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Abstract

Fault diagnosis of reciprocating compressors (RCs) based on vibration signals plays

a vital role in guaranteeing a high operating reliability in RCs. Conventional main-

tenance schemes, which are carried out on a regular basis, can lead to unnecessary

maintenance and shutdowns. Online health monitoring can monitor the working

conditions of RCs continuously and provide more specific information, thus allowing

the RC to be maintained as needed.

This PhD research focuses on the development of effective fault diagnosis meth-

ods using deep learning methods, thereby greatly advancing traditional health con-

dition monitoring methods. Most traditional data-driven methods analyze the op-

erating conditions using shallow models, which are incompetent at obtaining more

confident results. To overcome this problem, a novel scheme based on deep learning

models is proposed and applied to RC fault diagnosis. Traditional fault diagnosis

methods select and extract features of raw signal with expertise and fuse them with

shallow models. However, these methods cannot analyze the characteristics of sig-

nal in depth and thus degrade the performance of health monitoring. Deep learning

methods are introduced in this research to calculate more representative features

self-adaptive from the RC signals to improve fault diagnosis performance. As most

fault diagnosis methods are based on vibration signals being the single information

source, they cannot reflect the RC operating condition comprehensively. In this re-

search, multi-source signals are collected and analysed for fault diagnosis. A scheme

fusing multi-source information is proposed, as well as an auto-denoising network

for denoising RC signals self-adaptively.

This PhD thesis consists of seven chapters. Chapter 1 provides research back-

ground. Chapter 2 presents a literature review. Chapter 3 proposes a method using

intrinsic vibration feature fusion and a Grassmann manifold-based similarity. Chap-
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ter 4 introduces the method of RC fault diagnosis using mode isolation-convolutional

deep belief networks. Chapter 5 presents the intelligent fault diagnosis method us-

ing an optimized convolutional deep belief network. Chapter 6 proposes a novel

ensemble empirical mode decomposition-convolutional deep belief network for RC

fault diagnosis, and chapter 7 presents the conclusion and discusses future research

in this area.



Acknowledgements

My research career as a Ph.D. candidate is coming to an end. For this duration, I

would like to first express my sincere gratitude to my principal supervisor, A/Prof.

Jinchen Ji. He provided me with great guidance and valuable suggestions on my

research work. I am grateful for his patience and insightful ideas on revising my

papers, and especially thank him for teaching me many research skills that I should

equip with to be an eligible Ph.D. student.

I would like to thank my co-supervisor, A/Prof. Dongbin Wei, for his valuable

suggestions on my research and immediate help as I needed. I feel great honor

to have a supervisor who has rich research experience in fatigue analysis field to

broaden my research horizon.

I would like to thank all my friends and colleagues for their help in my life. I am

happy that we can work together and share this experience with each other. Much

of our discussion has inspired me a lot.

I would like to thank all the staff members of UTS for their help in my research

and thank UTS for providing us with elaborative learning resources. These really

facilitate our research and help advance our research skills.

I would like to thank the China scholarship council (CSC) and University of

Technology Sydney for the financial supports. Only with the great supports can I

progress my research and pursue my PhD career.

Last but not least, I really appreciate my parents and my brother for their

unconditioned love and powerful supports forever and ever.

Ying Zhang

Sydney, Australia, 2020.



List of Publications

Journal Papers

J-1. Zhang, Y., Ji, J.C., 2020. Intelligent fault diagnosis of a reciprocating com-

pressor using mode isolation-convolutional deep belief networks. IEEE/ASME

Transaction on Mechatronics. [Published, DOI: 10.1109/TMECH.2020.3027912]

J-2. Zhang Y., Ji, J.C. and Ma, B., 2020. Reciprocating compressor fault diagno-

sis using an optimized convolutional deep belief network. Journal of Vibration

and Control, p.1077546319900115.

J-3. Zhang, Y., Ji, J.C. and Ma, B., 2020. Fault diagnosis of reciprocating com-

pressor using a novel ensemble empirical mode decomposition-convolutional

deep belief network. Measurement, vol. 156, p.107619.

J-4. Ma, B., Zhao, Y., Zhang, Y., Jiang, Q.L. and Hou, X.Q., 2019. Machin-

ery Early Fault Detection Based on Dirichlet Process Mixture Model. IEEE

Access, 7, pp.89226-89233.

J-5. Zhang, Y., Ji, J.C., Use of intrinsic vibration feature fusion and a Grassmann

manifold-based similarity for intelligent fault diagnosis of a reciprocating com-

pressor, IEEE Transactions on Industrial Informatics. [Under review]

J-6. Zhang, Y., Ji, J.C., Wei, D.B., Wear and fatigue analysis of support ring of

reciprocating compressor using a deep belief network-conditional random field

method. [Submitted]



vii

Statement of Contribution of Authors

The chapters of this thesis contain materials from 4 papers published or submitted

for publication in the journals.

Zhang, Y., Ji, J.C., 2020. Intelligent fault diagnosis of a reciprocating compres-

sor using mode isolation-convolutional deep belief networks. IEEE/ASME Transac-

tion on Mechatronics. [Published, DOI: 10.1109/TMECH.2020.3027912]

Contributor Statement of Contribution Thesis Chapter

Ying Zhang

Literature review, Conceptualization,

Methodology, Validation, Investigation,

Manuscript Writing- Original Draft. Overall

contribution: 80%

Chapter 4

Jinchen Ji

]Conceptualization, Manuscript Writing-

Review & Editing, Supervision. Overall

contribution: 20%

Zhang Y., Ji, J.C. and Ma, B., 2020. Reciprocating compressor fault diagnosis

using an optimized convolutional deep belief network. Journal of Vibration and

Control, p.1077546319900115.



viii

Contributor Statement of Contribution Thesis Chapter

Ying Zhang

Literature review, Conceptualization,

Methodology, Validation, Investigation,

Manuscript Writing- Original Draft. Overall

contribution: 80%

Chapter 4

Jinchen Ji

Conceptualization, Manuscript Writing-

Review & Editing, Supervision. Overall

contribution: 15%

Bo Ma
Experimental Data Collection Overall

contribution: 5%

Zhang, Y., Ji, J.C. and Ma, B., 2020. Fault diagnosis of reciprocating compres-

sor using a novel ensemble empirical mode decomposition-convolutional deep belief

network. Measurement, vol. 156, p.107619.

Contributor Statement of Contribution Thesis Chapter

Ying Zhang

Literature review, Conceptualization,

Methodology, Validation, Investigation,

Manuscript Writing- Original Draft. Overall

contribution: 80%

Chapter 4

Jinchen Ji

Conceptualization, Manuscript Writing-

Review & Editing, Supervision. Overall

contribution: 15%

Bo Ma
Experimental Data Collection Overall

contribution: 5%

Zhang, Y., Ji, J.C., Use of intrinsic vibration feature fusion and a Grassmann

manifold-based similarity for intelligent fault diagnosis of a reciprocating compres-

sor, IEEE Transactions on Industrial Informatics. [Under review]



ix

Contributor Statement of Contribution Thesis Chapter

Ying Zhang

Literature review, Conceptualization,

Methodology, Validation, Investigation,

Manuscript Writing- Original Draft. Overall

contribution: 80%

Chapter 4

Jinchen Ji

Conceptualization, Manuscript Writing-

Review & Editing, Supervision. Overall

contribution: 20%



Contents

Certificate ii

Acknowledgments v

List of Publications vi

List of Figures xiv

List of Tables xvi

Abbreviation xvii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature review 6

2.1 Fault diagnosis based on the traditional methods . . . . . . . . . . . . 6

2.2 Feature dimension reduction . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Feature extraction by deep learning methods . . . . . . . . . . . . . . 10

2.4 Signal denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Multi-source information fusion . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Intelligent fault diagnosis using intrinsic vibration fea-

ture fusion and a Grassmann manifold-based similarity 17



xi

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Empirical mode decomposition . . . . . . . . . . . . . . . . . 21

3.2.2 High-dimensional feature extraction and feature vector

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Deep belief networks . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.4 Grassmann manifold-based similarity . . . . . . . . . . . . . . 25

3.3 Experimental verification and analysis . . . . . . . . . . . . . . . . . . 27

3.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 RC fault diagnosis using the proposed method . . . . . . . . . 29

3.3.3 Parameter analysis and method evaluation . . . . . . . . . . . 31

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Intelligent fault diagnosis using mode isolation-convolutional

deep belief networks 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Sparse filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Traditional CDBN . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 General procedure of the proposed method . . . . . . . . . . . 39

4.3.2 Mode isolation-convolutional deep belief network . . . . . . . 41

4.4 Experimental verification and analysis . . . . . . . . . . . . . . . . . . 46

4.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Fault diagnosis by the proposed method . . . . . . . . . . . . 47



xii

4.4.3 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.4 Performance evaluation and comparison . . . . . . . . . . . . 50

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Intelligent fault diagnosis using an optimized convolu-

tional deep belief network 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Probabilistic out . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Optimized convolutional deep belief network . . . . . . . . . . 59

5.3.2 General procedure of the proposed method . . . . . . . . . . . 61

5.4 Experimental verification and analysis . . . . . . . . . . . . . . . . . . 62

5.4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Fault diagnosis by the proposed method . . . . . . . . . . . . 62

5.4.3 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.4 Method comparison and performance evaluation . . . . . . . . 67

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Intelligent fault diagnosis using a novel ensemble empir-

ical mode decomposition-convolutional deep belief net-

work 70

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . 72



xiii

6.2.2 Ensemble empirical mode decomposition-convolutional deep

belief network . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.3 Probabilistic committee machine . . . . . . . . . . . . . . . . 76

6.3 Experimental verification and analysis . . . . . . . . . . . . . . . . . . 78

6.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.2 Feature learning by the EEMD-CDBN . . . . . . . . . . . . . 81

6.4 Evaluation of the proposed method . . . . . . . . . . . . . . . . . . . 84

6.4.1 Comparison of denoising methods . . . . . . . . . . . . . . . . 84

6.4.2 Comparison of deep learning methods . . . . . . . . . . . . . . 85

6.4.3 Effectiveness of the PCM . . . . . . . . . . . . . . . . . . . . . 86

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusion and future work 91

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 94



List of Figures

2.1 Convolution of CDBN . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Operation of CDBN . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Schematic of the proposed method . . . . . . . . . . . . . . . . . . . 21

3.2 The DBN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Schematic of RC structure . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Faults of RC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 EMD results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 DBN feature visualization . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 The relationship between output dimension and accuracy . . . . . . . 34

4.1 Framework of the proposed method . . . . . . . . . . . . . . . . . . . 40

4.2 Diagram of transfer path on the RC . . . . . . . . . . . . . . . . . . . 41

4.3 The relationship among fault excitation, transfer paths and acquired

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Raw signals and compressed signals via sparse filtering . . . . . . . . 47

4.5 Isolated mode data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Features calculated by MI-CDBN . . . . . . . . . . . . . . . . . . . . 50

4.7 The accuracy of fault diagnosis . . . . . . . . . . . . . . . . . . . . . 51



xv

4.8 Fault diagnosis performance with various compressed data lengths . . 52

4.9 Accuracy of fault diagnosis with various α . . . . . . . . . . . . . . . 52

5.1 Framework of the proposed method . . . . . . . . . . . . . . . . . . . 60

5.2 (a)Raw signals, and (b)compressed signals . . . . . . . . . . . . . . . 63

5.3 Principal components of unsupervised feature . . . . . . . . . . . . . 64

5.4 Confusion matrix of diagnosis accuracy . . . . . . . . . . . . . . . . . 65

5.5 Comparison of generalization error . . . . . . . . . . . . . . . . . . . 66

5.6 The relationship between generalization error and λ . . . . . . . . . . 67

5.7 The relationship between the accuracy and p̂0 . . . . . . . . . . . . . 68

6.1 Framework of the proposed method . . . . . . . . . . . . . . . . . . . 72

6.2 Schematic of the EEMD-CDBN method . . . . . . . . . . . . . . . . 73

6.3 Probabilistic committee machine . . . . . . . . . . . . . . . . . . . . . 74

6.4 Schematic diagram of the RC and the sensor layout on a cross-section 79

6.5 Locations of Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Examples of raw signals: (a) displacement of piston rod, (b)

vibration of cylinder, (c) vibration of crankcase. . . . . . . . . . . . . 81

6.7 The EEMD of cylinder signal . . . . . . . . . . . . . . . . . . . . . . 88

6.8 The EEMD of crankcase signal . . . . . . . . . . . . . . . . . . . . . 88

6.9 Cylinder signal denoising . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.10 Crankcase signal denoising . . . . . . . . . . . . . . . . . . . . . . . . 89

6.11 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Tables

3.1 Extracted features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Date description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Parameter setting of the DBN . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Parameter setting of the MI-CDBN . . . . . . . . . . . . . . . . . . . 49

4.2 Comparison of data compression methods . . . . . . . . . . . . . . . 51

4.3 Comparison of deep learning methods . . . . . . . . . . . . . . . . . . 53

4.4 Comparison of the state-of-the-art methods . . . . . . . . . . . . . . . 54

5.1 Comparison of pooling methods . . . . . . . . . . . . . . . . . . . . . 67

6.1 Parameters of the EEMD-CDBN . . . . . . . . . . . . . . . . . . . . 83

6.2 Comparison of denoising methods . . . . . . . . . . . . . . . . . . . . 83

6.3 Comparison of deep learning methods . . . . . . . . . . . . . . . . . . 84

6.4 Comparison with the PCM-based and conventional methods . . . . . 84



Abbreviation

RC - Reciprocating Compressor

EMD - Empirical Mode Decomposition

IMF - Intrinsic mode function

PCA - Principal Component Analysis

KPCA - Kernel Principal Component Analysis

DBN - Deep Belief Network

GM - Grassmann manifolds

RBM - Restricted Boltzmann Machines

SVD - Singular Value Decomposition

SVM - Support Vector Machine

TD - Time-domain

FD - Frequency-domain

CNN - Convolutional Neural Network

CDBN - Convolutional Deep Belief Betwork

LDA - Latent Dirichlet allocation

AE - Auto Encode

CS - Compressed Sensing

SF - Sparse Filtering

CRBM - Convolutional Restricted Boltzmann Machine

ANN - Artificial Neural Network

EEMD - Ensemble Empirical Mode Decomposition

CC - Correlation Coefficient

WT - Wavelet Transforms



xviii

PCM - Probabilistic Committee Machine

GPC - Gaussian Process Classifier

EM - Expectation Maximization

MI - Mode isolation

GMM - Gaussian mixture model

p-V - Pressure-volume



1

Chapter 1

Introduction

1.1 Background

Reciprocating compressors (RC) are one of the most important machineries in

the petroleum industry, such as in offshore oil and gas production applications [83].

Once faults or failures occur in the RC, it may cause operation disruption and

serious economic loss for manufacturers. Therefore, Intelligent fault diagnosis of

the RC plays an important role in early detection of potential failures to ensure a

reliable operation [45]. With the rapid development of the Internet of Things and

smart manufacturing, the amount of condition monitoring data available is growing

at an explosive speed [106]. Firstly, this implies that fault diagnosis has entered an

era of big data. Secondly, the data have a more complex structure and more useful

hidden information [7]. Therefore, how to implement a more reliable fault diagnosis

with this ”big data” has become a challenging problem in this field.

Fault diagnosis has drawn significant attention in various research fields [96, 42,

115]. Fault is defined as the deviation of observations or parameters from the ac-

ceptable range in a certain process. The aim of fault diagnosis is to find the defective

components operating out of the normal ranges on the machinery. Although fault

diagnosis has been extensively studied for several decades, RC fault diagnosis is

still a challenging problem due to various vibration excitation sources and complex

transfer paths of vibration. Currently, fault diagnosis methods can be categorized

into three main groups: model-based methods, knowledge-based methods and data-

driven based methods. As the former two methods require extensive knowledge
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about fault mechanism, they are highly limited when compared to the current avail-

ability of data [21]. Consequently, data-driven methods have been used extensively

for fault diagnosis due to its potential in processing big data [33, 27].

In recent decades, considerable effort has been devoted to the development of

condition monitoring methodologies [24, 100, 43, 89]. However, some aspects can

be further improved to increase diagnosis accuracy. First, most existing methods

of feature extraction are labour-intensive and time-consuming. For instance, prior

knowledge is required to design a suitable scheme of feature extraction [56]. The

absence of prior knowledge on the scheme of feature extraction could lead to inap-

propriate feature selection and further degrade the fault diagnosis performance [125].

Second, the sophisticated structure and operating conditions of RCs contribute to

the complex structure of RC vibration signals [95]. Direct analysis of these complex

RC raw signals would be unable to highlight useful information that can reflect the

salient local characteristics of the operating conditions, as the mode mixture of sig-

nals and other information unrelated to fault may disturb the fault identification,

such as noise [103]. Furthermore, the straight analysis could decrease the robustness

of the fault diagnosis results and lead to poor performance of RC fault diagnosis.

To address these problems, deep learning methods were explored in this research.

Recently, deep learning has attracted increasing attention from researchers of var-

ious research communities due to its state-of-the-art performance in refining deep

information from data. Deep learning refers to machine learning techniques that use

supervised and/or unsupervised strategies to automatically learn hierarchical rep-

resentations from deep network architectures [28]. The most significant advantage

of deep learning methods is that they can construct deeper networks and calculate

more representative features even from big data [39]. This method has been suc-

cessfully applied in many research areas [80]. Therefore, this research was launched

on the basis of the deep learning method.
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1.2 Research objectives

The aims of the project were to implement intelligent RC fault diagnosis, which

included the following aspects.

i. Data acquisition.

To monitor RC health condition, data indicating the RC operating condition

were collected from sensors, including accelerometers monitoring the cylinder

and crankcase vibration, temperature sensors measuring temperature variation

of the cylinder and phase sensors measuring the rotating speed and piston

location. The acquired data were used to validate the proposed method.

ii. Optimization of traditional fault diagnosis method using deep learning.

Traditional methods extract features from raw signals and fuse features with

conventional models. Features from conventional models could include more

irrelevant information that disturb fault diagnosis. To overcome this problem,

deep learning methods will be used to fuse features in depth and improve fault

diagnosis performance.

iii. Self-adaptive feature extraction based on a deep learning method.

Typically, traditional methods select features in the RC fault diagnosis with

expertise. However, inadequate selection of features by insufficient experience

would decrease the performance of fault diagnosis. To address this issue, a

framework based deep learning was adopted in this research.

iv. Optimization of a deep learning method in the application of RC fault diag-

nosis.

In terms of the RC vibration mechanism, optimization of the deep learning

method was proposed to enhance its performance in the application of RC

fault diagnosis.
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v. Fault diagnosis based on multi-source information fusion.

Currently, most research on RC fault diagnosis adopts vibration signal as

the single source of information for fault diagnosis. This does not reflect the

operating conditions comprehensively. To encompass more information sources

from RCs, a scheme fusing multi-source information was proposed to enhance

the RC fault diagnosis performance.

1.3 Thesis organization

The rest of the thesis is organised as follows:

• Chapter 2: This chapter presents the literature review of the research. It

introduces the development of RC fault diagnosis and other related techniques.

• Chapter 3: Traditional methods extract features and fuse features with con-

ventional model with simple matrix manipulations.To fuse features in depth,

this chapter proposes a method which fused features in depth to enhance the

RC fault diagnosis performance. Empirical mode decomposition (EMD) was

used to analyse the intrinsic vibration of RC. Deep belief network (DBN)

was used to fuse features in depth and obtain high-representative features. A

Grassmann manifold-based similarity was also proposed for RC fault diagnosis

to preserve the non-linearity of singals.

• Chapter 4: Chapter 3 used a conventional method for faultdiagnosis. This

required prior knowledge for feature extraction. Insufficient knowlwdge could

degrade the performance of fault diagnosis. This chapter adopted a deep

learning based framework. Considering the RC vibration mechanism, a mode

isolation-convolutional deep belief network was proposed and validated by the

RC condition monitoring data in this chapter. Mode isolation-convolutional
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deep belief network (MI-CDBN) can isolate multi-modal data and extract

features self-adaptively.

• Chapter 5: The CDBN in chapter 4 adopted a max pooling. Though it pre-

served some desirable features, maxmium value could degrade the generaliza-

tion ability of CDBN. To improve the performance of CDBN, this chapter

proposes an optimized convolutional deep belief network and presents the re-

sulting application to RC fault diagnosis. An optimized probabilistic out was

proposed in this chapter to enhance the generalization of the convolutional

deep belief network (CDBN).

• Chapter 6: The prior research used vibration signals as the single source of

fault diagnosis information, which could not relect the operating conditions

comprehensively. In addition, those method did not consider the negative

effect of background noise on fault diagnosis. To onvercome these problems,

this chapter presents a method of denoising signals and a scheme of fusing

multi-source signals. An auto-denoising network was proposed to eliminate the

noise existing in the RC vibration signals. A probabilistic committee machine

(PCM)-based method was proposed to fuse multiple sources of information

with a more reasonable weight.

• Chapter 7: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendations for future works are given as

well.
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Chapter 2

Literature review

To conduct a suitable RC fault diagnosis, an extensive literature review, covering

the general overview of multiple methods, is explored accordingly.

2.1 Fault diagnosis based on the traditional methods

Traditional data-driven methods of RC fault diagnosis mainly include three steps:

data acquisition, feature extraction, and feature classification or fault diagnosis [84].

Among these three steps, feature extraction is the most crucial step in fault diagnosis

[127]. The quality of the feature can significantly affect the diagnosis results. Typ-

ical vibration features include kurtosis, peak value, peak-peak value, mean square

root, and impulsive index [66, 79]. Fault diagnosis based on the vibration feature ex-

traction has received substantial research effort. For example, Feng et al. extracted

frequency domain features from an indicator diagram to diagnose RC faults. A dis-

crete 2D-Curvelet transform was adopted to extract the representative features from

the indicator diagram. Next, nonlinear principal component analysis (PCA) was

employed for multi-class recognition to reduce dimensionality, as well as for novelty

detection. Finally, multi-class and one-class support vector machines (SVMs) were

used as the classifier and novelty detector, respectively. Experimental results showed

the effectiveness of the proposed approach [25]. Althobiani et al. used an Teager-

Kaiser energy operator and deep brief networks (DBNs) to diagnose the faults of an

RC valve. To reveal the fault patterns contained in this signal, the Teager–Kaiser

energy operation was proposed to estimate the amplitude envelopes. In case of

pressure and current, random noise was removed using a denoising method based
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on a wavelet transform. Subsequently, statistical measures were extracted from all

signals to represent the characteristics of the valve conditions. To classify the faults

of compressor valves, a new type of learning architecture for deep generative mod-

els, called DBNs, was applied. The experimental results proved the effectiveness of

the proposed method [4]. Ahmed et al. extracted several time-domain, frequency-

domain and envelop-domain features to represent machinery operating conditions

and used a relevance vector machine for fault classification [1]. Zhao et al. used

local mean decomposition and multi-scale fuzzy entropy to calculate the features for

bearing clearance fault in the RC [125]. Li et al. proposed a new method for non-

destructive RC fault diagnosis using a strain-based pressure-volume (p-V) diagram.

This method extracted the key feature points on the piston rod load curve that

reflect the opening and closing events of the compressor valves. The algorithm was

validated by comparing the p–V diagrams obtained from direct pressure measure-

ment and strain-based derivation. The reconstructed p–V diagrams were further

used for RC fault diagnosis. The results indicated that this method was able to

monitor the operating conditions and identify fault type and location [52]. Cabrera

et al. used a long short-term memory model to extract features for RC valve fault

diagnosis and used a Bayesian model to adjust the parameter of the model. Exper-

imental data confirmed the effectiveness of the proposed method of [10]. Yan et al.

extracted sensitive features from roller bearing signal, and proposed an optimized

support vector machine to conduct fault diagnosis. The result shows the effective-

ness of the proposed method [111]. Zhang and Deng proposed a method integrating

adaptive neuro fuzzy inference system (ANFIS) and Dempster–Shafer theory (DST)

to operate the fault diagnosis of engine. The experimental data proved the prac-

ticability of the proposed method [121]. Jiang et al. proposed an initial center

frequency-guided variational mode decomposition for fault diagnosis of rotating ma-

chines [41]. The conventional method were applied in various fields and achieved
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good performance. These methods extract one, or multiple, time and/or frequency

features from original signals to represent the operating conditions. These features

can reflect the operating conditions to some extent. However, achieving appropriate

feature selection and identification of faults using this method relies heavily on prior

knowledge, which limits its application in the industry.

2.2 Feature dimension reduction

Once features have been extracted, conventional models are used to fuse fea-

tures and reduce feature dimension. For example, Liu et al. proposed a method

to calculate high-dimensional features of roller bearing using a local characteristic-

scale decomposition-Teager energy operator.Intrinsic multifractality features were

extracted from decomposed signals and constructed into a high-dimensional fea-

ture. Then the dimension was reduced by principal component analysis (PCA). The

experimental results proved that the PCA can fuse features by linear transforma-

tion [57]. De et al. applied optimized kernel principal component analysis (KPCA)

to reduce feature dimension and used an artificial neural network to perform fault

diagnosis.The result illustrated the effectiveness of the proposed method in indus-

trial system [22]. Sakthivel et al. extracted statisticial features and used feature

dimension reduction techniques to reduce feature dimensions. This paper compared

different dimension reduction techniques for the fault diagnosis of a monoblock cen-

trifugal pump using vibration signals, including PCA, KPCA, isomap, and Laplacian

eigenmaps.The result proved that the PCA plus decision tree obtained the best per-

formance in the fault diagnosis of mono block centrifugal pump [79]. Although these

methods can fuse features effectively and reduce feature dimension, they may not

be adequate for obtaining high-representative features, particularly in the current

big data field. This is due to their inability to reveal the deep relationship between

complex data/signal structure and health conditions.
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Deep learning methods have attracted increasing attention from academic com-

munities due to their state-of-the-art performance in deep feature fusion and feature

extraction without any assistance on feature extraction. These methods use super-

vised and/or unsupervised strategies to automatically learn hierarchical representa-

tions in deep architectures for feature extraction, transformation and classification

[47]. Among all the deep learning methods, the DBN has demonstrated advantages

in constructing deeper networks and calculating low-dimensional features with ex-

cellent representations from big data [18]. Liu et al. adopted DBN to extract high

discriminative features for an electronics-rich analog system. Experimental results

show the fault diagnosis based on DBN achieved superior diagnostic performance

than the traditional feature extraction methods. [62]. Arsa et al. proposed a di-

mensionality reduction method using DBN for hyperspectral image classification,

which also reduces the computational cost. In the proposed framework, the first

DBN is used to reduce the dimension of spectral bands and the second DBN is used

to extract spectral-spatial feature and as a classifier. An Indian Pines data set that

consisted of 16 classes were used to validate the proposed method and to compare

the proposed DBN with the PCA. The results indicated that using DBN as a di-

mensionality reduction method performed better than PCA in hyperspectral image

classification [5]. PCA can fuse features and obtain a low dimensional, but cannot

fuse features in depth due to the shallow structure. DBN, with its deep structures,

is better equipped to solve this problem. Mutual information of neighbouring layers

is applied in DBN feature dimension reduction, which, along with deep structures,

allows features to be fused in-depth. The obtained high-representative features can

reflect the data information more effectively.
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2.3 Feature extraction by deep learning methods

To be unrestrained by prior knowledge, the deep learning method was also pro-

posed to calculate signal features self-adaptively [126] and has achieved great success

in multiple fields [15, 110, 117], including object detection [34] and fault detection

in wind turbines [14]. DBN and convolutional neural network (CNN), as two deep

learning methods, have achieved high recognition due to their excellent performance

in unsupervised feature learning. Mohamed et al. used DBN to establish models of

acoustic signals in language processing [70]. Hassan et al. identified features from

images to implement face recognition [35]. Thus, it is evident that the DBN method

can calculate features with high efficiency by generative models. Gu et al. conducted

a review on the development of the CNN method, which provided a broad survey

of the recent advances in CNNs, including layer design, activation function, loss

function, regularization, optimization and fast computation. Additionally, various

applications of CNNs in computer vision, speech and natural language processing

were also introduced [29]. Xia et al. used CNN to implement the fault diagnosis

of rotating machinery [108]. Janssens et al. conducted machine detection and oil

prediction using CNN to learn unsupervised features [38]. Cheng et al. extracted

features using CNN to estimate remaining bearing life [19]. Thus, the CNN method

has demonstrated its ability to extract useful information from raw data of high

dimension and preserve the property of shift-invariance. To further enhance the

advantages of deep learning methods, CDBN was proposed and applied to multiple

domains. Lee et al. used CDBN to extract features by unsupervised learning from

audio signals and perform audio identification [48]. Ren and Wu obtained more

effective information from signals using CDBN to extract features from electroen-

cephalographic signals [75]. Li et al. combined DBN and CNN to extract features

which are used to implement the fault diagnosis of rotating machinery [53]. Shao et

al. proposed an optimized CDBN method to accomplish bearing fault diagnosis with
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excellent application performance. This paper showed the convolution of CDBN and

the operation of the proposed method, which were shown in figure 2.1 and figure

2.2 [82]. In application, the effectiveness of feature extracted is evaluated by the

Figure 2.1 : Convolution of CDBN

fault diagnosis result, namely the accuracy. The experimental results show their

effectiveness and great success in various applications. The CDBN has shown its

superiority to the DBN and the CNN in terms of the accuracy metric. The CDBN

preserves the property of shift-invariance of CNN and the high efficiency of DBN.

Moreover, CDBN can be extended to handle multi-channel data.

2.4 Signal denoising

Due to the sophisticated production environment of the RC, the acquired signals

are usually contaminated by background noise [74]. Noise disturbance can negatively

affect the fault diagnosis results and undermine the fault diagnosis performance [86].

Therefore, it is essential to construct an auto-denoising network to eliminate the
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Figure 2.2 : Operation of CDBN

noise existing in signals. A variety of methods have been explored for denoising by

filtering [24]. Wavelet transforms (WT) are widely used in a variety of research fields

for signal denoising [59]. This method requires manual selection of base functions

before denoising [69]. This means that an inappropriate base function could be

selected for denoising, due to insufficient expertise [13]. As a result, this can generate

poor denoising performance and decrease fault diagnosis accuracy. To overcome this,

EMD was proposed to extract useful data from noisy and non-stationary signals

self-adaptively [123]. Ali et al. used EMD to decompose signals into a series of

intrinsic mode functions (IMFs) and employed artificial neural networks to identify

faults of roller bearings [3]. Li et al. applied an EMD-based method to predict the

load of power system operation and control [51]. Wang et al. proposed an EMD-

assisted manifold for fault diagnosis of rotating machinery [101]. Li et al. used
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optimized EMD to diagnose gear faults [54]. Wang et al. utilized integrating EMD

manifold to extract features and accomplish machinery fault diagnosis. EMD was

used to decompose signals and useful IMFs were selected by correlation analysis for

machinery fault diagnosis [97]. An improved EMD method, based on the multi-

objective optimization, was proposed in this paper and applied to extract the fault

feature of rolling bearing with inner and outer race fault [31]. EMD, as a self-

adaptive decomposing method of decomposing signals, can decompose signals into

several IMFs in terms of the time-scale of the signal itself [77]. This reduces human

interference with signal decompositions [103], which is well suited for analyzing non-

linear and non-stationary signals (the signal properties of RCs) [73]. Compared to

wavelet transforms, EMD does not required selection of basis functions in advance,

thus avoiding reduced fault diagnosis accuracy due to unreasonable selections.

However, mode mixing and end effects are two disadvantages of the EMD [68].

To solve these problems, ensemble empirical mode decomposition (EEMD) was pro-

posed, as it can separate each mode of data more precisely from raw signals [30].

Wang et al. proposed an EEMD denoising method with singular spectrum con-

straint for Ladar signals. The IMFs decomposed by EEMD are stacked together to

obtain the denoised signals. Tests on synthetic and real data demonstrated that the

proposed method, compared to the EMD denoising method, could suppress more

noise but filter out less useful signals in the FMCW Ladar signal denoising [102].

Cheng et al. proposed a segmentation singular value decomposition (SVD)-lifting

wavelet transform (LWT) denoising algorithm based on ensemble empirical mode

decomposition (EEMD) to better suppress noise in an atmospheric lidar return sig-

nal. The EEMD method was used to distinguish IMFs of the noise and signal, and

remove the IMF with noise as its main component[20]. The EEMD could distin-

guish the hidden mode of signals more accurately by averaging signals with white

noise added, which allows signals to be denoised effectively and self-adaptively. This
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method could be more suitable to handle the RC signal denoising problem.

2.5 Multi-source information fusion

The fusion of multi-source information is a challenging obstacle [119, 78]. Fusing

information from multiple sensors can provide more comprehensive information on

operating conditions and further enhance the performance of the fault diagnosis

method [18].

Traditional methods tend to fuse information of each source with equal weights,

which assumes that each source of information has the same sensitivity to faults and

contributes equally to the fault diagnosis. This may not be a reasonable scheme,

as different types of features can have unequal sensitivities to different faults and

contribute differently to diagnosing various faults [127]. To overcome this prob-

lem, much research has been carried out. Cai et al. fused multi-source information

for fault diagnosis of a ground-source heat pump using a Bayesian network. This

method increased the diagnostic accuracy of a ground-source heat pump system,

especially for multiple-simultaneous faults [11]. Zhong et al. conducted scene classi-

fication based on the multi-feature fusion probabilistic topic model for high spatial

resolution remote sensing imagery. A geological survey data set and the UC Merced

data set were utilized to evaluate the proposed method in comparison with con-

ventional methods. The experimental results confirmed the superiority of the pro-

posed method [128]. Xu and Yu proposed a novel approach to information fusion in

multi-source datasets from a granular computing viewpoint. This method allowed

valuable and reliable information sources to be chosen by transforming the original

information of each object into a triangular fuzzy information granule. Experiments

confirmed the effectiveness of the proposed method [109]. Liu et al. proposed an

innovative information fusion method using adaptive Kalman filtering. This method

can integrate information from INS/GPS navigation of autonomous vehicles [60]. Li
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et al. proposed the physics of failure-based reliability prediction method using multi-

source information fusion to predict the reliability of aero engine turbine blades. In

the proposed method, the fuzzy theory was employed to represent uncertainties in-

volved in prediction. Case studies of reliability prediction under fuzzy stress with

and without fuzzy strength were conducted using a dynamic stress-strength inter-

ference model which considers types of aero-engine cycles. Results indicated that

the proposed method was more in line with engineering practice and more flexible in

decision making. Furthermore, the proposed method could predict the reliability of

aero-engine turbine blades as an interval by utilizing the proposed linear fusion al-

gorithm [50]. Che et al. designed a multi-granulation probabilistic rough set based

on evidence theory, probability theory and information entropy to fuse uncertain

data in a multi-source information system. This study is helpful for integrating

the uncertain information of multiple sources and consequential for creating a route

of granular computing [12]. Wang et al. presented a deep learning-based model

named multi-resolution and multi-sensor fusion network for motor fault diagnosis,

achieved through multi-scale analysis of motor vibration and stator current signals.

This method can automatically learn discriminative features through the network

training process without any assistance of prior knowledge [100]. From the litera-

ture review, it can be seen that fusing multiple sources of data can provide more

comprehensive information for handling problems in different fields and enhance the

performance of final results. It is an effective framework to fuse information with

the probabilistic scheme.

2.6 Summary

Currently, RC fault diagnosis mainly are conducted by traditional methods. Fea-

tures are extracted with prior knowledge. Insufficient knowledge could lead to inap-

propriate feature selections and further decrease the performance of fault diagnosis.
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By addressing this problem, deep learning methods are developed due to the ability

of unsupervised feature learning. In this research, deep learning method is intro-

duced to conduct fault diagnosis of RC. Due to the advantage of CDBN over other

deep learning methods, RC fault diagnosis is conducted based on the CDBN. In

addition, in the RC fault diagnosis, vibration signals are the primary single source

of information. To combine more information, a scheme fusing multi-source infor-

mation is proposed to improve fault diagnosis performance.



17

Chapter 3

Intelligent fault diagnosis using intrinsic vibration

feature fusion and a Grassmann manifold-based

similarity

3.1 Introduction

Traditional monitoring methods extract only one to a few time and/or frequency

features from original signals [24] and use a conventional model, such as a principal

component analysis [2], to fuse features and reduce feature dimension or use trend-

ing analysis to track changes in the health condition[120] ∗. Although these methods

achieve good performance in fault diagnosis and classification to a certain extent,

there are three remaining limitations: (1) Traditional methods extract features from

raw signals which ignores more local features. Local features means the feature ex-

tracted from segmentation of signals or decomposed components of signals, which

reflect more local characteristics from various scaling of signals. Features extracted

from raw signals could only reflect operating conditions globally. For example, fea-

tures extracted from a cycle of signal can reflect characteristics of the whole cycle.

This could decrease the reliability of the features. (2) Conventional models may not

be adequate in feature dimension reduction of big data, as they cannot reveal deep

relationships between hidden information in big data and the RC operating condi-

tions. (3) As RC signals are characterized by a non-linearity and non-stationary

nature [33], Euclidean distance-based methods or any assumption on data distribu-

∗This chapter has been submitted as: Zhang, Y., Ji, J.C., Use of intrinsic vibration feature

fusion and a Grassmann manifold-based similarity for intelligent fault diagnosis of a reciprocating

compressor, IEEE Transactions on Industrial Informatics.[Under review]
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tion would not be suitable for RC fault identification. Motivated to overcome these

issues, this chapter launches the research from the following three aspects.

EMD is adopted in this chapter to decompose raw vibration signals of RCs

into a collection of IMFs, which can reflect the intrinsic vibration of an RC. These

intrinsic functions can reflect intrinsic vibrations of an RC from local perspectives,

which could represent the operating condition more confidently.

To obtain useful information from intrinsic vibrations comprehensively, multiple

features were extracted from each IMF and constructed into a high dimensional vec-

tor. This vector can adequately reflect the RC operating conditions comprehensively

[26]. Due to the complex production environment of RCs, RC vibration signals could

be contaminated by noise or other unhelpful disturbances. The extracted features

could include redundant information, which can negatively affect fault diagnosis.

Therefore, dimension reduction techniques have been adopted to remove redundant

information in feature vectors and enhance the fault diagnosis performance. In view

of the advantage of DBN in unsupervised feature learning, DBN has been used for

feature dimension reduction of RC fault diagnosis.

After reducing the feature dimension, a pattern recognition method was applied

to perform the labelling and identification of the fault categories intelligently. Most

methods of fault identification are conducted with Euclidean distance [64] or under

assumptions, such as that the data follows a certain distribution [9]. As RC vibra-

tion signals present nonlinear and non-stationary properties [116], this assumption

may be considered unreasonable. It may neglect more information of nonlinearity

and thus impair the performance of the fault diagnosis method. To overcome this

problem, a similarity based on Grassmann manifolds (GM) was designed in this

chapter for RC fault diagnosis. GM is composed of a series of subspaces that can

represent the working conditions of RCs [85]. The similarity of subspaces on GM can
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be measured by geodesic distance [90]. It can preserve more non-linear properties

of original subspace which reflect the RC operating conditions.

Aiming at intelligent fault diagnosis in the context of big data, this chapter

proposes a hybrid method incorporating EMD for intrinsic vibration analysis, DBN

for feature dimension reduction and a Grassmann manifold-based similarity for RC

fault identification. The contributions of this chapter are listed as follows.

i. EMD was utilized to decompose signals into a series of IMFs. The IMFs

provided a physical interpretation in the RC diagnosis, which indicates the

intrinsic vibrations generated from the RC operation.

ii. Multiple features were extracted from each IMF and then constructed into

high-dimensional feature vectors to reflect health condition comprehensively.

Then the feature vectors were fused deeply by DBNs to reduce feature dimen-

sions. Due to the deep structure of DBNs, the fused features had a high repre-

sentativeness of the operating conditions compared with conventional feature

dimension reduction methods.

iii. The low-dimensional feature vectors were transformed into subspaces on the

GM. The similarity of subspace on the GM was proposed to determine RC

faults. Compared with Euclidean methods, this method can calculate the

similarity while preserving more linear properties of RC signal and enhancing

the performance of RC fault diagnosis.

This chapter is organized as follows. Section 3.2 introduces the proposed method

and gives a brief introduction to the related theories. Section 3.3 analyzes the

experimental data and validates the proposed method. Section 3.4 concludes the

paper.
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3.2 Proposed method

A novel method is proposed to enhance the performance of RC fault diagnosis.

EMD is used to analyze the local information from the perspective of intrinsic vi-

brations. This method decomposes RC vibration signals into IMFs. Features are

extracted from each IMF and constructed into high-dimensional vectors in order to

reflect more detailed and comprehensive characteristics of operation. Then DBN

is employed to reduce the dimension of feature vectors and remove the redundant

information. As the deep structure of DBN, it can fuse RC features in depth by

complex non-linear mapping. Meanwhile, these low-dimensional feature vectors are

constructed into subspaces on the GM. The faults could then be determined by cal-

culating the similarity between subspaces. As GM is a geodesic distance, it could

preserve more nonlinear property of RC signals. The detailed procedure is illustrated

in Fig. 3.1 and described as follows.

i. RC vibration signals were collected using accelerometers mounted on the cylin-

der.

ii. The measured signals were decomposed into a series of IMFs by EMD.

iii. Features were extracted from each IMF to reflect RC operating conditions

with more local information.

iv. The extracted features were constructed into a high-dimensional feature vector

to represent the working condition.

v. These feature vectors were split into training data and testing data.

vi. Feature vectors were input into DBN to reduce the feature vector dimension.

vii. Feature vectors of training data were transformed into subspaces on the Grass-

mann manifold for each fault as the base subspace.
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viii. Subspaces of testing data were calculated by repeating Step 6 and Step 7.

ix. The similarities between subspaces of testing data and fault data were calcu-

lated to determine the fault type.

Figure 3.1 : Schematic of the proposed method

3.2.1 Empirical mode decomposition

EMD can decompose signals into a series of IMFs, and each IMF represents

an intrinsic vibration mode generated by an RC. Therefore, IMF can present more

local information of the operating conditions. EMD can decompose a signal into a
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collection of IMFs. These IMFs are of different time scales, which means they can

provide information from different time scales and can reflect operating conditions

by more local characteristics, thereby improving the fault diagnosis performance.

The general steps of EMD are listed below.

i. The upper envelops and lower envelops of original signals as well as their means

m1 are calculated.

ii. The difference between the raw signals x (t) and m1 is calculated and can be

written as

x = x (t)−m1 (3.1)

iii. x is considered a raw signal to compute the first IMFs by repeating Steps 1

and 2 k times. The first IMF can be expressed as

IMF1 = x1 = x1(k−1) −m1k (3.2)

iv. The above three steps are repeated until satisfying the stop criterion [65] and

all the IMFs are computed.

v. From the above steps, it can be induced that

x (t) =
I∑
i=1

IMFi + r (3.3)

where I is the total number of IMFs and r denotes the residual function.

3.2.2 High-dimensional feature extraction and feature vector reconstruc-

tion

To reflect the RC operating conditions from more local perspectives, features

were extracted from each IMF. The extracted features are shown in Table 3.1.

These extracted features are typical features applied in health condition monitor-

ing. After features were extracted from each IMF, they were constructed into a
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Table 3.1 : Extracted features

Feature Equation
Feature

Meaning
symbol

Root mean square XRMS =

√∑n
i=1(x(i))2

n
X1

The average energy of

signals

Crest factor XCrest = max{x(i)}
XRMS

X2

The peak amplitude divided

by the RMS value

Kurtosis XKurt =
∑n

i=1(x(i)−x̄)

n(XRMS)
X3

The shape of a probability,

sensitive to impulsive faults

Peak XPeak = max |x| X4 Indicating the intensity of vibration

high-dimensional feature vector. The vector can be expressed as

X = (X1, X2, · · · , Xi, · · · , XI) (3.4)

whereXi = [Xi1,Xi2,Xi3,Xi4], indicating features extracted from the i-th IMF. These

features were concatenated into a high-dimensional feature vector to represent the

operating condition comprehensively.

3.2.3 Deep belief networks

A deep belief network consists of deep architectures that are capable of learning

feature representations from unlabeled data and exploring complex data character-

istics [124]. Figure 3.2 shows a typical DBN architecture. X = (X1, X2, · · · , Xm)

represents the high-dimensional features of IMFs and O = (o1, o2, · · · , on) indicates

the low-dimensional features calculated by the DBN with unsupervised learning.

The DBN consists of i hidden layers with each layer having m1,m2, · · · ,mk nodes,

respectively, and is comprised of a stack of restricted Boltzmann Machines (RBMs).
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Figure 3.2 : The DBN structure

The RBMs are probabilistic generative models that learn a joint probability dis-

tribution from training data without data labels. A RBM consists of two layers,

namely the input layer and output layer. There is no connection among nodes in

the same layer, and the neighboring layers are connected by weights (and biases)

matrices. The outputs of the current RBM are the inputs of the following RBM.

The energy of the input can be computed efficiently by

E(v, h) = −aTv − bTh− vTWh (3.5)

In general Boltzmann machines, probability distribution over h and/or v is defined

by the following energy function

P (v, h) =
e−E(v,h)

Z
(3.6)

where Z is a partition function representing the sum of all possible configurations.
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The marginal probability of a Boolean visible vector is defined as the sum of all

possible hidden layer configurations, which is expressed by

P (v, h) =
1

Z

∑
h

e−E(v,h) (3.7)

The conditional probability of the visible units under a given hidden unit can be

written as

P (v |h) =
m

Π
i=1

P (vi |h) (3.8)

Conversely, the conditional probability of h under the given v is

P (h |v ) =
mk

Π
j=1

P (hj |v ) (3.9)

The individual activation probabilities can be calculated by

P (hj = 1 |v ) = σ

(
bj+

m∑
i=1

wijvi

)
(3.10)

P (vi = 1 |h) = σ

(
ai+

mk∑
j=1

wijhj

)
(3.11)

where σ indicates sigmoid function. For more information on DBN refer to [94].

3.2.4 Grassmann manifold-based similarity

After the feature dimensions have been decreased by DBN, a similarity based on

Grassmann manifold was designed to identify fault types. Grassmann manifold is

applied in the research, as it can calculate feature difference by geodesic distance.

It considers the nonlinear property of data [67], which is suitable to handle RC

vibration signals. This method constructs a series of subspaces on the Grassmann

manifold and then calculates the geodesic distance between subspaces to determine

fault types.

Grassmann manifolds is a Riemannian manifold that is embedded in a high di-

mensional Hilbert space [91]. A GM Gd,D is composed of a set of d-dimensional
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subspaces of RD. The subspaces are spanned by orthonormal matrices Y and repre-

sented by span(Y ). Two low-dimensional feature matrices O1 and O2 were assumed

to be obtained from DBN and are spanned by Y1,Y2 ∈ RD×d. Principal angles were

calculated to measure the similarity of two subspaces span(Y1) and span(Y2), and

the principal angles of two subspaces could be calculated by

cos θi = max
ui∈span(Y1)

max
vi∈span(Y2)

uivi (3.12)

with the following conditions

u′iui = v′ivi = 1

u′iuj = v′ivj = 0

i = (1, 2, · · · , d) j = (1, 2, · · · , i− 1)

(3.13)

where u and v are the principal vectors. In this chapter, singular value decompo-

sition (SVD) was adopted to calculate principal angles [118]. The equation can be

expressed as

Y ′1Y2 = USV ∗ (3.14)

where U = [u1, u2, · · · , ud] is a unitary matrix, S = [cos θ1, cos θ2, · · · , cos θd] is

a diagonal matrix, and V ∗ is the conjugate transpose V = [v1, v2, · · · , vd]. The

similarity between two subspaces was calculated from geodesic distance and defined

as

dist(Y1, Y2) =
d∑
i=1

cos2 θi (3.15)

When θ1 = θ2 = · · · = θd = 0, two subspaces span(Y1) and span(Y1) are considered

into one. This means a larger value of dist(Y1, Y2) indicates a higher similarity

between subspaces, and it is more likely that feature matrices O1 and O2 are of

the same RC fault data. The subspaces of each fault were calculated as a reference

and were matched to the subspace of testing data for identification to obtain the

similarity. The fault type is determined by the value of similarity.
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3.3 Experimental verification and analysis

3.3.1 Data description

Vibration data that reflects RC operating conditions were collected by vibration

accelerometers (sensor type: PCB 608A11) mounted above the crosshead. The

acquired data were used to validate the proposed method. An RC schematic is shown

in figure 3.3, which illustrates the structure of the RC and the sensor locations. The

Figure 3.3 : Schematic of RC structure

engine lying on the left end provided the output power to drive the rotation of

the shaft. Phase sensors were installed on the flywheel near the engine to monitor

the rotating speed. Accelerometers were mounted on the crosshead to measure the

cylinder vibrations, which can reflect the operating conditions of the RC. The piston

rods in the cylinder can take in and push out gas via the gas valve. A crank-link

mechanism was located inside the crankcase and transformed shaft rotation into

compression motion of the piston rod in the cylinder to complete gas compression.

Figure 3.4 shows four typical RC faults occurring in an oil refinery plant, gas valve

leakage, piston rod breaking, cylinder scraping, and bearing shell wear. Figure 3.4(a)

shows a broken gas valve which causes gas valve leakage. Figure 3.4(b) displays a

broken piston rod. Extended runtime under component fatigue can lead to piston

breaking. Figures 3.4(c) and (d) show cylinder scraping and the wear of bearing
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shell faults, respectively. Due to worn-down components and delayed replacement

of assembly, piston rods and bearings will scrape cylinders or bearing shells directly.

This significant contact friction can lead to more serious faults, such as piston rod

breaking. These faults or failures may cause serious issues in operation or even

disastrous incidents without early detection.

Figure 3.4 : Faults of RC

Vibration monitoring is an effective method in RC fault diagnosis. Vibrations

change after faults occur in the RC. Therefore, vibration signals were collected

for method validation in this research. Detailed information on the fault data are

listed in table 3.2. Signals of five operating conditions were acquired under the

rotating speed of 375rpm and the sampling frequency of 12.8kHz to validate the
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Table 3.2 : Date description

Fault type Description
Sampling Size of training/

frequency/kHz testing data

F1 Wear of bearing shell 12.8 200/100

F2 Cylinder scraping 12.8 200/100

F3 Gas valve 12.8 200/100

F4 Piston rod breaking 12.8 200/100

developed method. As the rotating speed is 375rpm, the duration of each signal is

60/375=0.16s. Each type of data included 300 signals with 200 randomly selected

samples as the training data and the rest as the testing data.

3.3.2 RC fault diagnosis using the proposed method

EMD was first used to decompose signals into a series of IMFs. The decomposed

results are shown in figure 3.5. Raw signals were decomposed into 9 IMFs. Each

IMF can reflect an intrinsic vibration mode of original signals. Four features in

table 3.1 were extracted from each IMF and constructed into a high-dimensional

vector. The dimension of the feature vector was equal to 36. To remove redundant

information from the feature vector, high-dimensional features were input into the

DBN for feature dimension reduction. The DBN was composed of three RBMs.

The parameter setting of the DBN is listed in table 3.3. There is no criteria for the

parameter setting [82]. They are typically tuned according to the performance in

the fault diagnosis. The last layer of the DBN included 10 nodes, thus the output

dimension of the feature vector was 10. The first three components of the lower-

dimensional feature vector are visualized and displayed in Figure 3.6, where different

colors represent different operating conditions. It can be seen from the figure that
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Figure 3.5 : EMD results

the features extracted from the same condition are clustered tightly, whereas features

of different conditions are clearly distinguishable. This proves that DBN can refine

the highly representative features from raw signals effectively.

Subspaces of the low-dimensional feature vector were calculated on the Grass-

mann manifold to determine the fault type. The performance of the proposed

method was evaluated for application to RC fault diagnosis. The accuracies of

fault diagnosis are displayed by the confusion matrix in Figure 6.11. The horizontal

and vertical axes indicate the actual labels and predicted labels of data, respectively.

The values in yellow are the fault diagnosis accuracy for the data of each fault type

while the values in green are the detailed misclassified ratio of each fault. The ac-

curacy of the proposed method for fault identification reached up to 86.6%, 84.2%,

85.5% and 87.6% for fault F1, F2, F3 and F4, respectively. The diagnosis accuracies

in this chapter were averaged over ten trials to ensure stable final results.
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Table 3.3 : Parameter setting of the DBN

Parameter Setting

The number of RBMs 3

The number of input nodes of the 1st RBM 36

The number of output nodes of the 1st RBM 30

The number of output nodes of the 2nd RBM 20

The number of output nodes of the 3rd RBM 10

Learning rate 0.05

The number of epochs 30

3.3.3 Parameter analysis and method evaluation

The number of nodes in the DBN output layer was investigated to determine

the most suitable feature vector dimension for RC fault diagnosis. The relationship

between the number of nodes in the output layer and the diagnosis accuracy is ex-

hibited in Figure 3.8. With increasing output dimension, accuracy rose to achieve

the peak value of 85.98% at the dimension of 10. After this, accuracy begins to

decrease. This reveals that the lower-dimensional features consist of the most useful

information at the dimension of 10. When the dimension exceeds 10, more redun-

dant information is included in the features, and it affects the performance of the

proposed method negatively. Therefore, the dimension of 10 was adopted as a rea-

sonable output dimension. The proposed method was compared with other methods

in three aspects, feature extraction methods, dimension reduction techniques and

feature identification methods. The comparison results are listed in Table 3.4. In

method 1, features were extracted from original time-series signals and resulted in

a poor performance in application. Method 2 used EMD to decompose vibration

signals into multiple intrinsic vibrations and could reflect more local characteristics
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Figure 3.6 : DBN feature visualization

of the operating condition, thus the diagnosis performance improved. In methods

3, 4 and 5, feature dimension reduction techniques were applied to refine the high-

representative information. This further enhanced the accuracy of fault diagnosis.

However, method 5 achieved higher accuracy than method 3, which proves that

DBN can fuse features more effectively and preserve more useful information. For

example, non-linear information, which tends to be neglected by traditional meth-

ods. Additionally, method 5 surpassed method 4 in accuracy. This reveals that

GM can preserve more reliable properties of RC operating conditions and provide

a more reasonable similarity between testing data and fault data than a Euclidean

distance-based method (e.g. SVM) in RC fault diagnosis.

3.4 Conclusion

To refine more reliable features in depth and implement intelligent fault diagnosis

for reciprocating compressors, this chapter proposed a novel method fusing intrinsic

vibration features by DBN and measuring the similarity of feature subspaces on
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Figure 3.7 : Confusion matrix

Grassmann manifold.

First, signals were decomposed into IMFs by EMD. This decomposition could

separate intrinsic vibration modes from raw vibration signals effectively and reveal

more local and reliable information.

Secondly, multiple features were extracted from each IMF and constructed into

a high-dimensional feature vector. These features could reflect more comprehensive

information of the intrinsic vibration.

Thirdly, the high-dimensional feature vector were fused in depth by DBN to

obtain a lower-dimensional feature vector. The deep network structure allowed the

features to be fused in depth and further guaranteed more reliable information was

preserved, for example non-linearity information.

Finally, feature vectors were transformed into subspaces on the Grassmann man-

ifold for multiple faults. A subspace of testing data and subspaces of each fault were

matched to determine fault types by their similarities. The GM-based similarity

preserved more non-linearity information by adopting a geodesic metric.
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Figure 3.8 : The relationship between output dimension and accuracy

Table 3.4 : Method evaluation

Method F1 F2 F3 F4

features + GM 72.3 70.8 71.5 69.3

EMD+features + GM 75.6 74.2 74.6 76.6

EMD+features + KPCA + GM 82.2 83.5 82.4 84.9

EMD+features + DBN + SVM 85.8 83.6 83.5 85.8

EMD+features+ DBN + GM 86.6 84.2 85.5 87.6

RC fault data were collected from an industrial oil refinery plant to validate

the proposed method. The results confirmed that the proposed method was able

to extract more detailed information and fuse features in depth. The Grassmann

manifold-based similarity could identify RC faults more effectively.
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Chapter 4

Intelligent fault diagnosis using mode

isolation-convolutional deep belief networks

4.1 Introduction

CDBN shows superiority in feature extraction with unsupervised learning∗. This

chapter adopts the CDBN method to calculate features in the RC fault diagnosis.

Although the raw signals can reflect the RC operating condition from a global per-

spective, more useful local information is unfortunately neglected. To take into

account more useful local features and to improve the performance of CDBN in RC

fault diagnosis, the MI-CDBN is proposed in this chapter. The transfer path theory

is introduced to the RC fault diagnosis to analyze the potential structures of the RC

signals from the perspective of multi-modal data isolation, which is inspired by the

theory of transfer path analysis in [95]. Vibration signals were considered as the su-

perposition of multi-modal data generated from different transfer paths. Each mode

was calculated by a data-driven method, considering the absence of prior knowledge

on vibration mechanism. To isolate multi-modal data with unknown distribution,

a Gaussian mixture model (GMM) was adopted to establish the models for data

following complex distributions, due to its flexibility in data modelling [61]. As the

parameters of GMM can represent vibration conditions robustly, they were used

to construct into state space for feature learning from CDBN. The state space is

∗This chapter has been accepted as: Zhang, Y., Ji, J.C., 2020. Intelligent fault diagnosis of a

reciprocating compressor using mode isolation-convolutional deep belief networks. IEEE/ASME

Transaction on Mechatronics. [Published, DOI: 10.1109/TMECH.2020.3027912]
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referred to as time-invariant [46]. Consequently, they can represent operating condi-

tions confidently and facilitate the RC fault diagnosis. Subsequently, the calculated

features from MI-CDBN were fed into classifiers to identify fault types of an RC. A

multi-class logistic regression classifier was adopted to recognize multiple faults of

the RC [6].

The contributions of this chapter are summarized in the following three aspects.

i. An MI-CDBN is proposed to enhance the performance of the standard CDBN

in implementing the RC fault diagnosis. Direct analysis of raw signal could

hide more local information from different modes and degrade the fault di-

agnosis performance. To extract more local information, GMM is used to

isolate multi-modal data from raw signals, then the isolated multi-modal data

is input into CDBN to learn more useful local information. To highlight more

local information, multi-modal data are isolated from raw signals. GMM is

used to isolate multi-modal data in this paper due to its flexibility in data

modelling, then the network self-adaptively calculates features from isolated

modal data. This method can highlight more information hidden in the raw

signals. This method also provides a novel physical interpretation of the RC

vibration signals from the perspective of the transfer path.

ii. The CDBN is used to extract features for the raw signals. Compared with

the other deep learning methods, CDBN can extract features using a deep

network structure with shift-invariance and high efficiency. By strengthening

the advantages of the CNN and the DBN, this method can obtain more reli-

able information from the collected RC vibration signals and ensure improved

performance in the RC fault diagnosis.

iii. A three-stage method is adopted in the RC intelligent fault diagnosis based

on a deep learning-based framework. First, sparse filtering is employed to
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compress signals into more compact series to reduce computing cost. Then, the

MI-CDBN is used to calculate features by unsupervised learning. Finally, fault

types are identified by a classifier. This method can remove the dependence

on prior knowledge and enhance computational efficiency.

iv. The GMM is used to isolate multi-modal data generated from various transfer

paths. The parameters of the GMM are calculated using latent Dirichlet allo-

cation (LDA) instead of being set at a constant. This improves the robustness

of the constructed state space in the RC fault diagnosis.

The rest of the chapter is organized as follows. Section 4.2 introduces the related

preliminary of the proposed method, and Section 4.3 gives a detailed description of

the proposed method. In Section 4.4, site measurement data from the petroleum

industry are employed to validate the proposed method and Section 4.5 concludes

the chapter.

4.2 Preliminary

4.2.1 Sparse filtering

Due to the technological advancements in data acquisition and storage, volu-

minous monitoring data of the RC can be collected by sensors, which makes it

challenging to handle big data [110]. Therefore, it is essential to compress data and

refine the highly representative information for fault diagnosis. Sparse filtering (SF)

is one of the most promising tools due to its advantages of a basic hyperparame-

ter setting and low computational cost [71]. Only the output dimension of the SF

requires tuning for data compression. This can reduce computation cost compared

with compressive sensing (CS) and allow the SF to obtain a good performance in

intelligent fault diagnosis [49]. Moreover, SF can compress data with unknown dis-

tribution with little distortion of raw signals [49]. This would be more suitable for
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compressing RC vibration data than the auto-encoder (AE) method in terms of the

complex structure of vibration signals [71].

Sparse filtering was used to compress raw signals into compact time series with

the fault-related information extracted. Sparse filtering captures three properties:

sparse features per example, sparse features across examples, and uniform activity

distribution [71]. This method represents raw signals with a few non-zero high

representative coefficients (features). The compressed feature can be calculated by

f
(i)
j = wT

j s(i) (4.1)

where f
(i)
j denotes the j-th feature of the i-th data sample in the feature matrix with

each column representing a sample and wj representing the weight matrix. `2-norm

was adopted to normalize features within the same range and ensure each feature

was activated equally.

f̃j = fj/ ‖fj‖ (4.2)

Then each column was normalized within a unit `2-ball.

f̂(i) = f̃(i)/
∥∥∥f̃(i)

∥∥∥ (4.3)

`1 penalty was applied to optimize the sparsity of the normalized features. The

objective function of sparse filtering for a dataset including N samples is given by

minimize
N∑
i=1

∥∥∥f̂(i)
∥∥∥

1
(4.4)

The weight matrix satisfying Eq.(4.4) could be regarded as the optimal results

of compression and the input x of the MI-CDBN.
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4.2.2 Traditional CDBN

Convolutional deep belief network has been widely used in many fields. It inherits

the advantages of DBN and CNN by integrating them. The traditional CDBN

was constructed by stacking convolutional restricted Boltzmann machine (CRBM),

whose energy function is denoted as [82]

− logP (v,h) ∝ E (v,h)

= −
Kc∑
k=1

NH∑
i,j=1

NW∑
r,s=1

hki,jW
k
r,svi+r−1,j+s−1 (4.5)

−
Kc∑
k=1

bk

NH∑
i,j=1

hki,j − c
NV∑
r,s=1

vi,j

where W, v and h represent the filter, visible vector and hidden vector, respectively.

vi,j is an element located in the i-th row and the j-th column of the k-th filter. bk

is the bias of each hidden group and all visible units share the same bias c. The

conditional probabilities of the standard CRBM can be expressed as:

P
(
hki,j = 1 | v

)
= σ

((
W̃ k ∗ v

)
i,j

+ bk

)
(4.6)

P (vi,j = 1 | h) = σ

(∑
k,i,j

(
W k ∗ hk

)
i,j

+ c

)
(4.7)

where σ (x) = 1/ (1 + e−x) is the sigmoid function, ∗ is the convolutional operation,

and W̃ k
i,j = W k

NW−j+1. Once CDBN identifies the features, they could be categorized

by multi-class logistic regression [36].

4.3 The Proposed method

4.3.1 General procedure of the proposed method

A novel method was proposed to conduct intelligent fault diagnosis of the RC

by making the best use of transfer path analysis and multi-modal data isolation.

The proposed method primarily involved three stages. First, the raw data was
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compressed using sparse filtering to obtain high representative features and reduce

computational cost. Then, the MI-CDBN was employed to isolate multi-modal

data and to learn unsupervised features from the compressed signals. Finally, the

representative features were input into a multi-class logistic regression to identify

fault types. The theoretical framework is displayed in figure 4.1. The detailed

procedure consists of the following six steps.

Figure 4.1 : Framework of the proposed method

Step 1: Vibration data were measured by accelerometers installed on the crosshead

of the RC.

Step 2: Data were compressed using sparse filtering to refine and achieve highly

representative information and decrease the computational cost.

Step 3: The GMM was used to isolate multi-modal data and the state space was

constructed from the parameters of each mode to represent the operating conditions
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of the RC robustly.

Step 4: The MI-CDBN was adopted to calculate the features from the con-

structed state-space by unsupervised learning.

Step 5: Multi-class logistic regression classifier was trained to implement the

fault diagnosis of the RC.

Step 6: Testing data were input into the well-trained classifier to evaluate the

performance of the proposed method.

4.3.2 Mode isolation-convolutional deep belief network

Figure 4.2 : Diagram of transfer path on the RC

Transfer path analysis is an effective approach for analyzing complex vibration

mechanism when it is difficult to measure vibration excitation directly [95]. This

method considers a mode of data generated from an excitation via a specific path.

The collected signals are a combination of multiple modes of data. However, dif-

ferent modes of vibration data cannot be measured by sensors directly. Therefore,

these modal data are isolated using the data-driven method by assuming that these

modal data follow Gaussian distribution. GMM can establish models for data with

complex distributions. This is suitable for handling RC signals which are generated
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Figure 4.3 : The relationship among fault excitation, transfer paths and acquired

data

from complex vibrations and follow complex distributions. Thus, GMM was adopted

to resolve the problem and projects raw data into state-space. The parameters of

GMM are used to construct the state space, and currently, they are mostly esti-

mated by expectation maximization (EM) directly. It is highly likely to obtain an

overfitting value of GMM parameter using the EM method [76], which decreases the

generalization ability of GMM [104]. Considering the Bayesian method advantages

of learning parameters from prior knowledge [122], latent Dirichlet allocation (LDA)

was employed to establish the GMM model parameters. LDA has an excellent per-

formance in constructing models for discrete data [128, 99, 114], which can represent

various potential operating conditions of the RC [17]. From the LDA model, the

running condition of the highest possibility will be selected for fault identification.

In the RC fault diagnosis, a diagram of one source of excitations is shown as an

example in figure 4.2. Each source of excitations was assumed to be independent

of each other. When a fault occurs in the RC, a vibration excitation E will be

generated. The vibration induced by E cannot be measured directly by sensors.

It will transfer along a certain latent path P in the RC body. For example, path

P1 (dotted curve) via component C1 (red square), path P2 (dotted curve) via

component C2 (blue square). Finally, the vibrations could be measured by a sensor
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S. The modal data generated from the two paths can be expressed as F (x) Ψ1 (x)

and F (x)Ψ2 (x), as the vibration of C1 and C2 are modulated by the vibration of E.

Here only two modal data are taken for explanation. In the following introduction

to the theoretical framework, the transfer path was extended to a random number n.

The collected data presents the non-linear and non-stationary nature, with n types

of modal data generated from various transfer paths combined. The relationship

among vibration excitations, transfer paths, and acquired data were formulated and

are shown in figure 4.3. In figure 4.3, the vibration data for the RC fault diagnosis

incorporated multi-modal data and each modal data was generated by the vibration

of one fault excitation transferring along a certain transfer path. Different mode

combinations of multi-modal data indicate different operating conditions. These

combinations can represent transfer paths and their weights, as the fault excitation

dominates the variation of a path and the corresponding weight. In this research,

the modes were isolated by projecting the raw signals to the state-space to reflect

local features. Straight analysis of the raw signals with multiple-mode data mixed

could degrade the performance of the fault diagnosis method and hide or neglect

more useful information. In contrast, the local information obtained from mode-

isolated data could characterize and reflect the operating condition more robustly.

In practice, it is difficult to measure the fault excitation F(x) and transfer paths

Ψ(x) directly [95]. Thus a data-driven method was proposed to establish the models

for multi-modal data generated from various transfer paths. Theoretically, the raw

signals can be expressed as

Y =
∑
i

F (x) Ψi (x) (4.8)

As the vibration mode generated from each transfer path cannot be measured by

sensors directly, a data-driven method was adopted to isolate multi-modal data

from vibration data and establish the model for each modal data. A GMM was

used to establish models for the RC data. The GMM consisted of multiple Gaussian
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components, and different components represented different modal data generated

via different transfer paths under specific vibration excitations. Multi-modal data

can be regarded as linear combinations of Gaussian components.

The Gaussian mixture model can be expressed as

p (x) =
K∑
k=1

πkp (x | µk, Σk) (4.9)

where x is the compressed signals consisting of M points. p (x | µk, Σk) is one

component of the Gaussian mixture model parameterized by (µk, Σk), πk is the prior

input of x, and K is the total number of Gaussian components. In this chapter,

a novel physical interpretation is proposed for GMM. Each F (x)Ψi(x) assumed

to follow Gaussian distribution. The p(x | µk, Σk) and πk denote a transfer path

characterizing the fault excitation and its corresponding weight, respectively [95].

The parameters of the GMM can represent the vibration conditions powerfully

and thus were used to construct the state-space. The dimensions of the parameters

(π, µ,Σ) are K × 1, M × 1 and M ×M , respectively. As Σ is a symmetric matrix,

the lower or the upper diagonal of the matrix can be converted into a vector. The

conversion of the covariance matrix Σ̂ can be denoted as

Σ̂ = [Σ (1, 1) , Σ (2, 1) , Σ (2, 2) , · · · ,

Σ (M, 1) , Σ (M, 2) , · · ·Σ (M,M)] (4.10)

Each component’s parameters can be concatenated into a vector and the vectors

from all GMM components were constructed into a matrix v. In other words, a

concatenated vector was considered a channel of v, and each channel can represent

a type of modal data generated via a transfer path. The input can be expressed as

v =


π1 π2 · · · πK

µ1 µ2 · · · µK

Σ̂1 Σ̂2 · · · Σ̂K

 (4.11)
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where Σ̂K is the conversion of the covariance matrix of the K-th GMM component.

LDA was adopted to calculate the GMM parameters used to construct the state-

space. A K-dimensional binary vector was introduced with a particular element

equal to 1 and the rest 0, namely the vector was subjected to the following condition:
zk ∈ {0, 1}∑

k zk = 1

(4.12)

such that

p (zk = 1) = πk

s.t. 0 ≤ πk ≤ 1 and
K∑

k=1

πk = 1 (4.13)

Traditionally, the parameters of GMM are estimated using an EM algorithm

[112]. This method tends to cause overfitting, so LDA was used to calculate the

GMM parameters. The label of zk were assumed to follow multinomial distribution

with Q realization.

p (zi | ξi) =
Q!

K∏
j=1

(zij)!

K∏
j=1

(ξij)
zij (4.14)

where ξi = (ξi1, ξi2, . . . , ξij) denotes the parameter of the distribution, which is sub-

jected to the constraints that ξij ≥ 0 and
k∑
j=1

ξij = 1. To calculate the probability of

each possible ξij , Dirichlet adopted to establish the model for ξij. The probabilities

are defined as

p (ξi | αi) =

Γ

(
K∑

j=1

αij

)
K∏
j=1

Γ (αij )

K∏
j=1

(ξij)
(αij−1) (4.15)

where αi = (αi1, αi2, . . . , αiK) is the parameter vector of Dirichlet distribution for

ξi. αij is a non-negative value, and Γ (·) represents the Gamma function. The
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probability of the label is computed by

p (zi | αi) =

1∫
0

p (zi | ξi) p (ξi | αi) dξi (4.16)

By substituting Eq.(4.14) and Eq.(4.15) into Eq.(4.16), the distribution of the

label parameterized by αi is obtained by

p (zi | αi) =
Q!

K∏
j=1

(zij)!

Γ

(
K∑

j=1

αij

)

Γ

(
K∑

j=1

(αij + zij )

) K∏
j=1

Γ (αij + zij )

Γ (αij )
(4.17)

Substituting the label in Eq.(9) into Eq.(14) with one realization (Q=1) yields

the prior distribution πij as

πij = p (zij = 1 | αi) =
αij

K∑
k=1

αik

(4.18)

The log-likelihood function can be expressed as

L (x | α, µ,Σ) =
N∑
i=1

log


K∑
j=1

αij
K∑
k=1

αik

p (x | µj, Σj)

 (4.19)

where N indicates the number of samples in x. The parameter (α, µ,Σ) of the model

could then be calculated using EM. This calculation process can avoid overfitting

and enhance the generalization ability of the method, as the parameters of GMM

are selected from LDA rather than setting a fixed value.

4.4 Experimental verification and analysis

4.4.1 Data description

Data used to validate the proposed method were collected from industrial plants.

When a fault occurs in the RC, the vibration is transferred along a particular transfer
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Figure 4.4 : Raw signals and compressed signals via sparse filtering

path in the body of the RC and measured by the cylinder accelerometers. Four

types of data were collected from industrial plants. Random selection of 800 data

sets of each fault was used to train the proposed method and 400 were used to

test the method. The sampling frequency was 12.8kHz. The rotating speed under

the four operating conditions were 333, 375, 300 and 333 respectively. A sample

contains points of one circle of shaft rotation, ensuring signals covered information

of a complete movement.

4.4.2 Fault diagnosis by the proposed method

The raw signals were compressed using sparse filtering to decrease the computa-

tional cost of fault diagnosis. The input dimension of the raw data is listed in table

3.2 and the output dimension was 200. The compression results of each operating

condition are displayed on the right in figure 4.4. They represent fault F1, F2, F3

and F4, respectively.

Next, the compression results were input into MI-CDBN to learn the features.
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Figure 4.5 : Isolated mode data

The mode isolation results of LDA-GMM are shown in figure 4.5, where each sub-

figure denotes a component of LDA-GMM. The pi or π, the ellipse centre and

the direction of the ellipse along the axis indicate the prior, means, and direction

of covariance of the compressed signal, respectively. Then, the state-space was

constructed by the parameters of LDA-GMM as equation 4.10 and fed into CDBN

to calculate the unsupervised features. The MI-CDBN included three CRBMs and

one fully connected layer. The input consisted of three channels with the input size

of 20301 for each channel. The epochs of each CRBM were 30 and the size of weight

matrix in each CRBM was 6. Currently, there exists no systematic method that

calculates the parameters of CDBN or any other networks of deep learning [82].

This chapter achieves an optimal result by trial and error, and the parameters of

MI-CDBN are listed in table 4.1.

Principal component analysis was adopted to visualize the features in figure 4.6,

where blue, red, yellow and green points represent the features of the four faults,

F1, F2, F3 and F4, respectively. The first three principal components (PC) were

displayed. It can be seen from figure 4.6 that different classes of unsupervised

features learned by the proposed method were separated clearly and the features

of the same class were distributed tightly. The MI-CDBN can effectively extract

representative features from the constructed state-space. Finally, the features were

input into a multi-class logistic regression to identify faults. The accuracies are
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Table 4.1 : Parameter setting of the MI-CDBN

Parameter setting

input dimension 20301

the number of channel 3

α of LDA 13

the number of GMM components 3

the number of CRBMs 3

learning rate 0.01/0.005/0.0005

size of weight matrix 6/6/6

the number of weight matrix in CDBN 80/50/15

epoch 30

pooling scale 2

shown in table 4.2. The confusion matrix in figure 4.7 displays the detail of fault

diagnosis accuracy. The yellow squares display the rate of correct classification, and

the green squares show the rate of misclassification. The horizontal axis is the actual

fault, and the vertical axis is the predicted fault.

4.4.3 Parameter analysis

Two parameters are explored in this subsection, the output length of data com-

pression and the value α of LDA. It should be noted that the experimental results

are an average of 20 trials to reduce the influence of randomness in the following

calculations.

The parameters of sparse filtering were adjusted to ensure the majority of useful

information was preserved with less distortion than the original signal [49]. The

fluctuation of accuracy and computing time with various compressed data lengths



50

Figure 4.6 : Features calculated by MI-CDBN

are illustrated in figure 4.8. The figure suggests that with an increase of data length,

the classification accuracies increase and peak at a data length of 200. Meanwhile,

the computing cost increased consistently. Thus, a data length at 200 is a suitable

selection.

Additionally, the value selection of α is explored in the application of RC fault

diagnosis. The accuracies obtained on different values of α are shown in figure 4.9.

The figure shows that when α (alpha) equals to 13, the model achieves the best

diagnostic performance with an overall accuracy reaching 89.3%.

4.4.4 Performance evaluation and comparison

The proposed method was compared with several other competitive methods in

the field of RC fault diagnosis in the following aspects.

Comparison of data compression methods

Currently, the most commonly used methods listed in table 4.2 are compared

with the SF, which was used in the proposed method.

The input data without compression achieved a poor performance compared
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Figure 4.7 : The accuracy of fault diagnosis

Table 4.2 : Comparison of data compression methods

Method Output dimension Average Accuracy/% Time/s

Raw data+MI-CDBN - 85.4 2782

AE[82]+MI-CDBN 180 87.3 376

CS[81]+MI-CDBN 230 88.6 565

SF+MI-CDBN 200 89.3 362

with the others, as it contained more redundant information that disturbs the RC

fault diagnosis. With data compression techniques applied, the accuracies increased

overall. Compared with AE and CS, SF performed better. Only one parameter of SF

required tuning, which can save substantial computing resource. The results reveal

that the data compression method can extract highly-representative information

from raw data effectively.
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Figure 4.8 : Fault diagnosis performance with various compressed data lengths

Figure 4.9 : Accuracy of fault diagnosis with various α

Comparison of deep learning methods

The performance of deep learning methods were compared and are listed in table

4.3. The raw signals were compressed by sparse filtering and then input into different

deep learning methods for comparison. The parameters of different methods are

listed as follows.

DBN: The DBN included four layers with the number of nodes in each layer set

to 200-100-80-10. The epoch was 30 and the learning rate was set as 0.1.

CNN: The CNN consisted of 3 convolutional layers, 3 pooling layers and 1 fully
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Table 4.3 : Comparison of deep learning methods

Method
Accuracy/(%) Standard

F1 F2 F3 F4 deviation

SF+DBN[23] 79.3 81.9 80.6 85.6 0.9769

SF+CNN[37] 80.6 83.8 84.8 84.8 0.8635

SF+CDBN[48] 82.7 84.0 86.6 85.9 0.6637

SF+GMM-CDBN 85.1 86.4 87.8 88.3 0.5046

SF+MI-CDBN 87.5 88.8 90.7 90.2 0.4288

connected layer. The dimension of the input layer was 200*50 with a weight matrix

size of 6*6, a pooling ratio of 2, and an epoch number of 30.

Convolutional deep belief networks (CDBN): The CDBN included three CRBMs

and the input dimension was 200. The size of weight matrix in each layer was 6, the

pooling ratio was 2, and the epoch number was 30.

GMM-CDBN: The number of GMM components was 3 and the remaining pa-

rameters were the same as MI-CDBN. The GMM function is available on Matlab.

The proposed method achieved the best performance among all the methods

with an average accuracy of 89.3%. The CDBN method reached accuracy rates

of up to 82.7%, 84.0%, 86.6% and 85.9% on the four types of data, which were

higher than DBN and CNN as it combined the advantages of the two methods. To

improve the standard CDBN’s disadvantages of transfer path analysis and mode

isolation, the GMM-CDBN was compared and found to obtain a higher accuracy

than CDBN. This is because GMM-CDBN can refine more robust local informa-

tion from raw signals by isolating multi-modal data. GMM-CDBN and MI-CDBN

achieved an average accuracy of 86.9% and 89.3%, respectively. This indicates that

LDA-GMM performs better at RC fault diagnosis. LDA established a model for all
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Table 4.4 : Comparison of the state-of-the-art methods

Method
Accuracy/(%) Standard

F1 F2 F3 F4 deviation

TD+SVM 58.8 60.1 55.2 65.1 1.7122

FD+SVM 62.1 66.4 59.5 65.9 1.4903

TD + ANN 62.8 63.4 58.9 67.4 1.6017

FD + ANN 65.7 66.4 60.9 69.2 1.2202

The proposed method 87.5 88.8 90.7 90.2 0.4288

possible GMM parameters and selected GMM parameters in terms of the calculated

distribution of LDA rather than settling with a single selection obtained by EM.

This could enhance the generalization of the method by alleviating the overfitting

and further improve the fault diagnosis performance. It should be noted from table

4.3 that the proposed method sacrificed some computational efficiency to obtain a

higher accuracy, as it takes more time to do the calculation. An optimized design

of the input of the network would reduce the computational burden, which will be

a future research topic.

Comparison of the state-of-the-art methods

The comparison results between the proposed method and other state-of-the-art

methods are listed in table 4.4.

In table 4.4, the extracted TD-based methods (time-domain features) and FD-

based methods (frequency-domain features) refer to [2, 116, 125]. Seven statistic

features were extracted from the raw signals and frequency-domain signals. These

methods were compared with the proposed method, and the results suggest that

traditional methods have lower accuracy in fault diagnosis. Despite completing
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the fault diagnosis in less time, they had difficulty reflecting the complex running

conditions of RCs comprehensively. Presumably, this is due to traditional methods

using only several statistic features. Moreover, SVM and ANN, as conventional

models, are ineffectual in extracting more useful information from signals and thus

cannot guarantee good classification performance. These results confirm that the

MI-CDBN can extract more confident features from the input for RC fault diagnosis.

4.5 Conclusion

A novel MI-CDBN has been proposed for fault diagnosis of a reciprocating com-

pressor from the perspective of transfer path analysis and mode isolation.

First, sparse filtering was applied to compress data into lower dimensions. This

method could effectively refine highly-representative information from raw signals

and increase the computational efficiency.

Secondly, MI-CDBN was used to isolate multi-modal data generated via vari-

ous transfer paths of fault excitation, as well as to calculate unsupervised learning

features. In the network, the parameters of the GMM model were calculated using

LDA and transformed into state-space to represent RC operating conditions. The

enhanced accuracy confirms that the MI-CDBN can isolate the modal data effec-

tively, and the LDA-calculated parameters can construct robust state-space for RC

fault diagnosis.

Thirdly, CDBN was used to extract features by unsupervised learning without

the assistance of prior knowledge. Thus, this method can eliminate the limitation

of experience and guarantee a desirable performance of fault diagnosis.

Finally, the three-stage method was validated using RC data acquired from in-

dustrial plants. The results demonstrated that the proposed method could effectively

diagnose RC faults with better performance.
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Chapter 5

Intelligent fault diagnosis using an optimized

convolutional deep belief network

5.1 Introduction

The CDBN is advantageous in RC fault diagnosis∗. The traditional CDBN

consists of an input layer, an output layer, and a stack of hidden and maxout

pooling layers [44]. Specifically, a variety of filters make a convolution with one

unit, and the maximum of all the convolution results obtained via various filters is

regarded as the pooling output. While maintaining the desirable properties of data,

the max pooling results could make relatively larger generalization errors [29]. To

mitigate this problem, probabilistic pooling was proposed as a tradeoff between the

generalization ability and the desirable properties [88]. In this method, multiple

filters were applied to a single input and then pooling results were calculated by

sampling from convolution results that follow multinomial distribution instead of

using the maximum. While this method enhanced the performance of the standard

CDBN, a fixedly-set parameter of multinomial distribution may not be suitable to

pool the data acquired under various operating conditions. Furthermore, once an

inappropriate value is selected, it can reduce the generalization ability of the CDBN

and deteriorate the performance of fault diagnosis.

To overcome the problem and enhance the generalization ability of the CDBN

∗This chapter has been published as: Zhang Y., Ji, J.C. and Ma, B., 2020. Reciprocating com-

pressor fault diagnosis using an optimized convolutional deep belief network. Journal of Vibration

and Control, p.1077546319900115.



57

with standard probabilistic output, an optimized CDBN was proposed. The pa-

rameter of multinomial distribution was calculated using LDA instead of being set

a constant. LDA can select different reasonable parameter values for various op-

erating conditions and thus reduce the generalization error. Currently, LDA has

been used in many fields to establish models for discrete data. Wang et al. applied

LDA to text classification [98]. Terenin et al. employed LDA in natural language

processing and validated the methods by several public corporals [93]. LDA can

establish models for discrete data without any assumption of data distribution and

can adjust its distribution shape self-adaptively with parameter variation [32]. In

view of these advantages, the LDA was incorporated in the approach to optimize

the probabilistic output of the pooling layer in the CDBN.

In the context of big data, the computing efficiency is of great significance for

intelligent fault diagnosis. Typically, the acquired condition monitoring data is

longer in length at a high sampling frequency, which will increase the computational

burden and require more time for data processing. This could delay the response

time of fault diagnosis and fail to conduct early detection of severe faults. Therefore,

SF was used to compress signals in this chapter.

Once unsupervised features have been learned by the proposed CDBN, a softmax

regression classifier was connected with the CDBN as the last layer to implement

intelligent fault identification. The softmax regression classifier makes the best use

of its excellent classification capabilities evidenced in various fields, such as text clas-

sification [40], bearing fault identification [92], image classification [55], and disease

diagnosis [113, 58].

Motivated by the above discussions, this chapter proposes an optimized method

for intelligent RC fault diagnosis based on a CDBN with an optimized probabilis-

tic output. A novel framework based on the CDBN was adopted for the RC fault
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diagnosis. First, sparse filtering was used to compress raw signals into compact

time series and obtain the most representative information. Then, the unsupervised

features were learned by the CDBN with an optimized probabilistic output for pool-

ing. Finally, a softmax regression classifier was connected as the last layer of the

CDBN to identify fault types of the RC. Data from industrial plants were collected

to validate the method. The contribution of this part can be summarized as follows.

i. This framework adopted the technique of data compression to enhance com-

putational efficiency, which is crucial for a highly-efficient RC fault diagnosis,

especially concerning big data.

ii. Adopting a deep learning method allowed the feature extraction of RC fault

diagnosis to be independent of expertise, which can reduce errors made by

human experience.

iii. The optimized probabilistic output was proposed for the pooling layer to im-

prove the generalization ability of the CDBN. Instead of being set a fixed value,

the parameter of multinomial distribution was obtained from the established

LDA models.

The rest of the chapter is arranged as follows. Section 5.2 gives a brief preliminary

of the proposed method. Section 5.3 describes the proposed method in detail. Then

industrial data were analyzed to validate the proposed method in Section 5.4, and

conclusions are drawn in Section 5.5.

5.2 Preliminary

5.2.1 Probabilistic out

Given an input unit v which can be the compressed signal or the output of previ-

ous CRBM, the activation of a probabilistic output unit was obtained by convolution
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with k filters which is given by

zi = wiv + bi, i ∈ [1, k] (5.1)

where k is the total number of filters of the weight matrix. Then all the possible

outputs of probabilistic pooling hpbout would be

hpbout (v) : [z1, ..., zk] (5.2)

A Boltzmann distribution was introduced over k linear mappings and then unit

hpbout (v) was sampled in terms of probabilities calculated by the distribution. The

Boltzmann distribution is defined as

pi =
eλzi∑k
j=1 e

λzi
(5.3)

where λ is a hyperparameter dominating the variance of the distribution. The

activation hpbout (x) was then sampled as

hpbout (v) = zi, p (i|ξij) ∼Multinomial {p1, ..., pk} (5.4)

where ξij denotes the parameter of multinomial distribution. It can be observed

from equation 5.4 that the activation output was obtained by sampling from all

possible unit outputs. The probabilistic output unit could preserve most properties

of the maxout unit and improved the overall generalization ability. More details

about the CDBN can be found in Ref [48].

5.3 The proposed method

5.3.1 Optimized convolutional deep belief network

An optimized convolutional deep belief network was proposed by optimizing

conventional probabilistic pooling to improve the model generalization ability. x is

defined as the input of the CDBN with the corresponding actual label y and the
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Figure 5.1 : Framework of the proposed method

predicted label ŷ, which are both C-dimensional vectors denoting the C type of the

RC faults. The CDBN was constructed by stacking N CRBMs which incorporates a

visible layer v and a hidden layer h. h
(l)
i , l ∈ [1, N ] indicates the unit in the hidden

layers h(1),...,h(N). The input was mapped sequentially into the N hidden layers

to calculate the predicted result of fault types of the RC. Each unit in a layer was

computed by a function h
(l)
i

(
v; w

(l)
i , b

(l)
i

)
, which maps its input v to an output h

(l)
i

using weight w
(l)
i andbiasb

(l)
i . Then the CDBN was connected to a softmax function

as the final layer to identify RC faults which is expressed as [49]

ŷ = softmax
(
WN+1hN + bN+1

)
(5.5)

with weight W and bias b. All parameters θ =
{
W (1), b(1), ...,W (N+1), b(N+1),

}
were

then learned by minimizing the cross entropy loss between the predicted label ŷ and

the actual label y .

L (ŷ, y; x) = −
C∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) (5.6)

To improve the generalization capability of the CDBN, a dropout technique

was adopted to regularize the trained network[28]. The operation was achieved by
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combining with the probabilistic sampling, and predefining the probabilities as p̂0.

Then,

p̂i =
eλzi

p̂0.
∑k

j=1 e
λzi

(5.7)

the value of p̂0 will be determined in the subsequent section. The probabilistic

output activation function involving dropout ĥpbout (v) was sampled as

ĥpbout (v) =


0 if i = 0

zi else

p (i|ξij) ∼Multinomial {p̂0, p̂1, ..., p̂k} (5.8)

To further increase the generalization ability of the probabilistic output in the

pooling layer, the LDA was employed to establish the model of the parameter ξij of

multinomial distribution. LDA is defined as[72]

p (ξij | αij) =

Γ

(
K∑

m=1

αijm

)
K∏
m=1

Γ (αijm)

K∏
m=1

(ξij)
(αijm−1) (5.9)

where αij = (αij1, αij2, . . . , αijK) is the parameter vector of Dirichlet distribution

for ξij . αij is a non-negative value. Γ (·) represents the Gamma function.

5.3.2 General procedure of the proposed method

A CDBN with an optimized pooling method was proposed to enhance the gen-

eralization ability. The framework of the proposed method is illustrated in figure

5.1, and the detailed procedures are explained as follows.

Step 1: Vibration signals were collected under various operating conditions from

an industrial petroleum plant.

Step 2: Sparse filtering compressed raw signals into lower dimensions to increase

the computational efficiency of big data.
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Step 3: The compressed signals were divided into training data and testing data

with each group of data selected randomly.

Step 4: Without the need for manual feature extraction, the compressed training

signals were fed into the CDBN, with the optimized probabilistic output, to obtain

unsupervised features of each fault type. The subfigure inside the dash-line frame

illustrates the improvements on the probabilistic output. In the CDBN, the LDA

was used to calculate the parameters of the multinomial distribution. Then, the

multinomial distribution was adopted to establish the model for multiple units com-

puted by filters. Finally, the output of the pooling result was obtained by sampling

from the multinomial distribution.

Step 5: The learned features from the training data were utilized to train the

softmax classifier, and the testing data were used to verify the performance of the

proposed method.

5.4 Experimental verification and analysis

5.4.1 Data description

Details on the fault types are the same as in table 3.2. The four fault types

are named as F1, F2, F3 and F4, respectively. The data were collected under the

rotating speed of 375rpm and the sampling frequency of 12.8kHz. A set of 800 data

for each group was randomly selected as training data and 400 as testing data.

5.4.2 Fault diagnosis by the proposed method

Vibration data monitoring operating conditions of the RC were collected from

an industrial application to validate the proposed method. One cycle of a signal

was fed into sparse filtering to obtain a higher-representative and lower-dimensional

result. Figure5.2(b) displays the compression results of raw signals in figure 5.2(a).

In the figure, raw signals were compressed into a dimension of 180 with redundant
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(a)

(b)

Figure 5.2 : (a)Raw signals, and (b)compressed signals
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information removed. The four compression results can represent each running

condition with compact time series by refining the most useful information.

After raw signals were compressed with SF, the compressed results were input

into the proposed CDBN to calculate features by unsupervised learning. PCA cal-

culated the principal components of the learned features for visualization, and their

distribution is shown in figure 5.3 where purple, red, green and blue points indicate

Figure 5.3 : Principal components of unsupervised feature

the learned features of F1, F2, F3, and F4, respectively. Different fault features are

clearly distinguished, whereas, features of the same fault are clustered tightly. The

results suggest the effectiveness of the features on characterizing various operating

conditions of the RC.

After the proposed CDBN calculated unsupervised features, they were fed into

a softmax classifier to accomplish intelligent fault diagnosis. The confusion matrix

in figure 6.11 shows the accuracy of fault diagnosis. The vertical axis represents the
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Figure 5.4 : Confusion matrix of diagnosis accuracy

actual fault labels of raw signals, and the horizontal axis denotes the misclassified

fault type labels. The green square shows the detailed misclassification result of each

data type, and the yellow square indicates the accuracies of the proposed method.

The diagnosis accuracies of the four typical faults reach up to 90.26%, 92.70%,

89.58% and 91.46%, respectively, confirming that the proposed method can conduct

RC fault diagnosis more effectively.

5.4.3 Parameter analysis

Several parameters exist in the proposed method, and the selection of these

parameters are discussed in this section.

Firstly, the generalization ability of the proposed method was investigated.

The comparison of generalization error is shown in figure 5.5where the blue and

red curves represent the errors of the CDBN with the standard and optimized prob-
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Figure 5.5 : Comparison of generalization error

abilistic output, respectively. The results show the average values over 20 trials.

Both errors converged rapidly with an increase of iteration number. However, the

optimized probabilistic output achieved an overall lower generalization error, sug-

gesting that it could enhance the generalization capacity of the CDBN effectively

by obtaining the parameter of the multinomial distribution from LDA.

Secondly, the relationship between accuracy and hyper-parameter λ was investi-

gated and is demonstrated in figure 5.6. The accuracy continuously increased when

λ was within the range of (0, 0.1), and then begun to decrease when λ exceeded 0.1.

Therefore, λ was set to 0.1 to ensure the lowest generalization error and the best

performance in the application of RC fault diagnosis.

Finally, the relationship between the sampling probability of dropout and the

generalization error was explored. The results are shown in figure 5.7. It can be

seen from the figure that with increased sampling probability, the accuracy increased

and reached the peak value at a sampling probability of 0.7, after which accuracy

decreased. The reason for this variation could be that a low sampling probability for
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dropout could lose substantial useful information, and a higher probability could lead

to overfitting, which could degrade CDBN performance. Therefore, the sampling

probability was set to 0.7 in the RC fault diagnosis.

Figure 5.6 : The relationship between generalization error and λ

5.4.4 Method comparison and performance evaluation

This subsection makes a comparison of the method and evaluates its performance

in RC fault diagnosis.

Table 5.1 : Comparison of pooling methods

Method Averaging accuracy/(%) Standard deviation

Standard Prob-out 90.75 0.8928

Proposed method 91.00 0.8523

Comparison of pooling methods

The performance of pooling methods in the RC fault diagnosis are listed in table

5.1.
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Figure 5.7 : The relationship between the accuracy and p̂0

Compared to standard probabilistic pooling, the proposed method yielded a

higher accuracy rate up to 91.00% and a lower standard deviation. By adopting

an optimized probabilistic output as the pooling result, the proposed method could

enhance the generalization capacity of the CDBN effectively and ensure diagnosis

results yield a more significant improvement.

5.5 Conclusions

An optimized CDBN was employed for the RC fault diagnosis to eliminate the

dependence on prior knowledge and guarantee the extraction of desirable features.

An optimized probabilistic output was proposed for the pooling layer to improve the

generalization ability of the CDBN. A sparse filtering technique was first adopted

to compress raw signals into low-dimensional ones and obtain the most representa-

tive information. Then compressed signals were fed as the input of the proposed

CDBN to learn the features representing different operating conditions. Finally, a

softmax regression classifier was connected as the last layer of CDBN to identify

fault categories.
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Vibration data characterizing various RC operating conditions were collected

from a petroleum industry to validate the proposed method. The diagnosis and

comparison results demonstrated the effectiveness of the proposed method on fault

diagnosis.
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Chapter 6

Intelligent fault diagnosis using a novel ensemble

empirical mode decomposition-convolutional deep

belief network

6.1 Introduction

Due to the sophisticated production environment of the RC, the acquired sig-

nals are usually contaminated by background noise∗. The noise disturbances can

negatively affect the fault diagnosis results and undermine the fault diagnosis perfor-

mance. Therefore, it is essential to construct an auto-denoising network to eliminate

the noise existing in signals. The ensemble empirical mode decomposition (EEMD)

was adopted to decompose signals into various IMFs, which can be considered as in-

trinsic vibrations of machinery that indicate the operating conditions and noise that

is generated by fault-irrelevant vibrations. Then the correlation coefficient (CC) was

employed to select intrinsic functions associated with fault-related vibrations and

remove noise for signal reconstruction and denoising [63].

To obtain more comprehensive information on the operating conditions, multiple

types of sensors were attached to the RC to collect the displacement and vibration

data of various parts. After signals were denoised and the unsupervised features were

learned by the auto-denoising network, multi-source of information was fused based

on the probabilistic committee machine (PCM) scheme. Conventional committee

∗This chapter has been published as: Zhang, Y., Ji, J.C. and Ma, B., 2020. Fault diagnosis

of reciprocating compressor using a novel ensemble empirical mode decomposition-convolutional

deep belief network. Measurement, vol.156, p.107619.
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members use nonlinear logistic regression, such as artificial neural network, support

vector regression [87] and autoregression [16], as the probabilistic models to calculate

the probability of each committee member. As these methods make a prediction

based on point estimation, this may result in low robustness of fault diagnosis results.

Therefore, the Gaussian process classifier (GPC) was adopted as the probabilistic

model in the committee machine [8]. This method makes a probabilistic prediction

based on a group of points instead of a single point, and thus enhances the robustness

of fault diagnosis results.

In this chapter, a novel auto-denoising network called EEMD-CDBN and a frame-

work fusing multi-source information was proposed to implement the RC fault di-

agnosis. The main contributions of the chapter can be summarized as follows.

i. The EEMD-CDBN was proposed to denoise the RC vibration signals and

to enhance the robustness of learned features. The proposed network can

eliminate the noise in signals self-adaptively and can learn the unsupervised

features efficiently without prior knowledge.

ii. A novel framework fusing multi-source information was proposed for the RC

fault diagnosis. This framework can fuse the features of signals from multi-

ple types of sensors, which can demonstrate the RC working condition more

comprehensively.

iii. The PCM was adopted to fuse features with more specific weights allocated to

each committee component instead of equally distributed weights. A feature

fusion method was proposed to calculate the weight distribution in terms of

historical data of the RC. This can enhance the accuracy of the RC fault

diagnosis.

The rest of the chapter is arranged as follows. Section 6.2 presents the proposed
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Figure 6.1 : Framework of the proposed method

method and related techniques. Section 6.3 shows the case study and experimen-

tal information. Section 6.4 evaluates the proposed method. Section 6.5 gives a

discussion of the proposed method and concludes the chapter.

6.2 Proposed method

6.2.1 General framework

Aiming to combine more comprehensive information from the RC sensors and

remove the background noise in raw signals, a novel ensemble empirical mode

decomposition-convolutional deep belief network was proposed, as illustrated in fig-

ure 6.1. The detailed procedure of the general framework is described as follows.

i. Signals were collected from the sensors of the RC, including displacement

signal, cylinder vibration signal and crankcase vibration signal.

ii. These signals were divided into training data and testing data randomly.

iii. Signals were normalized into the range of [0,1].
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iv. Displacement signals were input into the CDBN, and the vibration signals of

the cylinder and crankcase were input into the EEMD-CDBN for denoising

and unsupervised feature learning.

v. Training data were applied to train the probabilistic committee machine.

vi. Testing data were input into the well-trained probabilistic committee machine

for the fault diagnosis and method evaluations.

6.2.2 Ensemble empirical mode decomposition-convolutional deep belief

network

To eliminate the noise contaminated in the original signals and enhance the

robustness of fault diagnosis results, this chapter proposes a novel auto-denoising

network, namely the EEMD-CDBN, as demonstrated in figure 6.2. The detailed

procedure is listed below.

Figure 6.2 : Schematic of the EEMD-CDBN method

i. Raw signals were decomposed into a series of IMFs by the EEMD.
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Figure 6.3 : Probabilistic committee machine

ii. CC was used to calculate the correlation between raw signals and each IMF.

iii. The IMFs of a large CC were selected to reconstruct signals.

Ensemble empirical mode decomposition

The raw signal of the RC xr can be considered as the superposition of vibration

from the fault component x and environment noise nr

xr = x+ nr (6.1)

where x contains most of the information that can reflect the working condition. The

EEMD was adopted to isolate the signal x from nr, and the correlation coefficient

was used to determine the IMFs that include the most powerful information.

The EEMD assumes that the decomposed results of each IMF were the ensemble

means of multiple trials. With the properties of the EMD, the EEMD was conducted
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as follows.

i. The ensemble number of the IMF was set as E

ii. A series of noise signals (n1, n2, · · · , nE) and e = 1 were initialized.

iii. A white noise sequence ne (e = 1, 2, · · · , E) was added to the original signal

x. Then the new signal with the added noise could be expressed as

xe = x+ ne (6.2)

where xe, x and ne represent the generated signal, the original signal and the

added noise in the e-th trial, respectively.

iv. The EMD decomposed the signal xe into imfi,e (i = 1, · · · , I), where I is the

total number of IMF.

v. If e ≤ E, Step 2 and Step 3 were repeated.

vi. The ensemble means of the i-th IMF from E trials as the final decomposition

results of the i-th IMF of EEMD were computed, namely,

imfi = 1
E

E∑
e=1

imfi.e

i = 1, 2, · · · , I, e = 1, 2, · · · , E
(6.3)

where imfi.e is the i-th IMF decomposed from the e-th noise sequence xe.

More details about the EEMD can be found in Ref [107].

When conducting the EEMD, the signals were decomposed into IMFs by the

EEMD. These IMFs include both high-representative information associated with

the RC operating condition and redundant information that is not necessary for

the fault diagnosis. The IMFs with the most useful information were used for

signal reconstruction. The reconstructed signal can be considered to have high-

representative information for fault diagnosis.
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Correlation coefficient and signal reconstruction

The correlation coefficient (CC) was adopted to select the most representative

of the IMFs for signal reconstruction. It gives a correlation degree for each IMF

with raw signals. A high CC value corresponds to an IMF with the most represen-

tative information, while a small CC value indicates that the IMF consists of more

redundant information. The equation for calculating the correlation coefficient can

be expressed as

CC =

∑m
i=1 (xi (t)− x)

(
imfi (t)− imfi

)√∑m
i=1 (xi (t)− x)2

√∑m
i=1

(
imfi (t)− imf

)2
(6.4)

where xi (t) and imfi (t) represent the i-th point in the raw signal x (t) and the IMF

of the i-th signal, respectively. m is the total number of points in the signal x (t)

and imf (t). x and imfi are the mean values of x (t) and imf (t), respectively. To

eliminate noise and improve the signal to noise ratio, the IMFs of significantly low

CC were neglected and the rest used for signal reconstruction. The reconstruction

process can be written as

x̂ = imfa + imfb + · · ·+ imfn (6.5)

where x̂ denotes the reconstructed signal. imfa, imfb and imfn are the selected

IMFs with high CC values.

6.2.3 Probabilistic committee machine

In the process of RC fault diagnosis, low robust results are likely to occur when

using single-source information. To fuse more information from various sensors and

obtain more reliable fault diagnosis results, a novel scheme based on the PCM was

proposed. The detailed procedure is discussed below.

i. The unsupervised features of signals from m sources were input into the
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corresponding GPC of each committee machine to calculate the probability

pi (i = 1, ...,m) that each fault occurs under the source of information.

ii. The proposed weight calculation method was adopted to determine the weight

W of each committee member.

iii. The W was used to make a combined decision from each committee member.

iv. The fault corresponding to the largest probability in P = [P1,P2, ...,Pd] was

considered as the final diagnosis result.

In the PCM, the GPC was used to establish models for features extracted from

different sources of signals and to calculate the probability that each fault occurs.

The unsupervised learning data and their corresponding labels are expressed as

C : {(xi, yi) |i = 1, 2, · · · ,m}

xi ∈ Rn, yi ∈ [0, 1]
(6.6)

where xi are the unsupervised learning features from the CDBN and EEMD-CDBN,

and yi are the corresponding labels. The GPC result under the given data C can

be found by

p (y |C, θ,x) =

∫
p (y |g(x)) p (g(x) |C, θ,x) dg (6.7)

where g indicates the latent function for mapping. θ represents the hyper-parameter

of distribution p.

As the posterior distribution p (y |C, θ,x) cannot be computed analytically, the

Guassisan approximation was applied to simplify the calculation. The simplification

with y belonging to Class 1 can be expressed as

p̃ (y = 1 |C, θ,x) =

∫
σ (g(x))N

(
g(x)

∣∣µ,Σ2
)
dg (6.8)

where N (g(x) |µ,Σ2 ) denotes the Gaussian process function with mean µ and co-

variance Σ2. σ represents the sigmoid function. More information on parameters

can be found in Ref [105].
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An optimized scheme was proposed to fuse the committee decision and obtain

the probability that each fault occurs under multi-source features [127]. This can

be written as

Pj =
∑m

i=1 wipij∑m
i=1 wi

i = 1, 2, · · · ,m j = 1, 2, ..., d
(6.9)

where wi is the weight corresponding to the i-th committee machine. m is the

number of committee machine. d is the number of fault type.

wi was determined by historical fault diagnosis results. It is defined as

wi =
ni−c
ni

(6.10)

where ni−c indicates the number of features from the i-th sensor categorized into

the correct fault class, and ni is the total number of samples. Then the predicted

label of fault diagnosis was determined as Lp. Lp is one label of (1, 2, · · · , d) with

PLp = max (Pj) (j = 1, 2, ..., d) (6.11)

6.3 Experimental verification and analysis

6.3.1 Data description

The RC fault data were collected from an industrial plant to validate the pro-

posed method.

Figure 6.4 shows the typical structure of an RC with four cylinders and the sen-

sor layout. An RC consists of three parts, an engine, cylinders and a crankcase. The

cross-section schematic of the A-A in figure 6.4b illustrates the sensor layout and

the inner structure of the cylinder and crankcase. The engine drives the crankshaft

rotation, which allows the right link rod to swing around the crosshead and make

further reciprocating movements of the crosshead and piston. The sensors installed

in the RC are displayed in Figure 6.5. Figure 6.5a exhibits the phase sensor located

in the flywheel, used to monitor the rotating speed of the RC. Figure 6.5b shows
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(a) Schematic diagram

(b) A-A cross-section

Figure 6.4 : Schematic diagram of the RC and the sensor layout on a cross-section
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(a) Phase sensor (b) Cylinder accelerometer

(c) Crankcase accelerometer (d) Displacement sensor

Figure 6.5 : Locations of Sensors

a cylinder accelerometer mounted on the crosshead, which is used to measure the

cylinder vibration. The sensor collects acceleration signals in the unit of m/s2 and

has a sensitivity of 98m/s2/V. Figure 6.5c displays the crankcase accelerometer at-

tached to the crankcase to monitor the operating condition of the crankcase. Data

from a cylinder accelerometer were transformed into velocity data by the embedded

integral module. The sensor collects velocity signals in m/s units and has a sensi-

tivity of 98m/s/V. The displacement sensor on the link rod in figure 6.5d was used

to measure the movement of the piston by calculating the distance to the link rod.

It is an eddy-current sensor with a sensitivity of 254µm/V. The displacement signal

is in the unit µm. Figure 6.6 illustrates the signals acquired from a displacement

sensor, an accelerometer on the cylinder and an accelerometer on the crankcase, re-
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Figure 6.6 : Examples of raw signals: (a) displacement of piston rod, (b) vibration

of cylinder, (c) vibration of crankcase.

spectively. These time-series data demonstrate the displacement of the piston rod,

the vibration condition of the cylinder and the vibration condition of the crankcase.

Figure 3.4 displays four typical RC faults; these are gas valve failure, piston

breaking, cylinder scraping and bearing shell wear, respectively. Details on the fault

types are listed in table 3.2. The data were collected under the rotating speed of

375rpm and the sampling frequency of 12.8kHz. A set of 800 data for each group

was selected randomly as training data and 400 as testing data.

6.3.2 Feature learning by the EEMD-CDBN

In the case study, signals were first denoised by the EEMD. The input dimen-

sion of each signal was set to 2560 to include sufficient information from one cycle
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of crankshaft rotation. Seventy sets of noise signals were generated to calculate

the ensemble results of the IMFs. The decomposed results of the raw signals are

displayed in figure 6.7 and figure 6.8. In these two figures, the original signals were

decomposed into multiple IMFs, and each IMF indicates a type of vibration modes

in the raw signals. In other words, the raw signals can be regarded as a collection of

RC vibration modes, which consist of noise components and fault-related vibrations.

Next, the CC was employed to determine the correlations between the raw signals

and IMFs. The IMFs of high CCs were then used to reconstruct to a denoised signal.

The denoising results of the cylinder signal and crankcase signal are illustrated in

figure 6.9 and figure 6.10, respectively. Figures 6.9a and 6.10a show the CCs of each

IMF with raw signals. The IMF0 represents the raw signal. A high CC means the

IMF is closely related to the raw signals and includes more representative informa-

tion that is associated with the operating conditions. IMF1-IMF5 in figure 6.9a and

IMF2-IMF6 in figure 6.10a have significantly larger CC values than the remaining

IMFs; thus, they were selected to reconstruct the cylinder vibration signal and the

crankcase vibration signal, respectively. The reconstructed signals are displayed in

figures 6.9b and 6.10b. The blue lines are the raw signals, and the red lines are the

reconstructed signals. It can be seen from the two signals in each figure that the

EEMD has removed considerable noise and redundant information.

After signals were denoised and reconstructed, they were input into the CDBN to

learn the unsupervised features. The operation of the CDBN refers to Ref [48]. The

parameter setting of the EEMD-CDBN is listed in table 6.1. The EEMD-CDBN

consists of three CRBMs, and each CRBM was configured with different parameters.

After the unsupervised features of different sources of signals were obtained via

the EEMD-CDBN, they were input into the GPC to calculate the probability that

each fault occurs. Then the results were fused by the PCM for fault identifications.

Twenty trials were conducted to reduce the randomness of the data and enhance
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Table 6.1 : Parameters of the EEMD-CDBN

Parameter Value

The length of the raw data 2560

Ensemble number of raw signals 70

First CRBM
The number of weight matrix 24

The dimension of weight matrix 6

Second CRBM
The number of weight matrix 16

The dimension of weight matrix 6

Third CRBM
The number of weight matrix 9

The dimension of weight matrix 6

Learning rate 0.1

The number of iteration 30

Pooling ratio 2

the robustness of the results. The diagnosis results are displayed in the confusion

matrix in figure 6.11.

Table 6.2 : Comparison of denoising methods

Method Accuracy/% Standard deviation

WT-CDBN 90.93 0.8846

EMD-CDBN 91.29 0.8729

Proposed method 91.89 0.8689
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Table 6.3 : Comparison of deep learning methods

Method Accuracy/% Standard deviation

EEMD-DBN 91.33 0.8765

EEMD-CNN 91.58 0.8712

Proposed method 91.89 0.8689

Table 6.4 : Comparison with the PCM-based and conventional methods

Method
Weight

Accuracy/%
w1 w2 w3

Equal weight+ Gauss 1 1 1 89.23

PCM+SVM - - - 91.33

PCM+ANN - - - 91.66

Proposed method 0.9100 0.7023 0.2521 91.89

6.4 Evaluation of the proposed method

To illustrate its superiority, the proposed method was compared with several

state-of-the-art methods in the following aspects. Fault diagnosis accuracy and

standard deviation were selected for the performance evaluation.

6.4.1 Comparison of denoising methods

Multiple methods are used for signal denoising. The performance of several denois-

ing methods are listed and compared in table 6.2, which shows that the proposed

EEMD-CDBN method achieved the best performance with the highest accuracy

rate of up to 91.89% and the lowest standard deviation of 0.8689. Compared with

the WT-CDBN, the EMD-CDBN and the EEMD-CDBN achieved higher accura-
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cies. This can be attributed to the advantage of EMD and EEMD to decompose

signals in terms of the signal itself instead of the base functions selected using prior

experience. In other words, these methods are independent of prior knowledge and

can decompose signals self-adaptively. However, the EEMD-CDBN performs better

than the EMD-CDBN, as EEMD alleviates mode mixing and end effect problems

by averaging ensemble noise-added signals. These above-mentioned reasons account

for the improved performance of the EEMD-CDBN in signal denoising and thus

enhance the robustness of the traditional CDBN.

6.4.2 Comparison of deep learning methods

The CNN and DBN, as two widely used deep learning methods, were chosen

to make a comparison with the CDBN. Raw signals were input into the DBN, the

CNN and the proposed EEMD-CDBN to obtain the fault diagnosis results. The

configuration of the CNN and the DBN are listed as follows.

DBN: The DBN includes one input layer and four hidden layers. The number

of nodes in each layer was set as 2560-1000-600-100-30. The number of nodes was

adjusted in terms of fault diagnosis performance. The number of iteration and the

learning rate was set to 50 and 0.1, respectively.

CNN: The CNN includes one input layer, three convolutional layers and three

pooling layers. The size of the input was 51*51. The number of weight matrix in

the three convolutional layers were 10, 10 and 6, respectively. The pooling ratio,

learning rate and iteration number were 2, 0.1 and 50, respectively.

Table 6.3 demonstrates that the proposed method achieved the best performance.

Compared with the DBN-based and CNN-based method, the CDBN could accom-

plish fault diagnosis with higher accuracy, as the CDBN combines the advantages

of the CNN and the DBN. It can extract more reliable information using its spatial-

temporal invariance to assist fault diagnosis.
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6.4.3 Effectiveness of the PCM

The effectiveness of the PCM is discussed in this subsection. Signals from three

types of sensors were fused by the PCM in different weights according to their sen-

sitivities to various faults. The fusion weight can be obtained from table 6.4 and

according to equation 6.10. The fault diagnosis results with the PCM framework

and the conventional fusion strategy are compared in table 6.4, from which it can

be seen that the fusion method with equal weights performed poorly compared with

other results. The main reason is that different sources of information can contribute

differently to fault diagnosis. In other words, different sensors have different sen-

sitivities to different faults. Additionally, the proposed method, namely the PCM

framework plus Gaussian classifier, offers better performance in RC fault diagnosis,

as the parameters of the Gaussian classifier were estimated based on a group of

points rather than a single point estimation, as applied in the ANN and the SVM.

This enhances the robustness of the estimated results and is more suitable for RC

fault diagnosis.

6.5 Conclusion

This chapter proposed an auto-denoising convolutional deep belief network-based

method, which uses the EEMD to denoise signals and uses a CDBN to extract fea-

tures self-adaptively. The proposed method enhanced the fault diagnosis perfor-

mance of the RC in two aspects.

Firstly, the proposed EEMD-CDBN can denoise the RC signal self-adaptively.

The EEMD decomposed signals into the IMFs of different scales. Then, the correla-

tion coefficient was adopted to calculate the correlation between the raw signal and

each IMF. The IMFs of high CC values were used for signal reconstruction. This

method can denoise signals effectively without any help of prior knowledge and thus

enhanced the robustness of the fault diagnosis results.
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Secondly, multi-source information was utilized to improve the performance of

the RC fault diagnosis. A novel PCM-based strategy was applied to fuse information

according to their various sensitivities to the RC faults. As multi-source information

included more fault-related information, and the PCM can fuse features with a

more reasonable weight, this proposed method improved the RC fault diagnosis

performance.

Four types of fault data from an industrial plant were collected to validate the

proposed method. The obtained results demonstrated that the proposed method

could diagnose the RC faults with an accuracy rate of up to 91.89%. Addition-

ally, the comparison with other methods illustrated the superiority of the proposed

method in signal denoising, unsupervised feature learning and multi-source infor-

mation fusion for the diagnosis of the RC faults.
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Figure 6.7 : The EEMD of cylinder signal

Figure 6.8 : The EEMD of crankcase signal
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(a) CC of each IMF (b) Raw and reconstructed signals of cylinder

Figure 6.9 : Cylinder signal denoising

(a) CC of each IMF (b) Raw and reconstructed signals of crankcase

Figure 6.10 : Crankcase signal denoising
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Figure 6.11 : Confusion matrix
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Chapter 7

Conclusion and future work

This chapter presents the conclusions of the entire research and discusses future

research opportunities.

7.1 Conclusion

Fault diagnosis of reciprocating compressors is an essential topic in the field of

health condition monitoring. It can help provide a reliable environment for manu-

facturing. Motivated by this aim, the research was launched on RC fault diagnosis.

The research progressed over four stages.

The first stage began based on traditional framework. EMD was adopted to ana-

lyze the intrinsic vibration of the RC. Then high-dimensional features were extracted

from the intrinsic vibration. These features could reflect the operating conditions

comprehensively. DBN was adopted to fuse features in-depth and obtain features

of high-representativeness. A GM-based similarity was proposed for fault identifica-

tion. The proposed method achieved better performance by retaining more nonlinear

information in signals.

The second stage proposed a mode isolation-convolutional deep belief network

method. To absorb the information of vibration mechanism, the proposed method

isolated different modes of vibration, generated via different transfer paths, and

calculated features from isolated modal data for fault diagnosis. With multi-modal

data isolated, the proposed method could obtain features of high robustness, which

assisted with RC fault diagnosis.
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In the third stage, with the optimized convolutional deep belief network, a prob-

abilistic pooling scheme was proposed. A value of high probability calculated from

multinomial distribution was adopted as the pooling result. Next, latent Dirichlet al-

location was used to calculate the parameters of multinomial distribution to enhance

the generalization ability of the CDBN. Experimental data verified the effectiveness

of the optimization of CDBN for RC fault diagnosis.

Finally, the fourth stage proposed an auto-denoising network. EEMD was added

to CDBN for auto-denoising of the RC signal. This method could remove the noise

of RC vibration signals and extract features self-adaptively. Furthermore, a scheme

fusing multi-source information was developed for RC fault diagnosis. Multi-source

signals were collected from different sensors installed on different parts of the RC to

absorb more information from the RC for fault diagnosis. EEMD-CDBN and CDBN

were used to extract features from signals of multiple sources after denoising. Then,

a probabilistic committee machine was used to determine the fault according to the

features of different sensors. The experimental results showed the effectiveness and

superiority of the proposed method.

This research advanced the development of RC fault diagnosis by using deep

learning methods. The framework of RC fault diagnosis based on deep learning can

conduct feature extraction self-adaptively, which allows fault diagnosis to rely on

prior knowledge minimally. In addition, this research provided more perspectives

on how to extract local information to conduct more reliable information.

7.2 Future work

The research implemented RC fault diagnosis based on a deep learning method

and proposed a set of optimizations to enhance their performance in the application.

Although these methods enhanced the performance of RC fault diagnosis, future

research could be broadened in the following aspects.



93

Firstly, fault detection should be conducted prior to fault diagnosis. This could

assist fault diagnosis by distinguishing abnormal data from normal data, and thus

further enhance the efficiency of health condition monitoring. Mathematical models

can be established for normal condition. Once the model of real-time data deviates

the established model of normal conditions and the deviation exceeds the threshold,

the operating condition of machinery can be determined as being abnormal.

Secondly, the fault severity assessment could be conducted to assess the severity

of a fault once it has been identified. Deep learning methods can be used to establish

models for fault severity assessment by regression analysis. When a fault occurs in

an RC, sometimes it is not necessary to shut down the machinery immediately, e.g.

the wearing fault. Too frequent shutdowns of machinery will decrease the produc-

tivity. Fault severity assessment can assess the severity of current fault and select an

appropriate moment to shut down. The fault severity assessment results can avoid

unnecessary shutdowns and provide more specific guidance for maintenance.

Thirdly, the support ring is one of the most vulnerable components of an RC. It

is essential to assess its operating condition and avoid any faults or failure related

to the support ring. The model of assessing wearing state of support ring can be

established. This problem can be designed as a classification problem or a regression

problem.

Fourthly, only four types of fault data were collected in this research. In the

future, we could collect more types of fault data for method validation from these

industrial plants.
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