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Edge Computing-Empowered Large-scale Traffic
Data Recovery Leveraging Low-rank Theory
Chaocan Xiang, Zhao Zhang, Yuben Qu, Dongyu Lu, Xiaochen Fan, Panlong Yang, and Fan Wu

Abstract—Intelligent Transportation Systems (ITSs) have been widely deployed to provide traffic sensing data for a variety of smart
traffic applications. However, the inevitable and ubiquitous missing data potentially compromises the performance of ITSs and even
undermines the traffic applications. Therefore, accurate and real-time traffic data recovery is crucial to ITSs and its related services
especially for large-scale traffic networks. To leverage the characteristics in transportation networks for data recovery, we first conduct
experimental explorations on a large-scale traffic dataset of an ITS and further quantify the spatiotemporal correlations of traffic data.
Inspired by the observation results, we propose GTR, an edGe computing-empowered system for large-scale Traffic data recovery with
low-Rank theory. GTR leverages decentralized computing power of edge nodes to process massive traffic data from hundreds of traffic
stations for accurate and real-time recovery. Specifically, we first propose a suboptimal edge node deployment algorithm with
theoretical performance guarantee, by exploiting the supermodularity in the NP-hard joint-optimization problem. Furthermore, to
leverage the low-rank nature of traffic data, we transform the data recovery problem into a low-rank minimization problem, and exploit
fixed point continuation iterative scheme to capture spatiotemporal dynamics for accurate data recovery. Finally, the extensive
trace-driven evaluations show that, GTR only needs at most 6% extra total cost compared to the optimal deployment, while
outperforming three other baseline methods by 62.1% improvement in terms of traffic data recovery accuracy.

Index Terms—Edge computing; Intelligent transportation system; Edge node deployment; Traffic data recovery; Low-rank theory.
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1 INTRODUCTION

W ITH the rapid development of urbanization, cities
are facing many challenges in dealing with their

growing populations and vehicles, especially in transporta-
tion [1]. Hence, large numbers of Intelligent Transportation
Systems (ITSs)–such as Advanced Traffic Management Sys-
tem and Adaptive Traffic Control System–are developed
in recent years to solve the transportation issues [2]. For
example, as illustrated in Fig. 1, the transportation agency
of New South Wale (NSW), Australia built a Traffic Volume
Viewer System (TVVS) [3]. More than 600 traffic collection
stations are deployed in TVVS to monitor real-time traffic
volume at most of main roads in NSW [4]. However,
according to the experimental observations on the TVVS in
Sec. 2.1, this system is subject to a highly serious issue of
missing traffic data, e.g., more than 25% missing rate for 60%
stations. Indeed, this issue exists widely in many existing
ITSs systems [5], [6]. Thus, accurate and real-time recovery
of traffic data in large-scale ITSs is essential for realization
of intelligent transportation in smart cities.

To address the problem of traffic data recovery, we
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(a) Locations of traffic stations (b) Heat map of distribution
Fig. 1: Illustrations of the traffic volume viewer system with 600
traffic collection stations deployed in New South Wale.

conduct the experimental explorations based on a large-
scale traffic volume dataset of TVVS in Sec. 2.2. The results
indicate that the traffic data1 has both temporal and spatial
correlations at different time and stations, thus providing
a promising opportunity for traffic data recovery. Hence,
it is auspicious to jointly exploit large amounts of traffic
data from multiple stations on much time for accurate
real-time recovery. However, it poses a difficult dilemma
of practical implementation with three following reasons.
First, it needs large overhead of computation and storage
for resource-intensive traffic data, such as real-time traffic
videos [8]. Second, owing to massive deployments with lim-
ited budget, any individual station with limited capabilities
of computation and storage cannot undertake such a heavy
responsibility [9]. At last, if offloading all traffic data to
the remote powerful cloud, the incurred latency would be

1. In this work, we take the recovery of traffic volume data as a
typical example, which is a greatly fundamental traffic data for most
applications of ITSs [7]. Hence, in the remaining paper, we will use
the terms ‘traffic data’ and ‘traffic volume data’ interchangeably unless
otherwise stated.
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intolerable, as a result of long distance communication and
huge traffic volume in large-scale ITSs [10].

To resolve this dilemma, we propose an edge computing-
empowered large-scale traffic data recovery system, by de-
ploying edge nodes in physical proximity to traffic stations
for real-time recovery [9], [11]. Leveraging the decentral-
ized computing power of edge nodes, it tackles not only
the insufficient capability issue when recovering traffic on
individual station, but also the high latency for centralized
computation on cloud server [10]. Nevertheless, it is non-
trivial to realize this system with two following challenges.
• Optimal deployment of edge nodes for ITSs: the edge node

deployment should be jointly optimized with the traffic
data collection in ITSs, while minimizing the overall
cost of edge deployment and traffic collection. It is a
Mixed Integer Linear Program (MILP) problem, which
is proven to be NP-hard in Sec. 4.1.

• Accurate traffic recovery with spatiotemporal dynamic corre-
lations: Though the experimental observations illustrate
traffic data has the spatiotemporal correlations, such
relationships are non-linear and space-time-varying,
hence rendering accurate data recovery extremely
tough even given the optimal edge deployment.

To address these two challenges, we propose an edGe
computing-empowered large-scale Traffic data recovery
system leveraging low-Rank theory, called GTR 2. It consists
of two key modules as follows. 1) Suboptimal deployment
of edge nodes with performance guarantee. We first find that,
given any fixed edge node deployment, the traffic data
collection is a linear program problem (LP). Therefore, we
reformulate the optimal deployment problem as a set func-
tion optimization one, subject to only the variable of edge
node deployment. Second, despite the implicit expression of
the objective function in this set function optimization, we
theoretically prove it is non-negative supermodular. Finally,
we propose a local search-based edge node deployment
algorithm, exploiting the supermodularity theory to obtain
guaranteed suboptimal solution. 2) Accurate traffic data re-
covery based on low-rank theory. We conduct Singular Value
Decomposition (SVD) based on experiments to investigate
whether the matrix of traffic data is approximately low
rank in terms of the spatiotemporal dimensions. Moreover,
based on this positive result, we equivalently transform the
intractable problem of traffic data recovery into a low-rank
minimization one, then transform it to a convex optimiza-
tion problem. At last, we use the Fixed Point Continua-
tion (FPC) iterative scheme to achieve accurate recovery
with minimal low rank. Both theoretical analyses and trace-
based evaluations are conducted to evaluate the perfor-
mance of GTR .

In summary, this paper makes four main contributions:
1) We make the experimental explorations based on a

large-scale traffic dataset of massive traffic stations.
Inspired by the observations of spatiotemporal corre-
lations, we propose the traffic data recovery system
empowered by edge computing, thereby resolving the

2. Similar to Nissan GT-R vehicle with powerful engine and high
reliability, our system can provide powerful computing capability em-
powered by edge computing, and achieve highly accurate data recovery
based on low-rank theory in ITSs.
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Fig. 2: Analysis of missing traffic data in 100 stations of TVVS.
The missing rate is between 25% and 98% for 60% stations.

dilemma between traffic stations and cloud in large-
scale ITSs.

2) We present a suboptimal edge node deployment
scheme with theoretical performance guarantee, lever-
aging the equivalent reformulation and the supermod-
ularity to effectively decouple the NP-hard problem of
joint optimization.

3) We propose a low rank-based traffic data recovery algo-
rithm based on the experimental observations of SVD,
exploiting the low-rank minimization to successfully
tackle the spatiotemporal dynamic of correlations.

4) We conduct extensive experiments based on large-scale
traffic dataset with 100 traffic stations. The results show
that GTR only needs at most 6% extra total cost com-
pared to the optimal deployment, while outperforming
three other baseline methods by 62.1% improvement in
terms of traffic data recovery accuracy.

The rest of this paper is organized as follows. First,
the motivations based on experimental explorations are
introduced in Sec. 2. We then state the system model and
formalize the problem in Sec. 3. We also propose an edge
computing-based large-scale traffic volume recovery system
called GTR along with theoretical analyses in Sec. 4. In
Sec. 5, we conduct traces-driven evaluations, followed by
reviewing the related work in Sec. 6. Finally, we conclude
this work in Sec. 7.

2 MOTIVATIONS

In this section, we first conduct experiments to explore
the issue of missing traffic data, followed by the spatiotem-
poral correlations. Finally, we analyze the dilemma of im-
plementations for traffic data recovery in large-scale ITSs.

2.1 Uncovering Missing Data Issue in Large-scale ITSs
Traffic volume monitoring is of fundamental importance

for ITSs, as it is essential for road navigation, congestion
management and vehicles’ emission monitoring [7], [12],
[13]. For instance, as shown in Figs. 1a and 1b, the Roads
& Maritime Services of New South Wale (NSW) established
a Traffic Volume Viewer System (TVVS) by deploying over
600 traffic collection stations [3]. This system is monitoring
the traffic volume at most of main roads across NSW from
2006 up to now [4].

Although a number of real systems are deployed for
monitoring traffic volume, such as TVVS, most of them
suffer from the severe issue of missing data, due to detector
malfunction, loss of data in transmission and power outage,
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Fig. 3: Analysis of temporal correlation on traffic volume data
in different weeks for the same traffic station.
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Fig. 4: Analysis of spatial correlation on traffic volume data in
different traffic stations.

etc [6], [14]. For example, we randomly select 100 traffic
stations of TVVS and conduct statistics based on their traffic
volume data. As illustrated in Fig. 2a, the missing rate is
more than 5% for 90% of traffic stations, while it is beyond
25% for more than 60% of stations. Even worse, the missing
rate of more than 10% stations is above 70%. Moreover,
Fig. 2b shows the missing rate of 25 traffic stations, and
the results indicate that the missing rate of several stations
is up to 98%. Also, this issue of missing traffic data is very
common in real ITSs, such as about 10% missing rate in the
ITSs of Beijing city [5].

To sum up, traffic volume data is fundamentally important
for the ITSs, while many existing systems are subject to a greatly
serious issue of missing traffic volume data. Thus, accurate real-
time traffic volume recovery in large-scale ITSs is crucial to the
realization of intelligent transportation.

2.2 Experimental Explorations of Spatiotemporal Cor-
relations on Traffic Data

To address the issue of missing traffic data in ITSs, we
make extensive experiments to explore both temporal and
spatial correlations on traffic volume data. Specifically, we
collect a dataset of traffic volume from TVVS [3] in 25 traffic
stations of Sydney for one year (i.e., Jan.-Dec., 2018). The
sampling interval is 1 hour.

1) Analysis of temporal correlation: we analyze the
correlation of traffic volume data in terms of temporal
dimension on a traffic station. More specifically, we divide
one year into 52 weeks, while analyzing the correlations
among the traffic volume of different weeks in one station.
As illustrated in Fig. 3a, we only plot the traffic volume
data of four weeks, due to the size limitation of the figure
and similar results of other weeks. The experimental results
indicate that the traffic volume exhibits a similar pattern in
each week. Moreover, the patterns of weekends are different
from those of weekdays, since the commuting activities of
most citizens on weekdays (such as working) are distin-
guished from the ones on weekdays (e.g., shopping) [15].
The above results demonstrate that the traffic volume data
has the temporal correlation in the period of not one day
but one week.

Furthermore, by using the Pearson correlation coeffi-
cient, we quantify the correlations of traffic volume data
between any two of these 52 weeks. As shown in Fig. 3b,
their temporal correlations are more than 0.6 for 100%, and
above 0.95 for about 80%. As a result, the traffic volume data
has a strong temporal correlation on each week for one traffic
station. However, as shown in Fig. 3a, there exist abnormal

patterns on some days, such as the Tuesday of the first week
in April. It is because this Tuesday is a special holiday in
Australia (i.e., the Anzac Day of 2018) and the citizens are
off duty on that weekday [16]. Thus, the periodicity of traffic
volume data on the temporal dimension is always affected by the
social events, holidays and extreme weather conditions, etc.

2) Analysis of spatial correlation: we analyze the spa-
tial correlations of traffic volume data in different traffic
stations. Firstly, we compare the traffic volume data in
different traffic stations. As illustrated in Fig. 4a, we only
show the data of four stations on the first week owing to
the similar results. It demonstrates that the traffic volume of
different stations has approximately similar pattern even on
the special holiday (e.g., the Tuesday).

Further, we exploit the Pearson correlation coefficient
to quantify the spatial correlations of traffic data between
different stations. As shown in Fig. 4b, we use the confusion
matrix to represent the correlations between any two of
the 23 traffic stations. The experimental results demonstrate
that the correlations among most stations are more than 0.8.
As a result, the traffic volume has spatial correlations among
different traffic stations. However, Fig. 4b illustrates that a few
stations (e.g., stations 1, 2, 3 and 4) have lower correlations
with others. The reason is that the traffic stations in the city
are interconnected by the roads. Hence, the traffic volume
of different stations are suffered from the same influences,
e.g., the rush hours, holidays, social events and weathers,
etc. Moreover, the longer the distance of the road network
between two stations is, the lower the correlation between
them is [15].

In summary, the traffic volume data has both the temporal
correlation in the period of one week and the spatial correlations
among different traffic stations.

2.3 Dilemmas of Implementation for Large-scale Traffic
Recovery

The experimental explorations in Sec. 2.2 indicate that
the traffic volume data has the temporal and spatial corre-
lations on different time and stations. Thus, we can jointly
utilize the traffic data of massive stations across the same
time to recover missing data. Nevertheless, the implemen-
tation of the traffic data recovery in large-scale ITSs is facing
a dilemma for the following three challenges.

1) Large computation & storage overhead for resource-intensive
traffic data. Many ITSs use traffic cameras to monitor
the traffic volume on the roads in real-time [17]. Hence,
the real-time and resource-intensive traffic video data
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incurs numerous overhead on its computation and stor-
age [18].

2) Limited capability of computation & storage in individual
station. As the ITSs should cover a large-scale area,
such as a big city, a large number of traffic stations
need to be deployed at different roads, e.g., more than
600 stations in TVVS [4]. Hence, most stations have a
limited capability of computation and storage, owing
to large-scale deployments with a limited budget.

3) High latency of data transmission in large-scale ITSs. The
transmission delay is very long due to the resource-
intensive traffic data (such as videos) and the limited
bandwidth of communication network (e.g., wireless
network and cellular one). Even worse, this issue will
be significantly exacerbated, as a result of highly long
communication distance from the traffic stations to the
center server in the large-scale ITSs.

In brief, it is difficult to recover missing traffic data in
individual station, due to the large overhead of computation
and storage for resource-intensive traffic data as well as the
insufficient capability of single station. On the other hand,
recovering on the cloud server is also challenging, owing to
the conflict between high transmission latency and real-time
requirements in ITSs. As a result, regarding the computation,
storage and transmission, it is greatly challenging to conduct
traffic data recovery on both the individual station and the center
server in large-scale ITSs.

3 SYSTEM MODEL & PROBLEM FORMULATION

3.1 System Model of Edge Computing
According to the experimental observations in Sec. 2.1,

as the ITSs have large amounts of missing traffic data, its
accurate recovery is essentially critical for the ITSs. More-
over, the experimental explorations in Sec. 2.2 reveal that the
traffic volume data has strong temporal-spatial correlations,
which can be harnessed for accurate recovery of traffic data.
Accordingly, we jointly use the traffic data of massive roads
across time for accurate data recovery. However, it requires
numerous latency for transmission and computing due to
large-scale coverage and large volume of traffic data (e.g.,
real-time traffic videos) in the ITSs. As a result, as shown
in Fig. 5, we propose a traffic volume recovery framework
based on edge computing to achieve low-delay, highly-
accurate recovery in the large-scale ITSs. Specifically, this
framework is mainly comprised of traffic stations, edge
nodes and a central server as follows.
• Traffic stations: In the ITSs, traffic monitoring systems

are deployed on each traffic station for traffic sensing
of one road segment, such as traffic cameras [19]. Let
ri denote the i-th traffic station, i.e., i ∈ {1, . . . , N}.
We assume the sensing interval is T , and the vector
of sensing times is represented as T = {1, . . . , T}.
Moreover, we use vi(t) to denote the traffic data of ri at
time t, i.e., t ∈ T. Accordingly, vi = {vi(t)|1 ≤ t ≤ T}
denotes the set of traffic data on ri, while its data size is
represented by wi. Let V = {vi|1 ≤ i ≤ N} denote the
set of the traffic data from all the traffic stations (i.e.,
ri,∀i ∈ {1, . . . , N}) within T .

• Edge nodes: All the traffic data is transmitted into
nearby edge nodes deployed on certain traffic stations

Fig. 5: Framework of edge computing-based traffic data recov-
ery system in large-scale ITSs

for real-time recovery. We assume that there are S
edge nodes, and let es denote the s-th edge node,
i.e., s ∈ [1, . . . , S]. Furthermore, xjs indicates whether
es is deployed on rj , i.e., xjs = 1 if yes, otherwise
xjs = 0. The different edge nodes have different
capacities of computation and storage due to device
diversity. Hence, we let cs denote the capacity of es.
Also, the deployment cost of edge nodes changes with
the deployed traffic stations. Let djs denote the cost of
es deployed on rj . yij denotes the proportion of the
traffic data of ri assigned to the edge node deployed
at rj , i.e., ∀i, j ∈ [1, . . . , N ], yij ∈ [0, 1]. As the com-
munication in different paths induces different cost, we
let bij denote the communication cost of the unit traffic
data transmitted from ri to rj .

• Cloud server: It plays two critical roles in this edge
computing-based system as follows. First, it is con-
nected to all traffic stations and sets up a control
management to provide flexible and efficient commu-
nications, including both traffic data and control infor-
mation among multiple traffic stations as well as edge
nodes [11]. Second, it can provide further analysis after
traffic data recovery over a large scale, which needs
more powerful capacity of computation and storage
than the edge nodes [9], [10].

3.2 Problem Formalization

Based on the above system model of edge computing-
based traffic data recovery, the research problem is chiefly
composed of two following sub-problems.

1) Sub-problem A: (Optimal deployment of edge nodes)
Given the capacities of the edge nodes (e.g., cs), i) how
to place these S edge nodes (e.g., es) on the traffic
stations (e.g., rj), i.e., x = {xjs|1 ≤ j ≤ N, 1 ≤ s ≤ S};
and ii) how to allocate traffic data of ri into the edge
nodes deployed at rj , i.e., y = {yij |∀i, j ∈ {1, . . . , N}},
so as to serve all the traffic data (i.e., V), while minimiz-
ing the overall cost Ω(x,y) of data communication and
edge deployment. Formally,
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min
x,y

Ω(x,y) =

N∑
i=1

N∑
j=1

wiyijbij +

S∑
s=1

N∑
j=1

xjsdjs, (1)

s.t.
N∑
j=1

yij = 1, ∀i ∈ {1, . . . , N}, (2)

N∑
j=1

xjs ≤ 1,∀s ∈ {1, . . . , S}, (3)

N∑
i=1

wiyij ≤
S∑
s=1

xjscs,∀j ∈ N, (4)

yij ≤ lij , ∀i, j ∈ {1, . . . , N}, (5)
xjs ∈ {0, 1}, yij ∈ [0, 1], ∀i, j ∈ {1, . . . , N}, (6)

where
∑N
i=1

∑N
j=1 wipijbij in Eq. (1) denotes the com-

munication cost for transmitting all the data from
ri(∀i ∈ [1, . . . , N ]) to the edge nodes deployed on
rj(∀j ∈ [1, . . . , N ]).

∑S
s=1

∑N
j=1 xjsdjs represents the

deployment cost of all the edge nodes. Eq. (2) indicates
that all the traffic data of ri is completely served by
the edge nodes. Eq. (3) constrains that an edge server is
deployed on at most one traffic station. Eq. (4) limits
the capacity of computation and storage in the s-th
edge node. Note that, since the spatial correlation of
the traffic data is very weak when the traffic stations
are far from each other [15], the data of these traffic
stations is not helpful for data recovery. As a result, we
only use the data of the traffic stations within coverage.
Specifically, lij in Eq. (5) denotes whether ri is within
the coverage of rj . If it is, lij = 1. Otherwise, lij = 0.

2) Sub-problem B: (Accurate traffic recovery based on edge
computing) Given the optimal deployment of edge
nodes in the sub-problem A, we study how to ac-
curately recover the missing traffic data of a traffic
station, leveraging its remaining data based on tem-
poral correlation and the data of its nearby traffic
stations based on spatial correlation. Formally, we as-
sume the traffic station with incomplete traffic data is
ri, i ∈ {1, . . . , N}. Let Tm = {t1, t2, . . . , tn} denote
the sequence of missing data points with no traffic
records, while Ts represents the corresponding time
intervals, i.e., Ts = T/Tm. The recovery value of
vi(t) is represented by v̂i(t). We let rci denote the
set of traffic stations within the coverage of ri, i.e.,
rci = {rj |∀j ∈ {1, . . . , N}, lij = 1}. Hence, the problem
is formalized as:

min
Φ

1

T

T∑
t=1

|vi(t)− v̂i(t)|, (7)

s.t. v̂i(t) = Φ(vs
i ,v

c
i ),∀t ∈ Tm, (8)

v̂i(t) = vi(t),∀t ∈ Ts, (9)
vs
i = {vi(t)|∀t ∈ Ts}, (10)

vc
i = {vj |∀j ∈ rc

i}, (11)

where Eq. (7) represents the error measurement be-
tween the recovery value and the ground truth, e.g.,
Mean Absolute Error [20]. vs

i in Eq. (10) and vc
i in

Eq. (11) denote the set of sensing traffic data on ri and
that from all the traffic stations within ri’s coverage,
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Fig. 6: Overview of GTR , an edge computing-based large-scale
traffic data recovery system leveraging Low-rank theory.

respectively. In Eq. (8), the missing traffic data of ri is
estimated based on vs

i and vc
i , exploiting the recovery

function Φ(·). Meanwhile, as Eq. (9), the recovery val-
ues (e.g., v̂i(t)) at the sensing time t ∈ Ts are required
to be the same as the ground truth vi(t).

4 SYSTEM DESIGN

To address the above sub-problems A and B in Sec. 3.2,
we propose GTR , a large-scale traffic data recovery system,
leveraging edge-computing and low-rank theory to achieve
accurate, real-time traffic data recovery in large-scale ITSs.
As demonstrated in Fig. 6, as the inputs of GTR , the ITSs
provide large-scale traffic data of massive stations with spa-
tiotemporal dynamic workload and numerous missing data.
Moreover, they offer the topology of the communication
network among these traffic stations in ITSs. Finally, GTR
yields the accurate traffic data for large numbers of traffic
stations in real time. Specifically, GTR consists of three main
components as follows.

1) Experimental explorations (Sec. 2). We first conduct ex-
periments to explore the issue of missing traffic data
based on large-scale traffic datasets in Sec. 2.1. The
results indicate that this issue is greatly serious due to
the high missing rate and its pervasiveness. Further,
extensive experiments are carried out to investigate the
spatiotemporal correlations of traffic data in Sec. 2.2.
These experimental observations are fed back to design
the edge nodes deployment scheme and traffic data
recovery algorithm in the following components.

2) Suboptimal deployment of edge nodes (Sec. 4.1). To resolve
the issues of incomplete data, large-scale coverage and
resource-intensive traffic data, we present the edge
computing-empowered large-scale traffic data recovery
system. Specifically, we focus on the optimal deploy-
ment problem of edge nodes, which is an intractable
NP-hard problem. Thus, we leverage the problem re-
formulation and the supermodular theory to achieve a
sub-optimal solution with a performance guarantee.

3) Traffic recovery based on low-rank theory (Sec. 4.2). Based
on the experimental analysis of low rank by SVD, we
present the accurate traffic data recovery algorithm
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based on low-rank theory. It jointly leverages both
the temporal and spatial correlations of traffic data at
different time and stations to achieve accurate data
recovery.

4.1 Suboptimal Deployment of Edge Nodes
In this subsection, we study how to solve the sub-

problem A for traffic data recovery exploiting submodu-
larity/supermodularity. The key idea of our approach is
as follows. First, we notice that in the sub-problem A,
given any edge node placement scheme x, the traffic data
allocation problem is a simple linear programming (LP)
problem, whose optimal solution y∗(x) can be efficiently
obtained. By substituting y with y∗(x) in the sub-problem
A, it is equivalent to a Binary Integer Programming (BIP)
problem for the edge node placement variable x only. Sec-
ond, we reformulate the aforementioned BIP problem as
a set function optimization problem. Although the explicit
form of the objective function is difficult to obtain, we prove
that it is supermodular and the constraints in the problem
form a matroid constraint. Last, we design a suboptimal
algorithm for sub-problem A with a theoretical performance
guarantee.

4.1.1 Problem Reformulation
For the sub-problem A, it has the following properties

about the traffic data allocation optimization.

Lemma 1. In the sub-problem A, given any fixed edge node place-
ment scheme, the optimal traffic data allocation can be obtained in
polynomial time.

Proof. Given any edge node placement x0 = {x0ij}, the sub-
problem A turns into a traffic data allocation problem with
respect to y only in the following:

(P0) min
y

N∑
i=1

N∑
j=1

wiyijbij

s.t. (2), (5), (6),
N∑
i=1

wiyij ≤
S∑
s=1

x0
jscs, ∀j ∈ N , (12)

which is a simple LP problem and can be solved in polyno-
mial time by many classical LP methods [21].

Based on Lemma 1, we reformulate the sub-problem A
as a set function optimization problem. Formally, denote the
objective function of the sub-problem A as Ω(x,y). First,
Lemma 1 indicates that, given any x, we can obtain the
optimal value of y, denoted as y∗(x). Although the explicit
expression of y∗(x) is hard to obtain, it implies that solving
the sub-problem A is equivalent to solving the problem with
respect to x only, by substituting y with y∗(x). Thus, the
objective function can be transformed into Ω(x,y∗(x)).

Second, let G := {(j, s)|∀j ∈ N , s ∈ S}, which estab-
lishes a one-one mapping between an edge node placement
variable xjs and the element e = (j, s) ∈ G. Specifically,
xjs = 1 implies choosing element (j, s) from G, while
xjs = 0 means not choosing element (j, s) from G. Let
A ⊆ G represent the set of selected pairs of edge node and
traffic station, that is, A = {(j, s)|xjs = 1, j ∈ N , s ∈ S}.
For a feasible set A ⊆ G, we define f(A) := Ω(x,y∗(x)),
where for each xjs in x, xjs = 1 iff (j, s) ∈ A. Then, by

introducing 1 as the indicator function, we reformulate the
sub-problem A in the following:

(P0′) min
A⊆G

f(A)

s.t.
∑

j:(j,s)∈A

1(j,s)∈A ≤ 1, ∀s ∈ S. (13)

Next, we reveal some desirable properties of the problem
P0′. We first provide the basic definitions of matroid, non-
negativity, monotonicity, and submodularity as follows.

Definition 1. (Non-negativity, Monotonicity, Submodularity
[22]) A set function f : 2G → R (G is a finite ground set) is
non-negative if f(∅) = 0 and f(A) ≥ 0 for ∀A ⊆ Ω. f(·) is
monotone if for ∀A1 ⊆ A2 ⊆ G, f(A1) ≤ f(A2). And f(·) is
submodular, if and only if ∀A1 ⊆ A2 ⊆ G and ∀e ∈ G \ A2,
f(A1 ∪ {e})− f(A1) ≥ f(A2 ∪ {e})− f(A2).

Any function f(·) is supermodular if −f(·) is submodular.
Submodularity has a decreasing returns property while
supermodularity captures an increasing returns property,
which implies that the added value of an extra element to a
bigger set is no less than that to a smaller set [22].

Definition 2. (Matroid [23]) Consider a finite ground set G, and
a non-empty collection of subsets of G, represented by I . The pair
(G, I) is called a matroid, if and only if the following conditions
hold: 1) If A ⊆ B ∈ I , then A ∈ I ; 2) If A,B ∈ I and
|A| < |B|, then there exists b ∈ B such that A ∪ {b} ∈ I .

Definition 3. (Partition matroid [23]) A matroid (G, I) is a
partition matroid, if there exist disjoint sets G1,G2, ...,Gm and
positive integers i1, i2, ..., im for a positive integer m, such that
G := G1 ∪ G2 ∪ ... ∪ Gm and I := {A : A ⊆ G, |A ∩ Gj | ≤
ij , j = 1, 2, ...,m} hold.

Lemma 2. The objective function f(A) (A ⊆ G) in problem P0′

is non-negative and supermodular.

Proof. First, the objective function f(A) is non-negative,
since if A = ∅, the corresponding optimal data allocation
y∗ij = 0 for ∀i, j ∈ N and accordingly f(∅) = 0. And
f(A) ≥ 0 for all A ⊆ G due to the non-negative expression
of the objective function in problem P0. This is reasonable
since no placement cost will be incurred and no traffic data
transfer will happen if no edge node is placed.

Second, according to Definition 1, to prove the super-
modularity, we need to show that, for any feasibleA1,A2 ⊆
G and any (j1, s1) ∈ G \ A2 satisfying that A1 ⊆ A2 and
A2 ∪ {(j1, s1)}) is feasible, it holds:

f(A1 ∪ {(j1, s1)})− f(A1) ≤ f(A2 ∪ {(j1, s1)})− f(A2).
(14)

Suppose that y(1) = {y(1)ij }i∈N ,j∈N and ŷ(1) =

{ŷ(1)ij }i∈N ,j∈N is the optimal traffic data allocation solu-
tion obtained by solving P0 under the edge node place-
ment variable A1 and A1 ∪ {(j1, s1)} respectively. Simi-
larly, we can get the optimal traffic data allocation y(2) =

{y(2)ij }i∈N ,j∈N and ŷ(2) = {ŷ(2)ij }i∈N ,j∈N under the edge
node placement variableA2 andA2∪{(j1, s1)} respectively.
Thus, we can rewrite the objective values of the sub-problem
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A underA1,A1∪{(j1, s1)},A2,A2∪{(j1, s1)}, respectively,
as follows:

f(A1) =

N∑
i=1

N∑
j=1

wiy
(1)
ij bij +

∑
(j,s)∈A1

djs, (15)

f(A1 ∪ {(j1, s1)}) =

N∑
i=1

N∑
j=1

wiŷ
(1)
ij bij +

∑
(j,s)∈A1

djs + dj1s1 ,

(16)

f(A2) =

N∑
i=1

N∑
j=1

wiy
(2)
ij bij +

∑
(j,s)∈A2

djs, (17)

f(A2 ∪ {(j1, s1)}) =

N∑
i=1

N∑
j=1

wiŷ
(2)
ij bij +

∑
(j,s)∈A2

djs + dj1s1 ,

(18)

Then, we obtain:

LHS of (14) =

N∑
i=1

N∑
j=1

wi(ŷ
(1)
ij bij − y

(1)
ij bij) + dj1s1 , (19)

RHS of (14) =

N∑
i=1

N∑
j=1

wi(ŷ
(2)
ij bij − y

(2)
ij bij) + dj1s1 . (20)

The first items in (19) and (20) are the negative decrement
values in communication cost before/after deploying the
edge node s1 on traffic station rj1 , respectively. After adding
(j1, s1) to A1, the communication cost reduction can be di-
vided into two parts. First, consider some ri2 in the coverage
of rj1 . If the data at ri2 is originally transmitted to rj2 in data
allocation y(1) and the communication cost bi2j1 to rj1 is
lower than bi2j2 , the communication cost can be reduced by
redirecting the data at ri2 to rj1 . Second, the edge nodes in
rj2 may be fully-loaded in A1 and after the redirection, we
may redirect the data at other traffic stations to rj2 , which
can reduce the communication cost. The operation in the
second part may be iteratively completed.

Consider some data transmission from ri′ to rj′ in
y(1) that is redirected after adding (j1, s1) to A1. Since
that A2 \ A1 may contain some (j3, s3) and the commu-
nication cost bi′j3 may be lower than bi′j′ , cost reduction
caused by (j1, s1) can be lower in ŷ(2) than ŷ(1). Thus,
the communication cost decrement caused by (j1, s1) un-
der A2 is lower than the cost decrement under A1. So∑N
i=1

∑N
j=1 wi(ŷ

(1)
ij bij − y

(1)
ij bij) ≤

∑N
i=1

∑N
j=1 wi(ŷ

(2)
ij bij −

y
(2)
ij bij). The second item in (19) and (20) is the same.

Therefore, (14) holds and the lemma is proved.

We note that whether function f(A) (A ⊆ G) is mono-
tone or not is unknown, and the reason is as follows. On one
hand, if adding more elements into a feasible set A ⊆ G, the
only affected constraint (12) in problem P0 will be relaxed
and the feasible solution region of the LP problem for y will
be expanded, which results in the decreased optimal value.
This implies that the first part of the objective function of
the sub-problem A decreases with the increase of a bigger
set. On the other hand, adding more elements into A will
inevitably incur greater placement cost, which leads to an
increase of the second part in the objective function of the
sub-problem A. As the increase of a feasible set has an
opposite trend in the two parts, the monotonicity of the
function f(A) is difficult to determine.

Remark 1. The monotonicity of function f(A) is unknown.

Lemma 3. Let G := {(j, s)|∀j ∈ N , s ∈ S} and I := {A|A ⊆
G,∀a1 := (j1, s1), a2 := (j2, s2) ∈ A, s1 6= s2}. Then, the
constraint (13) in problem P0′ is a partition matroid constraint.

Proof. We first prove that the constructed pair (G, I) is a
matroid. We assume that there are at least two traffic stations
and two available edge nodes in the problem, i.e., N ≥ 2
and S ≥ 2; otherwise, solving the problem is trivial. In the
following, we prove the three properties of a matroid by
Definition 2 one by one. First, the nonempty property of I
is easy to validate due to the previous assumption. Second,
if A ⊆ B ∈ I , we have A ∈ I . If not, there exist at least two
different elements a1, a2 ∈ A that share the same second
component. SinceA ⊆ B, a1, a2 ∈ B holds, which obviously
contradicts with B ∈ I .

Third, suppose that A,B ∈ I and |A| < |B|. If there
does not exist an element a′ ∈ B such that A ∪ {a′} ∈ I ,
we have for any element a′ ∈ B, A ∪ {a′} /∈ I holds.
Since A ∈ I , each element in B shares the same second
component with some element in A. Due to |A| < |B|,
there exist at least two different elements a1, a2 ∈ B and
an element a′ ∈ A, whose second component is exactly
identical. This means that a1, a2 share the same second
component, which contradicts with B ∈ I . Therefore, (G, I)
is indeed a matroid.

We further prove that (G, I) under the constraint (13) is
a partition matroid. Since set G captures all possible traffic
station-edge node pairs, we have G =

⋃S
s=1 Gs where Gs :=

{(j, s)|j = 1, 2, ..., N}. Combing with the meaning of the
constraint (13) and the definition of I , we have, for ∀A ∈ I ,
|A ∩ Gs| ≤ 1 holds for s = 1, 2, ..., S. To summarize, (G, I)
is a partition matroid. The lemma is thus proved.

Theorem 1. Both the sub-problem A and P0′ are NP-hard.

Proof. We prove the theorem by proving the NP-hardness
of problem P0′ only, due to the equivalence of problem
P0′ and the sub-problem A. Based on Lemma 2 and
Lemma 3, problem P0′ is a non-negative supermodular
minimization problem with a single matroid constraint, i.e.,
Min∀A⊆G,A∈If(A). Note that Min∀A⊆G,A∈If(A) is equiva-
lent to Max∀A⊆G,A∈I − f(A), which is a submodular maxi-
mization problem. As is known to all, different from sub-
modular minimization, submodular maximization is NP-
hard, including the case with a matroid constraint [24].
Therefore, problem P0′ is NP-hard, which also establishes
the NP-hardness of the sub-problem A.

4.1.2 Local Search-based Suboptimal Deployment
In light of Lemma 2 and Remark 1, −f(A) is negative

and submodular with unknown monotonicity. There exists
a ( 1

4+ε )-approximation algorithm for maximizing a non-
negative submodular but not necessarily monotone function
subject to a single matroid constraint [24]. To apply that ap-
proach, we need to first transform the objective function into
an appropriate non-negative function, i.e., f̃(A) := fmax −
f(A), where fmax :=

∑N
i=1

∑N
j=1 wibij +

∑S
s=1

∑N
j=1 djs.

Inspired by [24], we design a local search-based suboptimal
edge node placement algorithm with performance guaran-
tee as illustrated in Algorithm 1.
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Algorithm 1: Local Search-based Suboptimal Edge
Node Deployment Algorithm.

Input: Set G = {(j, s)|∀j ∈ N , s ∈ S}, matroid (G, I), value
access to function f̃(A), and constant ε > 0.

Output: Edge node placement x = {xjs}, traffic data
allocation y = {yij}.

1 Initialize x = 0, y = 0.
2 Initialize a feasible set A ⊆ G.
3 while 1 do
4 if there exists e ∈ A such that

f̃(A \ {e}) ≥ (1 + ε
N4S4 )f̃(A) then

5 A ← A \ {e}.
6 else if there exist e ∈ G \ A, e′ ∈ A ∪ {∅} such that

(A \ {e′}) ∪ {e} ∈ I and
f̃((A \ {e′}) ∪ {e}) > (1 + ε

N4S4 )f̃(A) then
7 A ← (A \ {e′}) ∪ {e}.
8 else
9 break

10 Set all xjs = 1 if u = (j, s) ∈ A.
11 Solve problem P0 with the input of x to obtain y, and return

x and y.

We introduce the steps of Algorithm 1 in detail as fol-
lows. First, line 1 initializes x and y as 0, and corresponding
set A as an empty set, respectively. Second, line 2 finds a
feasible set A ⊆ G. Third, in lines 3-7, we employ local
search on G running both deletions (lines 4-5) and exchanges
(line 6-7) to obtain a set A ⊆ G, A ∈ I , such that the value
of f̃(A) can be increased by a factor of at least (1 + ε

N4S4 )
at each iteration. Last, in lines 10-11, the algorithm outputs
the edge node placement decision x whose value of each
element is determined based on the chosen set A, and the
traffic data allocation decision y by solving problem P0
with the input of x.

The performance guarantee of Algorithm 1 as well as its
time complexity are theoretically analyzed as follows.

Theorem 2. Let (x,y) and (x∗,y∗) be the output of Algorithm 1
and the optimal solution of the sub-problem A, respectively. Then,
we have

Ω(x,y) ≤ 1

4 + ε
Ω(x∗,y∗) +

3 + ε

4 + ε
fmax, (21)

where Ω(·, ·) is the objective function of the sub-problem A,
ε > 0 is the parameter determined by Algorithm 1, and
fmax =

∑N
i=1

∑N
j=1 wibij +

∑S
s=1

∑N
j=1 djs. Furthermore, the

time complexity of Algorithm 1 is polynomial.

Proof. This theorem is a corollary of Theorem 2.6 in [24],
which proves that there exists a 1

4+ε -approximation algo-
rithm for maximizing any non-negative submodular set
function subject to a matroid constraint. By applying the lo-
cal search algorithm following that theorem, Algorithm 1 ac-
tually designs an approximation algorithm for the problem
Max∀A⊆G,A∈Ifmax− f(A), where set A is obtained by Algo-
rithm 1. In light of that theorem, we have fmax − f(A) ≥
1

4+ε [fmax − f∗], where f∗ is the optimal objective value of
problem P0′. Remember that the relationship between f(·)
and Ω(·, ·) and by some operations, we have the inequality
as presented in the theorem. For the time complexity, it can
be analyzed similar to Theorem 2.6 in [24], which is omitted
here. The theorem is thus proven.
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Fig. 7: Low-rank analysis of traffic volume matrix based on SVD
in terms of temporal and spatial dimensions.

4.2 Accurate Traffic Data Recovery based on Low-rank
Theory

4.2.1 Experimental Analysis of Low Rank
1) According to the experimental explorations in Sec. 2.2,

the traffic data in the ITSs has the temporal correlation at
different time and the spatial correlation on different traffic
stations. Thus, we further evaluate whether the rank of
traffic volume matrix (V) is low in terms of temporal-spatial
dimensions, by using Singular Value Decomposition (SVD)
as Def. 4.

Definition 4. (Singular Value Decomposition, SVD) For any
m× n matrix denoted by V, the SVD is a factorization of V as:

V = Um×mΣm×nΞ∗n×n (22)

where Σ =


σ1

. . .
σi

. . .

 .
Note that Σ in Eq. (4) is a diagonal matrix. Moreover, σi (∀i ∈
{1, . . . ,min (m,n)}, σi ≥ 0) is named as the singular value of
V, and σi ≤ σj if ∀i, j ∈ {1, . . . ,min (m,n)} and i < j.

According to Def. 4, we conduct experiments to analyze
the low rank of traffic volume matrix at different time and
traffic stations, respectively. Firstly, we analyze its property
of low rank in terms of temporal dimension. Specifically, we
make the SVD of the traffic volume matrix on the stations
A-D, where this matrix represents the data of all the weeks
on a traffic station and each row denotes that of each week.
Fig. 7a illustrates that the singular values mainly concentrate
on a very limited number of elements. For example, few
singular values (no more than 2) are far larger than others
for all of these four stations. Furthermore, we analyze the
low-rank property of the traffic volume matrix in the spatial
dimension. This matrix represents the traffic volume of 25
stations, where each row denotes the data of one station at
different time. As illustrated in Fig. 7b, similar to Fig. 7a, the
weights of singular values also focus on a few elements in
terms of spatial dimension.

In summary, the above experimental results indicate that
the weights of singular values mainly concentrate on a very
limited number of elements, in terms of both the temporal
and spatial dimensions. According to the theorem of matrix
rank [25], [26], if the weights of singular values for a matrix
focus on very few elements, this matrix is approximately
low rank. As a result, the matrix of traffic volume in terms of
both temporal and spatial dimensions is roughly low-rank.
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4.2.2 Accurate Traffic Recovery based on Low-rank Theo-
rey

Based on the experimental analysis in Sec. 4.2.1, the traf-
fic volume matrix V is approximately low-rank in terms of
the temporal-spatial dimensions.According to the theorem
of low-rank theory [27], if the matrix M is approximately
low-rank and satisfies that the number of randomly sam-
pled entries is large enough, we can find a low-rank decision
matrix Θ to approximately replace V. Thus the sub-problem
B in Eqs. 7-11 transform will be transformed into the low-
rank minimization problem as

min rank(Θ) (23)
s.t. Θij = Vij , (i, j) ∈ Ω. (24)

where rank(·) denotes the function of computing the matrix
rank, i.e., the number of non-zero singular values, and Ω is
the set of index pairs for both Θ and V.

This low-rank minimization problem in Eq. 23 is NP-
hard, due to the combinational property of the function
rank(·). Thus, it can be equivalently relaxed as Eq. 25 by
using the nuclear norm ‖·‖∗ and the `2-norm || · ||2 [28].

min λ‖Θ‖∗ +
1

2
||A(Θ)− b||22, (25)

‖Θ‖∗ =

min (m,n)∑
i=1

σi(Θ), (26)

where λ denotes the weight factor to trade off between the
nuclear norm and equality constraint Eq. 24. The linear map
A : Rm×n → Rp and vector b ∈ Rp describe that the
observed elements in Θ are equal to the elements having
same positions in V . ‖Θ‖∗ in Eq. 25 denotes the sum of
all the non-zero singular values of Θ. The minimization
of the nuclear norm and square of `2-norm is a convex
optimization problem [29]. Thus, we equivalently transform
the accurate traffic recovery problem, which is an intractable
NP-hard one, into a tractable convex optimization problem
as in Eq. 25.

To address this convex optimization problem, we exploit
Fixed Point Continuation (FPC) iterative scheme [30] to
achieve the optimal solution via limited iterations. FPC
algorithm is comprising of two key ideas: the fixed-point-
based iterative scheme and the continuation-based acceler-
ated convergence strategy [31].
• Fixed-point-based iteration. It iteratively searches the

fixed point, which is also the optimal solution of the
convex optimization problem [29]. Specifically, for any
ε > 0, let the matrix shrinkage operator sε(υ) = x,
where xi = υi − ε if υi − ε > 0; otherwise, xi = 0.
In each iteration, it updates the new solution based on
the previous one, using the matrix shrinkage operator.
Let Θk denote the current solution of the k-th iteration.
Then, the new solution of the (k + 1)-th iteration (i.e.,
Θk+1) is:

Θk+1 = UY Diag(sτλ(σ))ΞTY , , (27)

where Yk = Θk − τg(Θk). (28)

Note that τ is a positive constant, and UY , ΞY , σ come
from the SVD of Y, i.e., Y = UY Diag(σ)ΞT

Y. g(Θk)
represents the gradient of 1

2 ||A(Θ)− b||22 at Θk.

• Continuation-based convergence acceleration. Ac-
cording to the convergence analysis [30], the speed of
convergence is determined by the acceleration factor
ζ , i.e., λk+1 = max{ζkλk, λ̄}. The smaller ζ is, the
faster λ reduce. Thus, the Continuation-based conver-
gence strategy is used for accelerating the convergence.
Specifically, in the outer iteration, we iteratively select
the λ in the ascending sequence, which is then used to
search the fixed point in the inner iterations.

Algorithm 2: FPC-based Accurate Traffic Data Re-
covery Algorithm.
1 Initialize: Given vci , select ζ1 > 0, ζ2 > 0, . . . , ζn > 0, λ̄ > 0,

λ1 > λ2 > . . . > λn = λ̄. Set Θ = vci .
2 for λ = λ1, λ2, . . . , λn and λk+1 = max{ζkλk, λ̄}, do
3 while NOT converged, do
4 Select τ > 0;
5 Compute Y = Θ− τg(Θ) and SVD of Y, where

g(Θ) = ∇( 1
2
||A(Θ)− b||22);

6 Compute Θ = UY Diag(sτλ(σ))ΞTY .

7 Return v̂ci .

5 TRACES-BASED EVALUATIONS

In this section, we conduct extensive experiments based
on an empirical traffic dataset from a large-scale, real-
world ITS. Specifically, we evaluate the performance of
GTR from two important perspectives, i.e., the cost of edge
deployment and the accuracy of traffic data recovery. In the
following subsections, we first describe the traffic dataset
and experimental methodologies, including experimental
settings, baseline methods, and evaluation metrics. Then,
we present the experimental results with analysis on edge
nodes deployment and traffic data recovery.

5.1 Experimental Methodology and Settings

5.1.1 Datasets and Experimental Methodology
1) Description of large-scale ITS dataset: This traffic

volume dataset is collected from an online Traffic Volume
Viewer System (TVVS), which is established by the Trans-
portation Department of New South Wales, Australia [3].
The data of traffic volume is generated by permanent and
temporary roadside collection stations that monitor the
number of passing vehicles on each road with calculation
on the one-hour interval [4]. As shown in Fig. 1, the whole
dataset covers more than 600 traffic stations that are dis-
tributed across most areas in the state of New South Wales.
For our experimental studies, we collect 12-month (e.g., from
January 2018 to December 2018) traffic data from 100 major
traffic stations.

2) Experimental methodology and settings: To evaluate
the performance for edge node deployment, we extract
the workload and navigation distance between different
traffic stations from the traffic dataset. For the number of
stations N , we consider two network scenarios, i.e., a large
network with N = 100 and a small network with N = 10.
In the large network, we deploy 20 edge nodes and the
capacity of each node is drawn uniformly from the interval
[100k, 140k]. In the small network, we deploy 4 edge nodes
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Fig. 8: Total cost with different number of edge nodes in the
small-scale and the large-scale scenarios.
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Fig. 9: Total cost with different workload scale in the small-scale
and the large-scale scenarios.

and the capacity of each node is drawn uniformly from the
interval [60k, 70k]. We assume that the communication cost
is proportional to the navigation distance between different
traffic stations. The deployment cost djs is drawn uniformly
from the interval [17888, 35776]. Besides, the coverage of
each traffic station is 2.4 km, which indicates that the traffic
data at each traffic station can only be allocated to other
traffic stations within this coverage.

To evaluate the performance of traffic data recovery, we
randomly select N stations from the traffic dataset to form
a traffic volume matrix for data recovery. Thereby, we set
one random station as the target station for data recovery
and generate missing values (with a length of L) in its
traffic volume matrix. By applying GTR and other baseline
methods to recover the incomplete traffic volume matrix,
we compare their performance with different experimental
settings.

5.1.2 Baseline Methods and Evaluation Metrics

1) Baseline methods: To make a comprehensive study
on the performance of GTR in edge node deployment, we
make comparisons with four baseline methods as follows.
• Brute-Force: This algorithm finds the optimal deploy-

ment solutions by exhaustive search over all the pos-
sible deployment decisions. Nevertheless, its computa-
tional complexity is extremely high owing to NP-hard,
making it impossible for large-scale scenarios.

• Random: It randomly selects a traffic station from all
possible stations to deploy an edge node.

• Heuristic: It greedily deploys the server with largest
capacity at traffic stations that can cover the most traffic
data.

• LPR: This algorithm uses the LP Relaxation to get the
sub-optimal and fractional solution [32].

To compare the performance in traffic data recovery, we
further employ three baseline methods in evaluations of
recovery accuracy as follows.
• LR(T): As the simplest baseline, LR(T) method uses the

linear regression scheme to recover the missing data
of a station by using its remaining data with temporal
correlation.

• LR(TS): This method exploits temporal and spatial
correlations between a target station and its nearby
stations. In other word, it collaborates multiple stations
to recover missing data of a target station by using
linear regression.

• SVT [33]: The Singular Value Thresholding algo-
rithm (SVT) is based on low-rank minimization, which

iteratively conducts soft-thresholding operations on the
singular values of the target matrix until convergence.

2) Evaluation metrics: For the above experimental stud-
ies, we adopt four metrics to evaluate the algorithm per-
formance,i.e.,Total Cost, Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Squared Er-
ror (RMSE). In specific, Total Cost is the sum of deployment
cost and communication cost as defined in Eq. (1). We use
the Total Cost to evaluate the cost-efficiency of proposed
GTR in edge node deployment. MAE is a measurement
of the average absolute error between recovery results and
ground truth of traffic data, as defined in Eq. (29). MAPE
expresses the accuracy as a percentage ratio by measuring
the average ratio of the recovery error to the ground truth, as
defined in Eq. (30). RMSE is the square root of the average
squared error between the recovered values and ground
truth of traffic data, as defined in Eq. (31). Note that MAE,
RMSE, and MAPE have been widely employed to evaluate
the recovery accuracy [34]. Moreover, both of MAE and
RMSE are scale-dependent metrics, while MAPE is scale-
independent.

MAE =
1

NT

N∑
i=1

T∑
t=1

∣∣∣vi(t)− v̂i(t)∣∣∣, (29)

MAPE =
1

NT

N∑
i=1

T∑
t=1

∣∣∣vi(t)− v̂i(t)
vi(t)

∣∣∣, (30)

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(
vi(t)− v̂i(t)

)2
, (31)

where N denotes the number of stations with incomplete
data, and T represents the total length of missing data.

5.2 Experimental Results

1) Evaluations of edge nodes deployment: We conduct
the traces-based simulations to validate the deployment
performance of GTR in different number of edge nodes, the
workload scale, and the edge capacity.

First, we evaluate the impact of the number of edge
nodes on the deployment performance in both small-scale
and large-scale network scenarios. As shown in Fig. 8, our
algorithm outperforms other baseline methods in terms of
deployment cost. In contrast to Brute-Force method per-
forms computation-intensive search, GTR employs efficient
local search and still achieves a sub-optimal results by
increasing the cost just 5.7% above the optimal one. In the
small network scenario, our algorithm achieves more than
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Fig. 10: Total cost with different node capacity in the small-scale
and the large-scale scenarios.
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Fig. 11: Evaluations of recovery accuracy in different number of
stations, in terms of MAE and RMSE.

94.3% of Brute-Force. The result shows that in small net-
works, our algorithm outperforms Random, Heuristic and
LPR on average by 37.90%, 13.71%, and 27.63% in Fig. 8a,
respectively. In the large network scenario, Fig. 8b shows
that our algorithm outperforms Random, Heuristic and LPR
by 48.80%, 45.21%, and 27.44% on average, respectively.

Second, as illustrated in Fig. 9, we vary the workload
scale (i.e. the scaling ratio of while keeping the workload
distribution as the same). In the small networks, Fig. 9a
shows our algorithm outperforms Random, Heuristic, and
LPR on average by 43.24%, 22.40%, and 29.37%, respectively.
In the large networks, as demonstrated in Fig. 9b, our algo-
rithm outperforms Random, Heuristic and LPR by 52.99%,
47.90%, and 32.78%, respectively. Furthermore, as shown in
Fig. 9a, our algorithm achieves approximation performance
of more than 94.6% of Brute-Force in the small scenario.

Finally, we change the capacity of edge nodes in both
network scenarios, as illustrated in Fig. 10. The results in
Fig. 10a show that our algorithm achieves more than 94%
of optimal performance in the small network scenario. Also,
GTR outperforms Random, Heuristic, and LPR on average
by 43.31%, 22.61%, and 29.73% in the small networks, re-
spectively, while 62.12%, 46.24%, and 47.20% in the large
networks, respectively, as shown in Fig. 10a and Fig. 10b.

2) Evaluations of traffic recovery: We further conduct
traffic data recovery experiments based on TVVS dataset,
to evaluate the recovery performance of proposed GTR
with different numbers of selected stations and different
lengths of missing traffic data. In specifical, we randomly
set one station (for example, station 13) as the recovery
target. Considering the geospatial factor, we further select
N adjacent traffic stations together with the target station to
form the traffic volume matrix. By placing the traffic data of
the target station in the first row of this matrix, we randomly
generate L missing data points in the target station for
recovery. Subsequently, we implement and test GTR and
three baselines methods for data recovery by using using
different numbers of stations to recovery target station. We
run each experiment for 20 times and use the averaged
performance as the final results.

First, as shown in Fig. 11, we evaluate the impact of
missing data (i.e., length of missing data points in the target
station) on the recovery accuracy. We set a random station as
recovery target and select 10 adjacent traffic stations to form
the traffic volume matrix. Differently, we vary the length
of missing data L from 1 to 16 and use all 10 stations
to recover these missing data. As illustrated in Fig. 11a,
Fig. 11b and Fig. 12a, the values of all evaluation metrics by

different methods show a general ascending trend. This is
the evidence to suggest that the recovery difficulty increases
with the growing length of missing data. Despite that,
the proposed GTR still preserves a robust performance in
recovering traffic data, with the averaged MAE at 20, MAPE
at 25 and MAPE at 10%. In contrast, SVT only maintains
the high-accuracy performance before the length of missing
data reaches 11. Similarly, LR(TS) shows linear descent in re-
covery accuracy when the number of missing data is larger.
LR(TS) initially outperforms GTR and SVT when the length
of missing data is below 7, as this method jointly consider
spatial and temporal correlations in data recovery. However,
the performance of LR(TS) is highly affected and degrades
by the length of missing data, as its MAE, RMSE, and MAPE
linearly grow with greater length of missing data. At last,
the LR(T) method performs the worst in recovering traffic
data across all conditions of missing data, resulting in an
averaged MAE of 150, RMSE of 175 and MAPE of 60%.

Second, we evaluate the impact of the number of sta-
tions on the recovery accuracy. Empirically, more sufficient
nearby traffic volume data would help algorithms to recover
missing data more accurately. As shown in Figs. 13a, 13b
and 13c, the recovery accuracy in MAE, RMSE and MAPE
change with different methods with different numbers of
stations. Overall, with a larger number of traffic stations
involved in data recovery, the recovery accuracy of all
methods gradually improves. In specific, as LR(T) only
performs first-degree polynomial fitting, it shows no sig-
nificant enhancement with an unsatisfactory accuracy with
MAE around 125, RMSE around 140 and MAPE around
45% across Fig. 13a to Fig. 13c. Meanwhile, LR(TS) exploits
temporal-spatial correlations in traffic data and shows grad-
ual improvement. With the increasing number of stations,
LR(TS) outperforms LR(T) with the final MAE at 55, RMSE
at 70 and MAPE at 25%. However, LR(TS) shows poor con-
vergence with huge random variations and its performance
is instable especially when the number of selected stations
is below 5.

The proposed GTR and SVT algorithm are based on low
rank minimization and they show significant superiority
over linear regression methods in recovery accuracy and
efficiency. For instance, by only using traffic data from two
more stations for recovery (total number of stations as 3),
GTR and SVT can achieve remarkable high-accuracy in
data recovery, reducing both MAEs and RMSEs to around
50 and MAPE to below 20%. Moreover, both GTR and
SVT exhibit notable convergence in data recovery, with all
three evaluation metrics gradually decrease to lower values.
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Fig. 13: Evaluations of recovery accuracy in different number of traffic stations, in terms of
MAE, MRSE and MAPE.

Ultimately, when the number of traffic station is 10, GTR
achieves the best recovery accuracy with MAE at 25, RMSE
at 33 and MAPE at 8%.

In summary, the above experimental results further vali-
date the effectiveness and efficiency of GTR in recovering
traffic data. In comparison with baseline methods, GTR
achieves remarkable improvement in recovery accuracy by
only using 3 selected nearby stations, which could essen-
tially reduce the computation overhead. Also, the perfor-
mance of GTR is stable and robust, making it scalable to
recover traffic data in different conditions.

6 RELATED WORK

6.1 Traffic Data recovery in ITSs

With the pervasive deployment of large-scale intelligent
transportation systems, missing data has become a ubiqui-
tous and serious issue that directly influences the perfor-
mance and integrity of ITSs. Therefore, numerous research
works have devoted to recover accurate and complete traffic
data with different methods [35]. For instance, Tak et al. [36]
presented a modified k-Nearest-Neighbor method to impute
the missing data in sectional units of road links. Moreover,
Tang et al. [37] proposed a joint modeling framework to infer
citywide traffic volume with GPS trajectory data and traffic
counting data generated by surveillance cameras. Likewise,
Chen et al. [38] leveraged parallel data paradigm (using
real data and synthetic data) with Generative Adversarial
Networks (GANs) to enhance traffic data mining and re-
covery. As traffic data is naturally spatial and temporal cor-
related across transportation networks, the spatio-temporal
patterns have been further exploited for data recovery. As
an example, Wang et al. [39] reconstructed the missing
traffic data with low-rank matrix factorization, and further
added a Laplacian regularization constraint to capture the
spatiotemporal characteristics in the traffic data. Besides,
Chen et al. [40] formulated the traffic data recovery as a
high-dimensional problem of tensor completion and they
adopted singular value decomposition to capture latent
features to achieve robust recovery. More recently, multi-
view learning methods have been proposed to fuse different
data-driven algorithms and multiple data sources for traffic
data estimation [41], [42].

Distinguished from above existing works, we are mo-
tivated to deliver real-time city-wide traffic data recovery
system, thereby integrating the edge computing technique
for traffic data processing. Our solution not only addresses
the recovery accuracy of traffic data but also targets the

optimal deployment of edge nodes for high-efficiency data
processing.

6.2 Nodes Deployment in Edge Computing
Overall, our proposed system investigates the problem

of how to deploy the edge nodes in the edge computing
environment for traffic data management and recovery.
There are many studies about the edge node deployment
in edge computing, in which the most relevant studies
are about cost minimization for edge node deployment in
Mobile Edge Computing (MEC) [32], [43]–[48]. Caselli et
al. [32], [43] studied how to deployment edge nodes for
mobile networks to minimize the overall deployment cost
by jointly optimizing edge node placement and routing
schedule. Moreover, the references [46]–[48] focused on
how to minimize the edge node deployment cost under
the capacity and latency constraints, while Fan et al. [44]
investigated how to tradeoff between the deployment cost
and end-to-end latency for users. However, most of the ex-
isting studies consider the edge node deployment cost only,
without considering the communication cost in ITSs. In our
work, the incurred communication cost is non-negligible,
since the traffic data collection in ITSs may consume large
amounts of communication resources such as bandwidth.
Therefore, the existing works cannot be applied to solve our
problem.

7 CONCLUSION

In this paper, we propose GTR , an edge computing-
empowered traffic data recovery system leveraging low-
rank theory. First, we conduct experimental explorations
based on large-scale traffic volume dataset of ITSs. The
results uncover the serious issue of missing traffic data,
while revealing its spatiotemporal correlations. Inspired by
these observations, we propose a suboptimal edge node
deployment algorithm with performance guarantee, and an
accurate traffic data recovery scheme based on low-rank
theory. Extensive theoretical analyses and traces-based eval-
uations demonstrate the performance of GTR outperform
five baseline methods. In the future, we will explore the
impacts of the data recovery performance on the edge node
deployment, then improve the system design.

REFERENCES

[1] Chuishi Meng, Xiuwen Yi, Lu Su, Jing Gao, and Yu Zheng. City-
wide traffic volume inference with loop detector data and taxi
trajectories. In Proc. ACM SIGSPATIAL, pages 1–10, 2017.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 13

[2] Yanyan Xu, Qing-Jie Kong, Reinhard Klette, and Yuncai Liu. Accu-
rate and Interpretable Bayesian MARS for Traffic Flow Prediction.
IEEE Transactions on Intelligent Transportation Systems, 15(6):2457–
2469, 2014.

[3] System of traffic volume viewer. Website. https:
//www.rms.nsw.gov.au/about/corporate-publications/
statistics/traffic-volumes/aadt-map/index.html.

[4] Traffic volume viewer. Website. https://www.rms.nsw.gov.au/
about/corporate-publications/statistics/traffic-volumes/index.
html.

[5] Qu Li, Li Li, Zhang Yi, and Jianming Hu. Ppca-based missing
data imputation for traffic flow volume: A systematical approach.
IEEE Transactions on Intelligent Transportation Systems, 10(3):512–
522, 2009.

[6] Daiheng Ni, John D Leonard, Angshuman Guin, and Chunxia
Feng. Multiple imputation scheme for overcoming the missing
values and variability issues in its data. Journal of transportation
engineering, 131(12):931–938, 2005.

[7] Xianyuan Zhan, Yu Zheng, Xiuwen Yi, and Satish V Ukkusuri.
Citywide traffic volume estimation using trajectory data. IEEE
Transactions on Knowledge and Data Engineering, 29(2):272–285, 2016.

[8] Abbas Mehrabi, Matti Siekkinen, and Antti Yla-Jaaski. Edge
computing assisted adaptive mobile video streaming. IEEE Trans-
actions on Mobile Computing, 18(4):787–800, 2019.

[9] Pavel Mach and Zdenek Becvar. Mobile Edge Computing: A
Survey on Architecture and Computation Offloading. IEEE Com-
munications Surveys and Tutorials, 19(3):1628–1656, 2017.

[10] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile
Edge Computing: A Survey. IEEE Internet of Things Journal,
5(1):450–465, 2018.

[11] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and
Khaled B Letaief. A survey on mobile edge computing: The com-
munication perspective. IEEE Communications Surveys & Tutorials,
19(4):2322–2358, 2017.

[12] Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, Linhong Zhu,
Rose Yu, and Yan Liu. Latent Space Model for Road Networks to
Predict Time-Varying Traffic. In Proc. ACM KDD, pages 1525–1534,
2016.

[13] Zimu Zheng, Dan Wang, Jian Pei, Yi Yuan, Cheng Fan, and
Fu Xiao. Urban traffic prediction through the second use of
inexpensive big data from buildings. In Proc. ACM CIKM, pages
1363–1372, 2016.

[14] Teresa Pamuła. Impact of data loss for prediction of traffic flow
on an urban road using neural networks. IEEE Transactions on
Intelligent Transportation Systems, 20(3):1000–1009, 2018.

[15] Ankur Sarker, Haiying Shen, and John A Stankovic. Morp: data-
driven multi-objective route planning and optimization for electric
vehicles. Proc. ACM UbiComp, 1(4):162, 2018.

[16] Public Holidays Global. Australia public holidays. Website. https:
//publicholidays.com.au/zh/anzac-day/.
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