
Semiparametric and Nonparametric Density

Deconvolution for Data with Measurement Er-

ror; Applications to Nutrition Data

Xiao Chen Yu
Supervisors:Ray Carroll, James Brown and Stephen Woodcock

PhD Thesis Mathematics
University of Technology Sydney

Faculty of Science

Year of Submission:2021



CERTIFICATE OF ORIGINAL AUTHORSHIP
I, Xiao Chen Yu declare that this thesis, is submitted in fulfillment of the requirements

for the award of PhD thesis: Mathematics, in the School of Mathematical and Physical
Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In
addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institu-
tion.

This research is supported by the Australian Government Research Training Program.
Signature:

Date: Mar 2021

2

Production Note:

Signature removed prior to publication.



Contents

I Abstract i

II Chapter 1: Introduction iii

III Chapter 2: Literature review v

1 Methods for analysing measurement error models vi
1.1 Bayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1.2 Regression Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
1.3 Simulation Extrapolation (SIMEX) . . . . . . . . . . . . . . . . . . . . . . . xiii

2 Methods for estimating the density analysing only the error model xvii
2.1 Kernel Density Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
2.2 Sieve Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

3 Nutritional data xxiv

IV Chapter 3: Semiparametric Density Deconvolution for Con-
tinuous Data without Additional Information xxvi

1 Introduction xxvi

2 Hermite Polynomials xxviii
2.1 How to express an unknown density using Hermite polynomial . . . . . . . . xxx

3 Methodology xxxv

4 Simulations xxxvi
4.1 HePD: choosing the number of smoothing parameters . . . . . . . . . . . . . xxxvi
4.2 Generating observed variable W for simulation . . . . . . . . . . . . . . . . . xxxvii
4.3 Assuming known parameters for U . . . . . . . . . . . . . . . . . . . . . . . xxxviii
4.4 Estimating both the density of T and the parameters of U . . . . . . . . . . lii

5 Discussion lvi

6 Computation details and errors lvi

V Chapter 4: Semiparametric and Nonparametric Density De-
convolution for Continuous Data with Replicates lviii

1 Introduction lviii

2 methodology lix

3



3 Simulations lxi
3.1 Estimate T when we know both the distribution type and standard deviation

of U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lxi
3.2 Estimating the density of T when we only know the distribution type for U . lxvi
3.3 Estimating the density of T with no information on the density of U . . . . . lxxi

4 Comparisons lxxi
4.1 Knowing σU vs estimating σU . . . . . . . . . . . . . . . . . . . . . . . . . . lxxvi
4.2 No replicates vs multiple replicates . . . . . . . . . . . . . . . . . . . . . . . lxxix
4.3 MAE and MSE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lxxix

5 Real Data lxxxii
5.1 Quick Introduction to EATS . . . . . . . . . . . . . . . . . . . . . . . . . . . lxxxii

VI Chapter 5: Semiparametric Density Deconvolution for Data
with Excess Zeros lxxxvii

1 Methodology lxxxviii
1.1 Using Zero Inflated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lxxxviii

1.1.1 Usual Intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xci
1.1.2 BoxCox transformation parameter selection . . . . . . . . . . . . . . xciii

1.2 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xcv

2 Simulations xcv
2.1 Simulation 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xcv
2.2 Simulation 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ciii

VII Chapter 6: EATS Data application cviii

1 Introduction cviii
1.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cx
1.2 Alcohol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cx
1.3 Total Fruits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cxiii
1.4 Total Vegetables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cxvi

2 Bootstrapping cxviii

VIII Future plans cxxi

4



Part I

Abstract

Our inspiration behind this thesis is nutritional data, more specifically nutritional data

collected through short term methods such as the 24HR recall. These collection methods

obtain results that are quite accurate in what a subject consumed in a day, but is not an

accurate representation of what a subject’s consumption pattern looks like in long term.

This leads to many statistician using measurement error models to adjust for the difference.

As our society as a whole becomes more aware of our health and how our eating pattern

may effect it, more and more studies have come to focus on such ideas. And more recently,

studies have come to focus on just understanding what the distribution of a populations

consumption pattern looks like, in hopes to answer questions such as how does our society

as a general consume a nutrition of interest, are we over or under consuming a certain food

group or nutrition, has our consumption pattern changed as time passes, and so on.

So far in studies that use measurement error models to help obtain a density curve that

represents a populations consumption patterns, most studies require additional information

or additional assumptions that are given without specifying a reason such as assuming a

certain distribution for the error terms of the model. For our thesis, we wish to develop a

method that can obtain an unbiased distribution of a populations long term consumption

pattern without additional information and minimal assumptions.

In this thesis, we start with a simple classical error model that will work well for con-

tinuous data, this may be good with nutrition data such as protein, fat and fiber. We then

move on to allowing replicates in our observed variable, in doing so, we can let go of most

assumptions on the error term. We do this because most 24HR recalls collect multiple entries

from the same subject, which can work as replicates. We then move on to a more complex

error model that is designed for zero-inflated data. We are interested in such a model since

data collection methods such as the 24HR recall also collects information on what food we

eat in a day, since it is very rare that we will eat every type of food in a 24 hour period,

the 24HR recall will contain a large amount of zero. We hope to develop a method that
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can help with estimating a populations long term consumption pattern using data collected

using this short term method that contains excess zero.
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Part II

Chapter 1: Introduction

Nowadays when we turn on the television or go onto the internet, we often see words such

as “diet”, “calories”, “high protein”, “multivitamins” and so on. We are a society that is

more and more interested in what we eat and how that effects our well being. Every now

and then a new diet pops up and sometimes we see new findings on food that we think we

already understand, but how much of these is actually helpful? How is our society doing

compared to 5, 10, 15 years ago? What new things do we need to be careful of now? These

are all questions that we as a society wish to understand, and these are also things that

nutritionists wish to test out and prove.

In order to understand how our nutritional intake may effect our well being, one big step

is to collect information on our food intake. This in itself is a big challenge. Collecting

detailed, accurate and large quantity data will allow us to obtain significant results. But

given the man power and financial resources, it is impossible for us to collect such data.

The trick is to find the balance between man power, financial resource and accurate, large

quantity data, the result is two data collection methods: food records and 24 hour recalls.

Food records and food diaries relies on test subjects keeping a food journal where they

record all their food intake continuously for a significant period of time, commonly a few

weeks or a few months. This method allows us to obtain a significantly large data, but

compromises on the accuracy of the data, for example: a subject may have consumed a

chocolate bar without much thought and then forgets to record it, or the subject may have

consumed a bag of chips each night but feels too guilty to admit and therefore decides to

under record the truth. There is also the concern that our food intake pattern may change

due to the availability of each food, having recorded the data continuously for a period of

time, the data will not be able to represent our food consumption for the whole year as the

season and weather changes.

24 hour recall relies on test subjects recalling what they had for the past 24 hours, usually

a test subject is asked to recall their intake every few months. A common pattern would be
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once every three months. The data size for this type of collection method is compromised

greatly, but the accuracy from each recall is improved. After all, it is much easier to recall

exactly what we have consumed and how much we have consumed “yesterday”. Also, since

we are only asked to recall the past 24 hours, we are less worried about our “guilty pleasures”

being exposed and will answer more truthfully. Another advantage would be that since we

are collecting a recall every few months, this data will not have to worry about the changes

in season. Although we do not need to worry about season changes, this does not mean that

the data collected from a 24 hour recall can be used to represent our long term consumption

pattern. Since we are collecting data from such a short period of time, there will be many

different types of food that we will not be able to consume within this time period, which

may be consumed on the many days where the test subject is not asked to recall their intakes.

This means that a food may be part of this subjects diet but will not be recorded as part of

their data.

As we have discussed the pros and cons of two of the most commonly used nutritional

collection method, we see that both methods contain measurement error, either due to the

recording error of the subject or due to the limitations of the method. We believe that it

is important to correct these errors as best as we can in order to obtain unbiased results.

Therefore for our thesis, we will be incorporating the use of measurement error models as

part of our analysis on nutritional data.

As it is mentioned at the start of this chapter, there are a lot of questions we as a society

wish to understand using information from our food intakes. For this thesis, we are less

interested in how food intake may effect our other factors such as our weight, our health

and our well being. The questions that this thesis wish to understand is how the population

is doing in general for each type of food or nutrition, and given our current nutritional

guidelines, are we meeting these guidelines. That is, we wish to develop a method that

analysis a nutritional data and with the help of existing models and techniques, and we will

be able to obtain a distribution of what the populations consumption pattern would look

like.
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Part III

Chapter 2: Literature review

There has been an increasing interest in the use of measurement error models in the field of

food nutrition. Due to reasons such as time and cost in the data collection process, many

people have come to rely on measurement error models to find the link between short term

collection data and their long term true values. Nusser et al. (1996) looked at how to estimate

a populations long term food intake semiparametrically, Nusser et al. (1995), Tooze et al.

(2006) and Dodd et al. (2006) created and tested out different measurement error models

which allows a more accurate understanding towards data collected that has a large amount

of zero. Subar et al. (2006) combined covariates such as gender or age group into the error

model to allow a more accurate understanding of each sub-populations nutritional intake.

Tooze et al. (2002) explored the concept of replicated data for nutritional data collection.

Kipnis et al. (2009) modeled the data to see how a populations food intake may affect

certain health outcomes, such as how fish intake may affect blood mercury levels. Zhang

et al. (2011) introduced multivariate measurement error model for dietary data. Subar et al.

(2001) compared analysis outcomes from multiple sources of data collection.

From all these literature mentioned above, we see that some of the more popular methods

for data extraction in the field of food nutrition is to either ask the subject to maintain a

food diary which records their food and drink consumption for small periods of time, or to

ask the subject on multiple days to recall their food and drink consumption for the past 24

hours. For both methods, the data collected can all be considered as a short term and is

not the focus of our interest. In general, we tend to be more interested in how we consume

nutrition on a long term basis since it is the long term consumption pattern that effects

our body and health. Considering the cost and manpower it takes to collect nutritional

data, it is both impossible and unpractical to accurately collect any subjects long term

nutritional intake. We can see how analysing measurement error models have become so

popular in the area of food nutrition. For the remainder of the chapter, we will have a

look into measurement error models and some of the different methods that can be used

v



to analyse the measurement error model. Measurement error models have been a popular

topic for many years. They have been explored by statisticians from as early as 1950, and

are frequently studied by statisticians everywhere. Measurement error models are also called

Error-in-variables models, which are regression models that account for the measurement

error that occurs in variables. The idea behind these models is that there are times when

obtaining a certain variable that we desire becomes very challenging or almost impossible,

then we will find a similar and observable variable to help to estimate our variable of interest.

A difference may occur between the observable variable and the unobservable variable, so

we need to take into account this difference since if this is not done, any further analysis

will become biased and unusable. An example that requires measurement error models is

a questionnaire concerning food consumptions, it is impossible for the respondents to have

exact memories of their food and drink consumptions for long periods of time, therefore

most food questionnaires either asks the respondents to keep a diary journal for a specific

period of time or only ask the respondents for their exact food intake for the past 24 hours.

Both methods of extracting information from respondents allow error values to form and

will create biased analysis results if the error is not accounted for. Here we will be exploring

some popular methods in analysing a measurement error model.

1 Methods for analysing measurement error models

A measurement error model is often considered as two parts, the regression model and the

error model. The regression model is a model that shows the relationship between the

response variable and the unobserved variables. The error model is a model that shows

the relationship between the observed variable and the unobserved variable. Let Y be the

value of the response variables, T be the unobservable predictor, and W be the observable

predictor. Two types of error should be considered in a measurement error model: e is the

error of the regression model and U is the error term in the error model. The goal is to

use information from W and sometimes from U to estimate T and therefore obtain a more

accurate estimation in the regression model.

Let’s start by using a simple classical error model to demonstrate what a measurement
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error model looks like, and later we will discuss three different types of error models, and in

the end we will determine which error model is more suited for our research:

Y = Tβ + ε, (1)

W = T + U. (2)

Here equation 1 is a basic linear regression model, identifying the relationship between

the response variable and the unobserved variables, where β would be a set of coefficients

for the unobserved variables. A naive analysis is when we analyse this regression ignoring

the presence of measurement error, where the response is modeled directly on the observed

variable. That is we analyse the regression Y = Wβ + ε instead of Y = Tβ + ε. In most

cases, a naive analysis is biased for the true regression relationship between Y and T (Fuller

(2009), Cook and Stefanski (1994)). Given the type of error model used, the naive analysis

may give overestimated or underestimated results of the coefficient β.

Equation (2) is the error model, as an example we used the simplest form of a classical

error model. Though generally the error model be separated into three groups: Classical

error model, Berkson error model and mixed error model. We will give a brief explanation

on the differences between these three types of error models.

Classical error models: The classical error model is a widely used model in the measure-

ment error literature (Carroll et al. (2006)). The simplest classical error model takes the

form

W = T + U. (3)

This is when the observed variable has a larger variation than the unobserved variable. For

the example modeling body mass index using daily calorific intake, since the daily average

intake that each subject reports is very different from the actual long term average intake.

Berkson error models: Berkson (1950) introduced a model where the unobserved variable

T has a larger variance than the observed variableW , as opposed to the classical error models

where the variance of the observed variable is larger. The simplest Berkson’s error model

can be written as

T = W + U.
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One example of where the Berkson model occurs in practice is where multiple individuals,

having the same characteristics, are all assigned the same value of covariate. For example, the

Berkson model could be used when all those of the same age, gender and living environment

are assigned the same dose for pollution when modeling the relationship of children on the

eventual development of lung disease and their long-term NO2 intake. In this case, Y would

be a measurement of lung disease, T would be the true long-term NO2 level and W would

be the NO2 level collected from the bedroom and kitchen with stationary recording devices.

Carroll et al. (2006) documented that even though the classical error model and the

Berkson error model may look quite similar, it is important to be able to know when to

use which model. Carroll et al. (2006) gave a small guide to help differentiate these two

models: if the error-prone variable is measured uniquely to each individual and can possibly

be replicated, then we should use the classical error model, if all individuals in a group are

assigned the same error-prone value, but the true variable is particular to an individual, then

the measurement error is Berkson.

Mixed error models: When working with epidemiology problems, Reeves et al. (1998)

considered working with a mixture of classical and Berkson error model. This model incor-

porates a latent variable L which acts as an intermediate between the observed variable W

and the unobservable variable T . The simplest mixed error model can be written as:

log(T ) = log(L) + Ub,

log(W ) = log(L) + Uc.

Here Ub is the Berkson error, and Uc is the classical error. When Ub = 0 we obtain the

classical error model, and likewise when Uc = 0 we obtain the Berkson error model. This

model is a lot less common and the amount of papers on this problem are few, and almost

all deal with radiation research (Mocanu and Oliver (1999), Mallick et al. (2002)).

Since we are focusing on analysing data from food questionnaire, we can say that W

represents the data that we have collected for the questionnaire, an example of the type

of data we collect are protein intake, alcohol intake and such, then T would be the true

long term average daily intake of said variable, that is how much on average a person would

consume a particular food or nutrition in a day, U would be the difference between what we
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collected for the questionnaire W and what the true value T should be. Therefore in this

situation, it is more reasonable to use a classical error model. For our research, we will start

with the simplest form of classical error model, we will then move to a more complicated

form of classical error model that is specific to data with excess zero. Now if Y is an outcome

in which we believe may be influenced by our variable of interest, such as BMI, cholesterol

level and so on. Then by using a regression model on the outcome Y and the true intake

value T , we will be able to obtain an unbiased result on their relationship β.

Many methods have been developed to analyse these measurement error models, such as

Bayesian (Castro et al. (2013), Mallick and Gelfand (1996), Carroll et al. (2004)), regression

calibration (Carroll and Stefanski (1990), Armstrong (1985)), and SIMEX (Cook and Ste-

fanski (1994), Stefanski and Cook (1995)). These methods have been extensively researched,

used and compared with each other.

1.1 Bayesian

Bayesian methodology is an efficient tool to analyse measurement error models. This method

can be used on almost any type of measurement error models, even some that contain

highly nonlinear regressions and mixed or multiplicative error models (Berry et al. (2002);

Carroll et al. (2004); Holmes and Mallick (2003)). This method requires an input of a

prior distribution for all parameters of variable distributions that is used in the process of

estimation, that is, we need some basic information on the distribution parameters of Y , T ,

W , ε, U and β, and sometimes knowledge of the distribution parameters of covariates and

instrumental variable if such variables are part of the regression and error model. In this

case, covariates are considered error-free variables that are mainly characteristics of each

participant, and instrumental variables are error-free variables that are related to the true

variable. With all these detailed information on the distributions of all variables, Bayesian

approaches can give quite an accurate estimation and inference, but at the same time, it can

be hard to compute and the computational running time for Bayesian analyses can be quite

long (Berry et al. (2002)).

“RStan” is an existing software package in the statistical program “R” which can be
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used to analyse measurement error models using Bayesian methods. The advantage of using

such programs is that there is no need to manually compute the joint likelihood distribution

since this step is programmed as part of the package, and therefore it removes the problem of

having to work with complicated distributions by hand. But since this method needs to input

information on the parameters of variables Y , W and T in the form of prior distributions, it

can be a bit difficult when we need to identify these information on variables which we are

unsure of such as the unobservable variable T and the error terms ε and U .

Bayesian methods for measurement error models have been frequently explored. Most

studies focus on more commonly used regression models and error models. Castro et al.

(2013) used Bayesian methodology on measurement error models with linear regression

models and replicated data. They concentrate on cases where the error model 2 may be

a classical error, Berkson’s error or a classical/Berkson’s mixed error. In this paper, it has

been specified that the data is unpaired and the replicates in the data can be either equally

or unequally replicated, also the variance of the error term U can be either homoscedastic

or heteroscedastic and the value is not assumed to be known. The results show that the

Bayesian method performs well in such cases, and also shows how flexible Bayesian method

can be with measurement error models.

Mallick and Gelfand (1996) look at the Bayesian approach for semiparametric regressions

where both the response variable and the independent variable may contain errors, hence we

have one regression model with multiple additive error models. In this paper, it is assumed

that for the latent variable T , which is usually unobservable, there is a portion that is

observed without error. The author looked at the cases where the error model may be either

classical or Berkson. Reasonable results were obtained in the simulations, though this largely

relies on assuming the correct covariate link and calibration function.

Holmes and Mallick (2003) focused on demonstrating how to use a Bayesian approach

on the case where we have a generalised nonlinear model as the regression model and either

a simple classical error model or a simple Berkson’s error model as the error model. For

this paper, they only provide the response variable Y and the observed error prone variable

W , also it is assumed that the link function for the generalised nonlinear model is unknown.

Simulations show that the Bayesian approach works well on both when the error model is
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classical and Berkson.

Mallick et al. (2002) use the Bayesian approach on a dose-response regression model where

the error model is a Berkson and classical mixed error model. This paper was developed

specifically for the Nevada test-site data. They compared the results with the cases where

the error model is just a classical error model and just a Berkson error model. The results

show that using the mixed error model for this particular data gives the smallest deviance

information criterion and yields a much larger relative risk for a high dose case. Suggesting

that a mixed error model is the way to go for the Nevada test-site data.

Sinha et al. (2010) developed a semiparametric Bayesian method for logistic regression

with a classical error model where the unobserved variable distribution is nonparametric.

This method was developed with epidemiology data in mind and shows that this method

performs well for the NIH-AARP diet and health data. It is also mentioned in this paper

that they discarded the use of regression calibration (a method that will be discussed in a

later section) because of its poor performance when it come to semiparametric regression

models.

Berry et al. (2002) looked at improving a nonparametric regression by modeling a smooth-

ing spline from a Bayesian standpoint. For this paper, a classical error model was used, and

for the regression model, the authors looked at a smoothing spline and a P-spline. Simula-

tions were performed for both cases and both yielded satisfactory results. Although there

was no discussion on how the priors were selected, it was mentioned that a number of dif-

ferent priors were used and the results compared, it shows minimal changes, indicating how

robust the Bayesian approach can be.

Carroll et al. (2004) incorporated the Bayesian method into a set of regression that is

both nonlinear and nonparametric with an instrumental variable available. For this paper,

they looked at a regression model Y = m(T, β) + ε where m(·) is a polynomial function, a

error model W = T +U and an additional instrumental model S = α0+α1T + v, where S is

an instrumental variable. In this case, we assume that only (Y,W, S) is observed and that all

error terms (ε, U, v) have mean 0 and that variables T , U , ε and v are mutually uncorrelated.

This paper concludes that using a Bayesian approach yields a root n consistent estimation

on the measurement error variance.
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1.2 Regression Calibration

Regression calibration is an easy to implement method that can be used on most general

regressions. The principle behind regression calibration is to replace T with a calibration

function, namely the expectation of T given W , and fit the regression model using the

expectation instead of T .

One of the biggest challenges in implementing regression calibration is determining the

calibration function. Since T is unobserved, it is difficult to find and validate the relationship

between the unobserved T and the observed W . Carroll et al. (2006) proposed some options

to overcome this issue, such as:

� If there is internal validation data, where both T and W are observed, we can regress

T on W and the other covariates in the validation data. Though Carroll et al. (2006)

argues that this is a missing data problem and should use missing data techniques

instead of regression calibration.

� If there is an unbiased instrumental variable Ψ within the data, then we can use the

information on Ψ for help to obtain a calibration function. An instrumental variable

is a variable that is related to the case of interest and is uncorrelated with all variables

apart from T . Using the example of the food questionnaire, the instrumental variable Ψ

can be the intake assessed by other food diaries. In this case, the instrumental variable

Ψ can be considered as a replicate of W , then variable Ψ can also be considered as an

unbiased substitute to the variable T . Thus we can use the regression of Ψ on W as

the calibration function.

One of the advantages of using the regression calibration method is that it is easy to

program and provides a consistent estimate of the slope parameters for different types of

regressions. However, it is known to have poor performance for the more complex regressions

models such as generalised linear mix effect models (Wang et al. (1998)).

Some papers study how well regression calibration performs on more complex regression

models, for example Carroll et al. (2006) performed regression calibration on some highly

nonlinear regression models with an additive error model, and Küchenhoff and Carroll (1997)
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used regression calibration on segmented linear and logistic regressions with simple classical

error model. Both of these papers compared this method with an alternative method called

SIMEX which will be discussed in more detail in later sections.

Rosner et al. (1989) explored using regression calibration to estimate parameters for

probit and logistic regressions when the error model is a simple Berkson error model where

the error term U is assumed to have a normal distribution. In this paper, a separate validation

study is needed to assist in estimating the relationship between the observed variable W and

the latent variable T . Based on the simulation studies, they believe that regression calibration

performs reasonable for cases where the true odds ratio exp(β) (β is the coefficients in

regression model 1) is less than 3.

Carroll and Stefanski (1990) performed regression calibration on a quasi-likelihood regres-

sion model with simple Berkson error model. For this paper, they assume that the data can

be available in one of the following five ways: primary data, where we only have the response

Y and the observed W ; internal validation, where we have the response Y , the observed W

and a small portion of the truth T from the same data; internal reliability data, where we

have the response Y and the observedW whereW have replicates; external validation, where

we have additional information on W and T from an external source; and lastly external

reliability, where we have additional replicated W from an external source. The asymptotic

theory was also developed for all five situations. The simulation yielded reasonable results

when using regression calibration on regression models with Berkson error.

1.3 Simulation Extrapolation (SIMEX)

An alternative method to regression calibration for measurement error model analysis is

simulation extrapolation (SIMEX). This method was first developed by Cook and Stefanski

(1994). The method was designed to be able to fit a wide range of measurement error models

without going through any complex coding and computational process. Three assumptions

are made for this method:

1. The error model (2) has to be an additive model.

2. The variance of error U is homoscedastic.
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3. The error U follows a normal distributions.

The idea behind SIMEX is that identifying and then correcting measurement error ana-

lytically is a difficult process. Instead, we can add on an additional set of successively larger

error to the variables T in order to obtain a set of increasingly biased parameters. Using

these biased parameter estimates, we can extrapolate back to where T has no measurement

error and therefore we can estimate the unbiased parameters. SIMEX can be considered

as a two-step process, the simulation step and the extrapolation step. And we will use a

simple regression model (equation 1) with a simple classical error model (equation 2) to

demonstrate how these two steps work.

Simulation step: Let λ∗ = (λ∗
1, λ

∗
2, ..., λ

∗
m) be a set ofm error variances where λ∗

1 = 0 and

the values in λ∗ is in ascending order, that is λ∗
1 < λ∗

2 < ... < λ∗
m. For each λ∗

i , a measurement

of the observed variable W is generated by Wi = W +
√
λ∗
iU . Since Wi is a measurement of

W , it should also be reasonable to consider Wi as a measurement of T . Therefore for each

λ∗
i , a new β is estimated, we use β̂i to denote the new estimate corresponding to each λ∗

i .

These estimations are repeated a large number of times, and averaged for each value of i.

The sets of average parameter estimates are then used in the extrapolation step.

Extrapolation step: Following the simulation of a set of mean parameter estimates for

different values of λ∗
i , we fit a model between the biased estimates β̂iT and the additional

errors λ∗
i . Using lease squares estimation, the slope for the simple regression equation β̂i

consistently estimates βσ2
T/(σ

2
T+(1+λ∗

i )σ
2
U). Therefore to extrapolate back to where there is

no measurement error (i.e. (1+λ∗
i )σ

2
U = 0), we substitute λ∗

i = −1 into the final extrapolation

function in order to find the unbiased estimate of β. The fitted equation between β̂iT and

λ∗
i is called the extrapolation function.

Cook and Stefanski (1994) described this method as a simulation based method that

combines features of parametric bootstrap and method-of-moments inference. In this paper,

they have only considered cases where the error model is a simple classical error model where

the error is a normal distribution with the assumption that the error variance is known or

can be reasonably well estimated from cases such as replicates. They also believed that the

key to the success for this SIMEX method is the appropriate selection of the extrapolation
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function, three extrapolation functions were proposed: a simple linear function (β = a+bλ∗),

a quadratic function (β = a + bλ∗ + cλ∗2) and a nonlinear function (β = a + b/(c + λ∗)).

The authors argue that if the measurement error is normally distributed, then at least one

of the three extrapolation function should be able to give a good estimate of the parameters.

Simulations were performed on cases where the regression model (1) are either linear, logistic

or probit, and the authors conclude that if given appropriate values for the parameters a, b

and c, the nonlinear extrapolation function works best, and by considering the measurement

error bias of these three functions, the authors conclude that the quadratic model and the

nonlinear model gives smaller bias compared to the linear function.

One of the biggest advantages of SIMEX is that it is easy to compute. It requires

minimal information on the unobservable variable T . To estimate β, SIMEX only needs the

variables Y and W and the variance of U , or at least a well-estimated variance of U (Carroll

et al. (2006)). One of the disadvantages of SIMEX is that the third assumption limits the

distribution of U by only assuming that the error is a normal distribution. Therefore, for

data sets with other distributions of error, such as a Laplace or gamma distribution, this

method will not give accurate estimates of the parameters. This method also cannot be

applied to Berkson’s error models or mixed error models. Yet another disadvantage is that

this method is sensitive to the variance of U , a poorly estimated variance can easily lead to

overestimation or underestimation of the parameters.

The SIMEX method has since been extended. Stefanski and Cook (1995) introduced the

idea of combining Jackknife technique with SIMEX. In the paper, they worked with a simple

classical error model where they do not know the variance of the error term, and the variance

is estimated using the Jackknife estimation. A simulation was performed to compare the

performance of SIMEX with a known variance of U and SIMEX with an estimated variance

of U using Jackknife, similar results were produced. This leads the authors to conclude that

having Jackknife as part of the simulation process can both help estimate the variance of U

for data where it is unreasonable to obtain σ2
U .

Carroll et al. (1996) investigated the asymptotic distribution of the SIMEX method. For

this paper, they looked at a simple regression model E(Y |T ) = α+βT with a simple classical

error model W = T +U , where the variance of the error term U is assumed known. The con-
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clusion showed that the SIMEX estimator is typically asymptotically normally distributed.

They also mentioned that the asymptotic distribution is derived with the assumption that

the regression error term are independent and identically distributed, and that it is possible

to modify the asymptotic distribution to allow the case where the regression error term is

NON-IID, but seemed unnecessary.

Wang et al. (1998) explored how to use the SIMEX approach for cluster data where

the regression model (1) is a generalised linear mixed model. In the paper, they discussed

many different regression models such as linear, logistic, probit and log-linear where the

within-cluster error in the error model can either be homogeneous or heterscedastic. Once

again a simple classical error model was used where we assume to know the variance of

the error term. Wang argued that although regression calibration has the ability to obtain

good estimates of the fixed effects, it does not do so well for the random effects, and they

believe that SIMEX may perform better. The results show that SIMEX has the potential to

estimate parameters with minimal bias.

Küchenhoff and Carroll (1997) explored the idea of using both regression calibration and

SIMEX for the case where the regression model is segmented with a simple classical error

model. That is

E(Y |T ) = H{α + β(T − τ)},W = T + U (4)

where (T − τ) = T − τ if T ≥ τ and 0 if otherwise, also H(·) is the link function in which

they suggest it to be linear or logistic. For this method, we need recorded data on Y and W

with the assumption that the distribution of U is known. A set of simulations was performed

using both regression calibration and SIMEX, and the general conclusion is that regression

calibration usually has more bias, but SIMEX produces more variance. Also it is suggested

that for SIMEX, a non-linear extrapolant is to be avoided.

Eckert et al. (1997) relax the first assumption of SIMEX and explored how SIMEX

performs with a multiplicative measurement error. In this paper, it was suggested that

we transform a multiplicative error model into an additive one, an example is that we

can transform the multiplicative error model W = T ∗ eU into the additive error model

log(W ) = log(T ) + U . This leads to the new error model h(W ) = h(T ) + U , where h(·) is
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a transformation function. Two families of transformation was suggested: power transfor-

mation and spline transformation, and simulations were performed for both cases, and both

cases yield reasonable results, though the authors did point out that there is no guarantee

that one can find a single transformation that will achieve an additive error model with near

normal error distribution.

Devanarayan and Stefanski (2002) relax the second and third assumptions and developed

a new SIMEX method (Empirical SIMEX) that can analyse the parameters of a regression

model where the measurement error model may have heteroscedastic error variances. In this

paper, they used a simple classical error model where they allow the variance of the error

term to be unknown, but replicates of the observed variable W is required. The idea is

to use the replicates to generate the error increasing data. Though there is no mention of

the minimum amount of replicates needed, in their simulations, they used a data with only

2 replicates, and they compared the results with the traditional SIMEX method where we

know the error variance and it was concluded that they results are similar even when the

assumption of homogeneity is reasonable.

2 Methods for estimating the density analysing only

the error model

Recently there has been an increasing interest in analysing only the error model part 2 of

a measurement error model, and obtaining an unbiased density estimation on the latent

variable T . Using the food questionnaire example again, if our variable of interest is alcohol

intake or vegetable intake, then T can be something like the usual average daily intake of

alcohol or the usual average daily intake of vegetables for a population group, estimating

the density of such an intake will allow us to understand what the general trend is like for

said intake, and this may lead us to conclusions such as how much of the general population

over consume alcohol or under consumes vegetables. If we perform density estimations on

different groups of populations, we can also compare the densities and obtain answers for

questions such as does males in general drink more than females or which country, in general,
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consumes more vegetables as part of their diet?

For this section, we are going to explore two methods which can estimate the density of

T using only the error model 2: Kernel density deconvolution and sieve maximum likelihood.

2.1 Kernel Density Deconvolution

Using the simplest form of a classical measurement error (2), where fW , fT and fU are the

densities corresponding to variables W , T and U respectively. The density of T can be

expressed as fW = fT ∗ fU , where ∗ is the convolution operation. Deconvolution uses the

density of observed variables fW and fU to estimate fT . Stefanski and Carroll (1990) first

developed this method where they called it deconvolving kernel density estimator. In the

paper, they used a simple classical measurement error model (2), where only one set of W

is used and we require the assumption that the density of U , fU , is known. For the kernel

density deconvolution, a kernel estimator fT (z;h) ≈ (nh)−1
∑n

j=1K{(z −Wj)/h} is used as

the deconvolution process, where h is the bandwidth and K{·} is a kernel function and can be

expressed as (2π)−1
∫
e−ilzφK(l)/φU(l/h)dl, where φK and φU represents the characteristic

function of the function or density of K and U . In this paper, they also discussed the

asympotic theory, and performed a set of simulations where it was concluded that 23 out

of the 25 simulations obtained reasonable results. It is believed in this paper that kernel

density deconvolution will be a viable technique for data with large sample sizes.

Carroll and Hall (1988) investigated the rate of convergence for deconvolving a density

using kernel density deconvolution. Once again a simple classical error model was used, and

they require the assumption that the density of the error term U is known. In this paper,

they explored the optimal convergence rate for cases where the known density of U is normal

and for more general errors such as gamma and double exponential. The conclusion was if

the density of U is a normal distribution and that the density of T has k bounded derivatives,

the optimal convergence rate is (logn)−k/2, where n is the sample size. Whereas for when

the known density of U is a gamma distribution with a shape parameter of α, the optimal

convergence rate is n−k/(2k+2α+1), and the rate of convergence for when the density of U is a

double exponential is n−k/(2k+5). Concluding that it is difficult to converge efficiently when
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the error term U has a normal distribution. This paper also briefly mentioned a multiplicative

error model W = TU and quickly concluded that deconvolution will be difficult for such a

model.

There are two important decisions to make when performing this method. One is the

choice of bandwidth h and the other is the choice of kernel function K.

Delaigle and Gijbels (2004b) emphasized that the choice of the bandwidth can strongly

influence the shape of the estimated fT . In this paper, the model used was once again

a simple classical error model where the density of the error term U is known. It is also

suggested that when fU is only known up to some parameters, we can estimate fU through

repeated measures. They investigated five different selection techniques: NR bandwidth

selector, PI bandwidth selector, SEQ bandwidth selector, CV bandwidth selector and BT

bandwidth selector. Simulations were conducted to test which bandwidth selector will give

optimal results. In the simulations they considered two types of error, where U is a normal

distribution and where U is a Laplace distribution, they also worked with three different

sample sizes 50, 100 and 250. The final conclusion is that even though there is no one

technique that is the optimal bandwidth selector, the plug-in (PI) bandwidth selector and

bootstrap (BT) bandwidth selector are two of the best techniques, and Delaigle and Gijbels

(2004a) support this statement. PI bandwidth selector finds the bandwidth by minimising

the squared asymptotic bias, whereas BT bandwidth selector uses PI bandwidth as a pilot

bandwidth and substitutes this pilot bandwidth into a modified mean integrated square error

formula.

When choosing kernel functions, Delaigle and Gijbels (2004a) suggest that it would be

best to choose among densities whose characteristic function have compact and symmetric

support. Functions such as a Fourier transformation, normal density, and some sine and

cosine functions have all once been used as the kernel functions for kernel density decon-

volution. The paper suggested that a good kernel function for estimating the density of T

is

K(t) =
48t(t2 − 15)cos(t)− 144(2t2 − 5)sin(t)

πt7
. (5)

A software package exists for kernel density deconvolution on measurement error models in
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the statistical program “R”. This software package is called “fDKDE”, it includes commands

for calculating bandwidths and for calculating the density of T when both the variance and

the distribution type for U is known. This software was originally a Matlab code developed

by Aurore Delaigle and has later been translated into the R language. The R version of

this code has yet been uploaded into CRAN. “fDKDE” contains two bandwidth selectors:

the plug-in (PI) bandwidth selector and the cross-validation (CV) bandwidth selector. The

PI bandwidth is based on Delaigle and Gijbels (2004b) and the CV bandwidth is based on

the method from Stefanski and Carroll (1990). For the kernel function, this software uses a

second-order kernel φK(t) = (1− t2)3 which corresponds to the kernel function in Equation

5. Though through experimentation, we have concluded that this program does not allow

the option that W may have replicates.

In the work of Wand (1998), they focused on how using a limited sample may effect the

performance of kernel density deconvolution. For this paper, a simple classical error model is

used where the density of U is known. MISE was used as an indicator on how well kernel den-

sity deconvolution performs in varies scenarios. They chose to compare two kernel functions

(K1 = (48t(t2−15)cos(t)−144(2t2−5)sin(t))/(πt7) andK2 = 3/(8π)(sin(t/4)/(t/4))4), along

with two types of error term (normal and Laplace), two types of sample (n = 100, 1000), and

five different error percentages (p = 10%, 20%, 30%, 40%, 50%, where p = V ar(U)/V ar(W )).

The conclusion was that both kernel functions perform similarly in most scenarios, though

K1 performs better for a normal error with a higher p. The MISE are all relatively low

for low levels of error, but increases dramatically as the error percentage increases, also in

increase is MISE is more pronounced for the normal error case that it is for the Laplace case.

As mentioned previously in Carroll and Hall (1988), Delaigle and Gijbels (2004b), Wand

(1998) and many other papers, when the error term has a supersmooth distribution such

as a normal distribution the rate of convergence is very low. But Fan (1992) argues that

having a normal distribution for the error term U in practice is more common than any

other distributions, therefore in their paper, they concentrated on answering the question

how large can the error term be to be feasible when using kernel density deconvolution. For

this paper, a simple classical error model is used with the assumption that the distribution

of the error term is known. In their simulations, six different levels of error percentage was
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used (including one that is error-free), and it is determined that performing kernel density

deconvolution on models with large error terms may be difficult and that some information

on the latent variable T may be required. They believe that for some special cases, an error

percentage up to 80% may be feasible, but can not conclude what percentage would work in

general.

Delaigle and Gijbels (2007) mentioned that although kernel density deconvolution works

well in theory, it is less successful in practice depending on the techiques used on the cal-

culating the integrals and optimisation process. They pointed out the places in the es-

timator that may have computational problems along with the different common types

of computational problems that may occur, and some guidelines on how to solve these

problems. In this paper, they mentioned that although many papers such as Delaigle

and Gijbels (2004a), Delaigle and Gijbels (2004b), Wand (1998) and Fan (1992) use

K(x) = (48x(x2 − 15)cos(x) − 144(2x2 − 5)sin(x))/(πx7) as the kernel function, there is

no set kernel function and depending on the choice of kernel function, we may end up with

an integral with no closed form. In this case, they have suggested to use numeric approxi-

mation methods that is devoted to approximating Fourier transformations.

In Achilleos and Delaigle (2012), they discuss the importance of choosing the bandwidth

when performing kernel density deconvolution. For this paper, they focused on a simple

classical error model where they assume to know the density of the error term. It is mentioned

in this paper that there are already many existing methods in bandwidth calculation, but all

construct a global bandwidth, that is the bandwidth is the same on all points, the goal of this

paper is to develop local bandwidth selectors where the bandwidth are no longer constant

at all points. Though simulations, they have illustrated that local bandwidth selectors bring

significant improvement over the global bandwidths when the estimated density has local

features. They also proposed that no one bandwidth selector out stands the rest, their

performance depends on each individual case.
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2.2 Sieve Maximum Likelihood

The method of sieve was first introduced by Grenander (1981) and consists of two steps:

a step which performs optimisation within a subset of the parameter space, then another

step to allow this subset to “grow” with the sample size. Geman and Hwang (1982) recog-

nises that by combining the method of sieve with the maximum likelihood, it is possible to

perform estimation where a classical maximum likelihood fails to do so, such as performing

maximum likelihood over infinite dimensional space. This is later commonly mentioned as

sieve maximum likelihood (SML). The general idea for SML is that each likelihood, L(θ), is
broken down into M sections: L(θ) = (L1(θ),L2(θ), ...,LM(θ)

)
, where each section contains

a smoothing parameter πi where i = 1, 2, ...,M . The first step from the method of sieve

optimises the smoothing parameters individually. Then we allow the likelihood function to

“grow” by adding every optimised likelihood together

L(θ) = ∑M
i=1πiLi(θ).

Carroll et al. (2010), Shen (1997) and Geman and Hwang (1982) have suggested that SML

works well when estimating densities of semiparametrically and nonparametrically. Shen

(1997) developed the general theory on asymptotic normality and the efficiency for semi-

parametric and nonparametric sieve maximum likelihood and claims that the results depend

on two aspects: the smoothness of the likelihood function and the size of the parameter

space. The authors believe that when the parameter space is large, a classical method of

likelihood may meet difficulties whereas the SML method may overcome these difficulties,

also a smoother likelihood function may result in a slow rate of convergence.

Chen and Pouzo (2009) explored the use of sieve estimators on conditional moment mod-

els that contain unknown functions depending on endogenous variables. Focusing specifically

on models where the residual function is non-smooth. In addition, they also obtained the

asymptotic theory of normality and rate of convergence for the model.

Carroll et al. (2010) introduced the SML method into measurement error models. In

this paper, a specific type of data was used: a data with two samples, a primary sample

and an auxiliary sample. The assumption is that these two samples are correlated and have

different joint distributions and that their true variable is of the same distribution. Also for
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both samples, they require a variable that contains a nonclassical measurement error and

a covariate variable that is discrete. The authors demonstrated to us how we can obtain

nonparametric estimation without the knowledge of the measurement error distribution or

the use of additional variables, using only the assumption that the regression function is

the same between the two samples. Through simulations, the authors compared the results

estimated using this two sample SML estimation method with four other different estimation

methods: one where the measurement error is ignored, one using a parametric estimator

where all parameters is correctly specified, one using a parametric estimator where the

distribution of the measurement error is misspecified and lastly one using a parametric

estimator where both the measurement error distribution and the latent variable model is

misspecified. The results showed that using two sample SML obtained satisfying results

that are just as good as the one from a parametric estimation with all parameters correctly

specified.

There are many advantages to using SML to estimate the density of T . Geman and

Hwang (1982) mentioned that the sieve estimators change only slightly as the sample size

changes, showing that this method is able to work quite well with small sample sizes and

much as large sample size. Chen and Pouzo (2009) show that, with the same number of sieve

terms, any initial set of smoothing parameters can converge to an optimal set of parameters.

This allows flexibility when choosing the initial parameters to perform the estimation of sieve

maximum likelihood. Carroll et al. (2010) argue that this flexibility of SML is one of the

characteristics that give an advantage over the kernel density deconvolution.

Shen (1997) suggested using orthogonal polynomials such as Hermite polynomials as

smoothing parameters in the sieve maximum likelihood, though no further research was per-

formed. For this thesis, we will be exploring this idea on a simple classical error model both

semiparametrically and nonparametrically, then extending this idea to a more complicated

error model which allows data with excess amounts of zero. For the entirety of this thesis,

we will be operating with only the information on the observed variable W and occasionally

the information on error term U with no additional information needed.
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3 Nutritional data

As a society have become more and more interested in what we eat and how we are doing in

comparison to others around us. Given that it is very unpractical and financially draining to

follow subjects their whole life and record every food and beverage they consumed, methods

were developed to collect data that is in someways considered accurate and is also a good

balance financial-wise.

One of such method is the food frequency questionnaire (FFQ). Such a questionnaire

contains a checklist of food and beverages with a frequency response. There are some obvious

advantages to such a collection method, one being that this is someways shows a subjects

eating pattern, it is also less expensive since they are usually self-administrative forms. But

there are also some big disadvantages, since this method of collection largely relies on a

subject’s memory. When asked how much water you usually drink in a day, the answer is

most likely going to be a guess work. We also may forget that we had a chocolate bar as an

afternoon snack.

Some more commonly used food frequency questionnaires are: Harvard FFQ that is devel-

oped by Walter Willett, M.D. and his colleagues (Chan (Chan)), Diet History Questionnaire

that is directed by Fran Thompson and Amy Subar from the National Cancer Institute (In-

stitute (a)) and also the Block FFQ that is also developed in the National Cancer Institute

this time directed by Gladys Block (Institute (c)).

Subar et al. (2001) compared these three food frequency questionnaires by using a study

from Eating at America’s Table Study (EATS), first by analysing the subjects as is, then

they analysed the subjects after some energy adjustments. They also seperated the data by

gender. Their results show that both DHQ and Block FFQ obtain better results when the

data is not adjusted with energy, but all three perform similarly when energy adjustment in

included.

Block et al. (2006) looked at how food frequency questionnaire works on a specific group

of the population such as the Hispanics. Where the conclusion yielded favorable results.

Hernández-Avila et al. (1998) also did something similar but on women in Mexico city,

results were also favorable, but did mention that results were less favorable when the data
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were obtained outside the city or with a different gender.

Salvini et al. (1989) also looked at the food frequency questionnaire of a nurses’ health

study, focusing on the reproducibility and validity of each food and beverage intakes, con-

cluding that the difference in the degree of validity for specific foods may help improve the

questionnaire design.

Another common nutrition collection method is the 24HR recall (Institute (b)). This is

another method developed by the National Cancer Institution. This collection method relies

on subjects recalling their intake of the past 24 hours. Given that each subject is to recall

from memory that has just happen not too long ago, 24HR recall is more likely to collect

information that is more specific, for example when recalling that a subject has salad for

lunch, the subject is more likely to correctly recall what type of lettuce was in the salad and

what dressing was used. This allows an accurate data for each subject’s short term intake.

But there are also some obvious cons, such as even though 24HR recall gives accurate results

in short term intake, we can not use it as a direct representation of a populations long-term

intake. It is also time consuming, since the consumption is recalled in detail.

Subar et al. (2006) compared this short term method to food frequency questionnaire,

and saw that the probability of consumption in 24HR recalls is strongly correlated with what

was reported in food frequency questionnaire.

Nusser et al. (1995) developed a method that can adjust for measurement error and

non-normality, this model was designed for estimating dietary intake distributions for 24hr

recalls. Though the method does require at least two positive intakes for each subject.

Tooze et al. (2006) also look at analysing data received from 24hr recalls and how these

data may help analyse the relationship between our eating pattern and various health out-

comes. This paper focused on episodically consumed food, and introduced a new two-part

method to help with excess zero problem. It assumed that all variables are normally dis-

tributed and estimated the distribution of consumption for various foods. As this method

allows with-in and between person variability and the addition of covariates, it allows more

flexibility than all other existing methods.
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Part IV

Chapter 3: Semiparametric Density

Deconvolution for Continuous Data

without Additional Information

1 Introduction

In the previous chapter, we looked at several popular methods for analysing measurement

error models. Some methods allow us to obtain a better understanding between the latent

variable T and an outcome of interest Y , that is given we have a observed variable W

that is in someways related to the latent variable T with error (e.g. W = T + U) and

we use this relation to help obtain an unbiased estimate of coefficient β in the regression

Y = m(T, β) + ε, but we also see that there is an increased interest in estimating just

the density of a latent variable T either semiparametrically or nonparametrically, after all

looking at just the distribution of T itself may also yield many useful information. The idea

is to use the limited amount of subjects that are in a particular data set to understand what

the distribution for the general population would be like.

The concept of estimating the density of unknown variable T is useful in the area of

public health. For example, for the continuous data collected from a health questionnaire

such as the 24HR recall or food frequency questionnaire, where we wish to estimate the

distribution of the population long-term nutritional intake using data collected from short-

term food intakes. Having an accurate estimate on the distribution will provide information

for questions such as what the percentage of people who over or under consume certain

nutritional components is, or, in general, how little or how much a normal human would

consume the nutrition of interest. The estimated distribution may also help us understand

whether the existing health guidelines are accurate enough for the population to maintain a

healthy lifestyle.
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For this chapter, we will be looking at how to estimate the density of the latent variable

in a simple classical error model utilising Hermite polynomials.

Suppose that we wish to determine the density of variable T , but we only have information

on an observable variable W , where the relationship between the observed variable and the

variable of interest can be expressed as a simple classical error model.

W = T + U,

here variable U is the error term assumed to have mean zero and is independent of latent

variable T .

Now if we assume that we have an infinite number of subjects, then W = T + U . Given

that U has mean zero, then in the ideal yet impossible case of infinite subjects, we can say

that the distribution of W will be very close representation to that of the distribution of T ,

but unfortunately, it is very unpractical and very expensive to obtain such a large amount

of participants. Therefore we can not obtain an unbiased estimate of the distribution of T

without taking into account the observation error U .

Many methods have been developed to analyse T from a simple classical error model, but

most of these methods require additional information or assumptions in order to perform the

analysis (Carroll and Hall (1988); Delaigle and Gijbels (2004b); Wand (1998)). Inspired by

Schennach and Hu (2013), I wish to develop a method that can estimate the true density of T

semiparametrically without any additional information beyond measurementW and minimal

assumptions. This method will be optimising all parameters of interest using maximum

likelihood where all unknown densities will be represented in a form that contains a set

of orthogonal polynomials, we will be using Hermite polynomials. This method was only

mentioned by Schennach and Hu (2013) as a theory. For this chapter, we will be taking a

deeper look into this method, develop the methodology and see how well this method works in

comparison to another density deconvolution method - kernel density deconvolution (Wand

(1998)).

We will focus on the case where we observe only one measurement of W per individual,

since there is such a large limitation on the amount of information given to us, for this

chapter we will be making assumptions on the type of distribution that the error term U
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will have. We will be relaxing this assumption in future chapters.

Section 2 starts with a description of Hermite polynomials following with a discussion

on how this set of polynomials will aid in estimating unknown densities. Then in section 3

we will look at the methodology on estimating the density of T with a selected distribution

for U . Section 4 will show simulation results on how this method works and compare the

results with kernel density deconvolution. Section 5 will be describing computational issues

and some concluding remarks.

2 Hermite Polynomials

Hermite polynomials are a set of orthogonal polynomials with a recursive property. They

were first defined by Pierre-Simon Laplace in the early 1800’s (Laplace (1820)), but it is

more recognised from Hermite’s work in 1864 (Hermite (1864)). For our work, we will be

defining Hk−1(·) as the kth term in the Hermite polynomials. The first two terms of this

polynomial are H0(x) = 1 and H1(x) = 2x, and for the rest of the Hermite polynomials,

each term will have one power higher than the previous term and can be calculated using

the formula Hk+1(x) = 2xHk(x) − 2kHk−1(x). Here we will display the first five Hermite

polynomials:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12.

Figure 1 shows in a graphical manner what the first five terms of the Hermite polynomials

look like, where k determines which term of the Hermite polynomial each curve represents.

We then rescale the Hermite polynomials to allow an orthonormal property, this tran-

sition from orthogonal to orthonormal will be useful to us when we apply the set Hermite
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Figure 1: The first 5 terms of Hermite polynomials.

polynomials as part of a formula for unknown densities, we will explain how this helps a

little bit later. Let pk−1(x) be the kth term of the rescaled Hermite polynomials, defined as

pk(x) = (
√
πk!2k)−1/2Hk(x)e

−x2/2, (6)

With this rescaling, we see the first term of the rescaled Hermite polynomial is now a standard

normal distribution, and the first five terms of the rescaled Hermite polynomial can be shown

through figure 2.

Then we can say that this rescaled Hermite polynomial series has the following two

orthonormal properties:
∫∞
−∞ pk(x)pj(x)dx = 0 for j �= k and

∫∞
−∞ p2k(x)dx = 1. These two

properties will be crucial when we apply constraints on any unknown densities that will be

represented as functions of pk(x).
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Figure 2: The first 5 terms of rescaled Hermite polynomials such that the polynomials are
now orthonormal.

2.1 How to express an unknown density using Hermite polynomial

For any density where we do not assume its distribution shape or any of its parameters, we

can approximate this density function f(x) as

f(x) = {
K∑
k=0

θkpk(x)}2, (7)

here θk is the corresponding coefficient for pk(x), and it will be these coefficients that de-

termine the shape of density curve f(x). To determine how many polynomials we will be

using to estimate the density f(x), we compare the BIC value of f(x) as the value of K

changes, and take the K with minimal BIC value. This process in explain in more detail

with example in a future section.

For any density we have the properties that the density has to be non-negative and

integrates to 1. The non-negativity problem is solved naturally from the squared formula

in 7. As for the other functional restriction that the density needs to integrate to 1, we

apply the orthonormal properties
∫
p2k(x)dx = 1 and

∫
pk(x)pj(x)dx = 0 for j �= k that was
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mentioned previously:

∫
f(x)dx =

∫ { K∑
k=0

θkpk(x)
}2

dx,

=

∫ [ K∑
k=0

θ2kpk(x)
2 + 2

K−1∑
k=0

K∑
j=k+1

θkθjpk(x)pj(x)
]
dx,

=
K∑
k=0

θ2k

∫
p2k(x)dx+ 2

K−1∑
k=0

K∑
j=k+1

θkθj

∫
pk(x)pj(x)dx,

=
K∑
k=0

θ2k.

Therefore this leads to a simple coefficient constraint:

∫
f(x)dx = 1 →

K∑
k=0

θ2k = 1. (8)

Figure 3 shows a few examples of how we can use Hermite polynomials to obtain density

curves. Four curves were produced where for each curve we used only the first three terms

of the Hermite polynomial. Given that the highest power of these three rescaled Hermite

polynomial is the power of 4, we can only produce some simple density curves. As we increase

the number terms used in function 7, we can produce density curves that are more complex

with more peaks. In this figure, the coefficient used for producing each density curve is listed

in the legend of the figure, these coefficients are not chosen for any specific reason other than

being able to produce these specific curves that we desire. In the figure, we have shown that

using Hermite polynomials as a media to obtain density curves, we can produce curves that

are symmetric, left-skewed, right-skewed and even curves with multiple peaks, as long as the

coefficient for each density follows the constraint in equation 8.

Now in this chapter, we are only exploring how to obtain the density of T when we

give assumptions to the density of the error term U , but we did mention that we wish to

relax this assumption in the future. When this happens, any error term U that will not

have assumptions will need to also be represented as the function 7. In that case, one

more constraint is required for the density of U , and that is the density will have mean 0

(
∫
xf(x)dx = 0).
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Figure 3: A set of examples showing how changing the coefficient for each polynomial effects
the shape of the density curve. All densities are calculated with using only the first three
polynomials of the rescaled Hermite (pk(x), k = 0, 1, 2), and the legend list the coefficient
for each polynomial for each density curve.
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Using the recursive property of Hermite polynomials Hk+1(x) = 2xHk(x) − 2kHk−1(x),

and formula 6, we can derive:

√
2(k + 1)pk+1(x) = 2xpk(x)− 2

√
k/2pk−1(x). (9)

For now, let us look at four different scenarios:

1.
∫ √

2(k + 1)pk+1(x)
2dx

Using the orthonormal properties of pk(x), we get
∫ √

2(k + 1)pk+1(x)
2dx =

√
2(k + 1).

Using equation 9, we get

∫ √
2(k + 1)pk+1(x)

2dx =

∫
pk+1(x)

[
2xpk(x)− 2

√
k/2pk−1(x)

]
dx,

= 2

∫
xpk+1(x)pk(x)dx− 2

√
k/2

∫
pk+1(x)pk−1(x)dx,

= 2

∫
xpk+1(x)pk(x)dx.

By combining the two answers, we therefore get 2
∫
xpk+1(x)pk(x)dx =

√
2(k + 1) →∫

xpk+1(x)pk(x)dx =
√

(k + 1)/2.

2.
∫ √

2(k + 1)pk+1(x)pk(x)dx

Using the orthonormal properties of pk(x), we get
∫ √

2(k + 1)pk+1(x)pk(x)dx = 0.

Using equation 9, we get

∫ √
2(k + 1)pk+1(x)pk(x)dx =

∫
pk(x)

[
2xpk(x)− 2

√
k/2pk−1(x)

]
dx,

= 2

∫
xpk(x)

2dx− 2
√
k/2

∫
pk(x)pk−1(x)dx,

= 2

∫
xpk(x)

2dx.

By combining the two answers, we therefore get
∫
xpk(x)

2dx = 0.

3.
∫ √

2(k + 1)pk+1(x)pk−1(x)dx

Using the orthonormal properties of pk(x), we get
∫ √

2(k + 1)pk+1(x)pk−1(x)dx = 0.
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Using equation 9, we get∫ √
2(k + 1)pk+1(x)pk−1(x)dx =

∫
pk−1(x)

[
2xpk(x)− 2

√
k/2pk−1(x)

]
dx,

= 2

∫
xpk(x)pk−1(x)dx− 2

√
k/2

∫
p2k−1(x)dx,

= 2

∫
xpk(x)pk−1(x)dx− 2

√
k/2.

By combining the two answers, we therefore get
∫
xpk(x)pk−1(x)dx =

√
k/2.

4.
∫ √

2(k + 1)pk+1(x)pk−2(x)dx

Using the orthonormal properties of pk(x), we get
∫ √

2(k + 1)pk+1(x)pk−2(x)dx = 0.

Using equation 9, we get∫ √
2(k + 1)pk+1(x)pk−2(x)dx =

∫
pk−2(x)

[
2xpk(x)− 2

√
k/2pk−1(x)

]
dx,

= 2

∫
xpk−2(x)pk(x)dx− 2

√
k/2

∫
pk−2(x)pk−1(x)dx,

= 2

∫
xpk−2(x)pk(x)dx.

By combining the two answers, we therefore get
∫
xpk−2(x)pk(x)dx = 0.

Now, from these four scenarios, we can see that
∫
xpk(x)pj(x)dx only yeilds results when

k and j are right next to each other, that is k = j + 1. Also
∫
xpk(x)pj(x)dx =

√
j/2 when

j = k + 1 and becomes 0 for all other cases.

For the density mean:

∫
xf(x)dx =

∫
x
{ K∑

k=0

θkpk(x)
}2

dx,

=

∫
x
[ K∑

k=0

θ2kpk(x)
2 + 2

K−1∑
k=0

K∑
j=k+1

θkθjpk(x)pj(x)
]
dx,

=
K∑
k=0

θ2k

∫
xpk(x)

2dx+ 2
K−1∑
k=0

K∑
j=k+1

θkθj

∫
xpk(x)pj(x)dx,

= 2
K−1∑
k=0

θkθk+1

√
(k + 1)/2,

=
√
2(k + 1)

K−1∑
k=0

θkθk+1.

xxxiv



When there is a need for a mean 0 restriction on an unknown density, we can then use

the constraint:

∫
xf(x)dx = 0 →

√
2(k + 1)

K−1∑
k=0

θkθk+1 = 0. (10)

3 Methodology

Assume that we only have one observation per individual of variable W and this variable is

the only variable that is observed, also we assume that the distribution of the error term U

is known. We express the error model as

Wi = Ti + Ui, (11)

here i represents the ith subject, where i = 1, ..., n.

Let fW (·), fT (·) and fU(·) be the density functions corresponding to the variables W ,

T and U . The density of W for each individual subject can be expressed via the integral

equation

fW (wi) =

∫
fT (ti)fU(wi − ti)dti. (12)

Following Shen (1997), we will approximate any unknown density, in this case fT (·) as a sum

of basis functions using the first K + 1 terms of the series of Hermite polynomials where we

have expressed in the 7. Let θT = (θ1T , ..., θKT ) be the set of coefficients for density fT (·).
For any given K + 1 number of polynomials, the coefficients θT can be estimated by

maximizing the log of the following likelihood for each subject i

Li(fT |Wi, θkT ) =

∫ {∑K
k=0θkTpk(ti)

}2

fU(wi − ti)dti, (13)

subject to constraint 8 that the unknown density fT (·) have to integrate to 1. Of course, K,

the number of basis functions, is also a variable that needs to be estimated.

As calculating equation 13 analytically can be challenging, we need to find a method that

can make the computation process easier. To approximate the likelihood (13), we use Gauss-

Chebyshev quadrature estimation (Gauss (1815)). The likelihood is now simultaneously
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approximated by a finite sieve space (Shen (1997)). Equation (13) can be rewritten as

Li(fT |Wi, θkT ) ≈ (WL −WS)

2

∑M
m=1

π

M

√
1− s2m

{∑K
k=0θkTpk(lm)

}2

fU(Wi − lm), (14)

here sm is the Gauss-Chebyshev approximation with range [-1,1]: sm = cos{(2m −
1)π/(2M)}, lm is the scaled Gauss-Chebyshev approximation of sm with range [WS, WL]:

lm = sm(WL − WS)/2 + (WL + WS)/2. Here [WS, WL] is the smallest and largest num-

ber in the observed variable W respectively, and M is the number of nodes for Gauss-

Chebyshev approximation. The final objective is to obtain an estimate of the density of

T , by optimising the problem to jointly find the set of coefficient parameters such that∑n
i=1 log{Li(fT |Wi, θkT )} is maximised, subject to the constraint

∑K
k=0 θ

2
k = 1. To estimate

the density coefficients θk we will use an optimisation program that allows non-linear con-

straints. In R, we will be using an existing package “NLopt” which is designed specifically

for calculating and optimising results with non-linear constraints.

4 Simulations

In the previous section, it was mentioned thatK is also a variable that needs to be estimated.

In this section, we start with showing how K is chosen, then we consider scenarios for the

simulation study where each scenario is compared with the kernel density deconvolution

(KDD) method.

KDD was developed and investigated by Carroll and Hall (1988) and Stefanski and Carroll

(1990). It uses characteristic functions to analysis nonparametric measurement error models,

and is considered to obtain good estimates for the distribution of T (Fan, 1992; Wand, 1998).

The package used for KDD is developed in the paper Achilleos and Delaigle (2012).

For this simulation, we will specify the same information into “fDKDE” and our software

package for Hermite polynomial deconvolution (HePD).

4.1 HePD: choosing the number of smoothing parameters

For the HePD method, it requires specification on the number of smoothing parameters (K)

used. We will use the Bayesian information criterion (BIC) to determine the optimal number
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Figure 4: With T ∼ N(0, 1)) and U ∼ Lap(0, 1/
√
3), we see the change in BIC value as

we estimate the density using increasing number of smoothing parameters (from K = 1 to
K = 6). In this estimation, the sample size for each estimation is 500 with only one set of
W and the assumption that U has the correct distribution type.

of smoothing parameters for every simulation. In this section, all simulations have a sample

size of 500. Figure 4 shows the BIC value for just one simulation of this sample size given

the different number of smoothing parameters, BIC determines that the optimal number of

smoothing parameters would be around 3 to 5 (K = 2 to 4).

4.2 Generating observed variable W for simulation

As mention previously, observed variable W is the only variable that we will have access to

when it comes real applications. But for the following simulations, W will not be the only

variable that we know, in fact we will be using information from T and U to obtain this

simulated W variable.

At the start of each simulation, we assign a density to T and U where we known the

distribution type and all the parameters needed. We then generate a set of n values from
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the density of T and U respectively. Following the function W = T + U , we add the set

of generated T values with the set of generated U values to create the simulated observed

variable W with n inputs.

The reason we choose to generate the variable W this way is because the final result we

aim to obtain through the analysis is an estimation of the density fT , and having an pre-

existing knowledge of what the true density looks like allows us for a more straight forward

comparison. Keep in mind that we do not use this pre-existing knowledge of the true fT

through out the analysis process, we will still be treating the density of T as an unknown

density. This true density of T will only be used in the results as an comparison.

4.3 Assuming known parameters for U

For this subsection, two types of distribution is considered for T :

- a standard normal distribution: T ∼ Normal(0, 1)

- a gamma distribution: T ∼ Γ(9, 1/3), where the shape parameter for this gamma

distribution is 9 and the scale parameter is 1/3

Also two types of distribution is considered for U :

- a Laplace distribution: U ∼ Laplace(0, 1/
√
3)

- a normal distribution: U ∼ Normal(0, 1/
√
3)

For both cases of U above, we have the mean and standard deviation for each distribution

respectively. We will be looking at all four combinations using the previously mentioned

distribution types for T and U .

For each combination, we perform 350 simulations. And for each simulation, the sample

size is n = 500. For estimating the density of T , the number of smoothing parameters

is determined using BIC, we concluded that in most cases K = 2 gives the lowest BIC

results, this indicates that using three basis functions for most examples will give optimal

estimations.
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Figure 5, 8, 11 and 14 will be showing the estimated densities of T for the four examples.

Three lines will be shown in each plot, where the black solid line is the true density of

T which we used in the simulation to generate observed variable W , red dashed line is the

average estimated density curve of T from the 350 simulations using HePD method, and blue

dashed line is the average estimated density curve of T using KDD from the 350 simulations.

For both HePD method and KDD method, the information given in order to estimate the

density of T are: the observed variable W , the correct distribution shape for U and the true

standard deviation for error term U .

Figure 5 looks at the case where the true T is a normal distribution and true U has

a Laplace distribution. Given that we known the true information of error term U . The

average density curve estimated using method KDD has a larger variance compared to the

true density of T , but captures the correct center and also the correct shape of T . For the

method HePD, the average density curve also has a larger variance compared to the true

density of T , it also captures the correct center, compared to KDD, the peak of the curve is

closer to the true peak, but the curve is tri-modal. We also compared the mean squared error

(MSE) and the mean absolute error (MAE) for both methods to the true density of T , this is

calculated by comparing the estimated density value at each grid point to its corresponding

true density value. Figure 6 looks at a boxplot of the mean squared error values and figure

7 looks at a boxplot of the mean absolute error values. For both figures, the boxplot on the

left is the values from method KDD and the boxplot on the right is the values from method

HePD. We see that in general KDD has slightly smaller error values, and it is more stable

between simulations than HePD.

Figure 8 looks at the case where both the true T and the true U are normally distributed.

Once again, both KDD and HePD methods on average have estimated a larger variance

compared to the true T . Similar to the previous example, both methods have estimated the

correct center, HePD is able to estimate the peak of the curve better, but not so much on

the shape since the red dashed curve still has a slight tri-modal shape. Once again we look

at the MSE and MAE values from both methods. Figure 9 looks at the MSE values and

figure 10 are the MAE values. In this example the median MSE and MAE value for HePD

is slightly smaller but KDD is more stable between simulations.
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Figure 5: Comparing the average density estimate of T using method KDD(blue line) and
the average density estimate of T using Hermite polynomials(red line) of 350 simulations to
the true density of T (black line), where T has a Normal distribution(T ∼ N(0, 1)) and U
has a Laplace distribution (U ∼ Lap(0, 1/

√
3)).
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Figure 6: Comparing the mean squared error between method KDD and method HePD,
where T has a Normal distribution(T ∼ N(0, 1)) and U has a Laplace distribution (U ∼
Lap(0, 1/

√
3)).
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Figure 7: Comparing the mean absolute error between method KDD and method HePD,
where T has a Normal distribution(T ∼ N(0, 1)) and U has a Laplace distribution (U ∼
Lap(0, 1/

√
3)).
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Figure 8: Comparing the average density estimate of T using method KDD(blue line) and
the average density estimate of T using Hermite polynomials(red line) of 350 simulations to
the true density of T (black line), where T has a Normal distribution(T ∼ N(0, 1)) and U
has a Normal distribution (U ∼ N(0, 1/

√
3)).
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Figure 9: Comparing the mean squared error between method KDD and method HePD,
where T has a Normal distribution(T ∼ N(0, 1)) and U has a Normal distribution (U ∼
N(0, 1/

√
3)).
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Figure 10: Comparing the mean absolute error between method KDD and method HePD,
where T has a Normal distribution(T ∼ N(0, 1)) and U has a Normal distribution (U ∼
N(0, 1/

√
3)).
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Figure 11: Comparing the average density estimate of T using method KDD(blue line) and
the average density estimate of T using Hermite polynomials(red line) of 350 simulations to
the true density of T (black line), where T has a Gamma distribution(T ∼ Γ(9, 1/3)) and U
has a Laplace distribution(U ∼ Lap(0, 1/

√
3)).

Figure 11 looks at the case where T has a Gamma distribution and U has a Laplace

distribution. We can see that the averaged density curve estimated using KDD method is

almost a perfect match to the true density curve, where as the HePD method on average

estimated a curve that is tri-modal with a slightly higher peak. Figure 12 and 13 also

confirms that KDD has a lower MSE and MAE value and is also more stable.

Figure 14 looks at where T has a Gamma distribution and U has a normal distribution.

In this case, the averaged density curve estimated from both KDD and HePD method are

quite close to the true density curve. Figure 15 and 16 also shows that the average MSE and

MAE value for both methods are very similar, though once again KDD gives more stable

result.
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Figure 12: Comparing the mean squared error between method KDD and method HePD,
where T has a Gamma distribution(T ∼ Γ(9, 1/3)) and U has a Laplace distribution (U ∼
Lap(0, 1/

√
3)).
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Figure 13: Comparing the mean absolute error between method KDD and method HePD,
where T has a Gamma distribution(T ∼ Γ(9, 1/3)) and U has a Laplace distribution (U ∼
Lap(0, 1/

√
3)).
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Figure 14: Comparing the average density estimate of T using method KDD(blue line) and
the average density estimate of T using Hermite polynomials(red line) of 350 simulations to
the true density of T (black line), where T has a Gamma distribution(T ∼ Γ(9, 1/3)) and U
has a Normal distribution(U ∼ N(0, 1/

√
3)).

xlix



KDD HePD

0.
00

0.
01

0.
02

0.
03

Figure 15: Comparing the mean squared error between method KDD and method HePD,
where T has a Gamma distribution(T ∼ Γ(9, 1/3)) and U has a Normal distribution(U ∼
N(0, 1/

√
3)).

l



KDD HePD

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Figure 16: Comparing the mean absolute error between method KDD and method HePD,
where T has a Gamma distribution(T ∼ Γ(9, 1/3)) and U has a Normal distribution(U ∼
N(0, 1/

√
3)).

li



−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 17: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, normal distribution), where U is assumed as a Laplace distribution with
an estimated standard deviation.

4.4 Estimating both the density of T and the parameters of U

In the previous subsection, we looked at the cases where we only estimate the density of

T by assuming the correct information on both the distribution type for U and also its

standard deviation. For this subsection, we will extend the simulations by estimating both

the smoothing parameters for density of T and the standard deviation for U . We will still

be looking at the same four examples as the previous subsection. For this case, there is

no existing R code for method KDD, therefore we will only be looking at how well method

HePD estimates the density curves and comparing them to the true density of T .

Figure 17 looks at the case where T has a normal distribution and U has a Laplace

distribution. The red dashed curve is the averaged density estimation curve for T , and it

seems to have a larger variance compared to the true density curve, but it has captured the

correct center and shape of the density.

Figure 18 looks at the case where T is still normally distributed, but U this time is also
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Figure 18: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, normal distribution), where U is assumed as a Normal distribution with
an estimated standard deviation.
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Figure 19: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, gamma distribution), where U is assumed as a Laplace distribution with
an estimated standard deviation.

normally distributed. It seems that on average, the estimated density has a slight larger

variance than the true density, but correct center and shape.

Figure 19 looks at the case where the true T has a gamma distribution and the true U

has a Laplace distribution. In this example, it seems that the averaged density estimation

is skewed towards to correct direction, but has a much smaller variance. The averaged

estimated density curve is also bi-modal. The red dashed curve is an average of all 350

density estimations, but this does not mean that all the density estimations are bi-modal, it

is more likely that in the optimisation process, the estimated smoothing coefficients ended

up into two groups, one which formed curves that closely resemble the larger peak of the red

curve, and a smaller group which formed curves which contains the smaller peak of the red

curve.

Figure 20 estimates the density of T where the true T has a gamma distribution and U

has a normal distribution. Similar to figure 19 the averaged estimated density of T is skewed
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Figure 20: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, gamma distribution), where U is assumed as a Normal distribution with
an estimated standard deviation.
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in the correct direction, but has a smaller variance and is bi-modal. Once again, we do not

believe the bi-modal curve occurs in most of the individually estimated densities, instead is

a result of two groups with different optimised results.

5 Discussion

In section 4.3, we see that the estimated curve is not an accurate representation of the true

distribution, one parameter we can change is the number of smoothing parameters K, so

far through the calculation of BIC, it is determined that 2-3 smoothing parameters is the

best, though we can increase the number of smoothing parameters if necessary. But we do

need to keep in mind that an increase in K also increases the number of “peaks” in the

plot, and the estimated density will become more wave like instead of a smooth curve. We

also see that when there is only one set of observed variable W , by assuming the correct

distribution error type and standard deviation for U , the KDD method seems to have more

stable results than the proposed Hermite density deconvolution. But when comparing the

averaged density curves, both HePD and KDD may obtain better results depending on the

distribution of T . But we are also interested in how well we can estimate the density of the

latent variable T if the problem is nonparametric, that is if we do not assume a distribution

for the error term U . For a problem like this, it will be difficult to analyse the problem

with only one replicate of W , which is why in the next chapter we will analyse how well we

estimate the density of T nonparametrically for a continuous data using a simple classical

error with multiple replicates of W and no additional information.

6 Computation details and errors

There are many optimisation packages in R, most packages work with non-constraint opti-

misation, and a few only allow linear constraints to be made for the optimisation. The R

package we used to obtain the optimal smoothing parameters θKT
and θKU

(which will appear

in the next chapter) is called “nloptr”. This package allows constraint optimisation where

the constraints can be either equality or inequality, it also allows the constraints to be either
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linear or nonlinear. “nloptr” also allows the user the option to find local or global maximum

or minimum.

Commands “constroptim.nl” and “auglag” from the R package “ALABAMA” can be

used to find the optimal smoothing parameters. This is another R package which allows

both equality and nonequality constraints and also nonlinear constraints. Unfortunately,

for HePD, “ALABAMA” does not have the option to find the global maximum, and this

resulted in inconsistent optimal parameter values.
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Part V

Chapter 4: Semiparametric and

Nonparametric Density Deconvolution

for Continuous Data with Replicates

1 Introduction

In the previous section, we looked at how well we can estimate the density of a latent

variable T when we have data on W and some assumption on the error term U . The results

we obtained show that depending on the type of distribution used, some situations, KDD

provide more favorable results, and in other situations, HePD provide more favorable results.

And therefore we feel comfortable to use HePD as our method for further analysis.

Not all occasions will allow us insight into what the correct distribution type for U would

be. This leads us to believe that there is a need to develop a methodology for estimating the

density of T when both T and U are latent variables. For this chapter, we will be exploring

the method by extending my research from the previous chapter, that is, we will still be

using the HePD method. We do this by representing all unknown densities with the help of

Hermite polynomials and we will be estimating all parameters with the use of maximising a

log-likelihood function.

For this chapter, since both latent variables have no assumptions apart from allowing the

mean of the error term to be zero, having only one replicate of observed variable W will not

give us any result. We will need to have multiple replicates (≥ 2) in the observed variable

W .

Unlike the previous chapter, we will not be comparing this method to any other existing

methods. The reason is that there is no existing paper and program which will match this

exact problem. In Hall and Ma (2007), let us suppose that we have replicates Wij = Ti+Uij

for j = 1, 2. If we define ΔWi = (Wi1 + Wi2)/2 and ∇Wi = (Wi1 − Wi2)/2, and if Uij is
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symmetric, then ΔWi = Ti + Ui∗, and ∇Wi has the same distribution as Ui∗. They then

estimate the distribution of Ui∗ by ordinary kernel density estimation of ∇Wi. They would

then estimate the density of Ui∗ and then plug it into the ordinary density deconvolution.

The problem is that in this case, there are two bandwidths: one for estimating the density

of Ui∗, and the other for the deconvolution kernel density estimate. No literature exists

for how to choose the 2 bandwidths. No programs exist so far for this problem. Another

paper Delaigle and Hall (2016) assume Wi = Ti + Ui, and that Ui is symmetric and the

Ti is not symmetric. They do not need replicates, but they do need symmetric errors and

non-symmetric latent variable Ti. Once again no programs are currently available for this

problem. Delaigle and Hall (2016) also looked at the case where replicates are required, but

again Ui has to have a symmetric density function as they stated that the characteristic

function of Ui must be real and not vanish on the real line. Hu and Schennach (2008) show

that identifiability is achieved if there are 3 or more replicates, even if the distribution of U

is neither symmetric not homoscedastic. Sarkar et al. (2014) say that they believe that only

2 replicates are really needed. The understanding is that there are a number of papers in

the deconvoluting kernel literature, they do not really give much advice on the selection of

the bandwidth, require U to be symmetric, and no software exists for them. So, the problem

in this chapter is unique in that (a) we do not assume that U is symmetric; and (b) that we

are actually studying the properties of the density estimate of T .

For the next few sections, we will introduce the model again, this time the model will be

specified to contain replicates for W , we will also look at what the likelihood for this new

model would look like. We will then look at some simulations, and lastly an example using

real-life applications.

2 methodology

For this chapter, we will express the simple classical error model as

Wij = Ti + Uij, (15)
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Staying consistent with the previous chapter, W is the observed variables, T is the latent

variable and U is the error term corresponding to each replicate of W . Here i = 1, ..., n

indicates the number of subjects and j = 1, ..., J represents the number of replicates, where

J ≥ 2. For this chapter, we will assume that each subject has the same number of replicates,

the idea of having a different amount of replicates between subjects will be a topic for

future discussion. Also we assume that each replicate is independent of each other, this is

mainly due to the fact that there is a long period of space (3 months) between each repeated

collection of recalls.

Once again we let fW (·), fT (·) and fU(·) be the density functions corresponding to the

variables W , T and U . The density of W for each individual subject can be expressed via

the integral equation

fW (wi) =

∫
fT (ti)

J∏
j=1

fU(wij − ti)dti. (16)

Since both variable T and variable U is unknown, we will approximate both densities using

basis functions with Hermite polynomials. Here fT (t) = {∑K
k=0θkTpk(t)}2 and fU(u) =

{∑K
k=0θkUpk(u)}2, where pk(·) is the scaled Hermite polynomial mentioned in 2, also θkT

and θkU are the corresponding coefficients for the kth term of the scaled polynomials. In

this chapter, we will assume that for each replicate of U , the distribution type will be the

same. For any given K amount of polynomials, the coefficients θT and θU can be estimated

by maximizing the log of the following likelihood for each person i

Li(fT |Wi1, ...,WiJ , θkT ) =

∫ {∑K
k=0θkTpk(ti)

}2
J∏

j=1

fU(wij − ti)dti, (17)

subject to the constraint that all unknown densities have to integrate to 1 and that the error

term U has a mean of 0, which is expressed by these following three functions

K∑
k=0

θ2kT = 1, (18)

K∑
k=0

θ2kU = 1, (19)

∑K−1
k=0

√
2(k + 1)θkUθ(k+1)U = 0. (20)

Also the number of basis functions K will be estimated using BIC from section 4.1.
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3 Simulations

For this section, we will be using the same information as the previous chapter. Therefore

variable T will have two types of distribution:

- a standard normal distribution: T ∼ Normal(0, 1)

- a gamma distribution: T ∼ Γ(9, 1/3), where the shape parameter for this gamma

distribution is 9 and the scale parameter is 1/3

And U will also have two types of distribution:

- a Laplace distribution: U ∼ Laplace(0, 1/
√
3)

- a normal distribution: U ∼ Normal(0, 1/
√
3)

For both cases of U above, we have the mean and standard deviation for each distribution.

For this section, we will follow the previous chapter and look at all four combinations of T

and U .

Similar to the simulations from the previous chapter. We will look at examples that

use different combinations of T and U . For each example, we will perform 350 simulations,

where each simulation will have a sample size of n = 500 and each subject will have J = 4

replicates. Once again, this pre-existing knowledge of the true T and U will not be using it

the process of analysis, and will only be available at the result section as a comparison.

For all of the following examples, we will be comparing the estimated density curve of

T averaged over all simulations to the true density of T . For all the following figures, the

black solid curve will be representing the true density of T , and the red dashed curve will

be representing the estimated density of T averaged over all simulations.

3.1 Estimate T when we know both the distribution type and

standard deviation of U

We start off with the situation where the data we generate has 4 replicates and that we

know both the type of distribution for U and its standard deviation. In this situation, the
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Figure 21: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, normal distribution), where U is assumed as a Laplace distribution and
we also know the standard deviation of U .

only parameters that are being estimated are the smoothing coefficients that are used for

the density estimation of T .

Figure 21 looks at the combination where the true density of T is normally distributed

and U has a Laplace distribution with a standard deviation of 1/3. Here the black solid curve

is the true density curve and the red dashed curve is the estimated density curve averaged

over 350 simulations. We can see that on average, the density estimated is centered correctly,

but has a much smaller variance compared to the true density curve.

Figure 22 looks at the combination of both T and U having normal distributions. Similar

to figure 21 the average of all estimated density curves has the correct centering, but a much

smaller variance.

Figures 23 and 24 look at the density estimation where T has a gamma distribution,

where the first figure has a Laplace distribution for U and the latter figure uses a normal

distribution for U . For both averaged density estimations, the estimated curves has captured
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Figure 22: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, normal distribution), where U is assumed as a Normal distribution and
with a known standard deviation for U .
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Figure 23: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, gamma distribution), where U is assumed as a Laplace distribution with
an known standard deviation for U .
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Figure 24: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, gamma distribution), where U is assumed as a Normal distribution with
an known standard deviation for U .
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the fact that the true density is skewed, and the mode of the curve is around the correct

place, but once again, the estimated curves have a much smaller variance than the true

curves. Figure 23 shows a smaller “bump” next to the mode of the averaged estimated

curve, this is due to the averaging of all estimated curves from the 350 simulations, it is not

an indication that the estimated density curve is bi-modal.

3.2 Estimating the density of T when we only know the distribu-

tion type for U

In this subsection, we will be continuing with the same examples as the previous subsection.

This time we will relax the problem a bit by giving information on the distribution type

for U , but not on the standard deviation. Therefore in the likelihood function, we will be

estimating both the smoothing coefficient for T and the standard deviation for U . Since we

are only interested in how well the density of T is estimated, therefore in the results we will

only present the comparison the average of all estimated densities of T with the real density

curve of T .

Figure 25 and 26 shows the density estimation where the true density of T is normally

distributed, where U is a Laplace distribution in figure 25 and U is a normal distribution

in the latter figure. Similar to the cases where we know the standard deviation value of U ,

the averaged density estimation of T is centered correctly, but the average of all estimated

density curves has a heavier tail.

Figure 27 and 28 shows the density estimation for T where the true T has a gamma

distribution. U has a Laplace distribution in figure 27 and U is normally distributed in

figure 28. For both cases, the average of the estimated density curves is skewed in the same

direction as the true density, but the estimated mode is shifted to the right and the variance

is much smaller than the true curve.
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Figure 25: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, normal distribution), where U is assumed as a Laplace distribution where
the standard deviation of U needs estimation.
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Figure 26: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, normal distribution), where U is assumed as a Normal distribution and
with a unknown standard deviation for U .
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Figure 27: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, gamma distribution), where U is assumed as a Laplace distribution with
an estimated standard deviation.
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Figure 28: Comparing the estimated density of T (red dashed) with the true density
curve(black solid, gamma distribution), where U is assumed as a Normal distribution with
an estimated standard deviation.
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3.3 Estimating the density of T with no information on the density

of U

For this subsection, we will be relaxing the assumptions even more by not providing any

assumption on both the distribution type and the standard deviation for U . In this case,

U will also be represented as a sum of a series of basis functions where each basis func-

tion consists of one term of the scaled Hermite polynomial and a corresponding smoothing

coefficient. Therefore in the likelihood function, we will be estimating both the smoothing

coefficient for T and the smoothing coefficient for U . But similar to the previous subsection,

we will only be presenting the estimated densities of T .

Once again, we start by looking at how well this method estimates the density of T when

the true T is normally distributed. Figure 29 looks at the averaged density estimation of T

when the true distribution for U has a Laplace distributed, and figure 30 looks at the cases

where the true U has a Normal distribution. We see that with so little known information,

the averaged estimated density of T has a larger variance than that of the true density curve.

We also looked at the cases where the true density of T is a gamma distribution, for both

where the true U is normal (figure 32) and when U has a Laplace distribution (figure 31).

For both cases, the average estimation for T has a smaller variance than the true density

and is shifted a bit to the right.

4 Comparisons

In chapters IV and V, we have in total performed simulations for 5 scenarios using Hermite

polynomials as a media to estimate any unknown densities:

1. No replications, known distribution for U , known σU ,

2. No replications, known distribution for U , unknown σU ,

3. Multiple replications, known distribution for U , known σU ,

4. Multiple replications, known distribution for U , unknown σU ,
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Figure 29: Comparing the average density estimate of T using Hermite polynomials(red line)
of 350 simulations to the true density of T (black line), where T has a Normal distribution(T ∼
Normal(0, 1)) and U has a Laplace distribution(U ∼ Laplace(0, 1/

√
3)).
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Figure 30: Comparing the average density estimate of T (red line) of 350 simulations to the
true density of T (black line), where T has a Normal distribution(T ∼ Normal(0, 1)) and U
also has a Normal distribution (U ∼ Normal(0, 1/

√
3)).
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Figure 31: Comparing the average density estimate of T using Hermite polynomials(red
line) of 350 simulations to the true density of T (black line), where T has a Gamma
distribution(T ∼ Γ(9, 1/3)) and U has a Laplace distribution(U ∼ Laplace(0, 1/

√
3)).
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Figure 32: Comparing the average density estimate of T using Hermite polynomials(red
line) of 350 simulations to the true density of T (black line), where T has a Gamma
distribution(T ∼ Γ(9, 1/3)) and U has a Normal distribution(U ∼ Normal(0, 1/

√
3)).
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5. Multiple replications, unknown distribution for U , unknown σU .

For this section, I would like to perform comparisons between these scenarios to see how

the information given to each scenario affects the result of the estimation of T . Although we

have been looking at multiple examples in the previous simulations, in this section, we will

only be using one example to perform these comparisons. We will be looking at the example

where T is has a standard normal distribution, and U has a Laplace distribution with mean

0 and standard deviation of 1/
√
3.

4.1 Knowing σU vs estimating σU

We will start with comparing the averaged estimated densities of T between scenarios where

we know the standard deviation of U and the scenarios where we need to estimate the

standard deviation of U . That is we will be comparing the results from scenario 2 with

scenario 1 and the results from scenario 4 with scenario 3. For the following figures, the

black solid curve will be representing the true density curve of T , the red dashed curve will

be representing the averaged estimated density of T where the standard deviation of U is also

estimated, and the magenta dot-dashed curve will be representing the averaged estimated

density of T where we know the value of the standard deviation of U .

Figure 33 looks at the comparison where both scenarios contain no replicate for the

observed data W . We see that with a correct assumption on the standard deviation of U , the

averaged estimated density curve has a higher peak. Figure 34 looks at the comparison where

both scenarios contain 4 replicates for W . We see that the red dashed curve and the magenta

dot-dashed curve is almost overlapping each other, this brings us to the conclusion that

when we have enough replicates in the observed data, knowing or estimating the standard

deviation or variance of the error term does little to affect our estimation of the density of T ,

but with no replicates in W , having the correct information on σU will allow a more accurate

estimation for the density of T .
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Figure 33: Given that both scenarios the data has no replicates and the distribution type
for error term U is assumed, compare the averaged estimated density curve where the
standard deviation of U is assumed (magenta dot-dashed) and where the standard devi-
ation of U is estimated (red dashed). The black solid curve is the true density curve of T
(T ∼ Normal(μT = 0, σT = 1)).
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Figure 34: Given that both scenarios has 4 replicates and the distribution type for error term
U is assumed, compare the averaged estimated density curve where the standard deviation of
U is assumed (magenta dot-dashed) and where the standard deviation of U is estimated (red
dashed). The black solid curve is the true density curve of T (T ∼ Normal(μT = 0, σT = 1)).
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4.2 No replicates vs multiple replicates

We now look at how having multiple replicates may affect the estimation result for the density

of T . We start with comparing scenario 1 with scenario 3 to see with a good understanding

on the error term U , what type of effect replicates have on estimating density T , we then

compare scenario 2 with scenario 4 to see whether the additional estimation of σU will alter or

support our findings. For the following figures, the black solid curve will still be representing

the true density of T , but now the red dashed curve will be representing the scenarios with 4

replicates of W and the magenta dot-dashed curve will be representing the scenarios where

W have no replicates.

Figure 35 looks at no replicates for W versus 4 replicates for W where we assume the

correct distribution type and standard deviation for error term U . From this figure, we

can conclude that having multiple replicates for W aids in the smoothing of the estimated

densities. Figure 36 works with the same comparison but on the scenarios where we also

need to estimate the standard deviation of U , and this figure supports our previous findings.

4.3 MAE and MSE results

Similar to section 4.3 in the previous Chapter (Chapter 3), the MAE and MSE values are

recorded for each scenario. In this section, we will be exploring how the MAE and MSE

values change between each scenario.

Figure 37 compares the MAE values between each scenario and figure 38 compares the

MSE values between each scenario. For both figures, there are in total five boxplots labeled 1

to 5, each one of these boxplots corresponds to the labels for each scenario. For each boxplot,

we record the MAE and MSE values for all 350 simulations. In both figures, we see that

the boxplots for scenarios 1 and 2 have a much smaller variation than scenarios 3, 4 and 5,

this may cause some concern since it looks like results obtained from multiple replicates are

more variable than results obtained from using only 1 replicate. This variation is caused due

to the computation process. Through the whole simulation process for multiple replicates,

a good amount of simulations produced inconclusive results, this also gave MAE and MSE

values that are quite large, causing the illusion that multiple replicates are more variable,
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Figure 35: Given that both scenarios the distribution type and the standard deviation for
error term U is assumed, compare the averaged estimated density curve where the data has
no replicates (magenta dot-dashed) and where the data has 4 replicates (red dashed). The
black solid curve is the true density curve of T (T ∼ Normal(μT = 0, σT = 1)).
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Figure 36: Given that both scenarios has assumed the distribution type for error term U and
estimates the standard deviation for U , compare the averaged estimated density curve where
the data has no replicates (magenta dot-dashed) and where the data has 4 replicates (red
dashed). The black solid curve is the true density curve of T (T ∼ Normal(μT = 0, σT = 1)).

lxxxi



1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 37: A series of boxplot that compares the mean absolute error values of each scenario,
where the numbers labeled under each boxplot corresponds to the label for each scenario.

in fact if we look at the median of each box plot, we can see that scenarios where there

are multiple replicates have smaller MAE and MSE values, indicating that an increase in

complexity in computation will increase the amount of inconclusive results, but when the

computation process give conclusive results, multiple replicates will provide a much more

accurate result.

5 Real Data

5.1 Quick Introduction to EATS

Many nutritional surveys have used the 24-hour recall (24HR) to collect information on food

intake (Dwyer et al. (2003)). 24HR recall collects a subject’s food and nutritional intake for

the past 24 hours. The main purpose of this section is to use these pieces of daily information

to estimate how the population’s long term daily intake of nutrients and foods is distributed.

Eating at America’s Table Study (EATS) is one of the studies that use 24HR to collect
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Figure 38: A series of boxplot that compares the mean squared error values of each scenario,
where the numbers labeled under each boxplot corresponds to the label for each scenario.

data. Since 24HR records each subject intake for the past 24 hours, some data entries will

regularly have zero input and some subjects may not have replicated, for this analysis we

will need to choose either a food intake variable that we believe most people will eat almost

daily (minimal zero input), or choose a nutritional intake such as calcium, protein or fat that

we most likely will ingest daily through a variety of foods. Since EATS has 4 replicates, we

will analyse the data by taking the average of all 4 replicates for each subject. We will use

the data provided by Subar et al. (2001), and the variable that we are focusing on is the

protein intake. For this example, I have separated the male and female participants, and

provided two density plots, one for each gender. For both gender, as suggested by Subar

et al. (2001), I have adjusted the data by dividing each input by their respective energy

intake per thousand calories. That is, if a participant recorded to have consumed 12 grams

of protein the past 24 hours and that their energy intake that particular 24 hours is 2500

calories, then we adjust the data by dividing 12 by 2.5, and therefore we will use the result

4.8 grams of protein per thousand calories as the adjusted data for analysis.
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Figure 39: The estimated density curve of a populations long term usual average daily intake

of proteins for females.
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Figure 40: The estimated density curve of a populations long term usual average daily intake

of proteins for males.
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Figure 39 looks at the density curve for the populations usual daily intake of protein in

females, and figure 40 looks at the density curve for the populations usual daily intake of

protein in males. We see that in general, males take more protein than females, but not by

too much. As this density is plotted after energy adjustment, we can say that the mode of

males consume around 4.5 grams of protein per thousand calories, and the mode of females

consume around 4 grams of protein per thousand calories. Now if we assume that a person’s

energy intake is 2000 calories per day, then we can then that the mode of males on average

consumes 9 grams of protein per day, and the mode of females on average consume 8 grams

of protein per day.
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Part VI

Chapter 5: Semiparametric Density

Deconvolution for Data with Excess

Zeros

In the previous chapters, we explored the idea of estimating the density of the latent variable

T first semi-parametrically, then non-parametrically, using a simple classical error model.

The results show that this model gives accurate estimates when the observable variable W

is continuous. Although continuous variables are quite common, through collecting data we

see that the observed variables may take many forms, and not all forms perform well when

analysed using only a simple classical error model. For this chapter, we will be exploring the

density estimation for a specific type of data - data with excess zeros, specifically zero-inflated

data for nutritional data. For this type of data, we will be using a more complicated model

to describe the relationship between the observable variable W and the latent variable T , we

will follow the lead of Tooze et al. (2006) and use the NCI (National Cancer Institute) model.

The NCI model consists of two parts: part 1 accommodates the percentage of zeros that is

in the data, part 2 models the non-zero part of the data, this part will be a linear model, but

depending on the dataset, a transformation may be used on this linear model. And lastly,

we combine these two parts as a way to estimate the density of the latent variable T , which,

in the nutritional concept will often be a population’s long term average of a certain intake.

The NCI model has been frequently used in health research, Tooze et al. (2006) looked at

the density estimation of variable T using the NCI model assuming normality on all latent

variables, they created separate latent variables for parts 1 and 2 of the model, allowing

correlation to exist between the latent variables, therefore in order to estimate the density of

variable T , they had to first estimate the latent variables and the correlation values. Kipnis

et al. (2009) estimated the T value for each subject and then applied regression calibration

to understand the relationship between T and various health outcomes. To decrease the
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number of variables that required estimating, instead of allowing correlation they created a

simple linear relationship between the latent variables in part 1 and part 2 of the model. For

this chapter, we will be estimating the density of T semi-parametrically by using as little

assumptions as possible. We will follow the lead of Kipnis et al. (2009) and simplify the NCI

model by using a simple linear relationship on the latent variables between the two parts of

the NCI model.

For this chapter, we will be using the simplified version of the NCI model which contains

only two latent variables and one error variable. The idea is to obtain density estimations for

all these unobservable variables and use these estimated densities to estimate the density of

our final latent variable T . We will start with a detailed description of how to combine the

Hermite density deconvolution with this simplified NCI model and how we estimate the final

density using previously estimated densities of other variables, then we will present some

simulation results.

1 Methodology

For this section, we will first give a brief description of the NCI model. We will then look

at our simplified version of the NCI model, and discuss in detail the likelihood of this model

and how densities represented by polynomial functions are incorporated into the likelihood.

Lastly, we will be discussing how to estimate the density of T , once we obtain densities for

all other latent variables.

1.1 Using Zero Inflated Data

The NCI model is a model which helps analyse a dataset with excess zero. The model is

developed at the National Cancer Institute, the idea was to use two or more short term

recalls of a subject’s nutritional intake to estimate a population’s long term consumption

pattern. An example of a zero-inflated dataset is in surveys where you are given a yes or no

question, where if you say no, the input will be zero, and if the answer is yes, an additional

question of “how much?” will follow, and in this case, the amount will be recorded. For a
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question such as “Have you ingested any alcohol in the past 24 hours?”, it is most likely that

a significant proportion of the subject may answer no, which will result in a dataset with

a lot of zero inputs. Also when asked this same question to the same subject, the answer

may change depending on the different days, since people are more likely to drink in the

weekend than on weekdays, this suggests that having multiple recalls from the same subject

will improve the accuracy when estimating a population’s long term pattern.

For this paper we will assume that each subject will be answering the same question

multiple times, where each subject will only be asked the question once in a 24 hour period,

we call the results collected each time as a recall or a replicate. The NCI method performs

on the bases that even though a subject may have recorded zero as their input in one or

multiple of the recalls, this does not mean that this subject’s record will stay as zero in the

long term. That is when a subject has answered no to “Have you ingested any alcohol in the

past 24 hours?”, we do not assume that this subject is a non-alcoholic drinker, just that the

subject happened to not drink on that particular day. By using a dataset with replicates, the

NCI method takes into account how often a subject may have zero as an input, and when

the input is non-zero, how large or small the amount may be. Using this information, we

will determine what the density of the variable of interest would look like in the long term.

In this section, we will be looking at our simplified NCI method with the help of multiple

replicates. For i = 1, ..., n subjects, consider two latent variables, (Xi, Ui) and assume that

they are independent to each other. For j = 1, ..., J replicates, let Wij be the observed

data, we will be assuming the all subjects have the same amount of replicates. Then the

observed data W will contain the input from all J replicates and all n subjects. Let εij be

the variability between each replicate for each subject on a transformed scale and Cij be the

binary indicator of the observed variable Wij, where Cij is 0 if Wij has a zero input and Cij

is 1 if Wij is a positive number. Our model based on Kipnis et al. (2009):

pr(Cij = 1|Xi) = Φ(Xi) (21)

h(Wij|Cij = 1, Xi, Ui) = αXi + Ui + εij = W ∗
ij (22)

where Φ(·) is the probit function and h(·) is a transformation function. Kipnis et al. (2009)

recommend the BoxCox transformation.
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For this particular model, we can interpret Xi as the propensity of a subject consuming

food or nutrition of interest, and Ui being the adjustment amount between subjects. Using

alcohol consumption as an example, when looking at the mean amount of alcohol ingested

using the recall values recorded, subject A and B may have similar values, but this does

not mean that these two subjects will have the same consumption patterns. One subject

may have a glass of wine every night after dinner, and the other may not drink any from

Monday to Friday, but have long drinking sessions in the weekend. That is although these

two subjects may have similar W̄i values, the first subject will have a much larger Xi value

and a lower Ui value, whereas the latter subject will have a lower Xi value and a larger Ui

value.

Let fX(·), fU(·) and fε(·) be the density functions corresponding to variables X, U and ε.

Making the restriction that
∫
ufU(u)du = 0, the likelihood for person i can be expressed as

the probability of this person consuming {Φ(Xi)}Cij ×{1−Φ(Xi)}(1−Cij) times the likelihood

of regression 22, the likelihood function that combines the information of 21 and 22 can be

written as

Li(α, fx, fU , fε|Ci1, ..., CiJ ,W
∗
i1, ...,W

∗
iJ) (23)

=

∫ ∫ J∏
j=1

[
{Φ(Xi)}Cij × {1− Φ(Xi)}(1−Cij) × {fε(W ∗

ij − αXi − Ui)}Cij

]

×fX(Xi)× fU(Ui)dXidUi.

Assuming the transformation results in approximate normal, we can then assume that

fε(·) has a normal distribution, but with no assumption on the mean or the variance. As for

fX(·) and fU(·), except that the latter has mean zero, no additional assumptions are given

and therefore the densities are considered as unknown. Following the previous chapter, we

will estimate any unknown densities, in this case fX(·) and fU(·) by using Hermite polynomial

basis functions

fX(x) = {∑K
k=0θkXpk(x)}2; fU(u) = {∑K

k=0θkUpk(u)}2;

Here θkX and θkU are the smoothing parameters for the densities of variables X and U , and

pk(·) are the basis functions expressed in 2. In order for the densities functions to integrate
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to one, we take advantage of the orthonormal properties of pk(·) and we have the restrictions

(Schennach and Hu, 2013) that

∑K
k=0θ

2
kX =

∑K
k=0θ

2
kU = 1. (24)

In order for fU(·) to have mean zero, we have the restriction (Schennach and Hu, 2013) that

∫
ufU(u)du = 0 → ∑K−1

k=0

√
2(k + 1)θkUθ(k+1)U = 0.

1.1.1 Usual Intake

In the previous subsection, we looked at a simplified version of the first two parts of an

NCI model. With this we are able to estimate the density of latent variables X and U

by estimating the sets of smoothing parameters θkX and θkU , we are also able to estimate

the mean and standard deviation of variable ε and the slope α. But this is not the final

product we wish to estimate. For this subsection, we will be exploring how to use the values

estimated in the previous subsection to estimate a population’s long term pattern on the

variable of interest. We will be calling a population’s long term pattern as the usual intake.

The main assumption is E(Wij|subject i) = (usual intake)i = Ti. From Kipnis et al.

(2009), a person’s usual intake is defined conditional on (Xi, Ui) as

Ti = Φ(Xi)E{h−1(αXi + Ui + εij)|Xi, Ui}, (25)

here h−1(·) is the inverse transformation function. Here we can describe the usual intake

function as the product of the probability that a subject has a non-zero input for any recall

and the usual amount given that the subject has a non-zero input on that recall.

One of the biggest limitations for calculating (25) is that we do not have the values of X

and U for each corresponding subject, and therefore can not obtain the usual intake value

T for each individual subject. Our ultimate goal for this section is to use the information

obtained on variables X and U from section 1.1, which are the empirical densities fX and

fU and use them to obtain an estimate of the density of T (fT ). By obtaining fT we will

be able to understand what the distribution of the general populations long term average

usual intake is like, and will be able to answer questions such as what percentage of our
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population is under or over a certain threshold. Since this is a semi-parametric problem,

we can calculate an estimated μX , σX and σU from the densities fX and fU , but we do not

know the type of distribution for X and U , this means we can not obtain fT analytically.

We will, therefore, estimate fT numerically. To do this, we create mock samples of variables

X and U by sampling a large number of values from fX and fU (for example a sample size

of 1000000) and inputting these newly sampled values into (25) in order to obtain a mock

sample of variable T . We then fit a smooth density curve onto this large mock sample of T

to get an empirical estimation for fT .

For the next few paragraphs, I will explain in detail how to compute the expectation part

of (25) and the inverse transformation h−1(·) for the BoxCox transformation:

To compute the expectation conditional on variables X and U , we use Gauss-

Hermite quadrature. Let Q be a standard normal distribution. So that ε = με + σεQ. Then

the expectation can be rewritten as:

E[h−1(αXi + Ui + εij)|Xi, Ui] =

∫
h−1(αXi + Ui + με + σεQi)Φ(Qi)dQi,

= π−1/2

∫
h−1(αXi + Ui + με +

√
2σεVi) exp(−V 2

i )dVi.(26)

Here Φ(Q) is the distribution for variable Q where Q =
√
2V . By converting the expectation

function into (26), we now have the function in the form
∫
f(V ) exp(−V 2)dV , in this case

we can use Gauss-Hermite quadrature and calculate this integral by
∑L

l=1 wlf(Vl). Here

l = 1, ..., L is the number of nodes used, and wl is the associated weights for the lth node.

For computing the BoxCox inverse, let h(x, λ) = (xλ − 1)/λ, if λ �= 0 and h(x, λ) =

log(x) , if λ = 0. If λ �= 0, h−1(x, λ) = (1 + λx)1/λ By simple algebra,

h−1(Wij, λ) = [1 + λ{(αXi + Ui + εij)}]1/λ. (27)

Because of the possibility that the argument on the right hand side of (27) might contain

negative values, and given that we are estimating food consumption, having consumed a

negative amount of food is not feasible, we will let all negative values to be zero. Therefore

we will be using the function

h−1(Wij, λ) = max
[
0, 1 + λ{(αXi + Ui + εij)}

]1/λ
. (28)
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1.1.2 BoxCox transformation parameter selection

For this subsection, we will briefly discuss a method for selecting the best BoxCox trans-

formation parameter λ by using a normal score. The idea is to choose the best λ value by

comparing how well the BoxCox transformation performs with a normal score. In the next

section, we will see how well this selection method works on simulations.

?? suggested that for designs where permutation testing is infeasible and maximum like-

lihood testing is used, inverse normal transformation can be used, and Blom score is one of

the more popular transformation that is widely used in many statistical software. First we

create a normal score that will be used for comparison. Let B = (B1, ..., B99) be a series

of Blom score as Bq = Φ−1((q − 3/8)/(Q + 1/4)), here Q = 99. We then create a variable

Wnon−0, where we record all the non-zero inputs from subjects in W who have more than

2 replicates which contains non-zero inputs, for each subject in Wnon−0, we find the mean

intake for this subject (Wnon−0,i) and calculate ε∗i = Wnon−0,i −Wnon−0,i. Now we compute

the first through the 99th percentiles of ε∗, let P = (P1, ..., P99) be the percentile values.

Define G(λ) = {h(P1, λ), ..., h(P99, λ)}, here h(·) is the BoxCox transformation function.

For each λ value, we perform a linear regression of G(λ) on B to see how the transforma-

tion fits the Blom score. To determine how well the transformation fits, we use the R2 value

from each regression. And we choose the most appropriate λ value based on the largest R2

value.

Figure 41 looks at the comparison of estimating the λ parameter of the BoxCox trans-

formation. We performed 50 simulations, where each simulation has a certain percentage

of zero inputs in the data, the amount of zero inputs in each simulation is represented by

the pink curve in percentage form. The gray line shows the true λ value, red line is the λ

estimated by the use of Blom score mentioned above and the blue line is the λ estimated

using an existing λ estimation function in the software ‘R’. We see that existing packages

do not work well with data that contains excess zero, therefore for the rest of this paper, we

will be selecting λ using this Blom score.
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Figure 41: Comparing the estimation of BoxCox transformation parameter λ between an
existing BoxCox package from the software ‘R’ (blue) with this new method containing
Blom score (red). Where the grey line is the true transformation parameter. This figure also
contains the percentage of zeros from each simulation (light purple) with its corresponding
label on the right axis.
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1.2 Bootstrapping

We also wish to perform blocked boostrap on the following simulations and on the real data

applications. A blocked bootstrap was chosen since we wish to keep the replicates for

each subject as a block, and bootstrap in respect to each subject instead of each input of

the data. To do this we sample with replacement within the subjects to form a bootstrap

sample of our simulated dataset. We run this bootstrap sample through the whole process

of estimating fX and fU , then finally we create large mock samples and estimate fT for

each bootstrap. This step of block bootstrapping is performed for the purpose that we can

understand how well this estimation process detects the true density of T .

2 Simulations

We first discuss how to generate our simulated datasets. We generate variables X, U and

ε, and calculate variable W using these three generated variables. For this section, all

simulations will have j = 4 replicates and n = 1000 subjects.

First we create random generations of 1000 for variables X and U , then we generate 4

sets of random normal values each with a sample size of 1000 for εj (ε1, ε2, ε3, ε4), this

creates the 4 replicates that we need. For each replicate of ε we calculate a corresponding

set of values for W ∗, as W ∗
j = αX + U + εj for j = 1, ..., 4. To determine which W ∗ value

will become a zero input in the observed variable W , we first calculate Φ(X) and 4 sets of

random values using a uniform distribution, each set will have a sample size of 1000 (Rij,

i = 1, ..., 1000, j = 1, ..., 4), one set of random values for each set of replicates. We then

compare the values in Rij to Φ(Xi), if Rij < Φ(Xi) then Wij = 0, otherwise, W ∗
ij will be

transformed into Wij by using the formula of a reverse BoxCox transformation (λW ∗
ij+1)1/λ.

2.1 Simulation 1 results

For the first simulation, let α = 1, X ∼ Normal(μx = 0.7, σ2
x = 0.42), U ∼ Normal(μu =

0, σ2
u = 0.182), ε ∼ Normal(με = 0, σ2

ε = 0.282). For the BoxCox transformation, let λ = 0.4.

For this simulation the generated variable W will have around 26% of the data set as zero
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inputs. We created 321 simulated data sets. As we see later in the figures, we will be plotting

the 5th and 95th percentile for the estimated densities, having 321 simulations will allow

the 5th and 95th percentile to land of the 16th and 305th simulation respectively, when we

organise the simulation results in ascending order. This removes any additional calculations.

We first look at how well we can estimate the BoxCox transformation parameter with

about a quarter of the data being zero inputs. For the Blom score λ selection method, we

give λ a grid from 0 to 1 where each point is 0.01 width apart. Figure 42 shows a bar chart

of the λ values for all 321 simulations, we see that the majority of the simulations considers

that 0.37 is the most appropriate λ value, indicating that with a significant amount of zero

inputs in the data, the method slightly underestimates the λ value, the estimations also have

a 0.02 standard deviation, which tells us that the estimations are fairly consistent, with the

largest estimation at 0.43 and the smallest at 0.32. Now due to the long computational time

it takes for all the following simulations, we will not be re-estimating λ for each simulation,

we will only be using the λ of the first simulation.

The final results that we will be presenting are the density curves of T for each simulation.

From (25), we see that it is quite challenging to obtain the distribution of variable T , even

if we have known the distributions for the latent variables X and U . This means that in

order to get the density of true T (ft,TRUE), we will need to create large mock samples from

the true densities of X and U , and estimate ft,TRUE using the method mentioned in section

1.1.1, and we do this once for each simulation. Therefore, even though we are calling this as

the true density of T , it is actually an average estimation of density T using true densities

of X and U . Therefore the results that we will present later on will be the mean density of

T using all 321 simulations. And similarly, we obtain the density of the estimated T (ft,Est)

using the same method as that we did to estimate the true density of T , but this time we

will be generating large mock samples from the estimated densities of X and U for each

simulation.

For both the true and estimated T , once we obtain the large mock samples, we fit a

smooth density curve by using the “bkde” function from the “KernSmooth” package in “R”

specifying that the bandwidth is calculated through the “dpik” function also from the same

package.
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Figure 42: A density plot on the estimation of the BoxCox transformation parameter value
λ (solid), where the true λ = 0.4 (dashed), using a dataset where X is normally distributed
and there is on average 26% zero inputs.
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Figure 43: Comparing the mean of the true density curves (solid) to the mean of the es-
timated density of T (dashed). Here the light blue shade is the 5th to 95th percentile of
the estimated density. All density curves are calculated through using the “bkde” func-
tion in “KernSmooth” package specifying that the bandwidth is calculated using the “phik”
function. For this plot, we have forced λ = 0.4.

We start by determining how well the density of T can be estimated when the transfor-

mation parameter is constant for all simulations, that is forcing the λ value to be 0.4 for

all. We do this to see with a consistent transformation, how well does the likelihood work

in estimating the density of T . Figure 43 compares the average of the estimated densities

of T (dashed) to the average of the estimated true densities of T (solid). We can see that

both curves have a similar shape and similar variance, though the estimated average density

(fEst) is slightly shifted to the left compared to the true average density (fTRUE). The figure

also shows the empirical 5th to 95th percentile of ft,Est (light blue) for all simulations. We

see that the shade has more variation around the peak of the curve and much less variation
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around the two tails.

Table 1 shows the mean cumulative T values for every 10 percentile point of the true

and estimated density of T , also the standard deviation for T at each decile point. For

each simulation, 100 blocked bootstraps were performed and the standard error for the

decile values was calculated using these bootstraps. We can see that the standard error for

the estimated density increases as the decile points go up, we believe that this is because

the density forces the density curve to stop at zero on the left tail, whereas there is much

more freedom around the other tail, allowing more fluctuation as the percentiles increase.

The bootstrapping confirms this idea, as the standard deviation also increases in a similar

manner as the estimated standard deviations. Although the standard error result from the

bootstrap more conservative than that from estimated standard error. We believe that this

will decrease with more samples or an increase in replicates.

The following tables will also contain information on the coverage for both the estimated

densities from the simulations, and the estimated densities from the blocked bootstraps.

The coverage for the simulated data is calculated by determining whether the average of the

estimated density fT,Est is within 95% of each simulated result, and the result is reported as

a percentage.

We then look at the same example, but this time we will be using the Blom score as a

selection method for the BoxCox transformation parameter for each simulation. Figure 44

shows a comparison between the true density curve (solid) with the average of the estimated

density curves (dashed), where the red dashed curve is the estimated density curve where we

estimated a transformation parameter for each simulation, and the blue dashed curve is the

estimated density curve where we forced a particular transformation value (λ = 0.4) to all

simulations, with the 5th to 95th percentile of the estimated densities as a shade of a lighter

color. Looking at the red dashed curve, we see that in general the shape and variation of

the density curve are still quite similar to the true density, but is skewed more to the left.

This suggests that the estimation of the λ value has a large impact toward the skewness of

the curve. Also with a much more variable λ estimation, we have a much wider shade of the

5th to 95th percentile.

Table 2 shows the mean and standard deviation of each decile value for all simulations
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X ∼ Normal(mean=0.7, st. dev=0.4)

True Estimated Bootstrap

mean mean st.error coverage st.error coverage

10% 0.289 0.251 1.59× 10−2 10.0% 3.62× 10−2 48.6%

20% 0.381 0.344 1.80× 10−2 22.1% 3.76× 10−2 57.1%

30% 0.457 0.422 1.91× 10−2 37.1% 4.03× 10−2 62.9%

40% 0.530 0.495 2.00× 10−2 47.7% 4.24× 10−2 62.9%

50% 0.602 0.571 2.10× 10−2 57.9% 4.40× 10−2 65.7%

60% 0.680 0.652 2.22× 10−2 66.4% 4.54× 10−2 80.0%

70% 0.769 0.745 2.35× 10−2 74.8% 4.71× 10−2 82.9%

80% 0.880 0.862 2.62× 10−2 81.9% 5.07× 10−2 82.9%

90% 1.044 1.038 3.57× 10−2 93.4% 6.44× 10−2 91.4%

Table 1: The decile values of the true and estimated density of a populations usual intake

where the true X and U both have normal distributions. This table also contains the mean

and standard deviation from bootstrapping and the coverage percentage when compared to

the average true density and the average estimated density. All estimated and bootstrapped

densities are analysed with fixed λ = 0.4
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Figure 44: Comparing the true density curve (solid) to the estimated density of T (dashed)
where X has a Normal distribution, where the red curve is estimated using an estimated
λ, and the blue curve is estimated when λ = 0.4. Here the light pink shade is the 5th to
95th percentile of the estimated density with estimated λ values and the light blue shade
is the 5th to 95th percentile of the estimated density with λ = 0.4. All density curves are
calculated through using the “bkde” function in “KernSmooth” package specifying that the
bandwidth is calculated using the “phik” function.
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X ∼ Normal(mean=0.7, st. dev=0.4)

True Estimated Bootstrap

mean mean st.error coverage st.error coverage

10% 0.289 0.229 2.49× 10−2 20.9% 3.83× 10−2 37.1%

20% 0.381 0.314 3.20× 10−2 32.7% 4.40× 10−2 51.4%

30% 0.457 0.385 3.78× 10−2 39.6% 5.00× 10−2 57.1%

40% 0.530 0.453 4.32× 10−2 45.2% 5.54× 10−2 65.7%

50% 0.602 0.522 4.87× 10−2 53.3% 6.05× 10−2 65.7%

60% 0.680 0.597 5.45× 10−2 57.3% 6.58× 10−2 71.4%

70% 0.778 0.683 6.09× 10−2 62.9% 7.18× 10−2 74.3%

80% 0.880 0.792 6.89× 10−2 66.0% 7.99× 10−2 88.6%

90% 1.044 0.956 8.17× 10−2 72.6% 9.58× 10−2 88.6%

Table 2: The decile values of the true and estimated density of a populations usual intake

where the true X and U both have normal distributions. This table also contains the mean

and standard deviation from bootstrapping and the coverage percentage when compared to

the average true density and the average estimated density.

where we estimate a λ value. A blocked bootstrap is performed on each simulation and the

mean and standard deviation for each decile value is recorded for each bootstrap. Through

the bootstrapping, we see that there is a much larger variation on the density estimation,

and the bootstrapped density curves are shifted more to the left. A coverage percentage is

calculated to see if the bootstrapping can detect the true and estimated densities, it seems

that the coverage increases as the decile value increase and the coverage is quite poor on the

left tails with more than half of the bootstrap missing the true value at the 10% mark but

much better on the right tail. Similar to the previous table, the bootstrap results are more

conservative in comparison to the estimated.
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Figure 45: A density plot on the estimation of the BoxCox transformation parameter value
λ (solid), where the true λ = 0.4 (dashed) for example where Y is a Gamma distribution.

2.2 Simulation 2 results

Another simulation was performed, where α = 1, Y ∼ Gamma(shape = 8, scale = 1),

U ∼ Normal(μu = 0, σ2
u = 0.182), ε ∼ Normal(με = 0, σ2

ε = 0.282) and λ = 0.4. For a better

comparison between this simulation and the previous one, also to allow better control on the

number of zero inputs in the data, we let X = 0.7+0.4∗ (Y −μY )/σY , where the 0.7 and 0.4

are the mean and standard deviation of X from the previous simulation. Once again, 321

simulations are performed where each simulation has around 25% of the data input as zero.

Once again we start by look at how well the λ value is estimated. Figure 45 shows

that the λ has a mean around 0.37. Like the previous example, it seems that this BoxCox

transformation parameter selection method has underestimated the λ value. But also like
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X ∼ Gamma(shape=8, scale=1)

True Estimated Bootstrap

mean mean st.error coverage st.error coverage

10% 0.306 0.244 2.97× 10−2 14.6% 6.20× 10−2 20.7%

20% 0.378 0.329 3.36× 10−2 88.2% 4.56× 10−2 90.2%

30% 0.442 0.399 3.46× 10−2 94.1% 4.99× 10−2 95.4%

40% 0.504 0.465 3.44× 10−2 94.1% 5.45× 10−2 95.7%

50% 0.572 0.531 3.30× 10−2 88.2% 5.88× 10−2 87.1%

60% 0.648 0.602 3.02× 10−2 63.2% 6.28× 10−2 66.6%

70% 0.740 0.683 2.55× 10−2 23.4% 6.60× 10−2 20.7%

80% 0.862 0.787 2.24× 10−2 3.1% 6.77× 10−2 5.4%

90% 1.061 0.943 4.74× 10−2 5.9% 6.56× 10−2 2.1%

Table 3: The decile values of the true and estimated density of a populations usual intake

where the true Y has a Gamma distribution and U has a normal distribution. Also the

standard deviation using bootstraps and the coverage percentage when compared to the

true and estimated densities.

the previous example, the λ values estimated from each simulation has a small variation

with a standard deviation of 0.02 and a range between 0.31 to 0.47 with no extreme values.

Figure 46 shows the density estimations for the mean true and estimated density of T .

Once again the dashed curve represents the average estimated density of T where we fix

λ = 0.4, and the solid curve represents the average estimated true density of T . We can see

that the estimated density of T is also a little skewed to the left compared to its true density.

The light blue shade is the 5th to 95th percentile of all the estimated intake densities. We

can see that 90% of the data is behaving well. Table 3 shows the deciles of the true and

estimated density of T for the case where Y has a Gamma distribution. The tables also

contain the standard deviation for each decile value of the estimated densities. We see that

the estimated density is mostly biased on the left tail, indicating that this model seems to

overestimate the number of individuals who have very small intake values in the long term.
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Figure 46: Comparing the true density curve (solid) to the estimated density of T (dashed) for
the case where Y has a Gamma distribution. This figure also shows the 5th to 95th percentile
of the estimated density (light blue). All density curves are calculated through using the
“bkde” function in “KernSmooth” package specifying that the bandwidth is calculated using
the “phik” function.
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Figure 47 now shows the average true density of T (solid) and the average estimated

densities of T (dashed) where the blue line is estimated with a fixed λ term and the red

curve requires an estimation on λ for each simulation. For both types of estimation, the

90% range is plotted by shading each dashed curve with the same color but of a lighter

shade. We see that for both types of estimations, we seem to have difficulties obtaining an

unbiased density estimation on the left tail. Also by looking at the red shade, we see that

since the λ values are being underestimated, this seems to contribute greatly to the skewness

of the density curve. But in general, the average estimated densities have similar shape and

variation as the true density.
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Figure 47: Comparing the true density curve (solid) to the estimated density of T (dashed)
where Y has a Gamma distribution. Here the light pink shade is the 5th to 95th percentile
of the estimated density with estimated λ values and the light blue shade is the 5th to
95th percentile of the estimated density with λ = 0.4. All density curves are calculated
through using the “bkde” function in “KernSmooth” package specifying that the bandwidth
is calculated using the “phik” function.
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Part VII

Chapter 6: EATS Data application

1 Introduction

One data that contains zero-inflated data is the Eating at Americans Table Study (EATS),

Subar et al. (2001). One of the method which EATS collects data is called 24HR recall,

where during the course of a year, each subject was asked to recall their past 24 hour food

intake on four different days, each day three months apart. Each food group was recorded

using grams, cups or ounces depending on the food that is recorded. If a food group was not

consumed in that particular 24 hours, the value for that food group is zero.

Such a data collection method has it’s pros and cons. One of the most obvious con is

that since it only takes input from such a small time frame, many of the data will contain

zero inputs. For example, a subject may have had some beef steak for dinner, then their

seafood, pork and lamb input will most likely be zero for that particular recall. With only

four recalls per subject, and with a good portion of the input being zeros, the 24HR recall

in EATS is not a good representation of each subjects long term consumption pattern. But

24HR recall also have a obvious pro, which is recalling memory from such a small time frame

allows us to obtain much more accurate data. Ofter all, when asked to recall precisely how

many cups of water you ingested or what exactly is in the salad you just ate, it is much

easier to get an accurate response if the recall time frame is only 24 hours. Using the density

estimation method from the previous chapter, we wish to reduce the cons that occurs from

the 24HR recalls, and make use of the accuracy in EATS data to obtain an accurate estimate

of the populations long-term average daily usual intake pattern. In the EATS data that is

available to me, 965 subjects participated in this questionnaire, and all subjects were able

to complete all four recalls. It should also be mentioned that all subjects are between the

age of 20 and 70.

In this EATS data, the recalls are organised in categories, such as alcohol, dark green

vegetables, deep yellow vegetables, total vegetables, total grains, organs and so on. All
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categories will have a certain amount of zeros. Although most categories will have roughly

20% to 40% of zero inputs, some categories will have very small or extremely large amounts of

zeros. For example, almost all subjects will consume some sort of grains daily, which means

that the total grains category will have a very small percentage of zero inputs (0.67%), and

most participants will not choose to have organs as part of their everyday meal, therefore in

the organ category, nearly all input are zeros (99.1%). This density estimation method for

excess zeros performs with the understanding that: a) this is a zero-inflated data, and b) that

all participants are consuming the food of interest regularly in the long run. Therefore data

such as total grains will not be ideal for using this estimation method, since although a small

amount of inputs are zero, total grains can be considered more as a continuous data than

a zero-inflated data. Also we will not use this density estimation method on data for food

groups such as organs, with the large percentage of zeros, we can assume that a significant

proportion of the subjects are non-consumers on that particular food. For this chapter, we

will be choosing to analyse food groups which are consumed regularly but not necessarily

consumed daily.

For this data analysis, we looked at three food groups with three drastic different per-

centage of zero inputs: alcohol, total fruits, and total vegetables. In order to get more

stable results, we standardized the data from all three food groups before doing any analy-

sis. EATS not only records short term food intakes, but also records other relevant variables

such as each subject’s energy expense for each recall (in the units kilocalories). Therefore

we standardized the data by dividing each subject’s food intake by their energy expense per

thousand kilocalories. For each food group, we will be looking at the density curve of the

populations long term average daily usual intake per thousand kilocalories spent.

Since all of these food groups have a number of zero inputs, we will be using the modified

NCI method (equation 21 and 22) in hopes that we can obtain an accurate pattern of how

much or how little the population consumes the food of interest on average each day.
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number of replicates with zero inputs

0 rep 1 rep 2 reps 3 reps 4 reps

Alcohol 80 (8.29%) 69 (7.15%) 100 (10.36%) 153 (15.85%) 563 (58.34%)

Total Fruit 519 (53.78%) 228 (23.63%) 144 (14.92%) 56 (5.80%) 18 (1.87%)

Total Vegetable 834 (86.42%) 119 (12.33%) 11 (1.14%) 1 (0.10%) 0 (0.00%)

Table 4: Separating the subject into how many recalls containing zeros, where the percentage

is presented in brackets. This is done for all data which we will be using for analysis.

1.1 Energy

We first start with a rough summary on the energy recorded in EATS. For each participant,

their energy spent daily is recorded along with their detailed food intake for each recall.

Figure 48 shows the histograms of each subjects energy spent, the unit is in 1000 kilocalo-

ries. Figure a) is a histogram of all the energy recorded from all recalls and all subjects. We

see that the majority of energy spent is under 5000 kilocalories per day with a mean around

2100 kilocalories. The least energy spent within all replicates is only around 10 kilocalories

and the most energy spent is around 15400 kilocalories per day. As we can see that the

energy spent per day varies quite a bit, so we might get a better understanding towards

how active the participants are by looking at the average energy spent between the recalls

for each subject. Figure b) shows the histogram of the average energy spent per day for

all subjects. We can see that this figure has less variation with no extremely large or small

values. On average, the mean energy spent between subjects is still around 2100 kilocalories.

Now the subject with the least active life style spends on average 310 kilocalories per day,

and the most active subject spends on average 8700 kilocalories per day.

1.2 Alcohol

For alcohol intake, the unit used to measure alcohol is in grams, this data records the amount

of pure alcohol each subject has ingested for the past 24 hours from only alcoholic beverages.

For alcohol, the initial thought is that most people will under estimate how much they drink,
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Figure 48: a) a histogram on all the energy expense recorded with in unit of 1000 kilocalories,

b) a histogram on the mean energy expense for each participant.
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especially when they binge drink, and this will create a “human” error problem.

For this data, we made modifications before standardising the data. The modification

is to let any input that is less than 1.42 become 0. We do this step because 1.42 grams of

pure alcohol is a very small amount, it is equivalent to one eighth of a standard beer in the

US. Therefore for any recall that reports a consumption of pure alcohol less than 1.42, we

believe that those recalls are not recalls on how much the participants drank for the past 24

hours, but may be consumed in some other form such as a trifle or a liqueur filled chocolate,

and that results from these recalls will not be beneficial in obtaining an unbiased estimate

of the populations long-term alcoholic drinking pattern.

After converting all the alcohol recall values that are less than 1.42 grams into zeros,

around 77% of the data entries are zeros. From table 4 we see that although there is over

half of subjects have stated they did not consume any alcoholic beverage for the past 24

hours in all of their recalls, we will still assume that they are alcoholic drinkers in the long

run.

Looking at only the non-zero inputs from the standardised data, we are able to obtain

some basic statistics. Where the average alcohol consumption is 15 grams per thousand

kilocalories spent with the smallest recall as 0.5 grams per thousand kilocalories and the

largest recall as 80 grams per thousand kilocalories.

Figure 49 shows the density curve of the populations long term average daily usual

average daily intake per thousand kilocalories spent of pure alcohol from alcoholic beverages

without converting any overly small values to zero. We see that the density curve is unimodal

where the mode of the density is around 5 grams of pure alcohol per thousand kilocalories

spent. From the previous subsection, we see that a very rough average of the daily energy

spend is around 2000 kilocalories. Assuming that the average person will be spending 2000

kilocalories per day, this means that the mode of the general populations long term usual

daily average intake of pure alcoholic from alcoholic beverages is around 10 grams, this

indicates that most of the population between age 20 - 70 tend to have a moderate amount

of alcoholic beverages and only a small number of people drink to excess. But we can also

see that the curve can go all the way up to more than 25 grams per thousand kilocalories,

indicating that there is a small proportion of the population that has a habit of drinking to

cxii



excess.

Figure 50 shows the long term usual daily average intake of pure alcohol after converting

any amount less than 1.42 grams into 0. We see that there is now a large peak around the

0 value. Indicating that although the measurement error model used does not account for

non-drinkers, there is still a large proportion of the population that does not regularly drink

alcohol. Compared to figure 49, it is less skewed. And also now the curve only extends

to around 12 grams of alcohol per thousand kilocalories, showing favorable results that the

population doesn’t actually have subjects that regularly drink so much.

Alcohol has a larger percentage of zero inputs in comparison to other foods, therefore we

expect the mode to be close to 0, but we can also see that using the modified NCI method

for excess zeros, it has shrunk the max alcohol consumption down quite a bit, giving us a

better understanding of how much our society drinks on average.

1.3 Total Fruits

For total fruits, the data records the total amount of daily consumption from every type of

fruit, the results is in the unit cups. This data contains 20% zero inputs. The initial thought

is that fruits are often considered as nutritious and is recommended to be consumed daily,

but not everyone reaches for fruit on a daily basis. But as many people like to show that

they are more healthy than they really are, we believe that they may over estimate their

consumption of fruits.

According to the Healthy Eating Index (HEI) (Britten et al., 2006), for every thousand

kilocalories spent each day the recommended amount of fruits consumed is 0.8 cups. So for

total fruits, 0.8 will be our cut-off point in determining the proportion of population who do

not consume enough fruits daily. This value will also assist us in standardising the data. To

standardise the data, we divide the results from each recall by 0.8 times the corresponding

energy expense. From all the non-zero inputs of the standardised data, the average daily

consumption is around 1.3 cups of fruit per thousand kilocalories with 1.8 cups per thousand

kilocalories as the most consumption and 4.7 × 10−6 cups per thousand kilocalories as the

least non-zero consumption. As the least non-zero consumption is so close to zero, we can

cxiii



0 5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Figure 49: The estimated density curve of a populations long term usual average intake of

pure alcohol from alcoholic beverages (in grams) with only energy adjustment.
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Figure 50: The estimated density curve of a populations long term usual average intake of

pure alcohol from alcoholic beverages (in grams), where all amount less than 1.42 grams in

converted to zero.
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speculate that this may have been obtained though other foods such as blueberries from a

blueberry muffin or dehydrated berries from a granola bar.

Figure 51 shows the density curve of the populations long term average daily usual intake

of total fruits. Similar to the alcohol density plots, the estimated density curve for total fruits

is also a unimodal curve. This curve indicates that the mode of the population has about

half a cup of fruit per thousand kilocalories spent, and nearly no one consumes on average

more than 1.5 cups per thousand kilocalories spent per day. Using the Healthy Eating Index

(HEI) which suggested that for every thousand calories spent each day the recommended

fruit consumption is 0.8 cups. We can see that around 74% of the population do not consume

the recommended amount fruit each day. As we suspected, many people over estimated how

much fruit they consumed.

1.4 Total Vegetables

Total vegetables records the daily consumption amount of all types of vegetables, this should

include leaf vegetables, root vegetables and legume. Similar to the fruits, total vegetables are

measured in cups. For this data, there is only 3.7% zeros. The initial thoughts on vegetables

is that most people would have some variety of vegetable as part of their meals, therefore

the percentage of zero inputs for total vegetables should be low, but similar to fruits, many

people may over estimate how much they consume daily due to vegetables being full of

essential nutrition.

Once again we chose the cut-off point using HEI. According to HEI the recommended

consumption amount for vegetables is 1.1 cups daily per thousand kilocalories. Following the

example of the fruits, we standardise total vegetables by dividing each recall by 1.1 times

the corresponding energy expense. For the non-zero values of the standardised data, the

mean is 1.8 cups per thousand kilocalories with the largest value as 12.5 cups per thousand

kilocalories and the smallest non-zero value as 5.5×10−4 cups per thousand kilocalories. Once

again since the smallest non-zero value is so small, we believe that this particular recall is

recording the consumption of another food which contains a small amount of vegetables.

Figure 52 shows the density curve of a populations long term usual daily average intake
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Figure 51: The density curve of the populations long term usual average intake of total

fruits. Where the light blue shaded area indicates the percentage of population that does

not reach the daily recommended amount.

cxvii



of total vegetables. The estimated density curve for the total vegetables indicates that the

mode of the population has about 1 cup of vegetable per thousand kilocalories spent, most

people consume at least half a cup per thousand kilocalories and the population consumes

on average no more than 1.5 cups per day per thousand kilocalories. Using 1.1 cups of

vegetable for every thousand kilocalories spent as the cut-off point, this suggests that 65%

of the population do not consume up to the recommended amount of vegetables each day.

Once again our initial thought has been confirmed. This food is a very good example on the

impact of ignoring the excess zero problem, as we only have around 4 percent of zero inputs,

if we ignore the excess zero problem, the mean would be closer to 1.8 than 1, indicating that

we will be still be over estimating the problem.

2 Bootstrapping

To understand how well the density estimation has worked, we created a series of blocked

bootstrap for each food variable. We choose to perform a block bootstrap since each partici-

pant has 4 replicates and these replicates should not be separated in a bootstrap simulation.

If we simulate without binding the 4 replicates together, we may create participants that

have very different consumption patterns, and that would not be an accurate representation

of the current data. To perform this block bootstrap, we sampled with replacement within

the subjects in the data keeping each subjects 4 recalls together as a block. We do this to

each standardised data. Then for each newly sampled bootstrap data, we perform the whole

density estimation, by first estimating the parameters α, με, σε, θkX and θkU . Using these

parameters, we obtain fX and fU for each bootstrapped data and ultimately we estimate fT

for each bootstrap. We perform this bootstrap 100 times and we present the values for the

cumulative grid value at three percentage points (10%, 50% and 90%), also the 90% con-

fidence interval range are calculated using the mean and standard deviation of these three

percentages.

We can see in table 5 that there is much more fluctuation at the two ends of the curve,

than the middle for all three datasets. This corresponds to the simulations, indicating that

it is a lot harder to obtain a good estimate of the two extremes.
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Figure 52: The density curve of the populations long term usual average intake of total

vegetables, where the shaded area indicates the percentage of population that does not meet

the daily recommended amount.
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10% 50% 90%

Alcohol Estimated density 2.13 5.43 11.900

(grams) 95% C.I (1.73, 2.54) (5.00, 5.86) (10.489, 13.31)

Total Estimated density 0.20 0.56 1.048

Fruits 95% C.I (0.03,0.36) (0.45,0.67) (0.573,1.523)

Total Estimated density 0.840 1.04 1.249

Vegetables 95% C.I (0.70,0.98) (0.70, 1.39) (0.78, 1.71)

Table 5: The 10%, median and 90% values for each food density and the 90% confidence

interval for these three percentage points.
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Part VIII

Future plans

For our thesis we have managed to develop a method which can obtain a distribution of a

populations nutritional consumption pattern. This method utilised existing measurement

error models and existing techniques such as log likelihood, Chebyshev quadrature, Hermite

polynomials and so on.

We started with a simple classical error model which works on continuous data. This

model would be a good candidate for nutritional data such as protein intake, fibre intake and

iron intake. These are nutrition that we are sure to consume everyday and therefore will work

well with a classical error model. We compared our method with an existing method (KDD)

and concluded that depending on the type of data, one may work better than the other, we

have also pointed out the flexibility of our method and we can customise it to our liking such

as allowing this method to be non-parametric or to use different measurement error models.

Although it is not demonstrated in our thesis, we believe that we can easily convert a simple

classical error model into a Berkson error model in our methodology depending on which

model is needed to analyse the data. Though we did increase the complexity of the classical

error model into a two part error model for excess zero data.

Although in our introduction, we mentioned two types of collection method for nutritional

data, we worked only with 24 hour recall for our thesis, this is because we were interested in

how we well we can analyse zero inflated data, and see how we can get around so many zero

input and still produce an unbiased estimate of the distribution of a populations nutritional

intake pattern. For our method using a two part measurement error model, we can use it to

analyse 24 hour food intake data such as alcohol intake, meat intake and dairy intake, since

although we regularly consume such food, they may not be consumed daily. Through our

simulation works, we saw that in general the estimation for the distribution of a populations

daily average food intake is under estimated. This is largely due to the fact that the two

part model contains a BoxCox transformation, and given the large amount of zero inputs,

the transformation parameter is often under estimated.
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For future extensions, we would like to develop a method to solve this under estimation

problem. Another problem we would like to solve in the future is the stability of the opti-

misation process, as we have seen in the classical error model case, a few simulations have

unstable results, and the amount of unstable simulations have increased as the measurement

error model becomes more complicated.

As we have mentioned through out the thesis, we are working with data with equal repli-

cates, that is all the subjects have the same amount of replicates, but as data collection goes,

this is an unrealistic expectation, since a lot of the times a subject will stop communicating

and therefore will have less replicates that the rest of the subjects, the information that this

subject provides will still be useful and will help increase the accuracy of the estimations,

therefore as another future extension, we wish to develop our method more to allow unequal

number of replicates for each subject.

When working with zero inflated data, one assumption we had was that all subject are

consumers of the food of interest, that is if we analyse alcohol intake, we are assuming all

subject at some point drinks alcohol periodically, and if we analyse meat intake, we are

assuming none of the subjects are vegetarian or vegan. With no direct information of each

subjects dietary choices, we can not differentiate the non-consumers from the “small amount”

consumers. Therefore as a future extension, we wish to work with an even more complicated

measurement error model that will be able to differentiate the non-consumers and obtain a

more accurate distribution for the population.

For future extensions, we would like to develop a method to solve this under estimation

problem. Another problem we would like to solve in the future is the stability of the opti-

misation process, as we have seen in the classical error model case, a few simulations have

unstable results, and the amount of unstable simulations have increased as the measurement

error model becomes more complicated.

As we have mentioned through out the thesis, we are working with data with equal repli-

cates, that is all the subjects have the same amount of replicates, but as data collection goes,

this is an unrealistic expectation, since a lot of the times a subject will stop communicating

and therefore will have less replicates that the rest of the subjects, the information that this

subject provides will still be useful and will help increase the accuracy of the estimations,
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therefore as another future extension, we wish to develop our method more to allow unequal

number of replicates for each subject.

When working with zero inflated data, one assumption we had was that all subject are

consumers of the food of interest, that is if we analyse alcohol intake, we are assuming all

subject at some point drinks alcohol periodically, and if we analyse meat intake, we are

assuming none of the subjects are vegetarian or vegan. With no direct information of each

subjects dietary choices, we can not differentiate the non-consumers from the “small amount”

consumers. Therefore as a future extension, we wish to work with an even more complicated

measurement error model that will be able to differentiate the non-consumers and obtain a

more accurate distribution for the population.
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