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Abstract

Fault diagnosis of reciprocating compressors (RCs) based on vibration signals plays
a vital role in guaranteeing a high operating reliability in RCs. Conventional main-
tenance schemes, which are carried out on a regular basis, can lead to unnecessary
maintenance and shutdowns. Online health monitoring can monitor the working
conditions of RCs continuously and provide more specific information, thus allowing

the RC to be maintained as needed.

This PhD research focuses on the development of effective fault diagnosis meth-
ods using deep learning methods, thereby greatly advancing traditional health con-
dition monitoring methods. Most traditional data-driven methods analyze the op-
erating conditions using shallow models, which are incompetent at obtaining more
confident results. To overcome this problem, a novel scheme based on deep learning
models is proposed and applied to RC fault diagnosis. Traditional fault diagnosis
methods select and extract features of raw signal with expertise and fuse them with
shallow models. However, these methods cannot analyze the characteristics of sig-
nal in depth and thus degrade the performance of health monitoring. Deep learning
methods are introduced in this research to calculate more representative features
self-adaptive from the RC signals to improve fault diagnosis performance. As most
fault diagnosis methods are based on vibration signals being the single information
source, they cannot reflect the RC operating condition comprehensively. In this re-
search, multi-source signals are collected and analysed for fault diagnosis. A scheme
fusing multi-source information is proposed, as well as an auto-denoising network

for denoising RC signals self-adaptively.

This PhD thesis consists of seven chapters. Chapter 1 provides research back-
ground. Chapter 2 presents a literature review. Chapter 3 proposes a method using

intrinsic vibration feature fusion and a Grassmann manifold-based similarity. Chap-



v

ter 4 introduces the method of RC fault diagnosis using mode isolation-convolutional
deep belief networks. Chapter 5 presents the intelligent fault diagnosis method us-
ing an optimized convolutional deep belief network. Chapter 6 proposes a novel
ensemble empirical mode decomposition-convolutional deep belief network for RC
fault diagnosis, and chapter 7 presents the conclusion and discusses future research

in this area.
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Chapter 1

Introduction

1.1 Background

Reciprocating compressors (RC) are one of the most important machineries in
the petroleum industry, such as in offshore oil and gas production applications [83].
Once faults or failures occur in the RC, it may cause operation disruption and
serious economic loss for manufacturers. Therefore, Intelligent fault diagnosis of
the RC plays an important role in early detection of potential failures to ensure a
reliable operation [45]. With the rapid development of the Internet of Things and
smart manufacturing, the amount of condition monitoring data available is growing
at an explosive speed [106]. Firstly, this implies that fault diagnosis has entered an
era of big data. Secondly, the data have a more complex structure and more useful
hidden information [7]. Therefore, how to implement a more reliable fault diagnosis

with this ”big data” has become a challenging problem in this field.

Fault diagnosis has drawn significant attention in various research fields [96, 42,
115]. Fault is defined as the deviation of observations or parameters from the ac-
ceptable range in a certain process. The aim of fault diagnosis is to find the defective
components operating out of the normal ranges on the machinery. Although fault
diagnosis has been extensively studied for several decades, RC fault diagnosis is
still a challenging problem due to various vibration excitation sources and complex
transfer paths of vibration. Currently, fault diagnosis methods can be categorized
into three main groups: model-based methods, knowledge-based methods and data-

driven based methods. As the former two methods require extensive knowledge



about fault mechanism, they are highly limited when compared to the current avail-
ability of data [21]. Consequently, data-driven methods have been used extensively

for fault diagnosis due to its potential in processing big data [33, 27].

In recent decades, considerable effort has been devoted to the development of
condition monitoring methodologies [24, 100, 43, 89]. However, some aspects can
be further improved to increase diagnosis accuracy. First, most existing methods
of feature extraction are labour-intensive and time-consuming. For instance, prior
knowledge is required to design a suitable scheme of feature extraction [56]. The
absence of prior knowledge on the scheme of feature extraction could lead to inap-
propriate feature selection and further degrade the fault diagnosis performance [125].
Second, the sophisticated structure and operating conditions of RCs contribute to
the complex structure of RC vibration signals [95]. Direct analysis of these complex
RC raw signals would be unable to highlight useful information that can reflect the
salient local characteristics of the operating conditions, as the mode mixture of sig-
nals and other information unrelated to fault may disturb the fault identification,
such as noise [103]. Furthermore, the straight analysis could decrease the robustness

of the fault diagnosis results and lead to poor performance of RC fault diagnosis.

To address these problems, deep learning methods were explored in this research.
Recently, deep learning has attracted increasing attention from researchers of var-
ious research communities due to its state-of-the-art performance in refining deep
information from data. Deep learning refers to machine learning techniques that use
supervised and/or unsupervised strategies to automatically learn hierarchical rep-
resentations from deep network architectures [28]. The most significant advantage
of deep learning methods is that they can construct deeper networks and calculate
more representative features even from big data [39]. This method has been suc-
cessfully applied in many research areas [80]. Therefore, this research was launched

on the basis of the deep learning method.



1.2

Research objectives

The aims of the project were to implement intelligent RC fault diagnosis, which

included the following aspects.

1.

11.

iii.

1v.

Data acquisition.

To monitor RC health condition, data indicating the RC operating condition
were collected from sensors, including accelerometers monitoring the cylinder
and crankcase vibration, temperature sensors measuring temperature variation
of the cylinder and phase sensors measuring the rotating speed and piston

location. The acquired data were used to validate the proposed method.

Optimization of traditional fault diagnosis method using deep learning.

Traditional methods extract features from raw signals and fuse features with
conventional models. Features from conventional models could include more
irrelevant information that disturb fault diagnosis. To overcome this problem,
deep learning methods will be used to fuse features in depth and improve fault

diagnosis performance.

Self-adaptive feature extraction based on a deep learning method.

Typically, traditional methods select features in the RC fault diagnosis with
expertise. However, inadequate selection of features by insufficient experience
would decrease the performance of fault diagnosis. To address this issue, a

framework based deep learning was adopted in this research.

Optimization of a deep learning method in the application of RC fault diag-

nosis.

In terms of the RC vibration mechanism, optimization of the deep learning
method was proposed to enhance its performance in the application of RC

fault diagnosis.



v. Fault diagnosis based on multi-source information fusion.

Currently, most research on RC fault diagnosis adopts vibration signal as
the single source of information for fault diagnosis. This does not reflect the
operating conditions comprehensively. To encompass more information sources
from RCs, a scheme fusing multi-source information was proposed to enhance

the RC fault diagnosis performance.

1.3 Thesis organization

The rest of the thesis is organised as follows:

o Chapter 2: This chapter presents the literature review of the research. It

introduces the development of RC fault diagnosis and other related techniques.

e Chapter 3. Traditional methods extract features and fuse features with con-
ventional model with simple matrix manipulations.To fuse features in depth,
this chapter proposes a method which fused features in depth to enhance the
RC fault diagnosis performance. Empirical mode decomposition (EMD) was
used to analyse the intrinsic vibration of RC. Deep belief network (DBN)
was used to fuse features in depth and obtain high-representative features. A
Grassmann manifold-based similarity was also proposed for RC fault diagnosis

to preserve the non-linearity of singals.

e Chapter 4. Chapter 3 used a conventional method for faultdiagnosis. This
required prior knowledge for feature extraction. Insufficient knowlwdge could
degrade the performance of fault diagnosis. This chapter adopted a deep
learning based framework. Considering the RC vibration mechanism, a mode
isolation-convolutional deep belief network was proposed and validated by the

RC condition monitoring data in this chapter. Mode isolation-convolutional



deep belief network (MI-CDBN) can isolate multi-modal data and extract

features self-adaptively.

Chapter 5: The CDBN in chapter 4 adopted a max pooling. Though it pre-
served some desirable features, maxmium value could degrade the generaliza-
tion ability of CDBN. To improve the performance of CDBN, this chapter
proposes an optimized convolutional deep belief network and presents the re-
sulting application to RC fault diagnosis. An optimized probabilistic out was

proposed in this chapter to enhance the generalization of the convolutional

deep belief network (CDBN).

Chapter 6: The prior research used vibration signals as the single source of
fault diagnosis information, which could not relect the operating conditions
comprehensively. In addition, those method did not consider the negative
effect of background noise on fault diagnosis. To onvercome these problems,
this chapter presents a method of denoising signals and a scheme of fusing
multi-source signals. An auto-denoising network was proposed to eliminate the
noise existing in the RC vibration signals. A probabilistic committee machine
(PCM)-based method was proposed to fuse multiple sources of information

with a more reasonable weight.

Chapter 7. A brief summary of the thesis contents and its contributions are
given in the final chapter. Recommendations for future works are given as

well.



Chapter 2

Literature review

To conduct a suitable RC fault diagnosis, an extensive literature review, covering

the general overview of multiple methods, is explored accordingly.

2.1 Fault diagnosis based on the traditional methods

Traditional data-driven methods of RC fault diagnosis mainly include three steps:
data acquisition, feature extraction, and feature classification or fault diagnosis [84].
Among these three steps, feature extraction is the most crucial step in fault diagnosis
[127]. The quality of the feature can significantly affect the diagnosis results. Typ-
ical vibration features include kurtosis, peak value, peak-peak value, mean square
root, and impulsive index [66, 79]. Fault diagnosis based on the vibration feature ex-
traction has received substantial research effort. For example, Feng et al. extracted
frequency domain features from an indicator diagram to diagnose RC faults. A dis-
crete 2D-Curvelet transform was adopted to extract the representative features from
the indicator diagram. Next, nonlinear principal component analysis (PCA) was
employed for multi-class recognition to reduce dimensionality, as well as for novelty
detection. Finally, multi-class and one-class support vector machines (SVMs) were
used as the classifier and novelty detector, respectively. Experimental results showed
the effectiveness of the proposed approach [25]. Althobiani et al. used an Teager-
Kaiser energy operator and deep brief networks (DBNs) to diagnose the faults of an
RC valve. To reveal the fault patterns contained in this signal, the Teager—Kaiser
energy operation was proposed to estimate the amplitude envelopes. In case of

pressure and current, random noise was removed using a denoising method based



on a wavelet transform. Subsequently, statistical measures were extracted from all
signals to represent the characteristics of the valve conditions. To classify the faults
of compressor valves, a new type of learning architecture for deep generative mod-
els, called DBNs, was applied. The experimental results proved the effectiveness of
the proposed method [4]. Ahmed et al. extracted several time-domain, frequency-
domain and envelop-domain features to represent machinery operating conditions
and used a relevance vector machine for fault classification [1]. Zhao et al. used
local mean decomposition and multi-scale fuzzy entropy to calculate the features for
bearing clearance fault in the RC [125]. Li et al. proposed a new method for non-
destructive RC fault diagnosis using a strain-based pressure-volume (p-V) diagram.
This method extracted the key feature points on the piston rod load curve that
reflect the opening and closing events of the compressor valves. The algorithm was
validated by comparing the p—V diagrams obtained from direct pressure measure-
ment and strain-based derivation. The reconstructed p—V diagrams were further
used for RC fault diagnosis. The results indicated that this method was able to
monitor the operating conditions and identify fault type and location [52]. Cabrera
et al. used a long short-term memory model to extract features for RC valve fault
diagnosis and used a Bayesian model to adjust the parameter of the model. Exper-
imental data confirmed the effectiveness of the proposed method of [10]. Yan et al.
extracted sensitive features from roller bearing signal, and proposed an optimized
support vector machine to conduct fault diagnosis. The result shows the effective-
ness of the proposed method [111]. Zhang and Deng proposed a method integrating
adaptive neuro fuzzy inference system (ANFIS) and Dempster—Shafer theory (DST)
to operate the fault diagnosis of engine. The experimental data proved the prac-
ticability of the proposed method [121]. Jiang et al. proposed an initial center
frequency-guided variational mode decomposition for fault diagnosis of rotating ma-

chines [41]. The conventional method were applied in various fields and achieved



good performance. These methods extract one, or multiple, time and/or frequency
features from original signals to represent the operating conditions. These features
can reflect the operating conditions to some extent. However, achieving appropriate
feature selection and identification of faults using this method relies heavily on prior

knowledge, which limits its application in the industry.

2.2 Feature dimension reduction

Once features have been extracted, conventional models are used to fuse fea-
tures and reduce feature dimension. For example, Liu et al. proposed a method
to calculate high-dimensional features of roller bearing using a local characteristic-
scale decomposition-Teager energy operator.Intrinsic multifractality features were
extracted from decomposed signals and constructed into a high-dimensional fea-
ture. Then the dimension was reduced by principal component analysis (PCA). The
experimental results proved that the PCA can fuse features by linear transforma-
tion [57]. De et al. applied optimized kernel principal component analysis (KPCA)
to reduce feature dimension and used an artificial neural network to perform fault
diagnosis.The result illustrated the effectiveness of the proposed method in indus-
trial system [22]. Sakthivel et al. extracted statisticial features and used feature
dimension reduction techniques to reduce feature dimensions. This paper compared
different dimension reduction techniques for the fault diagnosis of a monoblock cen-
trifugal pump using vibration signals, including PCA, KPCA, isomap, and Laplacian
eigenmaps.The result proved that the PCA plus decision tree obtained the best per-
formance in the fault diagnosis of mono block centrifugal pump [79]. Although these
methods can fuse features effectively and reduce feature dimension, they may not
be adequate for obtaining high-representative features, particularly in the current
big data field. This is due to their inability to reveal the deep relationship between

complex data/signal structure and health conditions.



Deep learning methods have attracted increasing attention from academic com-
munities due to their state-of-the-art performance in deep feature fusion and feature
extraction without any assistance on feature extraction. These methods use super-
vised and/or unsupervised strategies to automatically learn hierarchical representa-
tions in deep architectures for feature extraction, transformation and classification
[47]. Among all the deep learning methods, the DBN has demonstrated advantages
in constructing deeper networks and calculating low-dimensional features with ex-
cellent representations from big data [18]. Liu et al. adopted DBN to extract high
discriminative features for an electronics-rich analog system. Experimental results
show the fault diagnosis based on DBN achieved superior diagnostic performance
than the traditional feature extraction methods. [62]. Arsa et al. proposed a di-
mensionality reduction method using DBN for hyperspectral image classification,
which also reduces the computational cost. In the proposed framework, the first
DBN is used to reduce the dimension of spectral bands and the second DBN is used
to extract spectral-spatial feature and as a classifier. An Indian Pines data set that
consisted of 16 classes were used to validate the proposed method and to compare
the proposed DBN with the PCA. The results indicated that using DBN as a di-
mensionality reduction method performed better than PCA in hyperspectral image
classification [5]. PCA can fuse features and obtain a low dimensional, but cannot
fuse features in depth due to the shallow structure. DBN, with its deep structures,
is better equipped to solve this problem. Mutual information of neighbouring layers
is applied in DBN feature dimension reduction, which, along with deep structures,
allows features to be fused in-depth. The obtained high-representative features can

reflect the data information more effectively.
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2.3 Feature extraction by deep learning methods

To be unrestrained by prior knowledge, the deep learning method was also pro-
posed to calculate signal features self-adaptively [126] and has achieved great success
in multiple fields [15, 110, 117], including object detection [34] and fault detection
in wind turbines [14]. DBN and convolutional neural network (CNN), as two deep
learning methods, have achieved high recognition due to their excellent performance
in unsupervised feature learning. Mohamed et al. used DBN to establish models of
acoustic signals in language processing [70]. Hassan et al. identified features from
images to implement face recognition [35]. Thus, it is evident that the DBN method
can calculate features with high efficiency by generative models. Gu et al. conducted
a review on the development of the CNN method, which provided a broad survey
of the recent advances in CNNs, including layer design, activation function, loss
function, regularization, optimization and fast computation. Additionally, various
applications of CNNs in computer vision, speech and natural language processing
were also introduced [29]. Xia et al. used CNN to implement the fault diagnosis
of rotating machinery [108]. Janssens et al. conducted machine detection and oil
prediction using CNN to learn unsupervised features [38]. Cheng et al. extracted
features using CNN to estimate remaining bearing life [19]. Thus, the CNN method
has demonstrated its ability to extract useful information from raw data of high
dimension and preserve the property of shift-invariance. To further enhance the
advantages of deep learning methods, CDBN was proposed and applied to multiple
domains. Lee et al. used CDBN to extract features by unsupervised learning from
audio signals and perform audio identification [48]. Ren and Wu obtained more
effective information from signals using CDBN to extract features from electroen-
cephalographic signals [75]. Li et al. combined DBN and CNN to extract features
which are used to implement the fault diagnosis of rotating machinery [53]. Shao et

al. proposed an optimized CDBN method to accomplish bearing fault diagnosis with
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excellent application performance. This paper showed the convolution of CDBN and
the operation of the proposed method, which were shown in figure 2.1 and figure

2.2 [82]. In application, the effectiveness of feature extracted is evaluated by the
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Figure 2.1 : Convolution of CDBN

fault diagnosis result, namely the accuracy. The experimental results show their
effectiveness and great success in various applications. The CDBN has shown its
superiority to the DBN and the CNN in terms of the accuracy metric. The CDBN
preserves the property of shift-invariance of CNN and the high efficiency of DBN.

Moreover, CDBN can be extended to handle multi-channel data.

2.4 Signal denoising

Due to the sophisticated production environment of the RC, the acquired signals
are usually contaminated by background noise [74]. Noise disturbance can negatively
affect the fault diagnosis results and undermine the fault diagnosis performance [86].

Therefore, it is essential to construct an auto-denoising network to eliminate the
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o

noise existing in signals. A variety of methods have been explored for denoising by
filtering [24]. Wavelet transforms (WT) are widely used in a variety of research fields
for signal denoising [59]. This method requires manual selection of base functions
before denoising [69]. This means that an inappropriate base function could be
selected for denoising, due to insufficient expertise [13]. As a result, this can generate
poor denoising performance and decrease fault diagnosis accuracy. To overcome this,
EMD was proposed to extract useful data from noisy and non-stationary signals
self-adaptively [123]. Ali et al. used EMD to decompose signals into a series of
intrinsic mode functions (IMFs) and employed artificial neural networks to identify
faults of roller bearings [3]. Li et al. applied an EMD-based method to predict the
load of power system operation and control [51]. Wang et al. proposed an EMD-

assisted manifold for fault diagnosis of rotating machinery [101]. Li et al. used
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optimized EMD to diagnose gear faults [54]. Wang et al. utilized integrating EMD
manifold to extract features and accomplish machinery fault diagnosis. EMD was
used to decompose signals and useful IMF's were selected by correlation analysis for
machinery fault diagnosis [97]. An improved EMD method, based on the multi-
objective optimization, was proposed in this paper and applied to extract the fault
feature of rolling bearing with inner and outer race fault [31]. EMD, as a self-
adaptive decomposing method of decomposing signals, can decompose signals into
several IMFs in terms of the time-scale of the signal itself [77]. This reduces human
interference with signal decompositions [103], which is well suited for analyzing non-
linear and non-stationary signals (the signal properties of RCs) [73]. Compared to
wavelet transforms, EMD does not required selection of basis functions in advance,

thus avoiding reduced fault diagnosis accuracy due to unreasonable selections.

However, mode mixing and end effects are two disadvantages of the EMD [68].
To solve these problems, ensemble empirical mode decomposition (EEMD) was pro-
posed, as it can separate each mode of data more precisely from raw signals [30].
Wang et al. proposed an EEMD denoising method with singular spectrum con-
straint for Ladar signals. The IMFs decomposed by EEMD are stacked together to
obtain the denoised signals. Tests on synthetic and real data demonstrated that the
proposed method, compared to the EMD denoising method, could suppress more
noise but filter out less useful signals in the FMCW Ladar signal denoising [102].
Cheng et al. proposed a segmentation singular value decomposition (SVD)-lifting
wavelet transform (LWT) denoising algorithm based on ensemble empirical mode
decomposition (EEMD) to better suppress noise in an atmospheric lidar return sig-
nal. The EEMD method was used to distinguish IMF's of the noise and signal, and
remove the IMF with noise as its main component[20]. The EEMD could distin-
guish the hidden mode of signals more accurately by averaging signals with white

noise added, which allows signals to be denoised effectively and self-adaptively. This
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method could be more suitable to handle the RC signal denoising problem.

2.5 Multi-source information fusion

The fusion of multi-source information is a challenging obstacle [119, 78]. Fusing
information from multiple sensors can provide more comprehensive information on
operating conditions and further enhance the performance of the fault diagnosis

method [18].

Traditional methods tend to fuse information of each source with equal weights,
which assumes that each source of information has the same sensitivity to faults and
contributes equally to the fault diagnosis. This may not be a reasonable scheme,
as different types of features can have unequal sensitivities to different faults and
contribute differently to diagnosing various faults [127]. To overcome this prob-
lem, much research has been carried out. Cai et al. fused multi-source information
for fault diagnosis of a ground-source heat pump using a Bayesian network. This
method increased the diagnostic accuracy of a ground-source heat pump system,
especially for multiple-simultaneous faults [11]. Zhong et al. conducted scene classi-
fication based on the multi-feature fusion probabilistic topic model for high spatial
resolution remote sensing imagery. A geological survey data set and the UC Merced
data set were utilized to evaluate the proposed method in comparison with con-
ventional methods. The experimental results confirmed the superiority of the pro-
posed method [128]. Xu and Yu proposed a novel approach to information fusion in
multi-source datasets from a granular computing viewpoint. This method allowed
valuable and reliable information sources to be chosen by transforming the original
information of each object into a triangular fuzzy information granule. Experiments
confirmed the effectiveness of the proposed method [109]. Liu et al. proposed an
innovative information fusion method using adaptive Kalman filtering. This method

can integrate information from INS/GPS navigation of autonomous vehicles [60]. Li
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et al. proposed the physics of failure-based reliability prediction method using multi-
source information fusion to predict the reliability of aero engine turbine blades. In
the proposed method, the fuzzy theory was employed to represent uncertainties in-
volved in prediction. Case studies of reliability prediction under fuzzy stress with
and without fuzzy strength were conducted using a dynamic stress-strength inter-
ference model which considers types of aero-engine cycles. Results indicated that
the proposed method was more in line with engineering practice and more flexible in
decision making. Furthermore, the proposed method could predict the reliability of
aero-engine turbine blades as an interval by utilizing the proposed linear fusion al-
gorithm [50]. Che et al. designed a multi-granulation probabilistic rough set based
on evidence theory, probability theory and information entropy to fuse uncertain
data in a multi-source information system. This study is helpful for integrating
the uncertain information of multiple sources and consequential for creating a route
of granular computing [12]. Wang et al. presented a deep learning-based model
named multi-resolution and multi-sensor fusion network for motor fault diagnosis,
achieved through multi-scale analysis of motor vibration and stator current signals.
This method can automatically learn discriminative features through the network
training process without any assistance of prior knowledge [100]. From the litera-
ture review, it can be seen that fusing multiple sources of data can provide more
comprehensive information for handling problems in different fields and enhance the
performance of final results. It is an effective framework to fuse information with

the probabilistic scheme.

2.6 Summary

Currently, RC fault diagnosis mainly are conducted by traditional methods. Fea-
tures are extracted with prior knowledge. Insufficient knowledge could lead to inap-

propriate feature selections and further decrease the performance of fault diagnosis.
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By addressing this problem, deep learning methods are developed due to the ability
of unsupervised feature learning. In this research, deep learning method is intro-
duced to conduct fault diagnosis of RC. Due to the advantage of CDBN over other
deep learning methods, RC fault diagnosis is conducted based on the CDBN. In
addition, in the RC fault diagnosis, vibration signals are the primary single source
of information. To combine more information, a scheme fusing multi-source infor-

mation is proposed to improve fault diagnosis performance.
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Chapter 3

Intelligent fault diagnosis using intrinsic vibration
feature fusion and a Grassmann manifold-based
similarity

3.1 Introduction

Traditional monitoring methods extract only one to a few time and/or frequency
features from original signals [24] and use a conventional model, such as a principal
component analysis [2], to fuse features and reduce feature dimension or use trend-
ing analysis to track changes in the health condition[120] *. Although these methods
achieve good performance in fault diagnosis and classification to a certain extent,
there are three remaining limitations: (1) Traditional methods extract features from
raw signals which ignores more local features. Local features means the feature ex-
tracted from segmentation of signals or decomposed components of signals, which
reflect more local characteristics from various scaling of signals. Features extracted
from raw signals could only reflect operating conditions globally. For example, fea-
tures extracted from a cycle of signal can reflect characteristics of the whole cycle.
This could decrease the reliability of the features. (2) Conventional models may not
be adequate in feature dimension reduction of big data, as they cannot reveal deep
relationships between hidden information in big data and the RC operating condi-
tions. (3) As RC signals are characterized by a non-linearity and non-stationary

nature [33], Euclidean distance-based methods or any assumption on data distribu-

*This chapter has been submitted as: Zhang, Y., Ji, J.C., Use of intrinsic vibration feature
fusion and a Grassmann manifold-based similarity for intelligent fault diagnosis of a reciprocating

compressor, IEEE Transactions on Industrial Informatics.[Under review]
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tion would not be suitable for RC fault identification. Motivated to overcome these

issues, this chapter launches the research from the following three aspects.

EMD is adopted in this chapter to decompose raw vibration signals of RCs
into a collection of IMFs, which can reflect the intrinsic vibration of an RC. These
intrinsic functions can reflect intrinsic vibrations of an RC from local perspectives,

which could represent the operating condition more confidently.

To obtain useful information from intrinsic vibrations comprehensively, multiple
features were extracted from each IMF and constructed into a high dimensional vec-
tor. This vector can adequately reflect the RC operating conditions comprehensively
[26]. Due to the complex production environment of RCs, RC vibration signals could
be contaminated by noise or other unhelpful disturbances. The extracted features
could include redundant information, which can negatively affect fault diagnosis.
Therefore, dimension reduction techniques have been adopted to remove redundant
information in feature vectors and enhance the fault diagnosis performance. In view
of the advantage of DBN in unsupervised feature learning, DBN has been used for

feature dimension reduction of RC fault diagnosis.

After reducing the feature dimension, a pattern recognition method was applied
to perform the labelling and identification of the fault categories intelligently. Most
methods of fault identification are conducted with Euclidean distance [64] or under
assumptions, such as that the data follows a certain distribution [9]. As RC vibra-
tion signals present nonlinear and non-stationary properties [116], this assumption
may be considered unreasonable. It may neglect more information of nonlinearity
and thus impair the performance of the fault diagnosis method. To overcome this
problem, a similarity based on Grassmann manifolds (GM) was designed in this
chapter for RC fault diagnosis. GM is composed of a series of subspaces that can

represent the working conditions of RCs [85]. The similarity of subspaces on GM can
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be measured by geodesic distance [90]. It can preserve more non-linear properties

of original subspace which reflect the RC operating conditions.

Aiming at intelligent fault diagnosis in the context of big data, this chapter

proposes a hybrid method incorporating EMD for intrinsic vibration analysis, DBN

for feature dimension reduction and a Grassmann manifold-based similarity for RC

fault identification. The contributions of this chapter are listed as follows.

1.

ii.

1il.

EMD was utilized to decompose signals into a series of IMFs. The IMF's
provided a physical interpretation in the RC diagnosis, which indicates the

intrinsic vibrations generated from the RC operation.

Multiple features were extracted from each IMF and then constructed into
high-dimensional feature vectors to reflect health condition comprehensively.
Then the feature vectors were fused deeply by DBNs to reduce feature dimen-
sions. Due to the deep structure of DBNs, the fused features had a high repre-
sentativeness of the operating conditions compared with conventional feature

dimension reduction methods.

The low-dimensional feature vectors were transformed into subspaces on the
GM. The similarity of subspace on the GM was proposed to determine RC
faults. Compared with Euclidean methods, this method can calculate the
similarity while preserving more linear properties of RC signal and enhancing

the performance of RC fault diagnosis.

This chapter is organized as follows. Section 3.2 introduces the proposed method

and gives a brief introduction to the related theories. Section 3.3 analyzes the

experimental data and validates the proposed method. Section 3.4 concludes the

paper.
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3.2 Proposed method

A novel method is proposed to enhance the performance of RC fault diagnosis.
EMD is used to analyze the local information from the perspective of intrinsic vi-
brations. This method decomposes RC vibration signals into IMFs. Features are
extracted from each IMF and constructed into high-dimensional vectors in order to
reflect more detailed and comprehensive characteristics of operation. Then DBN
is employed to reduce the dimension of feature vectors and remove the redundant
information. As the deep structure of DBN, it can fuse RC features in depth by
complex non-linear mapping. Meanwhile, these low-dimensional feature vectors are
constructed into subspaces on the GM. The faults could then be determined by cal-
culating the similarity between subspaces. As GM is a geodesic distance, it could
preserve more nonlinear property of RC signals. The detailed procedure is illustrated

in Fig. 3.1 and described as follows.

i. RC vibration signals were collected using accelerometers mounted on the cylin-

der.
ii. The measured signals were decomposed into a series of IMFs by EMD.

iii. Features were extracted from each IMF to reflect RC operating conditions

with more local information.

iv. The extracted features were constructed into a high-dimensional feature vector

to represent the working condition.
v. These feature vectors were split into training data and testing data.
vi. Feature vectors were input into DBN to reduce the feature vector dimension.

vii. Feature vectors of training data were transformed into subspaces on the Grass-

mann manifold for each fault as the base subspace.
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viii. Subspaces of testing data were calculated by repeating Step 6 and Step 7.

ix. The similarities between subspaces of testing data and fault data were calcu-

lated to determine the fault type.
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Figure 3.1 : Schematic of the proposed method

3.2.1 Empirical mode decomposition

EMD can decompose signals into a series of IMFs, and each IMF represents
an intrinsic vibration mode generated by an RC. Therefore, IMF can present more

local information of the operating conditions. EMD can decompose a signal into a
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collection of IMFs. These IMF's are of different time scales, which means they can

provide information from different time scales and can reflect operating conditions

by more local characteristics, thereby improving the fault diagnosis performance.

The general steps of EMD are listed below.

il.

iii.

1v.

The upper envelops and lower envelops of original signals as well as their means

m, are calculated.

The difference between the raw signals x (t) and m; is calculated and can be
written as

r=ux(t)—my (3.1)

x is considered a raw signal to compute the first IMFs by repeating Steps 1

and 2 k times. The first IMF can be expressed as

IMF1 = I = xl(k—l) — Mk (32)

The above three steps are repeated until satisfying the stop criterion [65] and

all the IMFs are computed.

From the above steps, it can be induced that
I
v(t) =) IMF;+r (3.3)
i=1

where [ is the total number of IMF's and r denotes the residual function.

3.2.2 High-dimensional feature extraction and feature vector reconstruc-

tion

To reflect the RC operating conditions from more local perspectives, features

were extracted from each IMF. The extracted features are shown in Table 3.1.

These extracted features are typical features applied in health condition monitor-

ing. After features were extracted from each IMF, they were constructed into a
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Table 3.1 : Extracted features

Feature
Feature Equation Meaning

symbol

) The average energy of
Root mean square Xpgpg = % X,
signals
, The peak amplitude divided

Crest factor Xipogy = Raxdz@} X5

XRMS

by the RMS value

I (z(i)-3) X, The shape of a probability,

Kurtosis Xrurt = o)

sensitive to impulsive faults

Peak Xpear = max |z Xy Indicating the intensity of vibration

high-dimensional feature vector. The vector can be expressed as
X:(X17X2,"',XZ',"',X[) (34)

where X; = [X;1,X2,X;3,X;4], indicating features extracted from the i-th IMF. These
features were concatenated into a high-dimensional feature vector to represent the

operating condition comprehensively.

3.2.3 Deep belief networks

A deep belief network consists of deep architectures that are capable of learning
feature representations from unlabeled data and exploring complex data character-
istics [124]. Figure 3.2 shows a typical DBN architecture. X = (X, X, -+, X)
represents the high-dimensional features of IMFs and O = (01,09, ,0,) indicates
the low-dimensional features calculated by the DBN with unsupervised learning.
The DBN consists of ¢ hidden layers with each layer having mq,ms, - -+ , m; nodes,

respectively, and is comprised of a stack of restricted Boltzmann Machines (RBMs).
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Figure 3.2 : The DBN structure

The RBMs are probabilistic generative models that learn a joint probability dis-
tribution from training data without data labels. A RBM consists of two layers,
namely the input layer and output layer. There is no connection among nodes in
the same layer, and the neighboring layers are connected by weights (and biases)
matrices. The outputs of the current RBM are the inputs of the following RBM.

The energy of the input can be computed efficiently by
E(v,h) = —a’v —b"h — o' Wh (3.5)

In general Boltzmann machines, probability distribution over h and/or v is defined
by the following energy function

—E(’U,h)

A

e

P(v,h) = (3.6)

where Z is a partition function representing the sum of all possible configurations.
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The marginal probability of a Boolean visible vector is defined as the sum of all

possible hidden layer configurations, which is expressed by
1 —E(v,h)
P(v,h) = Ezh:e (3.7)

The conditional probability of the visible units under a given hidden unit can be

written as

P(vlh) =11 P (v;|h) (3.8)
Conversely, the conditional probability of A under the given v is

P(hlo) =T1 P (h;[v) (3.9)

7=1

The individual activation probabilities can be calculated by

P (h] =1 |U) =0 <b]+ i wij“i) (310)

Jj=1

where ¢ indicates sigmoid function. For more information on DBN refer to [94].

3.2.4 Grassmann manifold-based similarity

After the feature dimensions have been decreased by DBN, a similarity based on
Grassmann manifold was designed to identify fault types. Grassmann manifold is
applied in the research, as it can calculate feature difference by geodesic distance.
It considers the nonlinear property of data [67], which is suitable to handle RC
vibration signals. This method constructs a series of subspaces on the Grassmann
manifold and then calculates the geodesic distance between subspaces to determine

fault types.

Grassmann manifolds is a Riemannian manifold that is embedded in a high di-

mensional Hilbert space [91]. A GM G, p is composed of a set of d-dimensional
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subspaces of R”. The subspaces are spanned by orthonormal matrices Y and repre-
sented by span(Y’). Two low-dimensional feature matrices O; and Oy were assumed
to be obtained from DBN and are spanned by Y;,Y, € RP*?. Principal angles were
calculated to measure the similarity of two subspaces span(Y;) and span(Ys), and

the principal angles of two subspaces could be calculated by

cosf; = max max  u;v; (3.12)
u;€span(Y1)v;Espan(Y2)

with the following conditions

/ Y SN
uu; = vjv; =1

wu; = vjv; =0 (3.13)

i=(1,2,,d) j=(1,2--,i—1)
where u and v are the principal vectors. In this chapter, singular value decompo-
sition (SVD) was adopted to calculate principal angles [118]. The equation can be

expressed as

VY, =USV* (3.14)
where U = [ug,ug, -+ ,ug4) is a unitary matrix, S = [cosfy,cosby, -, cosby| is
a diagonal matrix, and V* is the conjugate transpose V = [vj,va,--- ,v4]. The

similarity between two subspaces was calculated from geodesic distance and defined

as
d

dist(Y1,Ys) = Z cos® 0; (3.15)
i=1

When 0 =0y = --- =60, = 0, two subspaces span(Y;) and span(Y;) are considered

into one. This means a larger value of dist(Y7,Y5) indicates a higher similarity
between subspaces, and it is more likely that feature matrices O; and Oy are of
the same RC fault data. The subspaces of each fault were calculated as a reference
and were matched to the subspace of testing data for identification to obtain the

similarity. The fault type is determined by the value of similarity.



27

3.3 Experimental verification and analysis

3.3.1 Data description

Vibration data that reflects RC operating conditions were collected by vibration
accelerometers (sensor type: PCB 608A11) mounted above the crosshead. The
acquired data were used to validate the proposed method. An RC schematic is shown

in figure 3.3, which illustrates the structure of the RC and the sensor locations. The

Cylindar

Accelerometer

Gas valve

Figure 3.3 : Schematic of RC structure

engine lying on the left end provided the output power to drive the rotation of
the shaft. Phase sensors were installed on the flywheel near the engine to monitor
the rotating speed. Accelerometers were mounted on the crosshead to measure the
cylinder vibrations, which can reflect the operating conditions of the RC. The piston
rods in the cylinder can take in and push out gas via the gas valve. A crank-link
mechanism was located inside the crankcase and transformed shaft rotation into
compression motion of the piston rod in the cylinder to complete gas compression.
Figure 3.4 shows four typical RC faults occurring in an oil refinery plant, gas valve
leakage, piston rod breaking, cylinder scraping, and bearing shell wear. Figure 3.4(a)
shows a broken gas valve which causes gas valve leakage. Figure 3.4(b) displays a
broken piston rod. Extended runtime under component fatigue can lead to piston

breaking. Figures 3.4(c) and (d) show cylinder scraping and the wear of bearing
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shell faults, respectively. Due to worn-down components and delayed replacement
of assembly, piston rods and bearings will scrape cylinders or bearing shells directly.
This significant contact friction can lead to more serious faults, such as piston rod
breaking. These faults or failures may cause serious issues in operation or even

disastrous incidents without early detection.

Figure 3.4 : Faults of RC

Vibration monitoring is an effective method in RC fault diagnosis. Vibrations
change after faults occur in the RC. Therefore, vibration signals were collected
for method validation in this research. Detailed information on the fault data are
listed in table 3.2. Signals of five operating conditions were acquired under the

rotating speed of 375rpm and the sampling frequency of 12.8kHz to validate the
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Table 3.2 : Date description

Sampling Size of training/
Fault type Description
frequency/kHz testing data

F1 Wear of bearing shell 12.8 200/100
F2 Cylinder scraping 12.8 200/100
F3 Gas valve 12.8 200/100
F4 Piston rod breaking  12.8 200/100

developed method. As the rotating speed is 375rpm, the duration of each signal is
60/375=0.16s. Each type of data included 300 signals with 200 randomly selected

samples as the training data and the rest as the testing data.

3.3.2 RC fault diagnosis using the proposed method

EMD was first used to decompose signals into a series of IMFs. The decomposed
results are shown in figure 3.5. Raw signals were decomposed into 9 IMFs. Each
IMF can reflect an intrinsic vibration mode of original signals. Four features in
table 3.1 were extracted from each IMF and constructed into a high-dimensional
vector. The dimension of the feature vector was equal to 36. To remove redundant
information from the feature vector, high-dimensional features were input into the
DBN for feature dimension reduction. The DBN was composed of three RBMs.
The parameter setting of the DBN is listed in table 3.3. There is no criteria for the
parameter setting [82]. They are typically tuned according to the performance in
the fault diagnosis. The last layer of the DBN included 10 nodes, thus the output
dimension of the feature vector was 10. The first three components of the lower-
dimensional feature vector are visualized and displayed in Figure 3.6, where different

colors represent different operating conditions. It can be seen from the figure that
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Figure 3.5 : EMD results

the features extracted from the same condition are clustered tightly, whereas features
of different conditions are clearly distinguishable. This proves that DBN can refine

the highly representative features from raw signals effectively.

Subspaces of the low-dimensional feature vector were calculated on the Grass-
mann manifold to determine the fault type. The performance of the proposed
method was evaluated for application to RC fault diagnosis. The accuracies of
fault diagnosis are displayed by the confusion matrix in Figure 6.11. The horizontal
and vertical axes indicate the actual labels and predicted labels of data, respectively.
The values in yellow are the fault diagnosis accuracy for the data of each fault type
while the values in green are the detailed misclassified ratio of each fault. The ac-
curacy of the proposed method for fault identification reached up to 86.6%, 84.2%,
85.5% and 87.6% for fault F1, F2, F3 and F4, respectively. The diagnosis accuracies

in this chapter were averaged over ten trials to ensure stable final results.
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Table 3.3 : Parameter setting of the DBN

Parameter Setting

The number of RBMs 3
The number of input nodes of the 1st RBM 36
The number of output nodes of the 1st RBM 30
The number of output nodes of the 2nd RBM 20
The number of output nodes of the 3rd RBM 10
Learning rate 0.05

The number of epochs 30

3.3.3 Parameter analysis and method evaluation

The number of nodes in the DBN output layer was investigated to determine
the most suitable feature vector dimension for RC fault diagnosis. The relationship
between the number of nodes in the output layer and the diagnosis accuracy is ex-
hibited in Figure 3.8. With increasing output dimension, accuracy rose to achieve
the peak value of 85.98% at the dimension of 10. After this, accuracy begins to
decrease. This reveals that the lower-dimensional features consist of the most useful
information at the dimension of 10. When the dimension exceeds 10, more redun-
dant information is included in the features, and it affects the performance of the
proposed method negatively. Therefore, the dimension of 10 was adopted as a rea-
sonable output dimension. The proposed method was compared with other methods
in three aspects, feature extraction methods, dimension reduction techniques and
feature identification methods. The comparison results are listed in Table 3.4. In
method 1, features were extracted from original time-series signals and resulted in
a poor performance in application. Method 2 used EMD to decompose vibration

signals into multiple intrinsic vibrations and could reflect more local characteristics
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Figure 3.6 : DBN feature visualization

of the operating condition, thus the diagnosis performance improved. In methods
3, 4 and 5, feature dimension reduction techniques were applied to refine the high-
representative information. This further enhanced the accuracy of fault diagnosis.
However, method 5 achieved higher accuracy than method 3, which proves that
DBN can fuse features more effectively and preserve more useful information. For
example, non-linear information, which tends to be neglected by traditional meth-
ods. Additionally, method 5 surpassed method 4 in accuracy. This reveals that
GM can preserve more reliable properties of RC operating conditions and provide
a more reasonable similarity between testing data and fault data than a Euclidean

distance-based method (e.g. SVM) in RC fault diagnosis.

3.4 Conclusion

To refine more reliable features in depth and implement intelligent fault diagnosis
for reciprocating compressors, this chapter proposed a novel method fusing intrinsic

vibration features by DBN and measuring the similarity of feature subspaces on
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Grassmann manifold.

First, signals were decomposed into IMFs by EMD. This decomposition could
separate intrinsic vibration modes from raw vibration signals effectively and reveal

more local and reliable information.

Secondly, multiple features were extracted from each IMF and constructed into
a high-dimensional feature vector. These features could reflect more comprehensive

information of the intrinsic vibration.

Thirdly, the high-dimensional feature vector were fused in depth by DBN to
obtain a lower-dimensional feature vector. The deep network structure allowed the
features to be fused in depth and further guaranteed more reliable information was

preserved, for example non-linearity information.

Finally, feature vectors were transformed into subspaces on the Grassmann man-
ifold for multiple faults. A subspace of testing data and subspaces of each fault were
matched to determine fault types by their similarities. The GM-based similarity

preserved more non-linearity information by adopting a geodesic metric.
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Table 3.4 : Method evaluation

Method F1. F2 F3 F4
features + GM 723 708 71.5 69.3
EMD+features + GM 75.6 742 74.6 76.6

EMD--features + KPCA + GM 82.2 83.5 824 849
EMD++features + DBN + SVM 85.8 83.6 83.5 85.8

EMD-features+ DBN + GM 86.6 84.2 85.5 87.6

RC fault data were collected from an industrial oil refinery plant to validate
the proposed method. The results confirmed that the proposed method was able
to extract more detailed information and fuse features in depth. The Grassmann

manifold-based similarity could identify RC faults more effectively.
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Chapter 4

Intelligent fault diagnosis using mode
isolation-convolutional deep belief networks

4.1 Introduction

CDBN shows superiority in feature extraction with unsupervised learning*. This
chapter adopts the CDBN method to calculate features in the RC fault diagnosis.
Although the raw signals can reflect the RC operating condition from a global per-
spective, more useful local information is unfortunately neglected. To take into
account more useful local features and to improve the performance of CDBN in RC
fault diagnosis, the MI-CDBN is proposed in this chapter. The transfer path theory
is introduced to the RC fault diagnosis to analyze the potential structures of the RC
signals from the perspective of multi-modal data isolation, which is inspired by the
theory of transfer path analysis in [95]. Vibration signals were considered as the su-
perposition of multi-modal data generated from different transfer paths. Each mode
was calculated by a data-driven method, considering the absence of prior knowledge
on vibration mechanism. To isolate multi-modal data with unknown distribution,
a Gaussian mixture model (GMM) was adopted to establish the models for data
following complex distributions, due to its flexibility in data modelling [61]. As the
parameters of GMM can represent vibration conditions robustly, they were used

to construct into state space for feature learning from CDBN. The state space is

*This chapter has been accepted as: Zhang, Y., Ji, J.C., 2020. Intelligent fault diagnosis of a
reciprocating compressor using mode isolation-convolutional deep belief networks. IEEE/ASME

Transaction on Mechatronics. [Published, DOI: 10.1109/TMECH.2020.3027912)
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referred to as time-invariant [46]. Consequently, they can represent operating condi-

tions confidently and facilitate the RC fault diagnosis. Subsequently, the calculated

features from MI-CDBN were fed into classifiers to identify fault types of an RC. A

multi-class logistic regression classifier was adopted to recognize multiple faults of

the RC [6].

The contributions of this chapter are summarized in the following three aspects.

1.

11.

iii.

An MI-CDBN is proposed to enhance the performance of the standard CDBN
in implementing the RC fault diagnosis. Direct analysis of raw signal could
hide more local information from different modes and degrade the fault di-
agnosis performance. To extract more local information, GMM is used to
isolate multi-modal data from raw signals, then the isolated multi-modal data
is input into CDBN to learn more useful local information. To highlight more
local information, multi-modal data are isolated from raw signals. GMM is
used to isolate multi-modal data in this paper due to its flexibility in data
modelling, then the network self-adaptively calculates features from isolated
modal data. This method can highlight more information hidden in the raw
signals. This method also provides a novel physical interpretation of the RC

vibration signals from the perspective of the transfer path.

The CDBN is used to extract features for the raw signals. Compared with
the other deep learning methods, CDBN can extract features using a deep
network structure with shift-invariance and high efficiency. By strengthening
the advantages of the CNN and the DBN, this method can obtain more reli-
able information from the collected RC vibration signals and ensure improved

performance in the RC fault diagnosis.

A three-stage method is adopted in the RC intelligent fault diagnosis based

on a deep learning-based framework. First, sparse filtering is employed to
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compress signals into more compact series to reduce computing cost. Then, the
MI-CDBN is used to calculate features by unsupervised learning. Finally, fault
types are identified by a classifier. This method can remove the dependence

on prior knowledge and enhance computational efficiency.

iv. The GMM is used to isolate multi-modal data generated from various transfer
paths. The parameters of the GMM are calculated using latent Dirichlet allo-
cation (LDA) instead of being set at a constant. This improves the robustness

of the constructed state space in the RC fault diagnosis.

The rest of the chapter is organized as follows. Section 4.2 introduces the related
preliminary of the proposed method, and Section 4.3 gives a detailed description of
the proposed method. In Section 4.4, site measurement data from the petroleum
industry are employed to validate the proposed method and Section 4.5 concludes

the chapter.

4.2 Preliminary

4.2.1 Sparse filtering

Due to the technological advancements in data acquisition and storage, volu-
minous monitoring data of the RC can be collected by sensors, which makes it
challenging to handle big data [110]. Therefore, it is essential to compress data and
refine the highly representative information for fault diagnosis. Sparse filtering (SF)
is one of the most promising tools due to its advantages of a basic hyperparame-
ter setting and low computational cost [71]. Only the output dimension of the SF
requires tuning for data compression. This can reduce computation cost compared
with compressive sensing (CS) and allow the SF to obtain a good performance in
intelligent fault diagnosis [49]. Moreover, SF can compress data with unknown dis-

tribution with little distortion of raw signals [49]. This would be more suitable for
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compressing RC vibration data than the auto-encoder (AE) method in terms of the

complex structure of vibration signals [71].

Sparse filtering was used to compress raw signals into compact time series with
the fault-related information extracted. Sparse filtering captures three properties:
sparse features per example, sparse features across examples, and uniform activity
distribution [71]. This method represents raw signals with a few non-zero high

representative coefficients (features). The compressed feature can be calculated by

f]@ = W]Ts(i) (4.1)

where fgz) denotes the j-th feature of the i-th data sample in the feature matrix with
each column representing a sample and w; representing the weight matrix. fs-norm
was adopted to normalize features within the same range and ensure each feature

was activated equally.

f=f/ 5] (4.2)
Then each column was normalized within a unit />-ball.

£O = f0) Hf(i) (4.3)

{1 penalty was applied to optimize the sparsity of the normalized features. The

objective function of sparse filtering for a dataset including N samples is given by

£f@

(4.4)

N
minimize E
i=1

The weight matrix satisfying Eq.(4.4) could be regarded as the optimal results

of compression and the input x of the MI-CDBN.
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4.2.2 Traditional CDBN

Convolutional deep belief network has been widely used in many fields. It inherits
the advantages of DBN and CNN by integrating them. The traditional CDBN
was constructed by stacking convolutional restricted Boltzmann machine (CRBM),

whose energy function is denoted as [82]

—log P(v,h) « E(v,h)

K. Ny Nw

3 3) SR A CATI (45)

k=14,j=1r,s=1

K. Ny Ny
k
=D b D h—e ) vy
k=1 2,j=1 r,s=1

where W, v and h represent the filter, visible vector and hidden vector, respectively.
v;; is an element located in the i-th row and the j-th column of the k-th filter. by
is the bias of each hidden group and all visible units share the same bias ¢. The
conditional probabilities of the standard CRBM can be expressed as:

P(hﬁjzl]V)za((Wk*v)‘—l—bk) (4.6)

17.]

P(vj=1|lh)=0 <Z (W x hk)i’j + c) (4.7)

k,i,j

where o () = 1/ (1 + e77) is the sigmoid function, * is the convolutional operation,
and ij =W}, _j+1- Once CDBN identifies the features, they could be categorized

by multi-class logistic regression [36].

4.3 The Proposed method

4.3.1 General procedure of the proposed method

A novel method was proposed to conduct intelligent fault diagnosis of the RC
by making the best use of transfer path analysis and multi-modal data isolation.

The proposed method primarily involved three stages. First, the raw data was
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compressed using sparse filtering to obtain high representative features and reduce
computational cost. Then, the MI-CDBN was employed to isolate multi-modal
data and to learn unsupervised features from the compressed signals. Finally, the
representative features were input into a multi-class logistic regression to identify
The detailed

fault types. The theoretical framework is displayed in figure 4.1.

procedure consists of the following six steps.

Data acquisition

Data compression Mode isolation

State space construction
Mode 1: 1.5 1

|
|

Mode 2: 72, s, X 2

L ‘ \ L L m omy oeee mg | L
i WW L v=|m me o wx
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Pooling  Hidden eee Pooling  Hidd GMM
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Fault diagnosis
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Label Wi Wi w
Well-trained
[1o...0] classifier
.s i .{ ' Q Testing data
[01...0]
Pooling  Hidden Pooling  Hidd GMM
100...1] layern  laye layer 1 layer1  Input lay

Figure 4.1 : Framework of the proposed method

Step 1: Vibration data were measured by accelerometers installed on the crosshead

of the RC.

Step 2: Data were compressed using sparse filtering to refine and achieve highly

representative information and decrease the computational cost.

Step 3: The GMM was used to isolate multi-modal data and the state space was

constructed from the parameters of each mode to represent the operating conditions
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of the RC robustly.

Step 4: The MI-CDBN was adopted to calculate the features from the con-

structed state-space by unsupervised learning.

Step 5: Multi-class logistic regression classifier was trained to implement the

fault diagnosis of the RC.

Step 6: Testing data were input into the well-trained classifier to evaluate the

performance of the proposed method.

4.3.2 Mode isolation-convolutional deep belief network

Figure 4.2 : Diagram of transfer path on the RC

Transfer path analysis is an effective approach for analyzing complex vibration
mechanism when it is difficult to measure vibration excitation directly [95]. This
method considers a mode of data generated from an excitation via a specific path.
The collected signals are a combination of multiple modes of data. However, dif-
ferent modes of vibration data cannot be measured by sensors directly. Therefore,
these modal data are isolated using the data-driven method by assuming that these
modal data follow Gaussian distribution. GMM can establish models for data with

complex distributions. This is suitable for handling RC signals which are generated
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Figure 4.3 : The relationship among fault excitation, transfer paths and acquired

data

from complex vibrations and follow complex distributions. Thus, GMM was adopted
to resolve the problem and projects raw data into state-space. The parameters of
GMM are used to construct the state space, and currently, they are mostly esti-
mated by expectation maximization (EM) directly. It is highly likely to obtain an
overfitting value of GMM parameter using the EM method [76], which decreases the
generalization ability of GMM [104]. Considering the Bayesian method advantages
of learning parameters from prior knowledge [122], latent Dirichlet allocation (LDA)
was employed to establish the GMM model parameters. LDA has an excellent per-
formance in constructing models for discrete data [128, 99, 114], which can represent
various potential operating conditions of the RC [17]. From the LDA model, the

running condition of the highest possibility will be selected for fault identification.

In the RC fault diagnosis, a diagram of one source of excitations is shown as an
example in figure 4.2. Each source of excitations was assumed to be independent
of each other. When a fault occurs in the RC, a vibration excitation E will be
generated. The vibration induced by E cannot be measured directly by sensors.
It will transfer along a certain latent path P in the RC body. For example, path
P1 (dotted curve) via component C'1 (red square), path P2 (dotted curve) via

component C2 (blue square). Finally, the vibrations could be measured by a sensor
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S. The modal data generated from the two paths can be expressed as F (x) ¥ (x)
and F (x) ¥; (x), as the vibration of C'1 and C2 are modulated by the vibration of E.
Here only two modal data are taken for explanation. In the following introduction
to the theoretical framework, the transfer path was extended to a random number n.
The collected data presents the non-linear and non-stationary nature, with n types
of modal data generated from various transfer paths combined. The relationship
among vibration excitations, transfer paths, and acquired data were formulated and
are shown in figure 4.3. In figure 4.3, the vibration data for the RC fault diagnosis
incorporated multi-modal data and each modal data was generated by the vibration
of one fault excitation transferring along a certain transfer path. Different mode
combinations of multi-modal data indicate different operating conditions. These
combinations can represent transfer paths and their weights, as the fault excitation
dominates the variation of a path and the corresponding weight. In this research,
the modes were isolated by projecting the raw signals to the state-space to reflect
local features. Straight analysis of the raw signals with multiple-mode data mixed
could degrade the performance of the fault diagnosis method and hide or neglect
more useful information. In contrast, the local information obtained from mode-
isolated data could characterize and reflect the operating condition more robustly.
In practice, it is difficult to measure the fault excitation F(x) and transfer paths
U (x) directly [95]. Thus a data-driven method was proposed to establish the models
for multi-modal data generated from various transfer paths. Theoretically, the raw

signals can be expressed as

Y=Y F(x)¥(x) (4.8)
As the vibration mode generated from each transfer path cannot be measured by
sensors directly, a data-driven method was adopted to isolate multi-modal data

from vibration data and establish the model for each modal data. A GMM was

used to establish models for the RC data. The GMM consisted of multiple Gaussian
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components, and different components represented different modal data generated
via different transfer paths under specific vibration excitations. Multi-modal data

can be regarded as linear combinations of Gaussian components.

The Gaussian mixture model can be expressed as

p(x)=>_ mp (x| i, T) (4.9)

where x is the compressed signals consisting of M points. p (x| g, Xx) is one
component of the Gaussian mixture model parameterized by (jux, X% ), 7y is the prior
input of x, and K is the total number of Gaussian components. In this chapter,
a novel physical interpretation is proposed for GMM. Each F(x)¥;(z) assumed
to follow Gaussian distribution. The p(x | px, X%) and 7 denote a transfer path

characterizing the fault excitation and its corresponding weight, respectively [95].

The parameters of the GMM can represent the vibration conditions powerfully
and thus were used to construct the state-space. The dimensions of the parameters
(m,p, X)) are K x 1, M x 1 and M x M, respectively. As X' is a symmetric matrix,
the lower or the upper diagonal of the matrix can be converted into a vector. The

conversion of the covariance matrix ' can be denoted as

3 =[2(1,1),2(2,1),2(2,2),--,

S (M,1),5(M,2),-- X (M, M)] (4.10)

Each component’s parameters can be concatenated into a vector and the vectors
from all GMM components were constructed into a matrix v. In other words, a
concatenated vector was considered a channel of v, and each channel can represent

a type of modal data generated via a transfer path. The input can be expressed as

7T1 7T2 DY 7TK
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where Y is the conversion of the covariance matrix of the K-th GMM component.

LDA was adopted to calculate the GMM parameters used to construct the state-
space. A K-dimensional binary vector was introduced with a particular element

equal to 1 and the rest 0, namely the vector was subjected to the following condition:

Zke S {O, 1}
(4.12)
2k =1
such that
plzpr=1)=m
K
st 0<m<land » m =1 (4.13)

k=1
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