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ABSTRACT

Intelligent Machine Learning Architecture for Detecting DDoS attacks

in IoT networks

by

Yahya Sulaiman Al-hadhrami

The Internet of Things (IoT) is growing rapidly across a wide range of appli-

cations; one example of such an application is the smart city, in which a city’s in-

frastructure, such as road management, building automation, and people and crowd

surveillance, is connected to the Internet. Such applications are being extended

to factories, smart agriculture, and even smart devices, which are becoming very

common. The rapid growth in the IoT has driven other technologies, such as 5G

networks, to grow rapidly to adjust to the sheer number of devices connected to

the Internet, and these technologies are expected to further expand the spread of

the IoT. However, the existing IoT deployment does not come without challenges,

including the large number of connected devices, security issues, and a variety of

new standards. From a security perspective, IoT faces a growing threat when it

comes to the availability of networks. Distributed denial of service (DDoS) attacks

are one well-known threat. However, investigation of the literature shows a lack of

solutions with which to tackle DDoS attacks in the IoT.

To address this gap in the literature, this thesis proposes an intelligent machine-

learning-based platform that can detect denial-of-service attacks, termed IDD-IoT.

The proposed platform consists of several components, including building a real-

time dataset generation framework to generate IoT-based datasets (IoT-DDoS) to

detect malicious attacks in the IoT, allowing scientists and researchers in the field

to further enhance intrusion detection systems with an up-to-date dataset. The



platform then builds on the dataset generation framework, developing an intelligent

machine-learning-based framework for detecting three kinds of IoT-DDoS attacks:

blackhole, selective forwarding, and flooding attacks. We utilize this framework to

build a novel advanced intrusion detection system (IDS) for IoT networks capable of

analyzing and detecting DDoS attacks. The IDS consists of a real-time monitoring

and analysis unit capable of monitoring traffic in real time with the assistance of an

IDS agent that works as a communication link between the IDS and IoT network.

We show that our proposed intelligent framework can efficiently detect malicious at-

tacks in respect to security goals such as confidentiality, privacy, and availability, by

building an emulated smart IoT environment using the Cooja simulation platform,

and we evaluate its performance. Finally, we present the simulation and evolution

results to highlight the proposed platform’s efficiency, taking into consideration the

limitations associated with resource-constrained devices.

thesis directed by Associate Professor Farookh Hussain

School of Computer Science

Faculty of Engineering and Information Technology (FEIT)
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Chapter 1

Introduction

Technology is becoming faster and devices smaller each day with a move toward an

always-connected model. This revolution means all devices are able to communicate

with each other and construct the future internet. This new concept of the future

internet is known as the Internet of Things (IoT). IoT is an inter-network of numer-

ous information-sensing objects and services such as infrared sensors, laser scanners,

gas indicators, radio frequency identification devices (RFIDs), and global position-

ing systems (GPS) that can communicate and share information among themselves

in different areas of application. Every device, from a cell phone to a car, an alarm

clock to a coffee machine, is becoming connected to the internet with advancements

in IP addressing schemes. IoT integrates physical things into an information net-

work, and physical devices sense properties such as sound, light, heat, location, etc.

and send this data for further processing to a central information network [1].

Today, IoT has several implementation domains, such as environmental, energy,

transportation, healthcare, retail, and military. With the rapid IoT adoption, se-

curity issues are also emerging due to its heterogeneous nature. Current IoT secu-

rity issues include privacy protection, heterogeneous network authentication, access

control, information storage and management issues, and more. These issues can

be broadly classified as communication, distributed denial-of-service (DDoS), node

compromise, impersonation, and protocol-specific attacks. DDoS attacks block the

service provided by one or more IoT devices behaving maliciously, thereby disabling

the network. Therefore, the IoT infrastructure must detect and analyze DDoS at-

tacks properly and swiftly and immediately take the necessary security measures.

The rest of the chapter is organized as follows. Section 1.1 gives a brief overview

of IoT and its associated security requirements. In section 1.2, the significance of this
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thesis is explained. The structure of the thesis is presented in section 1.3. Finally,

this chapter is concluded in section 1.4.

1.1 Background

Note: Some parts of this section have already been submitted to the WWW

journal, and it is in its second stage of review [2].

IoT devices and platforms have been growing rapidly in the last few years, and

studies have shown that more than 20 billion devices will be connected to the internet

by the end of 2020. The unique feature of the growth of these devices is their diversity

of applications, ranging from a simple application like a coffee machine connected to

the internet to a very complicated mesh of sensors used for industrial purposes. Over

the years, IoT has grown to play a significant role in applications such as healthcare

and minimizing traffic using the concept of connected vehicles [3].

The accessibility and affordability of IoT devices does not come without con-

sequences, with security being one of the significant consequences of such systems.

Due to the lack of a standard architecture for IoT networks and devices, security

suffers the most in this heterogeneous network of things [3]. Different vendors have

various architecture and protocols; therefore, applying traditional security measures

will not deliver the expected result. Moreover, due to the constraints which will be

covered in section 1.1, the conventional methods are not applicable due to their high

computing needs and resource requirements. In this study, we focus on a security

solution based on the systems that have been implemented in the context of IoT

devices and networks.

1.1.1 Security Requirements and Goals

Different security protocols are required to achieve a holistic security solution.

The commonly used security and assurance model is the CIA triad model, which

consists of three requirements:

1. Confidentiality: Ensuring sensitive data is protected from unauthorized en-

tities either when the data is in transit or at rest [4]. IoT devices IoT devices
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can be used to collect sensitive data, as in the healthcare system, where per-

sonal information about the patient is critical and might be life-threatening.

In such scenarios, confidentiality is crucial and must not be taken lightly.

2. Integrity: Data can be altered when transmitted to the receiver, making the

IoT unreliable. Ensuring integrity between IoT devices is essential in most

scenarios and applications. The alteration and modification of data while in

transit can lead to serious negative consequences in some IoT applications,

such as in the health sector where the manipulation of sensitive data, e.g.

(blood pressure, heart rate, etc.) could mean life or death for the patients.

3. Availability: This is one of the essential security goals as it ensures that the

IoT device is accessible at any time when needed [5]. Attacks on availability,

usually referred to as denial-of-service attacks (DoS), are a serious threat to

any business or organization; as denying access to devices and services can lead

to significant losses in business revenue. Therefore, IoT devices and networks

must be robust and accessible, even when security threats and attacks are

present.

These three requirements are colloquially referred to as the CIA triad. They

have been criticised in the literature as being insufficient to deal with the

new threats that emerge every day. To address these limitations, this study

proposes a new set of security requirements by analyzing and exploring a

broad range of security systems from a security assurance and requirement

perspective. The study provides a new list of requirements called the IAS-

octave [6].

This list includes the following four requirements which are additional to the

CIA-triad:

4. Auditability: This is the process of ensuring that the system is monitoring

all its services and actions comprehensively [7]. Auditability might not apply

to all IoT applications. Hence it requires more computational resources and

storage.
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5. Trustworthiness: The system’s ability to ensure the identity of IoT devices

and build trust between the system and third parties [7].

6. Accountability: Ensure that each entity in the IoT system is held responsible

for each action, which can prevent information misuse [7].

7. Non-repudiation: In some cases, the system is required to validate the oc-

currence of specific actions on a specific event. In the IoT context, such a

property might not be considered necessary unless there is some kind of pay-

ment involved [7].

In the rest of this study, we use the IAS-octave model for security requirement

evaluation.

1.1.2 Constraints and Limitations

Similar other computer networks, IoT networks require various security proto-

cols. However, security measurements for IoT must meet certain criteria that might

not apply to different networks due to their nature and resource constraints, which

are listed as follows:

1. Resource Limitation: One of the challenges facing IoT devices is their lim-

ited resources, like CPU and memory, making it very difficult to implement

a security solution that requires high processing capabilities [8]. IoT devices

are packed with minimal network protocols and minimal features that require

less computing power to save energy and resources; therefore, implementing a

sophisticated and comprehensive security solution is a constant challenge for

manufacturers and developers who need to minimize the number of features

and design a simple yet efficient security solution.

2. Privacy and data Confidentiality: In IoT, different applications have dif-

ferent privacy implications. The privacy level required for healthcare applica-

tions is different from the privacy level required for city temperature sensors.

This is not to say that we should neglect privacy concerns for some appli-

cations. On the contrary, we should harness IoT devices more where user
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privacy is involved. IoT devices have evolved to provide assistance in different

aspects of daily life such as smart vehicles and smart homes, which can pro-

vide sensitive user information like user location, health status, and user home

preferences, all of which raises serious privacy concerns. The key idea of pri-

vacy and confidentiality is that the data is kept private and is only accessible

by the authorized entity, either a human or machine. To achieve privacy and

confidentiality, cryptography is vital and should be applied in a manner that

does not affect the IoT constraints and limitations.

3. Authentication: IoT devices are generating a huge amount of data every day.

The data moving between entities must be securely transmitted and activating

the data privacy authentication mechanism is crucial. Unfortunately, there

are no common standards used by all vendors for authentication. Different

vendors use different authentication protocols which raises security concerns

between different platforms since there is no standard authentication. Hence

the integration between these platforms is weak and can lead to security issues

in the future.

4. Service Availability: Service availability in IoT networks is prone to many

DOS attacks. Nodes can be compromised internally within the network or from

outside intruders; this kind of attack can paralyze the whole IoT network and

hinder all activities and services. Moreover, availability attacks usually try

to consume all device resources, and since the IoT devices in many cases are

battery-powered, this might cause the device to be drained of all its resources.

Ensuring that a device or service is available is crucial since many applications

are time and data-sensitive, such as those in the healthcare system.

5. Data Management Challenge: IoT devices usually generate large amounts

of data, and with the increase in the amount of data generated by sensors and

devices, data centers face an architectural challenge in coping with such data.

Research has shown that the current data centers are not able to handle such

an increase in data. IoT at the enterprise level generates a significant amount



6

of big data that needs to be processed, analyzed, and stored in real-time, which

could leave providers with security complications.

1.1.3 IoT Architecture

Figure 1.1 : IoT three-layer architecture [9]

Studying and understanding the IoT stack is essential when it comes to building

security solutions. Because of the flexibility and different operating systems available

for IoT architectures, different system stacks have emerged. This study focuses on

Contiki OS, which is widely used and studied by the research community around

the world. Figure 1.1 shows the different components of the IoT stack adopted by

Contiki OS.
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As previously mentioned, different manufacturers have different architecture and

unfortunately, there is no standard architecture for IoT devices across different ven-

dors. This thesis focuses on the three-layer architecture since it is the most com-

monly used by researchers. Figure 1.1 shows the three layers with some examples

of the protocols at each level. Each layer is explained briefly as follows:

Physical Layer: This layer responsible for data using sensors and actuators

[7]. This layer also responsible for handling node communication, including signal

transmission and channel selection, in the case of wireless communication. Some

examples of technologies that work in this layer are ZigBee, Bluetooth, and WiFi,

4G/LTE.

Network/Adaptation Layer: This layer is the middle-ware layer that ex-

changes the data between the application layer and the physical layer. This layer is

also responsible for routing the data between different nodes in the network. More-

over, when using the 6lowpan protocol, this layer maps the IPv6 address with the

outside world. Some protocols that work in this layer are RPL, 6lowpan, IPv6, and

TCP/UDP [3].

Application Layer: This layer is the high-level layer where data representation

happens and allows other protocols to access data in the IoT devices like HTTP

COaP and MQTT. It is the interaction point between the user and the devices [9].

1.1.4 RPL Protocol

The routing protocol for low power and lossy networks [10] (RPL) routes infor-

mation between different nodes. It accommodates the many-to-one communication

pattern, but it also can support one-to-many and one-to-one communication [11].

The sink node, which is sometimes referred to as the root node, stores the routing

information of all nodes. The protocol uses a special directed acyclic graph (DAG)

called the DODAG to build the routing tree for communication. Moreover, a special

broadcasting message, called the Destination Advertisement Object(DAO), is sent

by the root node to allow other nodes to find the network [12]. This message also

contains different information about the node, such as the rank. The rank indicates
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the current location of the node in relation to its parent and the root node. The rank

can be calculated based on different factors that are determined by something called

the objective function. The objective function is defined by the network designer

to indicate how the route is calculated. It can be calculated by how far the node

is from the root or the node’s transmission power. The next section discusses the

security issues in IoT, specifically the security issues and attacks against the RPL

protocol.

1.1.5 IoT Security

Today, many organizations have adopted the IoT paradigm to help them run

their businesses more efficiently and to also enhance their personal efficiency. How-

ever, IoT faces many security challenges that need to be addressed. Furthermore,

different levels of security issues can arise in different layers of the IoT stack, start-

ing from the lower physical layer (802.15.4), where different jamming attacks can

be launched to disturb the network, to the upper layers (application), where the

attackers can misuse HTTP flood attacks. One of the most pressing and challenging

security challenges is the distributed denial-of-service (DDoS) attacks, which can

potentially bring down an entire network [13].

DDoS Attacks

A DDoS attack in IoT is the process of compromising IoT nodes and using them

to launch a very large-scale attack against other networks or other devices [14]. In

this case, the IoT devices work as client nodes for the main attacker device (zombies).

Another kind of DDoS attack targets the IoT network itself either from outside (an

intruder) or from inside a compromised node with the main goal of paralyzing the

IoT network and making it non-functional. For both methods, mitigating DDoS

attacks is crucial to maintaining the availability of the network. This research scope

covers three kinds of DDoS attacks, which are explained in the following subsections.
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Selective Forwarding Attacks

A selective forwarding attack is a denial-of-service attack that targets the IPv6

routing protocol for low-power and lossy networks (RPL) [15]. Its main purpose

is to cause a disturbance in the network routing path, where the attacker node

selectively forwards only specific packets and drops the others [12]. To launch a

selective forwarding attack, the malicious node advertises itself as having a better

rank than the parent nodes, causing the adjacent nodes to change their parent and

alter the routing path. This kind of attack can be fatal if it is distributed across an

IoT network [3].

Blackhole Attack

A blackhole attack is similar to a selective forwarding attack, but instead of

forwarding specific packets, it drops all kinds of packets coming from other nodes

[16]. This attack also uses the ranking technique to trick the neighboring nodes into

dropping all the packets and causing a denial-of-service attack.

Flooding

A UDP flooding attack is extremely popular since it applies to different kinds

of networks [17]. The idea of this attack is to use the UDP protocol to frequently

send in a forged UDP datagram with a random IP and port, causing the victim to

reply to an unknown source, which in this case can cause a denial of service in the

victim node. In this thesis, we use a special kind of flooding attack called the DIS

Flooding attack, which is explicitly designed for RPL-based networks.

In the next section, we present the existing literature in this space, intending to

identify the research gaps.

1.2 SIGNIFICANCE OF THE THESIS

As more devices become connected to the internet every day, the need for a secure

and reliable infrastructure increases. IoT encounters many security loopholes that

need to be addressed before thinking about the future of IoT. One of these security
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issues is DDoS attacks that hinder all of the activity in the network, causing a

substantial loss in money and resources [18]. Therefore, addressing this issue is

vital to ensure a sustainable IoT future. To the best of our knowledge and through

a thorough investigation of the literature, there is no existing solution which uses

machine learning as the engine for DDoS detection in IoT.

Therefore, the significance of this thesis is to address this limitation by intro-

ducing an intelligent framework for DDoS detection in IoT using machine learning.

The further significance of this thesis is listed as follows:

1.2.1 Scientific Significance

1. This is the first research that explores the use of machine-learning approaches

to mitigate three types of DDoS attacks (selective forwarding, blackhole, and

DIS flooding) in IoT networks.

2. This is the first research that focuses on developing a data collocation tool

and building a dataset for the use of this tool in a machine learning detection

system in IoT.

3. This is the first research that compares different machine-learning approaches

for use in DDoS attack detection in IoT, and to select the optimal approach

for DDoS detection in IoT.

1.2.2 Social Significance

1. This study will help IoT consumers use IoT applications more effectively and

securely. It also will be a step towards realizing industrial IoT.

2. This study will help service providers to mitigate DDoS attacks more accu-

rately and efficiently. Furthermore, it will help IoT-based service providers to

focus on other tasks, which will in time increase productivity.

1.3 Structure of the Thesis

The overall structure of this thesis takes the form of nine chapters. The current

chapter introduces IoT and the security challenges associated with it. Furthermore,
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the scope of the DDoS attacks and the three attacks involved in this research are

briefly presented. The social and scientific significance is also briefly overviewed.

The remainder of this thesis is organized as follows:

• Chapter 2: In this chapter, a comprehensive literature review following the

systematic literature review methodology provides a concise overview of the

most relevant studies in the area. In this chapter, different aspects of DDoS

attack detection are explored, which are then grouped into four categories

based on the type of solution provided. The shortcomings and limitations of

each study are then highlighted in a detailed, comprehensive comparison.

• Chapter 3: This chapter builds on what has been thoroughly investigated

in Chapter 2 and highlights the limitations in the literature and the research

gaps. Subsequently, the terms used across this thesis are listed. Finally, the

research problem is further divided into four research issues arising from the

literature. From these research issues, the research questions and objectives

are formulated to reflect the significance of this study.

• Chapter 4: This chapter briefly highlights the proposed intelligent system

for the DDoS detection framework. Each component of the system is briefly

explained, and the system is further categorized into three sections. Each

section provides all of the algorithms and technical details of the solution.

• Chapter 5: This chapter provides a detailed explanation of the intelligent

framework and explores each component individually with an explanation of

all of the algorithms. The dataset collection process and the pre-interaction

and post-interaction phase are comprehensively presented. This chapter also

shows how the data collection model is used to build a new dataset due to the

limited datasets in this specific field.

• Chapter 6: This chapter explains all the attack implications and network

designs, including the integration of the data collection model (DCM). Fur-

thermore, the pre-evaluation tool implementation and detailed analysis of the
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RPL protocol is presented. An explanation is given of the real-time data

collection, the selected features and the data generation.

• Chapter 7: This chapter explains the mathematical model of the three chosen

machine learning algorithms and their evaluation in relation to the IoT-DDoS

dataset collected in Chapter 6. Then the best performing algorithm is chosen

for implementation in Chapter 8.

• Chapter 8: This chapter explains the implementation process of the proposed

IDS, incorporating the best machine learning algorithms identified in Chapter

7. Also, a comprehensive evaluation for each attack and a detailed comparison

with other available solutions are presented.

• Chapter 9: This chapter summarizes the thesis and explores the future di-

rections of the research.

1.4 Conclusion

IoT is growing at a rapid pace, involving sectors and domains that were pre-

viously not considered. This includes but is not limited to factories, agriculture,

cities, and transportation. This wide exploitation of IoT technology and its rapid

adaption in a wide variety of sectors poses many security challenges and issues. On

of these is the DDoS attack that affects the availability of resources, resulting in an

adverse financial impact. This thesis presents an intelligent framework for DDoS

attack detection using machine learning, which addresses the issue of the lack of

a dataset for machine learning evolution and explores three DDoS attacks in IoT,

namely selective forwarding, blackhole and the flooding attack.
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Chapter 2

Literature Review

2.1 Introduction

In the previous chapter, IoT and the related security issues were introduced.

This chapter presents a comprehensive review of the existing literature on DDoS at-

tack detection in IoT. The three main contributions of this work are summarized as

follows: (a) we propose a comprehensive classification of the existing DDoS attacks

based on the literature; (b) we detail the systematic approach used to extract all of

the existing solutions for DDoS detection in IoT; (c) we report the limitations and

weaknesses of the existing methods in the literature. We believe our work provides

researchers and knowledge seekers with stepping stones to understand the full pic-

ture of the existing security issues in the IoT. The rest of the chapter is organized as

follows: Section 2.2 explains the process used to research this chapter. The various

types of attacks are defined and categorized in section 2.3. A comprehensive litera-

ture review and the limitations associated with the existing literature are presented

in section 2.4. Section 2.5 presents a comprehensive discussion and comparison of

all of the studies presented. Finally, the chapter is concluded in section 2.6.

Note: The majority of this chapter has already been submitted to the WWW

journal and is in its second stage of review [2].

2.2 Research Strategies

This study focuses on building a robust understanding of DDoS attacks in IoT

and explores the available solutions to counter such threats. We followed a system-

atic literature review process to build this comprehensive review.

Numerous review papers have been published in the area of IoT security; there-

fore, we can form a general idea about the attacks that affect network availability
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Figure 2.1 : Literature review filtration process
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and IoT devices. Table 2.1 shows the review papers that have been thoroughly in-

vestigated. Most of the studies covered different aspects of IoT security, yet none

specifically address DDoS attacks from an IoT perspective. Therefore, in this sys-

tematic literature review, we focus on building a knowledge base of DDoS attacks

on IoT and their counter-measure solution.

Table 2.1 : Survey paper comparison

Study Attacks New Method IDS Protocol Trust Authentication DDoS Specific Multiple Domain Security Goals IoT Architecture Research Method

[19] X X X X X X - - X - -
[20] - X - X X X - X X - -
[21] - X - - X - - - X X -
[22] X - X - - X - - - X -
[23] - X - - X X - - - - -
[24] X - X X - X - - X X -
[25] - - - X X X - X - X -
[26] X - X - - - - - - X -
[1] X - X X - X - - X X -
[27] X - - X X X - X - X -

2.2.1 Keywords

We extracted the following relevant keywords as we only focus on DoS and DDoS

attacks. The attacks explored are further explained in section 2.3 of this chapter. To

extract the relevant attacks related to our study, the following terms were extracted:

”IoT Security”,”DDoS attacks IoT”,”Selective Forwarding IoT” ,”Blackhole At-

tacks”, ”Jamming IoT”, ”6LoWPAN Attack”,”Flooding Attack”.

2.2.2 Research Questions

This study aims to answer the following research questions:

1. What attacks affect the IoT network and cause a denial of services/devices?

2. What are the solutions to counter such threats?

3. How does the proposed solution limit IoT devices, and what security goal does

it address?

4. What solutions are mostly used to counter DDoS in IoT?

5. How can the available solutions be categorized?
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2.2.3 Research Filtration Process

This section outlines our process for extracting relevant information to obtain

data for our review framework. We have gone through the process of filtering the

research found in the databases shown in Table 2.2 through the following sequential

stages, as shown in Figure 2.1:

• The process starts by collecting the papers based on the keywords defined in

Section 2.2.1 from different publishers and databases. Figure 2.1 shows the

distribution of the databases.

• The first filtration process is to filter the papers by reading the titles and

excluding any paper that is not related to IoT security or is not published in

English.

• The second stage of filtration is to filter out any paper that is not related to

IoT DDoS attacks. This process was done by reading the title and scanning

the abstract if necessary.

• The third filtration stage is to verify that the filtered papers have been ranked

or peer-reviewed. We used the CORE database provided by the Computing

Research and Education Association of Australasia to check the ranking of the

conferences and journal.

• The final stage is to read the papers in full and exclude any that are not

explicitly related to the domain of this research, which is DDoS attacks.

Table 2.2 : Databases

Database Name URL

IEEE http://ieeexplore.ieee.org/
ACM http://dl.acm.org/
Science Direct http://www.sciencedirect.com/
Springer http://link.springer.com/
Google Scholar http://scholar.google.com/
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Figure 2.2 : Paper distribution based on database

2.3 Security Issues and Attack Classifications

In reviewing the literature, we identified the attacks responsible for DoS or DDoS

attacks, both directly and indirectly. In this study, attack categorization is based on

where the attack happens in the IoT three-layer architecture, which is highlighted

in this section.

Table 2.3 : Attack summary

Attack Effected Layer Effect Possible Solution Effected SG

Jamming PHY Jamming wireless signal causing DOS Frequency Hopping A
Tampering PHY Code Modification Maliciously Physical Security ACI
Sleep deprivation PHY Execution of battery power devices Split Buffer Solution A
Unfairness PHY/MAC Disturb priority packet sending - AI
Collision PHY/MAC Exhaustion of battery power devices Authentication AI
Buffer Reservation ADP / 6LOWPAN DOS using buffer reservation split Buffer solution AI
Selective Forwarding NTW/RPL DoS and disturbing Network Topology Authentication, IDS AIP
Blackhole NTW/RPL DoS and disturbing network topology Authentication, IDS A
Sinkhole NTW/RPL Disturbing network topology, Rank manipulation Authentication, IDS, AI
Sybil NTW/RPL Masquerading node Identity, compromise privacy Unique Identifier , Authentication AIP
Flooding NTW,PHY,APP Sending unlimited amount of packets Authentication, IDS A
Wormhole NTW Routing Distrust Authentication, IDS Ai
TCP Hijacking APP Stealing node identity using sequence number Authentication, IDS AI
6lowpan Fragmentation ADP / 6lowpan adding unknown fragment to packet structure Authentication, IDS AI

DD - DDoS attack, Sh-sinkhole attack, SF-Selective Forwarding , BH-Blackhole, HF-Hello Flood attack, NTW/RPL - Network Layer,
L-Low,M-Medium , H-High, D- Distributed , C- Centralized, U-Undefined
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Figure 2.3 : Distribution of papers by keyword

2.3.1 Perception Layer Attack

This layer is a low-level layer where data is acquired. Sometimes it is called

the sensing layer since it acquires information from sensing devices such as RFID

tags, sensors, or even GPS locations [28]. These devices are usually deployed in

unmanned geographic locations where it is easy for intruders to obtain physical

access; therefore, these locations are prone to security attacks as outlined in the

following.

Jamming

Jamming attacks target the physical layer of the communication stack by in-

terfering with network radio frequencies [8]. This kind of attack is carried out by

occupying the same radio frequency channels in the network, which causes node

frequency jamming [8]. This attack can be launched against the whole network,

causing a large-scale DDoS, hence bringing the entire network down and disrupting

all services provided by the network. Moreover, it can target specific network nodes

by using a less powerful jamming source [29]. There are many countermeasure so-
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lutions against jamming attacks, and a typical defense mechanism is the frequency

hopping spread spectrum (FHSS). FHSS is a technique used in signal transmitting

by switching between different channels while transmitting. This technique prevents

the attacker from knowing which channel is used for node communication.

Tampering

As previously mentioned, IoT devices sometimes are scattered in unmanned areas

where devices are unattended. Therefore, such devices are prone to tampering and

modifications. An intruder can compromise a node by altering the programming

code or injecting malicious code into it. The attacker can go even further and

replace the entire node with another node created by the attacker, who can later

control it remotely and use it to launch different attacks like blackhole or selective

forwarding attacks [29].

Battery Execution (Sleep deprivation)

Battery execution can be achieved by varieties of attacks across the network

stack. However, a common attack targets the power saving mechanism in any node,

which is called the sleep deprivation attack. It is launched by sending a useless

control packet to the victim node, making it forget its sleep cycle until is exhausted

and shuts down [30]. This attack is complicated to detect as it typically affects the

normal procedure node executions.

Unfairness

In IoT and WSN, there is a feature that allows nodes with low battery life to

prioritize packet sending. This feature can be misused by an intruder and impact

battery health through the process of forcing nodes with a normal battery level to

send priority messages, leading to unfairness in packet sending and disturbing the

network behavior [29].
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Collision

Data collision occurs when two nodes transmit data at the same time when

occupying the same channel [29]. A collision can alter part of the transmitted data,

causing a checksum mismatch, causing the data to be invalid and ignored by the

receiving node,[31] since the data packet ignored by the receiver is initiated for the

affected packet. This can lead to exhaustion of the resources of the node by forcing

the node to re-transmit data for every collided packet. Moreover, if this attack is

launched on a large scale, it can lead to denial of service and exhaust the entire

network [29].

2.3.2 Network

This layer of the IoT stack combines more than one feature, including routing,

adaption, and fragmentation. Therefore, complex attacks can occur at this layer,

from route manipulation to fragmentation, all of which can affect the availability of

network resources. The attacks that affect network layer functionality are listed as

follows:

Buffer Reservation Attack

This attack utilizes the fragmentation and reassembly functionality in the 6LoW-

PAN protocol. The core idea of this attack is to use a flaw in the buffer mechanism

when handling fragmented packets. When the target node receives the first frag-

ment of the packet, it reserves the entire buffer and waits for the other fragments

to reassemble them. Attackers can utilize this flaw to send only one fragment and

reserve the buffer for the maximum time allowed, which is defined by the 6LoWPAN

protocol to around 60 seconds. Therefore, the intruder node can repeatedly send

the first fragment to the receiving node and occupy the buffer for as long as it can,

causing the victim node to be drained of all its resources [32].

Selective Forwarding

This is one of the popular routing attacks which tries selectively to forward only

particular packets to the next node by dropping specific data of the packets. This
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attack can be extremely dangerous when it is combined with other attacks like the

sinkhole attack, which can lead to DoS.

Blackhole

As previously explained in chapter 1, the blackhole attack is similar in nature

to the selective forwarding attack. However, instead of forwarding the packet mali-

ciously it drops the entire packet.

Sinkhole

In a sinkhole attack, the malicious node advertises itself as having a better rank

than the parent nodes, causing the neighboring nodes to change their parent and

alter the routing path. The nearby nodes change their route to the sink because

of the better fake route provided by the malicious node. A sinkhole might not be

effective when it is executed by itself, but it can be far more critical when combined

with other attacks like the blackhole or selective forwarding attack.

Sybil

A Sybil attack is an attack on node identity. It can have many forms, but it is a

common identity fabrication attack where the advisory node tries to advertise itself

as a different node in the network by stealing or fabricating another node’s identity.

Flooding

In a flooding attack, the attacker node sends an unlimited number of DIS mes-

sages to the victim node over a short period, causing a DoS attack and disabling

the node services. This kind of attack can also lead to battery exhaustion due to

the consumption of node resources.

Wormhole

A wormhole attack is a routing-based attack where the attacker uses one or more

nodes to create a fake tunnel with a better rank than the normal route to the sink

node. Therefore, instead of data transmitting through the legitimate node, it uses
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the fake tunnel to transmit data [33]. This attack can cause disturbances to network

communications, including eavesdropping, selective dropping, and DoS attack.

TCP Hijacking

The transport mechanism in IoT uses either UDP or TCP protocols to transport

data to the application layer. When using the TCP protocol, it inherits all the

available flaws and vulnerabilities, one of which is top session hijacking [34] where the

attacker tries to steal the client’s identity because the attacker knows the sequence

number and communication port. Later, the attacker can launch DoS attacks on

the victim and assume its identity to communicate with the server.

6LoWPAN Fragmentation Attack

In IoT, when using the IEEE 802.15.4 standard, the user is limited to an MTU

of 127 bytes using the 6LoWPAN fragmentation mechanism, which allows the trans-

mission of IPv6/4 packets. The problem with 6LoWPAN is that it does not provide

any kind of authentication, which means an attacker can inject their fragments

among other fragments [11].

This next section of the research explores all the available methods used to

counter DDoS attacks in IoT.

Table 2.4 : Protocol-based solutions

Study Attacks Layer Method Performance Placement Description

[35] SH,SF,BH,SY NTWRPL Authentication / Encryption H C hash chaining authentication approach.
[36] SF,SH,HF,WH,CID NTWRPL Specification L C Lightweight Heartbeat, RBL & IDS
[37] MQ,RP Cross Layers Bio-metric based Encryption /authentication ∼M C/D Bio-metric Authetcation and encypayion.
[38] * NTWRPL Authentication / Encryption C Hashing approach and private key
[39] SF NTWRPL Authentication C Hashing and Map Function
[40] SF,BH NTWRPL Data and route Duplication C data redundancy
[41] FM NTWRPL Encryption C encrypted CGA-IPV6
[42] FM NTWRPL Hashing C Hash chaining for secure RPL Rank
[43] DI NTWRPL Encryption C encrypted chain

DD - DDoS attack, Sh-sinkhole attack, SF-Selective Forwarding , BH-Blackhole, HF-Hello Flood attack, NTW/RPL - Network Layer, L-Low,M-Medium
, H-High, D- Distributed , C- Centralized, U-Undefined

2.4 Literature Review

In examining the literature, this study found the published studies can be catego-

rized based on the type of solution proposed. Therefore, we divide the literature into
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four categories: intrusion detection system (IDS)-based solutions, protocol-based so-

lutions, trust-based solutions, and others.

2.4.1 Protocol-Based Solutions

Protocol-based solutions utilize the existing protocols to mitigate security flaws

by enhancing the existing method or building new methods on top of the existing one.

An example of such a solution is proposed [35], which investigated the use of a chain-

ing message authentication code and the advanced encryption standard to cipher the

packet payload between entities. The authors termed this framework 6lowPSec, and

it works under the MAC security sub-layer in the adaption layer. They evaluated

the system against many attacks, one of which was denial-of-service attacks, as the

authors stated the solution was able to counter such malicious activities. However,

the system’s performance decreases when new nodes are added, causing the pro-

posed model to take longer to process. [36] presented a comprehensive analysis of

IoT technologies and their new security capabilities that can be exploited by attack-

ers. One of the highlights is the implementation and demonstration of well-known

routing attacks against 6LoWPAN networks running RPL as a routing protocol,

which they simulated using the Cooja simulator and the Contiki operating system.

The following RPL attacks were used for testing: selective-forwarding attacks, sink-

hole attacks, hello flood attacks, and wormhole attacks. The testing results show

that while the RPL protocol is vulnerable to different routing attacks, it has inter-

nal mechanisms to counter hello flood attacks and mitigate the effects of sinkhole

attacks. The authors claim to implement a solution that minimizes selective forward-

ing attacks by implementing a heartbeat protocol on top of the IPSEC function in

the ipv6 protocol. The basic idea is to send ICMPv6 messages from the 6BR router

to all nodes in the network and wait for the ICMPv6 echo reply from the nodes.

This technique has been implemented such that it sends ICMPv6 messages in an

interval time, hence it is called the heartbeat protocol. The authors claim that this

technique helps identify which node has been filtered using the IPsec protocol, hence

identifying any node that may have been the victim of the attack. Bio-metrics play

a significant role in security, but few studies have focused on IoT applications. The
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work in [37] presents four layers of bio-metric architecture to provide an end-to-end

solution for secure communication. The proposed architecture focuses on authenti-

cating communication by using bio-metric devices and pairing-based cryptography

to secure the data in transit. The core idea is to use a three-level interaction between

layers to establish a communication channel between the layers. The system uses

private key generator cryptography at each layer to ensure the secure transmission

of biometric data. The authors claim that by encrypting the barometric data, the

proposed protocol is resilient against masquerade and reply attacks. The problem

with such a model is that it can introduce a communication overhead and heavy

resource consumption on the end devices. Bio-metric solutions have a large data

footprint compared to other authentication solutions such as encryption, and solu-

tions can be challenging for devices with limited resources. Similarly, [38] proposed

a new security protocol to secure RPL networks and called it (SRPL). It uses a hash

chaining authentication approach to validate the authenticity of each node. SRPL

has three stages: the first stage is the initiation phase, where the node calculates

the hash and the threshold values when the DODAG is created. The second stage is

the verification stage, where parents check the child node’s validity by checking the

hash and threshold values. The third stage is where the hash and threshold values

are updated when any changes in the rank are signaled. To counter the selective

forwarding attack, [39] proposed SCAD, a lightweight verification method that uti-

lizes the map hash function that sends a frequent acknowledgment packet between

the source node and the sink. To ensure secure communication between the source

and destination, the author proposes placing a checkpoint node that piggybacks the

connection packets with a unique random hashed number. This number serves as

the ID between the checkpoint, source, and destination nodes. Furthermore, to re-

duce packet delivery latency caused by the attack, the authors propose a timeout

technique based on estimated single-hop transmissions. One of the limitations of

this study is that it depends on a static link between nodes. However, in practi-

cal, real-world IoT scenarios, nodes change their communication link dynamically.

Therefore, this method is not practical in a dynamically changing topology.
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A significant challenge for the RPL protocol is countering insider attacks with

limited resource devices. To enhance RPL resilience against attacks [40] introduced

a new method that uses randomized route selection and data duplication techniques.

Duplicating the data and sending them through randomized parent nodes ensures

that if one link is compromised, the data will reach the sink through the other

randomized link. The author assumes that the IoT network is dense, and each node

has multiple routing parents. Another study that focuses on solving one limitation of

the RPL protocol was proposed by [42] to address the version number attack. The

proposed method utilizes hash chains to authenticate the rank exchange between

nodes. However, this method was later criticized by [43] as it is still susceptible to

forgery and replay attacks. Therefore [43] proposed an enhancement to VeRA using

an encryption chain instead of a MaC hash chain. The encryption chain for every

node is calculated by the root/sink node. Also, the authors proposed a new method

called TRAIL to authenticate the topology in the network. This method is used to

prevent topology inconsistency in RPL networks.

Another method that uses cryptography was proposed by [41] to counter the

6LoWPAN fragmentation attack. Each joining node is assigned a temporary address

by the border router (BR) and then selects its parent node based on its location in

the network. To ensure safe communication, the method uses the ECQV implicit

certificate-based cryptography, which is computed by the BR and assigned an en-

crypted CGA-ipv6 address, dropping the temporary address. The new address is

used as a secure channel between the nodes in the network.

The method proposed by [44] is based on a statistical model where they use the

sequential probability test [45] to estimate the dropped packet between the node

and the sink. This is achieved by sending a hello packet using a dynamic adaptive

threshold. If the dropped packet rate exceeds the predefined threshold, this indicates

the node is malicious and will be blocked from the network. This method is used to

detect a selective forwarding attack.
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Discussion

In protocol-based solutions, few methods have explored the different aspects of

integrating new protocols into the system. By thoroughly investigating the methods

in the literature, we define the following limitations:

• Cross-Layer: as can be seen from Table 2.4, only one study has designed a

solution addressing multiple layers attacks on IoT architecture. The study pro-

posed by [37] used bio-metric solutions to provide a more secure architecture

for data communication. However, the study fails to report the performance

with respect to IoT limitations. The biometric data has a large footprint com-

pared to encryption/authorization solutions. It might be more secure in terms

of the uniqueness of biometric features, but we do not see this solution as

feasible for constrained devices with the framework proposed. Other studies

have not reported any cross-layer integration.

• Evaluations: most studies focus on simulation-based evaluation without in-

troducing any real-world elements, such as noise and signal distribution ob-

jects, which can affect the result when deployed in real-world scenarios. The

study proposed by [36] provides a comprehensive evaluation of the heartbeat

protocol proposed, but has does not report how such solutions will perform in

real-world scenarios [15].

• Heterogeneity: from Table 2.4 we can see that none of the studies addresses

the heterogeneous nature of the IoT network, although the architecture bio-

metric proposed by [37] is a cross-layer solution, but the authors do not explore

the idea of supporting multiple technologies to address heterogeneity problems.

2.4.2 Trust Based Solution

IoT devices and networks are designed to create business value by connecting

different kinds of devices and objects, no matter what resources are available in

the end devices. This is why many devices with low memory and computing power

are a part of this ecosystem. Therefore, when designing any trust management
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Table 2.5 : Trust-based solutions summary

Study Targeted Attacks layers Trust Measurement Method
Evaluation

Placement
Info Collection

Performance Scalability Indirect Direct

[46] SH NTW/RPL Trust-based - - H/N - x
[47] SF,SH,VN NTW/RPL Trust Value - x H - -
[18] BH NTW/RPL Trust x - H/N x x
[48] SY NTW/RPL Trust Based -IDS - - H/N - x
[49] SD NTW/Any Message based x x H/N - -
[27] SD NTW/Any Message based x x H/N - -

DD - DDoS , Sh-sinkhole , SF-Selective Forwarding , BH-Blackhole, HF-Hello Flood, NTW/RPL - Network Layer, L-
Low,M-Medium , H-High, D- Distributed , C- Centralized, U-Undefined

system (TMS), constraints and limitations related to such an ecosystem should be

considered.

Many architectures for trust management are available in the literature. In this

survey, we focus on the trust architecture that is based on a three-layer architecture

[50]. The trust-based mechanism proposed by [47] is based on a trust value cal-

culated using the subjective logic approach [51] and is evaluated using the opinion

triangle (OP). OP evaluates trust-based on three attributes: trust, distrust, and

uncertainty. In contrast to the traditional method where only two attributes are

considered, this method explores the grey area where further analysis is required by

using uncertainty attributes. To calculate trust, the authors assume the node is in

a promiscuous mode, which allows them to hear a neighbor’s node traffic. If the

neighbor’s node’s trust value is low, this means that the node is distrustful, and the

monitoring node will prohibit data from being transmitted through it. The authors

suggested using this technique to counter the selective forwarding attack, sinkhole

attack, and version number attack. The work done by [18] focuses on a trust-based

solution to counter a blackhole attack in RPL networks. Essentially, a trust value for

each node is calculated based on the number of packets sent and delivered through

the parent node. The proposed mechanism also calculates the feedback value be-

tween nodes, which is the ratio of packets a node can successfully forward. Utilizing

the feedback value, a blackhole attacker can be detected by monitoring the number

of packets it dropped, hence giving a low feedback value. The proposed model has

two assumptions: the first is that every node in the network will overhear their

neighbor’s nodes and the transmitted packets. The second assumption is that the
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blackhole attacker will start dropping every packet it receives over time. This ap-

proach has some limitations, as it does not mention how the trust value is utilized to

prevent a blackhole attack. Secondly, it assumes that all nodes are in promiscuous

mode, which can minimize the lifespan of battery-powered devices.

Another study that utilizes the use of promiscuous nodes to detect blackhole

attack is proposed by [49]. This technique utilizes the promiscuous nature of nodes

to overhear the neighbor’s node traffic and determine if the node is misbehaving or

not. A local decision process uses a specific threshold to determine if any node is

suspicious or not. To further investigate the suspicious node, a verification process

is called, which uses two types of messages: the received Request (RREQ) and

the received Result(RRES) messages. The RREQ is initiated by the verification

node, and it carries a request asking the root node if the forwarding packet was

received or not. The RREQ messages are sent through an alternative path not

to be affected by the attacker node. The root then will send RRES, which refers

to whether the forwarding message was received or not. If the message was not

received, the attacker node will be flagged to the blacklist and broadcast to the

whole network to avoid the attacker node. In this study, the author fails to mention

how to calculate the misbehaving node, and there is not enough information about

the misbehaving threshold. Moreover, the study does not mention what happens if

there is no alternative route to the root node.

A study that tries to solve the problem of IoT heterogeneity was proposed by

[27]. The authors proposed a context-aware trust management system that uses

a dynamic trust score based on the node context and its status and proposes the

use of different trust calculating functions for different node services. The system’s

centralized design may help reduce network overhead but can lead to a single point

of failure if the system fails. However, the author does not explain how the system

will scale in a large dense network [52].
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Discussion

Based on the aforementioned studies, Table 2.5 provides a comprehensive sum-

mary of the explored trust studies. As can be seen, most of the studies affect the

network layer, referred to as communication trust in the trust management frame-

work. The observation in this context is that the trust evaluation schema in each

study is limited, but most of the studies fail to address the limitations associated

with IoT devices.

IoT Limitations: Although some of the proposed solutions achieve excellent

results in terms of trustworthiness and accuracy, they fail to adapt to IoT limita-

tions and constraints, since these solutions require an extensive amount of CPU and

memory power which is not applicable in the context of limited-resource devices.

At a glance, these studies [48] [28] appear to have good results in terms of trust

accuracy; however, they fail to report the system solution from the IoT device’s

perspective.

Cross Layer: As shown in the summary table, most of the studies focus on

communication layer trust-based solutions and ignore multiple-layer adaptation. All

of the studies reviewed focus on one-layer solution and ignore the trust issues that

appear at a different layer of the ecosystem. Designing a cross-layer solution is

crucial to handle security breaches at a different layer of the IoT architecture.

This shows that the literature lacks a reliable and scalable trust management

framework that can consider the limitations associated with IoT networks.

Evaluation: The studies focused mostly on simulation-based evaluation without

considering real-world elements, such as noise, which is usually an essential factor

when deploying a solution in the real world.

2.4.3 Intrusion Detection Based Solutions

The intrusion detection system (IDS) has been used for some time in different

network applications. The main purpose of IDS is to detect any suspicious activity

against the targeted network. There are various approaches in IDS, which can be
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Table 2.6 : Intrusion detection solution summary

Study Attacks Layer Method Performance Placement Brief Dataset

[13] DD NTW/RPL Signature-based L D Complicated DOS attacks, KDD
[53] SH NTW/RPL Specification L C Leader Node Selection, KDD
[54] SH NTW/RPL Specification L C semi-auto profiling technique KDD
[55] SH,SF,BH NTW/RPL Hybrid(Specification / Signature) L C Fixing network inconsistency KDD
[56] SF NTW/RPL IDS M D Deep packet Inspection , Misbehavior KDD
[57] SF NTW/RPL Anomaly M D Anomaly Based solution KDD
[58] HF,SY NTW/RPL Encryption U D two ray prorogation model KDD
[59] DD NTW/RPL Specification L D Identify DDoS attacks before targeting network, KDD
[60] HF,SM NTW/RPL IDS * D knowledge-drive IDS KDD
[61] HF,BH NTW/RPL Authentication U D Signature-based KDD
[62] SH NTWr/RPL Packet Inspection H D Based on IR value, packet Received , Packet Sent KDD
[63] SH,SF NTWr/RPL Specification& Anomaly H D packet Received , Packet Sent -

DD - DDoS , Sh-sinkhole , SF-Selective Forwarding , BH-Blackhole, HF-Hello Flood , NTW/RPL - Network Layer, L-Low,M-Medium , H-High, D- Distributed , C-
Centralized, U-Undefined

classified into four categories:

• Signature-based approach: The system detects an attack by comparing the

signature of the activity against a pre-installed set of signatures in the IDS

database. If there is a mismatch in the signature, the system raises the alarm.

• Anomaly-based approach: In this approach, the IDS is trained to detect any

anomalies in the network by analyzing their behavior, and if any activity

exceeds a specific threshold, this indicates that an attack has happened.

• Specification-based approach: In a specification-based approach, the IDS checks

network activity against a set of predefined rules and settings. This approach

detects misbehaving intruders when their activity does not have the same

specifications as defined in the system. This approach is sometimes called the

rule-based approach.

• The hybrid-based approach combines more than one approach to maximize

the advantages of each and minimize the drawbacks.

An excellent example of a signature-based IDS is the architecture proposed by

[13]. It integrates an IDS into a network that has been developed within the EU

FP7 project Ebbits. The goal of this proposed architecture is to detect threats

on a 6LoWPAN network. The authors studied and analyzed DOS attacks in IP-

based WSNs and proposed a solution involving a signature-based IDS that uses

a predefined source of signatures and patterns collected before implementing the

solution. The authors used probes in the edge of the network to sniff packets that
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go through the entire network and analyze each packet to look for any suspicious

behavior, which is later sent to SenacIntrture IDS for further analysis.

Likewise, [64] uses the same approach, which is dependent on the specification-

based approach, but the main focus of their study is to build an IDS that addresses

routing attacks in an RPL network using a semi-auto profiling technique. This

technique was used to gather and formulate a set of rules that is integrated into

the IDS agent. The placement of the IDS was chosen carefully by the authors to

eliminate any kind of network resource overuse. Therefore, they placed the IDS as

a cluster head agent as they assume the network is cluster-based.

[55] uses a hybrid technology combining the signature-based approach and anomaly-

detection approach. This approach utilizes the consumption of the limited re-

sources of the signature-based approach and when combined with the accuracy of

the anomaly detection technique, it produces better results. The basic idea of Svelte

is to implement the IDS in a distributed approach, which is later installed across

every node and implemented in the 6BR router. To fix network inconsistency, the

authors developed a 6Mapper on top of the RPL protocol. The primary function

of the 6Mapper is to fix the network inconsistency caused by either a hacker from

within the network who sends incorrect information to its neighbors or the loss na-

ture of an IoT network, which can cause inconsistency. [55] used the Contiki OS

RPL implementation to develop the 6Mapper on top of the system.

In addition to the 6Mapper, the authors developed a mini-firewall to detect any

global attacks coming from outside by distributing the mini firewall across all the

constrained nodes in the network, with the main module installed in the 6BR router.

The authors claim that this helps minimize the overhead in the network.

[56] proposed a monitoring tool for attack inspection and detection, which uses

a deep packet inspection approach to investigate network traffic and identifies any

misbehavior based on a set of rules defined in an XML file.

In the method proposed by [65], fog computing is used to counter selective for-

warding attacks in sensing networks. The core idea is to build an intrusion detection
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system in fog computers at the edge of the network. The author proposed the use of

watchdog nodes that monitor any suspicious node while on the move. The watch-

dog nodes maintain the received packet and the sent packet by the monitored node.

These values are forwarded to the fog node for further processing, where the fog node

decides whether the monitored node is malicious or not, based on a specific thresh-

old. Unfortunately, the authors do not mention how to calculate the threshold, and

the study lacks details about the approach.

The ”Kalis” IDS architecture proposed by [60] utilizes a knowledge-driven in-

trusion detection system to counter hello flood and smurf attacks, where the IDS

observes the network traffic to extract specific features and feeds them to what is

called knowledge-base storage. Using the knowledge gained about the specific node,

the system identifies the malicious node and triggers the specific detection mecha-

nism. However, the study does not explore how the feature process is executed and

what features are collected for the knowledge base database.

Another hybrid method that uses an anomaly and specification detection mech-

anism is proposed by [63]. The placement of this IDS is distributed between the

router and the sink node in the network, where the specification-based agent works

as a general inspection tool for all of the nodes in the network. In the case of a

suspected attack, the router forwards this information to the sink node for further

processing. Using anomaly-based detection, the root node extracts specific features

from the communication data and analyzes them for any malicious activity. The

process is then passed to a voting system that learns by analyzing the network

behaviors. This IDS is used to counter selective forwarding and sinkhole attack.

Discussion

Based on the aforementioned literature in the context of IDSs in IoT, the follow-

ing observations can be made:

IDS Methods: Although there are variations of IDS placement choice in the

literature, most do not identify the pros and cons of choosing such placements. The

hybrid method has shown excellent results when it comes to attacking accuracy
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and fast response, but none of the studies have thoroughly investigated the scala-

bility and performance of such methods in real-world scenarios. By examining the

literature, we find that the only hybrid IDS that provides enough details for an eval-

uation and testing scenario is proposed by [55] as it tries to address the limitations

introduced by specification and anomaly detection when they work separately. One

weakness of the proposed system is that it does not provide any details on how

the system will evaluate different kinds of attacks or protocols, and although the

author claims there is a possibility of expanding the system, no detailed information

is provided.

IDS Placement: There are three types of IDS placements: distributed, where

the IDS is installed across the network; centralized, where all data processing and

attack detection happens on a single node that has more resources then other nodes

in the network, and hybrid, where it tries to overcome the limitations of the central-

ized and distributed approach by organizing the network into a group of clusters.

Each cluster has a root node that interacts with the main IDS component, usually

installed in the 6BR router. Although there are various placement strategies, most

of these studies fail to point out the performance trade-off of each placement. [46]

presented how distributed placement methods can help detect sinkhole attacks more

efficiently, but the authors offer no details about how the placement of the IDS helps

in achieving excellent results in attack detection.

IDS Heterogeneity problem: In the literature, most of the studies discussed

the 6LoWPAN protocol, and building an IDS on top of the 6LoWPAN protocols is

often proposed. This can be easily explained due to the standardization by the ITTF

organization, where most IoT manufacturing companies adopt the 6LoWPAN and

the RPL protocol. A problem arises when the IoT network is combined with different

kinds of protocols and technologies like the Z-Wave, ZigBee, and BLE, as this can

cause a miscommunication problem that needs to be addressed when designing any

IDS. The heterogeneity nature of IoT networks allows different manufacturers and

organizations to form the IoT network; therefore, designing a solution that considers

this aspect is crucial.
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IDS Targeted Attacks: None of the explored studies focus on realizing the

concept of attack detection. Most of the studies concentrate on particular attacks

like blackhole attacks or sinkhole attacks. However, most of these attacks can be

combined to have a more disastrous effect. None of the studies explored in this

literature review investigated the idea of integrated attacks that work collectively

to affect the system maliciously. Another limitation observed in the literature is

the limited number of studies that focus on physical and application-layer attacks.

The majority of the studies retrieved focused more on attacks on the network and

adaptation layer. A cross-layer solution will help address this limitation.

IDS Dataset limitation: As can be seen from the summary presented in Table

2.6 , all of the studies used the DARPA, and KDD datasets to evaluate and test the

proposed solutions. The limitations of the DARPA and the KDD datasets, namely

their biased nature, are many duplicated records, they are outdated, and they are

not explicitly designed for use in IoT networks. Moreover, these datasets use a

different set of protocols and attack emulation that are not supported by most IoT

network architectures.

2.4.4 Others

[66] proposed a technique that combines the return-oriented programming ROP

approach with code checking to provide extra security against malicious code tam-

pering in IoT devices. It aims to protect the most critical part of the code by

including a two-level module (ROP and Checksumming) in the program’s tamper-

resistance section. Such a technique adds an extra level of difficulty in terms of

a tampering attack since the attacker has to bypass two modules to establish a

successful attack, therefore increasing the cost of exploitation. This approach has

some limitations from the user access perspective, although the authors stated no

additional performance is compromised when using these techniques. The authors

do not state how the approach will affect battery-powered devices (since most IoT

devices are battery powered).

Another method that utilizes the use of the ROP technique is presented by [67].
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The authors proposed a model that assumes a hostile user has access privileges to

control the program’s entire run environment. The proposed model uses the Genetic

Algorithm to choose the best devices with the minimum execution time to optimize

the ROP chain.

[68] introduced an anti-jamming approach for OFDM-based IoT devices by utiliz-

ing a game-theory technique. The proposed approach uses the Colonel Blotto game

to establish an interaction between the jammer and the IoT controller. The IoT con-

troller defends the network against jamming attacks by intelligently distributing the

attack power across sub-carriers, which causes the bit error rate (BER) to decrease,

reducing the effect of the attack. Through simulation, the authors demonstrate the

effectiveness of such an approach in maintaining healthy network performance and

a good BER.

Similarly, [69] explored the hierarchical security game approach to form a com-

petitive relationship that tricks the jammer into taking action after the legitimate

node starts transmission to stop what is called reactive jamming. By utilizing such

techniques, the study forces the victim node to take action first, hence minimizing

the effect of the jamming attack. To achieve this level of protection, the authors

suggest that the legitimate user determines its transmitting power (since the at-

tacker uses the transmitting power to launch the attack) to trade-off between the

signal-to-noise ratio and the probability of being detected and jammed.

Discussion:

The method proposed in this section varies between detecting tampering and

jamming attacks. Although some might consider these attacks outside the scope

of this survey, we have found that these attacks can serve as the starting point to

launch complicated attacks that affect the availability of the network. The study

by [66] uses the ROP code checksumming method to protect IoT devices from code

tampering. However, the study does not mention how to implement this solution on

different platforms to adapt to the IoT network’s heterogeneity. Another study that

uses the ROP method was proposed by [67], but it might not apply to many IoT
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Table 2.7 : Overview of IoT security approaches

Study Solution Attacks
Performance Evaluation

Scalability Heterogeneity New Data Attacks IoT
E C N M S R

[35] Protocol SH,SF,BH,SY x x - x - x - - - -
[36] Protocol SF,SH,HF,WH,CID x x - - - - x - - x -
[37] Protocol MQ,RP - - - - x - x x x -
[38] Protocol DD - - - - - - - - - -
[39] Protocol SF - - - - - - - - - -
[40] Protocol MQ,RP - - - - x - x x x -
[41] Protocol FM - - - - x - x x x -
[44] Protocol SF - - - - x - x - - -
[42] Protocol VN - - - - x - x - - -
[43] Protocol VN,DI - - - - x- - x - - -
[18] Trust SH - - x - - - x - x - -
[47] Trust SD - - - - - x - - x x
[49] Trust SD x x x x - - x - x - x
[27] Trust * x x x x - - x - x - x
[13] IDS DD,UDP flooding - - x - - x - - - - -
[54] IDS SH x - - - - - x - x - x
[55] IDS SH,SF,BH x - x x x - x - - - x
[56] IDS * - - x - - - x - x - -
[65] IDS SF - x x - - - x - - - -
[60] IDS HF,SM - x - x - x - - x - -
[62] IDS SH,SF - - - - - - - - - - -
[63] IDS SH,SF - - - - - - - - - - -
[68] Other JM x x - - x 2 - x - - -
[66] Other JM - x - - - 2 - - - - -
[69] Other TM - - - - - - x - - - -
[67] Other TM - x - - - - - - - - -

- Unsupported , x - Supported, E-Energy, C-cpu , N-Network , M-Memory , S-Simulation , R-Real-world Scenario , DD
- DDoS , Sh-sinkhole , SF-Selective Forwarding , BH-Blackhole , HF-Hello Flood , DI-DoDAG inconsistency , SD-Sleep
Deprivation , CID -Clone ID , MQ-Masquerade , WH-Wormhole , SM-Smurf , VN-Version Number , JM- Jamming ,
TM -Tampering , P- Partially

architectures since it assumes the user has access permission to control the entire

run environment. This can limit the application of such techniques.

2.5 Comprehensive Discussion

After examining the literature, we have created a comprehensive table examining

each proposed solution, and their limitations and the following issues are identified:

• Limited Evaluation Parameters: As can be seen from Table 2.7, only a

limited number of studies cover the four aspects of the evaluation process.

When designing any solution for IoT, it is important to consider these pa-

rameters. For example, network overhead can cause the system to drain the

energy resources of the IoT device. Therefore, analyzing every aspect of the

system from the perspective of energy, computing, and network resources is
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essential when designing a security solution for IoT. Although some studies

have good accuracy in their attack detection results, they, unfortunately, fail

to report the performance evaluation from resource perspectives, such as the

solution proposed by [55] and the solution proposed by [67].

• Scalability : Scalability is crucial when it comes to measuring how the new

system performs in a large dynamic network, where nodes frequently join and

leave the network. To minimize performance degradation when new nodes are

added to the network and to increase the scalability of the system, several

studies show that grouping nodes into clusters can help in some scenarios [70].

To address the scalability issues, [60] proposed the addition of new IDS nodes

across the network. The more extensive the network, the more IDS nodes the

network will require. Unfortunately, most of the studies in this survey do not

explain how their system scales when a large number of nodes are introduced

into the network.

• Heterogeneity: IoT networks are different from the others because of the

heterogeneous nature of the network. IoT networks comprise different de-

vices from different manufacturers running various applications and operating

systems. Under this level of complexity, the security solutions should be inter-

operable in such ecosystems. The study by [37], addresses this issue. However,

limited information exists on how the system functions under different envi-

ronments. Other studies reviewed in this chapter do not address this issue,

whereas most of the proposed systems focus on a particular set of protocols

and environments.

• Datasets: Anomaly detection IDS requires a good dataset to produce a good

unbiased result in the training and testing phase. Therefore, choosing the right

dataset for the system is crucial. [37, 71], used the KDD dataset [72]. However,

as discussed previously, it is an outdated dataset and has been criticized on

many occasions [73] [74] [75]. Furthermore, the KDD and DArapa datasets

were created in a very different environment and with different protocols to

those used in IoT networks today. Therefore, building a dataset that uses
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appropriate protocols and architecture is a vital element in building a reliable

framework for any anomaly detection solution. A common protocol used in

the IoT network is RPL for routing, 6LoWPAN for adaption, and MQTT and

COAP for a top-layer application interface. Hence, creating a dataset with

these protocols is crucial to producing an accurate and relevant result.

• Multi layer solution: Another critical observation from Table 2.7 is that

limited studies focus on building a solution that covers more than one layer

of the IoT architecture. The only study that proposes a multi-layer solution

is the one proposed by [37], where the authors use a biometric solution on a

different layer. Although, in theory, this can increase attack prevention, it is

not practical due to the network overhead and performance. Most solutions

focus on network and topology layer attacks, such as sinkhole and blackhole

attacks, as shown in Figure 2.3. What the solution distribution shows is that

the majority of research has focused on the network and physical layer, with

less research conducted on top layer attacks such as COAP and MQTT-related

denial-of-services attacks. Therefore, there is a vast research opportunity in

this specific area.

2.5.1 Summary of the Literature Shortcoming

From this comprehensive discussion based on the literature review, we can sum-

marize the literature’s limitation as follows:

• All the studies focus on traditional specifications and anomaly detection with-

out exploring the potential of integrating machine learning algorithms to so-

lutions.

• None of the existing literature explore the use of machine learning to detect

selective and black hole attacks in IoT.

• None of the existing literature explore the use of machine learning classifiers

to detect UDP flooding attacks in IoT.
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• The existing research also lacks the idea of developing a traffic aggregation

tool to build datasets to be used in for machine learning IDS in the IoT

environment.

• No dataset was explicitly designed for IoT attack detection. Most of the

solutions proposed used, similar to the KDD dataset are outdated.

2.6 Conclusion

Security is a crucial element in determining how the IoT network and devices

will help shape our future. One of IoT’s most significant security challenges is how

to detect DDoS attacks without compromising the limitations associated with IoT

devices. This systematic literature review has presented a comprehensive survey

of the current DDoS attack detection approach, and we have identified the attacks

associated with DDoS that affect the availability of the network. Furthermore, in

addition to exploring the limitations associated with the detection approach, we have

identified aspects that should be considered when designing IoT security solutions.

We evaluated the proposed solutions to DDoS attacks in terms of practicality in

real-world scenarios. In the next chapter, the limitation derived from this systematic

review will be used to form the research questions and objectives.
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Chapter 3

Problem Definition

3.1 Introduction

As discussed in the previous chapters, IoT security is a challenging task due to

a variety of factors, from the heterogeneity of the IoT network to the limitations

associated with limited resource devices. Building a solution for such a network

requires careful consideration of its constraints and limitations. For example, a

traditional cryptography solution which requires high computational power will not

perform efficiently in the IoT environment due to the limited memory and CPU

power required by IoT devices. Therefore, depending on traditional methods without

modification can lead to failure in most scenarios. Many studies and solutions have

been proposed in the literature, as was explored in Chapter 2. These solutions

used different techniques and approaches, but many failed to address the problem

of heterogeneity and performance problems. Moreover, none of the existing studies

explored the use of machine learning to address DDoS attacks in IoT networks.

Nevertheless, most of the studies that have been done in similar networks such as

MANETs and ad-hoc networks used unreliable datasets such as the KDD dataset

which is not appropriate for limited resource networks.

In order to address the above research gaps, in this study, we propose a robust

solution to address DDoS attacks in the IoT network utilizing machine learning,

which is the scope of this study. Chapter 2 systematically explored the literature

and identified some gaps and limitations in the literature. These shortcomings are

described in Section 3.3.
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3.2 Terms

3.2.1 Internet of Things

The Internet of Things is the process of allowing things to be connected to the

Internet. These things can include sensors and actuators embedded in the physical

object and connected to the Internet through a wired or wireless connection [76].

3.2.2 IoT Security

We define IoT security as the process of protecting the IoT network and devices

from any malicious behavior that can have negative consequences.

3.2.3 DDoS Attacks

we define DDoS attacks are the process of causing security damage to the network

or the devices affecting the availability of the services either of the network or the

devices.

3.2.4 Selective Forwarding Attacks

Selective forwarding attacks are a special kind of attack that affects the network’s

availability by disturbing the routing behavior in the network [77].

3.2.5 Blackhole Attack

Blackhole is a special variant of the selective forwarding attack which manipulates

the node ranking by making the malicious node has higher ranking then the adjusnt

nodes. Therefore every packet will be sent through the attacker node which will

drop every packet it receives [78].

3.2.6 Flooding Attack

We define flooding attacks are the process of attacking the IoT network or device

by sending a large number of unrelated messages to disrupt the network performance

and cause denial of service.
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3.2.7 6LoWPAN Protocol

The 6LoWPAN protocol is standardized by the ITTF to adapt a smaller version

of the IPv6 protocol for a limited resource network like the IoT network. Moreover,

it works as the middle-ware between the Internet and the IoT network [79].

3.2.8 RPL Protocol

The RPL protocol is standardized by the ITFF to work as IPv6 Routing Protocol

for Low-Power and Lossy Networks [10].

3.2.9 SVM

One class SVM is a commonly used method that has proven its reliability and

accuracy for different applications. The one class SVM is a special kind of SVM

algorithm that classifies objects from one class only. The one class SVM is chosen

in this research to look at the possibilities of what will happen if we do not have

any attack data within our dataset; one of the advantages of one-class SVM is that

it does not require attack data or anomalies in the dataset [80].

3.2.10 Neural Networks

Adaptive resonance theory (ART) is one of the popular models for neural net-

works. It adapts methods in relation to how the brain interacts and processes

information [81].

3.2.11 Decision Tree

The decision tree is a machine-learning algorithm that is very widely used in the

machine-learning community, specifically in the area of data mining [82].

3.2.12 Node

We define a node as a physical device or thing in the IoT network, ranging from

simple sensor devices to very complicated actuators in industrial applications. A

node is capable of receiving messages from and sending information to other nodes

in the network.
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3.2.13 Sink/Root Node

We define sink Node as the main node in the IoT network hierarchy. It stores

information about other nodes in the network, such as routing information and the

ranking for each node.

3.2.14 Sniffer Node

We define a sniffer node as a node in the network whose primary purpose is to

listen to all neighboring node traffic within its range.

3.2.15 Attacker Node

We define an attacker node as the node that maliciously causes harm to the IoT

network/device.

3.2.16 6BR Router

6BR router is the bridge between the IoT network and the Internet [79].

3.2.17 IDS

We define IDS as an intrusion detection system whose main purpose is to detect

an attack by continuously analyzing the data it receives from the network.

3.2.18 IDS Agent

We define an IDS agent as small client software that syncs information with the

main IDS. Usually, this agent is installed either on the sink node or the normal node.

3.2.19 Data Extraction

We define data extraction as the process of extracting precise information from

the traffic transmitted in the network.

3.2.20 Feature Selection

We define feature selection as the process of selecting the best feature associated

with DDoS detection, which will later be added to the detection model to give the
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best result possible.

3.2.21 DODAG

The direction-oriented directed acyclic graph (DODAG) is a tree-like hierarchical

model used to build a path to the sensor nodes, ensuring that every node has a path

and the root node can reach it [83].

3.2.22 DIS

DODAG information solicitation are special messages sent by the node to join

the network [10].

3.2.23 DIO

DODAG information object is a core type of message of the RPL protocol which

contains the necessary information to form the DODAG tree [10].

3.2.24 Route

We define this as the route from the sink node to any node in the network or vice

versa. The relevance of the route to the others and its importance can be defined

using the objective function as one of the parameters of the RPL protocol.

3.3 Problem Overview

As previously stated in earlier chapters, the need for an IoT DDoS detection so-

lution that does not compromise the limitations and constraints associated with the

IoT network is crucial. These limitations and constraints include limited resource

devices, privacy, authentication, services and the data management challenge. Chap-

ter 2 comprehensively investigated the available solutions in the context of detecting

DDoS attacks in IoT. Most studies in the literature focus on adapting traditional

network solutions into limited resource networks, therefore failing to address the

problem of IoT heterogeneity and resource limitation. Nevertheless, although some

studies were able to pinpoint the issues related to DDoS attacks in IoT networks,
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they failed to suggest or propose robust and practical solutions to counter such

problems. Some studies proposed the use of cryptography to ensure safe and secure

communication between the nodes. However, applying cryptography solutions can

cause an increase in traffic overhead and an increase in resource consumption in the

node due to high computation demands.

In the scope of this research, we focus on detecting DDoS attacks using machine

learning. As we explored in the literature, machine learning has been used in differ-

ent security applications due to its high precision and the learning nature of such an

approach. It has been widely used in different network architectures for attack de-

tection. Networks similar to IoT, like WSN, Ad-hoc and MANET networks use ML

for different security applications such as anomaly detection and attack detection.

Nevertheless, these applications adapt traditional network characteristics where it

is, in most cases, not feasible for limited resource networks. Another critical limita-

tion in the literature regarding machine learning applications is the use of the KDD

dataset, an outdated dataset created for a different kind of network and different

sets of protocols, which does not apply to resource-constrained networks.

Based on the problem defined above and the comprehensive literature review in

Chapter 2, the research issues are defined in Section 3.4.

3.4 Research Issues

From the above comprehensive and thorough problem definition, we identify the

following research issues in the IoT security literature:

1. There is no existing machine-learning method for handling DDoS attacks in

IoT networks in the existing literature.

2. No work has been done on developing a data collection tool to build a dataset

that can be used for machine learning in IoT. Most of the research uses the

KDD dataset for training, an outdated dataset for emerging technologies.

3. Most of the literature presents conventional methods such as specification-

based and signature-based methods to handle threats in IoT. None of the
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existing literature focuses on the integration of machine learning methods for

DDoS detection in IoT.

4. There is no work that examines the use of support vector machines (SVMs),

neural networks, and decision trees to detect DDoS attacks in IoT.

5. There is no current work on developing preventive measures against black-

hole and selective forwarding attacks in IoT networks using machine-learning

methods.

3.5 Research Questions

Based on the gaps identified above and the research issues, the main research

question of this project is as follows:

“How can DDoS attacks be accurately identified in IoT environments

using machine-learning methods?”

This question can be further divided into four sub questions:

• Research Question 1:

How to collect and analyze simulated IoT traffic data and build a training

dataset (IoT-DDoS)?

• Research Question 2:

How to evaluate and choose the best machine-learning approach for DDoS

(selective forwarding, blackhole, and UDP flooding attacks) detection?

• Research Question 3: How to implement the selected machine-learning

method in an emulated IoT environment?

• Research Question 4:

How to evaluate and benchmark the developed IDS using the KDD and IoT-

DDoS dataset and compare the two datasets?
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3.6 Research Objectives

The research objectives of this research are as follows:

• Research Objective 1

To develop a systematic way to collect IoT communication data (IoT-DDoS)

for DDoS evaluation and benchmarking.

• Research Objective 2

To develop a machine learning framework to evaluate three machine learning

methods using the IoT-DDoS dataset collected in objective 1.

• Research Objective 3

To develop an intelligent IDS framework that uses the best machine learning

model developed in objective 2 in an emulated IoT environment.

• Research Objective 4

To evaluate the developed IDS using an IoT-DDoS dataset and various IoT

network scenarios.

3.7 Research Approach to Problem-Solving

To address the aforementioned research questions and limitations in the pre-

vious literature, this thesis aims at implementing a state-of-the-art framework to

intelligently detect DDoS attack in 6LoWPAN IoT networks. To solve the issues

identified in the previous section, a systematic and scientific method must be fol-

lowed. Generally, there are a couple of approaches to solving any scientific problem;

the main ones are the design science approach and the social science approach which

are described further as follows:

3.7.1 Design Science Research Methodology

In the design science approach, comprehensive observations of a problem in the

computer science and engineering sector are made to create and evaluate new arti-

facts about the specific problem. In many cases, these artifacts are produced from
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Figure 3.1 : Overview of the design science research methodology

existing knowledge within the literature. However, in some cases, further research

is needed to address the limitations and gaps in the literature, which in this case,

is considered innovative, and as a result, can be published or patented. There are

six phases for the design science approaches, each of which are explained below as

defined by Peffers [84] :

1. Problem identification and motivation: In this phase, the research problem

is defined precisely, which will help in developing an artifact of the problem.

Producing artifacts allows the researcher to develop an effective solution to the

problem. The solution should be well justified to provide enough significance

for the research and show how the researcher understands the scope of the

problem and its complexity.

2. Define the objective and solution: In this phase, the objectives of the identified

problem. The objectives should reflect the scope of the problem in terms

of feasibility and achievability. The objective can be qualitative where, for

example, the objective provides detailed knowledge of how the new artifact

supports the proposed solution. On the other hand, the objectives can be

quantitative, where they provide measurable values, for example, measuring
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the performance of a system in a better way than has been proposed in the

literature.

3. Design and development: In this phase, the artifacts are created, which can be

any designed object that can be considered as a contribution. The designed

artifacts should be well defined through a comprehensive iterative evaluation

process.

4. Demonstration: In this phase, the researcher uses the identified artifacts to

solve the problem. Knowledge of the artifacts and how to use them to solve

the problem is required. This might involve scholarly activities such as an

experiment, simulation, or a case study to show how the artifacts are used to

solve the problem and how the artifact is relevant to the problem itself.

5. Evaluation: In this phase, an iterative process is carried out to measure and

evaluate how the artifact is performing in support of the solution. To ensure

the relevance of the results, the researcher should have extensive knowledge of

the matrices used for the evaluation with a good knowledge of the observed

result and comparing them with the achieved objective. At this stage, the

process can be iterative until the objectives are met.

6. Communication: In this phase, the researcher focuses on communicating the

result and the novelty of the solution provided and its significance to re-

searchers and the professional community in that specific field. For people in

academia, this may include paper publications and conference presentations

following the empirical research design, which translates to the same stages

being followed in this method.

3.7.2 Social Science Method

In using the social science research approach, the researcher focuses on following

a systematic method to either disprove or prove a hypothesis based on a gathered

knowledge in the form of data. The data collection process can involve interviews
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or surveys [85]. This approach is divided into two categories which are explained as

follows:

• Quantitative approach: factual data are collected that have numerical val-

ues which are usually statistical and structured [86]. In quantitative research,

data can be measured and quantified.

• Qualitative approach: in qualitative research, the aim is to observe be-

haviors and phenomena and the results are not measurable; rather, they are

described.

The social science approach assists in demystifying a social or cultural problem

and provides a more informative explanation of the problem without proposing

a method to solve it. On the other hand, the design science approach provides

objectives and artifacts to solve the identified problem.

Hence, this thesis falls into the design science approach category, therefore pro-

viding a solution to the problem.

3.7.3 The Choice of the Science and Engineering-Based Research Method

This thesis follows the designs science approach to achieve the objective defined

in Section 3.6. To understand how this thesis relates to the design and science

approach, each phase of our research is explained as follows:

• Problem identifications: The research problem for this thesis is: “How to

detect DDoS attacks in IoT using machine learning?”

• Define objective and solutions: Develop a data collection tool to generate a

new dataset for IoT. In addition to this, a new IDS using machine learning is

developed which utilizes the generated dataset.

• Design & development: Machine learning IDS for DDoS detection in IoT.

• Design & development: Demonstration is undertaken in a proof of concept

simulation environment.
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• Evaluation: using machine learning metrics / and comparing it to existing IDS

methods in IoT (Svelte)

• Communication: Two conference papers two journal papers will be submitted

to top quality publications.

3.8 Conclusion

This chapter has described the gaps and limitations in the literature related to

DDoS detection in IoT. The terms and concepts used to design, implement, and

evaluate the proposed framework are defined in this chapter in section 3.2. Further-

more, a precise definition of the problem is identified in relation to this thesis. To

further investigate the defined problem, it was divided into four research questions.

Finally, the research methodology used is described and detailed, corresponding to

our research objective.

In the next chapter, a brief overview of the proposed framework and the solution

for the related research questions is explained.
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Chapter 4

Solution Overview

4.1 Introduction

The IoT network concept has evolved in the last few years to include many

applications that had previously never been considered, such as smart factories with

autonomous machinery and precision agriculture, where IoT devices are utilized to

provide better crop cultivation and production capabilities. However, due to the

complexity of IoT and its related technologies, IoT suffers from multiple challenges.

One of these challenges is security, in particular, security issues related to network

availability, such as DDoS attacks. To solve these issues presented in Chapter 3 of

this thesis, this chapter presents an overview of the proposed solution to the problem

of DDoS attack in the IoT network. The rest of this chapter is organized as follows;

in Section 4.2, a brief explanation of the proposed machine learning framework

is presented. Section 4.3 explores the data collection process using the proposed

framework and network design. In Section 4.4, the machine learning methods, and

the selection process with the evaluation metrics are outlined. In Section 4.5 an

overview of the machine learning IDS implementation in the proposed network is

presented. Finally the chapter concludes in Section 4.6.

4.2 Overview of IDD-IoT Framework Solution for DDoS De-

tection in IoT

In this part of the thesis, we present an intelligent framework for detecting DDoS

attacks in IoT networks. For the rest of the thesis, the proposed framework is termed

IDD-IoT. The IDD-IoT framework is an intelligent framework that utilizes a pow-

erful machine learning algorithm for attack detection. The proposed framework

comprises two phases, the pre-learning phase and the post-learning phase, as shown
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Figure 4.1 : IDD-IoT framework

in Figure 4.1. Due to the limitations explained in the previous chapter, where no

dataset reflects the nature of the IoT network, the pre-learning phase is essential.

All of the steps that take place before the real detection system is implemented in

the network occur in this phase. This phase includes raw traffic data collection,

feature extraction and selection, dataset creation and training, and testing the ma-

chine learning model. The post-learning phase comprises three steps, online data

collection, the detection model, and the node agent model. These three steps are

responsible for continuously monitoring the traffic data to search for any anoma-

lies based on a set of predefined thresholds. A detailed overview of the proposed
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framework is presented in Figure 4.1.

As presented in Figure 4.1, the framework compromises three modules. Figure

4.1 shows our proposed architecture which consists of three modules:

1. Data Collection Module(DCM)

2. Classification Module (CM)

3. Detection Modules (CM)

The data collection module (DCM) can be considered as a cross-phase module

since it is proposed to be part of the two phases of pre-learning and post-learning.

The detection module and the node agent module are both part of the post-learning

phase and are responsible for attack detection and countermeasures. Furthermore,

traffic monitoring, data classification and attacker isolation all occur at this phase.

Each module of the framework is further explained in the following sections of this

chapter. Comparing and selecting the best machine learning method is also ex-

plained since it is part of the pre-learning phase.

4.3 Overview for the Data Collection and Dataset Creation

Framework

Before going into the process of data collection, a deep understanding of the type

of network and protocols associated with the network must be explained. This thesis

focuses on the IoT network that uses the IETF [10] standard for communication,

which is the RPL protocol for routing and the 6LoWPAN protocol for IP adaptions.

To further understand the DCM, the process of data collection is divided into the

following two categories:

4.3.1 Data Collection Module

As described in Section 4.2 of this chapter, the data collection tool is a cross-phase

tool that works in the pre- and post-learning phases. The first phase, the offline

process, is to collect data to create an offline dataset to train and test the machine
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learning algorithm. The second phase is where the data collection tool is integrated

into the full IDD-IoT framework for online data collection and is then fed directly

to the detection module, as shown in Section 4.3. The main goal of this module

is to collect IoT communication data, either in a real network or in a simulated

6LoWPAN and RPL network, but our architecture is not limited to such protocols

and can be generalized to any protocol. Before detecting any attack, we must

acquire some data from the network. The acquisition process is divided into three

categories: the physical layer features, the network layer features and the application

layer features. Some existing datasets deal with the idea of DDoS attacks; however,

these datasets need to be modified to comply with the IoT network requirements.

For example, the KDD dataset has features of services that do not work in IoT

networks, such as the SNMP protocol features. The KDD dataset has duplicates in

records that can impact the result of the proposed machine-learning algorithm for

detecting DDoS. Furthermore, the KDD dataset does not reflect the communication

data of an IoT network. To meet this objective, this research develops a Python-

based tool that gathers information from the IoT environment that is built using the

Cooja simulator [77]. The main idea is to capture all traffic using a network sniffer

and further analyze the traffic and store the packets as a database. The Python tool

is used to extract the features that we want to use as a training dataset to train the

machine-learning algorithms.

In the next step, the generated PCAP file from our IoT network is taken, and

the relevant information for the dataset is extracted (feature selection).

4.4 Overview of the Machine Learning Methodology and

Evaluation

There are hundreds of machine learning algorithms from which we can choose

for comparison. However, since the IoT environment is resource-constrained, only

three algorithms are chosen based on two factors: performance and accuracy in a

limited resource network environment. The following three algorithms have been

widely used in resource-constrained networks for different applications. However,
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none of them have been compared for usage in IoT environments; specifically, DDoS

attack detection applications. The following subsections contain a brief explanation

of each algorithm.

4.4.1 Artificial Neural Networks

The ANN machine learning method is a widely used method for different appli-

cations, including security. In a nutshell, the ANN method is inspired by the human

brain neural network and simulates how the brain constructs a memory connection

to form a neural network. The ANN uses probability to build weighted connections

between the input and the output. One of the popular types of ANN is a special

neural network called the multi-layer perception neural network, which is used in

this thesis. This is further discussed in Chapter 7 of this thesis.

4.4.2 Support Vector Machine

An SVM is a very popular machine learning method that has proven its reliability

and accuracy for different applications; one of these many applications is anomaly

detection in security-related research. Examples in [87] and [88] show how SVM can

be used for security-related research.

4.4.3 Decision Tree (Random Forest)

The decision tree is a machine-learning algorithm that is very popular among the

machine-learning community, specifically in the area of data mining. [89] states that

this is one of the most widely used machines learning algorithms in most applications.

It applies the same concept used in the ID3 algorithm, where it makes decisions based

on the concept of information entropy [90].

4.4.4 Detection Methods

Figure 4.2 below shows the proposed detection module. This module process

will be repeated for each of the proposed methods. The outcome will be analysed

later and the best performer and most accurate algorithm will be chosen based on

the metrics discussed as follows:
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Figure 4.2 : Detection method

This research also develops a Python system based on the SciPy library and

other libraries, as outlined in the following steps.

• Step 1: Develop a parser that can parse the collected data into the machine-

learning algorithms, looking for the algorithm that produces the best result in

terms of performance and detection.

• Step 2: Calculate the metrics for each algorithm based on the selected at-

tributes detailed in Section 4.4.5 to calculate accuracy and to determine the

false positives and false negatives.

• Step 3: Build a detection module based on the best result produced in Step

2. This module should detect the anomalies in the network traffic since the

module will be embedded in the IDS solution that will be implemented later

in the network.

• Step 4: Save the detection module generated from the best algorithm in Step

3 to a file that can be embedded later in the IDS.

4.4.5 Machine Learning Validation

One of the basic metrics used to validate the machine learning algorithm’s per-

formance is called the confusion matrix. In its basic form, the confusion matrix is

represented using a table with all of the predicted values compared to the ground-

truth values. The rows in the confusion matrix represent the predicted values for
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Figure 4.3 : Example of a confusion matrix

each class, whereas the columns represent the ground-truth values. Figure 4.3 shows

an example of a confusion matrix. The confusion matrix has the following parame-

ters:

• True Positive (TP): This represents the samples that are correctly flagged as

normal.

• False Positive (FP): This represents the samples that are incorrectly flagged

as a normal attack.

• True Negative (TN): This represents the samples that are correctly flagged as

an attack.

• False Negative (FN): This represents the samples that are incorrectly flagged

as normal but are actual attacks.

Extracting the confusion matrix will help us to calculate the following metrics:

Accuracy: The accuracy problem is the most straightforward kind of metrics for

evaluating a machine learning algorithm’s performance. Its basic form calculates the
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number of correct predictions divided by the total number of the whole predictions.

It is a useful metric for gaining the overall score of the algorithm used.

Accuracy =
NumberofCorrectPredictions

TotalNumberofPredictions

Precision: In many cases, accuracy metrics are not sufficient to evaluate how

well a machine learning model is performing. One of these cases is when the dataset

has more data points in one class than the other, leading to an imbalanced classifica-

tion model. Furthermore, and since we are dealing with a majority of normal traffic

in our scenarios and the attackers are the anomalies, the normal instances are far

more in number than the malicious instances. Therefore, the need for more precise

metrics is a necessity to ensure a robust machine learning model. This is where

precision calculates the accuracy of each class representation using the parameters

from the confusion matrix and is represented as follows:

Precision =
TruePositive

TruePositive+ FalsePositive

Recall: Also sometimes called detection rate, the recall is the ratio between the

number of attacks detected by the system and the total number of attacks that are

present in the dataset. It is represented as follows:

Recall =
TruePositive

Truepositive+ FalseNegative

F1 Score: This metric depends on the type of application; in some cases, more

priority should be given to precision and sometimes to recall. However, in some

applications, both metrics have equal importance, therefore combining them forms

the F1 metric, which is represented as follows:

F1 = 2 ∗ Precision+Recall

Precision+Recall

The F1 score allows us to identify how precise the classifier is and how robust it
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is when it comes to ignore undetected instances. The generalized version of the F1

Score can be represented as follows:

Fβ = (1 + β2) ∗ Precision ∗Recall

β2 ∗ Precision+Recall

A further explanation of these matrices with their applications within the scope

of this thesis is discussed in Chapter 7.

4.5 Overview of the ML IDS Implementation in the IoT Net-

work

The solution proposed in this research consists of different modules: the nodes,

the detection module and the agent in each node. Figure 4.4 shows the framework

for the post-learning phase which is the actual implementation in Cooja.

Figure 4.4 : Post learning phase

After evaluating the best method for countering DDoS attacks in the IoT that

produces the best result with the fewest false positives and false negatives where the

entire detection module is built from the previous objective, the best result machine

learning algorithm is taken and implemented in the proposed IoT network. Figure
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4.5 shows the detection module with different components and their placement in

the network environment.

4.5.1 Proposed Network Diagram:

Figure 4.5 : Proposed network diagram

The network is designed, taking into consideration natural influencers like the

humidity and the wind, which may affect the network’s performance in general and

radio transmission. Hence, a node is designed that transmits data at a constant

rate to add noise to the environment. In this scenario, it is assumed that the 6BR

router and the sink node have more power than regular nodes. Since Cooja allows

the network to be bridged to another implemented 6BR router, the 6BR router is

easily installed in another Linux-based machine and acts as the router.

4.5.2 IDS Agent Module:

• Step 1: The IDS agent monitors the traffic for any suspected attacks. The

suspected attacks are measured using the increase in DIO and consistent rank

changes in the RPL protocol. If the DIO messages exceed certain thresholds

combined with two consecutive changes in the node’s rank, an acknowledgment

is sent to the IDS.
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• Step 2: After receiving the acknowledgment, the IDS further investigate the

alert and, using the machine-learning algorithm, the IDS decides whether the

data are normal traffic or anomalies.

• Step 3: If an attack is detected, the IDS sends an alert to the IDS agent to

isolate the node from the network and blacklist it.

• Step 4: The IDS agent broadcasts an alert message to all of the nodes in the

network to isolate the attacker from the network and blacklist it.

4.5.3 IDS Evaluation Overview

In order to further evaluate and validate the approach proposed in this study,

two scenarios are developed. These scenarios are as follows:

Scenario 1: The IoT-DDoS dataset is evaluated by building a machine learning

model for three kinds of machine learning methods to evaluate the performance for

each method.

Scenario 2: The best performing machine learning method is implemented in

a simulated environment incorporating the data collection model and the detection

model utilized in this thesis. Furthermore, the system is evaluated for both scenarios

with and without the developed IDS and it is benchmarked with various attacks

introduced.

The metrics used for evaluation are the same as those described in Section 4.4.5.

4.6 Conclusion

In this chapter, a brief description of the proposed machine learning framework

for DDoS detection in IoT is discussed. All the different artifacts that help address

the objective of this thesis are identified. The chapter starts by giving a general

framework for the solution, including a definition of each component of the frame-

work. This was followed by a brief explanation of the data collection models and

the dataset generation process.



63

Chapter 5

A Machine Learning Architecture for Detecting

Denial-of-Service Attacks in IoT

5.1 Introduction

The Internet of Things is part of everyday life, where millions of devices are con-

nected to the Internet to collect and share data. Although IoT devices are evolving

quickly in the consumer market where smart devices and sensors are becoming one

of the main components of many households, IoT sensors and actuators are also

heavily used in industry where thousands of devices are used to collect and share

data for different purposes. With the rapid development of the Internet of Things

in different areas, it is difficult to secure the overall availability of the network due

to its heterogeneous nature. There are many types of vulnerabilities in the IoT that

can be mitigated with further research; however, in this study, we concentrate on

the distributed denial-of-service (DDoS) attack on IoT. In this study, we propose a

machine learning architecture to detect DDoS attacks in IoT networks. The archi-

tecture collects IoT network traffic and analyzes the traffic passing through to the

machine learning model for attack detection. We propose the use of real-time data

collection tools to monitor the network dynamically.

5.2 Framework

In developing any kind of solution for IoT scenarios, constraints, and limitations

have to be considered. Developing any machine learning solution requires the acqui-

sition of data related to the area under research. Up to this time, to the best of our

knowledge, there is no predefined dataset designed for IoT networks specifically. The

problem with previous datasets, like the KDD dataset, is that it was designed and

collected for a different set of protocols that are not used for IoT networks. There-
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Figure 5.1 : Intelligent DDoS detection framework (IDD-IoT)

fore, in designing our architecture,we propose to design and collect a new dataset to

detect attacks and encounters in the IoT networks. This framework focuses on IoT-

related protocols such as the 6LoWPAN and RPL protocols. To design an effective

machine learning framework, we divide the framework working strategies into two

phases, as we explained in Chapter 4. Figure 5.1 shows our proposed architecture

consisting of three modules:

1. Data Collection Model (DAM)

2. Classification Model (CM)

3. Detection Model (DM).

Figure 5.2 shows the two phases and the associated task in each phase. As shown,
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the data collection module is shared across both phases since the data collection,

and traffic monitoring take place in both phases. At the pre-learning phase, the

data collection module is used to collect offline data for training and testing three

machine learning algorithms. In the post-learning phase, the DCM is used for deep

packet inspection and monitoring based on the machine learning model built in the

previous phase.

Figure 5.2 : Framework phases

The following section explores each of the three modules in more detail.

5.2.1 Data Collection Module

The main goal of this module is to collect IoT communication data, either in a

real network or the simulated 6LoWPAN and RPL network, but our architecture

is not limited to such protocols and can be generalized to any protocol. Before

detecting any attack, we must acquire some data from the network. The acquisition

process is divided into three categories: the physical layer features, the network layer

features, and application layer features.

Physical Layer Features:

Where the DCM extracts physical layer related features such as the received and

transmitted signals at the MAC layer, this information is related to physical layer

jamming attacks, which usually interfere with the transmitted signals.
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Table 5.1 : Data collection features

Feature Description

Physical Layer Features

Received signal
DBM

Mean value of the received
signal at the MAC layer

Transmission
signal DBM

Mean value of the transmitted
signal at the MAC layer

RSSI noise
Mean value of the noise
recorded using RSSI

Beacon interval Mean value of the beacon interval

Network Layer Features

LQI Link quality indicator

ETX
Mean value of the expected
transmission count

Number of
DIS messages

Number of DIS messages

Number of
DIO messages

Number of the RPL DIO messages

RPL rank Number of rank changes over time.

Number of neighbors Number of neighbours

Application Layer Features

Temperature Mean value of the temperature

Humidity Mean value of the humidity

Power level Mean Value of the energy over time

Consumed power
Mean value of consumed node
power

Remaining power
Mean value of the remaining node
power

Node ID Node ID

Network Layer Features:

The collection of network layer features is crucial for our IDS since the features

extracted are closely associated with many famous attacks, such as deceased rank

attack and blackhole attacks [16]. In this category, features such as the number of

DIS and DIO messages are extracted, and some other features which are related to

the RPL protocol. Data transmitted through any network follow certain protocols.

In IoT, there are certain protocols available at every layer, and in this study, we

focus on the RPL protocol on top of the 6LoWPAN protocol. This can be expanded

to include extra features from other protocols.

Application Layer Features:

At the application layer, our module collects application-specific information

such as humidity, temperature, and node power level. The application-related fea-
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tures can be extracted by programming the nodes to calculate the power consump-

tion and other related features. We chose to collect power consumption at the

application layer because we can program the node to calculate the power level and

send the result within the application-related information in the data frame payload.

5.2.2 Feature Selection

Figure 5.3 : Data collection module

To extract the network-related features, we design a specific tool that follows the

6LoWPAN and RPL protocol structure. Figure 5.3 shows the process involved in

extracting the specific features from the Pcap file captured from the IoT network.

To acquire raw IoT network traffic, we propose the use of the sensniff [91] sensor to
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cover the entire network. The sniffed data are then fed to our DCM tool to extract

the features shown in Table 5.1. To extract the 6LoWPAN and RPL features, we

design our tool to exploit both protocol structures. Figure 5.3 details the process

of extracting packets transmitted in 6LoWPAN networks. At each layer, a set of

features are extracted, as previously mentioned. Furthermore, before extracting the

features, a time window must be specified to aggregate the data into records. This

timeframe window will be used later to obtain the deviation or average for each node

based on that time window. Depending on the IoT network application, the time

window can vary accordingly. Designing a dataset for IoT electricity metering will

have a different effect if the same dataset designed with the same time window is used

for parking sensors. Since each application has a different level of data generated

during communication, determining the time window depends on the type of IoT

application used and the type of protocols implemented. The primary goal of this

dataset is to train and test the machine learning algorithm and generate a detection

model, which is explained in the next section.

5.2.3 Data Classification Module

Figure 5.4 : Example of training ML model

The dataset generated from the DCM will be used for training and testing our

machine learning algorithm. At this level, we experiment with different machine

learning methods, and the one with the best results in terms of accuracy and perfor-

mance is selected. The quality of the results produced at this stage depends heavily
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on how the data was collected in the previous stage. Figure 5.4 shows an example of

how to train and test SVM for attack detection. As previously discussed , building

a machine learning model consists of two stages, each of which is explained further

in the next section.

Figure 5.5 : Pre-learning workflow

Pre-learning Phase

The pre-learning phase is where the machine learning model is trained and tested

based on the collected data. This thesis focuses on three commonly used machine

learning methods and tests each one to identify the best performing method for the

scope of this research. Figure 5.5 shows the workflow to select the best model for

each method chosen. The part of the pre-learning phase which was discussed in the

previous section is the data collection and feature selection part. The process of

selecting the best machine learning method can be explained in the following steps:

1. Choosing Algorithm: before training the model, machine learning must be

chosen. As previously stated, this thesis focuses on three types of machine

learning methods (random forest decision tree, SVM, neural network)

2. Training/Testing: this is the learning phase for the machine learning model,
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where the data collected as a dataset is fed to the chosen algorithm to produce

a machine learning model.

3. Verification : in this step, the model is verified using a set of attributes and

scores, which is explained in detail in the next section.

4. Optimization : in this step, the verified model, is iterated into multiple

iterations until the best result for each machine learning algorithm is obtained.

At the end of this iteration, three optimized machine learning models are gener-

ated. Based on the results in the verification phase, the best model will be chosen

and deployed into our IDD-IoT system for attack detection.

To detect attacker nodes, we developed the proposed algorithm, which is dis-

cussed in the next section. The validation process is explained in the following.

Post-Learning Phase

The post-processing module is responsible for handling real-time data and ac-

tions. This part of the detection module is divided into three steps.

1. Traffic aggregator: The main purpose of this step is to aggregate data

from multiple sniffers installed in the network. Supporting multiple sensors

in the network is essential to ensure network scalability and attack detection

coverage. Therefore the aggregation process must ensure the data fed to the

feature extraction process is not duplicated. To ensure this process occurs

smoothly, this section of the thesis proposes Formula 5.1 to aggregate data in

real-time and ensure clean data formation. The formula is described below,

assuming the number of sniffer sensors is S= (S1,s2,s3 ... sn), and the number

of nodes is N = (n1,n2.n3...nm) where m is the last node in the network. The

process of ensuring that the sniffer node only aggregates non-duplicated data

is to compare the received packet signature at the T time and ensure they are

not the same. In this work, the signature is defined as the variable Ts, which

consists of the timestamp and node ID. If the signature of the packet equals
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any packets received from any other sniffer, one of the packets will be ignored,

and only one version of the packet is processed in the queue. Otherwise, no

additional process is needed, and the packets are forwarded to the next set.

This process ensures no data duplication occurs in real-time. This unit consist

of three handlers explained as follows:

• Sniffer Handler(Sniffer[]): this handler takes the sniffer arrays as input

and processes each packet coming from each sniffer. The output from

this handler is passed to the aggregation handler. The output is a multi-

dimensional array of sniffers and packets associated with each sniffer.

• Aggregation Handler(Sniffers[node][packet]): The aggregation handler it-

erates through all of the sniffers and their packets to find any packet

signature similarities and report them. After iteration, only one array of

node packets is sent to the queue.

g(Rx, Ry, Rz) =

⎧⎪⎨
⎪⎩
0 if Rx ∈ [X1, Xend] ∧Ry = f(Rx) ∧Rz < C

1 otherwise

(5.1)

2. Queue Unit: This unit is responsible for queuing packets to allow exact fea-

ture extraction based on a time window wt. The time windows are determined

based on the type of IoT application used. Allowing this flexibility in choosing

the time window in the framework is essential to ensure a scalable solution.

Algorithm 2 describes the process executed in this unit.

Figure 5.6 : Data detection model
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Algorithm 1: Queuing process algorithms

Result: S
Queue = array of packets;
packets = incoming pacekts; while packets != 0 do

tmp = pacekt[0].timestamp - packet[1].timestamp;
if condition then

instructions1;
instructions2;

else
instructions3;

end

end

It is worth mentioning here that the wt time windows used in the pre-learning

process should be the same to ensure precise, unbiased data collection.

3. Feature Extraction: the same feature extraction process described in Sec-

tion 5.2 is applied here, but instead of being offline, the process is online on

real network scenarios.

4. Attack classification: this is the step where the chosen machine learning

classifies the traffic anomalies based on the testing and training process de-

scribed in Section 5.2. As previously discussed, the best machine learning

model will be embedded into the IDD-IoT framework to ensure the best re-

sult. More on this part is discussed in chapters 7 and 8. Figure 5.6 shows an

example of the anomaly detection using the one-class SVM.

5. Result Generator Unit: this unit is responsible for generating the result

of the classification and creates a special kind of packet on top of the UDP

protocol and reports to the IDS agent where further processing is handheld by

the IDS agent. It is worth mentioning that the generated packet has a minimal

size footprint to ensure no network traffic is introduced. This packet is sent

using a payload in a UDP packet, and its size is less than one byte. The packet

contains the following parameters(node-id, time, parents, rank, and detection

result). The detection result can be either 0 or 1. If the result is 0, it indicates
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no attack was detected, and no further packet will be sent to the IDS agent.

This result is then stored on the local log repository. Storing the result on a

local repository is crucial for future analysis. Otherwise, if the detection result

is 1, the detection packet is sent to the IDS Agent, and a copy of the result is

stored on the local repository as well.

6. Local Repository (LR): This local database stores all of the features’ ex-

tracted records alongside the result from the attack classifier. The main reason

for creating such a repository is to build a knowledge base for future analysis

and model improvement. Moreover, it is the data store from where all of the

third-party units retrieve the data. Using this repository allows a third-party

top-level application to visualize in real-time how the network is performing.

Figure 5.7 shows all of the information stored in the repository. Moreover, to

handle all of the retrieval and posting processes, two handlers are created with

the database which are explained as follows:

• GetData() Handler : responsible for extracting the data from the

datastore and posting it to the required application using the REST API.

• PostData() Handler : responsible for inputting the data from the

sources to the database. This handler is usually triggered by the feature

extraction unit and the result generator unit, to store the information to

the database.

7. API Unit: this unit works as the interaction point between the end-user and

the local datastore. In this thesis, the three-tier REST API model is used.

The basic design of any REST framework includes four operations, which are

commonly referred to as the CRUD operations and can be described as follows:

• POST: Create data

• GET: Retrieve Data

• PUT: Modify Data

• DELETE: Destroy Data
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Figure 5.7 : Workflow of the GET operation

The API has two components, the readData(NodeID) and the update(NodeID),

where the readData() function is used to fetch the data from the data store

using the MySQL interaction and send the data to the third party front end.

The Update(NodeID) is used to update any misinformation manually. This

function is only used by administrators of the network and does not affect the

actual network itself to protect it from unauthorized misbehavior. To ensure

a bottleneck-free API, this unit was designed using the three-tier REST API

architecture. Figure 5.7 shows the full workflow of the three-tier API and

each interaction level, and it also shows the detailed workflow of how the GET

operation is handled. As can be seen, this unit is divided into three tiers and

is described as follows:

• Endpoint client or third-party application: this part is where the

client application sends a request to the REST API to retrieve certain

data from the data store.

• REST API Framework: this part works as the middleware between

the data store and the client front-end.

• Data Store: this is where all of the node information and the detection
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state is stored. The data store object has its handler to handle incoming

requests, which is designed to make sure the REST API has no direct

access to the data store, which adds an extra level of abstraction to the

end-user.

Figure 5.8 : Example IoT network

5.2.4 IDS Agent Module

This module works as the connection point between the local network and the

IDD-IoT. It is built on top of the sink node of the network since all nodes are

connected to the sink node either directly or through a multi-hop. The main idea of

this module is to broadcast an alarm message to all nodes of the network containing

the attacker ID and the path to the attacker. This will allow another unaffected

node to add the attacker node to the blacklist and avoid any communication with

the malicious node. Furthermore, the IDS agent modifies the victim node’s route

and creates a new alternative path to the sink node. Then, the IDS agent initiates

network topology reform to isolate the malicious node by establishing a new route
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to the sink from the victim node. All nodes will blacklist the malicious node, and

all traffic from it is ignored and dropped. Figure 5.8 shows a simplified diagram

of the whole process explained here, where S represents the sink node and M is

the attacker node. To achieve such a result, the IDS agent implements two main

functions :

• AlertBroadcast(AttackerNodeID):As discussed above, this method’s main

responsibility is to broadcast alert messages containing the AttackerNodeID

to all of the nodes within the network. This can be achieved by utilizing the

DIO message available on top of the RPL protocol.

• RouteModify(): This method has the responsibility to reroute the traffic

which is coming to and from the victim node using the nearest neighbor with

the highest rank within the DODAG tree.

5.3 Conclusion

Detecting DDoS attacks in IoT networks is a challenging issue, especially in in-

dustrial IoT applications. Due to the consequences associated with such an attack

which affects the availability of the network and its services, these cause a significant

loss in money and information. It is, therefore, crucial for IoT providers and opera-

tors to mitigate such attacks in a fast and efficient manner. The IDD-IoT framework

assists providers and administrators mitigate DDoS attacks without compromising

the limitations associated with limited resource devices. If an attack is detected, the

framework assists providers in detecting DDoS attacks. In this framework, the power

of machine learning is utilized to detect any behavioral change in the network by

continuously monitoring the traffic based on a set of properly selected parameters.

In the next chapter, the data collection model is implemented to collect the

proposed dataset. Furthermore, the structure of the dataset and its related features

are discussed.
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Chapter 6

Real-time Dataset Generation Framework for

Intrusion Detection Systems in IoT

6.1 Introduction

Intrusion detection systems (IDS) are not a new concept; rather, they have

existed since 1970 [92]. The main component of any proper IDS is a very well

structured and gathered dataset; an accessible dataset widely used in many security

studies is the KDDcup-99, which was considered the golden standard for IDS evalua-

tion for a long time [93]. However, the KDDcup-99 suffered from many flaws, which

were criticized repeatedly on many occasions, such as in [94] [95] [96] which indi-

cates that it is not applicable for today IDS’s and security research. Furthermore,

the scope of this research is IoT-based networks; and as we discussed in Chapter

2, the literature lacks dedicated IoT based IDS datasets. Therefore, this chapter is

dedicated to building a new set of tools to evaluate and generate a new IoT based

dataset to be used for the machine learning IDS framework.

In this chapter, we propose a new framework for generating an IoT dataset for

IDS evaluation, based on the identified limitations of the existing datasets in Chapter

2.

The rest of the chapter is organized as follows: Section 6.2 explores a new pre-

evaluation tool to be used for exporting related data for evaluation purposes. In

section 6.3, the proposed framework is explained, including feature engineering and

selection. The datasets are analysed in section 6.4. In section 6.5, we compare the

results of the produced datasets and compare them with several existing datasets.

Finally, conclusions are drawn in section 6.6.

Note: Some parts of this chapter have already been published in the FGCS [97]
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journal and the NBiS [97] conference.

6.2 Data Exportation Framework

Figure 6.1 : DEF tool

Before we explain the framework, we develop a data exportation and visualiza-

tion tool to evaluate the IoT traffic on the Cooja simulation platform. This tool

provides insight into how the RPL and 6lowpan traffic is affected when different

attacks are introduced, allowing us to focus on selecting the related feature. The

Cooja simulator was developed to emulate IoT-based operating systems. This is a

Java-based simulator that uses the Java Native Interface (JNI) to interface between

Java and the emulated OS, which is in our example of the Contiki OS. A full sensor

emulation is achieved through the use of MSPSim[98].However, Cooja lacks a tool

for exporting the collected data for in-depth analysis. Acquiring sensor data and

network-related data in a simple textual format will allow the researcher to inte-
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grate it into other platforms and analyze them as needed. DEF is designed to be

integrated as an extension for the available Collect View plugin in Cooja. DEF sim-

plifies the process by gathering and exporting the collected data into a CSV format

file or a MySQL-connected database. Such a tool allows researchers and developers

to focus more on their tasks than to figure out how to export data to the correct for-

mat. To develop the DEF platform, we reverse-engineered the Collect View model,

profoundly modifying the existing code to run the DEF tool during run time. The

DEF framework consists of four main modules: the Data Handler Module (DHM),

Data Visualization Module (DVM), Database Management Module (DMM), and

API Module (APIM).

6.2.1 Data Handler Module (DHM)

Figure 6.1 shows the components of the DEF tool. The DHM module extracts

the collected data for each node and stores them as an ArrayList to be embedded

later in the table. To avoid blockage in the main thread, we separated the data-

gathering process into two threads, one for GUI and the other for data handling

and representation. The main task of this module is to handle, store, and update

the incoming sensor data. All the nodes in the network and their information are

Algorithm 2: DEF handle incoming sensor data

Input: A set of Sensor Nodes Data A = {a1, a2, . . . , an}
Output: Aggregated Sensors Data
SensorDataList ← a1
for i < an to n do

if ai! = null then
add ai to the SensorDataList
Update SensorDataList

else
Printout ”Data is null”

return SensorDataList

stored and updated in an ArrayList, which is later embedded into the data DVM.

To address all of this, we designed Algorithm 2 which retrieves a list of all nodes

in the network and extracts the relevant sensor data as a data aggregator class. If
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the retrieved node does not have any data, the process of adding sensor data to the

sensor list is ignored. The received sensor list is passed in real-time to the DVM

module.

6.2.2 Data Visualization Module (DVM)

Figure 6.2 : Screenshot of the DEF tool

The DVM is the unit responsible for displaying the incoming data in a presentable

format. This module allows the network administrator to monitor node performance

and export the data for further processing. In order to display the sensor data, we

built our custom table model by extending the Abstract Table Model class provided

by Java to properly present the data in the correct form. This module was designed

with user usability and convenience in mind, where the user has the ability to select

the parameter of node information to display, a function not available in the orig-

inal Collect View plugin. Such flexibility in-display sensor information allows the

researcher to focus on specific sensor parameters. Furthermore, the module allows

the user to export the data as CSV from all nodes or each node selected. Figure 6.2

shows an example of the DEF display data, with an emphasis on user convenience.
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6.2.3 Database Management Module (DMM)

This module works as the database interface that handles the process of read-

ing and writing in a database. We chose CSV and MySQL interfaces since most

programming languages and tools have libraries that support both. The live data

presented in the table simultaneously updates the table and the MySQL database.

To achieve these functionalities, the database manager class has to be developed.

This primary class function is to take user configuration and seamlessly create and

update the table in the database. The Java JDBC driver [99] was utilized to achieve

the connection between the DEF and the MySQL database. This allows developers

to extend the capability of the collected data outside the Collect View interface

and monitor the behavior of the node. One example is to utilize the MySQL [100]

database to connect to a web interface that continuously monitors the nodes and

their status without compromising the node power since all data is processed outside

the IoT network. Moreover, since all the database processing is handled outside the

IoT network’s resources, this widens the spectrum of applications that can use the

extracted data.

6.2.4 API Module (APIM)

Figure 6.3 : Data exportation framework API

To simplify the process, this study proposes a simple REST API to fetch the

data from the database and convert it into a data stream that can be utilized in
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any third-party platform. This module is used to further enhance the developer’s

productivity by abstracting all the database connections and data retrieval into

a simple API, ensuring good integration with third-party applications. The API

comprises two main classes described below:

• Database() Class: The database class is used to establish a connection to

the database containing all of the node’s records.

• GetData() Class: The class is responsible for retrieving node-specific data

from the database. Additionally, this class is responsible for converting the

retrieved data into a JSON format to allow third-party applications to utilize

the retrieved data easily.

Figure 6.4 : Example of the JSON output

1 [{"NodeID":"2","avgPower":"60.4598"},{"NodeID":"3","
avgPower":"60.4319"},{"NodeID":"4","avgPower":"60.4939
"}]

In the example workflow shown in Figure 6.3, a request method is used to send

an HTTP request to the REST API. The API initiates a database connection to

retrieve the data and send it back to the front-end. The data retrieved is then

encoded in JSON format using the GetData class. Figure 6.4 shows an example of

the JSON output retrieved by the DEF API. It shows the sensor’s average power

reading alongside the associated node ID. This JSON data structure can be utilized

by any application or front-end that supports parsing JSON data supported by most

programming languages.

6.2.5 DEF Evaluation

In this section, a detailed evaluation of the DEF framework is introduced. This

section is divided into two parts. The first part presents the simulation design,

where the design of the IoT network is discussed. The second part discusses the
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evaluation of the framework by monitoring CPU and memory usage. To evaluate

the DEF tool architecture, we implemented a testbed use case scenario with Cooja

emulated IoT devices. The example consists of 22 nodes scattered randomly across

the working area. Figure 6.5 shows the distribution of the IoT nodes. All the client

nodes implement the rpl-collect.c example available in the examples folder in Contiki

OS. The sink uses the UDP.sink.c. To emulate a real-world scenario where noise

can be introduced in the environment, a distributor node is placed in the network

area to generate signal noise in the network. Moreover, to observe how the DEF

tool will perform in an attack scenario, attacker nodes are placed at the edge of the

network affecting two neighbor nodes, as shown in Figure 6.5. The attacker carries

a blackhole attack by advertising a better rank to the sink node. To justify the use

Table 6.1 : Workstation setup

CPU Intel(R) i7-3740QM @ 2.70GHz
Memory 8 GB RAM
OP Linux Contiki 4.13.0-21-generic

of the DEF tool, the evaluation scenario was executed twice with the same settings

and run time except one run was without the DEF. This was done to compare CPU

and memory consumption in both runs.

6.2.6 Simulation Results and Discussion

We focus on the power and memory consumption of the host computer running

the DEF tool since it does not directly affect the network simulation itself. Our focus

is to determine how the tool evaluates in a simulation scenario explicitly talking

about two parameters: memory and CPU benchmark with and without the DEF.

To evaluate each scenario’s performance, we utilized the ”top” command line in

Linux to run every ten seconds to have a better evaluation of the current CPU and

memory for each scenario.

Table 6.2 shows the final result of the evaluations. We ran the simulation six

times in total — three for each scenario — with the DEF tool and without it.

We observe from the table that the longer the simulation time, the less the CPU
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Figure 6.5 : IoT simulation network

load. This can be explained because of the caching system in the CPU. Another

observation is that there is almost no change in real-time when the DEF tool is

running. The result shows a minimal increase in CPU and memory usage with the

DEF running in the background. This indicates that, although we are running a

heavy task of data collection and representation, the DEF tool has minimal CPU

and memory overhead.

The DEF tool’s main contribution is to give us a clear view of the different

network parameters affected by the different kinds of attacks, especially the attacks

that affect the RPL networks. By using the DEF tool, we conclude that there is a set

of features which need to be extracted from the RPL protocol to accurately produce

a related dataset for the machine learning algorithms. In the following section, we

introduce the data collection framework with all of the features explored using the
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Table 6.2 : DEF Tool Performance

Scenario AvgCPU % AvgMemory % SimTime(Hrs) Realtime(S)

No DEF 1 117.56 4.4 1 49.71
No DEF 2 109.40 3.46 2 90.35
No DEF 3 103.00 6.5 3 115.44
DEF 1 118.00 5.87 1 59.71
DEF 2 110.45 4.92 2 91.15
DEF 3 107.67 6.97 3 117.22

DEF Tool.

6.3 Real-Time Data Collection Framework

Building a dataset in any context requires the careful design of the collection

framework to ensure precise and unbiased results. This involves a very large effort

in terms of pre-planning and how every aspect of the network should be designed,

which involves a considerable amount of trial and error to ensure optimal results.

In this section, we describe the process of designing the network and the different

protocols involved. The network topology for this framework is shown in Figure 6.6.

Figure 6.6 : The proposed IDS network architecture and placement
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Table 6.3 : Simulation parameters

Parameter Value

Number of nodes 29 nodes
Cluster head 1
Network area 100m x 100m
Size of packet 500
Transmission area 150m
Routing protocol RPL
MAC protocol CSMA
Simulation time 24 hrs

To generate the IoT-DDoS, we follow a specific procedure to ensure maximum

data quality and realism. The ideal process is to have a real IoT network infras-

tructure in real-time operation. However, since this process is costly and can cause

technical and ethical complications, we designed our network architecture to be

based on a simulation/emulation design, where the IoT nodes are emulated in the

Cooja environment [77].

In Cooja, the IoT nodes are emulated to have real CPU and memory power

from the host workstation. Hence, when designing the framework, we considered

the applicability and portability of such architecture in real-world scenarios. To

emulate an IoT network’s noise level, we placed two distributor nodes that emit a

noisy signal at a specific interval. All of the network and simulation parameters

are summarized in Table 6.3. Furthermore, the proposed system comprises four

components: the capturing medium, data aggregation, queuing unit, and the feature

extraction unit, as shown in Figure 6.7. In the following subsections, each part of

the dataset generation process is explained.

6.3.1 Network and Attack Scenarios

The network is designed to emulate a real-world IoT network with sensors com-

mercially available for industrial IoT. One of the popular limited resource sensors

is the Zolertia Z1 mote [101], which supports the IEEE802.15.4 standard [102]. Ta-
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Figure 6.7 : Data collection module

ble 6.4 summarize the type of devices used and the attached sensors. We simulate

distributed weather stations that collect humidity and temperature data using the

SHT21/SHT25 sensors [103]

Figure 6.8 : Pictorial visualization of attacks
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Table 6.4 : Sensor node parameters

Name Value

Mote Zolertia z1
CPU 16-bit RISC CPU @16MHz
RAM 8kb
Memory 92KB
Transceiver CC2420
Wireless IEEE802.15.4 / 2.4GHz
Power 3.3V/5V
Sensors SHT21/SHT25

All of the sensors in the network use the same mote type (z1), including the sink,

which means it is a homogeneous network since all of the nodes in the network use

the same protocols and hardware. However, the data collection stage should not

be different for a heterogeneous network that uses IEEE802.15.4 and 6LoWPAN

protocols for networking [79]. All IoT nodes run on modified Contiki OS version

3.0 [104], including the sniffer nodes distributed across the network. As for routing

within the 6LoWPAN architecture, we use the standard networking stack embed-

ded within Contiki OS. However, to reproduce the three attacks, we describe the

restructure the RPL implementation in section 6.3 of this chapter. The 6BR router

runs natively on an Ubuntu 18.4 box that handles all of the connections coming from

the sniffers and the sink node. The connection between the sink node is a serial link

using the slip protocol [105]. Here we assume the sink node is a z1 node. Therefore,

we use the serial link to exchange data. The connection between the Internet and

the 6BR router is an Ethernet link to ensure high network throughput, in case it is

needed.

To emulate a real-world IoT environment, we design four scenarios, each of which

follows the same network topology. The first one is the normal behavior scenario

without any attack introduced. The other three introduce some kind of attack on

the network. The three variants of attacks are explained as follows:

Flooding attack: In a flooding attack, the attacker node sends an unlimited
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Algorithm 3: DIS flooding attack

Result: Flooding attack
RplDisInterval = 0;
while i <10 do

sendDIS();
i++;

end

number of DIS messages to the victim node over a short period, causing a denial

of service attack and disabling the node services. This kind of attack can also lead

to battery exhaustion as it consumes all the node’s resources. All of the nodes

adjacent to the attacker will be affected since all these nodes connect wirelessly

using the IEEE802.15.4 standard. To implement this attack in Contiki OS [104],

we had to reverse engineer the networking architecture and add Algorithm 3 to the

OS RPL module. The basic idea of this algorithm is to set the RPL DIS message

interval to 0, and for every segment of the DIS interval, 10 DIS messages are sent

continuously.

Selective forwarding attacks: This is a commonly used routing attack that

tries to selectively forward only particular packets to the next node by selectively

dropping specific data from the packets. Such attacks can be extremely dangerous

when combined with other attacks like the sinkhole attack, leading to a Denial of

Service (DoS). To implement the selective forwarding attack in Contiki OS, the

networking module had to be modified using Algorithm 4, where the attacker, in

its core networking module, checks if the packet is a UDP or not. If it is a UDP

packet, then it is dropped, and all the other kinds of packets are sent frequently. In

this type of attack, the attacker selectively drops only the UDP packets.

Blackhole attack: A blackhole attack is similar to a selective forwarding attack,

but instead of forwarding specific packets, it drops all kinds of packets coming from

other nodes. This attack can disturb the network topology by manipulating the

ranking mechanism in the RPL protocol. To implement this attack and maximize

its maliciousness, there are two steps involved. The first step is to ensure the attacker
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Algorithm 4: Selective forwarding

Result: Drop UDP packet
packet = incoming packet;
while packets.size != 0 do

if packet.payload == ”udp” then
drop.packet

else
continue;

end

end

node has the best possible route to the sink node. Therefore, all of the neighbor’s

nodes will change their route to the sink to be through the attacker node. This

is achieved by modifying the RPL ranking system in the Contiki OS source code,

followed by the procedure of compiling and flashing the sensor node. The second step

is similar to what has already been implemented in the previous selective forwarding

attack, but instead of dropping only the UDP packets, it drops all of the packets

going to the root node. This is explained in Algorithm 5.

Algorithm 5: Blackhole

Result: Drop all packets & and decrease rank
packets = incoming packets;
Dag Rank = root rank; while packets.size != 0 do

if packet.dist == ”root” then
drop.packet

else
continue;

end

end

6.3.2 Traffic Generation

Sensor traffic is generated using the simulation environment Cooja [77], where

the Z1 is used with the cc2420 transceiver, as previously discussed. All the nodes

run a custom humidity and temperature sensor application, which is implemented

specifically for this data collection scenario. The length of the interval in which the
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sensors send the data to the sink node is 30 seconds. Figure 6.10 shows a comparison

of the different UDP packet flows over time between the three attacks. From the

flow, we can see the blackhole attack affects far fewer UDP packets of the three

attacks because the attacker drops all of the packets it receives. In the network, as

can be seen from Figure 6.9, there are two types of nodes as follows:

1. Sink node: This is sometimes called the root node to where all the network

packets are forwarded. The sink node has the highest rank across the network

since it maintains the node hierarchy in the RPL network. Moreover, it is a

storing type, which means all network routes are stored within this node. At

the application layer level, this node works as a UDP server where it handles

all of the incoming UDP packets from the client’s nodes. These UDP packets

contain various kinds of information, specially designed for the generation of

this dataset. Furthermore, the sink node takes the responsibility of forwarding

the data to the gateway node, where all of the data extraction and processing

occurs. The functionality of the sink node application is developed using the

core functionality available within Contiki OS.

2. Client node: This is a normal sensor node that senses the humidity and

temperature and forwards the values to the sink node. Along with the humidity

and temperature data, this node also sends other valuable information about

its status, such as the RSSI level, LQI, and the ETX values encapsulated as

UDP payload.

Both kinds of nodes implement the 6LoWPAN protocol on top of the IEEE802.15.4

standard for wireless communication. Although we use the IEEE802.15.4 as a com-

munication medium for this specific solution, the proposed framework can adapt to

any protocol at the physical layer level.

6.3.3 Capturing the Data

In this section, we explain the process used to capture the raw data from the

IoT network. Since the IoT network usually consists of limited resource devices,



92

Figure 6.9 : Attack network topology

extensive data collection and monitoring is not feasible. Therefore, we propose

using props placed across the network and distributed equally in the network by the

network administrators. In this study, we assume the props have more power than

the other nodes in the network. These props continuously monitor and collect the

data and send them to the data aggregation unit. To achieve this, we use the Sensniff

model [91] to sniff and monitor the network continuously. At the hardware level, the

probes are equipped with the popular CC2420 [106] transceiver, which uses a large

antenna to cover a wide range of the network. At the software level, Sensniff firmware

is used. Sensniff is an open-source firmware used as network sniffing firmware.

On top of Sensniff, the probes are equipped with the Libpcap library [107] which

is used to capture the link layer network traffic. Utilizing Libpcap, we develop a

capturing algorithm defined as follows :
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Figure 6.10 : UDP statistics

Algorithm 6: Capturing algorithm

Result: packet
packet = incoming packet;
while packets.size != 0 do

tmp = packet[0].timestamp - packet.timestamp;
if packet.size =¡ 40 then

send packet.payload to queue;
else

continue;
end

end

Algorithm 6 is used to define how the Libpcap library is used. Also, as can be

seen, the algorithm captures the raw data at the MAC layer level to be sent later to

the data aggregation unit, which is described in the next section. One critical point

to mention here is that the data collected at this stage is raw IEEE802.15.4 data

with all related signal information.

6.3.4 Data Aggregation

The main function of this module is to aggregate the data from multiple sources

and ensure data integrity. The process is to ensure there is no data duplication
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in the collected data. We create a specific algorithm embedded with the queuing

algorithm as follows:

1. Check how many sniffer nodes are attached to the network and store each of

these sniffers in an array. It is crucial to aggregate all of the network traffic

from all the nodes across the network. Although multiple props will be needed

because of the wireless signal’s nature, there is a possibility of overlapping

signals that can cause data redundancy and duplication. Also, more props

are needed to cover the large IoT network. Therefore, the need for the data

aggregation unit is crucial.

2. Iterate between each node to check if there is any node ID duplication and

double-check it with the timestamp for each packet. If there is duplication as

well, then run the duplication process and check by comparing all the packet

signatures with the sensor node. This step is crucial since it has multiple levels

of integrity check. If a packet has been duplicated, this can be identified by

comparing the different attributes in each packet.

Each packet has a unique ID which is a combination of three values: the source IP,

destination IP, and the timestamp. These values are used to check packet redun-

dancy and eliminate any duplication.

6.3.5 Queue

The aggregated packet is sent to the queue system. The system takes all of

the data sent from the data aggregator and checks the time window T . All of the

packets that are within the time window are then sent to the feature extraction

unit. Alternatively, based on the number of observations, we create a variable time

window, which indicates how many packets a node has sent. To shed light on this

method, let us assume T=10, which means for every 10 observations of data for each

node extract and calculate the relevant features. Although this method might be

useful, a legitimate question can be asked, this being what about the nodes that do

not send anything in the network? The solution is to fill any missing data with zeros
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since there is no value in this block of observations. We design a queuing method

to accept either the time or number of observation windows. For this study, several

observations are used as a window. Algorithm 7 shows the queuing algorithm.

Algorithm 7: Queuing algorithm

Sniffer: S = {S1,...,Sn} of sizen
output: A list of queued packets

node ← list of all nodes in each Sn of size i;
while i < n do

Q = 0 ;
for k ← 0 to n do

for j ← 0 to i do
if Q > 0 then

if node [k].pkt = node [j].pkt then node is duplicated add
one of them add node [k].pkt to Q ;
else add node [k].pkt to Q;

else Q < 0;
featureExtraction(Q) ;
continue

foreach element e of the line i do FindCompress(p);

6.3.6 Feature Extraction Unit

The feature extraction unit is responsible for extracting the related information

from the packets, as shown in Table 6.5. To ensure coverage of all three layers of the

IoT communication stack, we collect the data from the three network layers since

we are creating a diverse learning dataset with different features vectors. The three

feature vectors are explained as follows:

1. Feature vector 1: This vector includes data collected at the physical layer

level, such as signal strength and the transmission range.

2. Feature vector 2: This vector contains most of the features for this dataset

where the data from the networking layer are extracted. This includes data

extracted from the RPL and 6LoWPAN protocols.
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Figure 6.11 : Data collection model

3. Feature vector 3: This vector includes the sensor reading data extracted at

the application layer, which, for our example, contains information about the

humidity and temperature readings.

Moreover, most of the IoT networks run using some version of the 6LoWPAN

protocol, so the related features are extracted based on the data collected, as shown

in Figure 6.11. The process has several stages, as follows:

• First phase extracts the features related to the mac layer, such as the RSSI

value and transmission strength. This will help the researcher to understand
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the correlation of the three different attacks and the low-level layer parameters

such as the transmitted and current signal strength.

• The second phase extracts the network level features such as the RPL [10]

related features as described in Table 6.5. Since the blackhole attack and the

selective forwarding attack occur in the network layer, these features are the

most relevant to our dataset.

• The third phase is extracting the application-level features like the data pay-

load in the UDP packet. In this layer, sensor-related information is extracted,

such as battery level and humidity/ temperature information.

To extract all of this information online, we use the Scapy [108] library on Python

which utilizes the powerful Linux library Libpcap for network packet capture and

manipulation. The developed parser can connect to the 6BR router through a serial

link port and extract all of the relevant features, as previously explained.

Our feature selection process is divided into three categories, each of which are

explained as follows:

Physical Layer Features:

This is where the DCM extracts the physical layer related features such as the

received and transmitted signals at the MAC layer. This information is related to

physical layer jamming attacks, which interfere with the transmitted signals.

Network Layer Features:

Collecting the network layer features is crucial for our IDS since the features

extracted are closely associated with many well-known attacks, such as deceased

rank attacks and blackhole attacks. In this category, features such as the number

of DIS and DIO messages are extracted, with several other features related to the

RPL protocol. Data transmitted through any network follow specific protocols. In

the IoT, there are certain protocols available at every layer, and in this study, we
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Table 6.5 : Data collection features

Feature Description

Physical Layer Features

Received signal
DBM

Mean value of the received
signal at the MAC layer

Transmission
signal DBM

Mean value of the transmitted
signal at MAC layer

RSSI noise
Mean value of the noise
recorded using RSSI

Beacon interval Mean value of the beacon interval

Network Layer Features

LQI Link quality indicator

ETX
Mean value of the expected
transmission count

Number of
DIS messages

Number of DIS messages

Number of
DIO messages

Number of RPL DIO messages

RPL rank Number of rank changes over time.

Number of neighbors Number of neighbours

Application Layer Features

Temperature Mean value of temperature

Humidity Mean value of humidity

Power level Mean value of energy over time

Consumed power
Mean value of consumed node
power

Remaining power
Mean value of remaining node
power

Node ID Node ID

focus on the RPL protocol on top of the 6LoWPAN protocol. This can be expanded

to include extra features from other protocols.

Application Layer Features:

Our module collects application-specific information at the application layer,

such as the humidity, temperature, and node power level. The application related

features can be extracted by programming the nodes to calculate the power con-

sumption and other related features. We chose to collect power consumption at the

application layer because we can program the node to calculate the power level and

send the result within the application-related information in the UDP payload, as

shown in Figure 6.12.

Including these values at the application layer allows the researcher to measure



99

Figure 6.12 : UDP payload

how different attacks affect the sensor reading and how it can be correlated to attack

detection.

6.3.7 Data Labelling

Since we are dealing with sensor networks and 6LoWPAN traffic, labeling the

data based on the flow is not feasible due to the sheer amount of data transferred

from each node. Furthermore, the network data in the IoT network are not trans-

mitted as normal network flow, where TCP, for example, uses the three handshake

process that can be used to extract network flow for each node. Also, since there

is a connection channel between the source and destination in a traditional network

flow, it can be easily extracted. Therefore, to solve these issues, we label the data

based on the simulation vector and the timing. Moreover, the segment where the

attack takes place will be labeled to indicate at which run the attack occurred and

the type of attack. This will help the classifier to narrow down any false positive

alarms. The attacker node traffic segment is also labeled to indicate that this at-

tacker is transmitting malicious traffic. By examining the dataset, we can see that

the classification method would handle blackhole attacks and flooding attacks well

since there is an attack pattern, either a modified rank attack or a large number of

DIS messages indicating malicious activity.

6.3.8 Quantitative Description of IoT-DDoS

The IoT-DDoS consists of 16 columns, and each column represents the nodes for

which data is collected. The number of nodes captured in the network is an accurate
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Table 6.6 : Protocol distribution

Protocol Packets Size(Bytes) (%)

IEEE 802.15.4 1391817 289.5471874 33.17%
6LoWPAN 1362111 299.0477588 32.47%
UDP 553529 15.78560291 13.19%
ICMPv6 888080 93.6091151 21.17%

representation of our proposed capture method. Figure 6.14 shows how frequently

the packet was sent across the network in a normal scenario. Table 6.6 shows the

contribution of each protocol in the dataset. This is the overall percentage for all

of the four scenarios executed. However, this percentage changes when compared

individually for each attack. For example, the number of UDP packets for the

blackhole and flooding attack drops significantly compared to the ground truth

normal behavior dataset.

Figure 6.13 : Protocol distribution

On the other hand, the flooding attack generates the highest number of DIS

messages compared to all the other scenarios. Figure 6.13 shows the protocol dis-

tribution from the attack perspective. Table 6.6 shows the percentage and size of

each protocol in the whole dataset generated. One thing to note is that the results
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from all of these files are four network PCAP traces that are used to extract these

results and generate the dataset.

6.4 Analysis of the Dataset

The IoT-DDoS dataset contains various attack structures as previously discussed.

To provide insight into the complexity of this dataset, we analyze the 96 simulated

hours of traffic using all of the acquired features in the different network layers.

Figure 6.14 : Network flow

Figure 6.15 : Rank change over time

Figure 6.14 shows the network flow of the ground truth normal behavior scenario.
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One critical aspect of the dataset we want to analyze is how the RPL protocol

performs under such long intensive attacks. Figure 6.15 shows the rank change over

time of one of the parent nodes that sits at the end of the DoDAG tree. It can be

seen that the average of the rank changes over time is extremely high in the case

of flooding attacks in comparison to the ground truth normal behavior. This can

be explained because of the type of flooding we implemented, that is, an RPL DIS

flooding attack where the attacker node sends unlimited RPL DIS messages in a

short interval. Interestingly, this attack affects the ranking behavior of the nodes

across the network. Another observation is how the blackhole rank changes for this

specific node. As can be seen, it is the most stable among all of the scenarios. The

reason is that the attacker was set to have the best rank in the network during

the simulation period. On the other hand, the selective forwarding attack shows a

similar network pattern to the normal behavior scenario in terms of DIS and DIO

messages. However, there is a small abnormal observation when we look at the rank

changes over time.

Figure 6.16 : DIO comparison

There is a frequent fluctuation in the node rank, and we think this is due to the

stealthiness of the selective forwarding attack and the way it can be misdiagnosed as

normal behavior. One important aspect which must be considered when analyzing

the RPL protocol is the number of DIO messages sent by the node over time. Figure

6.16 shows the DIO messages from each scenario, and as can be seen, the flooding

attack has the highest number of sent DIO messages, which we explained earlier as
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Table 6.7 : Sample of the dataset

Node ip Window ReceivedDBM TransmitDBM RSSI BeaconInterval LQI NumOfDIS NumOfDIO Temperature Humidity PowerLevel ConsumedPower RemainingPower

ffff:0000:0001 1 5.68826E+12 0.014880723 16 0 65449 0 4 615 2650.1675 37 0.039230499 0
ffff:0000:0002 1 1.2712E+13 0.060292862 20 0 32717.5 0 2 615 2650.1675 37 0.101110124 0
ffff:0000:0003 1 1.2712E+13 0.060292862 20 0 32717.5 0 2 615 2650.1675 37 0.101110124 0
ffff:0000:0004 1 1.2712E+13 0.060292862 20 0 32717.5 0 2 615 2650.1675 37 0.101110124 0
ffff:0000:0005 1 1.2712E+13 0.060292862 20 0 32717.5 0 2 615 2650.1675 37 0.101110124 0
ffff:0000:0006 1 2.17455E+13 0.050235145 16 0 32716 0 2 615 2650.1675 18.5 0.059058167 0
ffff:0000:0007 1 1.12759E+13 0.035503919 16 0 65441 0 2 615 2650.1675 37 0.070549923 0
ffff:0000:0008 1 1.12759E+13 0.035503919 16 0 65441 0 2 615 2650.1675 37 0.070549923 0
ffff:0000:0009 1 3.11313E+13 0.031342354 16 0 65414 0 4 615 2650.1675 37 0.061673546 0
ffff:0000:0010 1 3.11313E+13 0.031342354 16 0 65414 0 4 615 2650.1675 37 0.061673546 0
ffff:0000:0011 1 1.54464E+13 0.039935698 32 0 65426 0 5 615 2650.1675 37 0.039900808 0
ffff:0000:0012 1 3.41581E+13 0.044062105 16 0 65436 0 1 615 2650.1675 37 0.064181777 0
ffff:0000:0013 1 2.41675E+13 0.038715397 32 0 21809.33333 0 8 615 2650.1675 37 0.058440722 0
ffff:0000:0014 1 2.41675E+13 0.038715397 32 0 13085.6 0 9 615 2650.1675 37 0.058440722 0
ffff:0000:0001 2 3.75446E+13 0.023274421 16 0 65420 0 1 615 2650.1675 0 0.03352426 0
ffff:0000:0002 2 3.75446E+13 0.023274421 16 0 65420 0 1 615 2650.1675 0 0.03352426 0
ffff:0000:0003 2 3.52057E+13 0.227608124 32 0 119 0 6 615 2650.1675 37 0.233043085 0
ffff:0000:0004 2 3.52057E+13 0.227608124 32 0 119 0 6 615 2650.1675 37 0.233043085 0
ffff:0000:0005 2 3.52057E+13 0.227608124 32 0 119 0 6 615 2650.1675 37 0.233043085 0
ffff:0000:0006 2 3.12032E+13 0.109457518 32 0 65410 0 5 615 2650.1675 37 0.124687374 0
ffff:0000:0007 2 4.30547E+13 0.029680223 32 0 65420 0 5 615 2650.1675 0 0.048699772 0
ffff:0000:0008 2 5.85994E+13 0.116518456 32 0 65415 0 4 615 2650.1675 37 0.135271402 0
ffff:0000:0009 2 5.85994E+13 0.116518456 32 0 65415 0 4 615 2650.1675 37 0.135271402 0
ffff:0000:0010 2 6.01304E+13 0.033911444 32 0 65421 0 3 615 2650.1675 37 0.108536075 0
ffff:0000:0011 2 6.16961E+13 0.044299193 32 0 122 0 4 615 2650.1675 0 0.055924893 0
ffff:0000:0012 2 6.53184E+13 0.095108854 32 0 32704.5 0 4 615 2650.1675 37 0.120918141 0
ffff:0000:0013 2 4.33398E+13 0.069514919 32 0 65413 0 4 615 2650.1675 37 0.099507365 0
ffff:0000:0014 2 4.33398E+13 0.069514919 32 0 65413 0 4 615 2650.1675 37 0.099507365 0

being due to the frequency of the attack. However, there is a considerable difference

between the blackhole attack and the normal behavior scenario. This is because

the rank value is encapsulated in the DIO message; therefore, a higher number of

packets is sent. Table 6.7 show a sample of the generated dataset.

6.5 Comparison With Other Datasets

In this section, we compare some of the characteristics of the IoT-DDoS to

other available datasets. Although some of these datasets were considered the gold

standard for the research community in the area of IDS evaluation, to date, no

dataset has been designed to adapt to the emerging IoT for security evaluation.

This research can be differentiated from the prior work by its capability to address

the limitations associated with the previous datasets.

Table 6.8 : Dataset comparison

Dataset Realistic network Labeled
Protocols

Attributes IoT attacks Type of flow IoT environment
TCP/IP/UDP 6lowpan RPL IEEE802.14.5

KDDcup99 Yes Yes Yes No No No 41 No Dataflow No
Darpa Yes Yes Yes No No No 41 No Dataflow No
NSL-KDD Yes Yes Yes No No No - No Dataflow No
Koyoto Yes Yes Yes No No No - No Dataflow No
CAIDA Yes Yes Yes No No No - No Dataflow No
UNBIS Yes Yes Yes No No No - No Dataflow No
TUIDS Yes Yes Yes No No No - No Dataflow No
Sperotto Yes Yes Yes No No No - No Dataflow No
MAWILab Yes Yes Yes No No No - No Dataflow No
IoT-DDoS No Yes Yes Yes Yes Yes 12 Yes Time , Packet based Yes

Table 6.8 summarizes all the explored datasets and compares them with the
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IoT-DDoS datasets, which is the result of this chapter. As can be seen from the

table, most of the datasets were designed for different sets of protocols that are not

currently available in today’s IoT networks. No datasets have been collected for

network-level IoT data, (e.g., 6LoWPAN and RPL traffic) which works as the base

of many IoT communication technologies in the market today. Furthermore, none

of the explored datasets was designed with IoT malicious activity in mind; all of

the datasets evaluated the risk activity of a TCP/IP network. In the IoT-DDoS,

we were able to implement three kinds of IoT-related attacks, as explained in this

chapter. This can be used as the basis to implement a new solution to counter

these attacks using artificial intelligence. Table 6.8 details the different parameters

involved in creating each dataset, showing that no dataset was explicitly designed

for IoT network protocols. Instead, the focus was on a TCP/IP based traditional

network. In the IoT-DDoS dataset, 16 features were extracted from the three-level

layers.

6.6 Conclusion

A concerns of researchers in the computer science field is the availability of

datasets in their specific area. However, despite the research community’s effort

in various areas of computer science, there are still limitations when it comes to

datasets designed for IDS evaluation and testing. Hence, the need for dynamically

updated datasets is crucial to ensure the maximum interoperability across different

emerging technologies.

We also shed light on the issues associated with previous datasets when it comes

to IoT security applications. Furthermore, we addressed some of these issues by

designing a systematic approach for dataset creation in IoT ecosystems. The result

was the generation of the IoT-DDoS, which includes implementing three different

attacks related to IoT security. The applicability of this dataset can be extended

to include more attacks and security issues. However, at this stage, this dataset

addresses the need for a comprehensive dataset for IoT security research with three

popular attack scenarios. The significance of this dataset to the existing literature is
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two-fold as follows: (a) this dataset provides IoT researchers with a relevant DDoS

dataset that they can use to validate the models developed to counter DDoS attacks;

(b) this dataset can be regenerated by the users since the developed framework can

be used to collect data at any point in time. Hence, this dataset is self-sustaining

in this regard. We explored all of the available datasets and compared them to our

dataset to ensure the feasibility of the new dataset generated. In the next section

of this thesis, we utilize the dataset generated in this chapter to build a machine

learning model for IoT attack detection.
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Chapter 7

A Machine Learning Platform for Detecting

DDoS Attacks in IoT Based Networks

7.1 Introduction

The Internet of Things (IoT) is already a part of the infrastructure of many

sectors that are involved in our daily life. However, security is playing an important

role when it comes to the speed of IoT deployment. One way to protect IoT de-

vices and networks is by building a machine learning infrastructure responsible for

detecting and preventing networks and devices from malicious attacks. In Chapter

2 of this thesis, we explored the literature and found there is no machine learning

infrastructure to detect DDoS attacks in IoT networks. In the previous chapters, we

presented a framework for building a machine learning IDs for IoT networks. This

includes a data collection framework to acquire the dataset to train the machine

learning model. Building on the previous chapters of this thesis, in this chapter, we

describe a machine learning model using the dataset gathered in Chapter 6 Further-

more, we develop three algorithms, specifically tailored for IoT networks, to detect

three kinds of attacks. The main contribution of this work can be summarized as

follows:

1. First, we summarize the machine learning mathematics in relation to our

framework.

2. Second, we thoroughly analyze the three machine learning methods and inves-

tigate the best parameters for different scenarios under three kinds of attacks.

3. Third, there are multiple issues with detecting novel DDoS attacks due to their

unpredicted behaviors with different attack patterns, making the detection of

such attacks a challenging task. Therefore, in this chapter, we propose an
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SVM machine learning method tuned to detect IoT DDoS attacks, mainly

blackhole, selective forwarding, and flooding attacks.

This chapter is divided into sections described as follows: Section 7.2 explores the

three different machine learning algorithms theoretical details of the in relation to

our system. In section 7.3, the implementation and testing of the machine learning

algorithms are presented. In Section 7.4 the implemented machine learning methods

are evaluated. In section 7.5 a comprehensive comparison and discussion of the

experiment results and the strengths of each one are investigated. Finally, section

7.6 concludes this chapter.

7.2 Machine Learning Algorithms for Attack Detection

In this section of this chapter, we explore three machine learning algorithms and

explain all the related features and parameters, which will help us to understand

how each machine learning model behaves against our datasets. This thesis explores

three popular machine learning algorithms that have been widely used for attack

and anomaly detection, support vector machines, decision trees and neural networks,

which are explored in the following sub-sections:

7.2.1 Support Vector Machine Testing

A support vector machine (SVM) is a machine learning algorithm that has been

widely used for IDS; many applications in the literature have applied SVM for

different security-related applications [109] [14] [110] [111]

Cortes and Vapnik developed the current SVM algorithm [112] in 1995. It is

a machine learning algorithm that is used both for regression and classification

by taking the training vector as an input and trying to separate the data into

classes based on the n-dimension features. The boundary that separates different

classes is called the hyperplane, which separates the data points into different classes

based on their features. However, in a single or multidimensional dataset, multiple

hyperplanes exist [109]. Therefore the job of SVM is to identify the best and most

optimal hyperplane margin for classification. Figure 7.1 shows the hyperplane. To
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Figure 7.1 : SVM diagram

successfully classify the data points, the algorithm has to maximize the distance

between the hyperplane and the data point using the hinge loss function defined as

follows:

The following mathematical equation represents the hyperplane:

w.x+ b = 0 (7.1)

where b is the bias term, x is the input data point vector and w is the variable

weight. For each data point, there are two possibilities: 1 which means that the

value is part of the (+) class, alternatively, −1, which means the data point is part

of the (-) class.

⎧⎪⎨
⎪⎩
w.x+ b = 1

w.x+ b = −1

(7.2)

To elaborate this further, let us assume we have a set of data xi ∈ Rd, i = 1,,,,t
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where x represents the data point and superscripts with (i) to indicate the appear-

ance of that instance, assuming that xi is part of either of two classes yi ∈ {1,−1}.
For these two classes, in our case where we try to detect anomalies in IoT network

traffic, we can say that the 1 class represents the normal traffic and the -1 represents

the traffic anomalies. Therefore in relation to what is discussed in equation 7.1 and

7.2 this can be rewritten as follows:

⎧⎪⎨
⎪⎩
wT · xi + b ≥ 1 for allxi ∈ Normal

wT · xi + b ≤ −1 for allxi ∈ Anomaly

(7.3)

If the set can be separated linearly, this is expressed as follows:

yi(w
T · xi + b) ≥ 1 for all i = 1, ...L (7.4)

If we refer to 7.1, the dotted line that separates the hyperplane is called the

margin, which is the distance between the support vector from both classes, and it

can be calculated by obtaining the norm of w as follows 2
‖w‖ . This can be written

as minimizing the ‖w‖2, similarly as maximizing the distance of the hyperplane

between the classes. Therefore, the main problem that SVM is trying to solve is

to find the optimal hyperplane. This can be achieved by maximizing the margin

between the hyperplane and the two classes, as previously stated, which can be

represented by the following equation:

min(w) =
1

2
‖w‖2 (7.5)

subject to yi(w
T · xi + b) ≥ 1 , i = 1, ..., l. (7.6)

The above equation is a quadratic optimization problem, which is the main

mathematical problem the SVM algorithm tries to solve. This optimization problem

is best used with sets that have a clear separation between classes, which can be



110

separated linearly. However, for complex sets that cannot be separated linearly

(which is the case for the data collected from IoT networks), it will be difficult for

such a problem to classify them. Therefore, to solve this issue, the Lagrange [113]

problem and Wolfe dual [114] problem are used. The Lagrange representation for

the SVM is as follows :

L(w, b, α) = 1

2
w · w −

m∑
i=1

αi[yi(w · x+ b)− 1] (7.7)

where α is the Lagrange multiplier, and the aim is to maximize it for each data-

point instance xi, there is also w, b for each data point, and we need to minimize

the 1
2
‖w‖2

This is sometimes called the hard margin SVM [115] which works well with

linearly separated data points. In a real-world scenario where network traffic exists,

there is a considerable amount of noise in the dataset. Therefore it is hard to

separate them using the hard margin SVM. This issue can be addressed using the

slack variable, which is more flexible when the objective functions want to meet the

constraints. The new constraint with the slack variable is as follows:

yi(w · xi + b) ≥ 1− ζi, i = 1...m (7.8)

Therefore the new equation after the slack is introduced is :

min w, b, ζ
1

2
||w||2 +

m∑
i=1

ζi (7.9)

subject to yi(w · xi + b) ≥ 1− ζi, i = 1...m (7.10)

However, a problem occurs when choosing a large value for the slack variable,

which is similar to the hard margin SVM, causing the SVM to be unforgiving and

failing to satisfy all the constraints. To solve this issue, the C parameter is used,

which is also called regularization. Through equalization using the (C) parameter,

the ζ is more manageable, since specifying a small (C) value will emphasize the



111

importance of ζ and a larger (C) value indicates no importance to the ζ variable.

The new equation after adding the C parameter is :

Minw, b, ζ
1

2
||w||2 + C

m∑
i=1

ζi (7.11)

subject to yi(w · xi + b) ≥ 1− ζi, ζi ≥ 0, i = 1...m (7.12)

If we substitute Equation (7.11) using the dual problem in the Lagrangian func-

tion the result will be as follows :

Max α
m∑
i=1

αi − 1

2

m∑
i=1

m∑
j=1

αiαjyiyjxi · xj (7.13)

Subject To ≤ αi ≤ C, i = 1...m,
m∑
i=1

aiyi = 0 (7.14)

This is the equation that SVM is trying to solve to draw the hyperplane and

separate the data points. Next, we discuss the type of kernels used by SVM.

Kernel

In the previous section, we discussed the use of a slack variable and the C pa-

rameters to separate data when there is noise which prevents it from being linearly

separable. However, what if the data without noise is not linearly separable?. This

means the data by design cannot be separated linearly. This can be solved us-

ing what is called the kernel trick. The kernel trick in its basic forms solves the

dot product of xi · xi in the dual optimisation problem which can be defined as

K(xi, xj) = xi · xj and substituted in the dual optimization problem as follows :
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Max α

m∑
i=1

αi − 1

2

m∑
i=1

m∑
j=1

αiαjyiyjK(xi · xj) (7.15)

Subject To αi ≥ 0, i = 1...m,

m∑
i=1

aiyi = 0 (7.16)

There are different kinds of kernels that can be used in SVM algorithms which

are explained as follows:

• The linear kernel, which is defined as K(xi, xj) = xi · xj, is usually used for

text classifications since it produces good results.

• The polynomial kernel which is defined as K(xi, xj) = (xi · xj + c)d, with the

C parameters and d for more flexibility.

• The radial basis function (RBF) kernel which is defined asK(xi, xj) = exp(−γ||xi−
xj||2), is one of the popular kernels used with SVM which uses γ to define how

the kernel should fit the data. A small value of γ will cause the model to

under-fit and behave like a linear model. A large value of γ will make the

model overfit with good accuracy, but it does not generalize well.

This is one of the algorithms that will be used in this thesis with the RBF kernel,

as discussed in section 7.3 of this chapter. In the next subsection, the neural network

and random forest method will be explored and discussed in detail.

7.2.2 Artificial Neural Networks

Neural networks have been used for security applications [116][117] for a long

time and can be applied in different sectors of security in IoT. In this section, we

explore one kind of ANN called the multi-layer perception [118] to detect different

kinds of attacks based on anomaly detection.

The neural networks algorithm is considered to be one of the best algorithms for

prediction and classification [119]. The reason for this is apparent as it reflects the
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Figure 7.2 : Multi-layer perceptron

human neuron system that helps humans think and make daily life decisions. The

neural network structure is a layered structure with the input and hidden layers in

multi-layered perceptron (MLP). A simple MLP is called a single-layer perceptron

neural network. It is a neural network with one input layer and one output layer,

which can be used for simple classification. However, it does not support in-depth

classification where multiple hidden layers are introduced for complex processing.

The number of attributes defines the input layer, which represents the dataset

number of features or classes. The output layer has the input/2 output, each neuron

has some numeric value assigned called weights, and the input of a data tuple is called

the input values (features). To proceed, we must calculate the next neuron’s output

value, which can be calculated by multiplying the weight and the input value, which

results in the following equation 7.17

output = input ∗ weight+ bias (7.17)
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which is considered as the value of the next neuron’s output or the output layer’s

value. However, depending on the input neurons, we calculate all the input values,

and the largest value is considered as the output of that neural network’s output.

The general formula for a single perception is:

output = b · xi · wi (7.18)

There is another type of neural network that gives a more precise output result

known as the multi-layer perceptron neural network (MPL), as shown in Figure 7.2.

It represents the structure of the human neural network more accurately. It intro-

duces the hidden layer concept that further provides a classification of attributes.

The number of hidden layers depends entirely on the flexibility of data or the volume

of data. The greater the number of hidden layers, the more precise the results will

be.

Weight

As can be seen from Figure 7.2, we have three input neurons fed into a hidden

layer with four neurons. Each hidden layer is represented by Wn where n is the

number of hidden layers. We can also see that each connection between neurons has

the weight ex(w31 = 7). If we look at the input x2 which connects to the neurons

w31 which have the highest value of 7, the neurons in this case think that X2 is the

most important feature from the other features since it has the highest weight.

Bias

The other value in the neural network is bias. Bias, in simple terms, is another

kind of weight assigned to the hidden layer neurons. This is used with the weight

to modify the output and both of them help the neural network model to precisely

fit the data to obtain the best result possible.
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Activation

Each neuron contributes to the neural network by providing a small decision

that affects the final output value. This process is called the activation function,

and the process of aggregating all of those small contributions is represented by

z. Therefore, the function looks like this F (z); in this case, it is a linear function.

Another activation function exist, but for this thesis we use the Sigmoid activation

function which is represented by the following equation:

f(x) = 1/(1 + e( − 1 ∗ z)) (7.19)

In the next section, we discuss the mathematics behind the random forest algo-

rithm and how it works.

7.2.3 Random Forest

Figure 7.3 : Random forest example

A decision tree is an old method used for both classification and prediction in
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machine learning. The concept is based on tree topology. In a decision tree, each

point is called a node. The first node or the starter of the tree is called the root

node, and the last are called leaves. The tree progresses with a binary decision

making sequence. Each node is connected to two new nodes that represent the state

of true and false, respectively. This is achieved by splitting the data into different

classes based on their features. This is done by choosing the splitting method. This

thesis uses a random forest [120] with the Gini impurity [121] splitting method.

Furthermore, for testing and comparison, the entropy splitting method is also used.

The random forest is one kind of decision tree that randomizes the process of

building a tree in the forest. It achieves this by randomizing the training samples

and also by randomly selecting different subsets of features when the new tree is

generated.

The Gini-impurity method used for splitting can expressed mathematically as

follows:

IG(n) = 1−
J∑

i=1

(pi)
2 (7.20)

This process is recursively repeated until it reaches the maximum depth of the

tree, which is defined in Python as Maxdepth. Otherwise, it will stop when there

is only one sample for that class. Different parameters of the random forest model

are modified in the implementation to achieve the best result possible. This model

is discussed in detail, including the different parameters in the next section.

7.3 Machine Learning Pre-Processing

This section outlines the process followed to train, test, and validate the machine

learning algorithms The pre-processing phase focuses mainly on the preparation

of the three machine learning methods using the IoT-DDoS dataset. The three

methods (SVM, random forest, neural network)are implemented and analyzed using

the Sklearn [122] framework. The RBF kernel is used for the SVM method since it

produces the most relevant result when applied to our dataset. Before diving deeper
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Figure 7.4 : IoT-DDoS subsets

into the analysis of the machine learning result, we must understand that three main

steps are commonly involved in machine learning applications: the feature selection,

training phase, and validation/testing phase. The validation phase is crucial since

there is a golden rule when applying any machine learning method which is to refrain

from using the training data for testing to avoid biased results. Therefore, for our

verification and testing, we divide the dataset into four sub-datasets, as shown in

Figure 7.4, which are described as follows:

1. Training dataset: consisting of the dataset of 50% of the no-attack dataset

and 50% of the all-of-the-attacks divided equally as 16.6 % for each attack

2. Validation/testing (selective attack): consisting of 50% of the training dataset

and 50% of selective forwarding attack.

3. Validation/testing (blackhole attack): consisting of 50% of the training dataset

and 50% of blackhole attack.

4. Validation/testing (flooding attack): consisting of 50% of the training dataset

and 50% of a flooding attack.

These datasets are further divided and shuffled using the k-fold validation method

to ensure that none of the training data is leaked into the testing phase. Figure 7.4
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shows the number of k-folds and the dataset division process.

Once all of the sub-datasets are prepared, the primary training dataset and the

validation sub-datasets are used to evaluate and tune the parameters of the machine

learning methods. After the best results are acquired in the validation/training

phase, the final results are displayed in this thesis and discussed extensively in

section 7.5 of this chapter.

Figure 7.5 : The ML framework used in this thesis

We use the following framework to evaluate the three machine learning algo-

rithms. As can be seen in Figure 7.5, we are in the pre-learning phase where the

process is divided into three sub-steps which are discussed in detail in the following

sections:

Feature Selection

As previously discussed in the introduction of this chapter, this chapter evaluates

the performance of different supervised machine learning methods under different

attack circumstances using the IoT-DDoS dataset generated in Chapter 6. The IoT-

DDoS was explained extensively in chapter six, including all of the feature selection

processes. The dataset contains three different features of vectors extracted from

the three IoT network stacks. In this thesis, this process is carried out by analyzing

the behavior of different network parameters under different attack scenarios. This
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Table 7.1 : Dataset samples

Attacks Samples

Selective Forwarding 193890
Blackhole 211366
Flooding 229898
No Attack 165031

Total 800185

process was explained in section 4 of chapter 6, specifically in the dataset pre-

collection phase. Figure 7.6 shows the correlation of each feature in the dataset and

Table 7.1 shows the number of samples per attack on the IoT-DDoS dataset.

Figure 7.6 : IoT-DDoS heatmap

For further details about the collected IoT-DDoS refer to Chapter 6 of this

thesis. In the next subsection, the data preparation and evaluation metrics are

discussed. By examining different dimensions of the datasets and all the features

relations detailed in Figure 7.6 as a heatmap, it can be seen that there is a significant
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correlation between the number of DIS messages and a flooding attack. The number

of DIS messages overwhelm the network to attack its neighbors. In machine learning

terms, we correlate the relationship between all of the combined parameters and the

result of detecting the attacks.

Training

In the training phase, the main task to be carried out is to fit the training dataset

to the machine learning model. This is the initial step before validating and testing

the model. However, before training the model with the dataset, the normalization

and standardization process is carried out. Normalization is the process of trans-

ferring the dataset values to a normal range between 0 to 100, in our case. We use

normalization since we have a large variance in feature values. In Python, we utilize

the Sklearn library standard scaler, which subtracts the means (u) of each sample

(x) and divides it by the standard deviation (s) of the whole dataset z = (x− u)/s

[122]. The training datasets consist of 50% of the no attack data, and the other 50%

is divided equally and proportionally between the three attacks.

To reduce the dimensionality of the dataset, we use the principal component

analysis(PCA) algorithm [54]. This allows us to obtain better results when training

the model. In the next section, the validation and testing methods are discussed.

Validation and Testing

This phase’s primary role is first to evaluate the result of the model and to tune

the hyperparameters of the algorithm used. The validation step is used to ensure

that the testing data is not used to evaluate the final result of the model. To avoid

any bias in the result due to the test sub-datasets, the cross-validation technique

is used. A specific subset of the dataset is shown in Figure7.4. As previously

discussed, the three valid/test subsets of the datasets are used to validate and test

the algorithms and to evaluate the accuracy of the result after the tuning process

is done. The process at the phase is carried out recursively until the best model is

identified. The cross-validation and hyperparameter tuning are explained as follows:
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• Cross-Validation: is used in this study to avoid any problem with biased

results in an unbalanced dataset. We use k-fold algorithm [122] to cross-

validate the datasets. In its basic form, the k-fold cross validation creates a

number of subsets of the training and testing datasets and alternates between

the fold to ensure maximum real representation of the dataset. We use 6 folds

for the k-fold algorithm. This means the datasets will be divided into six-folds

to ensure unbiased results in training/testing.

• Tuning the Hyperparameters: The gridsearch framework [122] is used to

search for the optimum parameters for the model. In grid-search, we define

a set of values for the hyperparameters for each machine learning algorithm,

and the grid-search automates the process of iteratively trying each hyperpa-

rameter for each model. This is done in sync with the cross-validation step to

ensure a consistent result. To pipeline between the two processes, we use the

pipeline library in Python.

A sample iteration of the grid-search used for cross validation and hyperparameters

tuning for the SVM algorithm can be seen in Listing 1 below:

Metrics

The detailed metrics used in the thesis are explained in Chapter 5. Nonetheless,

in this section, we highlight how the main metrics are used and how each parameter

affects the end result:

Table 7.2 : Main matrices used

True Positive Rate TP
Tp+FN

False Positive Rate FP
FP+TN

F1-Score TP
Tp+(FN+FP )/2

Precision: when we give a high value for precision we are telling the model to

only mark the data point as being attack only if the model is completely confident
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Grid scores on development set:

0.741 (+/-0.191) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.006, 'pca': 2}

0.761 (+/-0.188) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.007, 'pca': 2}

0.820 (+/-0.170) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.008, 'pca': 2}

0.829 (+/-0.157) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.009, 'pca': 2}

0.829 (+/-0.157) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.01, 'pca': 2}

0.939 (+/-0.030) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.02, 'pca': 2}

0.939 (+/-0.032) for {'SupVM__C': 0.1, 'SupVM__gamma': 0.03, 'pca': 2}

0.939 (+/-0.032) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.006, 'pca': 2}

0.941 (+/-0.032) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.007, 'pca': 2}

0.926 (+/-0.062) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.008, 'pca': 2}

0.925 (+/-0.062) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.009, 'pca': 2}

0.905 (+/-0.054) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.01, 'pca': 2}

0.882 (+/-0.018) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.02, 'pca': 2}

0.887 (+/-0.021) for {'SupVM__C': 0.4, 'SupVM__gamma': 0.03, 'pca': 2}

0.881 (+/-0.019) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.006, 'pca': 2}

0.880 (+/-0.018) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.007, 'pca': 2}

0.881 (+/-0.020) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.008, 'pca': 2}

0.881 (+/-0.020) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.009, 'pca': 2}

0.882 (+/-0.019) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.01, 'pca': 2}

0.896 (+/-0.025) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.02, 'pca': 2}

0.918 (+/-0.014) for {'SupVM__C': 0.9, 'SupVM__gamma': 0.03, 'pca': 2}

Listing 1: Grid search iteration

that it is an attack. This might cause a real attack to be classified as regular traffic,

leading to high false negatives which means a lower recall value.

Recall: Sometime referred to as sensitivity, where it identify how sensitive it is

to label normal traffic as malicious traffic. Causing a low precision result but will

avoid the false negatives. It useful to have high recall value when we want to detect

all attacks even if it means labeling some traffic as malicious.

If we have a specific goal in mind where we either want a higher precision and

lower recall or vice versa, then we can simply use them as we see fit. However,

if we do not have a clear goal, then we can simply use the F1 score which is the

harmonic mean of the two values (precision and recall). In addition, the higher

the number, the better the result of the machine learning model. Also, by having

two parameters to judge how the algorithm performs, it is difficult to evaluate the

algorithm. Therefore, we use the F1 score as it is a combined metric of the two to

evaluate the model. Nevertheless, we list precision and recall as a reference. Also,
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the ROC curve will be drawn to show the value of the F1 measure. Moreover,

since we are dealing with attacks, we want to test different recall values to see how

the method performs, we have chosen different recall values since it is acceptable

as a preventative measure to mark some of the regular packets as an attack but

make sure to detect the attacked nodes. Table 7.7 shows how we calculated the

true positive rate, the false positive rate, and the F1-score, which are crucial for the

attack detection results.

7.4 Machine Learning Detection Evaluation

In this section, the three methods are discussed individually, and at the end of

this section, a comprehensive comparison between them is presented. Furthermore,

the full implementation of the thesis’ experiments including figures and the detailed

results of each method can be found in a GitHub repository [123]. Here, we only

present the end result and the best model generated after the iterative validation

and testing process:

7.4.1 SVM Experiment

This experiment uses the Sklearn [122] Python library to implement the SVM

algorithm. As previously mentioned, the RBF kernel is used since the data are not

linearly separable.

Table 7.3 : SVM confusion matrix comparison

Label Blackhole SF Flood

TP 97.8% 99.0% 99.0%
TN 92.8% 73.0% 100.0%
FP 0.0% 27.0% 0.0%
FN 0.0% 0.8% 0.8%

The hyperparameters of the SVM were discussed in the previous section. Figure

7.7 shows that the SVM confusion matrix achieves good detection results for black-

hole and flooding attacks. However, there is a slight decrease in accuracy result
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Figure 7.7 : SVM confusion matrix BH

(a) SVM confusion matrix flood (b) SVM confusion matrix SF

in relation to the selective forwarding attack. As can be seen from Table 7.3, the

true negatives(TN) of SF decrease compared to the other attacks. This is because

forwarding attacks generate a large amount of fake traffic that looks identical to

normal traffic.

Figure 7.9 shows the best performance of the SVM method in detecting all the

attacks. Table 7.4 shows the result of one of the many experiments conducted to

tune the SVM model. Therefore, after extensive and rigorous testing and evaluation,

we conclude that the best parameters for the SVM model are as follows:

• C: This represents the smoothness of the hyperplane when classifying the
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Figure 7.9 : SVM hyperplane separation SF

(a) SVM confusion matrix BH (b) SVM confusion matrix flood

points. A large value of C means more points will be classified correctly.

The C variable is part of the soft margining in the slack variable equation

discussed earlier in section 7.2. For our example, we make C = 2

• Gamma: This is a variable that exists only on the RBF kernel and it is used to

determine the influence of a single data point on the curvature of the decision

boundary. We use gamma = 0.00.1, to obtain the best model result from the

SVM algorithm.

Figure 7.9 shows the SVM separation hyperplane of the best model selected for
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Table 7.4 : Example of one of the K-fold tests

Result f1 Gamma C

0.492 (+/-0.000) 0.1 0.006
0.492 (+/-0.000) 0.1 0.007
0.492 (+/-0.000) 0.1 0.008
0.492 (+/-0.000) 0.1 0.009
0.492 (+/-0.000) 0.1 0.01
0.492 (+/-0.000) 0.1 0.02
0.492 (+/-0.000) 0.1 0.03
0.492 (+/-0.000) 0.4 0.006
0.492 (+/-0.000) 0.4 0.007
0.492 (+/-0.000) 0.4 0.008
0.492 (+/-0.000) 0.4 0.009
0.492 (+/-0.000) 0.4 0.01
0.524 (+/-0.108) 0.4 0.02
0.899 (+/-0.325) 0.4 0.03
0.492 (+/-0.000) 0.9 0.006
0.492 (+/-0.000) 0.9 0.007
0.492 (+/-0.000) 0.9 0.008
0.534 (+/-0.144) 0.9 0.009
0.524 (+/-0.108) 0.9 0.01
0.677 (+/-0.212) 0.9 0.02
0.756 (+/-0.271) 0.9 0.03

the three attacks. Overall, all of the hyperplanes were able to separate the attacks

efficiently. Only in the case of SF attacks was there a slight decrease in the number

of the attacks false labeled as positive.

7.4.2 ANN Experiment

For neural networks, we have used the MLP classifier with backpropagation with

the following settings:

• Hidden layer: This is used to specify how many layers there are between the

input of the network and the output of the network and how many neurons

there are in each hidden layer. The higher the number, the more time it takes

to process, but the more accurate the results. In this example, we use the

value (5,4).

• Alpha: used for regularization in other terms, it is the penalty value used to

specify the size of the weights used against overfitting. In some cases, the high
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alpha value is used to fix the overfitting problem where there is high variance.

On the other hand, it can also be used to fix the problem of underfitting by

lowering the alpha value. In our case, the best alpha value we found after

many testing runs is 0.001. We used the grid-search framework to find this

best result.

Table 7.5 shows the precision, F1, and recall of the algorithm. As can be seen,

the ANN does not perform well for our datasets, especially for flooding attacks.

This can be explained due to the large amount of DIS messages sent, which might

cause the algorithm to perform poorly.

Furthermore, the confusion matrix in Figure 7.11 shows a high number of false

positives, and the number of outliers detected was nearly 0.

Figure 7.11 : Confusion matrix for artificial neural network

An examination of Table 7.5 shows that the ANN algorithm performed poorly

compared to the SVM. Although we mainly focus on the logistic activation func-

tion for comparison, we include the ReLU activation method. The ReLU method
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Table 7.5 : Example of one of the K-fold tests

Result F1 Average Activation Alpha Hidden layer Learning rate

0.745 (+/-0.507) logistic 0.0001 (1, 20) constant
0.759 (+/-0.456) logistic 0.0001 (1, 20) adaptive
0.796 (+/-0.498) logistic 0.0001 (50, 50, 50) constant
0.745 (+/-0.507) logistic 0.0001 (50, 50, 50) adaptive
0.759 (+/-0.456) logistic 0.0001 (50, 100, 50) constant
0.745 (+/-0.507) logistic 0.0001 (50, 100, 50) adaptive
0.730 (+/-0.253) logistic 0.0001 (100,) constant
0.692 (+/-0.491) logistic 0.0001 (100,) adaptive
0.692 (+/-0.491) logistic 0.05 (1, 20) constant
0.796 (+/-0.498) logistic 0.05 (1, 20) adaptive
0.745 (+/-0.507) logistic 0.05 (50, 50, 50) constant
0.798 (+/-0.004) logistic 0.05 (50, 50, 50) adaptive
0.745 (+/-0.507) logistic 0.05 (50, 100, 50) constant
0.796 (+/-0.498) logistic 0.05 (50, 100, 50) adaptive
0.759 (+/-0.456) logistic 0.05 (100,) constant
0.759 (+/-0.456) logistic 0.05 (100,) adaptive
0.730 (+/-0.253) relu 0.0001 (1, 20) constant
0.730 (+/-0.253) relu 0.0001 (1, 20) adaptive
0.692 (+/-0.491) relu 0.0001 (50, 50, 50) constant
0.692 (+/-0.491) relu 0.0001 (50, 50, 50) adaptive
0.573 (+/-0.440) relu 0.0001 (50, 100, 50) constant
0.553 (+/-0.440) relu 0.0001 (50, 100, 50) adaptive
0.692 (+/-0.491) relu 0.0001 (100,) constant
0.759 (+/-0.456) relu 0.0001 (100,) adaptive

performed poorly compared to the logistic method. Table 7.5 provides a sample of

one of the cross-validations with which we experimented. This example is by far

the best example we have seen. Although we can see when the hidden layer number

increases, there is a very slight improvement. However, it is not to the level where

it outperforms the SVM method. Furthermore, if we look into the confusion matrix

shown in Figure 7.11, we can see that the result is biased, and none of the attack

samples have been identified as attacks, which indicates that the algorithm cannot

be trusted to detect attack samples of the dataset. The performance of the MLP

decreased dramatically when we use all the attack dataset, recording a low average
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F1 score of 0.2 compared to 0.8 for the SVM algorithm.

7.4.3 Random Forest Experiment

Figure 7.12 : Random forest confusion matrix for blackhole attack

(a) Random Forest confusion matrix for
flood attack

(b) Random forest confusion matrix for SF
attack

As explained in this chapter in section 7.2, the random forest is a special type

of decision tree widely used for classification and regression. The IoT-DDoS is used

as an input and the Sklearn random forest classifier. Before we detail the results,

there are different hyperparameters involved in tuning the random forest classifier,

each of which is explained as follows:



130

• The N estimator: is a hyperparameter used to define the number of trees

produced using the classifier. A random forest with n estimator = 5 means

that the classifier will produce five decision trees.

• Criterion: defines which splitting method is used to split the decision tree into

leaves and calculate the result. Two common criterion types are used in this

experiment the Gini impunity and the entropy method.

• Max depth: specifies the depth of the tree downward. The higher the number,

the more complex the tree, leading to a longer processing time.

Table 7.6 : RF hyperparameter tuning

Result Tree criterion max depth n estimator

0.660 (+/-0.201) gini 1 1
0.660 (+/-0.201) gini 1 1
0.493 (+/-0.000) gini 1 2
0.871 (+/-0.436) gini 1 3
0.744 (+/-0.503) gini 1 4
0.493 (+/-0.000) gini 1 5
0.493 (+/-0.000) gini 1 6
0.660 (+/-0.201) gini 1 1
0.660 (+/-0.201) gini 1 1
0.493 (+/-0.000) gini 1 2
0.871 (+/-0.436) gini 1 3
0.744 (+/-0.503) gini 1 4
0.493 (+/-0.000) gini 1 5
0.493 (+/-0.000) gini 1 6
0.539 (+/-0.159) entropy 1 1
0.539 (+/-0.159) entropy 1 1
0.493 (+/-0.000) entropy 1 2
0.618 (+/-0.435) entropy 1 3
0.493 (+/-0.000) entropy 1 4
0.493 (+/-0.000) entropy 1 5
0.493 (+/-0.000) entropy 1 6
0.539 (+/-0.159) entropy 1 1
0.539 (+/-0.159) entropy 1 1
0.493 (+/-0.000) entropy 1 2
0.618 (+/-0.435) entropy 1 3
0.493 (+/-0.000) entropy 1 4
0.493 (+/-0.000) entropy 1 5
0.493 (+/-0.000) entropy 1 6

Figure 7.12 shows the confusion matrix of the random forest model applied to

the three attack datasets. As can be seen, the result were poor compared to the

ANN model and SVM model. Although the RF model was able to detect the flood-

ing attack with a good result, the other two attacks generated high false-positives,

hence they cannot be used as reliable detection models for the IoT-DDoS dataset.

Furthermore, the selective forwarding attack suffered the most from the 0 detection
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of true negatives (TN), representing the attack data points. This indicates that se-

lective forwarding attacks are very difficult to detect using the RF algorithm. Table

7.6 shows examples of one of the many experiments that we conducted using cross-

validation and grid-search to tune the RF model. A detailed comparison between

each of these models is presented in the next section.

7.5 Discussion and Evaluation

Figure 7.14 : Recall chart comparing SVM, ANN and RF

Figure 7.15 : Precision chart comparing SVM, ANN and RF
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Figure 7.16 : F1-score chart comparing SVM, ANN and RF

In this section, we discuss the results of all the algorithms. We run more than

80 experiments with different parameters and tuning to obtain an acceptable result

for each method, as can be seen from Table 7.7.

The total number of experiments per attack depends on the number of param-

eters to be tuned and the number of variances. To elaborate, let us take the SVM

method as an example if the number of variables to be changed is 2 (C and gamma),

and the number of variances equals 3 and 7 respectively and multiplying these two

values gives a 21 classifier fit per fold. If we assume that we have four k-fold cross-

validations, the number of experiments equals 4 ∗ 21 = 84. Although this tuning

process is time-consuming, it allows an accurate selection of the model hyperparam-

eters. The results show that the SVM model is the best performer overall compared

to all of the methods used. Table 7.7 shows the results of all of the methods. As

can be seen, the SVM algorithm performs the best in all aspects of attack detection,

as shown in the table. Although it achieves results which are 10% lower than all

the others for the flooding attack, it performed 30% better than ANN and 50%

better than RF for the same attack. In Figure 7.14, 7.15, and 7.16 we can see the

precision, recall and the F1-score for each method and for each attack. The SVM

algorithm outperforms all of the other detection methods in terms of the number

of attacks detected. The performance of these two approaches is observed based
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on accuracy, false negative rate, and precision. The results indicate that the SVM

classification ability produces more accurate results than RF and RF takes less time

to train the classifier than SVM. Research in intrusion detection using the SVM and

RF approach remains a popular topic, due to their good performance. The findings

of this thesis will be beneficial for future research and will assist SVM and RF to

be used in a more meaningful way to maximize performance and minimize the false

negative rate.

Table 7.7 : Final results

Classifier BH SF FL Avg

SVM 0.970 0.910 0.990 0.957
ANN 0.850 0.630 0.500 0.660
RF 0.790 0.500 0.850 0.713

(a) F1-Score

Classifier BH SF FL Avg

SVM 0.990 0.970 0.990 0.983
ANN 0.840 0.750 0.500 0.697
RF 0.760 0.500 0.800 0.687

(b) Recall

Classifier BH SF FL Avg

SVM 0.970 0.850 0.970 0.930
ANN 0.500 0.640 0.490 0.543
RF 0.850 0.490 0.910 0.750

(c) Precision

7.6 Conclusion

In this chapter, we presented a machine learning approach to analyze and intel-

ligently detect three kinds of malicious attacks in IoT. SVM, neural network, and

random forest are the methods discussed in this chapter, showing promising results

when combined with the dataset generated in Chapter 6 of this thesis. Further-

more, we also presented a comprehensive SVM model tuned to detect DDoS attacks

in IoT. We also comprehensively analyzed the performance of each of the machine

learning methods to choose the best model to be used in the next chapter. In the

next chapter of this thesis, we implement the best model from this chapter into our

complete IDS solutions, alongside the real-time data gathering framework discussed

in Chapter 6.
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Chapter 8

A Machine Learning IDS Implementation in IoT

Networks

8.1 Introduction

This chapter presents the intrusion detection system implementation and all the

associated algorithms. IoT-DDoS aims at detecting anomalous nodes and isolates

them from the network. To achieve this, we implement a real-time monitoring unit

that sends malicious node traffic to the IDS unit installed in the 6BR router. The

IoT-DDoS [124] design takes into account all of the constraint factors associated with

IoT devices and tries to detect attacks without compromising either data integrity or

node performance. Using the machine learning model implemented in Chapter 7, we

embed it into our IDS solution and use it as an attack classifier for the network. The

proposed system consists of three components, real-time data acquisition, detection

unit and the IDS agent, which is discussed in section 8.2. In section 8.3, we describe

the implementation of the solution and embed the machine learning model in the

6BR router and the deployment of ML is discussed. In section 8.4 the IDS evaluation

and results are discussed. To give an example as to how the IDS can be utilized,

in section 8.5 an example of web application is presented. Finally this chapter is

concluded in section 8.6

8.2 IDS Implementation in the IoT Network

In this section, we present a novel hybrid IDS implementation for detecting DDoS

attacks in IoT networks. Before this, we explore the different components of the IDS

shown in Figure 8.1, which is a detailed framework of the real-time detection system

and the placement of the different parts of the IDS. This framework is not different

from the framework introduced in Chapter 5; rather, it complements it by exploring
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Figure 8.1 : Overview of the IDS framework

all of the components involved in the process. We divide the framework into two

main layers, the IoT network layer and the 6LoWPAN border router, as shown in

Figure 8.1. This division will allow us to understand the entire life cycle of the attack

detection mechanism from when the attack is initiated until the IDS has detected it.

We explore the different units involved in the IDS operations, which are organized

sequentially as follows:

8.2.1 Real-Time Data Monitoring and Aggregation Unit

Figure 8.2 : Pipeline for the real-time data monitoring and aggregation unit



136

This unit and its implementation was discussed and in Chapter 6; the only

modification introduced in this chapter is the ability to perform the process in real-

time instead of reading the data from a PCAP file, hence we have designed an online

parser that can read the data and parse them in real-time. We achieve this by using

the Sensniff sniffing node and create a pipeline using Python and passing it to the

real-time monitoring unit. The link between the Python pipeline script and the IoT

sniffer node is achieved through a serial link. The python code used to link the

sniffer node and the IDS monitoring unit is as follows:

import serial

con = serial.Serial(

port='/dev/ttyUSB0',\

baudrate=115200,\

bytesize=serial.EIGHTBITS,\

timeout=0)

print("connected to: " + con.portstr)

con.write("help\n");

while True:

data = con.readline();

if data:

print(data),

con.close()

This code is responsible for interfacing the sniffers with our real-time monitoring

unit. The rest of the monitoring unit has already been explained in detail in Chapter

6.

8.2.2 Attack Detection Unit

This unit is where most of the core work is done. It is responsible for using the

machine model trained and tested in Chapter 7 to detect and classify malicious node

based on the features extracted from the Real-Time Feature Extraction Unit. To
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Figure 8.3 : Sequence diagram for the IDS framework

implement this unit, we have used the Sklearn [122] framework to build the model

and the pickle library to export the trained model. Figure 8.3 shows the sequence

diagram of the whole machine learning process.

REST-API

The REST-API is part of the detection unit and it handles getting and posting

of the results to the IDS agent. Figure 8.3 shows the steps involved in handling all

of the API operations in reaction to the whole IDS. In section 8.2 of this chapter,

we explained the REST-API and its implementation in detail.

Algorithm to Notify IDS Agent About the Attacker Node

If the machine learning model detects an outlier, an alarm is sent to the IDS agent

through the serial link that has been previously explained. The primary purpose of

this message is to notify the IDS agent about the attack and its location. Figure

8.4 it shows the structure of the packet sent to the IDS agent. This packet contains

various parameters, the attacker node ID, the node location in relation to the RPL

network and the result of the attack. It is essential to specify the type of attack
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since the IDS agent behaves differently for each attack. Following is a code snippet

from the main part of the serial link handler.

#This code will write to the serial link

#the result of the machine learning model

#to the IDS agent.

ser.write(Alert);

while True:

line = ser.readline();

if line:

print(line),

ser.close()

Figure 8.4 : Alert packet

This code connects the IDS router to the IDS agent through the serial link and

sends the result to the serial link. This handler takes care of decoding the message

and broadcasting an alert message to the affected nodes. The structure of the IDS

Alert message can be seen in Figure 8.4

8.2.3 IDS Agent Implementation

The IDS agent works as a sink node to where all the nodes in the network send

the data. Moreover, since our network is designed to send information using the

UDP protocol, the sink node works as the UDP server, where it handles all of the

UDP packets coming from each node. The UDP packets coming from the clients

contain sensor information such as temperature and humidity. However, the sink

node also is responsible for handling alert messages sent from the IDS unit. The

IDS agent’s main functions are summarized in the following subsections.
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Algorithm to Isolate Attacker Node From the Network

Algorithm 8: Notify algorithm

Blacklist : Nodes= {N1,...,Ni} of size i
Packet(Alert packet with all of its input)

Attackers ← list of all attackers in each Blacklist of size i;

s = Attackers.size ;
for j ← 0 to s do

if Attackers [j].size != null then
add the Packet(Attackers.ip) to the Blacklist
SendBodcast(Attackers.ip);
if Packet(Attackers.ip).type = (SF or Blackhole) then

fixToplogy();

else dontFixToplogy. ;

else Do nothing the attacker already blocked;

To isolate the attacker node from the rest of the network, we developed algorithm

8 which maintains a blacklist of all of the malicious nodes identified by the IDS. In

addition to maintaining a blacklist, this algorithm handles the process of sending

the broadcast and initiating DoDAG Reconstruction when blackhole and selective

forwarding attacks are detected. These attacks affect the topology of the network

by manipulating node ranking, therefore altering the structure of the DODAG tree.

The sendbodcats() method used in the notify algorithm is implemented as part

of the IDS agent methods. Furthermore, since the IDS agent runs the Contiki

Operating system, we utilize the uip create linklocal allnopdes mcast() method

which is part of the network architecture of the OS. The following code is a small

part of the broadcast method utilized.

void sendbodcast(addr) {

printf("Sending broadcast\n");

uip_create_linklocal_allnodes_mcast(&addr);

simple_udp_sendto(&broadcast_connection, "Test", 4, &addr);

}
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Algorithm to Fix network Topology After an Attack

As previously mentioned, algorithm 8 s responsible for checking the type of attack

to initiate topology reconstruction. Fortunately, the process of fixing the topology

in Contiki OS [125] is already implemented; so we only have to call the method

when needed. However, we add a few changes to ensure a consistent DAG version

across the whole network. The following code keeps track of the number of network

fixes that were called and also triggers the global repair method which is part of

the network core module of Contiki OS. Furthermore, rpl rest dio timer() method

is called to rest the DIO timer, which is crucial to ensure RPL consistency.

if(lollipop_greater_than(dio->version, dag->version)) {

if(dag->rank == ROOT_RANK(instance)) {

dag->version = dio->version;

RPL_LOLLIPOP_INCREMENT(dag->version);

rpl_reset_dio_timer(instance);

} else {

global_repair(from, dag, dio);

}

return;

}

8.3 Deployment of the Machine Learning Model

There are many machine learning deployment methods, and it is essential to

choose the right one to avoid any resource complications. The most common method

is using a data streaming pipeline method where we have a large number of data

coming from different sources at the same time. This kind of method requires a

very complicated system design to handle big data. The other common method is

what is called train by batch and predict on the fly using REST-API frameworks.

The concept is to ask for prediction on demand when there is a request applicable

for a simple application that requires prediction only when needed. In this research,

the most suitable approach is to use the streaming approach since we are dealing
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with many data input IoT devices. However, the end goal of this research is to test

how the designed machine learning algorithm perform in the IoT environment. We

take a different approach instead of using the node streaming method and dealing

with a different level of system components. We designed a simple framework that

combines the use of our own built data-aggregator and then passes it to the REST-

API machine learning server.

Figure 8.5 : The IDS framework REST-API unit used for third party plugins

The deployment of any machine learning model is a complicated process, and

it must be carefully designed and tested. Therefore, we divide this process into

multiple steps sequentially, each of which is explained as follows:
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1. The first step is to extract the machine learning model that we discussed in

Chapter 7. For this process, we make sure that we achieve a satisfying result

in terms of the accuracy and the precision of the model (for further details,

please refer to Chapter 7). To export the model, we use the pickle library

which is available as part of Python 3.7. The following code snippets show the

process of how the model was exported :

import pickle

pickle.dump(clf, open('models/SVMClassifer.pickle', 'wb'))

This simple code exports the entire trained and tested model as a pickle file to

be used at a later stage of this deployment. This step is implemented after all

the training and testing of the model has been finalized, and we are happy with

the result. We have already compared and evaluated three machine learning

models, and the best performing model was the SVM model, as explained in

Chapter 7.

2. The second step is to use the real-time aggregation and feature extraction unit

to aggregate and extract the relevant features from the streamed code. To

achieve this, we built an online extraction unit based on the offline extraction

unit discussed in Chapter 6. This version considers the multiple streaming

inputs coming from the sniffer nodes and passes them to the feature extraction

unit. The only difference in the aggregation unit at this stage is that instead

of exporting the data to a CSV file, we created a simple data parser that sends

the data to the REST-API as a get request.

3. The third step is to build a REST-API stack; in Python, there are multiple

frameworks that can be used to build a REST-API. For this project, we chose

the flask framework [126] due to its popularity and robustness to build the

API server. Following is a sample code of the get request used to obtain the

result from the trained model, and the process is explained in the following

steps sequentially:
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Figure 8.5 elaborates how each of the components interacts with the REST-

API. The whole process can be summarized as follows:

(a) The first step of the REST-API module is to take the get request from

the extraction unit where the request is embedded with the node features

to be analyzed into the data argument.

from flask import Flask

from flask_restful import reqparse, abort, Api, Resource

import pickle

app = Flask(__name__)

api = Api(app)

# Creating a SVM model object

model = SVC()

# Load tested and trained model

clf_path = 'models/SVMClassifer.pkl'

with open(clf_path, 'rb') as f:

model.clf = pickle.load(f)

# load model vectorizer

vec_path = 'models/SVMVectorizer.pkl'

with open(vec_path, 'rb') as f:

model.vectorizer = pickle.load(f)

(b) The second step involves the flask API re-routing the request to the cor-

rect resource. In our case, the resource class is called the attackPredication

class .

(c) In the third step, the get method is called. It handles data parsing and

vectorization along with parsing the vectorized data to the trained model

and generating the output as JSON data.

class attackPredetion(Resource):

def get(self):

# use the realtime 6LoWPAN parser
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#to get the data

args = parser.6LoWPANData()

# vectorize the user's query and make

#a prediction

vectorized = model.vectorizer_transform(

np.array([args]))

prediction = model.predict(vectorized)

pred_proba = model.predict_proba(vectorized)

# convert result as text

#to be stored in local repository

if prediction == 0:

pred_text = 'Normal'

else:

pred_text = 'Attack'

confidence = round(pred_proba[0], 3)

# JSON object to be transfered to IDS agent

output = {'prediction': pred_text,

'confidence': confidence, 'attackerIp': args['ip'}

return output

The get method takes the data argument(features) and parses the input

from the get request using the reqparse library in Python. The parsed

data is then prepared and vectorized using model.vectorizertransform

method, and later on is passed to the trained machine learning model. As

can be seen from the code above, the predict model generates the result

as zeros or ones, therefore, we convert these outputs into either normal

or attack. This output is later converted into JSON format to be passed



145

to the IDS agent through the serial link.

The next section of this Chapter evaluates the aforementioned system.

8.4 Evaluation

Figure 8.6 : Blackhole attack implementation

The evaluation process can be summarized into two parts, the evaluation metrics

to evaluate the performance of the IDS and the IDs performance under different



146

scenarios. The main metrics used to evaluate any IDS is the true positive rate

(TPR) and the false positive rate, which were explained in Chapter 4 of this thesis.

They can be summarised as follows:

TPR = TP/TP+FN

FPR = FP/FP+TN

These metrics are used to evaluate the IDS performance under the followings

scenarios explained as follows :

Table 8.1 : Detection rate table

Attack TP FP TN FN TPR (%) FPR(%)

SF 100 2 6412 0.5 99.50% 0.03%
BH 94 5 6291 0.3 99.68% 0.08%
Flood 87 8 5901 0.2 99.77% 0.14%

The first scenario is the accuracy of attack detection. When attacks are initi-

ated at the beginning of the simulation, as can be seen from Table 8.2, our IDS

shows promising results with a high detection accuracy of 99.50%. At this stage,

the amount of network traffic is still minimal, and the high accuracy rate can be

explained because the attacker node has not been given a chance to adapt to the

network and deceive as many nodes as it can, especially for the blackhole and se-

lective forwarding attack. Therefore, the IDS was able to blacklist and isolate the

node immediately.

Table 8.2 : Detection rate table

Attack TP FP TN FN TPR (%) FPR(%)

SF 520 235 43231 7 98.67% 0.54%
BH 423 323 33231 13 97.02% 0.96%
Flood 334 376 53231 14 95.98% 0.70%

However, for the second scenario where the IDS operation is introduced 10 min-
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Figure 8.7 : IDS in operation

utes after attack initiation, the accuracy result dropped approximately 6 % for all of

the attacks, as shown in Table 8.2. Although, the detection rate is relatively excep-

tionally high in this scenario, we can improve it by maintaining a blacklist of all of

the malicious nodes. This ensures the same attacker node is isolated immediately.

Figure 8.6 shows an example of attack implementation and the placement of the

attacker’s node shown in purple (nodes 17, 16), and Figure 8.7 shows the operation
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Figure 8.8 : Network throughput

of the IDS and how it is able to isolate the attacker nodes from the network. For

full Cooja implementation, we have uploaded the entire Cooja IDS into GitHub in

this link (”https://github.com/yss8166/sixlowpan parser/”) [123].

8.4.1 Network Performance Evaluation:

Table 8.3 : Simulation parameters

Parameter Value

Number of nodes 21 nodes
Cluster head 1
Network area 100m x 100m
Size of packet 500
Transmission area 150m
Routing protocol RPL
MAC protocol CSMA
Simulation time 24 hrs

In this section, we measure network performance using two scenarios with and

without the IDS. The network configuration should be the same in both scenar-
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ios, which is summarised in Table 8.3. We measure two parameters in relation to

network performance, network throughput and packet loss for the overall network

for both scenarios with and without the IDS. As can be seen from Figure 8.8, the

throughput decreased in the case where the IDS was introduced for the simulation of

the blackhole and the selective forwarding attacks. This is because the IDS reduces

the number of drop packets when the malicious node is isolated from the network.

Although there are no substantial throughput changes for the nodes that are not

affected by the attack, there is a significant improvement for the victim nodes. The

packet loss for all attacks both with and without the IDS and without is summarized

in Figure 8.9 and as can be seen, the effect of the IDS is significant across all of the

attacks. The number of packet losses for the victim nodes decrease when the IDS is

introduced. Such an improvement can be attributed to the blacklisting mechanism

that we implemented to isolate the attacker node that disturbs the network health.

The next section explores the overhead of the IDS in terms of energy consumption

for a single node.

Figure 8.9 : packet loss chart

This is can be extended to include other statistics about the nodes in the network,

and the rank of each node over time is summarized in 8.10. This shows how the

number of ranks over time decreases when the IDS is activated.
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Figure 8.10 : Rank change over time (blackhole)

8.4.2 Signal Node Evaluation:

In this section of the evaluation, we monitor the performance of nodes 10 and

2 by looking at the battery indicators and evaluate their behavior when the IDS is

activated. We evaluate all of the nodes in the network, and fortunately in Contiki

OS, there are built-in modules called PowerTrace which allow us to monitor the

power usage of each node. We implement this module in each node and monitor

the battery performance in relation to the attacks with and without the system.

However, we focus on node 10 and node 2 since they are the most affected by the

attackers due to their close proximity to the attack.

(a) Node 10 power without IDS (b) Node 10 power without IDS

Figure 8.11 : Power consumption of node 10
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(a) Node 2 power without IDS (b) Node 2 power with IDS

Figure 8.12 : Power consumption of node 2

Figures 8.12 and Figure 8.11 show the difference in power consumption for two

cases with and without the IDS. As can be seen, the power consumption drops for

both nodes when the IDS is introduced. The isolation and blacklisting of the attack-

ers allowed the affected nodes to resume their RPL routing and network operations

to normal behavior, thus reducing the power consumption and optimizing the duty

cycle of each node in the network.

8.5 Web Interface to Monitor IDS-Performance

Figure 8.13 : Web monitor

The web application uses a set of values generated by the IDS Agent to display
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a set of information in real-time regarding the status of the nodes in the network.

Once an attack is detected, the web interface shows the exact attacker and how the

system is able to isolate the node. The system also shows the current IDS node

performance overhead. Moreover, it also handles all of the network administrator

notifications. Figure 8.13 shows how the web interface is implemented. We use the

Nodejs and MySQL database as the server-side to ensure real-time data streaming.

To link between the database and the IDS, we utilize the REST-API functions to

store the logs of all traffic analyzed whether it is attack data or regular traffic. When

the attacker is detected, an alert is created containing the IP address and the type of

attack and the victim node. This information is stored in the local storage (MySQL

database) and is later retrieved by the REST-API to the web application front-end.

This will allow us to compare the traffic volume ratio between the attack and no-

attack traffic. The web front-end interface was built using HTML, CSS, bootstrap,

Vuejs, and Nodejs and MySQL as back-end servers. This simple interface is just

a demonstration of how we can integrate different third-party applications into the

IDS.

8.6 Conclusion

In this chapter, we present an intelligent IDS solution implementation in a Con-

tiki OS-based network. Different component implementations of the IoT-DDoS are

discussed in this chapter. Moreover, building on Chapter 6 of the thesis, we imple-

mented a real-time data collection and aggregation algorithm in the IoT network.

We also present the feature extraction unit integration with the rest of the IDS. A

comprehensive analysis of the implemented system is also presented, showing promis-

ing results for our IDS and its integration with the IoT network. Furthermore, in this

chapter, we have shown how our IDS is able to detect the three attacks in the IoT

environment which improves network performance and isolates the attacker nodes.

Additionally, the second IDS is able to reduce node power consumption after the

attacker node is isolated, proving that the IDS is able to detect and isolate attacker

nodes.
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Chapter 9

Recapitulation and Future Research Directions

9.1 Introduction

This chapter concludes this thesis by recalling its contribution and outlining sug-

gested future work. The IoT is already playing a significant part in our daily life

[61]. From smart home appliances like smart fridges and coffee machines to more

complex applications like the ones we see in smart factories, all these applications

have made our lives more efficient and easier. However, such rapid advancement in

the IoT and its surrounding technologies presents risks and challenges. One of these

challenges is security-related issues such as ensuring devices with sensitive informa-

tion are secure and ensuring reliable security measures are implemented in these

networks in consideration of their limited resource nature. An IoT-based DDoS is

one of these security issues that are trending, which not only affects IoT networks,

it also affects other sensitive networks. Solving DDoS attack issues in IoT networks

is crucial to ensure a sustainable and reliable system. Therefore, a non-conventional

security framework that takes into consideration the limitations associated with

limited resource devices is a necessity. Furthermore, the advancement of AI and its

applications opens new security opportunities for IoT industry research, and it is

evident from the comprehensive review presented in Chapter 2 that the current re-

search lacks a dedicated machine learning architecture that addresses security issues

in IoT. Nonetheless, the current literature is rich with machine learning security ap-

plications across other kinds of networks like ad-hocs and WSN networks; however,

as we presented in the shortcomings section in Chapter 2 and Chapter 3, the liter-

ature lacks a dedicated machine learning architecture. In this thesis, we present an

intelligent machine learning platform for detecting DDoS attacks in IoT networks.

As previously mentioned, this chapter concludes this thesis and is organized as fol-
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lows: in section 9.2, the issues discussed in this thesis are presented. Based on these

issues, the objective and contributions of this thesis are listed in section 9.3. Finally

this chapter is concluded in section 9.4

9.2 Problems Addressed in This Thesis

This thesis addresses the problem of DDoS attacks in IoT networks using in-

telligent machine learning methods. In Chapter 2, the literature was thoroughly

investigated and the research issues addressed in this thesis were summarized as

follows:

1. Propose and develop a real-time dataset generation framework for IoT net-

works to ensure up-to-date IoT datasets tailored towards IoT security research.

2. Propose machine learning algorithms that are capable of detecting malicious

attacks in IoT networks. In this thesis, we evaluated and compared the per-

formance of the SVM method, neural networks, and isolation tree algorithms.

Furthermore, the performance of each method against blackhole, selective for-

warding, and flooding attacks was analyzed.

3. Propose and develop an IoT IDS (IoT-DDoS) for detecting three malicious

attacks (blackhole, selective forwarding, and flooding attacks) using a support

vector machine (SVM) algorithm.

9.3 Contribution of This Thesis to the Existing Literature

Based on the identified research issues and gaps, this thesis develops an intelligent

machine learning framework for detecting distributed details of service attacks in

IoT networks. The four main contributions of this thesis are summarized as follows:

9.3.1 Contribution 1: Comprehensive State-of-the-art Survey of the Ex-

isting Literature

This thesis comprehensively reviews the existing literature in the area of DDoS

attack detection in IoT, machine learning attack detection in IoT, and SVM use for
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detecting selective forwarding, blackhole, and flooding attacks. To the best of our

knowledge, there is no comprehensive review of the literature in this area. After a

comprehensively investigation of the literature, it was divided into four categories

based on their solutions, methodologies and target domains:

1. Protocol-based approaches for attack detection in IoT.

2. IDS-based methods used for attack analysis and detection in IoT.

3. Trust-based approaches used for securing communication between entities in

IoT.

4. Machine learning approaches used for attack detection in general.

Each of these approaches was investigated thoroughly, and the shortcomings of

each approach were identified. Furthermore, based on the extensive analysis of the

literature, the research gaps and research questions were formed and identified, and

we submitted the results to a Q1 Journal and the manuscript is in the second round

review stage [2]

9.3.2 Contribution 2: A Framework for Attack Detection in IoT Using

Intelligent Machine learning Methods

This thesis examines how IoT networks work differently to other traditional

networks due to their heterogeneous nature and the complexity of their implemen-

tation. Therefore, building any security solution for IoT networks needs to take

into consideration all of the factors such as limited resources and the heterogene-

ity of the network and devices. To address these limitations in the literature, a

comprehensive machine learning framework was proposed to detect DDoS attack in

RPL/6LoWPAN based IoT networks intelligently. The main features of the pro-

posed framework are summarized as follows:

1. Real-time data collection: this feature is used to intelligently collect the data

based on the network configuration. This allows more dynamic data acquisi-

tion, ensuring up-to-date datasets tailored for IoT usage.
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2. Attack detection unit: This is the heart of the framework where all the at-

tack analysis and detection take place. This unit is implemented at an edge

IoT node, which is the 6BR router since it has more power compared to IoT

constrained devices.

3. IDS agent: This is the root node in the network, sometimes called the sink

node, which is responsible for secure communication with the attack detection

unit in bi-directional communications. Furthermore, the IDS agent is respon-

sible for ensuring the RPL network topology is functioning as expected. Also,

the IDS agent is responsible for alarm generation in case there are any attacks.

4. Third-party API: This is responsible for storing the results of the attack de-

tection units and stores it in a local repository which can be accessed later by

third-party applications if needed.

A detailed explanation of the framework with its related implementation algorithms

is described in Chapter 5 of this thesis. To the best of our knowledge, this is

the first time such a detailed framework has been presented to solve the issue of

DDoS attack detection in IoT using machine learning. Furthermore, the result of

this contribution has been published in one of the top journals in the field, Future

Generation Computer Systems (Q1 journal) [124].

9.3.3 Contribution 3: A real-time Framework for Dataset Generation

in IoT Environments

To build any machine learning model, the need for up-to-date and accurate data

is crucial. Therefore, due to the lack of IoT-related datasets tailored to detect IoT-

specific attacks, we propose a new framework for data generation and collection for

IoT environments. This framework allows for more precise and accurate protocol

representation for attack detection and testing scenarios. Chapter 6 discusses in de-

tail the intelligent real-time data collection framework, and how the data generation

and gathering are handled. To ensure good quality data, the following algorithms

were proposed:
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• Attack Algorithms: Blackhole, selective forwarding, and flooding attack algo-

rithms are proposed which represent a real attack implementation in real-world

scenarios. These algorithms are crucial to ensure accurate attack representa-

tion in the final dataset.

• Capturing algorithm: This algorithm is responsible for capturing the traffic

from sniffer nodes without compromising the scalability of the network. Fur-

thermore, it ensures complete network coverage by analyzing the RSSI node

signals.

• Queueing algorithm: The queueing algorithm is responsible for accurately ag-

gregating data without any duplication when we have multiple data inputs.

The algorithms were designed, taking into consideration the dynamically grow-

ing IoT network.

To the best of our knowledge, this the first time a real-time dataset generation

and collection framework has been presented to tackle DDoS attacks in IoT networks.

9.3.4 Contribution 4: Intelligent Machine Learning Methodology for

DDoS Attack Detection in IoT

The fourth contribution comprises three machine learning algorithms used in

combination with the DDoS-IoT datasets generated in Chapter 6. Chapter 7 details

all of the mathematical representations of each algorithm, with rigorous and exten-

sive training and testing of SVMs, neural networks and the isolation tree machine

learning models. The aforementioned machine learning methods were implemented

and evaluated comprehensively to detect three kinds of DDoS attacks, blackhole,

selective forwarding, and the flooding attacks. Furthermore, a detailed process was

developed to ensure consistent results across all of the machine learning models

and to avoid any biased implementations. To the best of our knowledge, none of

the existing research explores the use of machine learning models with intelligently

gathered datasets to detect DDoS attacks in IoT.
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9.3.5 Contribution 5: Implementation and Evaluation of the Proposed

IDS Framework in a Semi-Real IoT Environment

To evaluate the proposed attack detection IDS framework presented in Chapters

5, 6, and 7, we followed specific matrices and benchmarks to ensure accurate result

representations for each scenario presented in Chapter 8. Furthermore, the detailed

implementation of the IDS, including testing and evaluation under different scenar-

ios, was presented in Chapter 8. To build the entire system, we used Cooja [77] as

a simulation platform using Contiki OS as an IoT operating system, which was the

base for our development. For the real-time data collection unit and parser, we used

Python 3.7 with a TShark framework. Also, the base of the IDS detection unit was

developed using Python and the sklearn library. The detailed implementation of

the various components of the framework was presented in Chapter 8. The detailed

process of building the entire framework was presented sequentially from Chapter 5

to Chapter 8. We present some key findings of the whole system as follows:

1. We found our proposed approach for real-time data collection was able to gen-

erate up-to-date datasets with different sets of IoT attack patterns, ensuring

the correct and precise representation of IoT traffic to be used for machine

learning purposes.

2. We found after rigorous testing that the machine learning model which best

fits the collected dataset is the SVM model followed by the random forest.

3. We found that the introduction of our IDS did not greatly affect the network

throughput and performance. As a matter of fact, the system was able to

reduce network throughput when the network was under attack.

4. We found the neural network methods with a single hidden layer performed

poorly when combined with the DDoS-IoT dataset.

5. We found the selected SVM method used in our IDS was able to correctly and

effectively detect the three attacks (blackhole, selective forwarding, and the

flooding attack).
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9.4 Conclusion and Future Work

IoT is growing at a fast pace, involving sectors and domains that had previously

never been considered. This includes but is not limited to factories, agriculture,

cities, and transportation. This wide exploitation of such technology and the rapid

adaptions in a wide variety of sectors bring many security challenges and issues.

Among them is the DDoS attack that affects the availability of resources, causing

financial and resource loss. This thesis presents an intelligent framework for DDoS

attack detection using machine learning, which addresses the issue of the lack of

a dataset for machine learning evolution and explores three DDoS attacks in IoT,

namely selective forwarding, blackhole and flooding attack. The work done in this

thesis has been published in peer-reviewed conferences and journals. At the time

of writing this thesis, one paper has been published in the FGCS Q1 [124] journal,

and another paper is undergoing a second-round review for a WWW Q1 journal.

Furthermore, two conference papers have also been published [97] [127]. The list of

publications as a result of this research is presented at the beginning of this thesis.

Although extensive research has been undertaken as part of this thesis, there is

still room for improvement in strengthening the system proposed in this thesis. To

further enhance the outcome of this thesis, we propose the following future research

directions:

• To further explore other machine learning models and expand the number of

attacks that can be detected by the system. The current version of our IDS

analyzes and detects three kinds of IoT DDoS attacks, however, in the future

, we aim to expand this to include more attacks which can be detected by

our IDS. We designed our IDS to be future proof by adding the third-party

REST-API and we can expand the IDS functionality to add more attacks and

tools as needed.

• To develop an additional mechanism that allows reinforcement learning into

the machine learning model, allowing it to adapt to more new unknown attacks

by deeply analyzing the IoT traffic. At the current state of our IDS is based
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on a machine learning model, the framework is designed in such a way that

it allows us to change it to include reinforcement in the future, enabling it to

be more sophisticated when the system frequently detects unknown attacks.

Such future thinking allows us to improve the way the IDS functions and more

features means it will eventually handle a wider range of unknown attacks.

• To develop intelligent distributed IDS agents across all of the nodes, ensuring

there is no need for external sniffer nodes. The current version of the IDS is

semi-centralized where all of the nodes undertake some kind of IDS processing

based on the IDS agent, but this depends mainly on the IDS core function

installed on the 6BR router due to the limitations associated with IoT devices.

However, in the future, we aim to make the IDS distributed so it does not

depend on the centralized 6BR router. Although such an idea is challenging

due to the resource constraints of IoT devices,with the development of the

concept of FOG computing, this challenge can be overcome in the future when

fog computing is mature enough to handle such heavy processing.
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