplitude signals, it is almost challenging to score an apnea event with 

satisfying the ‘≥90% drop’ rule, where the peak excursion during the ‘complete cessation of 

breathing’ is often found >10% of its baseline due to intra-event fluctuations. The scoring of apnea 
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event with ≥75% drop may overestimate some apneas (i.e., some hypopneas are scored as apneas), 

the overall number of events (apneas + hypopneas) or AHI will not be significantly affected.  

Secondly, estimated TST from the analysis of AF and SpO2 signals may overestimate or 

underestimate the scored TST. Though the application of estimated TST to execute AHI was found 

more logical than applying TRT, the estimated TST may deviate from scored TST. 

Thirdly, detection of additional hypopnea by applying specific criteria (≥2 to <3% oxygen 

desaturation with a duration ≥20 s) may overestimate the overall AHI. The dual-channel (AF and 

SpO2)-based approaches have no other alternative signals to accurately determine TST and 

additional hypopneas.  

Fourthly, the Sleep Heart Health Study dataset relied on home polysomnograms and used an 

oronasal thermocouple (thermistor) for recording the airflow signal. According to the updated 

AASM guidelines, nasal pressure signal is recommended for hypopnea scoring that allows more 

hypopneas to be detected than with the thermistor. 

Finally, the designed algorithm was validated using 943 PSG recording from the SHHS. It 

would be more reliable if validated with data from other study populations. In addition, the 

validation of the designed algorithm is recommended with using different PSG recording 

equipment. 

Though the present study outperformed over the existing approaches, the above limitations can 

influence our results. 

Since there are no other alternative signals to assist the diagnostic process, the limitations listed 

above exist for any dual-channel (AF and SpO2)-based approach. Thus, our designed algorithm 

presently cannot address the above limitations. 
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Chapter 5 

Modified Diagnosis of Sleep Apnea  
 

5.1    Introduction 

The automatic diagnosis of sleep apnea using the airflow (AF) and oximetry (SpO2) signals 

showed reliable performance as described in the earlier chapter. The envelope tracking approach 

(Chapter 4) can detect an accurate peak excursion for approximately >95% of the total AF duration 

as depicted in Figure 5.1a. However, the approach does not track closely the upper boundary of 

fluctuations in breathing, thus inducing an incorrect peak excursion in small sections of the AF 

signal (e.g., see the dash line black box in Figure 5.1b). The lower boundary appropriately 

recognized all trough points of AF signal (Figure 5.1b). This phenomenon has some impact on the 

overall apnea/hypopnea event detection. In addition, the upper boundary falls short of detecting 

the end point of an apnea event (see the dash line black boxes in Figure 5.1c). Thus, the upper 

boundary tracking incorrectly tracked the sharp rise in airflow and amplitude change that are 

usually found at the end of an apnea event (Figure 5.1c). This phenomenon may explain the lower 

diagnostic performance, as reported in Chapter 4. 

Furthermore, for the determination of ≥3% oxygen desaturation for hypopnea detection, 

decrements in algorithm performance arose when applying a specific window length. In 

selecting a specific window length of 30 s (albeit optimally estimated) together with a binary 

sequence may still not precisely detect the exact start and end of each oxygen desaturation 

occurrence (Chapter 4). Thus, the estimated desaturation duration may not temporally 

correspond with the AF drop for hypopnea detection, hence contributed to the lower diagnostic 

performance. Moreover, a specific SpO2 time-lag adjustment (20 s) may further impact on the 

overall diagnostic performance (Chapter 4). 

A sample-to-sample encoding of AF and SpO2 signals would have the advantage of 

minimizing problems associated with the AF envelope tracking and fixed-window based SpO2 

digitization. This chapter addresses the design and function of a modified algorithm for the 

automatic diagnosis of sleep apnea from AF and SpO2 signals that can minimize the above-

mentioned issues by employing a sample-to-sample encoding process of AF and SpO2 signals. 

This study reports a fully automatic modified algorithm for the diagnosis of sleep apnea from 

the AF and SpO2 signals. The new technique aimed to resolve the above-mentioned limitations 

and addressed a novel concept using per-sample encoding of AF and SpO2 signals to detect apnea 
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and hypopnea events, the algorithm aligned with the updated AASM scoring guidelines.  

Additionally, the algorithm applied an estimated TST (please see Chapter 4, page 57-58) instead 

of TRT for the automatic determination of AHI.  The modified automatic algorithm was validated 

with a large dataset of 943 recordings. 

 

Figure 5.1. Illustration of identified issues with envelope tracking in detecting respiratory events.

 

5.2 Methods 
 

5.2.1 PSG records and demographics (see Section 4.2.1, page 55) 

       Demographic and scoring summary of PSG records (please see Table 4.1 on page 

56) 
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5.2.2 Designing a modified algorithm 

       An automatic algorithm for the diagnosis of sleep apnea was designed using multiple steps 

as shown in Figure 5.2. The algorithm inputs were the raw AF and SpO2 signals, and gave output 

information of estimated AHI. A first step was to estimate the total sleep time (TST) from the 

automatic analysis of AF and SpO2 signals (as explain in Chapter 4). Apnea events were detected 

from the per-sample encoding of AF signal. Hypopnea events were detected from the per-sample 

encoding of AF and SpO2 signals along with the adjustment of associated SpO2 time lag. Finally, 

the algorithm estimated AHI (output) from the total number of detected apnea and hypopnea 

events divided by the estimated TST. Figure 5.2 depicts the step-by-step design of the automatic 

algorithm. 

 

Figure 5.2.  Block diagram of the designed automatic algorithm. 

TST estimation 

       The combined analysis of AF and SpO2 signals and the corresponding optimization process 

(please see Chapter 4, page 57-58) yielded the estimated TST for the automatic diagnosis. 

 Apnea detection 

        The raw AF was smoothed using a 3-point moving average filter to produce the preprocessed 

AF.  A single breath consists of two phases: inhalation and exhalation. The maximum amplitude 

of inhalation is known as peak, whereas the minimum amplitude of exhalation is called trough 

(Figure 5.3a). The vertical height difference between the peak and trough is called peak-to-trough 

amplitude or peak excursion (Figure 5.3a). The horizontal distance between the peak and trough is 

called peak-to-trough distance. 

     In practice, a sharp transition to a high amplitude is often found. Due to this sharp transition, 

the upper boundary envelope tracking incorrectly detected peak excursion for some breaths, as 
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reported in Chapter 4. We determined the accurate peak excursion by analyzing the peak-to-trough 

distance of 900 normal breaths and the results showed a mean peak-to-trough distance of 

approximately 1.5 s, that varies from 1 to 2 s (Appendix I). Since a window length of 2 s 

encompassed both the peak and trough points of each breath, the peak excursion was determined 

by applying a 2-s sliding window (Figure 5.3a). Additionally, since a window longer than 2 s 

caused the event boundary to become fuzzy, a duration time window of 2 s was applied as 

recommended by W. Huang et al. (2017). Thus, applying a 2 s window minimized the limitations 

associated with the envelope tracking method. 
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Figure 5.3. Apnea event detection from peak excursion tracking and digitization. 

     Equation (5.1) was used to derive the peak excursion from the sliding window as follow: 

 

(𝑃𝐸)𝑖 = |(𝑊𝑃)𝑖 − (𝑊𝑇)𝑖|                                                     (5.1) 
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where, (𝑊𝑃)𝑖, (𝑊𝑇)𝑖, and (𝑃𝐸)𝑖 were the peak (maximum), trough (minimum), and peak 

excursion (resultant) amplitudes. The subscript i indicated the current location of the window. 

Thus, the derived peak excursion (69 µV) determined from the sliding window at i-th location was 

equal to the actual peak-to-trough amplitude (69 µV) of the corresponding AF breath. The sliding 

window was then moved forward by one sample distance (0.1 s, since the sampling frequency of 

AF was 10 Hz) of AF and the above calculation using (5.1) executed the peak excursion at (i+1)-

th location. This process was initiated at the starting sample of the smoothed AF and continue till 

the ending sample. Thus, per-sample tracking of the AF using a 2-s sliding window resulted in a 

corresponding continuous peak excursion signal (Figure 5.3b). 

      Since a peak excursion contains the peak-to-trough amplitude of each breath, the algorithm can 

pick up sighs, which occur during sleep (Perez-Padilla et al., 1983). A sigh is defined as an 

abnormal breath (artefact) where the magnitude is excessively higher than the normal breath. These 

sighs may result in insertion of “erroneous” large peaks in the determination of peak excursions. 

The erroneous peaks resulted from the sighs were removed from the derived peak excursion (please 

see Chapter 4, page 57). 

     Encoding is the process of converting data from one form to another. In this algorithm, each 

sample amplitude of the peak excursion (after removing the erroneous large peaks) was encoded 

to a binary digit (‘1’ or ‘0’, ‘1’ representing ≥90% drop in the peak excursion, whereas ‘0’ for 

<90% drop) using (5.2) as follows: 

(𝐵𝐷)𝑖 = {
1,                        if (𝑃𝐸)𝑖 ≤

10

100
(𝐵𝐴)𝑖

0,                               otherwise           
                               (5.2) 

where, (𝐵𝐷)𝑖 (𝑃𝐸)𝑖, and (𝐵𝐴)𝑖 denote the binary digit, peak excursion amplitude, and baseline 

amplitude for the i-th location respectively. The baseline amplitude for i-th location was 

determined from the maximum amplitude in the 2 minutes (i.e., 1200 samples) preceding the i-th 

location, as recommended in the updated AASM guidelines (Berry et al., 2012). Thus, an initial 

encoded sequence for apnea (EA,i) was generated against the peak excursion where the binary digit 

‘1’ represented ≥90% drop (Figure 5.3c). 

     In practice, the AF signal usually shows minor fluctuations rather than a flat line during an 

apnea event (see an example, red arrow, Figure 5.3c). Due to these fluctuations, the algorithm 

generated a binary digit ‘0’ during an apnea event (Figure 5.3c). An auto-correction step was 

applied and the final encoded sequence for apnea (EA,f) was generated (Figure 5.3d). Thus, the 

final encoding represented a continuous sequence of ‘1’s against the duration of an apnea event 

(Figure 5.3d).  
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      From the final encoded sequence for apnea (EA,f), the algorithm can identify an apnea start-

point (AS), i.e., from the binary sequence where ‘0’ was detected followed by at least one hundred 

successive ‘1’s (10 s). Similarly, the apnea end-point (AE) was identified where ‘0’ was detected 

preceding at least one hundred successive ‘1’s (Figure 5.3d). Thus, the difference in timing 

between AE and AS was calculated for the apnea duration (at least 10 s). The designed algorithm 

resulted in a consistent shortening of the detected apnea duration by approximately 1 s (Figure 5.3a 

and Figure 5.3d). Thus, the per-sample tracking approach with a 2 s sliding window and a 

consistent shortening of the detected apnea duration could miss-detect some apneas when ≥10 s is 

set for apnea duration. This miss-detection tendency (due to the consistent shortening of the 

detected apnea duration) was further analyzed by identifying the optimal apnea duration threshold; 

the number of apnea detected was then compared with that re-scored (3666 apneas) in the 

development set as per Chapter 4 (page 63) and data listed in Appendix J. 

     To arrive at an optimized threshold for apnea duration, varying apnea duration of ≥8 s, ≥9 s, 

and ≥10 s were tested in the development set. The apnea scores for each threshold duration were 

compared with the re-scored apneas. Table 5.1 shows that the total number of detected apneas with 

≥9 s duration threshold closely approximates the total number of re-scored apneas. In addition, 

false detection was minimized, and the highest correlations were achieved with ≥9 s apnea duration 

threshold. The optimized duration threshold (≥9 s) also resulted in the highest Pearson’s correlation 

coefficient (r = 0.995) and intraclass correlation coefficient (ICC = 0.997) between the detected 

and re-scored apneas. Other duration thresholds (≥8 and ≥10 s) contributed to significant false 

detection and lower correlation coefficients. Thus, the ≥9 s apnea duration threshold was set within 

the automatic process and the number of detected apnea events was listed with their corresponding 

duration and timing (AS and AE). 

Table 5.1. Selecting apnea duration threshold for the development set. 

Detected apneas 

[duration threshold] 

Scored apneas Difference r ICC 95% CI 

3830 [8 s] 3666 -164 0.994 0.997 0.994 – 0.999 

3527 [9 s] 3666 +139 0.995 0.997 0.994 – 0.998 

3280 [10 s] 3666 +386 0.993 0.992 0.980 – 0.996 

‘+’ and ‘-’ signs respectively indicate the overall number of miss-detected and over-detected apneas; Correlations 
was resulted from the record-wise analysis of re-scored and detected apneas; r, ICC, and CI respectively represent 
the Pearson’s correlation coefficient, intraclass correlation coefficients, and confidence interval. 

   

Hypopnea detection 

       Hypopnea with ≥3% oxygen desaturation: For hypopnea event detection, AF drop (≥30% 

that lasts ≥10 s) must take place with a ≥3% oxygen desaturation. The automatic algorithm took 

the AF signal as input and produced the peak excursion (see Apnea detection section). A binary 
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sequence against the AF peak excursion was generated using ≥30% drop criterion, as similarly 

done for apnea event detection. The start and end timing of each ≥30% drop was detected from the 

binary sequence. The difference between the end and start timing represented the duration of ≥30% 

drop. For hypopnea detection, the duration of ≥30% drop must be ≥10 s.  Thus, the start and end 

timing of ≥30% drop with a duration of ≥10 s were considered for further analysis. These start and 

end timing of ≥30% drop ≥10 s were represented by HS and HE respectively. 

      The algorithm then took the SpO2 signal as another input. The raw SpO2 was preprocessed to 

remove unwanted artefacts, e.g., a sudden fall to zero. The preprocessed SpO2 contains two phases: 

desaturation and resaturation. The timing of desaturation (DStart and DEnd) was determined from the 

preprocessed SpO2 as depicted in Figure 5.4a. At first, the desaturation phase was tracked and 

sample-to-sample digitization was performed. Each sample saturation value was encoded to a 

binary digit (‘1’ or ‘0’) using (5.3) as follows: 

(𝐸)𝑖 = {
1,              if [(𝑆𝑝𝑂2)𝑖−1 − (𝑆𝑝𝑂2)𝑖] ≥ 1
0,                               otherwise                  

                                (5.3) 

where, (𝐸)𝑖 represents the encoded digit for i-th sample saturation. (𝑆𝑝𝑂2)𝑖−1 and (𝑆𝑝𝑂2)𝑖 

respectively indicate the saturation values in percentage for (i-1)-th and i-th sample saturation. 

Thus, each sample saturation value was represented by a binary digit as shown in Figure 5.4b. The 

representation of binary digits, corresponding to desaturation and resaturation phases, were 

respectively indicated by the arrows ‘A’ and ‘B’. The sample-to-sample binary digits (‘1’s) were 

not continuous during the desaturation phase (Figure 5.4b). Thus, an appropriate correction was 

needed for the sample-to-sample binary digits. A 15-s moving window was applied to correct for 

the binary digits. When two ‘1’s were separated by <15 s, the intermediate ‘0’s between those ‘1’s 

were converted to ‘1’s. Thus, the corrected digital sequence represents the desaturation phase by a 

continuous sequence of binary digit ‘1’s (Figure 5.4c). From the corrected digital sequence, the 

timing (starting: DStart and ending: DEnd) of the desaturation phase was recorded. 

     The algorithm returned to the preprocessed SpO2 to characterize the ≥3% oxygen desaturation 

level for hypopnea detection and recorded the saturation values in percentage (SStart and SEnd) for 

the corresponding timing (DStart and DEnd respectively). SStart and SEnd indicated the saturation values 

in percentage for the respective DStart and DEnd. The percentage of desaturation (D) was calculated 

from the difference between SStart and SEnd. Thus, DStart, DEnd, and its corresponding %D were 

considered. For at least 3% desaturation (i.e., D≥3%), DStart and DEnd were recorded for detecting 

hypopnea events associated with ≥3% oxygen desaturation. 

     The SpO2 signal is always lagged in time to the AF signal. In Chapter 4, we applied a fixed, 

backward shift of 20 s to account for the time lag. Whilst this duration worked well and captured 

most hypopnea events, this time lag is not fixed and may vary approximately from 10 to 30 s (Otero 
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et al., 2012). Thus, in this chapter we resolved this issue by correcting for the time lag by an 

appropriate backward shift duration as required. 
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Figure 5.4. Oxygen desaturation phase tracking for generating sample-to-sample binary digit. 

     Figure 5.5 shows two sections of ≥3% desaturations (desat A and desat B) that resulted from 

their corresponding ≥30% AF drop of ≥10 s (drop A and drop B). The start and end of ≥3% oxygen 

desaturation are represented by DStart and DEnd, whereas HS and HE represents the start and end of 

≥30% drop of ≥10 s. For both hypopnea events (as shown in Figure 5.5), an approximately 20 s 

time lag exists between the AF signal drop and oxygen desaturation, where their overlaps are 

depicted by the blue color boxes. The parallel overlapping between the durations of ≥30% drop 

≥10 s and ≥3% oxygen desaturation is represented by blue color boxes.  

      No backward shifting (BS) was required where overlapping in signals existed between the 

durations of ≥30% AF drop ≥10 s and ≥3% oxygen desaturation (Figure 5.5). Thus, applying 0 s 

time lag adjustment (no backward shifting in DStart), the modified algorithm detected hypopneas 

for these overlapping scenarios, where HS and HE were recorded as the start and end timing of 

hypopnea event.  
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Figure 5.5. Hypopnea detection with overlapping between AF drop and desaturation. 

     In cases where the time lag in SpO2 was very long, no overlapping was observed between the 

durations of ≥30% AF drop ≥10 s and ≥3% oxygen desaturation (Figure 5.6). Thus, no hypopnea 

was detected when 0 s time lag adjustment (0 s BS) was considered. Applying 10 s BS of SpO2 

signal, an overlapping existed between the durations of ≥30% AF drop ≥10 s and ≥3% oxygen 

desaturation. Thus, applying 10 s time lag adjustment (10 s backward shifting in DStart), the 

modified algorithm detected the first and second hypopnea events (hypopnea 1 and hypopneas 2) 

as shown in Figure 5.6. Similarly, the modified algorithm detected the third hypopnea event by 

applying a 20 or 30 s BS of SpO2 signal (Figure 5.6). Thus, the modified algorithm applied 0, 10, 

20, and 30 s time lag adjustment in turn (one-by-one) to detect all hypopneas. This process would 

detect many duplicate hypopneas that were removed and the remaining hypopneas (with their 

corresponding start and end timing) were recorded. The hypopneas that overlapped with previously 

detected apneas were removed and the remaining events were finally considered as the number of 

detected hypopneas associated with ≥3% oxygen desaturation. 

     Optimization: This algorithm detected hypopneas with considering time lags (0, 10, 20, and 

30 s), where the corrected binary digit (Figure 5.4c) was generated from sample-to-sample binary 

digit (Figure 5.4b) using a 15 s moving window. This window length (15 s) was found optimal (the 

highest correlations), whereas other lengths of window (10 and 20 s) were sub-optimal (Table 5.2). 
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Figure 5.6. Backward shifting (BS) of SpO2 signal in accordance with varying time lag. 

Table 5.2. Selecting window length for binary digit correction. 

Detected hypopneas 

[window length] 

Scored 

hypopneas 

Difference r ICC 95% CI 

3927 [10 s] 4069 +142 0.968 0.983 0.970 – 0.991 

4300 [15 s] 4069 -231 0.977 0.986 0.974 – 0.994 

4155 [20 s] 4069 -86 0.964 0.982 0.967 – 0.990 

‘+’ and ‘-’ signs respectively indicate the overall number of miss-detected and over-detected hypopneas; Correlations 
was resulted from the re-record-wise analysis of scored and detected hypopneas; r, ICC, and CI respectively represent 
the Pearson’s correlation coefficient, intraclass correlation coefficients, and confidence interval. 

 



 

93 
 

     Additional hypopnea detection: As per Chapter 4, hypopnea events associated with arousal 

but <3% oxygen desaturation were detected and designated ‘additional hypopneas’. An 

approximate approach proposed for detecting these hypopneas considered ≥2% to <3% oxygen 

desaturation, since the SpO2 often fluctuated by about 1% during normal breathing. In this chapter, 

we applied backward shifting of 0, 10, 20 and 30 s in sequence to detect additional hypopneas 

associated with arousal (assumed). 

       The approximate approach detected the start and end of all desaturations (≥2% to <3%), as 

similarly done above. An additional hypopnea was detected when a backward shifted DStart and 

DEnd were bounded by the boundaries (HS and HE) of ≥30% drop with a duration of ≥10 s. Thus, 

the timing (HS and HE) of the additional hypopnea event was recorded when the above criteria 

were fulfilled. Additional hypopneas that were overlapped with previously detected apneas and 

hypopneas (with ≥3% oxygen desaturation) were removed. Thus, the remaining hypopneas were 

counted as the additional hypopneas (assumed as an approximate number of hypopneas associated 

with arousal but <3% oxygen desaturation). These detected additional hypopneas (n = 1076, from 

the development set) were added to previously detected hypopneas (with ≥3% oxygen 

desaturation) to compute the total number of hypopneas (associated with ≥3% oxygen 

desaturation or an arousal). 

     The algorithm is now ready to compute the AHI from automatically detected total number of 

apneas, total number of hypopneas (associated with ≥3% oxygen desaturation or an arousal), and 

estimated TST. The algorithm computed the AHI using (4.5) as follows: 

𝐴𝐻𝐼 =
𝑁𝑜. 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑎𝑝𝑛𝑒𝑎𝑠 + ℎ𝑦𝑝𝑜𝑝𝑛𝑒𝑎𝑠)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑆𝑇
                            (5.4) 

    This fully automatic algorithm requires no human input for respiratory event analysis and TST 

estimation. Once the raw AF and SpO2 are fed to the algorithm, the automatic process takes over 

and delivers the AHI. 

 

5.3 Results 

5.3.1 Performance in development set 

Correlation coefficients: The modified automatic algorithm was developed with a 

development set of 45 records. The modified algorithm detected respiratory events (apneas and 

hypopneas), sleep period, and finally estimated AHI, which was compared to manual scoring 

reported in the SHHS (actual AHI). The record-wise actual and estimated AHI are tabulated in 
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Appendix L). Strong correlations were found between the automatically estimated and actual AHI 

(r = 0.96, ICC = 0.98, 95% CI = 0.96 to 0.99) as illustrated in Figure 5.7. 

 
Figure 5.7. Scatter plot of the correlation between actual and estimated AHI. 

Bland-Altman plot: The Bland-Altman plot (difference vs average of the actual and estimated 

AHI) illustrates good agreement across a whole range of AHI severity (mean bias, 95% CI, and 

mean bias ± 95% LoA were -1.4, 0.9 to -3.7, and 13.5 to -16.3 events/h respectively) (Figure 5.8). 

The record-wise actual and estimated AHI and their differences are tabulated in Appendix L). 

 

Figure 5.8. Bland-Altman plot of AHI. 

     Sensitivity, specificity, and accuracy: The confusion matrices for 2 class (binary) diagnosis 

with commonly used AHI cut-offs are listed in Table 5.3. The overall performance of the 

automatic algorithm for the development set is listed in Table 5.4. The agreement between the 

estimated and actual AHI was determined by using three common AHI cut-offs (≥5, ≥15, and 
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≥30). The overall accuracies of diagnosis were found 97.8%, 95.6%, and 97.8% for AHI cut-offs 

≥5, ≥15, and ≥30 events/h respectively (Table 5.4). 

Table 5.3. Confusion matrices for 2 class diagnosis. 

  Estimated  Estimated  Estimated 

  Positive 

(AHI ≥5) 

Negative 

(AHI <5) 

 Positive 

(AHI ≥15) 

Negative 

(AHI <15) 

 Positive 

(AHI ≥30) 

Negative 

(AHI <30) 
 

Actual 
Positive 40 1  28 2  24 1 
Negative 0 4  0 15  0 20 

AHI: apnea hypopnea index 

Table 5.4. Agreement between estimated and actual classes for 2 class diagnosis. 

Performance parameters Cut-offs 

AHI ≥5 AHI ≥15 AHI ≥30 

TP 40 28 24 

TN 4 15 20 

FP 0 0 0 

FN 1 2 1 

PPV (%) 100 100 100 

NPV (%) 80 88.2 95.2 

Sensitivity (%) 97.6 93.3 96 

Specificity (%) 100 100 100 

Accuracy (%) 97.8 95.6 97.8 

AUC 0.99 0.97 0.98 

k 0.88 0.90 0.96 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value, 
AUC: Area under ROC curve, k: Cohen’s kappa coefficient. PPV, NPV, sensitivity, 
specificity, and accuracy were calculated using (K1) to (K5) respectively, as indicated in 
Appendix K. 

      

      The confusion matrix for 4 classes (normal, mild, moderate, and severe) of diagnosis is listed 

in Table 5.5. The class-wise and overall performances of the automatic algorithm for the 

development set is listed in Table 5.6. The agreement between the estimated and actual classes 

was determined by using the AHI range of the corresponding class. The accuracies of diagnosis 

were found to be 97.8%, 93.3%, 93.3%, and 97.8% for normal, mild, moderate, and severe class 

respectively (Table 5.6). The overall 4 class accuracy and kappa were found 91.1% and 0.86 

respectively (Table 5.6). 

     The overall performance in the development set was outstanding due to the optimizations 

applied throughout the design process. The actual performance was found by testing the automatic 

algorithm with an unknown large validation set of 943 records as described below. 
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Table 5.5. Confusion matrix for 4 class diagnosis. 

   Estimated 

   Normal Mild Moderate Severe 

 

Actual 

Normal  4 0 0 0 

Mild  1 10 0 0 

Moderate  0 2 3 0 

Severe  0 0 1 24 

 

Table 5.6. Agreement between estimated and actual classes for 4 class diagnosis. 

Performance parameters AHI classes/groups 

Normal Mild Moderate Severe 

TP 4 10 3 24 

TN 40 32 39 20 

FP 1 2 1 0 

FN 0 1 2 1 

PPV (%) 80 83.3 75 100 

NPV (%) 100 97 95.1 95.2 

Sensitivity (%) 100 90.9 60 96 

Specificity (%) 97.6 94.1 97.5 100 

Accuracy (%) 97.8 93.3 93.3 97.8 

4 class accuracy (%) 91.1 

4 class kappa 0.86 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value. TP, 
FP, FN, and TN of the specific class were calculated using (K6) to (K9) respectively; PPV, 
NPV, sensitivity, and specificity of the specific class were calculated using (K1) to (K4) 
respectively; 4 class accuracy were calculated using (K10), as mentioned in Appendix K. 

     

5.3.2 Performance in validation set 

Correlation coefficient: The automatic algorithm was tested with a large and unknown 

validation set of 943 records. The algorithm detected respiratory events (apneas and hypopneas), 

sleep period, and finally estimated AHI, which was compared to manual scoring reported in the 

SHHS (actual AHI). The record-wise actual and estimated AHI are tabulated in Appendix M). 

Strong correlations were found between the automatically estimated and actual AHI (r = 0.90, ICC 

= 0.94, 95% CI = 0.94 to 0.95) as depicted in Figure 5.9. 

Bland-Altman plot: Bland-Altman plot (difference vs average of the actual and estimated 

AHI) illustrates good agreement across a whole range of AHI severity (mean bias, 95% CI, and 

mean bias ± 95% LoA were -0.7, -0.3 to -1.1, and 12.3 to -13.8 events/h respectively) as illustrated 
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in Figure 5.10. The record-wise actual and estimated AHI and their differences are in Appendix 

M.  

 

Figure 5.9. Scatter plot of the correlation between actual and estimated AHI. 

 

Figure 5.10. Bland-Altman plot of AHI. 

      Sensitivity, specificity, and accuracy: The confusion matrices for 2 class (binary) diagnosis 

with commonly used AHI cut-offs are listed in Table 5.7. The overall performance of the 

automatic algorithm for the validation set is listed in Table 5.8. The agreement between the 

estimated and actual AHI was determined by using three common AHI cut-offs (≥5, ≥15, and 

≥30). The overall accuracies of diagnosis were found 93.5%, 92.4%, and 96.5% for AHI cut-offs 

≥5, ≥15, and ≥30 events/h respectively (Table 5.8). 

     The automatic algorithm showed strong agreement between actual and estimated AHI for all 

AHI cut-offs except some special conditions such as- (i) lowest specificity (73%) was observed 
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when the sample size of the normal class (AHI <5) was too small (n = 200) with respect to the total 

size of the validation set (n = 943), and (ii) too narrow range of AHI for detecting normal class (0≤ 

AHI <5) was also responsible for the lowest specificity, and hence the lowest kappa of 0.77. The 

automatic algorithm might often overestimate or underestimate around the narrow range of AHI, 

thus producing reduced agreement for the normal class. 

Table 5.7. Confusion matrices for 2 class diagnosis. 

  Estimated  Estimated  Estimated 

  Positive 

(AHI ≥5) 

Negative 

(AHI <5) 

 Positive 

(AHI ≥15) 

Negative 

(AHI <15) 

 Positive 

(AHI ≥30) 

Negative 

(AHI <30) 
 

Actual 
Positive 752 13  370 30  114 19 
Negative 48 130  42 501  14 796 

AHI: Apnea hypopnea index 
 

Table 5.8. Agreement between estimated and actual classes for 2 class diagnosis. 

Performance parameters  Cut-offs 
 AHI ≥5 AHI ≥15 AHI ≥30 

TP  752 370 114 

TN  130 501 796 

FP  48 42 14 

FN  13 30 19 

PPV (%)  94 89.8 89.1 

NPV (%)  90.9 94.4 97.7 

Sensitivity (%)  98.3 92.5 85.7 

Specificity (%)  73 92.3 98.3 

Accuracy (%)  93.5 92.4 96.6 

AUC  0.86 0.92 0.92 

k  0.77 0.84 0.85 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value, 
AUC: Area under ROC curve, k: Cohen’s kappa coefficient. PPV, NPV, sensitivity, 
specificity, and accuracy were calculated using (K1) to (K5) respectively, as indicated in 
Appendix K. 

 

     The confusion matrix for 4 classes (normal, mild, moderate, and severe) of diagnosis is listed 

in Table 5.9. The class-wise and overall performances of the automatic algorithm for the 

validation set is listed in Table 5.10. The agreement between the estimated and actual classes was 

determined by using the AHI range of the corresponding class. The accuracies of diagnosis were 

found 93.5%, 86.7%, 90%, and 96.6% for normal, mild, moderate, and severe class respectively 

(Table 5.10). The overall 4 class accuracy and kappa were found 83.4% and 0.77 respectively 

(Table 5.10). 
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     The automatic algorithm showed strong agreement between actual and estimated classes 

except some special conditions such as- (i) lowest sensitivity (76%) was observed for the normal 

class, where the actual sample size of the normal class was too small (n = 200) with respect to the 

total size of the validation set (n = 943), and (ii) too narrow range of AHI for the normal class (0≤ 

AHI <5) was also responsible for the lowest sensitivity. These special conditions might be 

responsible for the reduced 4 class accuracy (83.4%) and kappa (0.77). 

Table 5.9. Confusion matrix for 4 class diagnosis. 

   Estimated 

   Normal Mild Moderate Severe 

 
Actual 

Normal  152 47 1 0 

Mild  13 311 38 2 

Moderate  0 26 209 13 

Severe  0 1 16 114 

 

Table 5.10. Agreement between estimated and actual classes for 4 class diagnosis. 

Performance parameters  AHI classes/groups 

 Normal Mild Moderate Severe 

TP  152 311 209 114 

TN  730 507 640 797 

FP  13 74 55 15 

FN  48 51 39 17 

PPV (%)  92.1 80.8 79.2 88.4 

NPV (%)  93.8 90.9 94.3 97.9 

Sensitivity (%)  76 85.9 84.3 87 

Specificity (%)  98.3 87.3 92.1 98.2 

Accuracy (%)  93.5 86.7 90 96.6 

4 class accuracy (%)  83.4 

4 class kappa  0.77 

AHI: Apnea hypopnea index, TP: True positives, TN: True negatives, FP: False positives, 
FN: False negatives, PPV: Positive predictive value, NPV: Negative predictive value. TP, FP, 
FN, and TN of the specific class were calculated using (K6) to (K9) respectively; PPV, NPV, 
sensitivity, and specificity of the specific class were calculated using (K1) to (K4) 
respectively; 4 class accuracy were calculated using (K10), as mentioned in Appendix K. 
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5.3.3 Modified algorithm vs envelope-based algorithm 

The performance of the sample-to-sample algorithm was compared to the envelope-based 

approach (Chapter 4) as shown in Table 5.11. It is clearly seen that the modified algorithm resulted 

in lower mean bias compared to the envelope-based algorithm. A mean bias of -0.7 events/h was 

observed with this modified approach, whereas a mean bias of -1.6 events/h was resulted in with 

envelope method (Chapter 4). In addition, significant percentage increments in overall accuracies 

(for 2 class and 4 class diagnosis) were observed (Table 5.11). The modified method showed an 

increment of 1.4% and 2.2% respectively for 2 and 4 class diagnosis accuracies with respect to 

envelope method (Chapter 4). In addition, an overall 4 class accuracy was significantly improved 

by 4.5%, whereas 4 class kappa was increased from 0.70 to 0.77 (compared to envelope-based 

algorithm in Chapter 4). 

Table 5.11. Performance comparison (envelope-based approach vs modified approach). 

Performance parameters Envelope-based approach 

(Chapter 4) 

Modified approach 

(Chapter 5) 

 

Overall 

performance 

r 0.91 0.90 

ICC 0.95 0.94 

Mean bias (event/h) -1.6 -0.7 

Mean ± 95% LoA (event/h) 10.9 to -14.1 12.3 to -13.8 

 Average PPV (%) 87.8 91 

 Average NPV (%) 96 94.3 

 Average sensitivity (%) 93.8 92.2 

2 class diagnosis Average specificity (%) 82.2 87.9 

 Average accuracy (%) 92.8 94.2 

 Average AUC 0.88 0.90 

 Average k 0.79 0.82 

 Average PPV (%) 82.7 85.1 

 Average NPV (%) 92.6 94.2 

 Average sensitivity (%) 78.8 83.3 

4 class diagnosis Average specificity (%) 92.3 94 

 Average accuracy (%) 89.5 91.7 

 4 class accuracy (%) 78.9 83.4 

 4 class kappa 0.70 0.77 

r: Pearson’s correlation coefficient, ICC: Intraclass correlation coefficient, LoA: Limits of agreement, PPV: Positive 
predictive value, NPV: Negative predictive value, AUC: Area under ROC curve, k: Cohen’s kappa coefficient. 
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5.4 Discussion 

      In this study, we reported an improved algorithm employing a sample-to-sample encoding 

approach using AF and SpO2 signals for the diagnosis of sleep apnea. For performance evaluation, 

the output of the automatic algorithm (estimated AHI) was compared to the actual AHI (reported 

in the SHHS). The overall accuracies (binary class diagnosis) were found 93.5%, 92.4%, and 

96.6% for AHI cut-offs ≥5, ≥15, and ≥30 events/h respectively (Table 5.8). Moreover, excellent 

overall accuracy (83.4%) and kappa (0.77) were observed for the 4 classes of diagnosis (Table 

5.10). The modified algorithm resulted in lower mean bias compared to the envelope-based 

algorithm (Table 5.11). The increment of 1.4% and 4.5% respectively for 2 and 4 class diagnosis 

accuracies were observed in the modified method compared to the envelope method (Table 5.11). 

In addition, 4 class kappa increased significantly from 0.70 to 0.77 (Table 5.11). 

5.4.1 Novelties of the modified algorithm 

The current modified study extensively tested unattended AF and SpO2 signals with an 

optimized logic-based automatic algorithm. Applying a 2 s sliding widow instead of using AF 

envelope (upper and lower boundaries), the current algorithm detected peak excursion from per-

sample encoding of AF signal. The 2 s sliding window correctly detected the peak and trough 

amplitudes of each breath, whereas the envelop tracking method (Chapter 4) incorrectly detected 

the peak amplitudes of some breaths when applying upper boundary tracking. The sample-to-

sample tracking (i.e., the per-sample encoding) of AF signal correctly identified the difference 

between peak and trough amplitudes, hence accurate detection of peak excursion throughout the 

recording duration. Thus, the current study corrected for the erroneous peak excursion due to 

fluctuations in the upper boundary) as seen in Chapter 4. In addition, per-sample encoding method 

more precisely detected the end-point of an apnea event, whereas the upper boundary (envelope 

method in Chapter 4) falls short of detecting the end-point of an apnea event. The current method 

detected the duration of an apnea events of ~9 s against a true duration of 10 s, whereas the 

envelope tracking detected an apnea duration of ~8 s. Thus, the per-sample encoding method more 

precisely responded to the sharp rise in airflow and amplitude change that are usually found at the 

end of an apnea event. Hence, the modified algorithm more precisely detected apnea events from 

per-sample encoding of AF signal (compared to AF envelope method) that also satisfies the 

updated AASM scoring rules (Berry et al., 2017).  

In addition, the current algorithm applied a sample-to-sample encoding of SpO2 signal. This 

per-sample encoding method accurately tracked each desaturation step in the SpO2 signal and 

thus, precisely detected the start and end of each oxygen desaturation phase. In contrast, the 

determination of oxygen desaturation applying a specific window length (30 s) may 
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overestimate the duration of oxygen desaturations (Chapter 4). Moreover, the current algorithm 

employed all possible amount of time lag (0, 10, 20, and 30 s) adjustment in SpO2 signal, 

whereas the envelope tracking method applied only 20 s backward shifting (Chapter 4). 

Addressing all possible amount of time lag within the current algorithm made the automatic 

detection of hypopnea more accurate, logical, and robust with respect to the envelope method. 

Thus, per-sample encoding of AF and SpO2 signals vastly improved the diagnostic performance 

compared to envelope method (Chapter 4). 

5.4.2 Comparison with other automatic approaches 

Incorporation of the novel features made the modified algorithm robust and reliable compared 

to other automatic approaches. The estimated AHI (automatic method) was compared to the 

standard (scored AHI) for performance evaluation of dual-channel (AF and SpO2)-based 

approaches. Álvarez et al. (2020) reported the overall accuracies of 94.8%, 90.6%, and 95.9% 

using AHI cut-offs ≥5, ≥15, and ≥30 events/h respectively. Ayappa et al. (2008) reported sensitivity 

of 85% and specificity 91% with AHI cut-off ≥15, whereas Masdeu et al. (2010) reported 

sensitivity of 86%, specificity 84%, and accuracy 85% with AHI cut-off ≥10. Chai-Coetzer et al. 

(2011) reported sensitivity of 88% and specificity 82% with a cut-off ≥30, whereas de Oliveira et 

al. (2009) reported sensitivity of 96% and specificity 64% with a cut-off ≥5. Using a cut-off ≥5, 

Ward et al. (2015) reported sensitivity of 80% and specificity 83% for the diagnosis of sleep apnea 

in an unattended home setting. The AF envelope tracking and digitization approach (Chapter 4) 

was reported with overall accuracies (2 class diagnosis) of 90.7%, 91%, and 96.7% for AHI cut-

offs ≥5, ≥15, and ≥30 events/h respectively. The current per-sample encoding approach resulted in 

the overall accuracies (2 class diagnosis) of 93.5%, 92.4%, and 96.6% for AHI cut-offs ≥5, ≥15, 

and ≥30 events/h respectively. Thus, for 2 class diagnosis, the overall comparison showed that the 

per-sample encoding method outperformed over other automatic approaches. 

In addition to binary (2 class) diagnosis using a specific AHI cut-off, 4 classes (normal, mild, 

moderate, and severe) of diagnosis is very important to assess the class-wise and overall 

performance of the designed algorithm. A recent study (Álvarez et al., 2020) reported 4 class 

accuracy of 81.3% and kappa 0.71 from a validation set of 96 AF and SpO2 records, whereas our 

envelope-based method (Chapter 4) resulted in 4 class accuracy of 78.9% and kappa 0.70 from a 

large validation set of 943 records. In comparison to the above studies, the per-sample encoding 

method outperformed with a 4 class accuracy of 83.4% and kappa 0.77 for the same validation set 

of 943 records. 
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5.4.3 Applications 

The proposed automatic algorithm can report AHI with other parameters (number and indexes 

for apnea and hypopnea) for detailed diagnosis, where machine-learning based approach fails to 

report detail diagnosis (Álvarez et al., 2020; Jung et al., 2018). Moreover, the presented approach 

outperformed over the existing approaches. Thus, the current dual-channel-based algorithm is 

suitable for simple type 4 portable sleep screeners for home applications as well as for 

clinical/laboratory PSG studies. 

5.4.4 Study limitations 

The presented modified method has been addressed with some possible limitations. Firstly, the 

estimated AHI was compared with the standard reported in the SHHS where the apnea event was 

scored with absent of airflow or ≥75% drop in the peak excursion, whereas the updated AASM 

recommended ≥90% drop for apnea scoring. Secondly, estimated TST from the analysis of AF and 

SpO2 signals may overestimate or underestimate the scored TST. Finally, detection of additional 

hypopnea by applying a specific criteria (≥2 to <3% oxygen desaturation) may overestimate the 

overall AHI. Though the present study outperformed over the existing approaches, the above 

limitations can influence our results. 
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Chapter 6 

Summary, Discussion and Future Works 
 

      This thesis represented a series of work that led to a superior algorithm that can be accurately 

and reliably applied to the automatic diagnosis of sleep apnea. 

       The systematic literature review has synthesized and summarized the existing automatic 

algorithms based on respiratory and oximetry signals to diagnose sleep apnea. Sixty-two studies 

were examined and the main findings reported whereas a single respiratory signal (AF or SpO2), 

provided good support for binary class decision-making, multiple respiratory signals (AF, TE, 

and AE) combined with SpO2 signal resulted in better in multi-class decision-making in sleep 

apnea diagnosis. Notably, the inclusion of EEG signals for automatic diagnosis, in addition to 

those of AF and SpO2, would be expected to improve algorithm performance by analyzing power 

spectral changes between apnea duration groups. This notion led to Chapter 3, which addressed 

the power spectral analysis of EEG signal before and at apnea termination, and subsequent 

chapters on algorithm approaches to automatic diagnosis of sleep apnea. 

       The EEG spectral powers for theta, alpha and sigma bands decreased significantly as apnea 

was prolonged (≥30 s, Chapter 3). This observation suggests that transient EEG arousals, without 

awakenings, avoided sleep disruptions and therefore were protective of sleep. No significant 

difference was found when the apnea duration increased from 10 to 20 s. The EEG spectral powers 

were not uniform for all apnea events. In addition, it would be challenging to link hypopnea events 

with the changes of EEG spectral power or arousal. Due to the limitations associated with signal 

acquisition, processing, artefacts, complexity, and non-effective spectral features, it was 

concluded that EEG were inadequate as signals to be used reliably for sleep apnea diagnosis. The 

literature review (Chapter 2) suggested that it would be effective to use airflow and oximetry 

signals with excluding EEG for the diagnosis of sleep apnea. However, there remained many 

limitations with existing published automatic algorithms (Chapter 4). 

This thesis presented a novel automatic algorithm for a reliable diagnosis of sleep apnea from 

AF and SpO2 signals. Apnea and hypopnea events were detected by tracking and digitizing the AF 

envelope and oxygen desaturation. The developed algorithm incorporated the estimation of total 

sleep time from the combined analysis of AF and SpO2, an approach not previously carried out 

(Chapter 4). Though the envelope-based approach showed good diagnostic performance, there 

were some possible limitations. The thesis advanced this by developing a modified algorithm that 
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overcome the limitations of the envelope-based approach. In the modified approach, apnea and 

hypopnea events were detected by per-sample encoding of AF and SpO2 signals. This sample-to-

sample encoding represented an approach that outperformed over the envelope-based approach. 

An increment of 1.4% and 4.5% respectively for 2 and 4 class diagnostic accuracies were resulted 

with the modified method compared to envelope method (Chapter 5). The modified algorithm also 

outperformed over the existing automatic approaches for sleep apnea diagnosis. The designed 

algorithm can provide significant ease of computational implication in event scoring and applicable 

for user-friendly home diagnosis of sleep apnea. 

        Despite the enhanced algorithm for sleep apnea diagnosis, there remains future work that 

could refine the current developed algorithm to produce a penultimate algorithm.  

➢ A precise and accurate method for estimating TST without using EEG remains a target 

for future investigation, given that the estimated TST from the analysis of AF and SpO2 

signals may overestimate or underestimate the scored TST. A more sophisticated way to 

estimate TST would be the inclusion of cardiorespiratory signals (electrocardiogram and 

pulse plethysmogram). The above-mentioned cardiorespiratory signals are easy to collect 

and the end-used may not face any trouble during overnight acquisition. The inclusion of 

such additional signals with AF-SpO2 may enhance the accuracy of the automatic 

diagnosis.  

➢ Novel algorithms are required to reliably detect apnea event types, i.e., central, 

obstructive, and mixed apneas. For the detailed diagnosis of sleep apnea, the number of 

central, obstructive, and mixed apnea events and their indexes (e.g., central apnea index: 

number of central apnea events per hour of sleep) may add additional information for 

proper treatment. The future work will include the automatic detection of event types 

(central, obstructive, and mixed) for the detailed diagnosis of sleep apnea.    

➢ Incorporation of newly developed machine learning method (deep learning) may be 

applied to design a robust diagnostic algorithm for sleep apnea diagnosis. The 

conventional classification approaches have been already developed and tested in 

numerous published articles, where the associated limitations and lower accuracy of the 

classification approaches were the big concerns. Newly developed deep learning 

approaches would be a good option to try in future. 

➢ The confirmation of results with different dataset is very important. The current study 

used the first 1000 PSG records form shhs1 dataset for testing and validating the designed 

algorithm. Inclusion of the whole dataset of shhs1 would have been good for confirming 
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the results. In addition, other PSG-based datasets can be used for the justification of the 

algorithm’s output. 
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Appendix A 

Statistical analysis 

To determine whether there are any statistically significant differences between the means of two or 

more independent groups, a one-way analysis of variance (ANOVA) (Howell, 2009) can be used. A one-

way ANOVA can be used to evaluate EEG relative spectral power changes (dependent variable, measured 

from 0-100) based on apnea duration (independent variable with three levels: ‘Short’, ‘Moderate’, and 

‘Long’). 

Basic requirements of one-way ANOVA 

To run a one-way ANOVA, six assumptions need to be considered. The first three assumptions relate 

to the choice of study design and the measurements, whilst the second three assumptions relate to how data 

fits the one-way ANOVA model. These assumptions are: 

• Assumption 1: Must have one dependent variable that is measured at a continuous level. For the 

present study, one dependent variable was found (EEG relative spectral power). 

• Assumption 2: Must have one independent variable that consists of three or more categorical, 

independent groups. For the present study found one independent variable (apnea duration) that 

consists of three independent groups (Short, Moderate, and Long). 

• Assumption 3: Must have the independence of observations, which means that there is no 

relationship between the observations in each group of the independent variable or between the 

groups themselves. This study had 375 apnea events categorized into three groups. There was no 

relationship between the apnea events in each group or between the groups themselves. 

• Assumption 4: There should be no significant outliers in the groups of the independent variable in 

terms of the dependent variable. 

• Assumption 5: The dependent variable should be approximately normally distributed for each group 

of the independent variable.  

• Assumption 6: Must have homogeneity of variances (i.e., the variance is equal in each group of the 

independent variable). 

        The present study design met assumptions 1, 2, and 3. This study tested the remaining main three 

assumptions as follows: 

Testing for outliers 

Outliers were tested in SPSS software (IBM SPSS Statistics 25) (Nie, Bent, & Hull, 1975) using the 

graphical user interface (GUI). The boxplots for the relative delta powers for C3 EEG before apnea 

termination (BAT) is shown in Figure A1. The simple boxplots enabled the determination of whether there 

were any outliers in the current data. 
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Any data points (e.g., any spectral powers) that were more than 1.5 box-lengths from the edge of their 

box were classified by Stata (SPSS software) as outside values (outliers). Those outliers were labeled with 

their case number for easy identification. No outliers were found for delta band (Figure A1). Two outliers 

with more extreme values were found for sigma band (Figure A2). Stata highlighted a data point with the 

star symbol in the ‘Long’ group (i.e., case number 334) as a potential outlier (i.e., case number 334 had an 

unusually large power of 11.41) and a data point in the ‘Moderate’ group (i.e., case number 227) as a 

potential outlier (i.e., case number 227 had an unusually large power of 14.59). 

 

Figure A1. Boxplots for testing outliers (delta band) 

 

Figure A2. Boxplots for testing outliers (sigma band) 
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In this way, boxplots were generated for all spectral bands (delta, theta, alpha, sigma, and beta) with 

their corresponding channels (C3 and C4) and positions (before and after apnea termination). The summary 

of boxplots analysis is tabulated in Table A1. 

There were no outliers in delta powers, but had many outliers for other bands (theta, alpha, sigma, and 

beta), as assessed by inspection of a boxplot. The total numbers of outliers/extreme outliers in the ‘Short’, 

‘Moderate’, and ‘Long’ apnea duration groups were respectively 79/6, 71/10, and 33/6). Overall, the total 

number of outliers in the present study dataset was 183 out of 7500 data point, which indicated 2.44% 

outliers in the study dataset. 

Table A1. Summary of testing for outliers 

Frequency 

bands 

EEG 

channels 

Epoch 

Positiona 

No. of outliers (extreme/total) 

Short Moderate Long 

Delta C3 BAT 0/0 0/0 0/0 

AAT 0/0 0/0 0/0 

C4 BAT 0/0 0/0 0/0 

AAT 0/0 0/0 0/0 

Theta C3 BAT 0/3 0/4 0/0 

  AAT 0/4 0/3 0/1 

 C4 BAT 1/5 0/4 0/1 

  AAT 0/4 0/2 0/2 

Alpha C3 BAT 0/7 0/1 0/0 

  AAT 0/3 0/2 1/3 

 C4 BAT 0/5 0/3 0/0 

  AAT 0/1 0/2 2/7 

Sigma C3 BAT 0/3 1/7 1/2 

  AAT 2/5 0/2 1/4 

 C4 BAT 0/2 6/8 1/5 

  AAT 1/5 1/7 0/1 

Beta C3 BAT 1/5 1/8 0/1 

AAT 1/6 0/2 0/0 

C4 BAT 0/6 1/3 0/0 

AAT 0/9 0/3 0/0 
aPositions of 10s EEG epochs: BAT = Before apnea termination, AAT = After apnea termination 

 

Testing for normality 

The Shapiro-Wilk test for normality (Shapiro & Francia, 1972) is a numerical method, but other 

methods can be used to determine normality, such as skewness/kurtosis values, or histograms. While it is 

most common to run only one type of normality test for a given analysis. The Shapiro-Wilk test is 
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recommended when the sample sizes are small (< 50) and are not confident visually interpreting Normal 

Q-Q Plots or other graphical methods used to test for normality. In this study, the sample sizes were more 

than 50. Thus, we choose Normal Q-Q Plots instead of the Shapiro-Wilk test for testing normality. The 

relative delta powers for the ‘Long’ group were normally distributed, as assessed by Normal Q-Q Plots 

(Figure A3), whereas the ‘Long’ group of sigma powers was not normally (or approximately normally) 

distributed (Figure A4). 

 

Figure A3. Testing normality for the ‘Long’ group of delta band 

 

Figure A4. Testing normality for the ‘Long’ group of sigma band 

In this way, we generated Normal Q-Q Plots for all spectral bands (delta, theta, alpha, sigma, and beta) 

with their corresponding channels (C3 and C4), positions (before and after apnea termination), and groups 
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(Short, Moderate, and Long). The summary of Normal Q-Q Plots analysis is tabulated in Table A2. Overall, 

the data were not normally distributed except for some groups of the delta band. 

Table A2. Summary of testing for normality 

Frequency 

bands 

EEG 

channels 

Epoch 

Positiona 

Normalityb 

Short Moderate Long 

Delta C3 BAT N N N 

AAT AN AN AN 

C4 BAT AN AN AN 

AAT NN AN AN 

Theta C3 BAT NN NN AN 

  AAT NN NN NN 

 C4 BAT NN NN AN 

  AAT NN NN NN 

Alpha C3 BAT NN NN NN 

  AAT NN NN NN 

 C4 BAT NN NN NN 

  AAT NN NN NN 

Sigma C3 BAT NN NN NN 

  AAT NN NN NN 

 C4 BAT NN NN NN 

  AAT NN NN NN 

Beta C3 BAT NN NN NN 

AAT NN NN NN 

C4 BAT NN NN NN 

AAT NN NN NN 
aPositions of 10s EEG epochs: BAT = Before apnea termination, AAT = After apnea termination 
bNormality status: N = Normal, AN = Approximately normal, NN = Not normal 

 

Testing for homogeneity of variance 

This study used Levene's test for homogeneity of variances (Glass, 1966) in Stata using the graphical 

user interface (GUI). Table A3 shows the test results of homogeneity of variance for all bands for C3 EEG 

before apnea termination (BAT). 

Levene's test for the sigma band returned a statistically significant result (p < 0.05) (Table A3). 

Therefore, the assumption of homogeneity of variances was violated for the sigma band. Levene’s test was 

performed for all bands (delta, theta, alpha, sigma, and beta) with their corresponding channels (C3 and 

C4), and positions (BAT and AAT). The summary of Levene’s test is tabulated in Table A4. Overall, the 

assumption of homogeneity of variances was not violated (i.e., the groups’ variances are equal). 
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Table A3. Test of homogeneity of variance 

Bands Analysis Levene 

statistic 

df1 df2 p 

Delta Based on Mean 0.713 2 372 0.491 

Based on Median 0.663 2 372 0.516 

Based on Median and with adjusted df 0.663 2 368.049 0.516 

Based on trimmed mean 0.707 2 372 0.494 

Theta Based on Mean 0.442 2 372 0.643 

Based on Median 0.438 2 372 0.646 

Based on Median and with adjusted df 0.438 2 369.727 0.646 

Based on trimmed mean 0.454 2 372 0.635 

Alpha Based on Mean 1.346 2 372 0.262 

Based on Median 1.230 2 372 0.294 

Based on Median and with adjusted df 1.230 2 348.687 0.294 

Based on trimmed mean 1.262 2 372 0.284 

Sigma Based on Mean 7.047 2 372 0.001 

Based on Median 4.401 2 372 0.013 

Based on Median and with adjusted df 4.401 2 296.989 0.013 

Based on trimmed mean 5.971 2 372 0.003 

Beta Based on Mean 0.850 2 372 0.428 

Based on Median 0.514 2 372 0.599 

Based on Median and with adjusted df 0.514 2 368.110 0.599 

Based on trimmed mean 0.790 2 372 0.454 

 

Table A4. Levene’s test of homogeneity of variance 

Frequency  

bands 

EEG 

channels 

Epoch 

Positiona 

Homogeneity of variance 

between groups 

Delta C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 

Theta C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 

Alpha C3 BAT Yes 

AAT Yes 

C4 BAT Yes 
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AAT Yes 

Sigma C3 BAT No 

AAT No 

C4 BAT Yes 

AAT Yes 

Beta C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 
aPositions of 10s EEG epochs: BAT = Before apnea termination, AAT = After apnea termination 

The three main assumptions (4, 5, and 6) for one-way ANOVA were checked. The study data did not 

meet the requirements of outliers (assumption 4) and normality (assumption 5) but fulfilled assumption 6 

(homogeneity of variance). Thus, One-way ANOVA was not appropriate for the present study data. 

Kruskal-Wallis H test 

The Kruskal-Wallis H test (sometimes also called the "one-way ANOVA on ranks") (Corder & 

Foreman, 2011; Kruskal & Wallis, 1952) is a rank-based nonparametric test that can be used to determine 

if there are statistically significant differences between two or more groups of an independent variable on 

a continuous or ordinal dependent variable. The Kruskal-Wallis H test is generally considered the 

nonparametric alternative to the one-way ANOVA, which can be used when the study data fail the 

assumptions of the one-way ANOVA. However, it should be noted that the Kruskal-Wallis H test cannot 

simply be considered an alternative to the one-way ANOVA. It has four assumptions that must be 

considered to accurately interpret the results. 

• Assumption 1: Must have one dependent variable that is measured at a continuous level. For the 

present study, one dependent variable was found (EEG relative spectral power). 

• Assumption 2: Must have one independent variable that consists of three or more categorical, 

independent groups. For the present study found one independent variable (apnea duration) that 

consists of three independent groups (Short, Moderate, and Long). 

• Assumption 3: Must have the independence of observations, which means that there is no 

relationship between the observations in each group of the independent variable or between the 

groups themselves. This study had 375 apnea events categorized into three groups. There was no 

relationship between the apnea events in each group or between the groups themselves. 

• Assumption 4: Must determine whether the distribution of spectral powers for each group of our 

independent variable have the same shape or a different shape. Having the same shape also means 

having the same variability. This will determine how we can interpret the results of the Kruskal-

Wallis H test. 
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Test for similarly shaped distributions 

By visually inspecting the boxplots, the distributions of spectral powers for the different apnea 

duration groups were analyzed. To view the boxplots, the Hypothesis Test Summary and Model Viewer 

window for the delta powers (C3 at BAT) were generated, as shown in Figure A5 and Figure A6 

respectively. 

 
Figure A5. Hypothesis test summary for delta band 

 

 
Figure A6. Model Viewer window 
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By visually inspecting the shapes of these distributions (boxplot), some differences were found in the 

distribution in delta powers (C3 at BAT) especially for the ‘Long’ apnea duration group (Figure A7). 

 
Figure A7. Boxplot and test statistic for delta band 

The visual inspection of the boxplots showed that the delta powers (C3 at BAT) had similarly shaped 

distribution. This process was repeated to check the similarly shaped distributions for all spectral bands 

(delta, theta, alpha, sigma, and beta) with their corresponding channels (C3 and C4), and positions (BAT 

and AAT). The summary of this analysis is indicated in Table A5. Overall, the distributions of spectral 

powers were similar for all groups, as assessed by visual inspection of boxplots (Table A5). 

Table A5. Summary for similarly shaped distributions 

Frequency  

bands 

EEG 

channels 

Epoch 

Positiona 

Similarly shaped distributions 

between groups 

Delta C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 

Theta C3 BAT Yes 
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AAT Yes 

C4 BAT Yes 

AAT Yes 

Alpha C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 

Sigma C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 

Beta C3 BAT Yes 

AAT Yes 

C4 BAT Yes 

AAT Yes 
aPositions of 10s EEG epochs: BAT = Before apnea termination, AAT = After apnea termination 

 

Summarizing test results 

The distributions of spectral powers were found to be similar for the ‘Short’, ‘Moderate’, and ‘Long’ 

apnea duration groups. The Hypothesis Test Summary table (Figure A5) was revisited. The null hypothesis 

was retained since the result was not statistically significant (p = 0.366). The statistically not significant 

result (p = 0.366) indicated that median delta power (C3 at BAT) was different between the apnea duration 

groups. The overall result can be expressed as follows: 

A Kruskal-Wallis H test was run to determine if there were differences in spectral powers between 

three groups of durations with different levels: the ‘Short’, ‘Moderate’, and ‘Long’ apnea duration groups. 

Distributions of spectral powers were similar for all groups, as assessed by visual inspection of a boxplot. 

Median relative spectral powers for delta band (C3 at BAT) were not statistically significantly different 

between groups, χ2(2) = 2.009, p = 0.366. 

To report the results, the median values of the apnea duration groups and the number of apnea events 

(i.e., sample size) in each group were required. These values were found in the Report table under the 

‘Median’ and ‘N’ columns, respectively, as shown in Table A6. The overall result can be expressed as 

follows: 

A Kruskal-Wallis H test was conducted to determine if there were differences in delta powers (C3 at 

BAT) between groups that differed in their level of apnea duration: the ‘Short’ (n = 150), ‘Moderate’ (n = 

144), and ‘Long’ (n = 81) apnea duration groups. Distributions of spectral powers were similar for all 

groups, as assessed by visual inspection of a boxplot. Median spectral powers increased from the Short 
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(58.385) to Moderate (59.585), to Long (64.720) apnea duration groups, but the differences were not 

statistically significant, χ2(2) = 2.009, p = 0.366. 

Table A6. Reporting with relative spectral powers for delta band (C3 at BAT) 

Apnea duration groups  N Median 

Long 81 64.720 

Moderate 144 59.585 

Short 150 58.385 

Total 375 59.840 

 

Post hoc test 

When the Kruskal-Wallis H test was statistically significant (i.e., p < 0.05), a post hoc test was required 

to determine where the differences lied. According to the above-mentioned process, the Hypothesis Test 

Summary table for the sigma powers (C3 at BAT) was generated as shown in Figure A8. This test showed 

that the Kruskal-Wallis H test was statistically significant (i.e., p < 0.05) indicating that the median of at 

least one group was different from the median of another group. To discover which group(s) were different 

to which another groups, a post hoc test is required. In the case of the Kruskal-Wallis H test, all pairwise 

comparisons using Dunn (1964) procedure with a Bonferroni adjustment (Dunn, 1961) were run and 

interpreted. 

 
Figure A8. Hypothesis test summary for sigma band 

The pairwise comparisons were run by SPSS Statistics as shown in Figure A9 and the overall results 

of all these pairwise comparisons can be expressed as follows: 

Pairwise comparisons were performed using Dunn’s procedure with a Bonferroni correction for 

multiple comparisons. Adjusted p-values are presented. This post hoc analysis revealed statistically 

significant differences in median relative spectral powers between the Long (2.040) and Short (2.910) (p = 

0.033), and Long and Moderate (2.615) (p = 0.028) apnea duration groups, but not between the Short and 

Moderate apnea duration groups. It is perfectly possible to have a statistically significant Kruskal-Wallis H 

test but not statistically significant pairwise comparisons. 
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Using all the information from the Kruskal-Wallis H test and pairwise comparisons results, the overall 

results can be expressed as follows:  

A Kruskal-Wallis H test was conducted to determine if there were differences in sigma powers (C3 at 

BAT) between groups that differed in their level of apnea duration: the ‘Short’ (n = 150), ‘Moderate’ (n = 

144), and ‘Long’ (n = 81) apnea duration groups. Distributions of spectral powers were similar for all 

groups, as assessed by visual inspection of a boxplot. Median spectral powers were statistically significantly 

different between the different apnea duration groups, χ2(2) = 8.052, p = 0.018. Subsequently, pairwise 

comparisons were performed using Dunn’s procedure with a Bonferroni correction for multiple 

comparisons. Adjusted p-values are presented. This post hoc analysis revealed statistically significant 

differences in median relative spectral powers between the Long (2.040) and Short (2.910) (p = 0.033), and 

Long and Moderate (2.615) (p = 0.028) apnea duration groups, but not between the Short and Moderate 

apnea duration groups. 

 

Figure A9. Pairwise comparisons (post hoc test) for sigma band 
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In this way, using the Kruskal–Wallis H test, the statistical analysis was summarised for the relative 

spectral powers for all spectral bands (delta, theta, alpha, sigma, and beta) with their corresponding channels 

(C3 and C4), and positions (BAT and AAT), which was represented in the result section). Similar statistical 

investigations mentioned above were performed for the analysis of apnea event types (OSA, CSA, and 

MSA) and sleep states (NREM and REM) between different apnea duration groups. The Kruskal–Wallis H 

test was also qualified for those analysis and the summary analysis was represented in the result section. 
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Appendix B 

Relative spectral powers at before apnea termination (BAT) for C3 EEG 

Apnea event 
number 

Apnea duration 
groups 

Relative spectral powers 
Delta Theta Alpha Sigma Beta 

1 Short 63.79 20.69 9.60 2.42 3.50 
2 Short 61.46 18.99 14.32 2.13 3.10 
3 Short 53.99 30.02 10.74 1.96 3.29 
4 Short 51.57 25.36 15.39 3.03 4.65 
5 Short 59.97 24.23 6.94 3.37 5.49 
6 Short 57.92 18.15 8.80 2.43 12.70 
7 Short 45.43 28.80 9.52 4.84 11.41 
8 Short 44.07 28.83 9.31 4.63 13.16 
9 Short 53.64 23.38 8.41 4.55 10.02 
10 Short 61.30 18.79 8.47 4.60 6.84 
11 Short 61.09 17.44 14.08 3.47 3.92 
12 Short 55.01 20.44 14.34 3.66 6.55 
13 Short 56.53 17.95 15.95 3.99 5.58 
14 Short 47.83 20.43 20.49 4.53 6.72 
15 Short 46.94 20.42 20.92 4.25 7.47 
16 Short 79.07 12.66 4.88 1.05 2.34 
17 Short 75.35 12.76 5.70 1.55 4.64 
18 Short 68.71 19.66 3.89 1.63 6.11 
19 Short 58.11 23.47 7.69 2.55 8.18 
20 Short 65.68 18.19 8.83 2.66 4.64 
21 Short 47.99 13.82 24.11 6.94 7.14 
22 Short 48.84 12.86 28.78 2.96 6.56 
23 Short 62.08 16.57 14.79 3.84 2.72 
24 Short 55.67 8.93 27.70 4.66 3.04 
25 Short 56.19 16.12 18.40 3.06 6.23 
26 Short 63.27 19.13 7.69 3.61 6.30 
27 Short 52.63 19.87 14.62 6.10 6.78 
28 Short 70.84 14.24 7.43 4.06 3.43 
29 Short 61.97 21.19 7.00 2.97 6.87 
30 Short 56.30 15.37 11.49 7.69 9.15 
31 Short 90.49 5.62 2.49 .42 .98 
32 Short 50.64 20.70 13.84 4.75 10.07 
33 Short 54.39 12.56 17.01 5.90 10.14 
34 Short 56.88 19.25 10.67 3.11 10.09 
35 Short 54.45 15.09 13.44 6.80 10.22 
36 Short 63.35 29.33 4.61 .95 1.76 
37 Short 50.27 35.69 8.15 1.58 4.31 
38 Short 62.81 25.68 5.91 2.42 3.18 
39 Short 83.09 9.66 3.32 1.45 2.48 
40 Short 85.50 10.61 1.67 .77 1.45 
41 Short 84.82 9.51 3.70 .61 1.36 
42 Short 48.61 19.89 14.39 5.10 12.01 
43 Short 50.57 22.81 11.42 4.16 11.04 
44 Short 54.60 21.66 11.00 3.79 8.95 
45 Short 57.21 24.37 6.40 3.14 8.88 
46 Short 85.96 7.84 4.79 .76 .65 
47 Short 85.11 8.89 4.92 .46 .62 
48 Short 57.31 30.87 8.14 1.92 1.76 
49 Short 29.96 44.58 16.63 3.55 5.28 
50 Short 49.24 31.69 14.80 1.59 2.68 
51 Short 55.51 27.73 9.39 2.50 4.87 
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52 Short 73.91 18.06 5.12 1.23 1.68 
53 Short 75.90 15.73 4.75 1.18 2.44 
54 Short 65.86 24.18 5.37 1.86 2.73 
55 Short 67.52 19.16 6.39 3.47 3.46 
56 Short 76.73 18.80 2.27 .65 1.55 
57 Short 69.99 23.05 3.76 .84 2.36 
58 Short 84.46 10.35 3.03 .54 1.62 
59 Short 88.29 9.83 1.05 .38 .45 
60 Short 69.13 25.66 2.99 .73 1.49 
61 Short 58.36 21.94 8.05 2.93 8.72 
62 Short 58.43 22.87 11.00 1.93 5.77 
63 Short 53.90 25.05 13.83 2.22 5.00 
64 Short 44.56 31.95 16.98 1.73 4.78 
65 Short 47.32 27.68 16.17 3.04 5.79 
66 Short 50.73 23.35 8.20 6.66 11.06 
67 Short 57.73 23.51 10.24 2.37 6.15 
68 Short 62.01 18.86 11.26 3.52 4.35 
69 Short 59.07 22.60 9.57 3.22 5.54 
70 Short 47.18 23.98 9.98 5.16 13.70 
71 Short 43.63 22.20 22.31 4.40 7.46 
72 Short 30.17 20.16 32.95 5.96 10.76 
73 Short 33.87 22.56 31.08 3.20 9.29 
74 Short 45.48 15.49 25.80 6.05 7.18 
75 Short 32.93 17.65 34.03 5.23 10.16 
76 Short 55.12 15.49 16.61 4.59 8.19 
77 Short 63.42 16.73 9.30 2.35 8.20 
78 Short 62.51 15.92 11.60 3.99 5.98 
79 Short 66.98 11.90 9.40 3.18 8.54 
80 Short 41.45 15.12 15.24 4.80 23.39 
81 Short 83.86 10.91 3.04 .38 1.81 
82 Short 81.37 10.83 4.38 1.17 2.25 
83 Short 71.53 15.11 7.84 1.95 3.57 
84 Short 66.63 13.41 13.35 3.09 3.52 
85 Short 65.19 12.82 13.12 4.67 4.20 
86 Short 46.51 25.49 17.76 3.09 7.15 
87 Short 50.57 19.93 17.76 5.19 6.55 
88 Short 58.77 19.55 13.90 2.83 4.95 
89 Short 40.17 30.60 19.41 3.54 6.28 
90 Short 66.55 18.08 10.32 1.56 3.49 
91 Short 81.80 9.30 4.39 2.16 2.35 
92 Short 60.52 20.96 11.81 2.64 4.07 
93 Short 78.43 10.14 8.73 .98 1.72 
94 Short 72.34 16.27 7.81 1.84 1.74 
95 Short 68.18 18.16 7.61 1.96 4.09 
96 Short 49.23 20.73 18.17 3.24 8.63 
97 Short 73.62 9.38 8.60 2.86 5.54 
98 Short 47.08 26.59 11.40 3.73 11.20 
99 Short 22.94 21.49 35.78 8.84 10.95 
100 Short 66.46 16.05 8.14 2.69 6.66 
101 Short 58.41 23.47 12.28 1.87 3.97 
102 Short 62.02 14.75 9.66 2.96 10.61 
103 Short 67.39 13.63 13.86 1.14 3.98 
104 Short 64.70 18.81 8.13 1.53 6.83 
105 Short 67.24 17.70 8.68 1.45 4.93 
106 Short 59.84 23.88 8.32 2.41 5.55 
107 Short 72.47 10.99 10.53 2.19 3.82 
108 Short 88.71 5.51 3.53 .63 1.62 
109 Short 57.29 18.41 12.85 4.53 6.92 
110 Short 92.44 3.87 1.84 .53 1.32 
111 Short 36.69 39.70 13.59 3.07 6.95 
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112 Short 38.78 38.65 14.52 1.80 6.25 
113 Short 57.91 25.88 9.51 2.49 4.21 
114 Short 79.36 12.43 4.49 1.94 1.78 
115 Short 62.04 21.56 8.30 2.05 6.05 
116 Short 50.37 19.22 12.68 5.37 12.36 
117 Short 39.63 17.47 17.19 3.50 22.21 
118 Short 36.25 25.02 16.82 6.01 15.90 
119 Short 34.40 16.83 19.72 5.88 23.17 
120 Short 40.71 24.12 11.87 6.11 17.19 
121 Short 30.38 21.81 29.83 4.73 13.25 
122 Short 49.30 19.68 17.61 6.08 7.33 
123 Short 56.11 15.27 10.60 9.14 8.88 
124 Short 43.05 26.53 19.46 3.29 7.67 
125 Short 79.50 9.13 6.72 2.74 1.91 
126 Short 54.54 18.09 11.55 2.60 13.22 
127 Short 56.94 19.98 11.75 2.47 8.86 
128 Short 87.34 6.07 2.95 1.34 2.30 
129 Short 67.23 15.08 4.89 1.07 11.73 
130 Short 83.29 7.87 3.23 1.11 4.50 
131 Short 78.85 10.63 5.37 2.89 2.26 
132 Short 70.50 18.76 5.60 2.59 2.55 
133 Short 70.67 22.24 3.28 1.27 2.54 
134 Short 79.09 12.30 4.22 2.28 2.11 
135 Short 69.56 21.56 5.17 1.55 2.16 
136 Short 70.86 16.61 6.85 1.23 4.45 
137 Short 65.24 14.18 11.23 2.50 6.85 
138 Short 54.90 24.48 10.68 2.49 7.45 
139 Short 80.75 12.78 2.84 .94 2.69 
140 Short 68.40 17.22 7.82 2.28 4.28 
141 Short 55.35 18.91 12.79 5.62 7.33 
142 Short 55.11 23.09 13.56 3.63 4.61 
143 Short 54.07 27.34 10.77 3.10 4.72 
144 Short 44.59 22.42 18.15 6.84 8.00 
145 Short 54.88 22.65 13.94 3.53 5.00 
146 Short 38.99 24.60 17.43 3.91 15.07 
147 Short 38.34 15.88 12.86 6.10 26.82 
148 Short 62.57 14.61 12.14 3.79 6.89 
149 Short 51.70 17.29 18.71 3.94 8.36 
150 Short 47.72 23.95 17.49 2.87 7.97 
151 Moderate 72.33 17.61 5.07 1.77 3.22 
152 Moderate 67.08 18.50 8.98 2.40 3.04 
153 Moderate 74.73 12.23 9.70 1.57 1.77 
154 Moderate 73.62 18.28 5.76 .98 1.36 
155 Moderate 76.38 13.76 5.24 1.64 2.98 
156 Moderate 45.69 19.03 10.85 5.20 19.23 
157 Moderate 82.87 12.52 2.50 .56 1.55 
158 Moderate 51.21 20.79 6.43 6.73 14.84 
159 Moderate 58.18 18.81 8.01 3.73 11.27 
160 Moderate 52.29 30.87 6.78 2.57 7.49 
161 Moderate 54.52 19.77 14.60 3.33 7.78 
162 Moderate 47.23 23.25 17.47 5.36 6.69 
163 Moderate 51.88 16.78 22.34 4.44 4.56 
164 Moderate 44.79 26.13 18.15 4.23 6.70 
165 Moderate 38.38 23.10 26.51 4.50 7.51 
166 Moderate 88.54 6.30 1.95 .65 2.56 
167 Moderate 74.25 11.60 4.09 1.49 8.57 
168 Moderate 71.53 15.51 6.39 2.29 4.28 
169 Moderate 74.94 14.96 5.67 1.28 3.15 
170 Moderate 60.96 20.03 10.58 2.45 5.98 
171 Moderate 73.07 9.20 10.35 5.39 1.99 
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172 Moderate 71.26 13.38 9.78 3.51 2.07 
173 Moderate 63.21 10.45 20.24 3.47 2.63 
174 Moderate 50.62 17.27 18.94 9.69 3.48 
175 Moderate 56.34 9.84 22.35 8.21 3.26 
176 Moderate 73.66 9.85 8.01 1.80 6.68 
177 Moderate 54.19 19.99 14.79 2.10 8.93 
178 Moderate 37.66 27.91 16.01 5.38 13.04 
179 Moderate 57.37 16.61 10.17 4.35 11.50 
180 Moderate 55.35 22.56 10.42 3.73 7.94 
181 Moderate 53.13 25.35 11.76 3.65 6.11 
182 Moderate 66.51 16.48 9.07 2.55 5.39 
183 Moderate 54.31 19.01 10.17 5.50 11.01 
184 Moderate 52.77 21.72 9.10 3.70 12.71 
185 Moderate 60.54 17.58 13.50 2.32 6.06 
186 Moderate 59.99 24.69 11.32 1.56 2.44 
187 Moderate 50.36 36.65 8.08 1.68 3.23 
188 Moderate 65.88 23.46 5.91 1.51 3.24 
189 Moderate 65.17 26.30 4.00 1.21 3.32 
190 Moderate 63.48 26.19 6.38 1.30 2.65 
191 Moderate 42.81 24.09 11.51 6.67 14.92 
192 Moderate 56.87 15.29 13.97 4.26 9.61 
193 Moderate 42.58 24.66 16.62 4.94 11.20 
194 Moderate 59.47 24.31 7.87 1.05 7.30 
195 Moderate 70.29 18.11 3.93 1.52 6.15 
196 Moderate 69.83 17.25 7.18 1.55 4.19 
197 Moderate 30.68 38.65 19.76 3.30 7.61 
198 Moderate 63.29 22.25 8.71 2.42 3.33 
199 Moderate 44.01 36.05 14.58 2.18 3.18 
200 Moderate 36.84 31.44 24.39 1.20 6.13 
201 Moderate 76.60 16.37 3.74 2.04 1.25 
202 Moderate 70.81 18.24 5.95 2.26 2.74 
203 Moderate 65.24 25.60 4.67 2.64 1.85 
204 Moderate 83.19 10.90 3.45 .93 1.53 
205 Moderate 81.73 12.51 3.99 .70 1.07 
206 Moderate 77.00 19.01 2.52 .67 .80 
207 Moderate 75.05 19.09 3.85 .97 1.04 
208 Moderate 79.18 15.00 3.96 .80 1.06 
209 Moderate 78.84 15.89 3.65 .69 .93 
210 Moderate 73.43 21.65 3.03 .68 1.21 
211 Moderate 64.84 23.11 8.09 1.29 2.67 
212 Moderate 52.64 29.09 12.59 1.88 3.80 
213 Moderate 48.79 26.13 15.86 2.90 6.32 
214 Moderate 56.02 24.17 13.15 2.26 4.40 
215 Moderate 47.59 30.21 15.20 2.38 4.62 
216 Moderate 47.85 22.23 8.66 11.55 9.71 
217 Moderate 58.76 24.42 9.22 2.69 4.91 
218 Moderate 57.72 18.23 9.28 7.96 6.81 
219 Moderate 59.26 20.12 8.83 6.52 5.27 
220 Moderate 72.67 16.10 4.83 2.41 3.99 
221 Moderate 39.55 22.34 22.08 5.84 10.19 
222 Moderate 46.65 15.87 24.10 5.81 7.57 
223 Moderate 69.03 11.06 15.18 1.39 3.34 
224 Moderate 67.78 18.28 7.24 3.04 3.66 
225 Moderate 50.87 16.30 20.27 4.47 8.09 
226 Moderate 57.43 15.62 10.41 12.46 4.08 
227 Moderate 63.81 9.93 8.53 14.59 3.14 
228 Moderate 42.07 19.51 21.24 11.00 6.18 
229 Moderate 65.92 11.02 8.67 8.43 5.96 
230 Moderate 62.52 11.57 8.90 10.07 6.94 
231 Moderate 73.82 15.58 4.89 1.99 3.72 
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232 Moderate 56.90 13.13 13.90 3.71 12.36 
233 Moderate 67.55 14.84 5.14 2.15 10.32 
234 Moderate 59.70 16.72 7.02 2.76 13.80 
235 Moderate 67.35 14.24 4.39 2.34 11.68 
236 Moderate 75.41 10.52 7.50 1.84 4.73 
237 Moderate 54.18 20.13 13.85 4.99 6.85 
238 Moderate 59.25 14.99 10.49 2.98 12.29 
239 Moderate 58.99 18.89 14.25 2.46 5.41 
240 Moderate 37.37 28.93 21.45 2.54 9.71 
241 Moderate 64.31 18.08 12.79 1.70 3.12 
242 Moderate 64.56 22.01 8.40 1.34 3.69 
243 Moderate 70.30 19.91 6.22 1.02 2.55 
244 Moderate 54.49 28.01 11.32 1.68 4.50 
245 Moderate 55.47 32.65 8.27 .89 2.72 
246 Moderate 57.57 16.96 17.64 2.78 5.05 
247 Moderate 55.97 21.12 11.29 5.29 6.33 
248 Moderate 67.96 18.25 6.61 1.85 5.33 
249 Moderate 59.08 26.85 6.26 1.67 6.14 
250 Moderate 46.34 22.46 18.85 3.65 8.70 
251 Moderate 61.20 21.95 9.88 1.80 5.17 
252 Moderate 57.12 18.97 8.83 2.48 12.60 
253 Moderate 66.36 21.02 6.06 .98 5.58 
254 Moderate 48.52 37.50 7.90 1.65 4.43 
255 Moderate 66.90 19.66 5.56 2.59 5.29 
256 Moderate 89.43 5.81 2.46 .75 1.55 
257 Moderate 83.61 8.61 4.75 .90 2.13 
258 Moderate 79.53 8.39 9.35 .97 1.76 
259 Moderate 78.41 12.71 5.39 1.17 2.32 
260 Moderate 94.24 3.87 1.13 .17 .59 
261 Moderate 25.67 25.76 30.37 4.92 13.28 
262 Moderate 70.10 18.46 5.03 2.70 3.71 
263 Moderate 62.03 22.57 5.71 4.50 5.19 
264 Moderate 69.25 16.47 6.21 3.75 4.32 
265 Moderate 77.59 11.26 4.19 1.57 5.39 
266 Moderate 45.51 15.71 15.76 5.98 17.04 
267 Moderate 61.30 13.98 8.47 2.96 13.29 
268 Moderate 36.81 17.32 16.02 7.37 22.48 
269 Moderate 36.20 19.71 18.41 5.42 20.26 
270 Moderate 55.71 17.15 9.56 3.48 14.10 
271 Moderate 54.06 16.00 19.67 6.38 3.89 
272 Moderate 57.40 12.83 16.31 10.50 2.96 
273 Moderate 62.23 15.18 13.10 6.46 3.03 
274 Moderate 42.39 26.87 17.29 5.95 7.50 
275 Moderate 79.64 8.30 7.16 1.64 3.26 
276 Moderate 66.87 16.49 7.91 2.41 6.32 
277 Moderate 58.20 21.30 9.11 8.31 3.08 
278 Moderate 74.92 12.07 7.14 4.17 1.70 
279 Moderate 72.28 14.05 5.94 4.53 3.20 
280 Moderate 78.01 10.86 6.84 2.50 1.79 
281 Moderate 58.28 17.94 14.18 4.09 5.51 
282 Moderate 89.00 5.81 2.88 .60 1.71 
283 Moderate 86.00 8.73 3.06 .57 1.64 
284 Moderate 81.48 10.45 4.87 .94 2.26 
285 Moderate 47.35 29.05 13.86 3.91 5.83 
286 Moderate 49.18 27.00 11.86 4.48 7.48 
287 Moderate 41.50 27.96 17.82 5.37 7.35 
288 Moderate 32.94 38.31 18.20 3.51 7.04 
289 Moderate 47.69 28.24 15.05 4.19 4.83 
290 Moderate 40.61 22.01 17.85 4.91 14.62 
291 Moderate 51.04 16.55 16.46 5.15 10.80 
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292 Moderate 44.99 19.76 14.71 4.57 15.97 
293 Moderate 48.38 20.54 10.12 3.70 17.26 
294 Moderate 44.16 22.54 19.05 3.10 11.15 
295 Long 80.84 12.91 4.23 .93 1.09 
296 Long 76.56 16.56 3.93 1.05 1.90 
297 Long 58.80 24.10 11.24 2.04 3.82 
298 Long 61.66 23.89 10.31 1.13 3.01 
299 Long 66.33 21.99 5.75 2.13 3.80 
300 Long 82.93 7.77 5.59 1.08 2.63 
301 Long 82.60 11.18 3.68 .85 1.69 
302 Long 52.30 22.66 11.99 4.30 8.75 
303 Long 50.80 22.45 14.73 2.31 9.71 
304 Long 44.48 23.07 15.96 3.75 12.74 
305 Long 72.55 16.83 6.78 1.35 2.49 
306 Long 52.91 35.55 7.05 1.63 2.86 
307 Long 67.26 22.82 4.96 2.40 2.56 
308 Long 73.60 17.19 5.04 1.42 2.75 
309 Long 81.30 12.69 4.32 .73 .96 
310 Long 51.65 27.15 8.84 3.14 9.22 
311 Long 63.84 14.99 8.60 4.04 8.53 
312 Long 42.31 29.75 13.02 2.95 11.97 
313 Long 71.03 15.79 6.42 1.92 4.84 
314 Long 68.26 15.39 6.72 2.11 7.52 
315 Long 73.28 16.89 6.43 1.80 1.60 
316 Long 70.64 25.46 2.59 .43 .88 
317 Long 76.87 18.57 3.08 .57 .91 
318 Long 72.64 23.76 1.76 .65 1.19 
319 Long 85.10 11.69 2.05 .41 .75 
320 Long 85.12 11.76 2.09 .39 .64 
321 Long 34.46 25.42 19.99 4.57 15.56 
322 Long 50.45 33.86 11.00 1.62 3.07 
323 Long 79.08 14.54 4.67 .53 1.18 
324 Long 65.40 24.59 6.38 1.26 2.37 
325 Long 48.70 31.95 13.98 1.19 4.18 
326 Long 43.52 20.86 14.34 4.23 17.05 
327 Long 53.71 27.47 8.48 2.86 7.48 
328 Long 57.56 21.90 9.08 3.07 8.39 
329 Long 72.40 13.48 6.50 1.42 6.20 
330 Long 48.44 19.10 16.36 3.36 12.74 
331 Long 49.33 14.50 24.43 2.36 9.38 
332 Long 93.20 3.41 2.06 .38 .95 
333 Long 49.31 23.41 18.48 1.97 6.83 
334 Long 64.72 11.00 8.60 11.41 4.27 
335 Long 76.29 9.73 3.30 1.82 8.86 
336 Long 79.12 9.22 3.28 1.10 7.28 
337 Long 69.24 15.83 4.05 2.10 8.78 
338 Long 74.48 11.23 3.21 1.50 9.58 
339 Long 66.12 15.15 4.01 1.96 12.76 
340 Long 73.92 13.94 7.40 1.43 3.31 
341 Long 72.81 14.26 9.00 1.37 2.56 
342 Long 82.44 10.06 5.26 .51 1.73 
343 Long 60.53 20.14 11.68 1.64 6.01 
344 Long 85.74 7.67 4.88 .96 .75 
345 Long 41.91 23.90 16.25 5.57 12.37 
346 Long 60.27 18.73 10.20 1.82 8.98 
347 Long 44.31 22.56 13.15 2.83 17.15 
348 Long 67.11 19.22 8.47 1.48 3.72 
349 Long 59.44 24.34 8.43 1.51 6.28 
350 Long 66.13 21.01 7.24 1.27 4.35 
351 Long 70.64 14.70 7.04 3.96 3.66 
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352 Long 65.83 19.42 8.76 3.11 2.88 
353 Long 48.23 24.57 14.95 7.83 4.42 
354 Long 64.81 21.51 7.15 3.04 3.49 
355 Long 78.09 12.05 4.86 2.81 2.19 
356 Long 45.65 21.62 12.24 4.44 16.05 
357 Long 42.86 25.64 14.53 3.06 13.91 
358 Long 28.16 24.50 16.98 6.04 24.32 
359 Long 54.71 23.60 13.67 3.32 4.70 
360 Long 58.35 25.99 9.05 3.88 2.73 
361 Long 52.58 17.85 16.79 6.03 6.75 
362 Long 66.84 15.05 7.58 3.51 7.02 
363 Long 56.19 21.56 12.13 4.14 5.98 
364 Long 60.83 22.61 9.78 3.45 3.33 
365 Long 80.85 9.48 5.76 1.53 2.38 
366 Long 53.67 25.45 10.56 4.80 5.52 
367 Long 87.45 7.34 2.17 .92 2.12 
368 Long 89.44 5.54 3.30 .41 1.31 
369 Long 53.56 28.88 8.16 3.28 6.12 
370 Long 52.50 19.80 14.69 4.64 8.37 
371 Long 40.12 31.43 19.40 4.20 4.85 
372 Long 48.76 30.62 10.79 2.03 7.80 
373 Long 43.44 33.01 15.81 3.33 4.41 
374 Long 50.53 18.72 14.67 4.32 11.76 
375 Long 33.62 21.34 22.77 5.69 16.58 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

127 
 

Appendix C 

Relative spectral powers at after apnea termination (AAT) for C3 EEG 

Apnea event 
number 

Apnea duration 
groups 

Relative spectral powers 
Delta Theta Alpha Sigma Beta 

1 Short 76.46 12.07 7.77 1.25 2.45 
2 Short 75.16 16.82 5.82 .95 1.25 
3 Short 61.07 23.23 10.58 2.20 2.92 
4 Short 77.11 14.32 4.61 .88 3.08 
5 Short 64.58 21.36 8.26 1.90 3.90 
6 Short 54.51 19.39 6.35 5.12 14.63 
7 Short 43.17 21.45 11.42 6.73 17.23 
8 Short 66.63 12.78 6.22 2.16 12.21 
9 Short 60.36 20.47 9.50 3.28 6.39 
10 Short 62.03 19.88 9.66 2.57 5.86 
11 Short 62.25 21.17 10.53 2.07 3.98 
12 Short 27.56 25.23 31.88 4.02 11.31 
13 Short 44.93 19.46 21.34 4.51 9.76 
14 Short 71.20 5.79 10.47 4.43 8.11 
15 Short 79.15 7.77 7.57 2.26 3.25 
16 Short 34.61 27.43 19.41 5.05 13.50 
17 Short 40.66 16.07 19.37 2.44 21.46 
18 Short 69.77 18.20 6.70 1.12 4.21 
19 Short 58.66 22.59 7.57 1.60 9.58 
20 Short 83.07 7.83 5.41 1.04 2.65 
21 Short 42.44 21.97 17.60 3.49 14.50 
22 Short 81.62 5.40 4.91 1.91 6.16 
23 Short 50.56 17.61 24.88 3.44 3.51 
24 Short 73.15 10.35 11.67 2.39 2.44 
25 Short 79.78 10.63 4.96 2.00 2.63 
26 Short 50.16 22.72 9.66 7.34 10.12 
27 Short 69.66 12.69 8.16 4.08 5.41 
28 Short 85.94 6.28 3.78 1.74 2.26 
29 Short 70.25 12.71 9.52 3.14 4.38 
30 Short 52.32 18.54 13.89 7.45 7.80 
31 Short 76.11 10.61 9.87 1.33 2.08 
32 Short 28.99 14.17 24.26 6.07 26.51 
33 Short 27.77 20.91 21.70 9.13 20.49 
34 Short 44.96 23.49 14.06 3.28 14.21 
35 Short 32.00 11.08 20.44 9.70 26.78 
36 Short 28.17 39.58 14.33 3.00 14.92 
37 Short 52.75 34.33 6.88 2.82 3.22 
38 Short 47.56 37.91 7.15 1.58 5.80 
39 Short 79.25 15.02 3.46 .81 1.46 
40 Short 90.06 7.31 1.51 .33 .79 
41 Short 84.45 11.85 2.05 .41 1.24 
42 Short 44.15 24.35 17.59 4.74 9.17 
43 Short 59.89 16.81 8.53 4.27 10.50 
44 Short 45.18 29.65 12.64 3.40 9.13 
45 Short 27.72 31.02 21.44 5.01 14.81 
46 Short 77.11 15.71 4.69 .96 1.53 
47 Short 83.64 8.39 6.38 .67 .92 
48 Short 67.33 15.66 13.42 1.17 2.42 
49 Short 42.73 36.55 13.66 3.24 3.82 
50 Short 53.34 20.48 16.89 2.35 6.94 
51 Short 65.32 14.76 10.09 2.03 7.80 
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52 Short 70.71 16.66 6.62 2.83 3.18 
53 Short 78.63 12.77 5.01 .88 2.71 
54 Short 72.02 14.51 8.32 2.38 2.77 
55 Short 74.66 16.06 5.47 1.61 2.20 
56 Short 75.40 16.69 3.97 1.08 2.86 
57 Short 63.37 19.58 7.40 2.67 6.98 
58 Short 76.06 14.77 4.62 1.36 3.19 
59 Short 85.95 8.23 2.70 .75 2.37 
60 Short 55.37 28.54 7.36 2.27 6.46 
61 Short 22.00 29.19 33.87 3.68 11.26 
62 Short 29.27 19.49 18.02 3.99 29.23 
63 Short 55.54 24.56 10.57 3.62 5.71 
64 Short 45.42 21.23 13.03 1.63 18.69 
65 Short 31.17 36.65 22.38 2.56 7.24 
66 Short 35.10 18.36 17.01 14.02 15.51 
67 Short 41.01 27.42 14.73 5.28 11.56 
68 Short 49.24 24.65 13.74 3.45 8.92 
69 Short 46.06 25.58 10.79 7.33 10.24 
70 Short 54.52 17.93 12.74 5.18 9.63 
71 Short 33.65 21.04 36.92 2.78 5.61 
72 Short 37.76 16.11 30.01 3.85 12.27 
73 Short 37.11 26.98 21.49 6.30 8.12 
74 Short 35.90 20.87 32.07 4.14 7.02 
75 Short 39.31 16.27 31.72 3.81 8.89 
76 Short 80.45 8.46 5.93 2.30 2.86 
77 Short 49.53 14.01 11.01 17.95 7.50 
78 Short 73.83 5.70 7.53 3.36 9.58 
79 Short 74.24 7.47 7.58 2.92 7.79 
80 Short 43.28 15.29 15.44 9.11 16.88 
81 Short 46.15 15.15 10.90 6.65 21.15 
82 Short 56.36 11.81 10.72 4.57 16.54 
83 Short 54.40 14.23 9.06 2.30 20.01 
84 Short 60.03 13.09 16.67 3.57 6.64 
85 Short 53.79 5.73 5.45 3.69 31.34 
86 Short 61.37 5.96 9.52 4.65 18.50 
87 Short 73.08 8.37 3.72 .85 13.98 
88 Short 68.37 4.60 2.56 1.30 23.17 
89 Short 82.85 6.72 4.17 1.30 4.96 
90 Short 62.13 10.94 14.47 5.12 7.34 
91 Short 64.23 11.91 16.88 2.97 4.01 
92 Short 83.35 7.56 5.55 1.38 2.16 
93 Short 83.25 9.49 4.35 1.14 1.77 
94 Short 85.59 8.62 3.60 .97 1.22 
95 Short 54.38 15.02 17.49 3.39 9.72 
96 Short 38.54 24.98 25.95 4.52 6.01 
97 Short 75.09 10.66 8.00 2.51 3.74 
98 Short 62.08 18.97 8.57 1.59 8.79 
99 Short 71.23 10.04 8.61 2.14 7.98 
100 Short 49.68 22.26 12.17 4.35 11.54 
101 Short 60.72 31.74 4.45 1.03 2.06 
102 Short 86.23 6.50 4.29 .79 2.19 
103 Short 78.98 11.54 5.65 1.06 2.77 
104 Short 25.98 45.62 20.75 2.08 5.57 
105 Short 82.49 10.92 4.09 .57 1.93 
106 Short 73.18 12.17 8.51 1.57 4.57 
107 Short 81.76 9.16 5.94 .94 2.20 
108 Short 89.00 5.00 3.81 1.05 1.14 
109 Short 87.16 8.08 2.63 .57 1.56 
110 Short 76.61 13.44 4.66 1.39 3.90 
111 Short 47.60 17.38 22.04 2.01 10.97 
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112 Short 29.10 42.85 17.70 3.09 7.26 
113 Short 46.53 17.66 27.44 2.35 6.02 
114 Short 74.23 13.22 8.16 1.46 2.93 
115 Short 61.28 12.88 19.53 2.74 3.57 
116 Short 53.75 18.98 12.61 3.55 11.11 
117 Short 70.65 9.07 6.49 2.18 11.61 
118 Short 43.30 16.75 17.46 5.53 16.96 
119 Short 41.35 22.96 16.01 4.04 15.64 
120 Short 60.50 15.60 10.36 3.06 10.48 
121 Short 41.08 32.47 12.02 1.47 12.96 
122 Short 17.51 19.21 30.90 2.21 30.17 
123 Short 12.37 32.91 34.07 7.01 13.64 
124 Short 31.47 9.82 13.62 4.56 40.53 
125 Short 27.90 17.18 28.43 3.86 22.63 
126 Short 35.74 21.10 18.25 3.23 21.68 
127 Short 36.87 29.71 14.61 2.48 16.33 
128 Short 79.02 9.76 4.64 2.44 4.14 
129 Short 56.78 17.16 7.17 1.79 17.10 
130 Short 66.43 13.91 5.13 2.23 12.30 
131 Short 89.88 4.28 2.32 1.20 2.32 
132 Short 92.14 4.02 1.91 .60 1.33 
133 Short 82.95 7.98 4.21 1.43 3.43 
134 Short 92.31 3.46 2.39 .60 1.24 
135 Short 93.51 2.08 2.53 .55 1.33 
136 Short 91.48 5.50 1.55 .51 .96 
137 Short 89.81 4.84 3.09 .75 1.51 
138 Short 92.53 3.81 2.62 .32 .72 
139 Short 93.88 3.47 1.39 .37 .89 
140 Short 93.26 4.16 1.62 .24 .72 
141 Short 56.70 17.99 13.38 6.12 5.81 
142 Short 48.21 26.27 16.17 4.30 5.05 
143 Short 41.35 24.89 24.27 4.41 5.08 
144 Short 67.16 14.21 13.69 1.87 3.07 
145 Short 68.04 15.41 12.97 1.30 2.28 
146 Short 35.86 26.99 20.36 3.03 13.76 
147 Short 34.33 26.45 14.15 3.50 21.57 
148 Short 43.71 15.62 21.08 4.78 14.81 
149 Short 62.55 17.08 14.10 1.47 4.80 
150 Short 60.14 14.07 15.97 3.59 6.23 
151 Moderate 69.39 17.37 9.20 1.13 2.91 
152 Moderate 66.46 16.98 9.94 2.38 4.24 
153 Moderate 83.15 9.78 5.01 .88 1.18 
154 Moderate 82.08 12.12 3.82 .76 1.22 
155 Moderate 66.95 18.38 7.84 1.82 5.01 
156 Moderate 37.95 20.69 10.35 5.37 25.64 
157 Moderate 84.07 12.22 1.59 .40 1.72 
158 Moderate 54.18 24.15 7.14 3.28 11.25 
159 Moderate 46.23 12.82 13.11 8.16 19.68 
160 Moderate 48.21 16.34 14.44 5.03 15.98 
161 Moderate 61.91 15.23 13.71 3.56 5.59 
162 Moderate 75.81 5.93 11.45 2.01 4.80 
163 Moderate 70.25 8.49 15.54 2.22 3.50 
164 Moderate 39.26 19.34 21.98 6.25 13.17 
165 Moderate 43.58 19.80 22.49 5.65 8.48 
166 Moderate 46.42 27.52 8.12 2.14 15.80 
167 Moderate 44.06 14.53 15.14 5.99 20.28 
168 Moderate 82.18 7.82 4.92 1.25 3.83 
169 Moderate 21.25 24.51 13.55 7.96 32.73 
170 Moderate 34.60 20.68 14.78 5.84 24.10 
171 Moderate 70.82 10.53 12.89 3.56 2.20 
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172 Moderate 71.11 9.57 13.97 3.24 2.11 
173 Moderate 58.25 17.42 15.09 4.37 4.87 
174 Moderate 71.16 12.28 12.76 1.51 2.29 
175 Moderate 69.77 15.42 10.05 2.53 2.23 
176 Moderate 92.38 3.74 2.60 .51 .77 
177 Moderate 20.87 17.92 45.03 5.58 10.60 
178 Moderate 94.82 1.51 2.46 .45 .76 
179 Moderate 19.79 13.99 38.65 10.80 16.77 
180 Moderate 28.76 21.89 24.61 2.61 22.13 
181 Moderate 48.76 10.41 15.21 7.74 17.88 
182 Moderate 53.49 9.68 22.04 3.04 11.75 
183 Moderate 26.19 18.70 26.09 5.59 23.43 
184 Moderate 34.94 9.41 20.87 7.89 26.89 
185 Moderate 43.18 14.54 13.37 6.76 22.15 
186 Moderate 38.15 44.90 9.32 1.71 5.92 
187 Moderate 25.24 49.40 11.70 1.73 11.93 
188 Moderate 40.49 36.67 10.77 2.28 9.79 
189 Moderate 45.11 32.91 9.03 2.80 10.15 
190 Moderate 64.11 21.90 9.09 1.71 3.19 
191 Moderate 22.95 27.10 28.25 6.32 15.38 
192 Moderate 13.95 39.81 30.45 3.54 12.25 
193 Moderate 18.80 32.29 30.68 4.08 14.15 
194 Moderate 42.01 22.69 19.33 3.12 12.85 
195 Moderate 58.12 21.15 8.64 2.37 9.72 
196 Moderate 18.06 46.74 15.38 5.70 14.12 
197 Moderate 10.87 30.19 28.24 8.91 21.79 
198 Moderate 22.23 38.14 27.26 4.66 7.71 
199 Moderate 15.35 32.94 29.40 8.78 13.53 
200 Moderate 25.77 28.60 26.16 6.58 12.89 
201 Moderate 66.92 16.67 11.21 1.78 3.42 
202 Moderate 85.24 7.81 3.53 1.12 2.30 
203 Moderate 71.36 19.35 4.67 1.21 3.41 
204 Moderate 84.50 7.44 4.89 .52 2.65 
205 Moderate 81.61 11.49 4.28 .96 1.66 
206 Moderate 66.37 23.48 5.57 1.64 2.94 
207 Moderate 64.96 20.03 7.53 2.32 5.16 
208 Moderate 76.91 16.47 3.22 1.44 1.96 
209 Moderate 73.69 14.74 6.36 2.29 2.92 
210 Moderate 82.34 11.94 3.66 .70 1.36 
211 Moderate 30.40 22.81 11.86 1.78 33.15 
212 Moderate 33.35 26.90 14.37 3.35 22.03 
213 Moderate 41.25 33.62 13.93 3.93 7.27 
214 Moderate 46.41 28.87 17.50 1.75 5.47 
215 Moderate 60.12 22.14 10.32 2.80 4.62 
216 Moderate 49.93 15.05 17.89 7.43 9.70 
217 Moderate 41.55 19.25 22.90 7.03 9.27 
218 Moderate 51.84 17.43 18.64 3.64 8.45 
219 Moderate 64.61 12.72 11.94 4.66 6.07 
220 Moderate 43.19 20.27 22.81 6.35 7.38 
221 Moderate 49.11 12.43 21.67 3.51 13.28 
222 Moderate 47.44 16.15 26.95 2.98 6.48 
223 Moderate 42.01 25.08 17.78 7.27 7.86 
224 Moderate 41.56 22.40 22.97 4.54 8.53 
225 Moderate 63.07 8.73 17.34 2.62 8.24 
226 Moderate 81.84 7.16 7.57 1.85 1.58 
227 Moderate 87.67 5.94 3.43 .89 2.07 
228 Moderate 75.01 8.53 7.11 4.56 4.79 
229 Moderate 67.60 6.90 11.24 10.56 3.70 
230 Moderate 56.68 16.64 12.33 8.98 5.37 
231 Moderate 62.18 19.76 7.77 2.63 7.66 
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232 Moderate 64.80 13.65 8.26 4.99 8.30 
233 Moderate 45.15 30.68 4.67 5.02 14.48 
234 Moderate 52.33 16.66 7.82 2.53 20.66 
235 Moderate 43.51 26.26 6.72 3.54 19.97 
236 Moderate 79.47 3.46 4.23 1.30 11.54 
237 Moderate 74.12 4.49 3.96 1.15 16.28 
238 Moderate 60.23 6.05 3.36 1.70 28.66 
239 Moderate 58.69 10.01 12.11 4.24 14.95 
240 Moderate 94.16 1.54 2.23 .32 1.75 
241 Moderate 77.39 12.71 6.86 .79 2.25 
242 Moderate 61.08 18.47 13.08 1.88 5.49 
243 Moderate 55.39 17.76 19.55 1.58 5.72 
244 Moderate 34.18 28.49 25.50 2.21 9.62 
245 Moderate 56.64 23.21 12.23 1.85 6.07 
246 Moderate 53.36 17.18 19.16 3.74 6.56 
247 Moderate 55.37 9.44 19.97 4.32 10.90 
248 Moderate 45.94 17.31 18.06 4.81 13.88 
249 Moderate 43.65 27.34 12.22 5.99 10.80 
250 Moderate 43.98 24.70 17.53 3.68 10.11 
251 Moderate 64.69 17.29 10.02 1.99 6.01 
252 Moderate 84.36 7.14 4.64 1.33 2.53 
253 Moderate 55.21 17.05 7.39 3.31 17.04 
254 Moderate 87.51 5.02 3.59 .48 3.40 
255 Moderate 29.86 17.28 20.16 4.99 27.71 
256 Moderate 97.31 1.06 .97 .21 .45 
257 Moderate 95.39 2.07 1.61 .28 .65 
258 Moderate 96.29 1.78 1.28 .22 .43 
259 Moderate 96.58 1.98 .92 .14 .38 
260 Moderate 81.76 13.27 2.88 .62 1.47 
261 Moderate 35.69 32.51 19.52 3.27 9.01 
262 Moderate 56.21 26.75 8.96 2.96 5.12 
263 Moderate 70.43 17.43 5.26 1.20 5.68 
264 Moderate 64.35 14.57 10.02 2.04 9.02 
265 Moderate 64.66 18.62 6.72 1.65 8.35 
266 Moderate 51.24 16.36 10.72 4.68 17.00 
267 Moderate 57.17 11.08 11.77 5.13 14.85 
268 Moderate 67.02 12.35 8.89 2.42 9.32 
269 Moderate 46.67 16.12 12.37 5.89 18.95 
270 Moderate 62.08 12.15 8.53 2.72 14.52 
271 Moderate 39.22 14.29 30.40 4.85 11.24 
272 Moderate 56.60 13.31 19.19 1.87 9.03 
273 Moderate 57.96 21.38 15.12 2.59 2.95 
274 Moderate 39.21 26.76 23.16 3.17 7.70 
275 Moderate 54.40 13.76 10.67 2.39 18.78 
276 Moderate 58.16 13.60 17.40 3.70 7.14 
277 Moderate 81.51 6.13 5.34 2.53 4.49 
278 Moderate 88.66 3.39 4.19 1.36 2.40 
279 Moderate 95.22 2.13 1.23 .56 .86 
280 Moderate 94.18 3.27 1.57 .29 .69 
281 Moderate 93.98 4.05 1.19 .26 .52 
282 Moderate 87.67 6.39 2.96 1.15 1.83 
283 Moderate 85.60 5.84 4.70 1.33 2.53 
284 Moderate 94.81 3.00 1.08 .47 .64 
285 Moderate 46.09 18.22 14.52 2.22 18.95 
286 Moderate 34.26 35.87 21.34 3.37 5.16 
287 Moderate 84.60 9.43 3.76 .50 1.71 
288 Moderate 58.51 29.05 9.79 .77 1.88 
289 Moderate 40.88 28.98 21.18 3.27 5.69 
290 Moderate 52.15 18.75 11.50 4.22 13.38 
291 Moderate 31.73 17.99 23.30 7.44 19.54 
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292 Moderate 54.46 16.35 11.83 4.22 13.14 
293 Moderate 42.24 16.43 16.68 5.96 18.69 
294 Moderate 38.63 24.36 17.13 4.86 15.02 
295 Long 72.96 15.58 8.80 1.01 1.65 
296 Long 53.27 28.97 12.45 2.26 3.05 
297 Long 62.79 24.68 6.93 1.11 4.49 
298 Long 41.28 37.62 14.27 2.15 4.68 
299 Long 58.05 21.38 14.38 2.13 4.06 
300 Long 68.85 8.23 13.92 2.16 6.84 
301 Long 56.89 15.52 11.23 4.59 11.77 
302 Long 87.04 3.41 4.37 .61 4.57 
303 Long 50.76 20.08 15.03 2.78 11.35 
304 Long 91.22 1.06 2.12 .78 4.82 
305 Long 46.13 36.30 9.19 1.29 7.09 
306 Long 36.56 40.30 12.91 2.39 7.84 
307 Long 71.88 15.91 5.63 2.09 4.49 
308 Long 66.96 19.87 7.06 1.74 4.37 
309 Long 71.56 13.98 7.22 1.95 5.29 
310 Long 46.35 25.40 10.01 4.62 13.62 
311 Long 62.18 24.37 3.47 2.34 7.64 
312 Long 27.72 25.72 19.03 6.51 21.02 
313 Long 24.23 34.85 23.65 2.57 14.70 
314 Long 48.11 23.55 16.11 3.19 9.04 
315 Long 90.16 4.80 2.70 .43 1.91 
316 Long 62.89 23.19 5.73 1.43 6.76 
317 Long 63.86 21.65 7.18 2.17 5.14 
318 Long 68.53 18.15 6.94 2.54 3.84 
319 Long 78.68 11.59 5.20 1.61 2.92 
320 Long 77.02 10.31 7.68 1.55 3.44 
321 Long 45.41 17.69 13.45 2.66 20.79 
322 Long 44.71 25.81 16.18 2.79 10.51 
323 Long 70.00 12.19 7.41 2.88 7.52 
324 Long 46.62 29.32 12.65 2.01 9.40 
325 Long 42.94 29.04 10.95 2.38 14.69 
326 Long 37.21 20.23 22.25 2.16 18.15 
327 Long 30.33 23.78 19.08 6.10 20.71 
328 Long 40.66 16.05 17.81 3.27 22.21 
329 Long 26.08 14.05 42.18 4.56 13.13 
330 Long 21.88 13.71 43.30 2.73 18.38 
331 Long 43.80 17.08 30.33 3.43 5.36 
332 Long 58.73 16.49 17.28 1.79 5.71 
333 Long 79.06 8.08 7.62 1.40 3.84 
334 Long 85.88 5.90 3.57 1.03 3.62 
335 Long 60.23 18.45 6.73 1.55 13.04 
336 Long 76.07 6.81 4.66 2.24 10.22 
337 Long 94.96 1.77 .86 .41 2.00 
338 Long 67.54 12.45 4.83 1.17 14.01 
339 Long 53.98 15.05 5.36 2.88 22.73 
340 Long 60.86 19.77 11.42 2.11 5.84 
341 Long 62.57 17.61 13.43 1.50 4.89 
342 Long 50.15 25.90 15.76 2.06 6.13 
343 Long 97.24 1.44 .65 .11 .56 
344 Long 81.32 10.66 5.83 .84 1.35 
345 Long 35.48 17.93 19.60 10.57 16.42 
346 Long 87.21 3.34 4.03 1.49 3.93 
347 Long 84.01 7.42 4.16 .71 3.70 
348 Long 70.54 17.76 6.93 1.30 3.47 
349 Long 91.51 4.07 2.39 .65 1.38 
350 Long 83.47 8.83 5.56 .84 1.30 
351 Long 69.50 13.49 6.25 2.30 8.46 
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352 Long 81.27 9.52 5.37 .69 3.15 
353 Long 75.25 10.85 7.74 1.24 4.92 
354 Long 70.30 9.85 6.84 1.72 11.29 
355 Long 63.30 20.14 10.56 2.22 3.78 
356 Long 41.54 15.09 18.12 5.66 19.59 
357 Long 41.34 20.81 15.95 5.24 16.66 
358 Long 43.78 21.66 17.50 3.51 13.55 
359 Long 48.81 19.49 12.53 3.23 15.94 
360 Long 80.20 2.40 2.33 .78 14.29 
361 Long 88.82 1.45 2.95 .68 6.10 
362 Long 75.27 9.58 9.50 1.84 3.81 
363 Long 92.54 3.27 2.24 .49 1.46 
364 Long 93.33 3.34 1.91 .31 1.11 
365 Long 90.77 4.26 2.30 .66 2.01 
366 Long 96.05 1.30 1.15 .41 1.09 
367 Long 93.45 2.10 .55 .57 3.33 
368 Long 88.55 5.96 3.11 .89 1.49 
369 Long 64.25 12.91 9.69 1.64 11.51 
370 Long 38.87 20.75 14.73 3.06 22.59 
371 Long 72.24 9.14 7.42 1.83 9.37 
372 Long 86.49 5.87 5.65 .50 1.49 
373 Long 85.70 9.36 3.56 .40 .98 
374 Long 40.08 26.73 15.92 2.71 14.56 
375 Long 60.19 16.79 8.86 3.60 10.56 
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Appendix D 

Relative spectral powers at before apnea termination (BAT) for C4 EEG 

Apnea event 
number 

Apnea duration 
groups 

Relative spectral powers 
Delta Theta Alpha Sigma Beta 

1 Short 57.40 23.04 12.03 2.99 4.54 
2 Short 57.55 23.90 12.64 2.17 3.74 
3 Short 51.60 26.38 11.51 2.80 7.71 
4 Short 56.57 22.06 10.84 2.98 7.55 
5 Short 59.12 25.71 8.03 3.14 4.00 
6 Short 64.51 17.28 6.96 2.73 8.52 
7 Short 47.62 23.21 7.36 7.53 14.28 
8 Short 53.12 21.88 9.85 3.19 11.96 
9 Short 50.32 24.47 9.55 4.00 11.66 
10 Short 53.01 24.92 11.09 3.26 7.72 
11 Short 62.13 23.52 7.52 2.48 4.35 
12 Short 51.81 23.80 13.62 3.34 7.43 
13 Short 42.27 26.62 19.90 3.55 7.66 
14 Short 49.93 18.70 18.70 5.98 6.69 
15 Short 54.43 21.91 14.64 2.36 6.66 
16 Short 63.14 19.26 9.48 1.98 6.14 
17 Short 75.39 15.33 3.91 1.04 4.33 
18 Short 73.13 14.27 4.50 1.55 6.55 
19 Short 70.91 14.25 5.39 1.96 7.49 
20 Short 66.61 19.71 6.85 1.28 5.55 
21 Short 63.96 10.12 16.79 4.45 4.68 
22 Short 52.70 12.88 24.55 3.56 6.31 
23 Short 66.31 16.61 10.27 3.30 3.51 
24 Short 63.17 12.43 17.46 3.84 3.10 
25 Short 69.20 9.56 15.35 1.95 3.94 
26 Short 53.03 20.70 11.46 3.61 11.20 
27 Short 42.30 22.48 15.46 6.98 12.78 
28 Short 64.38 13.98 10.33 4.60 6.71 
29 Short 57.89 19.80 9.02 3.79 9.50 
30 Short 41.42 21.95 16.50 6.24 13.89 
31 Short 90.00 5.54 3.05 .69 .72 
32 Short 43.17 22.55 13.30 3.51 17.47 
33 Short 62.00 10.97 14.39 2.61 10.03 
34 Short 45.85 12.41 10.00 6.13 25.61 
35 Short 57.20 17.74 13.47 4.15 7.44 
36 Short 72.11 18.64 6.19 .99 2.07 
37 Short 67.72 18.23 6.33 2.30 5.42 
38 Short 65.36 20.30 8.67 1.34 4.33 
39 Short 83.67 9.77 3.15 1.23 2.18 
40 Short 85.51 7.75 3.44 1.17 2.13 
41 Short 77.22 14.88 4.76 .60 2.54 
42 Short 42.38 28.91 12.04 6.86 9.81 
43 Short 48.73 24.33 13.03 3.52 10.39 
44 Short 56.78 20.80 12.02 3.51 6.89 
45 Short 61.13 16.63 9.42 2.79 10.03 
46 Short 83.53 9.07 5.98 .75 .67 
47 Short 86.28 8.53 3.97 .53 .69 
48 Short 63.30 29.44 5.07 .85 1.34 
49 Short 24.88 57.59 11.03 2.48 4.02 
50 Short 51.13 31.12 10.38 2.79 4.58 
51 Short 52.93 30.96 10.13 1.82 4.16 
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52 Short 67.97 22.60 5.99 1.69 1.75 
53 Short 71.46 18.18 6.65 .94 2.77 
54 Short 56.88 28.97 8.23 2.63 3.29 
55 Short 59.21 25.32 8.40 3.95 3.12 
56 Short 74.21 16.82 4.79 1.08 3.10 
57 Short 62.06 24.38 6.05 .92 6.59 
58 Short 67.55 24.79 3.12 1.35 3.19 
59 Short 87.32 9.54 2.04 .45 .65 
60 Short 61.90 29.10 5.57 .94 2.49 
61 Short 43.12 38.75 7.72 2.36 8.05 
62 Short 63.33 23.33 7.72 1.80 3.82 
63 Short 50.47 29.80 13.09 2.57 4.07 
64 Short 49.64 24.70 18.32 2.37 4.97 
65 Short 58.02 24.72 9.69 1.82 5.75 
66 Short 46.94 25.75 10.63 6.05 10.63 
67 Short 52.11 24.34 12.54 2.41 8.60 
68 Short 51.45 18.65 16.19 3.20 10.51 
69 Short 45.84 25.46 14.44 3.13 11.13 
70 Short 38.18 24.88 12.73 4.80 19.41 
71 Short 34.75 26.85 22.27 8.15 7.98 
72 Short 42.08 14.43 30.94 4.18 8.37 
73 Short 40.23 17.35 25.80 6.43 10.19 
74 Short 31.69 18.89 36.03 5.45 7.94 
75 Short 31.18 19.65 34.29 4.54 10.34 
76 Short 47.84 17.69 16.29 6.18 12.00 
77 Short 53.17 19.40 13.73 2.60 11.10 
78 Short 72.03 9.90 8.21 4.71 5.15 
79 Short 60.72 12.08 11.48 3.82 11.90 
80 Short 34.98 17.45 21.21 5.23 21.13 
81 Short 72.06 20.21 3.52 .81 3.40 
82 Short 68.49 19.25 6.61 1.99 3.66 
83 Short 61.17 23.09 7.09 3.40 5.25 
84 Short 67.41 16.87 8.21 1.53 5.98 
85 Short 58.42 22.49 10.96 3.78 4.35 
86 Short 48.23 21.65 18.74 2.66 8.72 
87 Short 51.01 19.73 17.49 4.47 7.30 
88 Short 44.69 30.21 13.85 3.44 7.81 
89 Short 41.34 32.09 16.32 2.61 7.64 
90 Short 67.59 15.17 11.75 2.21 3.28 
91 Short 85.07 7.61 3.42 2.19 1.71 
92 Short 53.34 16.69 17.06 7.73 5.18 
93 Short 52.31 25.51 17.91 1.51 2.76 
94 Short 67.67 15.84 12.69 1.12 2.68 
95 Short 53.05 21.52 14.88 4.13 6.42 
96 Short 43.37 24.55 18.88 2.67 10.53 
97 Short 53.92 18.35 13.28 4.28 10.17 
98 Short 43.09 22.57 14.98 4.89 14.47 
99 Short 25.25 22.66 34.78 7.13 10.18 
100 Short 56.31 16.57 13.06 2.48 11.58 
101 Short 48.37 33.03 11.22 1.47 5.91 
102 Short 44.00 17.58 12.05 4.39 21.98 
103 Short 70.20 15.24 8.88 1.73 3.95 
104 Short 59.58 21.04 12.14 1.20 6.04 
105 Short 46.68 21.05 14.98 3.07 14.22 
106 Short 45.26 27.09 18.39 2.38 6.88 
107 Short 67.77 13.33 11.28 1.80 5.82 
108 Short 89.57 3.62 4.37 .88 1.56 
109 Short 59.60 22.13 10.30 3.04 4.93 
110 Short 94.18 3.37 1.19 .32 .94 
111 Short 42.15 35.96 10.35 3.33 8.21 
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112 Short 55.37 23.91 10.60 2.10 8.02 
113 Short 58.38 21.55 9.91 3.27 6.89 
114 Short 77.50 14.76 4.19 1.10 2.45 
115 Short 56.62 22.24 12.52 2.40 6.22 
116 Short 45.03 19.98 11.02 4.19 19.78 
117 Short 46.50 23.59 10.74 4.81 14.36 
118 Short 27.45 27.49 19.82 5.93 19.31 
119 Short 35.72 20.70 17.82 5.89 19.87 
120 Short 37.53 24.52 12.72 7.09 18.14 
121 Short 29.16 20.65 28.44 4.38 17.37 
122 Short 51.71 21.30 16.75 2.86 7.38 
123 Short 46.32 21.68 16.81 3.89 11.30 
124 Short 45.85 20.21 17.74 5.29 10.91 
125 Short 77.69 9.66 7.89 2.43 2.33 
126 Short 57.13 17.89 11.13 1.76 12.09 
127 Short 60.68 18.54 10.69 1.60 8.49 
128 Short 78.21 10.42 5.61 1.78 3.98 
129 Short 61.32 16.59 4.63 1.25 16.21 
130 Short 50.32 22.73 8.48 3.41 15.06 
131 Short 73.37 12.12 5.13 6.14 3.24 
132 Short 71.10 16.79 6.30 2.12 3.69 
133 Short 74.43 10.64 7.19 4.40 3.34 
134 Short 82.34 8.85 3.89 2.42 2.50 
135 Short 50.36 26.76 9.20 6.41 7.27 
136 Short 63.16 23.35 7.94 1.81 3.74 
137 Short 63.91 22.25 7.31 1.80 4.73 
138 Short 34.62 43.84 10.27 2.00 9.27 
139 Short 79.24 14.71 3.19 .87 1.99 
140 Short 60.82 24.62 10.26 1.55 2.75 
141 Short 43.84 24.22 15.68 6.62 9.64 
142 Short 64.68 19.82 9.61 1.95 3.94 
143 Short 50.39 18.37 20.01 3.12 8.11 
144 Short 48.51 17.70 18.59 5.41 9.79 
145 Short 41.35 23.99 20.18 5.97 8.51 
146 Short 39.95 15.34 23.58 5.29 15.84 
147 Short 31.49 15.56 22.94 8.17 21.84 
148 Short 54.52 21.79 14.36 3.54 5.79 
149 Short 60.69 15.14 12.48 3.48 8.21 
150 Short 37.79 29.65 22.85 3.22 6.49 
151 Moderate 67.65 18.93 6.93 2.55 3.94 
152 Moderate 78.15 11.62 6.08 1.57 2.58 
153 Moderate 70.55 14.19 10.37 2.59 2.30 
154 Moderate 84.45 8.81 4.25 .68 1.81 
155 Moderate 73.38 13.98 5.19 1.55 5.90 
156 Moderate 46.19 22.40 10.36 3.94 17.11 
157 Moderate 67.67 24.72 3.97 .92 2.72 
158 Moderate 50.36 23.73 7.37 5.14 13.40 
159 Moderate 60.29 15.51 9.07 3.78 11.35 
160 Moderate 52.69 28.88 5.81 2.03 10.59 
161 Moderate 38.69 23.60 23.02 4.92 9.77 
162 Moderate 40.90 28.31 22.87 2.82 5.10 
163 Moderate 41.33 24.63 20.96 5.56 7.52 
164 Moderate 50.46 23.27 15.13 3.75 7.39 
165 Moderate 44.92 24.88 21.00 2.68 6.52 
166 Moderate 88.47 6.63 1.75 .62 2.53 
167 Moderate 67.85 14.08 6.84 1.20 10.03 
168 Moderate 53.79 24.03 9.42 2.86 9.90 
169 Moderate 78.17 14.97 2.88 .71 3.27 
170 Moderate 48.29 29.20 11.42 4.21 6.88 
171 Moderate 63.39 16.24 12.40 4.04 3.93 
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172 Moderate 65.11 18.35 10.63 3.28 2.63 
173 Moderate 75.68 8.67 10.74 2.62 2.29 
174 Moderate 56.22 16.05 18.61 5.62 3.50 
175 Moderate 48.72 13.90 27.42 4.74 5.22 
176 Moderate 44.82 15.39 16.21 5.31 18.27 
177 Moderate 47.50 16.89 13.41 7.93 14.27 
178 Moderate 38.77 26.94 12.17 4.76 17.36 
179 Moderate 46.23 20.11 12.06 7.72 13.88 
180 Moderate 20.69 13.29 16.89 10.35 38.78 
181 Moderate 59.25 20.50 8.41 3.72 8.12 
182 Moderate 53.00 18.63 14.26 3.06 11.05 
183 Moderate 57.35 13.21 9.08 4.12 16.24 
184 Moderate 57.12 17.79 10.28 3.14 11.67 
185 Moderate 57.38 19.04 10.39 3.09 10.10 
186 Moderate 52.20 28.82 12.40 2.59 3.99 
187 Moderate 64.29 20.58 8.40 3.21 3.52 
188 Moderate 58.58 28.77 6.68 2.54 3.43 
189 Moderate 73.56 14.45 8.24 1.35 2.40 
190 Moderate 67.65 16.52 9.87 2.71 3.25 
191 Moderate 39.12 22.86 15.81 6.44 15.77 
192 Moderate 54.86 16.80 11.60 5.00 11.74 
193 Moderate 45.25 21.21 16.26 4.57 12.71 
194 Moderate 61.52 21.63 6.04 2.37 8.44 
195 Moderate 65.07 21.11 6.69 2.05 5.08 
196 Moderate 68.16 17.71 7.83 1.86 4.44 
197 Moderate 23.96 45.66 18.65 4.17 7.56 
198 Moderate 65.42 17.66 13.15 1.46 2.31 
199 Moderate 57.26 27.50 11.34 1.02 2.88 
200 Moderate 40.37 33.76 17.15 2.83 5.89 
201 Moderate 72.48 18.88 6.12 .90 1.62 
202 Moderate 71.52 18.74 4.60 2.59 2.55 
203 Moderate 50.61 39.45 5.27 2.74 1.93 
204 Moderate 63.71 24.67 7.50 1.33 2.79 
205 Moderate 76.04 15.50 5.19 1.85 1.42 
206 Moderate 76.59 18.41 2.69 .80 1.51 
207 Moderate 68.69 24.63 4.02 1.14 1.52 
208 Moderate 76.84 16.91 3.94 .75 1.56 
209 Moderate 78.41 14.83 4.70 .77 1.29 
210 Moderate 63.84 25.03 7.39 1.42 2.32 
211 Moderate 56.66 27.24 9.02 2.63 4.45 
212 Moderate 54.85 24.04 13.52 3.62 3.97 
213 Moderate 46.22 26.03 20.49 2.21 5.05 
214 Moderate 59.65 25.38 9.71 1.84 3.42 
215 Moderate 52.71 26.73 14.93 1.82 3.81 
216 Moderate 47.10 23.76 11.57 4.78 12.79 
217 Moderate 48.55 25.71 11.41 7.90 6.43 
218 Moderate 62.04 16.65 11.02 3.25 7.04 
219 Moderate 60.56 24.50 7.16 2.96 4.82 
220 Moderate 53.27 27.50 6.73 5.18 7.32 
221 Moderate 34.16 18.03 32.52 6.14 9.15 
222 Moderate 39.73 15.69 29.16 7.36 8.06 
223 Moderate 59.49 12.17 22.12 1.96 4.26 
224 Moderate 69.86 13.32 7.96 3.81 5.05 
225 Moderate 49.95 13.59 23.17 5.07 8.22 
226 Moderate 46.04 12.09 13.82 23.60 4.45 
227 Moderate 58.95 12.30 8.97 15.90 3.88 
228 Moderate 42.44 13.91 16.03 20.56 7.06 
229 Moderate 53.58 11.98 12.20 12.41 9.83 
230 Moderate 48.75 13.11 11.31 14.47 12.36 
231 Moderate 74.81 15.72 5.53 1.13 2.81 
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232 Moderate 36.28 34.44 8.72 5.45 15.11 
233 Moderate 41.19 24.48 11.84 2.41 20.08 
234 Moderate 42.97 28.25 8.05 4.86 15.87 
235 Moderate 38.47 33.15 9.72 2.89 15.77 
236 Moderate 63.16 16.74 12.33 2.63 5.14 
237 Moderate 55.57 18.92 13.53 4.24 7.74 
238 Moderate 65.51 12.82 7.50 4.03 10.14 
239 Moderate 59.79 13.85 15.05 4.10 7.21 
240 Moderate 35.66 23.30 25.98 3.92 11.14 
241 Moderate 67.05 15.05 10.96 1.98 4.96 
242 Moderate 64.97 21.09 8.31 1.06 4.57 
243 Moderate 79.05 12.18 5.39 .80 2.58 
244 Moderate 67.06 16.28 11.77 1.51 3.38 
245 Moderate 37.85 40.80 11.88 4.05 5.42 
246 Moderate 49.76 21.28 17.86 4.66 6.44 
247 Moderate 58.82 17.65 10.72 5.76 7.05 
248 Moderate 61.02 16.71 11.69 2.47 8.11 
249 Moderate 46.96 23.34 13.49 2.67 13.54 
250 Moderate 48.89 22.83 15.88 2.22 10.18 
251 Moderate 63.05 19.74 9.66 1.41 6.14 
252 Moderate 62.48 20.85 9.12 2.01 5.54 
253 Moderate 71.26 16.77 4.90 1.81 5.26 
254 Moderate 39.16 37.72 16.50 1.65 4.97 
255 Moderate 66.72 18.19 7.10 2.37 5.62 
256 Moderate 75.62 12.40 7.38 .98 3.62 
257 Moderate 59.36 21.14 11.07 2.27 6.16 
258 Moderate 61.07 18.06 14.80 1.84 4.23 
259 Moderate 79.41 10.85 5.68 1.59 2.47 
260 Moderate 92.70 4.52 1.47 .34 .97 
261 Moderate 23.45 40.77 20.69 2.91 12.18 
262 Moderate 49.70 31.20 11.65 1.55 5.90 
263 Moderate 64.87 19.08 7.83 2.54 5.68 
264 Moderate 70.52 15.56 4.23 2.68 7.01 
265 Moderate 85.32 6.79 4.15 1.00 2.74 
266 Moderate 36.66 23.19 15.69 7.54 16.92 
267 Moderate 59.35 13.94 10.92 3.51 12.28 
268 Moderate 32.76 24.81 14.72 7.00 20.71 
269 Moderate 39.92 20.29 16.66 5.05 18.08 
270 Moderate 63.01 12.51 8.77 4.06 11.65 
271 Moderate 42.37 22.49 18.31 13.03 3.80 
272 Moderate 50.18 16.52 16.30 11.09 5.91 
273 Moderate 47.19 16.06 23.01 11.06 2.68 
274 Moderate 46.81 23.36 16.61 3.81 9.41 
275 Moderate 66.94 15.01 10.01 2.70 5.34 
276 Moderate 66.90 18.42 6.01 1.71 6.96 
277 Moderate 72.74 12.51 9.16 2.20 3.39 
278 Moderate 79.88 8.44 6.30 3.29 2.09 
279 Moderate 85.08 7.85 3.34 1.89 1.84 
280 Moderate 75.50 12.68 7.49 2.16 2.17 
281 Moderate 60.80 20.74 8.13 2.80 7.53 
282 Moderate 91.14 5.95 1.45 .40 1.06 
283 Moderate 82.08 13.14 2.95 .57 1.26 
284 Moderate 73.55 17.08 5.76 1.31 2.30 
285 Moderate 35.21 25.62 23.50 6.29 9.38 
286 Moderate 40.89 28.05 15.05 6.63 9.38 
287 Moderate 33.71 33.96 20.98 4.02 7.33 
288 Moderate 34.12 39.23 16.80 3.99 5.86 
289 Moderate 43.69 34.16 13.81 2.32 6.02 
290 Moderate 71.31 12.80 7.09 1.60 7.20 
291 Moderate 73.38 12.69 6.50 2.13 5.30 
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292 Moderate 57.75 17.80 11.14 3.56 9.75 
293 Moderate 61.19 16.78 10.49 2.87 8.67 
294 Moderate 58.12 19.07 13.16 2.71 6.94 
295 Long 81.91 10.78 3.72 1.27 2.32 
296 Long 73.74 16.36 4.15 .88 4.87 
297 Long 66.64 18.24 9.76 1.76 3.60 
298 Long 52.90 22.52 11.26 2.34 10.98 
299 Long 64.76 17.79 7.71 2.25 7.49 
300 Long 69.20 17.17 8.08 1.43 4.12 
301 Long 65.19 22.41 5.99 2.25 4.16 
302 Long 49.76 20.80 10.45 4.83 14.16 
303 Long 46.00 15.50 16.15 7.48 14.87 
304 Long 44.62 19.86 16.71 4.70 14.11 
305 Long 69.86 19.69 6.08 1.50 2.87 
306 Long 68.10 22.48 5.92 1.43 2.07 
307 Long 67.18 17.95 6.55 3.61 4.71 
308 Long 64.89 24.51 5.49 1.63 3.48 
309 Long 69.48 20.71 6.05 1.66 2.10 
310 Long 60.09 22.91 6.39 2.41 8.20 
311 Long 71.54 15.26 4.60 1.81 6.79 
312 Long 48.85 25.83 9.76 4.67 10.89 
313 Long 84.99 7.05 3.73 1.24 2.99 
314 Long 65.00 15.60 8.73 3.23 7.44 
315 Long 58.69 30.68 7.19 1.99 1.45 
316 Long 74.12 15.89 7.16 .91 1.92 
317 Long 74.11 19.59 3.25 1.50 1.55 
318 Long 69.81 23.66 3.91 .75 1.87 
319 Long 71.57 21.48 4.36 1.20 1.39 
320 Long 83.91 9.32 4.24 .83 1.70 
321 Long 39.74 29.52 13.31 3.39 14.04 
322 Long 36.46 43.33 13.60 1.82 4.79 
323 Long 73.46 19.21 5.32 .55 1.46 
324 Long 65.55 23.46 6.17 1.38 3.44 
325 Long 49.43 26.77 18.85 1.48 3.47 
326 Long 33.88 25.19 19.00 7.51 14.42 
327 Long 53.78 25.97 8.00 2.47 9.78 
328 Long 45.91 21.28 15.22 4.16 13.43 
329 Long 57.42 16.13 13.49 3.52 9.44 
330 Long 48.64 24.20 13.81 1.97 11.38 
331 Long 41.65 23.38 23.40 3.98 7.59 
332 Long 89.52 3.76 3.85 1.08 1.79 
333 Long 58.91 13.69 15.99 3.51 7.90 
334 Long 51.41 12.66 13.05 19.07 3.81 
335 Long 77.43 9.76 3.43 1.34 8.04 
336 Long 69.54 16.68 5.16 1.65 6.97 
337 Long 54.34 24.10 5.90 1.59 14.07 
338 Long 49.23 30.22 5.61 2.08 12.86 
339 Long 62.91 20.29 4.89 1.37 10.54 
340 Long 67.34 18.50 9.01 1.30 3.85 
341 Long 66.49 18.46 9.78 1.50 3.77 
342 Long 72.94 14.35 8.47 1.33 2.91 
343 Long 75.44 9.80 9.71 .94 4.11 
344 Long 71.44 15.77 7.33 2.80 2.66 
345 Long 32.91 31.04 14.36 8.54 13.15 
346 Long 38.07 28.62 16.86 4.00 12.45 
347 Long 58.06 24.18 9.31 2.23 6.22 
348 Long 70.15 15.73 7.94 1.53 4.65 
349 Long 55.40 24.27 9.01 3.60 7.72 
350 Long 63.95 23.40 6.81 1.14 4.70 
351 Long 56.67 19.22 11.75 5.85 6.51 
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352 Long 58.18 21.39 11.65 3.63 5.15 
353 Long 53.61 20.93 12.99 4.79 7.68 
354 Long 54.85 24.17 8.66 5.07 7.25 
355 Long 76.50 12.60 5.81 2.07 3.02 
356 Long 42.39 18.75 14.27 6.74 17.85 
357 Long 43.51 19.62 15.05 6.77 15.05 
358 Long 45.34 22.21 14.33 3.88 14.24 
359 Long 57.67 21.61 12.15 3.78 4.79 
360 Long 66.95 16.68 10.92 3.05 2.40 
361 Long 53.00 17.49 18.01 4.76 6.74 
362 Long 62.46 15.45 6.79 7.52 7.78 
363 Long 66.27 9.59 9.78 8.56 5.80 
364 Long 53.44 21.40 9.62 9.28 6.26 
365 Long 74.38 11.03 7.01 2.63 4.95 
366 Long 49.86 20.14 10.35 11.04 8.61 
367 Long 86.78 8.03 2.91 .50 1.78 
368 Long 83.32 10.60 4.66 .38 1.04 
369 Long 50.33 24.35 11.45 6.41 7.46 
370 Long 42.79 24.64 13.59 6.34 12.64 
371 Long 38.67 26.86 20.67 4.42 9.38 
372 Long 38.61 33.00 14.59 4.02 9.78 
373 Long 42.44 35.55 13.53 3.18 5.30 
374 Long 65.99 18.45 6.65 2.12 6.79 
375 Long 62.64 19.52 6.83 2.84 8.17 
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Appendix E 

Relative spectral powers at after apnea termination (AAT) for C4 EEG 

Apnea event 
number 

Apnea duration 
groups 

Relative spectral powers 
Delta Theta Alpha Sigma Beta 

1 Short 67.57 18.54 8.55 1.69 3.65 
2 Short 61.20 23.59 9.25 2.79 3.17 
3 Short 53.35 20.98 14.10 2.42 9.15 
4 Short 75.38 15.83 4.16 1.06 3.57 
5 Short 80.97 11.72 4.28 .83 2.20 
6 Short 51.31 21.13 9.54 6.23 11.79 
7 Short 52.21 21.24 9.55 4.50 12.50 
8 Short 45.92 20.40 7.74 3.08 22.86 
9 Short 61.61 17.51 9.73 4.15 7.00 
10 Short 62.10 19.18 12.08 2.48 4.16 
11 Short 48.47 24.02 19.45 2.80 5.26 
12 Short 36.01 18.56 24.26 6.22 14.95 
13 Short 39.60 27.53 18.25 4.79 9.83 
14 Short 41.55 14.74 23.66 7.02 13.03 
15 Short 81.18 8.03 5.74 1.53 3.52 
16 Short 37.02 23.89 20.56 5.32 13.21 
17 Short 39.15 18.44 21.95 3.25 17.21 
18 Short 68.37 17.24 5.93 2.85 5.61 
19 Short 70.34 14.52 6.92 2.40 5.82 
20 Short 78.76 7.67 6.87 3.13 3.57 
21 Short 83.75 7.97 4.50 1.60 2.18 
22 Short 88.76 5.26 3.40 .93 1.65 
23 Short 91.79 3.72 3.31 .51 .67 
24 Short 90.71 4.73 3.07 .66 .83 
25 Short 90.65 5.22 2.45 .50 1.18 
26 Short 49.42 16.20 14.48 9.44 10.46 
27 Short 54.22 16.00 14.54 5.44 9.80 
28 Short 63.42 15.37 11.89 3.29 6.03 
29 Short 56.43 17.59 12.77 3.95 9.26 
30 Short 42.54 28.59 12.87 6.19 9.81 
31 Short 68.73 15.97 10.44 1.71 3.15 
32 Short 26.30 14.43 22.79 9.65 26.83 
33 Short 28.59 13.53 22.59 6.21 29.08 
34 Short 33.57 14.21 17.51 6.66 28.05 
35 Short 24.84 10.40 30.42 9.10 25.24 
36 Short 56.00 14.06 12.27 3.70 13.97 
37 Short 64.46 23.76 5.55 2.84 3.39 
38 Short 40.20 36.40 12.18 2.79 8.43 
39 Short 74.13 16.54 6.24 1.10 1.99 
40 Short 88.28 7.70 2.14 .68 1.20 
41 Short 83.80 10.67 3.11 .88 1.54 
42 Short 42.92 23.65 16.74 3.74 12.95 
43 Short 62.23 17.64 8.07 2.11 9.95 
44 Short 43.40 25.75 16.12 4.11 10.62 
45 Short 16.08 32.32 30.14 7.64 13.82 
46 Short 68.67 23.44 5.73 .89 1.27 
47 Short 77.11 12.27 8.87 .77 .98 
48 Short 68.29 14.55 13.94 1.29 1.93 
49 Short 25.50 50.88 16.26 3.42 3.94 
50 Short 66.24 20.39 9.24 1.02 3.11 
51 Short 67.40 14.39 4.84 2.98 10.39 
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52 Short 66.85 20.02 7.47 2.26 3.40 
53 Short 71.48 18.79 6.38 1.28 2.07 
54 Short 73.84 14.94 6.86 1.89 2.47 
55 Short 78.21 14.28 3.76 1.82 1.93 
56 Short 54.43 28.22 7.42 2.79 7.14 
57 Short 57.77 29.22 5.20 2.38 5.43 
58 Short 58.02 22.13 8.97 2.78 8.10 
59 Short 79.17 11.83 4.80 .96 3.24 
60 Short 68.49 17.05 8.21 2.04 4.21 
61 Short 25.57 30.66 30.54 3.21 10.02 
62 Short 26.65 27.37 21.83 5.67 18.48 
63 Short 48.79 29.78 13.94 2.52 4.97 
64 Short 33.88 25.87 22.72 2.57 14.96 
65 Short 35.79 40.41 16.41 1.49 5.90 
66 Short 32.86 28.16 16.66 5.69 16.63 
67 Short 43.00 23.27 13.68 3.16 16.89 
68 Short 49.77 19.01 12.60 3.83 14.79 
69 Short 33.68 33.36 13.82 7.84 11.30 
70 Short 46.65 23.32 13.63 4.94 11.46 
71 Short 37.46 23.51 29.42 3.79 5.82 
72 Short 38.59 20.12 27.96 3.38 9.95 
73 Short 38.45 20.35 26.36 4.67 10.17 
74 Short 31.83 26.71 29.65 4.94 6.87 
75 Short 38.79 18.49 25.27 4.50 12.95 
76 Short 63.74 18.71 7.96 3.49 6.10 
77 Short 59.73 10.11 8.68 13.17 8.31 
78 Short 57.74 9.14 10.67 6.41 16.04 
79 Short 82.88 5.25 4.66 2.30 4.91 
80 Short 43.77 13.42 18.39 7.07 17.35 
81 Short 34.95 21.02 12.16 7.18 24.69 
82 Short 50.95 7.95 12.11 5.21 23.78 
83 Short 37.73 15.80 7.52 2.19 36.76 
84 Short 36.28 17.61 27.35 6.60 12.16 
85 Short 33.01 16.72 5.57 4.10 40.60 
86 Short 52.67 17.83 12.26 4.18 13.06 
87 Short 50.11 10.40 13.34 2.25 23.90 
88 Short 47.36 7.46 7.88 3.72 33.58 
89 Short 81.65 8.45 5.39 1.52 2.99 
90 Short 47.59 22.76 16.56 4.01 9.08 
91 Short 69.73 8.19 14.78 2.49 4.81 
92 Short 72.53 13.64 9.38 1.42 3.03 
93 Short 84.24 9.20 4.37 .74 1.45 
94 Short 66.94 19.28 9.47 1.12 3.19 
95 Short 51.04 12.23 13.19 6.66 16.88 
96 Short 48.43 18.53 15.75 8.09 9.20 
97 Short 58.42 14.93 15.10 1.99 9.56 
98 Short 60.94 12.23 15.23 2.64 8.96 
99 Short 61.16 14.82 9.55 5.84 8.63 
100 Short 37.76 19.68 18.12 5.76 18.68 
101 Short 49.67 35.55 9.54 1.32 3.92 
102 Short 77.18 10.72 6.54 1.69 3.87 
103 Short 63.92 21.02 7.03 2.02 6.01 
104 Short 23.42 39.91 28.89 1.51 6.27 
105 Short 79.59 10.12 6.55 .75 2.99 
106 Short 66.49 19.12 7.84 1.74 4.81 
107 Short 65.29 14.57 12.37 1.68 6.09 
108 Short 79.89 9.90 5.42 1.87 2.92 
109 Short 69.65 19.08 5.42 1.31 4.54 
110 Short 78.52 13.00 4.54 1.11 2.83 
111 Short 49.64 21.17 18.73 1.87 8.59 
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112 Short 32.03 38.33 15.87 3.38 10.39 
113 Short 31.44 33.90 28.03 2.03 4.60 
114 Short 74.84 10.90 7.26 1.67 5.33 
115 Short 65.49 15.17 11.93 2.32 5.09 
116 Short 59.67 17.08 8.32 2.97 11.96 
117 Short 66.12 7.99 5.80 3.64 16.45 
118 Short 38.37 18.14 18.85 4.82 19.82 
119 Short 51.24 18.81 12.12 3.85 13.98 
120 Short 58.37 18.81 9.36 2.80 10.66 
121 Short 10.16 21.80 21.45 5.99 40.60 
122 Short 15.34 19.74 29.36 2.99 32.57 
123 Short 23.14 24.68 36.43 4.67 11.08 
124 Short 29.99 12.18 17.88 5.23 34.72 
125 Short 16.70 11.39 29.63 6.10 36.18 
126 Short 50.74 21.66 8.55 3.33 15.72 
127 Short 52.27 21.61 9.02 2.37 14.73 
128 Short 74.30 11.24 6.84 2.52 5.10 
129 Short 63.70 11.43 6.99 2.03 15.85 
130 Short 50.09 21.94 7.12 3.45 17.40 
131 Short 73.08 8.47 7.27 2.67 8.51 
132 Short 88.03 5.08 2.76 .98 3.15 
133 Short 74.79 8.50 5.65 3.78 7.28 
134 Short 86.42 4.00 3.25 1.09 5.24 
135 Short 74.81 8.50 6.83 2.62 7.24 
136 Short 92.50 4.69 1.68 .41 .72 
137 Short 82.75 7.75 5.08 2.15 2.27 
138 Short 93.38 4.65 1.07 .20 .70 
139 Short 94.35 3.00 1.68 .31 .66 
140 Short 92.91 5.16 .95 .42 .56 
141 Short 45.21 26.46 16.63 5.12 6.58 
142 Short 58.60 20.62 12.89 3.44 4.45 
143 Short 33.76 35.62 20.17 3.03 7.42 
144 Short 65.59 14.41 10.62 1.99 7.39 
145 Short 55.03 28.57 10.62 2.41 3.37 
146 Short 42.92 18.53 22.43 4.05 12.07 
147 Short 36.84 19.88 21.54 3.91 17.83 
148 Short 53.27 15.72 18.92 2.10 9.99 
149 Short 62.86 19.91 10.76 2.14 4.33 
150 Short 54.07 18.74 17.76 3.99 5.44 
151 Moderate 69.58 16.24 10.06 1.05 3.07 
152 Moderate 56.12 26.21 10.93 1.90 4.84 
153 Moderate 74.36 18.18 4.13 1.29 2.04 
154 Moderate 82.81 8.86 5.41 1.22 1.70 
155 Moderate 51.40 24.71 10.16 2.21 11.52 
156 Moderate 64.46 13.15 6.86 2.80 12.73 
157 Moderate 76.23 17.77 2.54 .78 2.68 
158 Moderate 51.88 23.95 8.82 3.37 11.98 
159 Moderate 40.96 15.22 11.75 7.79 24.28 
160 Moderate 48.89 13.75 12.57 4.38 20.41 
161 Moderate 42.50 26.96 17.96 3.64 8.94 
162 Moderate 38.95 20.37 25.85 5.47 9.36 
163 Moderate 40.89 19.47 23.34 5.21 11.09 
164 Moderate 46.58 22.08 19.15 3.28 8.91 
165 Moderate 40.65 30.83 18.29 3.07 7.16 
166 Moderate 43.59 27.35 11.05 1.68 16.33 
167 Moderate 33.42 23.16 18.89 4.78 19.75 
168 Moderate 63.97 15.91 8.73 3.33 8.06 
169 Moderate 20.86 17.16 19.09 11.64 31.25 
170 Moderate 33.02 25.48 14.03 3.88 23.59 
171 Moderate 83.71 6.54 7.07 1.07 1.61 
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172 Moderate 78.11 8.68 8.84 2.40 1.97 
173 Moderate 71.43 13.12 10.67 1.75 3.03 
174 Moderate 77.81 10.51 7.42 1.66 2.60 
175 Moderate 86.00 6.85 4.04 1.28 1.83 
176 Moderate 88.95 3.43 4.50 .58 2.54 
177 Moderate 26.34 18.37 31.25 4.79 19.25 
178 Moderate 88.78 3.14 4.08 1.09 2.91 
179 Moderate 26.90 16.21 31.26 7.77 17.86 
180 Moderate 28.19 24.65 19.35 6.56 21.25 
181 Moderate 30.76 17.57 22.82 10.20 18.65 
182 Moderate 47.47 11.63 19.88 5.44 15.58 
183 Moderate 29.85 11.36 26.15 10.48 22.16 
184 Moderate 36.03 9.21 24.19 7.19 23.38 
185 Moderate 35.19 11.67 22.31 8.60 22.23 
186 Moderate 35.50 37.27 12.97 3.52 10.74 
187 Moderate 31.02 26.96 16.57 4.72 20.73 
188 Moderate 39.94 28.40 13.81 3.24 14.61 
189 Moderate 37.93 30.52 14.74 3.38 13.43 
190 Moderate 64.62 22.63 6.87 2.27 3.61 
191 Moderate 39.04 22.51 18.68 6.32 13.45 
192 Moderate 38.66 21.23 20.73 3.93 15.45 
193 Moderate 25.31 19.79 32.04 3.64 19.22 
194 Moderate 48.08 15.60 18.62 3.09 14.61 
195 Moderate 69.25 15.01 6.15 1.50 8.09 
196 Moderate 10.10 51.61 16.82 3.64 17.83 
197 Moderate 9.94 29.45 37.19 6.50 16.92 
198 Moderate 15.73 42.49 28.34 4.13 9.31 
199 Moderate 14.65 44.08 23.66 4.35 13.26 
200 Moderate 8.13 31.57 42.00 3.95 14.35 
201 Moderate 62.67 24.19 6.82 2.47 3.85 
202 Moderate 82.16 8.82 5.17 1.10 2.75 
203 Moderate 81.94 12.17 3.31 1.02 1.56 
204 Moderate 82.76 6.58 4.28 .44 5.94 
205 Moderate 80.04 13.00 3.63 1.24 2.09 
206 Moderate 62.34 19.60 7.62 3.56 6.88 
207 Moderate 67.76 15.99 7.75 2.20 6.30 
208 Moderate 56.54 23.42 10.46 3.14 6.44 
209 Moderate 63.57 20.54 8.52 2.63 4.74 
210 Moderate 67.74 19.86 6.26 2.23 3.91 
211 Moderate 31.53 25.88 13.95 3.18 25.46 
212 Moderate 24.57 31.30 23.35 3.36 17.42 
213 Moderate 45.41 33.36 11.56 3.44 6.23 
214 Moderate 56.35 17.41 16.70 1.47 8.07 
215 Moderate 55.24 24.53 13.46 2.00 4.77 
216 Moderate 39.89 22.37 18.31 5.45 13.98 
217 Moderate 39.71 20.29 23.13 5.45 11.42 
218 Moderate 31.83 27.98 23.83 4.98 11.38 
219 Moderate 36.35 27.44 16.27 7.56 12.38 
220 Moderate 28.61 33.21 18.49 9.81 9.88 
221 Moderate 55.80 8.50 17.47 3.27 14.96 
222 Moderate 31.01 27.72 32.92 2.31 6.04 
223 Moderate 46.31 22.55 19.35 4.55 7.24 
224 Moderate 47.24 19.34 17.11 5.51 10.80 
225 Moderate 58.97 12.37 14.74 3.67 10.25 
226 Moderate 84.76 5.50 4.73 2.06 2.95 
227 Moderate 71.84 6.17 7.16 2.32 12.51 
228 Moderate 69.39 8.52 9.79 3.28 9.02 
229 Moderate 54.83 10.21 9.16 17.08 8.72 
230 Moderate 59.95 17.12 9.73 6.37 6.83 
231 Moderate 57.20 21.05 9.39 1.64 10.72 
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232 Moderate 59.70 17.13 7.06 6.35 9.76 
233 Moderate 58.41 14.86 6.92 3.94 15.87 
234 Moderate 47.36 17.83 10.76 5.20 18.85 
235 Moderate 29.20 38.40 8.78 4.58 19.04 
236 Moderate 64.72 7.38 6.74 3.67 17.49 
237 Moderate 77.23 4.54 3.71 2.37 12.15 
238 Moderate 73.92 6.13 4.59 1.77 13.59 
239 Moderate 85.13 4.66 5.14 1.35 3.72 
240 Moderate 53.19 8.25 7.42 3.68 27.46 
241 Moderate 42.96 33.42 13.67 3.57 6.38 
242 Moderate 66.19 13.87 13.18 2.10 4.66 
243 Moderate 64.78 16.39 10.77 2.17 5.89 
244 Moderate 55.11 20.32 16.91 1.62 6.04 
245 Moderate 41.16 27.54 22.42 1.97 6.91 
246 Moderate 39.15 17.24 20.44 3.60 19.57 
247 Moderate 45.67 20.83 16.53 2.15 14.82 
248 Moderate 29.81 22.45 26.18 5.21 16.35 
249 Moderate 47.70 20.83 12.58 7.28 11.61 
250 Moderate 48.37 21.32 16.83 3.53 9.95 
251 Moderate 60.27 14.91 14.19 3.48 7.15 
252 Moderate 80.18 6.40 5.91 2.32 5.19 
253 Moderate 49.35 18.16 7.34 2.60 22.55 
254 Moderate 84.72 7.95 4.12 .89 2.32 
255 Moderate 26.44 12.65 23.78 4.84 32.29 
256 Moderate 55.33 12.52 16.66 4.68 10.81 
257 Moderate 72.60 16.22 6.71 .88 3.59 
258 Moderate 81.18 8.46 7.07 1.03 2.26 
259 Moderate 84.38 7.34 5.80 .78 1.70 
260 Moderate 67.66 23.55 4.74 1.55 2.50 
261 Moderate 35.92 31.18 20.00 2.99 9.91 
262 Moderate 55.15 24.34 8.71 3.75 8.05 
263 Moderate 69.87 16.59 7.26 2.55 3.73 
264 Moderate 72.09 8.05 9.00 1.17 9.69 
265 Moderate 61.74 20.33 9.29 2.84 5.80 
266 Moderate 50.55 17.74 12.73 4.56 14.42 
267 Moderate 61.68 13.35 8.85 3.78 12.34 
268 Moderate 68.37 16.36 5.69 2.77 6.81 
269 Moderate 42.57 14.74 21.10 5.62 15.97 
270 Moderate 80.32 6.28 3.55 1.44 8.41 
271 Moderate 40.30 25.39 15.88 3.39 15.04 
272 Moderate 38.69 11.73 26.13 5.23 18.22 
273 Moderate 62.83 18.21 13.26 1.87 3.83 
274 Moderate 30.49 30.23 27.47 3.51 8.30 
275 Moderate 25.83 8.20 21.22 9.38 35.37 
276 Moderate 70.75 11.50 11.10 1.72 4.93 
277 Moderate 82.08 6.69 4.43 2.28 4.52 
278 Moderate 86.04 3.79 3.70 2.39 4.08 
279 Moderate 84.75 5.32 4.45 1.44 4.04 
280 Moderate 88.81 3.92 1.87 1.16 4.24 
281 Moderate 90.76 5.18 2.29 .65 1.12 
282 Moderate 75.68 13.27 5.95 2.16 2.94 
283 Moderate 83.54 7.81 4.93 1.02 2.70 
284 Moderate 90.88 4.17 2.37 .90 1.68 
285 Moderate 83.20 8.98 5.93 .69 1.20 
286 Moderate 45.77 28.70 19.35 1.71 4.47 
287 Moderate 54.86 18.97 16.67 2.06 7.44 
288 Moderate 54.92 25.73 14.75 1.61 2.99 
289 Moderate 46.05 28.39 17.55 2.62 5.39 
290 Moderate 57.17 19.39 10.64 2.82 9.98 
291 Moderate 67.29 9.34 8.72 2.85 11.80 
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292 Moderate 63.81 18.15 5.88 3.39 8.77 
293 Moderate 56.98 16.40 11.40 3.32 11.90 
294 Moderate 54.49 19.00 14.11 3.44 8.96 
295 Long 59.25 23.32 12.43 1.81 3.19 
296 Long 64.09 14.27 11.98 1.29 8.37 
297 Long 72.08 15.85 7.90 1.31 2.86 
298 Long 49.23 27.87 10.37 2.40 10.13 
299 Long 61.29 16.04 13.38 2.49 6.80 
300 Long 61.78 11.02 14.83 3.03 9.34 
301 Long 57.64 11.18 15.02 4.47 11.69 
302 Long 81.54 6.38 5.99 1.41 4.68 
303 Long 32.26 21.30 21.63 5.43 19.38 
304 Long 48.69 6.52 10.47 3.19 31.13 
305 Long 34.66 35.15 14.56 3.48 12.15 
306 Long 36.69 34.67 10.66 4.22 13.76 
307 Long 64.78 20.87 7.54 1.65 5.16 
308 Long 54.77 26.80 7.25 3.29 7.89 
309 Long 68.44 16.31 6.61 2.37 6.27 
310 Long 57.27 20.40 8.55 3.85 9.93 
311 Long 64.65 18.91 6.63 2.32 7.49 
312 Long 41.65 13.58 23.31 4.87 16.59 
313 Long 50.58 18.53 15.21 2.09 13.59 
314 Long 69.33 13.86 7.01 3.31 6.49 
315 Long 83.41 10.55 2.94 .94 2.16 
316 Long 66.62 17.99 7.18 1.96 6.25 
317 Long 45.57 23.34 18.47 3.10 9.52 
318 Long 66.15 18.51 9.09 2.33 3.92 
319 Long 76.01 11.35 6.96 2.51 3.17 
320 Long 66.47 14.60 11.74 2.77 4.42 
321 Long 50.17 11.41 7.82 2.87 27.73 
322 Long 39.31 26.53 16.03 2.96 15.17 
323 Long 70.26 11.36 8.43 1.58 8.37 
324 Long 63.93 11.18 10.74 1.82 12.33 
325 Long 55.35 17.26 10.33 3.48 13.58 
326 Long 19.12 20.55 28.79 5.10 26.44 
327 Long 23.20 16.63 25.36 6.58 28.23 
328 Long 32.88 15.53 24.55 2.20 24.84 
329 Long 26.09 13.02 36.58 5.12 19.19 
330 Long 12.69 21.80 39.62 5.13 20.76 
331 Long 34.68 24.64 28.71 4.30 7.67 
332 Long 45.66 16.34 28.56 2.52 6.92 
333 Long 53.55 13.53 19.61 4.78 8.53 
334 Long 81.14 5.77 5.70 2.37 5.02 
335 Long 39.08 22.21 11.96 5.35 21.40 
336 Long 57.27 14.57 10.88 3.07 14.21 
337 Long 60.35 5.85 7.51 7.28 19.01 
338 Long 60.64 12.06 8.86 4.37 14.07 
339 Long 86.66 3.42 1.61 1.20 7.11 
340 Long 79.86 10.35 6.60 .58 2.61 
341 Long 74.96 9.39 10.67 1.68 3.30 
342 Long 50.19 29.00 14.59 1.06 5.16 
343 Long 51.19 11.83 14.78 3.58 18.62 
344 Long 81.98 8.88 6.51 .82 1.81 
345 Long 46.92 21.10 11.78 6.07 14.13 
346 Long 59.80 5.43 7.93 3.65 23.19 
347 Long 76.81 8.08 6.16 1.35 7.60 
348 Long 74.68 14.21 7.51 1.28 2.32 
349 Long 91.88 1.46 1.52 1.17 3.97 
350 Long 85.77 9.81 2.94 .39 1.09 
351 Long 73.85 14.54 6.50 1.64 3.47 
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352 Long 83.25 8.10 3.58 1.06 4.01 
353 Long 67.60 9.17 4.40 1.66 17.17 
354 Long 63.69 11.78 6.35 1.39 16.79 
355 Long 49.10 31.18 11.34 3.21 5.17 
356 Long 46.34 14.58 13.29 5.62 20.17 
357 Long 51.84 16.99 11.95 4.80 14.42 
358 Long 49.13 12.52 13.17 4.17 21.01 
359 Long 31.40 18.69 21.00 5.77 23.14 
360 Long 56.43 3.68 5.37 3.50 31.02 
361 Long 60.61 9.86 6.32 .92 22.29 
362 Long 74.18 9.65 8.19 1.94 6.04 
363 Long 92.49 3.64 1.63 .50 1.74 
364 Long 89.64 3.94 3.67 .61 2.14 
365 Long 88.59 4.12 3.44 .72 3.13 
366 Long 85.09 4.45 4.12 1.58 4.76 
367 Long 77.16 8.48 2.14 .78 11.44 
368 Long 87.05 5.51 4.10 1.52 1.82 
369 Long 83.70 7.03 4.38 .77 4.12 
370 Long 89.55 6.39 2.47 .29 1.30 
371 Long 53.26 21.52 16.21 1.65 7.36 
372 Long 53.68 13.21 11.22 2.36 19.53 
373 Long 74.02 14.48 8.24 .92 2.34 
374 Long 67.73 14.14 7.88 2.29 7.96 
375 Long 67.49 13.90 9.19 2.68 6.74 
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Appendix F 

Sleep states and apnea types with varying apnea duration 

Apnea event number Apnea duration groups Sleep states Apnea types 
1 Short NREM - OSA - - 
2 Short NREM - - CSA - 
3 Short NREM - - CSA - 
4 Short NREM - - CSA - 
5 Short NREM - - CSA - 
6 Short - REM - CSA - 
7 Short - REM - CSA - 
8 Short - REM - CSA - 
9 Short - REM - CSA - 
10 Short NREM - - CSA - 
11 Short NREM - OSA - - 
12 Short - REM OSA - - 
13 Short - REM OSA - - 
14 Short - REM OSA - - 
15 Short NREM - - CSA - 
16 Short NREM - OSA - - 
17 Short NREM - OSA - - 
18 Short NREM - OSA - - 
19 Short NREM - OSA - - 
20 Short NREM - OSA - - 
21 Short NREM - OSA - - 
22 Short NREM - OSA - - 
23 Short NREM - - CSA - 
24 Short NREM - OSA - - 
25 Short NREM - - CSA - 
26 Short NREM - OSA - - 
27 Short NREM - OSA - - 
28 Short NREM - OSA - - 
29 Short NREM - OSA - - 
30 Short - REM OSA - - 
31 Short NREM - OSA - - 
32 Short NREM - - CSA - 
33 Short NREM - - CSA - 
34 Short NREM - - CSA - 
35 Short NREM - - CSA - 
36 Short NREM - - CSA - 
37 Short NREM - - CSA - 
38 Short NREM - - CSA - 
39 Short NREM - - CSA - 
40 Short NREM - - CSA - 
41 Short NREM - OSA - - 
42 Short - REM OSA - - 
43 Short - REM OSA - - 
44 Short - REM OSA - - 
45 Short NREM - OSA - - 
46 Short NREM - OSA - - 
47 Short NREM - OSA - - 
48 Short NREM - OSA - - 
49 Short NREM - OSA - - 
50 Short NREM - OSA - - 
51 Short NREM - OSA - - 
52 Short NREM - OSA - - 
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53 Short NREM - OSA - - 
54 Short NREM - OSA - - 
55 Short NREM - OSA -  
56 Short NREM - OSA - - 
57 Short NREM - OSA - - 
58 Short NREM - OSA - - 
59 Short NREM - OSA - - 
60 Short NREM - OSA - - 
61 Short NREM - OSA - - 
62 Short NREM - - CSA - 
63 Short NREM - - CSA - 
64 Short NREM - - CSA - 
65 Short NREM - - CSA - 
66 Short NREM - OSA - - 
67 Short NREM - OSA - - 
68 Short NREM - OSA - - 
69 Short NREM - OSA - - 
70 Short NREM - OSA - - 
71 Short - REM OSA - - 
72 Short - REM OSA - - 
73 Short - REM OSA - - 
74 Short - REM OSA - - 
75 Short - REM OSA - - 
76 Short NREM - OSA - - 
77 Short NREM - - CSA - 
78 Short NREM - - CSA - 
79 Short NREM - - CSA - 
80 Short NREM - - CSA - 
81 Short NREM - OSA - - 
82 Short NREM - OSA - - 
83 Short NREM - OSA - - 
84 Short NREM - OSA - - 
85 Short NREM - OSA - - 
86 Short NREM - - CSA - 
87 Short NREM - - CSA - 
88 Short NREM - - CSA - 
89 Short NREM - OSA - - 
90 Short NREM - OSA - - 
91 Short NREM - OSA - - 
92 Short NREM - OSA - - 
93 Short NREM - OSA - - 
94 Short NREM - OSA - - 
95 Short NREM - OSA - - 
96 Short NREM - OSA - - 
97 Short NREM - OSA - - 
98 Short - REM OSA - - 
99 Short - REM OSA - - 
100 Short - REM - CSA - 
101 Short NREM - - CSA - 
102 Short NREM - - CSA - 
103 Short NREM - OSA - - 
104 Short NREM - - CSA - 
105 Short NREM - - CSA - 
106 Short NREM - - CSA - 
107 Short NREM - OSA - - 
108 Short NREM - OSA - - 
109 Short NREM - - CSA - 
110 Short - REM - CSA - 
111 Short NREM - - CSA - 
112 Short NREM - OSA - - 
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113 Short NREM - OSA - - 
114 Short NREM - OSA - - 
115 Short NREM - OSA - - 
116 Short NREM - - CSA - 
117 Short NREM - OSA - - 
118 Short - REM OSA - - 
119 Short NREM - OSA - - 
120 Short NREM - OSA - - 
121 Short NREM - OSA - - 
122 Short - REM OSA - - 
123 Short - REM OSA - - 
124 Short - REM OSA - - 
125 Short NREM - OSA - - 
126 Short - REM OSA - - 
127 Short - REM OSA - - 
128 Short NREM - - CSA - 
129 Short - REM OSA - - 
130 Short - REM OSA - - 
131 Short NREM - OSA - - 
132 Short NREM - OSA - - 
133 Short NREM - OSA - - 
134 Short NREM - OSA - - 
135 Short NREM - OSA - - 
136 Short NREM - OSA - - 
137 Short NREM - OSA - - 
138 Short NREM - OSA - - 
139 Short NREM - OSA - - 
140 Short NREM - OSA - - 
141 Short NREM - OSA - - 
142 Short NREM - OSA - - 
143 Short NREM - OSA - - 
144 Short NREM - OSA - - 
145 Short NREM - OSA - - 
146 Short NREM - OSA - - 
147 Short NREM - OSA - - 
148 Short NREM - OSA - - 
149 Short NREM - OSA - - 
150 Short NREM - OSA - - 
151 Moderate NREM - - CSA - 
152 Moderate NREM - - CSA - 
153 Moderate NREM - - CSA - 
154 Moderate NREM - OSA - - 
155 Moderate NREM - OSA - - 
156 Moderate - REM - CSA - 
157 Moderate - REM - CSA - 
158 Moderate - REM - CSA - 
159 Moderate - REM - CSA - 
160 Moderate - REM - CSA - 
161 Moderate - REM OSA - - 
162 Moderate - REM OSA - - 
163 Moderate - REM OSA - - 
164 Moderate - REM OSA - - 
165 Moderate NREM  OSA - - 
166 Moderate - REM OSA - - 
167 Moderate - REM OSA - - 
168 Moderate NREM - OSA - - 
169 Moderate NREM - OSA - - 
170 Moderate NREM - OSA - - 
171 Moderate NREM - - CSA - 
172 Moderate NREM - OSA - - 
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173 Moderate NREM - OSA - - 
174 Moderate NREM - OSA - - 
175 Moderate NREM - OSA - - 
176 Moderate - REM OSA - - 
177 Moderate - REM OSA - - 
178 Moderate - REM OSA - - 
179 Moderate - REM OSA - - 
180 Moderate - REM OSA - - 
181 Moderate NREM - - CSA - 
182 Moderate NREM - OSA - - 
183 Moderate NREM - - CSA - 
184 Moderate NREM - - CSA - 
185 Moderate NREM - - CSA - 
186 Moderate NREM - - CSA - 
187 Moderate NREM - - CSA - 
188 Moderate NREM - OSA - - 
189 Moderate NREM - - CSA - 
190 Moderate NREM - OSA - - 
191 Moderate - REM OSA - - 
192 Moderate - REM - CSA - 
193 Moderate - REM OSA - - 
194 Moderate - REM OSA - - 
195 Moderate - REM OSA - - 
196 Moderate - REM OSA - - 
197 Moderate - REM OSA - - 
198 Moderate NREM - OSA - - 
199 Moderate NREM - OSA - - 
200 Moderate NREM - OSA - - 
201 Moderate NREM - OSA - - 
202 Moderate NREM - OSA - - 
203 Moderate NREM - OSA - - 
204 Moderate NREM - OSA - - 
205 Moderate NREM - OSA - - 
206 Moderate NREM - OSA - - 
207 Moderate NREM - OSA - - 
208 Moderate NREM - OSA - - 
209 Moderate NREM - OSA - - 
210 Moderate NREM - OSA - - 
211 Moderate NREM - - CSA - 
212 Moderate NREM - - CSA - 
213 Moderate NREM - - CSA - 
214 Moderate NREM - - CSA - 
215 Moderate NREM - - CSA - 
216 Moderate NREM - OSA - - 
217 Moderate NREM - OSA - - 
218 Moderate NREM - OSA - - 
219 Moderate NREM - OSA - - 
220 Moderate NREM - OSA - - 
221 Moderate - REM OSA - - 
222 Moderate - REM OSA - - 
223 Moderate - REM OSA - - 
224 Moderate - REM OSA - - 
225 Moderate - REM OSA - - 
226 Moderate NREM - - CSA - 
227 Moderate NREM - - CSA - 
228 Moderate NREM - - CSA - 
229 Moderate NREM - - CSA - 
230 Moderate NREM - - CSA - 
231 Moderate NREM - OSA - - 
232 Moderate - REM OSA - - 
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233 Moderate - REM OSA - - 
234 Moderate - REM OSA - - 
235 Moderate - REM OSA - - 
236 Moderate NREM - - CSA - 
237 Moderate NREM - OSA - - 
238 Moderate NREM - OSA - - 
239 Moderate NREM - OSA - - 
240 Moderate NREM - OSA - - 
241 Moderate - REM OSA - - 
242 Moderate - REM OSA - - 
243 Moderate - REM OSA - - 
244 Moderate - REM OSA - - 
245 Moderate NREM - OSA - - 
246 Moderate NREM - OSA - - 
247 Moderate NREM - OSA - - 
248 Moderate - REM OSA - - 
249 Moderate - REM OSA - - 
250 Moderate NREM - OSA - - 
251 Moderate NREM - OSA - - 
252 Moderate NREM - OSA - - 
253 Moderate NREM - OSA - - 
254 Moderate NREM - OSA - - 
255 Moderate - REM OSA - - 
256 Moderate NREM - OSA - - 
257 Moderate NREM - OSA - - 
258 Moderate NREM - OSA - - 
259 Moderate NREM - OSA - - 
260 Moderate NREM - OSA - - 
261 Moderate NREM - OSA - - 
262 Moderate NREM - OSA - - 
263 Moderate NREM - OSA - - 
264 Moderate NREM - OSA - - 
265 Moderate NREM - OSA - - 
266 Moderate - REM OSA - - 
267 Moderate NREM - OSA - - 
268 Moderate NREM - OSA - - 
269 Moderate - REM OSA - - 
270 Moderate NREM - OSA - - 
271 Moderate NREM - OSA - - 
272 Moderate NREM - OSA - - 
273 Moderate NREM - OSA - - 
274 Moderate NREM - OSA - - 
275 Moderate NREM - OSA - - 
276 Moderate NREM - OSA - - 
277 Moderate NREM - OSA - - 
278 Moderate NREM - OSA - - 
279 Moderate NREM - OSA - - 
280 Moderate NREM - OSA - - 
281 Moderate NREM - OSA - - 
282 Moderate NREM - OSA - - 
283 Moderate NREM - OSA - - 
284 Moderate NREM - OSA - - 
285 Moderate NREM - OSA - - 
286 Moderate - REM OSA - - 
287 Moderate NREM - OSA - - 
288 Moderate NREM - OSA - - 
289 Moderate NREM - OSA - - 
290 Moderate NREM - OSA - - 
291 Moderate NREM - OSA - - 
292 Moderate NREM - OSA - - 
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293 Moderate NREM - OSA - - 
294 Moderate NREM - OSA - - 
295 Long NREM - OSA - - 
296 Long NREM - OSA - - 
297 Long NREM - OSA - - 
298 Long NREM - OSA - - 
299 Long NREM - OSA - - 
300 Long NREM - OSA - - 
301 Long NREM - OSA - - 
302 Long - REM OSA - - 
303 Long - REM OSA - - 
304 Long - REM OSA - - 
305 Long NREM - OSA - - 
306 Long NREM - OSA - - 
307 Long NREM - OSA - - 
308 Long NREM - OSA - - 
309 Long NREM - OSA - - 
310 Long - REM OSA - - 
311 Long - REM OSA - - 
312 Long - REM OSA - - 
313 Long NREM - OSA - - 
314 Long - REM OSA - - 
315 Long NREM - OSA - - 
316 Long NREM - OSA - - 
317 Long NREM - OSA - - 
318 Long NREM - OSA - - 
319 Long NREM - OSA - - 
320 Long NREM - OSA - - 
321 Long - REM OSA - - 
322 Long NREM - OSA - - 
323 Long NREM - OSA - - 
324 Long NREM - OSA - - 
325 Long NREM - OSA - - 
326 Long NREM - OSA - - 
327 Long NREM - OSA - - 
328 Long NREM - OSA - - 
329 Long NREM - OSA - - 
330 Long NREM - OSA - - 
331 Long - REM OSA - - 
332 Long - REM OSA - - 
333 Long - REM OSA - - 
334 Long NREM - OSA - - 
335 Long - REM OSA - - 
336 Long - REM OSA - - 
337 Long - REM OSA - - 
338 Long - REM OSA - - 
339 Long - REM OSA - - 
340 Long - REM OSA - - 
341 Long - REM OSA - - 
342 Long - REM OSA - - 
343 Long - REM OSA - - 
344 Long NREM - OSA - - 
345 Long - REM OSA - - 
346 Long NREM - OSA - - 
347 Long NREM - OSA - - 
348 Long NREM - OSA - - 
349 Long NREM - OSA - - 
350 Long NREM - OSA - - 
351 Long NREM - OSA - - 
352 Long NREM - OSA - - 
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353 Long NREM - OSA - - 
354 Long NREM - OSA - - 
355 Long NREM - OSA - - 
356 Long - REM OSA - - 
357 Long - REM OSA - - 
358 Long - REM OSA - - 
359 Long NREM - OSA - - 
360 Long NREM - OSA - - 
361 Long - REM OSA - - 
362 Long NREM - OSA - - 
363 Long NREM - OSA - - 
364 Long NREM - OSA - - 
365 Long NREM - OSA - - 
366 Long NREM - OSA - - 
367 Long - REM OSA - - 
368 Long NREM - OSA - - 
369 Long - REM OSA - - 
370 Long - REM OSA - - 
371 Long NREM - OSA - - 
372 Long NREM - OSA - - 
373 Long NREM - OSA - - 
374 Long NREM - OSA - - 
375 Long - REM OSA - - 
NREM: Non-rapid eye movement, REM: Rapid eye movement, OSA: Obstructive sleep apnea, CSA: Central sleep 
apnea. 
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Appendix G 

Demographics and scoring details of the mentioned one thousand PSG records 

Record 
ID 

Age 
(years) 

BMI 
(kg/m2) 

Gender TRT 
(min) 

TST 
(min) 

AHI 

(event/h) 
200001 55 21.78 1 542 375.5 6.23 
200002 78 32.95 1 540 182 38.24 
200003 77 24.11 2 525 358.5 9.37 
200004 48 20.19 1 438 301 5.18 
200005 66 23.31 2 542 370 7.46 
200006 63 27.15 1 542 387 6.67 
200007 52 29.98 1 460 332.5 15.88 
200008 63 25.23 2 480 335 4.12 
200009 69 25.82 1 543 351.5 37.55 
200010 40 27.84 1 542 415.5 2.02 
200011 53 29.00 2 495 371.5 9.53 
200012 68 25.40 1 482 311.5 28.70 
200013 66 27.14 1 543 238.5 18.36 
200014 75 30.80 1 543 367.5 24.16 
200015 58 23.94 2 480 251 38.49 
200016 60 29.48 1 543 367.5 12.24 
200017 58 25.42 1 475 367.5 4.08 
200018 57 26.58 1 542 305.5 19.05 
200019 65 24.14 1 543 229.5 2.88 
200020 62 37.03 1 539 289 44.64 
200021 81 20.31 1 536 337 6.41 
200022 62 29.90 1 540 307.5 21.66 
200023 59 22.23 2 474 368 7.34 
200024 48 34.58 1 465 264.5 26.99 
200025 67 39.99 1 455 296.5 19.22 
200026 78 25.78 2 540 326.5 24.81 
200027 61 27.40 1 510 327.5 12.82 
200028 56 34.03 1 462 368.5 19.38 
200029 56 23.29 1 541 350.5 12.15 
200030 66 27.47 2 543 243 17.04 
200031 60 23.59 1 470 407 12.38 
200032 67 23.08 1 483 307 43.78 
200033 56 22.85 1 180 147 6.94 
200034 71 22.94 2 435 315 7.62 
200035 60 25.93 1 542 373 51.96 
200036 67 29.19 1 495 397.5 1.21 
200037 60 25.70 1 469 412 35.24 
200038 70 28.40 1 421 264.5 56.71 
200039 69 20.70 2 480 386 1.87 
200040 53 29.59 1 480 327 25.87 
200041 63 20.34 2 508 262.5 7.54 
200042 69 23.09 2 543 362 11.27 
200043 48 20.23 1 420 385.5 17.90 
200044 58 18.00 2 542 341 1.76 
200045 71 25.53 1 523 332 14.28 
200046 53 25.55 1 542 400 5.55 
200047 47 28.79 2 480 447.5 11.93 
200048 53 29.67 2 543 301.5 2.99 
200049 53 26.26 2 542 409 10.42 
200050 66 23.11 1 543 380 20.37 
200051 73 24.13 2 480 357.5 7.72 
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200052 57 22.58 2 510 424.5 1.70 
200053 68 25.68 2 543 382 4.55 
200054 58 28.07 1 475 353 14.96 
200055 71  1 543 210.5 5.42 
200056 67 24.64 2 508 431.5 6.40 
200057 49 37.52 1 542 310.5 27.25 
200058 59 24.98 1 542 362.5 5.96 
200059 66 28.74 1 374 278 50.72 
200060 68 30.59 1 543 332 27.47 
200061 60 22.58 2 442 398 17.64 
200062 60  1 419 320.5 8.99 
200063 64 27.01 2 542 337.5 21.87 
200064 73 25.59 1 487 254 22.44 
200065 75 23.41 1 543 380 17.53 
200066 53 33.83 2 521 180 6.33 
200067 71 25.16 1 480 288.5 9.15 
200068 57 28.16 2 480 325 1.66 
200069 67 23.43 1 543 459.5 1.57 
200070 70 26.73 1 542 308.5 52.32 
200071 50 31.17 1 542 333.5 11.69 
200072 66 23.64 1 543 363 13.06 
200073 53 22.27 2 542 375 5.12 
200074 43 39.61 1 510 360.5 64.58 
200075 68 29.67 2 430 273.5 13.38 
200076 83 23.00 1 535 200 12.30 
200077 41 23.66 1 535 398.5 19.42 
200078 54 28.28 1 480 265 19.02 
200079 56 32.29 2 480 305 11.61 
200080 54 33.96 1 488 429.5 29.90 
200081 40 25.40 2 534 393.5 2.13 
200082 40 29.07 1 535 415.5 5.49 
200083 54 34.16 1 420 395.5 12.59 
200084 51 35.94 2 527 448 13.93 
200085 67 33.59 2 360 173.5 17.29 
200086 68 26.13 1 255 187.5 6.72 
200087 67 26.80 2 450 369 6.02 
200088 44 24.90 1 457 426.5 5.49 
200089 42 28.13 2 457 405.5 9.03 
200090 40 31.01 1 480 363 12.40 
200091             
200092 53 26.46 1 451 384.5 4.68 
200093 47 21.70 2 494 395.5 16.54 
200094 79 25.17 1 510 169.5 29.73 
200095 54 29.39 1 462 385 9.35 
200096 61 35.22 1 525 376 57.29 
200097 41 24.42 2 528 404 0.89 
200098 78 26.90 2 526 136.5 18.90 
200099 83 24.18 1 453 310 15.10 
200100             
200101 53 32.78 1 421 368.5 31.42 
200102 47 29.66 2 528 410.5 11.84 
200103 51 31.31 1 520 412 18.79 
200104 71 28.31 2 481 199.5 6.62 
200105 53 25.98 1 304 256 2.11 
200106 54 21.73 1 525 383 3.29 
200107 66 21.89 1 480 446 20.31 
200108             
200109 71 24.16 2 526 393 3.51 
200110 58 27.58 1 450 388 13.76 
200111 65 23.80 2 480 197.5 9.11 
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200112 48 26.42 1 535 364.5 2.63 
200113 69 33.71 1 510 367 81.09 
200114 76 26.03 2 510 446 10.63 
200115 44 22.09 2 450 351.5 8.53 
200116 83 23.05 2 527 446.5 28.22 
200117 43 23.36 2 534 421.5 5.41 
200118 70 26.99 1 542 291.5 58.66 
200119 64 23.13 1 432 287.5 3.55 
200120 68 34.24 2 428 253 12.33 
200121 51 30.00 2 489 388 10.98 
200122 43 21.41 2 530 445.5 0.67 
200123 49 22.13 2 534 371 6.31 
200124 77 29.14 1 527 280.5 24.60 
200125 48 26.40 2 535 432 18.47 
200126 40 20.93 2 510 362.5 8.94 
200127 77 22.29 2 450 127.5 7.06 
200128 72 28.44 1 511 397.5 21.13 
200129 40 22.68 2 535 350.5 3.42 
200130 52 40.72 2 534 462.5 19.07 
200131 55 25.39 1 535 449 22.58 
200132 74 26.78 1 464 298.5 6.43 
200133 74 36.03 2 527 375 16.00 
200134 58 22.47 1 535 339 13.98 
200135 53 26.64 2 535 346 2.43 
200136 51 36.95 1 527 468 58.97 
200137 45 42.90 2 500 392 18.06 
200138 57 29.32 1 480 352 44.32 
200139 69 26.54 1 515 409.5 4.69 
200140 72 29.48 2 480 295 20.54 
200141 54 21.23 2 460 362 0.33 
200142 40 19.72 2 467 432 14.44 
200143 43 24.78 1 525 450.5 12.52 
200144 63 29.07 1 535 360 20.50 
200145 69 20.21 2 463 391.5 14.25 
NR             
200147 51 30.71 1 535 357.5 7.05 
200148 41 24.38 1 535 392 10.56 
200149 45 24.38 2 509 301.5 1.79 
200150 75 24.00 2 527 351 14.02 
200151 49 22.17 2 535 383.5 8.92 
200152 43 27.96 2 535 438.5 2.87 
200153 46 22.39 1 535 193 22.69 
200154 50 25.88 2 534 373.5 16.39 
200155 49 25.76 1 535 128 54.84 
200156 43 28.02 1 425 346 13.87 
200157 40 31.02 2 535 364 12.86 
200158             
200159 75 32.08 2 523 285.5 10.93 
200160 59 22.51 2 510 452 5.84 
200161 68 29.79 1 527 215 17.02 
200162 69 25.52 2 526 243.5 3.20 
200163 66 45.83 2 535 375.5 21.89 
200164 40 28.28 2 480 387.5 4.03 
200165 48 26.42 1 445 379.5 9.64 
200166 43 20.20 1 525 423 2.84 
200167 40 39.62 1 534 414 15.07 
200168 62 18.89 2 510 476 1.01 
200169 49 23.95 2 534 485 5.32 
200170 52 23.05 2 510 292.5 9.44 
200171 51 29.75 1 390 310.5 21.06 
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200172 49 23.17 2 390 353 15.81 
200173             
200174 45 21.07 2 535 454 2.64 
200175             
200176 47 27.51 2 535 387 11.32 
200177 47 30.83 1 535 346 7.98 
200178 51 26.80 2 535 452.5 1.72 
200179 73 24.77 2 525 444.5 15.66 
200180 57 29.07 1 522 435 12.83 
200181 54 25.39 2 493 344 9.77 
200182 48 25.52 1 405 300.5 14.98 
200183 67 31.25 1 535 340.5 57.44 
200184 66 25.64 2 535 381.5 8.65 
200185 50 33.58 1 480 175.5 20.51 
200186 50 18.00 2 479 342 2.28 
200187 45 50.00 2 535 387 9.77 
200188 72 29.26 2 535 427.5 16.00 
200189 63 34.02 1 513 318 77.74 
200190 78 18.97 2 480 202 23.17 
200191 80 22.94 2 490 272.5 12.11 
200192 78 27.49 1 489 206.5 40.10 
200193 54 28.13 1 500 406 39.46 
200194 41 26.72 2 469 409 8.80 
200195 45 33.80 1 535 322.5 20.28 
200196 41 23.35 1 535 382 3.30 
200197 40 26.79 1 535 307.5 17.17 
200198 40 22.77 2 532 376 6.70 
200199 55 40.88 2 480 393.5 34.31 
200200 69 31.82 1 510 143.5 8.36 
200201 62 28.60 2 480 291 9.90 
200202 78 24.08 2 535 292.5 9.23 
200203 61 26.88 1 540 361 5.65 
200204 71 27.47 1 466 292 13.77 
200205 49 22.06 2 542 346.5 8.83 
200206 73 25.97 2 444 361.5 32.20 
200207 64 26.08 1 480 318.5 5.27 
200208 61 27.33 2 480 289.5 14.92 
200209 68 31.21 1 450 348 55.69 
200210 65 21.27 2 450 289 2.28 
200211 40 28.00 1 510 375.5 28.92 
200212 50 26.52 1 495 320.5 26.02 
200213 47 24.91 1 510 416 5.19 
200214 44 24.77 2 534 467 1.80 
200215 47 25.07 2 484 409 1.76 
200216 48 27.63 1 535 462.5 12.06 
200217 52 24.24 2 535 404.5 7.86 
200218 51 22.94 1 420 366.5 7.37 
200219 51 29.55 2 420 276 8.70 
200220 84 26.64 2 535 327 44.22 
200221 66 29.90 1 463 367 28.94 
200222 43 24.91 1 512 249.5 21.64 
200223 49 22.40 1 480 325 4.43 
200224 50 30.76 2 480 277 1.52 
200225 55 40.35 1 510 310 25.16 
200226 47 41.31 2 510 392.5 19.11 
200227 47 25.07 2 519 440.5 13.08 
200228 67 27.78 1 525 367 3.60 
200229 54 31.47 2 480 331.5 24.25 
200230 57 29.68 1 447 340 54.71 
200231 44 25.34 1 450 299.5 11.82 
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200232 51 34.53 2 450 311 65.21 
200233             
200234 58 42.30 2 450 272 34.85 
200235 76 23.46 1 542 201.5 47.64 
200236 78 24.11 2 542 344 24.94 
200237 60 33.23 1 454 314 42.04 
200238 76 25.22 1 543 323.5 27.26 
200239 52 19.57 2 543 322.5 0.74 
200240 70 24.14 1 537 391 11.36 
200241 75 24.53 2 480 337.5 14.76 
200242 55 27.77 1 437 341 21.29 
200243 54 31.25 2 525 412 19.37 
200244 57 25.39 1 514 400.5 10.34 
200245 69 26.46 1 538 478 33.51 
NR             
200247 64 30.09 1 511 453.5 53.45 
200248 64 23.60 1 540 332.5 34.29 
200249 62 21.95 2 480 315 1.90 
200250 59 25.26 2 543 408.5 35.40 
200251 60 23.40 2 473 432 3.89 
200252 65 32.12 2 542 154 14.81 
200253 57 26.94 1 533 313 14.38 
200254 71 30.22 2 491 325.5 11.24 
200255 64 25.72 1 519 226.5 48.74 
200256 67 25.38 1 540 349.5 8.58 
200257 68 25.27 1 495 259.5 7.40 
200258 58 24.87 2 543 421.5 0.57 
200259 47 23.80 1 542 464.5 39.78 
200260 67 25.58 1 452 396 24.39 
200261 60 18.00 1 414 251.5 3.82 
200262 76 27.51 1 503 354.5 22.34 
200263 53 30.76 1 543 389.5 17.72 
200264 62 31.45 1 510 328.5 27.03 
200265 73  1 543 293.5 10.63 
200266 67 22.85 2 543 415 14.17 
200267 74 29.23 1 543 317.5 17.01 
200268 59 22.24 2 500 334.5 93.45 
200269 69 26.20 1 486 275.5 55.32 
200270 70 24.54 2 462 262 13.51 
200271 47 29.52 1 491 343.5 36.33 
200272 70 20.51 2 420 363 1.82 
200273 51 25.26 1 528 234.5 2.05 
200274 65 31.23 1 541 450 14.00 
200275 46 30.96 1 526 310.5 9.47 
200276 69 33.67 1 506 294 30.82 
200277 70 28.37 1 488 377 23.71 
200278 48 27.02 1 543 369 7.15 
NR             
200280 61 28.73 1 543 376 22.98 
200281 61 27.90 1 543 288 32.08 
200282 70 23.71 1 446 339 37.35 
200283 57 24.58 2 542 428 59.86 
200284 63 26.84 1 540 395.5 32.31 
200285 65 22.99 1 542 426 34.23 
200286 55 32.65 1 528 405.5 38.77 
200287 76 25.21 1 542 372.5 9.18 
200288 70 26.74 1 542 314.5 38.35 
200289 64 29.16 2 502 331 28.10 
200290 63 22.96 2 542 342.5 10.34 
200291 55 25.30 2 480 451.5 45.32 
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200292 61 26.88 1 450 407.5 72.29 
200293 40 27.78 2 535 317.5 12.66 
200294 72 40.55 2 515 390.5 54.70 
200295 66 28.18 1 454 392 26.33 
200296 72 30.96 2 501 390.5 21.97 
200297 76 26.78 1 481 326 20.98 
200298 76 33.57 1 480 316.5 22.94 
200299 74 28.20 1 510 284.5 29.74 
200300 73 24.14 2 480 373 34.42 
200301 69 33.07 2 535 367 4.58 
200302 60 23.44 1 480 385.5 21.48 
200303 56 23.04 2 480 434 18.80 
200304 77 18.00 2 534 237.5 6.06 
200305 63 25.26 2 494 350 34.11 
200306 42 25.74 1 535 403 4.47 
200307 70 29.20 1 480 243 22.22 
200308 63 29.05 2 480 328.5 17.17 
200309 41 28.20 1 535 397 3.32 
200310 71 27.38 1 420 290.5 29.33 
200311 69 23.58 2 480 403.5 15.76 
200312 60 30.04 1 495 331 23.20 
200313 69 25.60 1 535 401.5 17.78 
200314 40 29.48 1 535 382.5 50.04 
200315 69 26.74 1 480 290.5 13.01 
200316 71 28.06 1 496 353 31.61 
200317 67 23.58 2 534 320.5 7.49 
200318 42 23.85 1 445 295.5 7.92 
200319 40 19.54 2 484 391 3.53 
200320 44 29.86 1 470 377.5 14.30 
200321 42 28.44 2 480 365 18.41 
200322 75 20.20 2 534 365 1.48 
200323 67 28.93 1 360 271 25.02 
200324 67 35.08 2 360 339 20.35 
200325 64 40.47 2 480 420.5 18.26 
200326 47 24.95 1 535 366 6.39 
200327 80 27.04 2 534 334 69.16 
200328 40 21.64 2 510 431 7.66 
200329 54 36.36 2 535 385.5 16.03 
200330 51 20.64 2 503 386.5 7.14 
200331 47 26.72 2 543 330.5 13.43 
200332 49 26.88 1 480 355 19.10 
200333 46 46.67 2 523 305 41.70 
200334 46 36.31 1 534 175.5 18.80 
200335 66 22.28 1 535 380.5 2.21 
200336 57 18.82 2 535 404 3.86 
200337 44 28.26 2 420 399.5 30.19 
200338 44 27.57 1 446 285 49.05 
200339 68 26.29 2 535 346 24.10 
200340 69 26.92 1 480 348.5 13.26 
200341 80 27.90 1 457 273 12.97 
200342 41 32.73 2 510 411.5 13.85 
200343 40 28.73 1 510 250 9.12 
200344 60 23.65 1 543 363 25.29 
200345 44 31.67 1 534 394 28.78 
200346 52 21.52 2 535 387.5 1.86 
200347 59 28.28 1 484 369 15.77 
200348 58 26.11 2 480 411.5 1.46 
200349 50 36.63 1 480 400.5 4.04 
200350 53 20.45 2 526 347 14.01 
200351 51 23.24 1 440 344 14.13 
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200352 46 22.30 2 461 429.5 5.45 
200353 67 24.44 1 501 403 32.90 
200354 66 23.46 2 495 430 14.23 
200355 55 26.15 1 472 380 23.21 
200356 73 23.69 2 495 409 27.58 
200357 55 31.00 2 508 290.5 17.56 
200358 64 29.83 1 467 360 51.17 
200359 66 22.36 2 515 370 9.24 
200360 63 19.36 2 534 310 12.19 
200361 71 24.38 1 535 358.5 22.26 
200362 70 24.00 2 431 336 1.96 
200363 45 29.60 1 495 397.5 13.13 
200364 76 29.62 2 345 227 12.42 
200365 77 30.48 2 534 400.5 16.33 
200366 68 26.50 2 510 401.5 26.60 
200367 54 30.30 2 542 389 19.90 
200368 67 22.72 1 456 384 16.41 
200369 71 32.37 1 543 301 16.15 
200370 57 37.81 1 444 353 8.50 
200371 62 24.77 1 531 358 20.78 
200372 58 27.78 1 492 356.5 19.52 
200373 66 29.68 2 480 374 14.28 
200374 72 37.78 2 534 359 11.36 
200375 59 24.88 2 526 463 21.64 
200376 61 24.84 1 535 357.5 21.99 
200377 80 29.55 1 464 434 14.38 
200378 57 29.31 2 535 348 9.14 
200379 76 29.75 1 543 327.5 40.49 
200380 70 28.77 1 481 338 14.56 
200381 71 30.75 2 526 378.5 4.76 
200382 57 29.58 1 535 409.5 13.04 
200383 42 23.26 2 480 378.5 4.44 
200384 74 23.46 2 543 308 18.70 
200385 78 26.99 2 423 346.5 8.83 
200386 52 24.99 2 511 414 19.86 
200387 65 23.67 1 510 385 33.82 
200388 58 29.64 2 479 418.5 33.55 
200389 48 25.26 1 535 315 1.90 
200390 46 25.78 2 534 425.5 4.65 
200391 47 35.34 1 542 482 11.33 
200392 79 27.54 1 390 307.5 17.95 
200393 60 23.98 2 388 319.5 0.19 
200394 45 28.39 1 534 367.5 4.41 
200395 45 34.09 1 480 337.5 17.07 
200396 46 24.64 2 520 296.5 11.94 
200397 85 18.37 2 511 402 24.48 
200398 46 23.95 2 495 415.5 4.48 
200399 54 22.89 2 479 427.5 5.89 
200400 51 29.17 1 543 346.5 12.64 
200401 89 24.12 2 390 358 45.75 
200402 44 30.09 1 332 274.5 7.87 
200403 43 22.77 2 480 411 16.50 
200404 77 34.30 2 527 405.5 3.40 
200405 56 27.65 1 535 404.5 14.83 
200406 50 32.66 1 444 394 23.76 
200407 51 26.99 1 491 337.5 1.42 
200408 41 24.52 2 535 479 3.13 
200409 51 21.26 2 525 427.5 3.93 
200410 78 25.15 2 511 369 0.98 
200411 81 25.98 2 510 422.5 17.33 
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200412 66 31.98 1 450 387 24.65 
200413 58 29.88 1 502 408.5 5.73 
200414 53 26.59 2 525 425.5 14.24 
200415 72 26.67 1 542 356 16.01 
200416 79 32.05 2 535 333 30.27 
200417 48 26.49 1 526 362 7.96 
200418 44 25.83 1 535 461 21.87 
200419 44 24.21 1 535 373.5 3.21 
200420 47 32.08 1 510 390.5 36.26 
200421 47 26.43 2 510 420.5 11.27 
200422 54 33.30 2 480 327 14.86 
200423 74 22.54 1 535 261 57.93 
200424 57 25.25 1 420 185.5 39.46 
200425 80 26.51 1 525 332.5 11.73 
200426 74 29.21 2 525 337 1.42 
200427 63 24.19 1 420 392.5 12.38 
200428 53 22.42 2 419 382.5 4.86 
200429 73 37.59 1 494 332.5 28.87 
200430 60 31.38 1 535 360 14.17 
200431 57 22.73 2 510 272 6.84 
200432             
200433 62 29.74 2 497 362 12.43 
200434 51 21.56 1 525 376 5.11 
200435             
200436 83 29.83 2 534 242 12.64 
200437 58 28.16 1 472 419.5 3.15 
200438 41 25.55 2 420 372.5 1.93 
200439 44 31.93 1 535 384.5 8.43 
200440 49 23.78 1 535 509 5.66 
200441 49 24.89 2 480 406 1.63 
200442 52 24.09 1 519 284 2.96 
200443 74 26.48 2 521 252 22.62 
200444 70 19.07 2 525 440 24.95 
200445 60 26.25 1 535 437 8.24 
200446 59 29.30 2 534 397 16.93 
200447 48 42.08 2 490 401 11.52 
200448 69 22.09 2 428 332.5 2.89 
200449 73 26.99 1 450 378 17.30 
200450 70 50.00 2 534 359 13.37 
200451 71 24.59 1 480 301 25.71 
200452 76 25.52 2 535 380 12.00 
200453 70 29.54 1 360 261.5 19.04 
200454 55 26.78 2 480 330 15.64 
200455 75 21.85 1 451 379 28.65 
200456 75 28.96 2 451 228 20.53 
200457 70 19.65 1 535 299 23.28 
200458 81 21.94 2 535 280 23.36 
200459 69 22.07 2 510 405 12.15 
200460 56 25.05 1 534 450.5 35.16 
200461 68 27.58 2 510 297 3.03 
200462 62 31.06 2 440 358 24.80 
200463 81 23.20 2 525 287 2.30 
200464 70 26.04 1 390 333.5 5.94 
200465 67 27.77 1 465 339.5 14.14 
200466 49 27.23 1 498 415 4.05 
200467 45 21.20 2 531 401 2.54 
200468 85 31.20 1 480 270 13.33 
200469 70 22.43 2 535 194.5 16.66 
200470 40  1 535 396.5 11.20 
200471 75 28.20 1 527 336.5 18.01 
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200472 73 24.32 2 526 354 9.32 
200473 70 35.94 2 480 420 7.00 
200474 89 25.09 1 525 271 9.74 
200475 84 21.41 2 525 388.5 4.63 
200476 55 27.50 2 534 361 12.13 
200477 53 30.11 2 480 426.5 2.53 
200478 77 24.11 2 510 306 8.63 
200479 77 32.94 2 510 376.5 21.67 
200480 76 30.59 1 535 283.5 47.62 
200481 75 24.02 2 534 171 9.82 
200482 55 24.39 2 527 414 5.94 
200483 49 26.59 1 535 351.5 15.87 
200484 46 25.67 2 534 369 18.86 
200485 81 25.30 2 535 431 10.86 
200486 50 20.64 2 510 312 6.73 
200487 81 23.44 2 535 401 32.92 
200488 58 29.77 2 542 298 17.32 
200489 67 21.49 2 533 104.5 8.04 
200490 66 28.65 1 465 317.5 24.00 
200491 62 22.74 2 488 244.5 1.72 
200492 76 22.10 1 480 378.5 4.44 
200493 74 21.19 2 480 305 4.92 
200494 42 27.11 2 510 456 12.37 
200495 52 23.49 1 420 271.5 21.22 
200496 43 23.26 2 526 464 1.42 
200497 62 30.67 1 450 339.5 22.62 
200498 59 24.10 2 465 381.5 5.50 
200499 67 23.98 1 480 364 17.14 
200500 52 22.33 2 517 392.5 1.53 
200501 77 26.97 1 495 367 42.34 
200502 73 31.96 2 525 312.5 5.57 
200503 47  1 542 339 10.09 
200504 77 23.47 2 510 386.5 21.27 
200505 58 22.89 1 534 375 10.72 
200506 42 20.48 2 535 312 8.08 
200507 69 31.72 2 510 245.5 14.91 
200508 50 32.40 2 510 378.5 6.82 
200509 81 28.43 1 535 408.5 21.30 
200510 48 27.29 1 535 409.5 12.60 
200511 46 24.31 2 510 437.5 6.31 
200512 51 21.94 2 480 428.5 5.60 
200513 49 27.80 1 534 398.5 20.03 
200514 69 25.80 1 447 339.5 14.85 
200515 78 29.17 2 527 423 17.45 
200516 44 32.95 2 535 466.5 4.24 
200517 55 27.96 1 510 409 14.96 
200518 50 35.91 1 534 353.5 48.71 
200519 73 22.43 1 510 385 33.19 
200520 71 25.82 2 510 187 30.16 
200521 80 25.79 2 480 387 23.10 
200522 52 27.94 1 510 455.5 12.65 
200523 52 25.79 2 527 374 0.00 
200524 66 23.59 2 520 340 37.76 
200525 69 22.05 2 542 420.5 38.53 
200526 58 31.89 1 450 365 78.41 
200527 51 26.60 2 542 350.5 6.85 
200528 76 22.02 1 519 342.5 28.20 
200529 68 26.31 2 525 401.5 14.65 
200530 70 21.78 2 524 439.5 10.24 
200531 59 27.90 1 543 341 1.94 
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200532 53 22.30 2 465 398 2.71 
200533 43 29.64 2 543 426.5 1.69 
200534 63 24.67 1 542 445 16.45 
200535 47 27.07 2 480 350 5.14 
200536 60 21.45 2 543 415 3.47 
200537 47 27.02 1 534 331.5 7.06 
200538 67 25.77 1 542 448 9.24 
200539 68 24.82 1 450 229 44.28 
200540 70 29.44 1 542 443.5 5.41 
200541 59 22.82 1 503 420 22.14 
200542 52 27.58 2 465 345.5 20.49 
200543 70 28.04 1 506 394.5 6.39 
200544 46 29.15 1 401 291.5 14.20 
200545 62 30.10 2 510 368 10.94 
200546 68 22.96 1 543 389.5 4.57 
200547 68 29.93 1 540 485 15.34 
200548 51 27.29 1 542 415 34.55 
200549 74 26.69 2 495 356 12.30 
200550 52 30.06 2 402 338 3.55 
200551 73 24.67 2 465 375.5 5.11 
200552 57 29.88 1 485 295 29.49 
200553 69 26.26 1 451 319.5 27.23 
200554 63 20.90 2 542 412.5 6.84 
200555 47 28.09 1 480 419.5 13.44 
200556 61 28.50 1 450 361 25.76 
200557 55 22.13 2 441 374 5.13 
200558 62 22.10 1 480 413 4.94 
200559 69 22.73 2 480 423.5 35.28 
200560 43 23.95 1 525 319.5 10.89 
200561 44 28.28 1 445 366.5 38.14 
200562 50 25.84 1 477 392.5 43.41 
200563 45 24.55 1 510 383 8.62 
200564 42 23.21 2 510 431.5 11.54 
200565 55 28.65 1 385 300 7.20 
200566 64 29.40 1 535 329.5 54.63 
200567 66 32.91 2 543 257.5 32.85 
200568 44 25.02 1 435 368 7.99 
200569 40  2 487 413.5 1.02 
200570 50 29.32 1 535 362.5 34.43 
200571 54 21.68 1 420 349 7.91 
200572             
200573 57 44.42 1 390 324 83.33 
200574 63 26.72 2 542 287 23.00 
200575 50 26.62 1 534 392.5 8.10 
200576 66 37.06 1 435 315 46.48 
200577 45 25.28 2 535 402 11.49 
200578 46 33.33 1 534 368 27.88 
200579 52 26.26 1 511 361 3.99 
200580 40 24.16 1 535 460 19.30 
200581 43 25.08 2 439 335 8.24 
200582 43 24.24 2 510 422.5 13.21 
200583             
200584 47 26.15 1 535 398 18.24 
200585 59 28.73 1 535 397.5 16.00 
200586 41 25.72 1 450 375.5 10.39 
200587 41 30.39 2 525 496 8.71 
200588 46 29.00 2 439 282 18.30 
200589 48 21.54 1 393 355 2.54 
200590 49 21.71 1 535 478 18.45 
200591 47 27.10 1 535 433 7.76 
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200592 51 22.68 2 510 488 7.62 
200593 56 22.09 1 418 293.5 9.40 
200594 47 25.47 1 535 300.5 21.16 
200595 55 29.95 1 534 346.5 18.87 
200596 49 22.51 2 535 420.5 9.42 
200597 49 27.07 1 439 360.5 27.96 
200598 55  1 510 384.5 33.39 
200599 58  2 505 447.5 10.19 
200600 48 46.48 2 480 346 71.45 
200601 65 37.71 2 534 283.5 12.49 
200602 49 36.14 2 450 288 18.54 
200603 57 28.54 2 479 352.5 24.34 
200604 71 27.07 2 456 303.5 5.93 
200605 62 24.66 1 480 421 6.41 
200606 58 32.34 2 480 379.5 2.37 
200607 66 36.82 1 450 386 62.49 
200608 68 23.66 1 495 371.5 17.60 
200609 59 33.35 2 527 355.5 2.70 
200610 65 33.40 1 453 323.5 31.53 
200611 58 24.79 2 453 372 3.23 
200612 65 24.42 1 535 387 15.19 
200613 69 30.90 1 535 295 7.93 
200614 45 24.11 1 420 341 9.50 
200615 42 24.61 2 535 381.5 2.99 
200616 54 35.94 1 520 452 19.78 
200617 65 25.64 2 527 434.5 9.11 
200618 43 22.88 1 480 423 8.23 
200619 44 30.38 2 480 423 8.37 
200620 52 24.33 1 534 382.5 6.12 
200621 43 28.24 1 534 390.5 23.66 
200622 42 23.24 2 534 423 3.40 
200623 50 26.45 2 527 483 8.94 
200624 50 29.04 1 476 300.5 20.57 
200625 59 33.13 2 534 355 13.01 
200626 56 39.97 1 534 437 14.69 
200627 52 27.89 2 535 362 0.83 
200628 65 39.90 1 438 244.5 28.71 
200629 65 26.70 2 450 402 1.79 
200630 66 20.83 2 535 303 15.25 
200631 59 28.04 2 527 454.5 2.38 
200632 72 25.32 2 510 439 31.03 
200633 54 28.28 1 525 393 27.18 
200634 53 24.52 2 525 354.5 9.31 
200635 59 24.37 2 482 341 16.54 
200636 77 25.14 1 481 423 8.09 
200637 44 28.52 2 480 432.5 6.38 
200638 47 37.39 1 510 390.5 53.93 
200639 51 23.88 1 456 379 13.77 
200640 45 27.89 2 510 347 3.11 
200641 43 26.99 1 525 276 6.96 
200642 53 25.49 2 535 358 7.71 
200643 46 27.39 2 473 343 2.45 
200644 42 18.36 2 535 497 10.62 
200645 40 19.17 2 525 484 2.23 
200646 46 21.92 1 527 398.5 20.78 
200647 41 23.05 2 535 396.5 4.54 
200648 40 25.35 2 444 401 7.33 
200649 45 22.28 1 365 295 5.49 
200650 46 32.86 2 528 265.5 11.07 
200651 48 38.92 1 534 320 33.56 
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200652 69 18.15 1 511 289 21.80 
200653 73 18.03 2 421 323.5 33.01 
200654 70 22.22 2 480 342 8.25 
200655 79 29.41 1 480 255.5 37.57 
200656 58 37.42 2 506 366.5 10.15 
200657 59 29.86 1 480 137 25.84 
200658 43 26.47 2 510 420 5.43 
200659 55 32.70 1 390 351 41.20 
200660 47 28.48 2 419 376 3.19 
200661 43 29.62 2 507 337 4.81 
200662 55 32.56 1 440 285.5 69.56 
200663 47 26.97 2 525 340.5 6.17 
200664 42 24.57 1 510 431 26.59 
200665 40 20.45 2 510 449 0.94 
200666 42 43.79 2 535 324.5 11.65 
200667 45 32.39 1 535 377.5 33.38 
200668 57 31.83 1 513 411.5 8.60 
200669 44 25.08 2 510 352 2.56 
200670 52 28.37 1 450 396.5 13.92 
200671 50 29.22 2 535 389 3.86 
200672 69 22.79 2 534 402 6.87 
200673 76 25.77 1 510 213.5 48.06 
200674 70 27.02 2 511 382 33.46 
200675 43 21.45 2 435 392.5 9.32 
200676 58 36.13 2 535 310 6.19 
200677 50 42.11 2 495 385.5 10.12 
200678 40 25.55 2 516 395 1.06 
200679 53 26.98 1 465 279 9.46 
200680 47 34.30 2 390 363.5 69.00 
200681 47 27.53 1 480 327.5 28.58 
200682 64 22.16 2 535 285.5 27.11 
200683 42 20.58 2 510 416 5.77 
200684 48 22.40 1 535 385.5 11.83 
200685 48 21.16 2 510 368.5 6.68 
200686 41 39.32 1 527 474.5 95.97 
200687 54 33.90 1 531 455.5 18.31 
200688 46 26.25 1 510 334 29.10 
200689 47 27.94 2 510 371 9.70 
200690 45 24.90 1 510 452.5 12.33 
200691 42 23.20 2 535 484 3.47 
200692 63 24.88 1 525 409.5 44.54 
200693 64 32.08 1 480 336.5 33.52 
200694 51 30.90 1 535 336.5 6.60 
200695 45 26.25 1 480 416.5 14.84 
200696 58 24.48 1 420 327 49.54 
200697 52 26.50 2 480 446.5 9.41 
200698 60 22.85 1 495 431 52.34 
200699 53 28.59 1 534 340 14.47 
200700 49 23.33 2 525 470 2.04 
200701 53 22.53 2 472 424.5 3.11 
200702 43 23.69 1 480 418.5 2.29 
200703 43 29.54 2 390 376.5 22.15 
200704 66 26.57 1 420 374.5 4.33 
200705 69 25.05 1 508 398 15.98 
200706 67 38.37 2 477 379 12.51 
200707 48 31.75 1 420 212 12.45 
200708 64 33.92 1 535 370.5 23.32 
200709 57 34.06 2 535 415.5 21.52 
200710 43 20.51 1 435 335 4.66 
200711 50 29.45 1 534 442.5 52.61 
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200712 41 30.48 1 510 300 30.40 
200713 42 33.14 1 480 353 45.89 
200714 51 28.21 1 534 410.5 16.37 
200715 56 24.76 2 535 281.5 1.92 
200716 53 19.17 1 535 383 4.54 
200717 48 18.00 2 535 269.5 11.58 
200718 56 28.24 2 502 279.5 3.43 
200719 51 42.10 1 542 285 28.21 
200720 49 20.87 2 527 457 3.02 
200721 61 30.56 1 420 302 17.28 
200722 58 33.67 2 419 299 7.63 
200723 66 22.39 1 534 310 5.81 
200724 58 27.61 2 535 351.5 35.50 
200725 69 23.06 2 542 447 2.68 
200726 54 24.31 1 465 341.5 0.70 
200727 68 26.36 1 510 309.5 39.35 
200728 55 32.20 2 535 413.5 5.95 
200729 78 26.93 2 481 296.5 23.68 
200730 58 32.64 2 535 450.5 10.52 
200731 61 30.04 1 412 390 43.08 
200732 54 30.69 2 511 402.5 8.35 
200733 74 28.04 2 542 296.5 34.81 
200734 50 24.84 1 535 383.5 5.32 
200735 61 30.86 2 425 281 16.87 
200736 53 28.91 1 420 324.5 3.51 
200737 46 20.73 2 535 407 3.69 
200738 48 29.14 1 520 447.5 15.02 
200739 46 41.43 2 297 224.5 35.81 
200740 65 20.98 2 535 353 9.35 
200741 68 23.20 2 495 390 0.92 
200742 65 40.93 2 450 312.5 13.25 
200743 67 32.72 2 505 344.5 52.08 
200744 74 27.43 1 507 384 22.66 
200745 54 32.02 2 527 469 15.48 
200746 73 24.36 2 534 297.5 4.84 
200747 72 25.26 1 543 249.5 19.96 
200748 57 34.01 2 535 377.5 39.42 
200749 60 23.49 2 510 328 1.28 
200750 54 24.43 2 535 455.5 8.30 
200751 55 44.69 2 535 427 45.11 
200752 59 30.64 2 535 409 12.18 
200753 60 27.31 1 534 409.5 12.16 
200754 40  1 535 401 6.73 
200755 40 34.29 2 495 436 10.87 
200756 72 34.43 1 468 375 30.24 
200757 65 25.61 2 497 295 6.71 
200758 66 35.77 1 535 52.5 36.57 
200759 44 23.94 2 360 319 13.92 
200760 50 24.09 1 510 440 18.14 
200761 45 21.90 2 510 446.5 13.17 
200762 45 21.34 2 390 319.5 0.38 
200763 69 18.99 1 480 336.5 12.84 
200764 66 25.38 2 535 388.5 2.47 
200765 52 25.47 2 535 430 3.07 
200766 45 39.82 2 534 437.5 9.05 
200767 48 36.61 2 535 381 4.09 
200768 53 22.15 2 518 442.5 5.29 
200769 69 29.21 2 480 211.5 19.57 
200770 68 25.09 1 527 326.5 4.04 
200771 51 19.80 2 510 405.5 2.22 
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200772 58 23.10 1 480 344.5 24.21 
200773 39 22.48 2 509 395.5 8.80 
200774 41 27.28 1 475 394.5 9.58 
200775 57 19.67 2 535 476 12.61 
200776 47 40.11 2 534 385.5 4.05 
200777 43 29.59 1 411 340.5 66.61 
200778 42 31.03 1 420 356.5 14.81 
200779 45 28.41 1 535 484 15.62 
200780 74 20.61 2 534 450.5 4.93 
200781 43 32.21 1 381 269.5 17.81 
200782 42 30.04 2 480 422 8.96 
200783 50 24.16 2 480 416 4.18 
200784 45 29.07 2 535 492 6.59 
200785 50 25.80 2 535 436.5 2.34 
200786 59 24.15 1 535 260 13.62 
200787 50 27.90 2 525 425 3.53 
200788 54 23.21 2 480 342.5 2.45 
200789 60 38.87 2 535 395 15.34 
200790 40 48.04 2 534 377.5 14.15 
200791 44 24.48 1 543 413 98.64 
200792 44 22.56 1 514 448 10.71 
200793 40 22.72 2 510 438 1.64 
200794 60 29.39 1 543 385 21.82 
200795 61 24.28 1 525 248.5 33.80 
200796 69 32.31 2 501 429 12.59 
200797 68 24.77 1 500 419.5 10.30 
200798 45 20.52 2 510 360 9.17 
200799 55 24.80 2 540 455 7.78 
200800 52 25.86 1 542 385.5 13.07 
200801 74 24.96 1 480 402 58.66 
200802 41 38.82 2 450 324.5 23.48 
200803 50 30.69 1 480 375.5 48.42 
200804 64 20.70 2 482 331 35.71 
200805 51 27.89 2 480 429.5 1.26 
200806 49 26.13 1 527 318.5 6.03 
200807 72 25.63 1 405 303.5 13.05 
200808 65 27.89 2 510 398.5 22.74 
200809 53 29.51 1 535 257 24.28 
200810 52 36.58 2 535 382 1.88 
200811             
200812 61 30.93 1 450 340.5 64.32 
200813 58 31.33 1 480 333 10.63 
200814 55  2 534 420 7.14 
200815 56 28.89 2 510 278 11.65 
200816 65 27.35 1 535 180.5 16.29 
200817 59 21.79 2 535 342.5 15.24 
200818 46 21.49 2 535 382 4.24 
200819 43 27.80 1 450 389.5 15.56 
200820 45 25.42 2 420 394.5 9.43 
200821 41 18.00 2 534 174.5 25.10 
200822 47 25.85 1 467 297.5 23.60 
200823 57 29.60 2 535 449 2.41 
200824 48 26.89 1 480 369 19.35 
200825 48 29.61 2 480 382 16.96 
200826 70 34.40 2 527 350 16.97 
200827 50 30.17 1 520 337 25.46 
200828 47 42.45 2 494 379 11.56 
200829 42 26.82 2 405 362 0.33 
200830 42 28.28 1 510 405.5 6.07 
200831 46  1 535 391 16.42 
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200832 44 24.38 1 513 314.5 2.29 
200833 51 27.05 2 535 438 10.14 
200834 43 23.14 2 525 457.5 1.31 
200835 59 24.88 1 473 396.5 4.99 
200836 52 25.66 1 465 429 68.81 
200837 51 46.23 2 510 323.5 45.44 
200838 53 27.82 1 510 411.5 34.70 
200839 48 24.84 2 402 314 10.70 
200840 50 24.29 1 535 301.5 8.56 
200841 50 25.94 2 510 445 9.17 
200842 53 31.55 1 510 474.5 6.83 
200843 44 23.19 1 456 378.5 1.74 
200844 39 26.82 2 480 330 2.55 
200845 71 26.72 2 465 173 1.39 
200846 71 25.40 2 543 231 23.12 
200847 51 27.27 1 535 363 2.98 
200848 57 35.15 1 512 344 8.90 
200849 54 26.40 2 480 321.5 11.76 
200850 57 28.73 1 390 355.5 28.52 
200851 64 31.12 1 520 468.5 18.83 
200852 47 21.55 2 535 442.5 2.85 
200853 46 19.07 2 499 392.5 2.14 
200854 45 26.47 1 495 378.5 29.64 
200855 58 31.56 1 543 329 43.40 
200856 61 22.81 2 535 355.5 4.22 
200857 71 31.70 1 534 440 39.95 
200858 66 32.90 1 510 270.5 41.48 
200859 63 27.50 2 527 399 7.67 
200860 52 24.31 2 480 437 6.18 
200861 47 26.35 1 420 361 22.44 
200862 58 37.75 1 534 353.5 22.91 
200863 66 34.09 1 527 334.5 17.40 
200864 52 32.49 1 510 393.5 12.05 
200865 48 22.71 2 492 388 5.10 
200866 47 24.02 2 527 481 12.85 
200867 52 30.31 1 527 390.5 36.57 
200868 70 25.69 2 510 420 23.71 
200869 47  2 534 495 3.15 
200870 46 18.00 2 535 420.5 1.43 
200871 48 25.58 1 465 365.5 15.43 
200872 46 28.65 2 438 353 4.93 
200873 72 23.19 1 510 359 17.05 
200874 45 27.19 2 394 341 12.84 
200875 69 29.24 1 526 331 66.71 
200876 65 31.09 2 527 422 3.41 
200877 48 24.84 2 535 395 19.29 
200878 45 30.55 1 533 474.5 28.32 
200879 44 19.96 2 535 446 4.17 
200880 71 29.54 1 480 374 8.50 
200881 49 32.43 1 510 438 13.01 
200882 57 22.28 1 535 409.5 14.95 
200883 54 33.58 2 450 382 19.95 
200884 49 32.70 2 510 426 4.51 
200885 50 28.58 1 535 265 15.17 
200886 48 23.12 2 510 427.5 4.77 
200887 48 23.25 1 480 416 2.02 
200888 55 21.99 2 480 312 12.12 
200889 48 28.84 1 535 407 13.12 
200890 48 23.39 2 510 426.5 5.35 
200891 40 20.81 2 521 371.5 2.10 
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200892 47 19.81 2 535 361.5 3.65 
200893 58 24.73 1 535 370.5 5.67 
200894 49 26.37 1 534 475 14.15 
200895 51  2 535 407.5 2.94 
200896 66 22.08 2 422 323.5 4.82 
200897 47 26.47 2 480 402.5 3.88 
200898 48 40.45 1 450 238.5 5.53 
200899 44 21.87 2 512 396 9.55 
200900 57 25.47 1 535 411 5.69 
200901 54 25.22 2 535 438 7.12 
200902 42 19.50 2 480 389.5 0.92 
200903 43 24.51 1 510 255 10.35 
200904 53 24.98 1 510 428.5 31.09 
200905 54 31.79 1 480 363.5 47.37 
200906 45 23.74 1 479 421.5 7.69 
200907 72 28.33 1 534 323.5 40.06 
200908 59 20.73 2 462 413 3.20 
200909 41 25.69 1 535 369.5 14.61 
200910 52 35.78 2 535 423 6.24 
200911 48 27.89 2 535 456 5.92 
200912 49 29.51 1 435 355.5 102.78 
200913 50 35.43 1 405 330.5 43.03 
200914 43 32.32 2 435 358 2.18 
200915 69 23.28 1 527 446 3.77 
200916 54 25.78 2 526 412.5 8.58 
200917 58 26.26 2 512 435 5.52 
200918 65 29.40 1 450 360 22.33 
200919 62 31.84 1 510 373 9.17 
200920 49 20.35 2 535 429.5 1.82 
200921 50 26.00 1 480 392 10.41 
200922 52 25.67 2 535 409.5 3.37 
200923 70 20.81 2 534 313 3.45 
200924 40 27.22 1 535 465.5 3.48 
200925 51 37.83 2 535 275.5 14.81 
200926 43 34.74 2 532 376.5 30.60 
200927 49 44.28 2 455 315 30.86 
200928 62 43.20 2 535 454 23.92 
200929 58 25.94 2 465 305 6.49 
200930 56 23.62 2 527 398.5 36.89 
200931 51 21.20 1 535 411 23.07 
200932 44 28.52 2 535 425 3.81 
200933 44 28.63 1 535 374 25.99 
200934 67 25.30 2 525 316 21.65 
200935 67 26.74 2 535 401.5 10.76 
200936 69 25.67 1 535 247 6.80 
200937 63 29.77 2 525 340 1.76 
200938 72 27.74 1 535 358 21.28 
200939 68 22.46 2 534 298.5 3.62 
200940 71 25.56 1 543 312 15.00 
200941 66 33.87 1 534 398.5 49.39 
200942 51 26.77 1 535 380.5 26.49 
200943 47 22.92 2 535 363.5 6.77 
200944 66 26.70 2 527 389 10.95 
200945 45 29.41 1 535 416.5 19.74 
200946 62 29.62 2 480 304 12.43 
200947 46 34.35 2 535 445.5 5.39 
200948 67 19.77 2 480 306.5 3.33 
200949 49 24.63 1 510 379.5 11.70 
200950 69 28.37 2 510 448 24.78 
200951 74 30.52 1 527 245.5 46.44 
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200952 67 23.25 1 479 328.5 14.61 
200953 66 24.45 2 480 435.5 2.20 
200954 47 19.68 2 535 365.5 12.64 
200955 43 24.45 1 535 320.5 21.45 
200956 54 39.87 2 534 447.5 6.74 
200957 79 27.71 1 535 393 19.85 
200958 75 18.00 2 465 384.5 7.65 
200959 45 29.42 2 534 413 4.36 
200960 44 30.79 2 535 475 5.43 
200961 41 30.00 1 535 470.5 13.90 
200962 64 31.73 1 535 361.5 27.22 
200963 61 37.81 2 535 375 19.36 
200964 51 27.47 2 535 456 4.87 
200965 47 23.09 1 535 450.5 121.33 
200966 55 28.72 2 435 320.5 30.70 
200967 55 29.86 2 492 356 1.18 
200968 66 23.78 2 527 463 41.47 
200969 66 34.02 2 535 343.5 13.97 
200970 50 28.59 1 471 316 18.42 
200971 42 25.72 2 534 240.5 3.24 
200972 55 25.61 1 535 364.5 3.79 
200973 56  2 525 434 13.27 
200974 51 21.38 1 510 458.5 12.43 
200975 48 19.29 2 535 506.5 2.25 
200976 71 29.16 1 480 377 29.12 
200977 63 32.20 1 497 354 20.00 
200978 63 22.96 2 535 399.5 14.27 
200979 51 27.65 2 390 332.5 3.79 
200980 53 30.80 1 390 372 24.19 
200981 50 32.18 1 389 324.5 16.64 
200982 62 29.46 1 499 401.5 14.79 
200983 62 24.98 2 527 443.5 2.98 
200984 56 32.52 1 525 430 68.37 
200985 54 36.18 1 510 388.5 32.28 
200986 50 29.18 2 533 382.5 17.73 
200987 54 26.06 1 374 323.5 13.35 
200988 53 27.40 2 528 354 1.02 
200989 50 31.23 1 462 362 15.25 
200990 60 25.31 2 535 403.5 1.93 
200991 57 21.41 2 480 336.5 2.32 
200992 46 24.91 2 534 231 12.99 
200993 40 22.99 2 420 390.5 7.22 
200994 40 26.90 2 535 215 15.63 
200995 45 35.46 2 480 415.5 3.61 
200996 68 29.58 1 465 307.5 10.93 
200997 62 27.34 2 534 439 11.75 
200998 47 40.27 2 479 348.5 70.76 
200999 68 29.20 1 535 265.5 63.28 
201000 53 33.37 2 448 216 3.06 
201001 77 32.12 2 526 450.5 24.11 
201002 48 29.76 1 479 345.5 11.11 
201003 42 29.76 2 524 312 14.81 
       
Mean 57.4 27.4 M = 490 500 361 17.1 
SD 11.3 5.1 F = 498 44 67 15.9 
BMI: Body mass index, TRT: Total recording time, TST: Total sleep time, AHI: Apnea hypopnea index, SD: 
Standard deviation, 1 = Male (M), 2 = Female (F), NR: No record found with the corresponding serial number, 
Blank rows with serial numbers indicate the records with AF corrupted (i.e., AF was found as a flat line or random 
noise throughout the night). 
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Appendix H 

Duration of normal breath for the development of an automatic algorithm 

Record 
No. 

Duration of normal breath (s) Mean 
(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 19 20 

1 5.1 5.1 5.4 4.7 5.2 5.1 5 5 5.1 5.2 4.5 5 5.6 5 4.7 5.4 4.8 4.3 4.6 5 5 
2 3.8 3.8 3.8 3.8 4.1 3.5 3.6 4.2 4.1 4.6 3.8 3.7 4.4 3.7 3.4 3.4 3.7 4.3 3.7 4.3 3.9 
3 4.3 4.4 4.5 5.7 5.2 4.9 5.7 4.8 5.7 4.9 4.6 4.7 4.9 5.4 3.9 4.3 4.6 5.1 5.2 5.5 4.9 
4 2.8 3.4 3 3.4 3.2 3 3.3 3.2 3.1 3.3 3 3.1 3.1 3 3.1 3.1 3 3.2 3.1 3.4 3.1 
5 4.5 4.5 4.7 4.4 4.8 4.5 3.9 4.2 4.6 4.5 4.4 4.7 4.7 5.2 4.1 4.4 4.2 3.9 4.3 4.5 4.5 
6 5.1 4.9 5 5 5.3 5.6 5.4 5 4.9 4.6 4.6 5.1 5 5.2 5.3 5 5.2 4.9 5.3 5 5.1 
7 2.9 3.1 2.9 2.8 3 3.2 3.2 3.3 3.4 3.1 3.4 3.3 2.7 2.7 2.8 3.1 3.3 3.3 3.2 3.3 3.1 
8 4.8 5 4.7 4.5 5.3 4.8 6 4.1 4.7 5.1 4.7 4.7 5.5 4.2 4.4 4.7 5.4 4.6 4.9 5.2 4.9 
9 4.8 3.8 4.5 4.9 4.7 4.1 4 3.6 4.5 4.4 4.1 4.7 4.3 4.9 4.6 4.1 4.2 3.9 4 4.6 4.4 
10 3.4 3.4 2.6 3.4 3 3.2 3.2 3.6 3.5 4 3.6 3.7 3.5 3.6 3.5 3.7 3.7 4 3 3.5 3.5 
11 3.3 3.6 3.5 3.3 3.4 3.6 3.7 3.6 3.6 3.9 3.7 3.5 3.6 3.1 3.6 2.9 3.3 4.2 3.8 4 3.6 
12 4.9 5.8 5.8 4.6 4.9 5.2 5.5 5.5 5.5 5.1 5.6 5.6 5.9 4.3 4.8 5.2 5.5 4.2 5.5 5.3 5.2 
13 3.4 3.4 3.1 3.8 3.4 3.8 3.9 3.4 3.6 3.2 3.1 3.4 3.5 3.7 3.7 3.5 3.5 3.8 3.3 3.1 3.5 
14 3.5 3.6 4.1 3.9 3.8 4.3 3.9 4.3 3.7 3.5 4.3 3.7 4.9 4.2 4.8 4.1 3.6 4 4.6 3.4 4 
15 4.4 5 5.7 5 4.8 4.3 3.9 4.2 4.9 5.4 5.4 4.4 3.5 4.1 3.8 4.8 4.7 4.4 4.7 4.9 4.6 
16 3.2 3.3 3.8 3.4 3.7 3.1 3.8 2.9 3.5 3 3.4 3.8 3.5 3.1 3.3 3.5 3.4 3.1 3.4 3.4 3.4 
17 2.7 2 2.5 2.4 2.7 2.7 2.7 3.1 3 3.5 2.9 3.2 2.8 2.8 2.2 2.6 2.4 2.5 2.6 2.7 2.7 
18 3.5 4.2 4.3 3.5 4.5 2.3 3.9 2.8 3.7 4 4.5 3.5 4.1 3.9 3.5 3.9 4.2 4.6 3.3 4.8 4 
19 5.8 4.6 4.2 3.3 6.1 6.2 5 4.8 5.2 5.1 6.1 5.8 5 5.6 5.2 4.9 4.7 5 4.9 5.9 5.2 
20 4.1 5.7 4.4 5.7 5.1 3.9 6.2 4.8 5.4 3.2 5.1 4.4 5.8 4.6 5.2 5 4.4 5 5.2 3.9 4.9 
21 4.4 4.4 4.9 5.3 5.5 4.9 5.2 4.5 4.7 5.4 5.7 4.6 5.7 3.9 5.5 3.9 4.4 4.8 6.5 4.1 4.9 
22 3.7 3.2 3.5 3.7 3.6 4 3.8 3 3.8 4 3.8 3.6 3.3 3.7 4.1 4.5 3.4 3.8 3.6 4 3.7 
23 3.8 3.7 3.6 3.2 3.3 3.1 3.4 3 3.4 2.5 2.8 3.3 2.8 2.7 3.1 3 3.6 3.3 3 3.2 3.1 
24 3.7 3.1 3.5 3.5 3.5 3.1 3 3.2 3 3.2 3.3 3.1 2.7 3.1 3 3.1 2.9 3 2.9 3.1 3.2 
25 3.6 4 3.7 2.9 5.3 5.4 5.4 4.8 4.7 5.4 6.2 5 5.6 5.4 6.2 5.6 5.7 5.4 6.1 5.6 5.1 
26 4.1 3.8 3.5 4.4 4.3 4.4 4.4 4.6 4.4 4.5 4.1 4.2 4.2 4.5 4.6 4.7 3.4 4.8 4.4 4.4 4.3 
27 5 4.1 5.7 4.1 5.3 4.4 4 4.8 4.2 4.8 3.9 4.9 4.7 4.9 5 3.5 4.8 5.4 4.6 5.8 4.7 
28 5.6 5 6.1 5.1 5.4 4.9 5.6 5.9 6.2 6 5.6 4.5 6.3 5.9 5.4 5.1 6.1 5.1 5.5 5.5 5.5 
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29 3 2.7 2.6 2.5 3.1 3.2 2.9 2.8 2.4 2.8 3.2 2.9 3 3.1 3.6 2.6 2.7 3.7 3.1 3.7 3 
30 3.4 4.3 3.9 4 3.3 4.5 3.6 3.9 3.4 5 4.5 4.4 3.5 4.2 3 4.3 4.5 4.2 3.5 4.9 4 
31 4.4 4 4.4 5.2 4 4.4 4.6 6.5 4.5 4.5 6.1 5.1 4.6 3.2 4.7 4.6 4.7 4.6 5.9 5.7 4.8 
32 4.9 5 4.9 4.6 5 4.5 5 4.7 4 4.3 5.4 5.1 4.9 4.3 5.2 4.5 4.9 4.8 4.1 4.6 4.7 
33 4.4 5.2 5.7 5 5.3 4.9 5.3 5.3 5.2 4.4 4.5 5.1 5.2 4.7 4.8 5.4 5.6 5 5 5 5.1 
34 3.3 3.2 3.6 2.9 3.4 3.4 3.2 3.2 3.4 3.2 3.3 3.5 3.4 3.3 3.6 3.2 3.1 3.1 3.6 3.7 3.3 
35 4.4 4.2 4.4 4.0 4.2 3.9 4.1 3.8 4 3.5 3.5 3.6 3.5 3.6 3.9 4 4 3.6 3.6 3.2 3.9 
36 4.5 4.3 4.4 3.8 3.5 4.1 3.6 4.8 4.8 4.8 3.6 4.6 4.6 4.7 4.8 4.8 4.8 4.9 4.4 5.2 4.5 
37 5.1 6 5.8 5.3 4.5 6.4 6 6.1 5.1 5.9 5.4 5.7 5.3 5 4.5 5.2 5 4.5 4.8 4.8 5.3 
38 3.4 3 3.2 3.4 3.4 3.5 3.7 3.6 3.8 3.8 3.5 3.7 3.4 3.2 3.9 3.6 3.6 3.2 3.9 3.7 3.5 
39 4.9 4.6 4.7 5.2 5 4.9 5.8 5 5.3 5.3 5.1 5.5 5.6 5 4.5 5.2 5 5.5 5.6 5.4 5.2 
40 5 4.9 5 5 5.4 5.3 4.8 5.6 5 5.2 6 5 5.3 4.8 5 4.5 5.1 4.6 5 5 5 
41 3.5 3.3 2.9 3.2 3 3.1 3.1 3 3.1 2.9 3.4 3.5 4.1 3.7 3.9 4 3.7 3.5 3.2 3.2 3.4 
42 4.6 4.9 4.2 4.1 4.6 4.7 4.8 4.3 5.4 4.3 4.9 5.1 5.0 4.6 4.8 4.8 5.2 4.6 4.9 4.9 4.7 
43 3.7 3.5 4.4 3.9 3.5 3.6 4.2 3.6 3.8 4 4.2 4 4.1 3.7 3.6 4 3.8 2.8 3.8 3.5 3.8 
44 5.4 4.9 4.8 4.9 5.8 4.9 5.4 5 5 4.9 5.4 4.9 5.9 5.9 4.4 4.9 5 5.5 4.7 4.6 5.1 
45 4.6 3.7 4.4 4 4.2 4.9 5.4 4.2 4.3 3.8 4.6 4.8 4.5 4.4 4.4 5.8 3.4 4.4 3.5 4.4 4.4 
                      
Mean                     4.2 
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Appendix I 

Duration of peak-to-trough excursion of normal breath for the development of an automatic algorithm 

Record 
No. 

Duration of peak-to-through excursion of normal breath (s) Mean 
(s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 19 20 

1 1.5 1.4 1.7 2.3 1.8 1.7 2 1.3 1.6 1.4 2 1.7 1.4 1.5 2 1.5 1.6 1.6 1.6 1.1 1.6 
2 1.4 1.3 1.6 1.6 1.6 1.3 1.8 1.5 1.6 2 1.3 1.1 1.5 1.6 1.4 1.5 1.6 1.7 1.6 1.7 1.5 
3 1.9 2 1.8 2.1 1.7 1.9 2 1.9 1.9 1.6 1.7 1.7 2.1 1.7 1.7 1.3 2 2.4 1.9 1.9 1.9 
4 1.6 1.9 1.8 2 1.8 1.6 1.7 1.8 1.7 1.9 1.6 1.6 1.8 1.6 1.7 1.7 1.5 1.7 1.8 1.9 1.7 
5 1.9 1.7 1.2 1.6 1.4 1.8 1.3 1.4 1.3 1 1.5 1.5 1.8 1.5 1.8 1.6 1.5 1.5 1.8 1.9 1.6 
6 1.9 1.8 1.9 1.8 2 2 2 1.9 1.9 1.9 1.8 2.1 2.1 2 2 1 1.6 1.9 2.1 2 1.9 
7 1.1 1.3 1.3 1.3 1.4 1.4 1.5 1.5 1.6 1.4 1.6 1.6 1.4 1.4 1.4 1.5 1.6 1.7 1.6 1.7 1.5 
8 1.8 1.9 1.5 1.3 1.4 1 1.8 1.1 1.4 1.4 1.3 1.6 1.5 1.6 1.9 1.9 1.7 1.5 1.5 1.7 1.5 
9 1.8 1.5 1.6 2.3 1.6 1.4 1.6 1.9 1.8 1.3 1.3 1.3 1.5 2 2.1 1.7 1.5 1.2 1.7 1.6 1.6 
10 1.6 1.7 1.2 1.6 1.4 1.4 1.6 1.5 1.7 1.8 1.4 1.5 1.7 1.4 1.4 1.4 1.6 1.8 1.6 1.5 1.5 
11 1.3 1.3 1.3 1.6 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.2 1.1 1.3 1.4 1.3 1.4 1.8 1.9 1.5 1.5 
12 1.5 2.2 1.9 1.2 1.9 1.8 1.9 1.3 1.4 1.8 2 1.7 2.1 1.2 1.9 2.1 2.1 1.5 2.3 1.1 1.8 
13 1.5 1.2 1.3 1.8 1.4 1.5 1.6 1.3 1.6 1.8 1.5 1.6 1.4 1.5 1.3 1.5 1.8 1.7 1.5 1.4 1.5 
14 1.2 1.1 1.5 1.5 1.4 1.5 1.3 1.2 1.2 1.3 1.5 1.5 2.1 1.5 1.4 1.4 1.4 1.5 2 1.5 1.5 
15 1.7 1.5 2 1.9 2 2 2.2 1.6 1.6 2 1.3 1.4 1.9 2 1.5 1.4 1.5 1.6 2 2.2 1.8 
16 1.3 1.5 1.5 1.2 1.8 1.1 1.4 1.3 1.5 1.1 1.5 1.5 1.4 1.1 1.3 1.2 1.3 1.2 1.3 1.1 1.3 
17 1.6 1.1 1.3 1.3 1.5 1.6 1.3 1.5 1.6 1.7 1.5 1.6 1.5 1.3 1.2 1.1 1 1.1 1.2 1.3 1.4 
18 1.6 1.2 1.4 1.7 1.5 1.8 1.6 1.5 1.3 1.5 1.5 1.3 1.2 1.4 1.4 1.8 1.6 1.4 1.3 1.4 1.5 
19 1.7 1.5 2 1.9 2 2 2.2 1.6 1.6 2 1.3 1.4 1.9 2 1.5 1.4 1.5 1.6 2 2.2 1.8 
20 1.4 1.7 1.7 2.5 1.7 1.7 2.9 1.5 1.9 1.3 2.5 2.2 2.2 1.6 1.6 1.6 1.8 1.4 2 1.7 1.9 
21 1.5 1.5 1.6 1.7 1.5 1.5 1.7 1.9 2.2 2.6 1.9 1.8 2.3 1.5 3.1 1.8 1.7 1.8 2.1 1.1 1.8 
22 1.5 1.4 1.4 1.3 1.4 1.4 1.4 1.2 1.4 1.4 1.4 1.2 1.4 1.4 1.3 1.5 1.4 1.4 1.3 1.5 1.4 
23 1.5 1 1.3 1.2 1.2 1.3 1.3 1.2 1.5 1.4 1.4 1.4 1.2 1.1 1.2 1.3 1.6 1.2 1.1 1.4 1.3 
24 1.5 1.1 1.4 1.7 1.4 1.2 1.2 1.5 1.3 1.3 1.5 1 1.2 1.2 1.1 1.3 1.3 1.4 1.3 1 1.3 
25 1.7 1.8 2 1.8 2.2 2.2 2 1.7 1.9 2 2.1 1.8 2.1 2.2 2.1 2.1 1.8 2 2 1.9 2 
26 1.6 1.7 1.3 1.8 1.6 1.8 1.7 1.7 1.9 2.1 1.4 1.5 1.5 1.7 1.8 1.8 1.3 1.7 1.7 1.8 1.7 
27 2 1.8 1.9 2.3 1.8 2 1.6 1.6 2.2 1.7 1.7 1.9 1.7 1.9 1.8 1.5 1.7 1.9 1.9 2 1.9 
28 1.6 1.9 1.2 1.8 2.1 1.6 1.6 1.8 1.7 1.7 2.2 1.6 1.8 1.9 1.4 1.9 2.1 1.9 1.7 2.2 1.8 
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29 1.1 1.4 1.1 1.2 1.7 1.1 1.1 1.7 1.2 1.2 1.1 1.2 1.2 1.1 1 1 1.1 1.3 1.1 1.3 1.2 
30 1 1.4 1.3 1.4 1 1.5 1 1.2 1.5 2.2 1.6 1.4 1.2 1.7 1 2.2 1.5 0.9 1 2.1 1.4 
31 1.1 2 2 1.9 1.5 1.8 1.4 1.5 1.6 1.5 1.6 1.8 1.9 1.5 1.4 2.3 1.5 1.5 1.6 1.8 1.7 
32 1.8 1.6 1.8 1.4 1.9 1.6 1.7 2.1 1.8 1.3 1.3 2 1.5 1.7 1.8 1.3 2.1 1.9 1.5 1.7 1.7 
33 2 1.7 1.9 2.1 2 2.2 1.4 2 2.3 1.9 1.7 1.9 2.2 2.5 2.1 2.1 2.3 1.7 2.1 1.9 2 
34 1.5 1.4 1.7 1.3 1.7 1.3 1.4 1.5 1.4 1.5 1.6 1.7 1.6 1.4 1.6 1.5 1.9 1.3 1.6 1.2 1.5 
35 1.6 1.7 1.5 1.2 1.3 1.3 1.3 1.4 1.6 1.3 1.2 1.1 1.2 1 1.4 1.5 1.3 1.4 0.9 1 1.3 
36 1.5 1.8 2.1 1.1 1.2 2.2 2.3 2 1.8 2.1 1.5 2 2 2 1.7 2.1 2.2 2.3 2.1 1.7 1.9 
37 1.4 1.7 1.1 1.3 1.4 2.1 1.5 1.6 1.2 1.6 1.5 1.8 1.5 1.3 1.2 1.6 1.5 1.1 2.1 1.7 1.5 
38 1 1 1.1 1 1.4 1.8 1.5 1.3 1.6 1.2 1.2 1.4 1.2 1 1.6 1.2 1.6 2.3 2.3 1.8 1.4 
39 2 2.1 2.2 1.6 1.7 1.5 1.4 1.6 1.7 1.6 1.5 1.7 1.9 2.1 1.6 1.4 1.7 2.4 1.7 1.7 1.8 
40 1.9 2 2.1 2 2.3 1.8 2.1 1.8 2.3 1.7 2.2 2.1 2.2 1.7 2.3 2 1.7 1.7 1.9 1.6 2 
41 1.3 1.4 1.1 1.4 1.2 1.3 1.3 1.2 1.3 1.2 1.5 1.3 1.5 1 1.4 1.4 1.6 1.5 1.3 1.2 1.3 
42 1.8 2 1.5 1.4 1.9 1.9 1.8 1.6 2.1 1.5 1.9 1.9 1.9 1.8 1.8 2 2.4 2 1.9 2.4 1.9 
43 1.6 2.3 2.7 1.7 2.2 2.1 1.8 1.6 1.6 2.2 1.9 2.2 2.3 1.7 2.2 2.4 2.5 1.4 1.7 1.8 2 
44 1.2 1.6 1.5 1.8 1.6 1.2 1.5 1.5 1.3 1.3 1.4 1.7 2.1 1.9 1.8 1.6 1.3 1.7 1.4 1.8 1.6 
45 1.8 1.8 1.5 1.3 1.5 1.8 1.9 2.1 1.7 1.7 2.3 1.7 2.3 2.1 1.7 1.9 1.9 2.5 2.4 1.8 1.9 
                      
Mean                     1.6 
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Appendix J 

Re-scored and detected events from the development set 

Record No.  Re-scored  
(Sleep physiologist) 

 Detection 
(Chapter 4) 

 

Detection 
(Chapter 5) 

A H A+H A H A+H A H A+H 
1  6 8 14  7 10 17  5 6 11 
2  4 15 19  2 14 16  2 14 16 
3  17 15 32  22 15 37  15 21 36 
4  3 70 73  5 62 67  3 59 62 
5  98 88 186  97 80 177  100 83 183 
6  17 159 176  20 144 164  20 162 182 
7  60 187 247  57 184 241  64 173 237 
8  6 36 42  4 33 37  5 34 39 
9  10 35 45  9 30 39  10 31 41 
10  6 2 8  2 2 4  4 2 6 
11  2 31 33  2 35 37  2 30 32 
12  3 41 44  5 37 42  2 38 40 
13  236 61 297  236 58 294  229 75 304 
14  2 43 45  1 43 44  2 31 33 
15  6 97 103  2 95 97  4 105 109 
16  8 18 26  7 20 27  6 23 29 
17  1 17 18  1 20 21  1 18 19 
18  15 8 23  16 10 26  15 7 22 
19  9 35 44  7 34 41  7 23 30 
20  0 34 34  5 31 36  3 31 34 
21  45 62 107  46 56 102  47 64 111 
22  1 11 12  0 10 10  1 11 12 
23  83 85 168  70 88 158  79 84 163 
24  12 142 154  10 137 147  12 129 141 
25  184 165 349  152 195 347  167 178 345 
26  52 90 142  51 90 141  60 96 156 
27  35 20 55  37 22 59  36 23 59 
28  94 161 255  131 145 276  89 172 261 
29  504 85 589  485 88 573  495 103 598 
30  187 146 333  155 183 338  151 194 345 
31  112 254 366  120 225 345  127 250 377 
32  16 75 91  17 75 92  17 81 98 
33  30 132 162  40 122 162  39 133 172 
34  12 108 120  14 106 120  11 108 119 
35  66 187 253  97 143 240  55 205 260 
36  188 73 261  192 61 253  200 61 261 
37  342 76 418  284 113 397  297 143 440 
38  230 118 348  235 107 342  223 141 364 
39  137 59 196  133 55 188  139 46 185 
40  110 141 251  121 135 256  118 137 255 
41  164 89 253  134 105 239  143 117 260 
42  81 249 330  94 224 318  97 244 341 
43  201 79 280  191 100 291  178 114 292 
44  48 211 259  57 222 279  51 217 268 
45  223 251 474  201 258 459  196 283 479 
             
Total  3666 4069 7735  3574 4022 7596  3527 4300 7827 
A: Number of apnea event, H: Number of hypopnea event. 
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Appendix K 

Parameters for performance evaluation 

Correlation coefficient: The Pearson correlation coefficient (r), also known as Pearson’s r, the Pearson 

product-moment correlation coefficient, or the bivariate correlation, is a statistic that measures the linear 

correlation between two variables. It has a value between +1 and -1. A value of +1 is a total positive linear 

correlation, 0 is no linear correlation, and -1 is a total negative linear correlation. Intraclass correlation 

coefficient (ICC) is a descriptive statistic that can be used when quantitative measurements are made on units 

that are organized into groups. It describes how strongly units in the same group resemble each other. While 

it is viewed as a type of correlation, unlike most other correlation measures it operates on data structured as 

groups, rather than data structured as paired observations. A value of ICC of less than 0.50 indicates poor 

agreement, 0.50 to 0.75 is considered moderate, 0.75 to 0.90 is considered good, and more than 0.90 is 

considered excellent (Koo & Li, 2016). 95% confidence interval (CI) provides additional information about 

the agreement between scoring and detection.  

     Bland-Altman plot: A method of data plotting to analyze the agreement between two different methods 

(designed method vs gold standard). In this plot, the differences between the two methods are plotted against 

their means. Thus, this is also known as a difference plot. A high correlation does not necessarily imply that 

there is good agreement between the two methods. The mean difference (i.e., fixed bias) is the estimated bias 

and the standard deviation (SD) of the differences measures the random fluctuations around the mean. If the 

mean value of the difference differs significantly from 0, this indicates the presence of fixed bias. It is 

common to compute 95% limits of agreement (LoA) for each comparison (average difference ± 1.96 standard 

deviation of the differences), which tells us how far apart measurements by two methods were more likely 

to be for most individuals. If the differences within mean ± 1.96 SD are not clinically important, the two 

methods may be used interchangeably.   

     Sensitivity, specificity, and accuracy: Sensitivity is also known as the true positive rate (TPR). It measures 

the proportion of actual positives that are correctly identified as such. Specificity is known as the true 

negative rate (TNR) that measures the proportion of actual negatives that are correctly identified as such. In 

addition, positive predictive value (PPV) and negative predictive value (NPV) are considered as other 

performance parameters. These are defined using (K1) to (K5) as follows– 

 
PPV =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%                                                                 (𝐾1) 

NPV =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
× 100%                                                                (𝐾2) 

Sensitivity = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100%                                                    (𝐾3) 
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Specificity = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100%                                                    (𝐾4) 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
× 100%                                         (𝐾5) 

     True positive (TP) is the number of sick people (sleep apnea patient/record) correctly identified as sick. 

True negative (TN) is the number of healthy people (normal patient/record) correctly identified as healthy. 

False positive (FP) is the number of healthy people incorrectly identified as sick. False negative (FN) is the 

number of sick people incorrectly identified as healthy.  

     For 2 class (binary) diagnosis, the confusion matrix is shown in Table K1. Sensitivity reflects the 

percentage of sick people who are correctly identified as having the condition. Similarly, specificity 

represents the percentage of healthy people who are correctly identified as not having the condition.  

Accuracy is the overall performance of the designed method calculated from sensitivity and specificity. 

Table K1. Confusion matrix for 2 class diagnosis. 

              Estimated 

  Positive Negative 
 

Actual 
Positive TP FN 

Negative FP TN 

TP: true positive, TN: true negative, FP: false positive, FN: false negative 

The estimation of performance parameters is quite different when 4 classes (normal, mild, moderate, 

and severe) are considered with their corresponding ranges of AHI. In practice, 4 class diagnosis results in 

lower performance compared to 2 class diagnosis. Confusion matrix for 4 class diagnosis is shown in Table 

K2. 

Table K2. Confusion matrix for 4 class diagnosis. 

                                            Estimated 

  Normal (1) Mild (2) Moderate (3) Severe (4) 
 

 

Actual 

Normal (1) N11 N12 N13 N14 

Mild (2) N21 N22 N23 N24 

Moderate (3) N31 N32 N33 N34 

Severe (4) N41 N42 N43 N44 

 

    For a specific class (for example, Mild class (2)),  

𝑇𝑃 (2) = 𝑁22                                                                 (K6) 

𝐹𝑃 (2) = 𝑁12 + 𝑁32 + 𝑁42                                                       (K7) 
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𝐹𝑁 (2) = 𝑁21 + 𝑁23 + 𝑁24                                                       (K8) 

𝑇𝑁 (2) = 𝑁11 + 𝑁13 + 𝑁14 + 𝑁31 + 𝑁33 + 𝑁34 + 𝑁41 + 𝑁43 + 𝑁44                      (K9) 

     Thus, the performance parameters (PPV, NPV, sensitivity, and specificity) for the mild class are 

calculated using (K6 to K9 respectively). Similar calculations are used to estimate the performance 

parameters for the other classes (normal, moderate, and severe). The overall accuracy (4 class accuracy) is 

calculated using (K10) as mentioned below: 

 

4 Class Accuracy =
𝑆𝑢𝑚 𝑜𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑒𝑥𝑐𝑒𝑝𝑡 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
× 100%

=
𝑁11 + 𝑁22 + 𝑁33 + 𝑁44

𝑁12 + 𝑁13 + 𝑁14 + 𝑁21 + 𝑁23 + 𝑁24 + 𝑁31 + 𝑁32 + 𝑁34 + 𝑁41 + 𝑁42 + 𝑁43

× 100%                                                                                                                                                                    (𝐾10) 

      

Area under ROC curve (AUC): The receiver operating characteristic (ROC) curve is the graphical 

representation of the connection between sensitivity and specificity for every possible cut-off for a test or a 

combination of tests. False positive rate is abbreviated as FPR. A ROC curve plots sensitivity vs. 1-specificity 

(i.e., TPR vs. FPR) at different thresholds. In addition, the area under the ROC curve (AUC or AUROC) is 

a measure of the usefulness of a test, where a greater area means a more useful test. The area under ROC 

curves is an effective way to summarize the overall diagnostic accuracy of the test. The values of AUC vary 

from 0 to 1, where a value of 0 indicates a perfectly inaccurate test and a value of 1 represents a perfectly 

accurate test. In general, an AUC of 0.5 suggests no discrimination, 0.7 to 0.8 is considered acceptable, 0.8 

to 0.9 is considered excellent, and more than 0.9 is considered outstanding (Mandrekar, 2010). 

     Cohen’s kappa coefficient (k): Cohen’s kappa coefficient (k) is an effective measure for inter-scorer 

reliability. It is extensively used to analyze the agreement between two different methods (designed method 

vs gold standard). In general, k of 0 to 0.2 suggests no agreement, 0.2 to 0.4 is considered minimal, 0.4 to 

0.6 is considered weak, 0. 6 to 0.8 is considered moderate, 0.8 to 0.9 is considered strong, and more than 0.9 

is considered almost perfect (McHugh, 2012). 
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Appendix L 

Actual and estimated AHI with their differences for the development set 

Record No.  Actual AHI 
(event/h) 

Estimated AHI (event/h)  Difference (event/h) 
Chapter 4 Chapter 5  Chapter 4 Chapter 5 

1  5.18 3.92 3.03  1.26 2.15 
2  4.12 3.56 3.73  0.56 0.39 
3  12.82 7.76 6.39  5.06 6.43 
4  12.38 15.53 13.88  -3.15 -1.49 
5  43.78 43.70 42.56  0.08 1.22 
6  35.24 32.69 36.34  2.55 -1.10 
7  56.71 50.19 46.48  6.52 10.23 
8  17.90 10.61 12.66  7.29 5.24 
9  11.93 7.60 7.76  4.33 4.17 
10  1.70 1.67 1.06  0.03 0.63 
11  17.64 7.59 7.24  10.05 10.40 
12  8.99 9.19 8.81  -0.20 0.17 
13  52.32 62.70 64.52  -10.58 -12.20 
14  5.12 8.46 6.17  -3.48 -1.05 
15  29.90 19.07 20.82  10.83 9.08 
16  5.49 8.47 7.62  -2.98 -2.13 
17  3.29 4.18 3.25  -0.89 0.04 
18  5.84 5.92 4.71  -0.08 1.13 
19  8.65 9.36 6.24  -0.71 2.41 
20  12.11 9.29 6.96  2.65 5.15 
21  40.10 37.64 38.51  2.46 1.58 
22  3.30 2.02 2.02  1.28 1.28 
23  32.20 34.07 34.07  -2.06 -1.87 
24  47.64 29.54 25.77  18.10 21.87 
25  53.45 55.57 55.72  -2.27 -2.27 
26  34.29 31.43 34.19  2.86 0.09 
27  8.58 12.42 11.36  -3.84 -2.78 
28  39.78 47.24 44.62  -7.89 -4.84 
29  93.45 90.81 95.45  2.49 -2.00 
30  55.32 63.88 65.12  -8.56 -9.80 
31  59.86 58.42 61.98  1.29 -2.12 
32  21.48 20.99 20.01  0.49 1.47 
33  34.11 32.86 34.28  0.78 -0.16 
34  18.26 24.95 22.81  -6.69 -4.55 
35  45.75 65.17 70.59  -19.22 -24.83 
36  38.53 42.57 43.43  -4.18 -4.90 
37  78.41 84.51 98.51  -7.04 -20.10 
38  54.63 83.51 67.50  -11.98 -12.87 
39  33.01 39.27 39.45  -6.26 -6.44 
40  44.54 46.06 45.92  -1.67 -1.37 
41  49.54 49.56 52.37  -0.02 -2.83 
42  52.34 55.39 58.68  -3.05 -6.34 
43  45.89 53.86 53.86  -8.14 -7.97 
44  47.37 52.50 52.33  -5.13 -4.95 
45  63.28 67.33 71.24  -4.34 -7.96 
        
Mean  32.14 33.10 33.56  -0.97 -1.42 
SD  22.29 24.36 26.13  6.28 7.59 
AHI: Apnea hypopnea index, SD: Standard deviation, Estimated AHI was subtracted from actual AHI to calculate 
the differences, Positive (+) and negative (-) differences indicate underestimation and overestimation respectively. 
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Appendix M 

Actual and estimated AHI with their differences for the validation set 

Record No. Actual AHI 
(event/h) 

Estimated AHI (event/h)   Difference (event/h) 

Chapter 4 Chapter 5  Chapter 4 Chapter 5 
1 6.23 8.91 6.89   -2.68 -0.66 
2 38.24 37.33 34.19   0.92 4.06 
3 9.37 13.73 11.81   -4.36 -2.44 
4 7.46 10.12 9.70   -2.66 -2.24 
5 6.67 11.86 9.00   -5.19 -2.33 
6 15.88 26.26 25.06   -10.38 -9.18 
7 37.55 33.21 35.08   4.34 2.47 
8 2.02 4.44 3.72   -2.42 -1.70 
9 9.53 10.98 11.30   -1.45 -1.77 
10 28.70 33.67 35.00   -4.97 -6.30 
11 18.36 19.12 19.57   -0.76 -1.21 
12 24.16 30.43 30.00   -6.27 -5.84 
13 38.49 30.68 32.95   7.80 5.53 
14 12.24 13.66 11.39   -1.42 0.86 
15 4.08 3.28 3.44   0.81 0.64 
16 19.05 11.86 12.34   7.19 6.71 
17 2.88 15.25 14.00   -12.38 -11.12 
18 44.64 34.09 29.29   10.55 15.34 
19 6.41 6.07 5.35   0.34 1.06 
20 21.66 21.80 19.50   -0.14 2.16 
21 7.34 27.14 23.85   -19.80 -16.51 
22 26.99 20.93 20.76   6.07 6.24 
23 19.22 26.84 25.00   -7.61 -5.78 
24 24.81 22.30 19.49   2.51 5.32 
25 19.38 19.22 17.69   0.16 1.69 
26 12.15 16.71 10.79   -4.55 1.37 
27 17.04 13.53 14.25   3.51 2.79 
28 6.94 5.49 5.03   1.46 1.91 
29 7.62 8.29 5.59   -0.67 2.03 
30 51.96 45.32 44.88   6.63 7.08 
31 1.21 4.25 3.31   -3.05 -2.10 
32 1.87 4.20 2.75   -2.34 -0.88 
33 25.87 15.87 18.14   10.00 7.73 
34 7.54 12.70 8.72   -5.16 -1.18 
35 11.27 6.27 5.85   5.00 5.42 
36 1.76 3.60 3.02   -1.84 -1.26 
37 14.28 9.70 9.70   4.58 4.58 
38 5.55 8.30 9.04   -2.75 -3.49 
39 2.99 15.18 15.34   -12.20 -12.35 
40 10.42 5.29 3.14   5.13 7.27 
41 20.37 22.56 22.41   -2.19 -2.05 
42 7.72 8.75 7.78   -1.03 -0.06 
43 4.55 6.72 5.96   -2.17 -1.40 
44 14.96 14.87 14.54   0.09 0.42 
45 5.42 12.38 9.81   -6.97 -4.40 
46 6.40 13.93 14.39   -7.53 -7.99 
47 27.25 18.59 19.86   8.66 7.38 
48 5.96 13.12 10.27   -7.16 -4.31 
49 50.72 47.51 49.01   3.21 1.71 
50 27.47 27.99 27.40   -0.52 0.07 
51 21.87 17.83 20.33   4.04 1.53 



 

182 
 

52 22.44 19.83 16.15   2.61 6.29 
53 17.53 26.99 24.09   -9.47 -6.56 
54 6.33 12.52 10.14   -6.19 -3.81 
55 9.15 7.22 6.56   1.93 2.59 
56 1.66 7.92 6.47   -6.26 -4.80 
57 1.57 2.57 2.29   -1.00 -0.72 
58 11.69 11.23 9.98   0.47 1.71 
59 13.06 17.40 16.40   -4.34 -3.34 
60 64.58 62.15 58.75   2.42 5.82 
61 13.38 15.22 11.19   -1.84 2.20 
62 12.30 15.41 15.57   -3.11 -3.27 
63 19.42 15.53 14.91   3.89 4.52 
64 19.02 20.83 15.72   -1.81 3.30 
65 11.61 7.75 6.24   3.85 5.37 
66 2.13 7.11 4.79   -4.97 -2.65 
67 12.59 11.72 8.56   0.87 4.03 
68 13.93 6.46 4.99   7.47 8.94 
69 17.29 19.46 21.65   -2.17 -4.36 
70 6.72 7.56 5.36   -0.84 1.36 
71 6.02 7.26 6.39   -1.24 -0.38 
72 5.49 13.64 13.13   -8.15 -7.64 
73 9.03 10.47 10.64   -1.44 -1.61 
74 12.40 9.33 8.84   3.06 3.55 
75 4.68 6.82 5.38   -2.14 -0.70 
76 16.54 6.53 5.52   10.01 11.01 
77 29.73 54.55 54.71   -24.81 -24.97 
78 9.35 20.73 18.21   -11.38 -8.86 
79 57.29 44.14 45.17   13.15 12.11 
80 0.89 4.26 2.79   -3.37 -1.90 
81 18.90 15.03 12.39   3.87 6.51 
82 15.10 24.71 24.20   -9.62 -9.10 
83 31.42 33.13 33.87   -1.70 -2.45 
84 11.84 15.67 14.65   -3.83 -2.81 
85 18.79 22.96 25.50   -4.18 -6.71 
86 6.62 36.37 33.46   -29.75 -26.84 
87 2.11 6.25 6.25   -4.14 -4.14 
88 20.31 14.29 14.12   6.03 6.19 
89 3.51 6.07 4.59   -2.55 -1.07 
90 13.76 12.96 13.82   0.80 -0.06 
91 9.11 11.60 14.38   -2.49 -5.27 
92 2.63 12.30 9.10   -9.67 -6.47 
93 81.09 72.50 68.75   8.59 12.34 
94 10.63 7.29 7.44   3.34 3.19 
95 8.53 10.82 10.28   -2.28 -1.75 
96 28.22 31.70 30.23   -3.48 -2.02 
97 5.41 14.45 11.67   -9.04 -6.26 
98 58.66 45.57 46.00   13.09 12.66 
99 3.55 8.65 7.75   -5.11 -4.20 
100 12.33 25.93 24.63   -13.59 -12.30 
101 10.98 11.28 10.33   -0.30 0.65 
102 0.67 2.59 3.20   -1.92 -2.53 
103 6.31 8.27 8.99   -1.96 -2.69 
104 24.60 33.97 32.65   -9.37 -8.05 
105 18.47 17.59 16.08   0.89 2.39 
106 8.94 16.88 15.58   -7.95 -6.65 
107 7.06 19.55 15.64   -12.49 -8.58 
108 21.13 22.27 23.33   -1.14 -2.20 
109 3.42 10.23 7.84   -6.81 -4.41 
110 19.07 17.87 17.29   1.20 1.79 
111 22.58 15.20 12.60   7.38 9.99 
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112 6.43 10.93 8.24   -4.50 -1.81 
113 16.00 17.50 17.79   -1.50 -1.79 
114 13.98 26.93 21.14   -12.95 -7.16 
115 2.43 7.31 5.29   -4.89 -2.86 
116 58.97 55.15 55.29   3.83 3.68 
117 18.06 23.47 22.67   -5.41 -4.61 
118 44.32 36.21 37.34   8.11 6.98 
119 4.69 9.77 10.82   -5.08 -6.13 
120 20.54 19.87 17.05   0.67 3.49 
121 0.33 2.36 0.84   -2.03 -0.51 
122 14.44 12.50 11.33   1.94 3.11 
123 12.52 12.06 13.15   0.46 -0.63 
124 20.50 11.26 9.04   9.24 11.46 
125 14.25 17.62 15.44   -3.36 -1.18 
126 7.05 10.11 8.50   -3.06 -1.45 
127 10.56 9.97 9.36   0.59 1.21 
128 1.79 4.49 1.95   -2.70 -0.16 
129 14.02 23.92 24.95   -9.90 -10.93 
130 8.92 15.17 14.45   -6.26 -5.53 
131 2.87 5.60 5.60   -2.73 -2.73 
132 22.69 17.43 16.53   5.26 6.17 
133 16.39 15.09 15.38   1.30 1.01 
134 54.84 14.14 15.37   40.70 39.47 
135 13.87 18.33 16.11   -4.46 -2.24 
136 12.86 19.36 16.47   -6.51 -3.62 
137 10.93 28.48 29.82   -17.55 -18.89 
138 17.02 27.40 25.80   -10.38 -8.78 
139 3.20 12.95 10.26   -9.74 -7.06 
140 21.89 25.72 23.41   -3.83 -1.52 
141 4.03 11.50 10.04   -7.48 -6.02 
142 9.64 13.11 11.71   -3.47 -2.07 
143 2.84 2.95 2.21   -0.11 0.63 
144 15.07 12.33 10.44   2.74 4.63 
145 1.01 1.52 0.76   -0.51 0.25 
146 5.32 8.12 8.27   -2.80 -2.95 
147 9.44 12.31 12.13   -2.88 -2.69 
148 21.06 20.51 18.30   0.55 2.77 
149 15.81 5.21 5.61   10.59 10.19 
150 2.64 6.21 4.77   -3.57 -2.13 
151 11.32 15.15 12.68   -3.84 -1.36 
152 7.98 15.06 11.87   -7.08 -3.90 
153 1.72 4.34 3.18   -2.61 -1.46 
154 15.66 25.34 23.58   -9.69 -7.92 
155 12.83 18.56 20.64   -5.74 -7.82 
156 9.77 9.69 10.37   0.07 -0.61 
157 14.98 11.98 10.82   2.99 4.15 
158 57.44 70.76 71.86   -13.32 -14.42 
159 20.51 15.55 11.99   4.96 8.53 
160 2.28 11.11 9.64   -8.83 -7.36 
161 9.77 20.43 21.65   -10.66 -11.88 
162 16.00 19.08 22.11   -3.08 -6.11 
163 77.74 63.35 56.97   14.38 20.77 
164 23.17 27.32 30.39   -4.15 -7.22 
165 39.46 35.18 39.98   4.28 -0.52 
166 8.80 13.77 13.11   -4.97 -4.31 
167 20.28 13.22 10.76   7.06 9.52 
168 17.17 10.95 8.28   6.22 8.89 
169 6.70 3.21 3.06   3.49 3.64 
170 34.31 30.62 32.68   3.69 1.62 
171 8.36 12.66 14.12   -4.30 -5.76 
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172 9.90 12.66 11.36   -2.77 -1.47 
173 9.23 10.98 11.56   -1.75 -2.33 
174 5.65 11.00 10.28   -5.35 -4.63 
175 13.77 26.35 24.83   -12.58 -11.06 
176 8.83 4.43 3.29   4.40 5.55 
177 5.27 5.23 2.95   0.05 2.32 
178 14.92 18.83 17.86   -3.91 -2.93 
179 55.69 49.54 58.72   6.15 -3.03 
180 2.28 10.08 9.11   -7.79 -6.82 
181 28.92 28.06 25.06   0.86 3.86 
182 26.02 30.71 30.71   -4.69 -4.69 
183 5.19 3.00 3.00   2.19 2.19 
184 1.80 2.47 1.89   -0.67 -0.09 
185 1.76 2.53 2.70   -0.77 -0.94 
186 12.06 13.58 12.86   -1.52 -0.80 
187 7.86 8.65 9.13   -0.79 -1.27 
188 7.37 13.31 12.75   -5.95 -5.38 
189 8.70 8.91 10.40   -0.22 -1.70 
190 44.22 39.47 39.16   4.75 5.06 
191 28.94 39.60 37.08   -10.66 -8.14 
192 21.64 35.96 32.12   -14.32 -10.48 
193 4.43 11.60 7.52   -7.17 -3.09 
194 1.52 6.76 6.10   -5.24 -4.58 
195 25.16 27.38 27.38   -2.22 -2.22 
196 19.11 20.47 16.56   -1.36 2.55 
197 13.08 13.50 12.27   -0.42 0.81 
198 3.60 13.66 10.69   -10.07 -7.10 
199 24.25 23.95 22.62   0.31 1.64 
200 54.71 44.64 39.76   10.07 14.95 
201 11.82 8.12 7.60   3.70 4.22 
202 65.21 40.18 35.85   25.03 29.36 
203 34.85 34.82 31.70   0.04 3.16 
204 24.94 25.24 25.24   -0.30 -0.30 
205 42.04 28.49 27.63   13.55 14.41 
206 27.26 20.64 18.36   6.63 8.91 
207 0.74 3.89 3.39   -3.15 -2.64 
208 11.36 13.01 11.27   -1.65 0.08 
209 14.76 17.66 13.12   -2.90 1.63 
210 21.29 27.26 24.94   -5.97 -3.65 
211 19.37 11.35 9.43   8.02 9.94 
212 10.34 7.48 5.65   2.85 4.69 
213 33.51 39.16 39.45   -5.65 -5.94 
214 1.90 6.87 5.81   -4.96 -3.91 
215 35.40 27.52 30.51   7.88 4.88 
216 3.89 6.74 6.09   -2.85 -2.20 
217 14.81 15.66 13.94   -0.86 0.87 
218 14.38 11.78 11.78   2.60 2.60 
219 11.24 19.46 18.51   -8.22 -7.27 
220 48.74 40.41 40.98   8.33 7.76 
221 7.40 4.60 3.13   2.80 4.27 
222 0.57 2.85 2.85   -2.28 -2.28 
223 24.39 22.98 19.60   1.41 4.80 
224 3.82 13.33 12.73   -9.51 -8.91 
225 22.34 21.22 24.01   1.12 -1.67 
226 17.72 25.10 25.38   -7.38 -7.67 
227 27.03 23.99 22.47   3.04 4.56 
228 10.63 19.56 16.73   -8.93 -6.10 
229 14.17 24.76 21.92   -10.59 -7.75 
230 17.01 20.21 19.21   -3.20 -2.20 
231 13.51 20.03 19.86   -6.52 -6.35 



 

185 
 

232 36.33 30.92 27.11   5.41 9.22 
233 1.82 1.12 0.56   0.70 1.26 
234 2.05 15.37 16.62   -13.33 -14.57 
235 14.00 11.59 10.73   2.41 3.27 
236 9.47 17.93 15.54   -8.46 -6.07 
237 30.82 35.66 37.96   -4.84 -7.14 
238 23.71 26.11 27.07   -2.40 -3.36 
239 7.15 6.00 6.57   1.15 0.58 
240 22.98 24.27 24.43   -1.30 -1.45 
241 32.08 40.03 39.08   -7.95 -7.00 
242 37.35 38.73 40.81   -1.38 -3.46 
243 32.31 34.12 35.15   -1.80 -2.83 
244 34.23 34.36 36.50   -0.14 -2.28 
245 38.77 37.81 37.19   0.96 1.58 
246 9.18 8.14 7.14   1.04 2.04 
247 38.35 22.33 21.33   16.02 17.02 
248 28.10 21.00 20.29   7.10 7.80 
249 10.34 17.56 17.13   -7.23 -6.79 
250 45.32 43.00 42.19   2.32 3.13 
251 72.29 74.31 82.60   -2.01 -10.31 
252 12.66 16.34 12.80   -3.68 -0.13 
253 54.70 32.50 29.84   22.20 24.86 
254 26.33 28.04 30.62   -1.71 -4.29 
255 21.97 20.96 21.43   1.01 0.54 
256 20.98 29.32 29.16   -8.34 -8.18 
257 22.94 22.19 23.65   0.75 -0.71 
258 29.74 35.14 38.49   -5.41 -8.75 
259 34.42 38.31 37.50   -3.88 -3.08 
260 4.58 15.14 13.56   -10.56 -8.98 
261 18.80 14.71 12.93   4.09 5.87 
262 6.06 9.32 6.55   -3.26 -0.49 
263 4.47 10.39 9.58   -5.92 -5.11 
264 22.22 19.22 22.77   3.00 -0.55 
265 17.17 24.57 23.28   -7.40 -6.11 
266 3.32 8.59 9.81   -5.26 -6.49 
267 29.33 23.76 22.09   5.57 7.24 
268 15.76 12.08 12.42   3.68 3.35 
269 23.20 8.92 6.58   14.28 16.63 
270 17.78 13.44 15.32   4.34 2.47 
271 50.04 51.56 51.72   -1.52 -1.68 
272 13.01 15.43 12.47   -2.41 0.54 
273 31.61 43.01 41.44   -11.40 -9.82 
274 7.49 16.13 14.68   -8.65 -7.19 
275 7.92 13.44 12.57   -5.52 -4.65 
276 3.53 5.48 6.54   -1.95 -3.02 
277 14.30 4.69 2.51   9.62 11.79 
278 18.41 17.14 16.81   1.27 1.60 
279 1.48 7.44 5.54   -5.96 -4.07 
280 25.02 23.31 21.33   1.70 3.68 
281 20.35 27.11 19.90   -6.76 0.46 
282 6.39 12.91 10.08   -6.52 -3.69 
283 69.16 58.78 66.02   10.38 3.14 
284 7.66 6.65 6.96   1.01 0.70 
285 16.03 26.02 20.76   -9.99 -4.73 
286 7.14 3.50 3.18   3.65 3.96 
287 13.43 2.58 2.29   10.86 11.14 
288 19.10 24.51 23.70   -5.41 -4.60 
289 41.70 25.56 22.20   16.14 19.51 
290 18.80 27.87 29.77   -9.07 -10.96 
291 2.21 1.19 1.19   1.02 1.02 



 

186 
 

292 3.86 6.69 5.73   -2.83 -1.87 
293 30.19 36.76 38.24   -6.57 -8.05 
294 49.05 42.54 41.08   6.51 7.98 
295 24.10 26.15 24.65   -2.05 -0.55 
296 13.26 18.30 15.69   -5.04 -2.43 
297 12.97 18.24 15.00   -5.27 -2.03 
298 13.85 24.19 24.04   -10.34 -10.18 
299 9.12 20.68 21.14   -11.56 -12.02 
300 25.29 30.46 29.07   -5.17 -3.78 
301 28.78 21.26 21.12   7.52 7.67 
302 1.86 6.81 5.65   -4.95 -3.79 
303 15.77 17.22 14.81   -1.45 0.97 
304 1.46 5.51 4.37   -4.05 -2.92 
305 4.04 9.86 8.24   -5.81 -4.20 
306 14.01 17.39 17.39   -3.38 -3.38 
307 14.13 18.17 21.07   -4.04 -6.94 
308 5.45 6.42 6.08   -0.97 -0.63 
309 32.90 27.36 25.79   5.54 7.12 
310 14.23 17.21 18.32   -2.98 -4.08 
311 23.21 27.89 29.10   -4.68 -5.89 
312 27.58 19.77 17.73   7.81 9.85 
313 17.56 24.80 20.97   -7.24 -3.41 
314 51.17 57.86 61.93   -6.70 -10.77 
315 9.24 9.36 8.30   -0.11 0.94 
316 12.19 14.80 11.64   -2.61 0.55 
317 22.26 26.02 30.68   -3.76 -8.42 
318 1.96 3.98 4.16   -2.01 -2.19 
319 13.13 20.04 15.50   -6.91 -2.37 
320 12.42 19.44 21.27   -7.01 -8.84 
321 16.33 14.71 14.85   1.62 1.48 
322 26.60 32.95 31.58   -6.35 -4.98 
323 19.90 14.85 14.85   5.05 5.05 
324 16.41 17.43 15.89   -1.02 0.52 
325 16.15 20.96 18.68   -4.81 -2.53 
326 8.50 10.85 7.29   -2.35 1.20 
327 20.78 27.14 27.88   -6.36 -7.10 
328 19.52 21.99 19.55   -2.47 -0.03 
329 14.28 20.04 17.94   -5.77 -3.66 
330 11.36 14.74 11.09   -3.37 0.28 
331 21.64 19.74 18.42   1.90 3.22 
332 21.99 33.63 26.04   -11.64 -4.06 
333 14.38 19.75 14.40   -5.38 -0.02 
334 9.14 15.93 14.77   -6.79 -5.63 
335 40.49 39.43 36.57   1.06 3.92 
336 14.56 30.36 28.41   -15.80 -13.85 
337 4.76 8.12 6.94   -3.36 -2.18 
338 13.04 20.06 19.46   -7.02 -6.42 
339 4.44 6.59 3.63   -2.15 0.81 
340 18.70 25.96 22.01   -7.26 -3.31 
341 8.83 9.24 8.50   -0.41 0.33 
342 19.86 21.86 21.86   -2.01 -2.01 
343 33.82 36.66 37.58   -2.85 -3.76 
344 33.55 33.21 34.83   0.34 -1.28 
345 1.90 2.88 2.50   -0.98 -0.60 
346 4.65 7.56 8.43   -2.90 -3.78 
347 11.33 15.31 15.31   -3.99 -3.99 
348 17.95 20.25 19.01   -2.30 -1.06 
349 0.19 2.85 2.65   -2.67 -2.46 
350 4.41 11.47 7.57   -7.06 -3.16 
351 17.07 15.91 14.20   1.16 2.86 



 

187 
 

352 11.94 6.38 6.58   5.56 5.36 
353 24.48 23.18 23.33   1.30 1.14 
354 4.48 3.63 3.47   0.84 1.00 
355 5.89 5.99 5.51   -0.10 0.39 
356 12.64 16.05 16.05   -3.40 -3.40 
357 7.87 16.14 15.90   -8.27 -8.03 
358 16.50 7.60 8.89   8.90 7.61 
359 3.40 8.97 7.06   -5.57 -3.66 
360 14.83 14.88 12.28   -0.05 2.55 
361 23.76 30.39 27.75   -6.63 -4.00 
362 1.42 6.33 3.80   -4.91 -2.38 
363 3.13 6.23 5.79   -3.09 -2.66 
364 3.93 5.34 3.56   -1.41 0.37 
365 0.98 3.64 3.19   -2.67 -2.21 
366 17.33 27.99 29.51   -10.67 -12.19 
367 24.65 30.76 31.11   -6.11 -6.45 
368 5.73 6.80 6.96   -1.08 -1.23 
369 14.24 19.01 18.11   -4.77 -3.87 
370 16.01 12.74 10.16   3.27 5.85 
371 30.27 21.53 20.09   8.74 10.18 
372 7.96 13.26 12.38   -5.31 -4.42 
373 21.87 22.40 23.13   -0.53 -1.27 
374 3.21 6.01 5.22   -2.80 -2.01 
375 36.26 27.02 21.10   9.24 15.16 
376 11.27 16.31 13.57   -5.04 -2.29 
377 14.86 14.39 14.71   0.48 0.15 
378 57.93 54.31 56.65   3.63 1.28 
379 39.46 39.23 48.78   0.23 -9.32 
380 11.73 14.62 13.29   -2.89 -1.56 
381 1.42 1.48 1.18   -0.05 0.24 
382 12.38 17.64 13.37   -5.25 -0.98 
383 4.86 13.40 6.89   -8.54 -2.02 
384 28.87 24.12 25.60   4.75 3.27 
385 14.17 21.10 18.93   -6.93 -4.76 
386 6.84 12.80 10.83   -5.96 -3.99 
387 12.43 21.74 17.65   -9.31 -5.22 
388 5.11 11.37 12.84   -6.26 -7.74 
389 12.64 7.14 5.83   5.51 6.82 
390 3.15 4.44 4.93   -1.29 -1.79 
391 1.93 1.86 1.86   0.08 0.08 
392 8.43 4.11 4.74   4.32 3.69 
393 5.66 8.24 9.68   -2.58 -4.02 
394 1.63 6.01 5.66   -4.38 -4.04 
395 2.96 19.57 20.62   -16.61 -17.66 
396 22.62 43.56 41.69   -20.95 -19.07 
397 24.95 17.98 14.15   6.98 10.81 
398 8.24 7.95 6.79   0.29 1.45 
399 16.93 14.80 15.09   2.13 1.84 
400 11.52 13.64 12.84   -2.12 -1.32 
401 2.89 5.63 3.69   -2.75 -0.80 
402 17.30 21.08 22.12   -3.78 -4.82 
403 13.37 19.76 16.68   -6.39 -3.31 
404 25.71 16.96 18.26   8.76 7.45 
405 12.00 20.52 17.77   -8.52 -5.77 
406 19.04 27.91 25.94   -8.86 -6.90 
407 15.64 22.52 21.87   -6.88 -6.23 
408 28.65 25.06 23.50   3.60 5.15 
409 20.53 39.90 37.77   -19.38 -17.24 
410 23.28 23.55 18.79   -0.28 4.49 
411 23.36 41.49 37.86   -18.13 -14.51 



 

188 
 

412 12.15 17.67 17.21   -5.53 -5.06 
413 35.16 38.66 40.11   -3.50 -4.95 
414 3.03 11.39 11.08   -8.36 -8.05 
415 24.80 21.81 21.81   3.00 3.00 
416 2.30 6.36 6.95   -4.06 -4.65 
417 5.94 1.01 0.40   4.93 5.53 
418 14.14 15.07 14.72   -0.93 -0.58 
419 4.05 9.06 9.53   -5.01 -5.48 
420 2.54 14.30 13.57   -11.76 -11.03 
421 13.33 19.56 18.10   -6.22 -4.77 
422 16.66 13.39 10.27   3.27 6.39 
423 11.20 20.78 17.59   -9.59 -6.39 
424 18.01 20.74 16.62   -2.73 1.39 
425 9.32 23.69 22.67   -14.37 -13.35 
426 7.00 8.76 7.27   -1.76 -0.27 
427 9.74 14.91 17.04   -5.17 -7.30 
428 4.63 5.69 6.44   -1.06 -1.80 
429 12.13 9.94 7.88   2.20 4.26 
430 2.53 11.00 6.94   -8.47 -4.41 
431 8.63 13.69 10.03   -5.07 -1.40 
432 21.67 22.56 19.16   -0.89 2.52 
433 47.62 46.86 47.58   0.76 0.04 
434 9.82 10.42 8.25   -0.60 1.57 
435 5.94 17.06 13.68   -11.12 -7.74 
436 15.87 19.57 20.81   -3.69 -4.93 
437 18.86 28.17 25.30   -9.31 -6.44 
438 10.86 8.69 8.25   2.17 2.61 
439 6.73 4.70 3.38   2.03 3.35 
440 32.92 25.72 24.13   7.20 8.78 
441 17.32 12.32 11.97   4.99 5.34 
442 8.04 11.87 8.35   -3.83 -0.31 
443 24.00 38.42 33.07   -14.42 -9.07 
444 1.72 6.44 5.31   -4.72 -3.59 
445 4.44 8.42 8.59   -3.98 -4.15 
446 4.92 15.71 14.42   -10.79 -9.50 
447 12.37 11.48 10.10   0.89 2.27 
448 21.22 26.75 25.25   -5.53 -4.03 
449 1.42 7.06 6.32   -5.64 -4.90 
450 22.62 33.70 34.26   -11.08 -11.64 
451 5.50 11.74 9.23   -6.24 -3.72 
452 17.14 16.00 15.84   1.14 1.30 
453 1.53 1.65 2.10   -0.12 -0.57 
454 42.34 48.26 52.53   -5.92 -10.19 
455 5.57 6.83 5.64   -1.26 -0.08 
456 10.09 12.16 9.41   -2.07 0.68 
457 21.27 19.05 18.29   2.21 2.98 
458 10.72 15.35 13.74   -4.63 -3.02 
459 8.08 9.23 7.47   -1.15 0.61 
460 14.91 22.01 16.40   -7.11 -1.49 
461 6.82 15.90 17.62   -9.09 -10.80 
462 21.30 27.71 30.46   -6.41 -9.17 
463 12.60 6.65 6.49   5.95 6.11 
464 6.31 9.50 10.67   -3.19 -4.36 
465 5.60 7.92 6.47   -2.32 -0.86 
466 20.03 11.73 11.14   8.29 8.89 
467 14.85 23.72 24.07   -8.88 -9.22 
468 17.45 17.91 18.49   -0.46 -1.05 
469 4.24 9.70 9.70   -5.46 -5.46 
470 14.96 18.83 16.44   -3.87 -1.47 
471 48.71 51.48 49.95   -2.76 -1.24 



 

189 
 

472 33.19 23.73 23.88   9.46 9.31 
473 30.16 21.91 20.69   8.25 9.47 
474 23.10 28.08 28.41   -4.98 -5.31 
475 12.65 22.67 24.80   -10.02 -12.15 
476 0.00 5.17 3.60   -5.17 -3.60 
477 37.76 26.20 25.75   11.57 12.02 
478 6.85 5.37 4.47   1.48 2.37 
479 28.20 32.49 32.04   -4.28 -3.83 
480 14.65 27.90 28.35   -13.26 -13.70 
481 10.24 7.53 7.23   2.71 3.00 
482 1.94 0.36 0.18   1.58 1.76 
483 2.71 3.52 2.68   -0.80 0.03 
484 1.69 2.28 1.85   -0.59 -0.17 
485 16.45 19.90 19.47   -3.45 -3.02 
486 5.14 8.04 7.53   -2.89 -2.39 
487 3.47 7.06 6.01   -3.59 -2.54 
488 7.06 7.37 4.86   -0.32 2.19 
489 9.24 8.70 7.13   0.54 2.11 
490 44.28 28.50 27.27   15.78 17.01 
491 5.41 10.00 7.00   -4.59 -1.59 
492 22.14 31.02 35.03   -8.88 -12.89 
493 20.49 17.98 18.15   2.51 2.34 
494 6.39 3.14 1.49   3.25 4.90 
495 14.20 5.86 5.47   8.34 8.73 
496 10.94 14.18 12.20   -3.24 -1.26 
497 4.57 3.56 2.70   1.01 1.87 
498 15.34 9.03 11.33   6.31 4.01 
499 34.55 33.08 36.83   1.47 -2.27 
500 12.30 18.71 18.55   -6.41 -6.25 
501 3.55 6.99 4.66   -3.44 -1.11 
502 5.11 3.67 3.84   1.44 1.27 
503 29.49 27.29 29.79   2.20 -0.30 
504 27.23 26.49 25.93   0.74 1.30 
505 6.84 11.02 12.31   -4.18 -5.47 
506 13.44 18.63 16.20   -5.18 -2.75 
507 25.76 22.98 20.56   2.78 5.20 
508 5.13 7.25 6.72   -2.12 -1.59 
509 4.94 9.38 5.98   -4.44 -1.04 
510 35.28 47.62 48.43   -12.35 -13.16 
511 10.89 24.40 23.64   -13.51 -12.75 
512 38.14 43.88 44.06   -5.74 -5.91 
513 43.41 47.99 50.43   -4.58 -7.02 
514 8.62 8.98 8.37   -0.36 0.25 
515 11.54 3.49 3.19   8.05 8.35 
516 7.20 16.30 12.23   -9.10 -5.03 
517 32.85 26.90 24.19   5.96 8.66 
518 7.99 16.71 13.74   -8.72 -5.75 
519 1.02 4.78 4.94   -3.76 -3.92 
520 34.43 34.21 35.97   0.22 -1.55 
521 7.91 13.03 11.91   -5.12 -4.00 
522 83.33 79.21 80.21   4.12 3.12 
523 23.00 21.16 19.29   1.84 3.71 
524 8.10 17.95 14.91   -9.85 -6.81 
525 46.48 39.94 38.96   6.54 7.52 
526 11.49 8.10 7.48   3.40 4.01 
527 27.88 18.20 16.02   9.68 11.86 
528 3.99 10.12 11.04   -6.13 -7.05 
529 19.30 20.10 24.03   -0.79 -4.72 
530 8.24 10.51 7.48   -2.27 0.76 
531 13.21 18.52 16.40   -5.32 -3.19 



 

190 
 

532 18.24 18.35 18.50   -0.11 -0.26 
533 16.00 15.03 15.76   0.97 0.24 
534 10.39 10.07 8.68   0.32 1.71 
535 8.71 5.91 3.99   2.80 4.72 
536 18.30 15.78 15.07   2.52 3.23 
537 2.54 3.78 1.39   -1.24 1.14 
538 18.45 24.71 26.89   -6.26 -8.44 
539 7.76 10.28 10.71   -2.52 -2.95 
540 7.62 12.15 12.45   -4.52 -4.83 
541 9.40 10.41 9.62   -1.00 -0.22 
542 21.16 16.14 15.12   5.02 6.05 
543 18.87 17.06 15.64   1.81 3.23 
544 9.42 10.30 9.72   -0.88 -0.30 
545 27.96 24.29 20.92   3.67 7.04 
546 33.39 40.40 38.11   -7.00 -4.72 
547 10.19 11.35 9.66   -1.16 0.53 
548 71.45 82.52 87.69   -11.07 -16.25 
549 12.49 10.10 11.60   2.39 0.88 
550 18.54 9.69 7.18   8.85 11.36 
551 24.34 22.84 19.11   1.50 5.23 
552 5.93 12.78 9.03   -6.85 -3.10 
553 6.41 10.85 10.04   -4.44 -3.63 
554 2.37 4.21 4.21   -1.84 -1.84 
555 62.49 38.11 33.57   24.38 28.92 
556 17.60 21.03 21.03   -3.42 -3.42 
557 2.70 9.12 8.93   -6.42 -6.23 
558 31.53 25.64 24.08   5.90 7.45 
559 3.23 11.84 11.33   -8.62 -8.10 
560 15.19 13.35 11.32   1.85 3.88 
561 7.93 11.27 9.68   -3.34 -1.75 
562 9.50 10.50 9.75   -1.00 -0.25 
563 2.99 6.85 4.32   -3.86 -1.33 
564 19.78 24.70 25.00   -4.92 -5.22 
565 9.11 4.60 4.76   4.52 4.36 
566 8.23 6.95 5.33   1.28 2.89 
567 8.37 12.47 12.80   -4.10 -4.43 
568 6.12 4.06 3.92   2.06 2.20 
569 23.66 11.02 9.38   12.64 14.29 
570 3.40 1.05 1.40   2.35 2.00 
571 8.94 10.29 9.12   -1.35 -0.17 
572 20.57 16.54 16.38   4.03 4.19 
573 13.01 22.05 20.02   -9.04 -7.01 
574 14.69 16.96 13.75   -2.26 0.94 
575 0.83 13.47 8.40   -12.64 -7.57 
576 28.71 33.23 32.88   -4.52 -4.17 
577 1.79 2.94 2.42   -1.15 -0.63 
578 15.25 15.86 14.61   -0.61 0.64 
579 2.38 9.85 8.09   -7.48 -5.71 
580 31.03 38.03 41.38   -7.01 -10.35 
581 27.18 27.02 25.98   0.16 1.19 
582 9.31 12.97 8.81   -3.66 0.50 
583 16.54 14.68 12.74   1.86 3.80 
584 8.09 14.35 11.77   -6.27 -3.69 
585 6.38 11.18 9.41   -4.79 -3.03 
586 53.93 51.65 56.42   2.28 -2.49 
587 13.77 8.94 8.76   4.84 5.01 
588 3.11 6.07 3.64   -2.96 -0.53 
589 6.96 12.25 14.32   -5.30 -7.36 
590 7.71 18.94 18.02   -11.23 -10.31 
591 2.45 5.58 3.77   -3.13 -1.33 



 

191 
 

592 10.62 16.44 13.06   -5.81 -2.44 
593 2.23 3.09 2.80   -0.86 -0.57 
594 20.78 12.89 10.69   7.88 10.09 
595 4.54 3.30 2.60   1.24 1.94 
596 7.33 5.89 5.36   1.44 1.97 
597 5.49 4.08 4.51   1.41 0.98 
598 11.07 22.94 23.71   -11.87 -12.64 
599 33.56 33.51 31.91   0.05 1.65 
600 21.80 28.69 27.78   -6.90 -5.98 
601 8.25 16.47 14.02   -8.22 -5.78 
602 37.57 40.01 37.74   -2.44 -0.17 
603 10.15 5.62 5.46   4.53 4.69 
604 25.84 38.39 31.75   -12.55 -5.91 
605 5.43 7.56 10.30   -2.14 -4.87 
606 41.20 47.53 52.54   -6.33 -11.34 
607 3.19 8.02 7.84   -4.83 -4.64 
608 4.81 6.11 4.89   -1.30 -0.08 
609 69.56 57.09 54.96   12.47 14.60 
610 6.17 11.70 7.08   -5.54 -0.92 
611 26.59 33.55 38.11   -6.96 -11.52 
612 0.94 2.58 3.49   -1.65 -2.56 
613 11.65 12.62 11.90   -0.97 -0.25 
614 33.38 8.92 7.75   24.46 25.63 
615 8.60 11.82 11.97   -3.22 -3.37 
616 2.56 10.34 7.30   -7.79 -4.75 
617 13.92 14.44 12.88   -0.52 1.04 
618 3.86 12.90 9.78   -9.04 -5.93 
619 6.87 1.31 1.02   5.56 5.85 
620 48.06 35.67 32.54   12.38 15.52 
621 33.46 33.33 33.18   0.12 0.27 
622 9.32 5.73 4.47   3.60 4.85 
623 6.19 25.79 22.68   -19.60 -16.48 
624 10.12 22.28 19.77   -12.16 -9.65 
625 1.06 4.35 4.52   -3.29 -3.45 
626 9.46 6.51 7.35   2.95 2.11 
627 69.00 60.36 56.15   8.63 12.85 
628 28.58 32.49 30.55   -3.91 -1.97 
629 27.11 29.65 30.09   -2.54 -2.98 
630 5.77 9.49 7.19   -3.72 -1.42 
631 11.83 12.52 10.14   -0.70 1.69 
632 6.68 7.97 8.49   -1.29 -1.81 
633 95.97 88.94 83.95   7.03 12.02 
634 18.31 15.00 15.58   3.31 2.73 
635 29.10 33.60 28.87   -4.49 0.23 
636 9.70 9.31 6.67   0.39 3.03 
637 12.33 13.82 12.15   -1.48 0.19 
638 3.47 4.22 3.61   -0.75 -0.14 
639 33.52 30.42 31.40   3.10 2.12 
640 6.60 10.85 8.42   -4.26 -1.83 
641 14.84 20.19 19.86   -5.35 -5.02 
642 9.41 14.06 13.58   -4.66 -4.17 
643 14.47 25.79 27.67   -11.32 -13.20 
644 2.04 3.27 3.71   -1.22 -1.67 
645 3.11 5.29 4.96   -2.18 -1.85 
646 2.29 10.18 8.57   -7.89 -6.27 
647 22.15 17.85 16.84   4.30 5.31 
648 4.33 7.05 4.27   -2.73 0.06 
649 15.98 24.29 27.04   -8.31 -11.06 
650 12.51 13.67 10.57   -1.16 1.93 
651 12.45 16.94 18.05   -4.48 -5.60 
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652 23.32 20.13 23.46   3.19 -0.14 
653 21.52 23.88 24.32   -2.37 -2.80 
654 4.66 10.12 6.69   -5.46 -2.03 
655 52.61 57.71 56.54   -5.10 -3.93 
656 30.40 13.66 12.60   16.74 17.80 
657 16.37 17.95 17.37   -1.58 -1.00 
658 1.92 8.83 7.38   -6.91 -5.47 
659 4.54 4.92 3.91   -0.38 0.63 
660 11.58 14.73 9.93   -3.15 1.65 
661 3.43 7.60 4.56   -4.17 -1.13 
662 28.21 18.68 18.68   9.53 9.53 
663 3.02 6.47 7.06   -3.45 -4.04 
664 17.28 23.37 23.93   -6.08 -6.65 
665 7.63 15.86 16.04   -8.23 -8.42 
666 5.81 7.98 4.39   -2.17 1.42 
667 35.50 33.66 30.32   1.85 5.19 
668 2.68 1.71 2.28   0.97 0.40 
669 0.70 4.34 4.18   -3.64 -3.47 
670 39.35 45.49 44.88   -6.13 -5.52 
671 5.95 9.47 8.16   -3.52 -2.21 
672 23.68 22.10 20.97   1.58 2.71 
673 10.52 17.95 19.84   -7.43 -9.31 
674 43.08 44.13 42.23   -1.05 0.84 
675 8.35 12.15 8.96   -3.80 -0.61 
676 34.81 14.76 14.06   20.05 20.74 
677 5.32 7.94 6.76   -2.62 -1.44 
678 16.87 27.83 29.12   -10.96 -12.25 
679 3.51 11.54 11.91   -8.03 -8.40 
680 3.69 8.67 7.51   -4.99 -3.83 
681 15.02 7.47 6.87   7.55 8.14 
682 35.81 42.97 46.44   -7.16 -10.63 
683 9.35 8.58 6.70   0.77 2.64 
684 0.92 1.88 1.41   -0.96 -0.49 
685 13.25 16.03 17.61   -2.78 -4.36 
686 52.08 39.37 37.50   12.71 14.58 
687 22.66 21.69 21.38   0.97 1.27 
688 15.48 19.96 22.31   -4.48 -6.83 
689 4.84 5.42 4.68   -0.58 0.16 
690 19.96 12.52 12.10   7.44 7.86 
691 39.42 19.99 19.70   19.43 19.72 
692 1.28 7.04 4.59   -5.76 -3.30 
693 8.30 13.18 11.73   -4.88 -3.43 
694 45.11 34.54 33.67   10.57 11.43 
695 12.18 18.24 18.53   -6.07 -6.36 
696 12.16 21.84 22.43   -9.68 -10.27 
697 6.73 5.24 4.29   1.49 2.44 
698 10.87 10.38 7.23   0.49 3.64 
699 30.24 25.78 26.44   4.46 3.80 
700 6.71 20.82 17.54   -14.11 -10.82 
701 36.57 31.46 27.48   5.11 9.09 
702 13.92 11.77 9.16   2.15 4.76 
703 18.14 24.80 18.56   -6.66 -0.42 
704 13.17 14.54 13.78   -1.37 -0.61 
705 0.38 2.61 1.20   -2.23 -0.83 
706 12.84 12.31 12.63   0.53 0.20 
707 2.47 5.44 4.56   -2.97 -2.09 
708 3.07 12.02 10.86   -8.95 -7.79 
709 9.05 13.04 8.35   -3.99 0.70 
710 4.09 5.92 4.91   -1.83 -0.82 
711 5.29 7.30 8.23   -2.01 -2.94 
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712 19.57 18.22 15.21   1.36 4.36 
713 4.04 15.59 15.74   -11.55 -11.70 
714 2.22 3.11 2.64   -0.89 -0.42 
715 24.21 26.04 25.71   -1.83 -1.50 
716 8.80 8.85 7.40   -0.05 1.40 
717 9.58 12.50 10.69   -2.92 -1.11 
718 12.61 10.86 9.27   1.75 3.34 
719 4.05 5.93 4.44   -1.88 -0.40 
720 66.61 53.11 47.78   13.50 18.83 
721 14.81 8.60 8.23   6.21 6.58 
722 15.62 18.60 19.04   -2.98 -3.42 
723 4.93 4.83 5.86   0.09 -0.93 
724 17.81 11.25 7.92   6.56 9.89 
725 8.96 14.77 11.41   -5.81 -2.45 
726 4.18 8.73 8.24   -4.55 -4.06 
727 6.59 10.86 10.71   -4.27 -4.13 
728 2.34 6.94 5.06   -4.60 -2.72 
729 13.62 14.02 11.27   -0.40 2.34 
730 3.53 6.12 3.45   -2.59 0.08 
731 2.45 5.25 3.56   -2.80 -1.11 
732 15.34 15.75 13.73   -0.41 1.61 
733 14.15 12.67 10.83   1.48 3.31 
734 98.64 79.98 80.41   18.66 18.24 
735 10.71 20.62 21.23   -9.91 -10.52 
736 1.64 3.96 2.59   -2.31 -0.94 
737 21.82 19.12 15.99   2.70 5.83 
738 33.80 25.99 29.70   7.81 4.10 
739 12.59 16.54 16.23   -3.96 -3.64 
740 10.30 3.18 2.71   7.11 7.59 
741 9.17 17.83 15.92   -8.67 -6.76 
742 7.78 12.05 9.61   -4.27 -1.83 
743 13.07 9.41 34.93   3.66 -21.86 
744 58.66 64.01 64.98   -5.35 -6.32 
745 23.48 24.71 22.10   -1.23 1.38 
746 48.42 53.34 51.72   -4.93 -3.31 
747 35.71 33.80 37.02   1.91 -1.31 
748 1.26 2.92 3.08   -1.66 -1.82 
749 6.03 4.54 4.38   1.49 1.64 
750 13.05 11.98 9.66   1.06 3.38 
751 22.74 27.63 28.39   -4.90 -5.66 
752 24.28 13.56 8.98   10.72 15.30 
753 1.88 10.21 8.61   -8.33 -6.72 
754 64.32 41.49 40.97   22.82 23.34 
755 10.63 9.86 9.70   0.77 0.93 
756 7.14 2.90 1.45   4.24 5.69 
757 11.65 14.36 10.54   -2.70 1.11 
758 16.29 30.18 27.31   -13.89 -11.03 
759 15.24 1.04 0.60   14.20 14.65 
760 4.24 9.32 7.86   -5.08 -3.62 
761 15.56 14.00 13.45   1.55 2.11 
762 9.43 10.02 9.47   -0.60 -0.04 
763 25.10 24.46 21.66   0.64 3.44 
764 23.60 28.44 33.76   -4.84 -10.16 
765 2.41 5.07 5.36   -2.66 -2.95 
766 19.35 21.38 22.84   -2.03 -3.49 
767 16.96 18.59 18.10   -1.63 -1.14 
768 16.97 24.70 25.76   -7.73 -8.79 
769 25.46 27.88 28.04   -2.42 -2.58 
770 11.56 9.33 6.67   2.22 4.89 
771 0.33 1.35 1.35   -1.02 -1.02 
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772 6.07 10.92 9.34   -4.85 -3.27 
773 16.42 15.62 15.91   0.80 0.51 
774 2.29 13.36 10.33   -11.07 -8.04 
775 10.14 10.38 8.33   -0.24 1.80 
776 1.31 8.55 8.99   -7.23 -7.68 
777 4.99 6.07 3.94   -1.08 1.05 
778 68.81 77.68 82.87   -8.87 -14.06 
779 45.44 36.29 32.95   9.16 12.50 
780 34.70 28.09 25.51   6.62 9.20 
781 10.70 4.66 3.50   6.04 7.20 
782 8.56 12.80 11.16   -4.24 -2.60 
783 9.17 7.14 9.11   2.03 0.06 
784 6.83 9.56 9.56   -2.74 -2.74 
785 1.74 4.31 4.83   -2.57 -3.08 
786 2.55 11.02 8.42   -8.47 -5.88 
787 1.39 6.77 5.42   -5.38 -4.03 
788 23.12 14.12 13.26   9.00 9.86 
789 2.98 5.36 6.52   -2.38 -3.54 
790 8.90 17.45 15.04   -8.56 -6.14 
791 11.76 18.30 18.47   -6.55 -6.71 
792 28.52 29.68 27.07   -1.16 1.45 
793 18.83 24.70 25.00   -5.87 -6.17 
794 2.85 6.86 5.52   -4.01 -2.67 
795 2.14 5.90 4.97   -3.76 -2.83 
796 29.64 35.00 33.71   -5.36 -4.07 
797 43.40 48.97 45.89   -5.57 -2.49 
798 4.22 7.04 7.19   -2.82 -2.97 
799 39.95 29.56 34.12   10.40 5.84 
800 41.48 37.88 34.23   3.60 7.25 
801 7.67 10.27 7.93   -2.60 -0.26 
802 6.18 3.88 4.04   2.30 2.14 
803 22.44 22.46 18.94   -0.03 3.50 
804 22.91 29.32 28.13   -6.40 -5.21 
805 17.40 15.03 11.94   2.37 5.46 
806 12.05 7.21 5.06   4.84 6.98 
807 5.10 10.56 7.88   -5.45 -2.78 
808 12.85 12.65 11.32   0.20 1.52 
809 36.57 46.76 48.53   -10.20 -11.96 
810 23.71 20.23 18.56   3.48 5.15 
811 3.15 6.95 7.09   -3.80 -3.94 
812 1.43 5.09 4.07   -3.66 -2.64 
813 15.43 14.72 12.62   0.71 2.81 
814 4.93 5.70 6.24   -0.77 -1.31 
815 17.05 8.20 8.20   8.85 8.85 
816 12.84 7.74 8.73   5.11 4.11 
817 66.71 54.41 59.12   12.30 7.59 
818 3.41 6.34 4.27   -2.92 -0.86 
819 19.29 19.28 21.03   0.02 -1.74 
820 28.32 27.27 27.27   1.05 1.05 
821 4.17 9.57 8.41   -5.40 -4.24 
822 8.50 11.96 10.83   -3.46 -2.33 
823 13.01 19.62 18.26   -6.61 -5.24 
824 14.95 11.44 11.00   3.51 3.94 
825 19.95 20.96 20.79   -1.01 -0.84 
826 4.51 5.62 3.64   -1.11 0.86 
827 15.17 16.11 14.37   -0.94 0.80 
828 4.77 3.26 4.04   1.51 0.73 
829 2.02 4.53 2.91   -2.51 -0.89 
830 12.12 15.86 13.29   -3.74 -1.17 
831 13.12 3.78 3.18   9.34 9.94 
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832 5.35 4.25 4.10   1.09 1.25 
833 2.10 1.78 1.62   0.32 0.48 
834 3.65 10.97 10.37   -7.32 -6.72 
835 5.67 12.38 12.82   -6.71 -7.15 
836 14.15 15.23 14.06   -1.09 0.08 
837 2.94 10.57 10.71   -7.62 -7.77 
838 4.82 4.80 4.62   0.02 0.20 
839 3.88 4.85 3.56   -0.97 0.32 
840 5.53 12.37 10.48   -6.83 -4.95 
841 9.55 10.13 8.32   -0.59 1.23 
842 5.69 9.70 9.85   -4.01 -4.15 
843 7.12 12.38 9.17   -5.26 -2.05 
844 0.92 9.58 7.31   -8.65 -6.38 
845 10.35 10.39 7.64   -0.03 2.72 
846 31.09 40.88 45.49   -9.80 -14.41 
847 7.69 6.80 7.45   0.88 0.24 
848 40.06 38.96 36.92   1.10 3.15 
849 3.20 8.03 5.30   -4.83 -2.10 
850 14.61 23.21 25.29   -8.60 -10.67 
851 6.24 11.77 8.60   -5.53 -2.36 
852 5.92 5.80 5.95   0.12 -0.03 
853 102.78 88.47 96.48   14.31 6.30 
854 43.03 40.01 35.57   3.01 7.46 
855 2.18 5.74 5.20   -3.56 -3.02 
856 3.77 9.60 6.64   -5.83 -2.88 
857 8.58 9.87 8.69   -1.29 -0.11 
858 5.52 7.86 6.35   -2.35 -0.83 
859 22.33 30.93 30.59   -8.60 -8.25 
860 9.17 15.40 13.72   -6.23 -4.55 
861 1.82 6.54 4.22   -4.72 -2.40 
862 10.41 15.36 15.03   -4.95 -4.62 
863 3.37 10.28 9.41   -6.91 -6.04 
864 3.45 12.98 8.15   -9.53 -4.70 
865 3.48 8.80 8.33   -5.32 -4.85 
866 14.81 12.74 14.04   2.07 0.77 
867 30.60 30.44 27.41   0.16 3.19 
868 30.86 34.71 31.12   -3.85 -0.26 
869 23.92 33.51 34.99   -9.59 -11.07 
870 6.49 8.94 7.18   -2.45 -0.69 
871 36.89 36.03 31.76   0.86 5.12 
872 23.07 25.62 26.39   -2.55 -3.32 
873 3.81 5.96 5.37   -2.15 -1.56 
874 25.99 29.94 30.52   -3.95 -4.53 
875 21.65 26.82 30.06   -5.17 -8.41 
876 10.76 13.75 11.44   -3.00 -0.68 
877 6.80 8.85 8.56   -2.05 -1.76 
878 1.76 3.83 3.54   -2.07 -1.77 
879 21.28 23.31 22.59   -2.03 -1.30 
880 3.62 15.03 13.11   -11.41 -9.50 
881 15.00 16.97 19.25   -1.97 -4.25 
882 49.39 52.80 59.62   -3.42 -10.24 
883 26.49 25.44 23.40   1.06 3.09 
884 6.77 8.24 8.09   -1.47 -1.32 
885 10.95 15.36 10.44   -4.41 0.51 
886 19.74 19.11 16.40   0.63 3.33 
887 12.43 16.04 15.06   -3.60 -2.63 
888 5.39 8.98 9.12   -3.59 -3.73 
889 3.33 13.97 11.21   -10.64 -7.88 
890 11.70 10.37 11.28   1.33 0.42 
891 24.78 23.88 22.82   0.89 1.96 
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892 46.44 46.91 48.97   -0.48 -2.53 
893 14.61 15.96 16.76   -1.35 -2.14 
894 2.20 3.24 1.94   -1.04 0.26 
895 12.64 9.99 8.54   2.65 4.10 
896 21.45 16.47 14.51   4.99 6.94 
897 6.74 5.65 5.50   1.09 1.24 
898 19.85 26.50 27.22   -6.65 -7.37 
899 7.65 8.96 7.55   -1.31 0.09 
900 4.36 7.11 5.51   -2.75 -1.15 
901 5.43 5.83 4.48   -0.40 0.95 
902 13.90 13.75 12.89   0.15 1.01 
903 27.22 17.86 18.17   9.36 9.05 
904 19.36 16.96 15.89   2.40 3.47 
905 4.87 12.31 10.86   -7.44 -5.99 
906 121.33 94.73 80.95   26.60 40.38 
907 30.70 35.55 34.24   -4.84 -3.54 
908 1.18 6.95 5.37   -5.77 -4.19 
909 41.47 46.62 46.03   -5.15 -4.56 
910 13.97 13.80 10.06   0.18 3.91 
911 18.42 27.46 21.80   -9.04 -3.38 
912 3.24 6.76 6.92   -3.51 -3.68 
913 3.79 11.51 11.71   -7.72 -7.92 
914 13.27 12.11 10.04   1.17 3.23 
915 12.43 8.08 5.33   4.35 7.10 
916 2.25 4.62 2.89   -2.37 -0.64 
917 29.12 25.76 27.05   3.37 2.07 
918 20.00 10.00 7.66   10.00 12.34 
919 14.27 8.77 9.21   5.50 5.06 
920 3.79 3.81 2.41   -0.02 1.38 
921 24.19 23.05 21.63   1.15 2.56 
922 16.64 17.67 13.15   -1.03 3.49 
923 14.79 28.96 25.63   -14.16 -10.84 
924 2.98 7.49 6.60   -4.51 -3.63 
925 68.37 70.42 73.82   -2.05 -5.45 
926 32.28 25.00 23.31   7.28 8.97 
927 17.73 11.04 11.37   6.68 6.35 
928 13.35 18.91 16.81   -5.55 -3.45 
929 1.02 4.90 2.94   -3.89 -1.92 
930 15.25 17.83 17.83   -2.58 -2.58 
931 1.93 7.53 4.78   -5.60 -2.84 
932 2.32 9.58 6.94   -7.26 -4.62 
933 12.99 14.77 13.01   -1.78 -0.02 
934 7.22 14.11 10.95   -6.89 -3.73 
935 15.63 11.42 8.94   4.20 6.69 
936 3.61 2.42 1.78   1.19 1.83 
937 10.93 11.66 10.10   -0.73 0.82 
938 11.75 15.93 16.94   -4.17 -5.19 
939 70.76 59.54 61.33   11.22 9.43 
940 3.06 8.62 8.81   -5.56 -5.76 
941 24.11 17.79 16.32   6.31 7.78 
942 11.11 21.10 24.35   -9.99 -13.24 
943 14.81 26.49 21.28   -11.68 -6.47 
        
Mean 16.4 18.0 17.1   -1.62 -0.74 
SD 15.1 13.5 14.0   6.39 6.67 
AHI: Apnea hypopnea index, SD: Standard deviation, Estimated AHI was subtracted from actual AHI to calculate 
the differences, Positive (+) and negative (-) differences indicate underestimation and overestimation respectively. 
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