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Abstract 
This paper reports an analytical method to obtain approximate solution for optimal design of tuned inerter 
damper (TID) in MDOF damped civil structures. The method is based on the equivalent linearization 
method which converts the mass-stiffness-damping system into a mass-equivalent stiffness system and 
a technique which converts a modal subsystem of MDOF structure-TID system into a equivalent SDOF 
system. The solution and procedures for optimal design of SDOF and MDOF systems are introduced. 
Following this, the proposed method is verified through comparison with the numerical search methods 
for SDOF system. A case study of optimal TID design for a MDOF system is given and the results show 
that the proposed method is able to find the optimal damping ratio and tuning ratio of the TID to minimize 
the structural response. 
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1 Introduction 
Unwanted structural vibrations induced by natural hazard such as the earthquake and wind loads are 
recognized as serious safety concern. The passive vibration control technique is widely used to suppress 
the undesirable structural responses due to the low maintenance cost and high reliability. Recently, a new 
form of passive vibration control device, i.e., inertance device, has drawn attention in civil engineering 
community to enhance the structural performance under external dynamic events. Inerter, invented by 
Smith [1], is a two-terminal device in which the force produced on the terminal is proportional to the 
acceleration difference between the two ends, and the proportional constant is called inertance. The main 
advantage of inerter is its ability in offering mass amplification effect as it can generate an apparent mass 
hundreds of times higher than the actual mass. Ever since inerter was invented, it has been proposed to 
employ in many engineering applications for effective vibration control and mitigation, e.g., formula one 
car [2], vehicle suspension systems [3], the train suspension systems [4], the semisubmersible platform 
[5] and many others [6-7].  

For civil engineering applications, various inerter based devices have been proposed due to its great 
potentials [8]. In [9-10] an inerter-based vibration mitigation device called tuned viscous mass dampers 
(TVMD) is proposed for seismic control of building and a shake table test with earthquake excitation 
verified the effectiveness of the TVMD. Tuned-mass-damper-inerter (TMDI) is another promising 
passive structural control device, in which an inerter is connected to the mass element of the traditional 
tuned-mass-damper (TMD) in series. It was presented by Marian and Giaralis in [11] as a generalization 
of the traditional TMD and the numerical application indicates that the use of inerter element can 
effectively enhance the performance of TMD due to the mass amplification effect. Several studies [12- 
13] have investigated the optimization and application of TMDI in many cases and also confirmed that 
the inerter can provide considerable additional mass to increase the original mass of TMD. 

In this context, Lazar et al. [14] proposed a novel inerter-based passive control system to suppress 
vibration in civil structures, namely the tuned-inerter-damper (TID). It is a system including inerter 
connected in-series to a parallel assembled spring and dashpot, similar to the TMD structurally with the 
mass element replaced by the inerter. The TID should be located between adjacent storeys because inerter 
is a two-terminal device. Through modal analysis, Lazar found that for best performance the TID should 
be located at bottom storey where the primary structure is subjected to base excitation. Due to the small 
size of inerter, the novel TID system takes advantage of compact configuration and being convenient and 
economical to implement compared to TMD.  

There are a large number of existing studies [15][16] that examined the optimal design and control 
performance of TID. In vehicle suspension, Shen et al. [17] used the TID to reduce the acceleration of 
car body and improve the vehicle driving comfort. In cable vibration control, several studies [18-19] 
investigated the optimal installation site of TID in cable, the performances of inerter-based and non-
inerter-based devices were compared. Nevertheless, majority of the ongoing research on the TID is in 
the seismic control of civil structures. In [20] the closed-form solution for TID in building isolation under 
𝐻𝐻2 optimization criterion was derived. Domenicao et al. recently reported a study of TID in combination 



with base isolated structures[21], the results indicate that the TID can reduce the response of base isolated 
structures thus protect the structure from harmful base motion. Krenk and Høgsberg [22] have designed 
the TID focusing on the attenuation of non-resonant modes to improve the structural performance. 

For most passive control devices, the key point of system design is to collectively choose the appropriate 
parameters to achieve optimal performance. There are three design parameters in TID system, i.e., the 
inertance-mass ratio (ratio of the TID inertance to the primary structural mass), the tuning ratio (ratio of 
the TID natural frequency to the natural frequency of the primary structure) and the TID damping ratio. 
Because the inertance-mass ratio is often fixed and limited, thus the main design parameters of TID are 
its tuning ratio and damping ratio. Up to now, there exists several approaches in the literature regarding 
the optimal design of TID. In [14], Lazar proposed a straightforward numerical approach to obtain the 
optimal tuning ratio and damping ratio of TID considering an undamped structure subjected to base 
excitation. The optimization rules are based on fixed-point theory established by Den Hartog for an 
undamped single-degree-of-freedom (SDOF) main structure. Hu et al. [23] derived the analytical solution 
of TID in both 𝐻𝐻∞ and 𝐻𝐻2 criterion considering an undamped SDOF primary structure. In [24], Shen 
et al. derived two sets of analytical formula for optimal deign of TID based on the fixed-point theory for 
undamped SDOF structure. For general case, i.e., the primary is damped, Wen et al. [25] have use 
multiple TIDs to control the seismic response of damped multi-DOF structure. The location and mode 
for tuning of the multi-TIDs were determined by numerical procedure. In [26], Pan and Zhang designed 
the TID with the response mitigation ratio approach considering a damped SDOF structure. The optimal 
parameters were determined numerically and then the results were fitted into a set of empirical formula. 
In summary, for simple undamped SDOF structure, there are a number of approaches available for 
optimal design of TID and even the closed-form design formula had been derived. However for damped 
structures, it is still a challenge to obtain such closed-form solution of design parameters while only a 
numerical approach [25] or empirical fitting formula [26] have been provided until now. This may be 
due to the fact that the system equations are too complex to calculate analytically when there is damping 
in the primary structure. For instance, there is no longer any fixed point when carrying out the 
optimization procedure if the primary structure is damped. Although these numerical procedures can 
obtain the design parameters with satisfactory performance, the procedures maybe computationally 
inefficient or not convenient to be applied practically. 

However, all real engineering systems have inherent damping. To address this issue, a simplified 
engineering design approach should be developed. In this paper, the optimal design of TID system in 𝐻𝐻2 
criterion for both damped SDOF and MDOF structures is achieved via a simple and convenient analytical 
formula. Design approach is proposed for optimal performance of damped structure as well. The 
analytical approach is based on the equivalent linearization method [27-28] considering the response of 
nonlinear system to random excitation. This method has been used extensively as an approximate 
analytical method [29-30] in optimal design of structures with TMDs. The principle of equivalent 
linearization method is to construct a linear oscillator to replace the original nonlinear one subjected to 
same excitation. In [31-32], Anh and Nguyen first extended the principle of equivalent linearization 
method to design TMD for SDOF damped structure. They replaced the original damped structure by an 
equivalent undamped structure and used the classical Den Hartog tuning formula to obtain the optimal 
tuning ratio of TMD. The final expression is simple and accurate but the formula of optimal damping 
ratio of TMD cannot be obtained. Here we improve the equivalent linearization method so that it can 
analytically obtain both optimal tuning ratio and damping ratio of TID for damped structure. The 
accuracy of analytical solutions is validated by comparing with proven numerical optimization 
approaches. 

In a word, the original contribution of this paper is that: (i) For damped SDOF structures, it improves the 
equivalent linearization method such that it can obtained the analytical solutions of optimal damping 
ratio of TID except for the optimal tuning ratio; (ii) For MDOF structures, first the relation between 
modal response and installation location of TID is investigated. Then the optimal installation location 
and additional modal damping ratio provided by TID can be determined accurately. Based on these above, 
a simple analytical design approach of TID for MDOF damped structure is proposed. This paper has been 
divided into four parts and begins with the principle of improved equivalent linearization method and a 
practical design procedure in 𝐻𝐻2  criterion. It continues in modal analysis of MDOF structure-TID 
system and proposing the simple design procedure of TID for MDOF structure. Then the accuracy of 
analytical solutions by equivalent linearization method is verified by comparing with the numerical exact 
solutions in section 4. Finally, a case study with a MDOF structure-TID system subjected to both 
harmonic and seismic excitation is performed to demonstrate the efficiency of the proposed approach.  



2 The simplified design for damped SDOF structure 
2.1 The equivalent linearization method 
TID is a two-terminal device which consist of an inerter with inertance b, a stiffness element , and a 
damper element  as shown in Figure 1. In SDOF structures, TID is installed between the primary 
structure and the ground (just like the installation of stiffness or damper in Figure 2 (a)). The primary 
objective of optimal design of TID is to find appropriate stiffness and damping parameters of TID, that 
is the optimal tuning and damping ratio respectively, to maximize the vibration mitigation of a structure 
in a given inertance (or apparent mass). It can be seen in following section 2.2 that the explicit analytical 
solutions of the design problem are readily obtained in case that primary structure is undamped. However 
it is almost impossible to obtain the explicit analytical solution in the damped case due to the existence 
of inherent damping greatly increases the difficulty of solving. 

 
Figure 1 Schematic of the tuned inerter damper 

In order to obtain a closed-form expression for optimal tuning ratio and damping ratio in damped case, 
an improved equivalent linearization method is proposed in this paper. The principle of equivalent 
linearization method is using an equivalent undamped structure to substitute the damped structure as 
shown in Figure 2.  

 
Figure 2 The principle of the equivalent linearization method 

The original damped system is shown in Figure 2 (a) and the approximate undamped system is shown in 
Figure 2 (b). The original damped system consists of primary structure mass , stiffness , damping 

 (notice that the main structure is undamped when ) and here  denotes the displacement of 
main mass . In Figure 2 (b), the  is the equivalent stiffness of the equivalent undamped system and 
its property is discussed in following.  

First following dimensionless parameters are introduced 

 

where  and  are the natural frequencies of original structure (Figure 2 (a)) and TID, respectively. 
 is the nondimensional tuning ratio of TID for original damped system.  and  are the critical 

damping coefficients of structure and TID, respectively.   and   are the 
nondimensional damping ratios of original structure and TID, respectively. While in the approximate 
undamped system (Figure 2 (b)), the equivalent natural frequency  is introduced as well as the tuning 
ratio  . In order to represent   with respect to   under the criterion proposed in [31], a set of 
procedures are carried out as follows. 



Considering two systems in Figure 2, the equation of motion for damped primary structure can be written 
as  

  (1) 

while for approximate undamped primary structure, the equation of motion is 

  (2) 

To make the approximate system equivalent to the original system, we define the error between original 
system Eq. (1) and approximate undamped system Eq. (2) as . Here we use 
the mean square error criterion [34] which aims to find  to minimum the mean square error between 
the two systems as follows 

  (3) 

where  is a critical constant determining the accuracy of results and denotes the upper bounds of the 
integral. Then the values of  are determined by the conditions 

  (4) 

After a series of calculations and rearranging obtains 

  (5) 

Then the 𝜔𝜔e can be solved and the solution is 

  (6) 

Note that  is a converting coefficient from  to  (i.e. ) and it is a function of 
structural damping ratio . It means that the equivalent stiffness coefficient  is a combination of 
original structural stiffness  and damping .  

Consequently, we have the tuning ratio and the equivalent tuning ratio  

  (7) 

It is clear that the  in  can be represent by  in  as the form of Eq. (6). Then we can obtain the 
tuning ratio of TID for damped structure by substitute the Eq. (6) into Eq. (7) as follow 

  (8) 

The damping ratio of TID for damped case cannot be obtained by the same method in [31] and [32] 
because of mathematically there is no  in the expression of  (i.e. ) and thus we can 
not to utilize the converting coefficient  to transform , the damping ratio of TID. Hence here 
only the optimal tuning ratio is obtained. To this end, we use a newly defined damping ratio of TID, it is 

  (9) 

While for the approximate undamped structure, the damping ratio of TID is  

  (10) 

Whereupon the optimal damping ratio of TID for damped structure can be obtained as 



  (11) 

For convenience, we use  to represent  in following paragraph. 

Through the above analysis, the equivalent linearization method is based on a pure structure rather than 
a structure incorporating a specific controller. Thus, the most outstanding advantage of the method is that 
can be conveniently and succinctly used for any controller in theory. If the analytical solutions for 
undamped is known, then the explicit analytical solutions for damped case can be obtained by transfer 
factor   directly. However, when the method is applied to a new controller, the effect is not 
predictable and may need to be adjusted according to different controller. Herein, the effectiveness of the 
method for TID was examine and an optimization design of TID for damped structure was taken as an 
example in following. 

2.2 Optimization of TID for SDOF structure 

 
Figure 3 TID-structure system subjected to ground excitation 

Firstly, we consider a system with a TID mounted on the damped SDOF structure subjected to ground 
excitations. Figure 3 shows the system model in which the structural parameters are same as those in 
Figure 2 (a). The system is subjected to ground displacement  with the frequency , then the main 
mass and TID displacements in absolute coordinates are represented as  and , respectively. 

Now the equations of motion can be written as 

  (12) 

Meanwhile introduce the dimensionless parameters as follows: 

  (13) 

By combining the Eq. (12) and Eq. (13), the relation from ground acceleration to absolute acceleration 
response in Laplace domain can be written as a function with respect to complex variable s, that is 

 

 (14) 

In addition, the one of the original damped structure (i.e. The Figure 2 (a), no TID controlled) is 



  (15) 

It should be noted that here the definition of TID damping ratio is different from that of general case, i.e. 
. The reason for that is to associate  with  so that equivalent linearization method 

can be used to derive .  

For optimal design, we use the 𝐻𝐻2 optimization since it is more suitable for random excitation such as 
the earthquake and wind load. The performance index of 𝐻𝐻2  optimization is the area of frequency 
response curve over all frequency ranges namely the total vibration energy of the system subjected to 
stationary random excitation with a uniform power spectrum density , and is defined as follows: 

  (16) 

where  is the mean square value of the acceleration response  and has the form 

  (17) 

where   is the transfer function   whose   is replaced by   and   is the 
imaginary unit. After substituting Eq. (17) into (16), the index I can be rewritten as 

  (18) 

In practice, it denotes the dimensionless mean-square response of the system under white-noise excitation. 
Take the transfer function Eq. (15) as an example, the performance index for an original damped SDOF 
structure without a TID is given by definite integral 

  (19) 

This equation indicates that the performance index  is only relate to structural inherent damping ratio 
. The relation is scrutinized in a Figure 4 with  on the y-axial,  on the x-axial. It indicates that 

the damping is not the larger the better as the excess damping will restrict its relative motion. For a 
uncontrolled damped structure, the optimal damping ratio is   which corresponding to the 
minimum value 1 of .  

 
Figure 4 The performance index  of original damped structure without a TID against the damping 

ratio . 

For TID-structure system shown in Figure 3, the optimal parameters of  and , according to [33], 
can be found when the first-order partial derivative of performance index I in Eq. (18) with respect to 
 and  both equal to zero, that is 



  (20) 

Combining the Eq.(14), and (18), one can obtains the closed-form index I as 

 (21) 

It emerges that  is a function with , but is independent of the excitation frequency  and 
the primary structural natural frequency . After substituting Eq. (21) into (20), one obtains a quite 
complicated equation set in respect of  and  (In fact, the maximum order of  and  is ten and 
six). Thus the analytical solutions of Eq. (20) cannot be solved explicitly and we have to find the optimal 
design parameters by numerical search technique or approximate analytical method as in [33][34]. In 
this regard, it is of significance to use equivalent linearization method to obtain the explicit closed-form 
solutions.  

It is also need to obtain exact solutions for the purpose of verification of the equivalent linearization. To 
obtain the exact solutions, Eq. (21) will be used to derive the numerical search procedure as shown in 
Appendix A in a later section 4. While for the approximate analytical solutions, according to the process 
at section 2.1, the optimal design parameters of equivalent undamped system are need to derived first. 
Substituting the  into Eq. (21), then the  reduces to 

  (22) 

While the Eq. (20) can be given analytical by 

  (23) 

First we consider the Eq. (23) as equations with respect to  and , then they can be solved readily 
as follows. 

  (24) 

The optimal  and  can be derived from the above equation, it follows that. 

  (25) 

Final the optimal performance index   can be derived by substituting Eq. (25) into Eq. (22) as 
following 



  (26) 

Expressing the optimal performance index  in a similar form of Eq. (19), one obtains the equivalent 
damping ratio  which offered by TID for the undamped primary structure. that is 

  (27) 

Please note that this is only true when   because the performance index of original damped 
structure cannot less than 1 as shown in Figure 4. 

The relation between optimal tuning ratio and damping ratio of TID against interance-mass ratio is 
plotted in Figure 5 (a). For a larger range of  , the optimal tuning ratio   is inversely 
proportional to 𝜇𝜇 and declines from 1 as 𝜇𝜇 increases from 0 to 2. While when , the  cannot 
be obtained in terms of positive number so it stays at 0. On the contrary, the optimal damping ratio  
is in direct proportional to 𝜇𝜇 and increases from 0. When , it goes down slightly. Figure 5 (b) 
depicts the variation of optimal performance index against inertance-mass ratio, an important point is 
that the contribution of TID is equivalent to  when  equal 0.65 because the . The 
index 𝐼𝐼 declines rapidly as the 𝜇𝜇 increases from 0 to 0.65 and tends to flatten and stabilizing when 𝜇𝜇 
continues to increase. Overall, the minimum performance index  is about 0.85 when  and 
the  equal 0.51. This indicate the 0.5 also the optimal damping ratio of TID-structure and the optimal 
performance index is enhanced from 1 to 0.85. 

 
Figure 5 Graphical representation of the optimal design parameters of the TID: (a) left y-axis shows the 

optimal tuning ratio and right y-axis shows the optimal damping ratio; (b) the optimal performance 
index. 

It is evident that TID will enhance the effort of damper   in vibration mitigation. The equivalent 
damping ratio  and the actual damper ratio  versus the same  is plotted in left y-axis of Figure 
6 for comparison. The enhancement effect of damper  is quantified in terms of magnification times 

 and is plotted in right y-axis of the figure. From that it can be seen the enhancement of  
is considerable when  or  with a smaller value. While when  or , the  will 
fall below 2 and remain around 1.5. In a word, the TID can enhance the beneficial effect of damper and 
suppress performance degradation due to excessive damping (i.e. ). 

inertance-mass-ratio 
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Figure 6 The damping enhance ability of TID; left y-axis shows the equivalent and actual damping 

ratio and right y-axis shows the magnification time . 

After obtaining the optimal analytical solutions for undamped structure, the one for damped structure 
can be directly obtained through Eq. (8) and (11). To minimize the error between the results of analysis 
formula and the exact values acquired by numerical method, the constant should be chosen as 

. Here the  in  is adjusted as  for a better accuracy and the factor n are 1 and 
4 for  and , respectively, by try and error method. Then the solutions for damped structure are 
given by 

  (28) 

If , Eq. (28) will be reduced into Eq. (24) which for undamped case, therefore it is a general 
expression and works in both damped and undamped cases. In addition, the optimal performance index 

 and equivalent damping ratio  for damped case can also be obtained by substituting Eq. (28) 
into (22) and (27), respectively. 

Using numerical search method shown in Appendix A, we found that the influence of the damping ratio 
to TID performance is much less than that of the tuning ratio. Thus, a carefully tailed tuning ratio is of 
great importance.  

3 The simplified design for the MDOF structure 
To suppress the dynamic response of a complex MDOF structure, here an optimal design of TID targeting 
one modal of MDOF structure is considered. In MDOF structure, a TID can be installed between adjacent 
floors or between ground and  storey to suppress vibration of primary structure. Thus compared to 
SDOF case, there is another design parameter, the installation location of TID, to be determined. The 
design is based on the concept that a specific vibration mode of a TID controlled MDOF structure can 
be replaced by an equivalent SDOF structure-TID system possessing the equivalent modal mass, stiffness 
and modal damping ratio. Consequently, the Eq. (28) which obtained by equivalent linearization method 
for SDOF structure-TID damped system can be used to calculate tuning ratio and damping ratio of the 
equivalent damped SDOF structure-TID system. 

Firstly an n-storey building model subjected to ground motion excitation (in fact, it is readily to prove 
that the conclusion is same when the excitation is other form) and a TID system is mounted between 
storeys  is established as shown in Figure 7.   

inertance-mass-ratio 



 
Figure 7  n-storey ground excited structure attached with a TID between storey  and . 

The equation of motion of the combined system in Laplace domain is 

  (29) 

where  denote the mass, damping, and stiffness matrices of the primary structure, 
respectively;   is the Laplace transform of the relative displacement 
vector, where   is the displacement vector of primary structure relative to the 
ground;   is the unit vector;   is the ground acceleration;   is the 
vector of control force generated by the TID and equals to , where  is the 
ratio of the control force over the relative displacement  of the two ends of TID as following 

  (30) 

while  is the control force position vector which has the form 

  (31) 

where the  entry is -1 and the  entry is 1, meanwhile all the other entries are 0.  

Then the displacement response  can be denoted in terms of modal vectors and coordinates 

  (32) 

where  is the modal vector and  is the modal coordinate 
vector. Substituting Eq. (32) into Eq. (29) and pre-multiplying both sides by , one obtains 

 
 (33) 

where  is the modal mass, damping, 
and stiffness matrix, respectively. Note that the matrix equation set Eq. (33) is coupled by the second 
term of the right side of equation. Yet when the excitation frequency   close to the   natural 
frequency  of the uncontrolled primary structure, the  modal response dominate. Based on this, 
it is reasonable to assume . Then a set of uncoupled equations are obtained. The general 
form is as follow: 

  (34) 



where   is the modal mass, damping, and stiffness, respectively. Note  . Both 
displacements of two storeys where TID is mounted can also be approximate as  

  (35) 

Solving for  

  (36) 

Substituting Eq. (36) into Eq. (34) and rearranging the result, one obtains 

  (37) 

This equation of motion is equivalent to that of a SDOF structure-TID system whose equivalent  
displacement of primary structure relative to ground is ; equivalent ground acceleration is 
; and equivalent mass, damping, and stiffness etc. are  

 

 (38) 

Therefore the  are also called equivalent modal mass, damping, and stiffness, respectively, 
for original MDOF structure. Note the modal damping ratio  is not changes. Denoting 
the inertance to modal mass ratio as , then the equivalent inertance to modal mass ratio is 
defined as 

  (39) 

This equation indicates that the inertance to modal mass ratio  will be amplified when the MDOF 
structure-TID system is reduced to an equivalent SDOF one. The magnitude of the amplification factor , 
i.e. , is depending on the difference between two entries corresponding to the installation 
placement of TID in modal shape vector.  

It have to note that the equation of motion Eq. (37) of the equivalent SDOF structure-TID system is not 
completely same with the general SDOF equation due to the terms  is not 1. Now the influence of 

 is discussed as following. Rearrange the Eq. (37) then the transfer function from ground acceleration 
 to the equivalent displacement  is given by 

  (40) 

where the  is a constant when the installation location of TID is certain. The right side of Eq. (40) 
is same with the transfer function of the SDOF system in form. Thus, the conclusion of SDOF system 
based on transfer function not be affected by  and can work directly here. As a result, If the  and 

 is given, the optimal tuning ratio and damping ratio of TID for  modal can be directly found using 
Eq. (28), the same is true for the optimal performance index and equivalent damping ratio. In addition, 
from the left side of Eq. (40), it emerges that   has influence on magnitude of response. This 
influence can also be expressed by  and  as following. 

Combine Eq. (36), (38), (39), and (40) then the transform function form  to  can be obtained 

  (41) 

When excitation frequency   close to the natural frequency   and  , the resonant modal 
response is 



  (42) 

It shows that the larger   will reduce the resonant modal response, so the optimal installation 
placement of TID for  modal can be preliminarily determined as the storey whose drift is maximum 
in modal shape, in other words, the  storey which can maximize the  is the optimal 
location. 

Final, when a TID is installed in MDOF structure to suppress a specific vibration mode, the simplified 
design procedure can be summarized as follows: 

Step 1. For the   vibration modal, first find the   story which corresponding to maximum  
 as the objective TID installation location. 

Step 2. For a given inertance b, calculate the equivalent inertance to modal mass ratio  from Eq. (39) 
and then determine the modal damping ratio . Note if the , according to Figure 5 
(b), the performance of TID will reduce. Thus, decrease the value of b so that  is a 
good choice. 

Step 3. Obtain the optimal tuning ratio  and damping ratio  from Eq. (28) through substituting 
the  and  by the  and , respectively. 

Step 4. Final the optimal stiffness and damping parameters can be obtained by 

  (43) 

4 Comparison and validation of the proposed method 
4.1 Accuracy validation 
In previous section, a simplified design method is proposed for damped structures. Noting that the 
excitation is assumed as ideal white noise with uniform spectral density for all frequencies. Thus, the 
procedure is suitable for random excitation, that is, the excitation contains infinitely many frequencies. 
Whereas, if the excitation only contains few frequencies such as the harmonic, the proposed method is 
not suitable. To validate the closed-form formula proposed in section 2.2, a comparison between the 
proposed method and numerical search method is carried out. For numerical search method, the detailed 
procedure can be found at Appendix A. In addition, the values calculated by numerical method are 
identified as exact solution. All the solutions from two methods are listed in the Table 1. Please noting 
that these solutions  

Table 1: The comparison of optimal tuning and damping ratios obtained from numerical search method 
and the proposed analytical method 

  
Tuning ratio 

obtained  
numerically  

Tuning ratio 
obtained 

analytically  

Damping ratio 
obtained 

numerically 

Damping ratio 
obtained 

analytically 

0.1 0.02 0.98387 0.98717 0.01696 0.01722 
 0.04 0.99478 0.99982 0.01767 0.01812 
 0.06 1.00755 1.01262 0.01850 0.01907 
 0.08 1.02236 1.02558 0.01949 0.02006 
 0.10 1.03946 1.03870 0.02066 0.02111 
      
0.2 0.02 0.95981 0.96084 0.04981 0.05004 
 0.04 0.97255 0.97315 0.05242 0.05266 
 0.06 0.98705 0.98561 0.05545 0.05541 
 0.08 1.00346 0.99823 0.05897 0.05830 
 0.10 1.02196 1.01100 0.06304 0.06134 
      
0.3 0.02 0.93349 0.93377 0.09355 0.09355 
 0.04 0.94639 0.94573 0.09884 0.09843 
 0.06 0.96069 0.95784 0.10481 0.10357 



 0.08 0.97642 0.97010 0.11154 0.10898 
 0.10 0.99353 0.98251 0.11902 0.11466 
      
0.4 0.02 0.90537 0.90589 0.14490 0.14484 
 0.04 0.91723 0.91749 0.15289 0.15241 
 0.06 0.92992 0.92924 0.16159 0.16037 
 0.08 0.94325 0.94114 0.17091 0.16874 
 0.10 0.95692 0.95318 0.18069 0.17754 
      
0.5 0.02 0.87556 0.87712 0.20033 0.20092 
 0.04 0.88545 0.88836 0.21024 0.21141 
 0.06 0.89543 0.89974 0.22048 0.22245 
 0.08 0.90515 0.91125 0.23082 0.23406 
 0.10 0.91417 0.92291 0.24092 0.24627 

 

Table 1 shows the optimal tuning and damping ratios calculated by numerical and analytical , i.e. Eq. 
(28), methods in different particular pair of   and   parameters, where   and 

. It emerges that the analytical and numerical results are in good agreement even 
the  and  are larger. In addition, the relative errors between two results are plotted in following 
figure. 

 
Figure 8 The relative errors between two methods against the inherent damping ratio  and inertance 

to mass ratio ; (a) optimal tuning ratio, (b) optimal damping ratio. 

As shown in Figure 8, the relative errors of two optimal solutions between numerical method and 
analytical method is very small. For optimal tuning ratio, the relative errors exceed 1 % slightly only 
when the  . Although the maximum relative errors of damping ratio between numerical and 
analytical method is close to 4 %, the error is still acceptable because of the performance of optimization 
is insensitive to damping ratio .  

 
Figure 9 Comparison of the optimal performance index calculated by the analytical method (blue line) 
and numerical method (red points) for different inertance to mass ratio of TID and inherent damping 

ratio of the primary structure. 

To further verify the effectiveness of the analytical method, Figure 9 shows the performance index   



obtained from numerical and analytical method against the inherent damping ratio . It can be seen that 
the blue lines (denote the analytical method) almost coincide with the red points (denote the numerical 
method) over a large range of  and . In fact, the maximum relative errors of  between two 
methods is only 0.037 %. It indicates that the analytical method has the same good control performance 
as the numerical method. 

4.2 Method comparison when primary structure with uncertain parameters 
In previous sections the parameters of primary structure are assumed to be determined. However, in 
practice primary structures are subjected to parametric uncertainty due to the damage of structures or 
error in measurement, etc. This section presents an investigation and comparison of the effects of the 
uncertainties in the primary structure parameters on the performance of the two design methods 
mentioned in section 4.1. 

To investigate the parametric uncertainty, a Monte Carlo simulation for a structure with uncertain natural 
frequency and inherent damping ratio is carried out. In details,  and  defined earlier are assumed 
as random independent variables which confirm to a normal distribution with a mean of  or  and 
a coefficient of variation of . Then the Monte Carlo simulation is used to calculate the expected value 
of the performance index  defined in Eq. (21). A loss index is defined to denote the performance loss 
of TID due to the parametric uncertainty in primary structure and its form is 

  (44) 

where  is the performance index of system with certain parameters  and , and  is the 
expected value of the performance index of system with uncertain parameters  and . Theoretically, 
the R is less than one, i.e. , because the increase of response due to the performance loss. 

The TID-structure system in Figure 3 considering the parametric uncertainty is used as analysis model. 
For primary structure, 10000 random variables are generated for each parameter. The mean value of 
normal distribution are   and  . The coefficients of variation are 

 and all parameters have the same  at the same time. For TID, the inertance to 
mass ratio are  and the optimal parameters are obtained for mean value of primary 
structure by the proposed method and numerical search method as shown in Table 1. Based on this, the 
loss index is re-denoted as  and .  

 
Figure 10 Comparison of performance between different optimal method: (a) ; (b) 

 

Figure 10 shows the comparison of two loss indices against the  for different coefficients of variation. 
Two mean values of inherent damping ratio equal 0.02 and 0.05 are considered. The loss index  and 

  are the same over the entire range. This illustrates the proposed method has the same robust 
performance with the numerical search method. In addition, it can be seen from Figure 10 (a) and (b) 
that the increase of robust performance of TID occur as the inertance to mass ratio  increases, the 
coefficient of variation  decreases, and mean value of inherent damping ratio  increases. 



 
Figure 11 Comparison of relative effect of uncertainty in different parameters on TID performance, 

where , ; (a) , (b) . 

Previous analysis is only based on the case that the uncertainty exists in all parameters. Now two new 
uncertainty cases are considered: uncertainty only in the natural frequency  and uncertainty only in 
the inherent damping ratio . Then the analysis of relative important of various uncertainty cases on 
TID performance are showed in Figure 11. It shows that the uncertainty in inherent damping ratio has 
very little effect on the TID performance. On the contrary, the effect on TID performance due to 
uncertainty in natural frequency is almost equal that considering uncertainty in all parameters. Besides, 
for high level of uncertainties the effect due to uncertainty in inherent damping ratio has a slight increase. 

5 Case study 
5.1 Numerical application 
A 3-storey building model incorporating a TID system as shown in Figure 7 is used as example to 
investigate the feasibility of the simplified method proposed in this paper. Here   is considered as 

. The building parameters are  and . Then 
the modal shapes and natural frequencies are 

  (45) 

Consequently, the modal mass matrix is  and the inertance to modal 
mass ratio  for all three modal all equal to 0.5.  

Now consider the optimal design of the 3-storey building-TID system by the simplified method. 
According to section 3, first the equivalent inertance to modal mass ratio  can be calculated by Eq. 
(39). Then the equivalent damping ratio provided by TID for one modal can be calculated by Eq. (27). 
For purpose of comparison, here all nine schemes, i.e., three installation locations for all three modes, 
are considered. All nine  and corresponding  are plotted in following figure. 

 
Figure 12 The relative influence of three installation locations of TID system on three modes; (a) 

(a) (b)



equivalent inertance to modal mass ratio against nine schemes, (b) equivalent damping ratio against 
nine schemes. 

Figure 12 (a) shows all the nine , and they equivalent damping ratios  calculated by Eq. (27) are 
plotted in Figure 12 (b). Please note, according to Figure 5 (b), the equivalent damping ratio achieves its 
maximum value 0.5 at  and only exists when . Thus, here for the scheme which TID 
mount at storey 2 and target the mode 3, the  cannot be calculated because its . However, 
its equivalent damping ratio can be reasonably assumed as 0.5 in Figure 12 (b). Then from Figure 12 (b), 
the equivalent modal damping ratio provided by TID for each mode is different. The equivalent first 
modal damping ratio is always less than the second and third ones especially when TID is mounted at 
storey 2 and 3. This is because the shape of mode 2 and 3 are more curving than that of mode 1. Hence 
the amplification factor  of high-order modal is always larger than the low-order one (e.g., 
here  is always greater than ). This is the source of the so-called high-
order modal damping effect of TID [35][14][12][36]. Final. this figure intuitively depicts the optimal 
installation location for each modal. For example, for mode 1, mode 2, and mode 3, the optimal location 
is storey 1, storey 3, and storey 2, respectively. To verify this result, the mode 1 is considered to control. 
The design process is as following. 

Following previous design procedure, the optimal tuning and damping ratio can be calculated by Eq. 
(28). Then according to Eq. (43), the optimal stiffness and damping quantities can be derived, the results 
are listed at following table. 

Table 2: Optimal parameters of TID with different installation storey  

Installation location  (kNs/m) (kN/m) 
Storey 1 0.0538 2.038 144.55 
Storey 2 0.0346 1.624 145.98 
Storey 3 0.0107 0.893 147.76 

 

The history response curves and frequency spectrum of absolute acceleration of top storey when 
structure-TID system subjected to harmonic excitation with specific frequency are shown in Figure 13. 
From that it can be seen that the TID system with storey 1 installation have the best control performance 
for first modal response, while the response of TID mounted at storey 3 is maximal. It is not hard to 
conclude that the other modal control effects also conform to the conclusion in Figure 12. Thus, the effect 
of the design procedure is verified. 

 

 

(a)

(b)



 
Figure 13 Harmonic responses in time and frequency domain of absolute acceleration of top storey 

considering three insaltallation locations of TID and excition frequency around (a) first natural 
frequency ; (b) second natural frequency ; (c) third natural frequency . 

 

5.2 Seismic control performance 
To investigate the performance of TID system in seismic control, the 3-DOF damped structure-TID 
system has been applied with earthquake excitations. In addition, the proposed method is compared with 
three optimization approaches, e.g., numerical approach 1 proposed by Lazar in [14], approach 2 with 
numerical optimization to minimize the floor acceleration and approach 3 with numerical optimization 
to minimize the storey drift. Note the latter two approaches uses the methodology presented in Appendix 
B with different objective functions (OF), i.e., minimizing floor acceleration or storey drift. 

Here four practical earthquake records are selected as benchmark excitations: El Centro and Hachinohe 
as examples of far-field seismic motion, while Northridge and Kobe as examples of near-field seismic 
motion. Table 3 provides some detailed information on the earthquakes records. 

Table 3: List of earthquakes considered in the numerical application 

Earthquake Date Record location Type APA* 

El Centro May 18, 1940 Imperial Valley in El Centro, Far-field 3.417 
Hachinohe May 16, 1968 Hachinohe City in Tokachi Far-field 2.250 
Northridge Jan. 17, 1994 Los Angeles—UCLA Grounds Near-field 8.266 

Kobe Jan.17, 1995 JMA station in Kobe, Japan Near-field 8.178 
 

Assume the structural damping to be proportional to stiffness as 

  (46) 

where the constant  is defined as  

  (47) 

in which  is the modal damping ratio of the  modal shape. We consider the fundamental modal 
to be controlled and assume , so one can derive that . Then 
the structural inherent damping matrix and all modal damping ratios are described as follows 

  (48) 

Here it is obvious that the modal 1 is the control modal. According to the design procedure, the optimal 
parameters can be calculated by substituting   and   into Eq. (28). In Table 4, 
results from Lazar’s numerical approach 1, numerical approach 2, numerical approach 3 and the proposed 
approach in this paper are listed in term of optimal placement, system parameters, and performance 

(c)



indices.  

Table 4: Optimal parameters of TID by various optimization approach  

Optimization approach 
 Optimal parameters  

 location  (kNs/m)  (kN/m)  

Numerical approach 1 by Lazar[14]  Storey 1 2.5 138.6  

Numerical approach 2  Storey 1 2.512 154.763  

Numerical approach 3  Storey 1 1.846 133.050  

The proposed approach  Storey 1 2.144 148.283  

 

Two time history responses of system under representative EI Centro earthquake are used as example to 
illustrate the TID seismic control performance in Figure 14 and Figure 15. The proposed approach is 
compared with numerical approach 2 on acceleration response on top storey, and with numerical 
approach 3 on inter-storey drift response on bottom storey. It should note that the numerical approach 2 
and numerical approach 3 respectively have the best performance on acceleration and drift response, 
respectively. In Figure 14, the reductions on peak acceleration relative to uncontrolled system of 
numerical approach 2 and the proposed approach are 36.474 % and 34.481 %, respectively. While for 
Figure 15, the reductions on peak inter-storey drift relative to uncontrolled system of numerical 3 and 
the proposed approach are 36.97 % and 36.36 %, respectively. From Figure 14 and Figure 15 it can be 
seen that both optimization methods show a good control effect and the response obtained by the 
proposed approach is similar to that obtained using numerical design procedure. 

 
Figure 14 Time history of absolute acceleration response under El Centro earthquake for numerical 

acceleration optimization and analytical optimization 

 
Figure 15 Time history of inter-storey drift response under El Centro earthquake for numerical drift 

optimization and analytical optimization 
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To show the interested responses of all the floors, all responses are calculated in terms of peak values 
and root mean square (RMS) values for all four earthquakes. Only the response profiles under Kobe 
earthquake excitation are plotted in Figure 16 and Figure 17 as a representative while others earthquakes 
responses are shown in Table 5 and Table 6. In a general view of the proposed method against all other 
proven approaches, it confirms that the proposed approach is able to achieve optimal design of TID for 
MDOF structure.  

 
Figure 16 Storey absolute acceleration response in peak value form (a) and RMS value form (b) under 

Kobe earthquake 

 
Figure 17 Storey inter-storey drift response in peak value form (a) and RMS value form (b) under Kobe 

earthquake 

In Figure 16 the absolute acceleration on top storey for various optimization approaches are maximum 
meanwhile that responses on bottom storey are similar and relatively small, so the top storey should 
receive more attention in term of acceleration. The results in Figure 16 clearly show that the responses 
obtained by analytical and numerical acceleration optimization are similar and small enough than other 
two optimization methods. The results also show that the numerical drift optimization response is 
maximum. In storey drift response case as shown in Figure 17, unlike the acceleration case, the bottom 
storey response whatever the peak form or RMS form is maximum, however the top response is minimum. 
Thus the bottom storey should be considered as control implementation storey in storey drift optimization. 
In Figure 17 (a) it can be seen the numerical drift optimization response is minimum and the analytical 
optimization response is close but slightly larger, but on 2-storey and 3-storey, the analytical optimization 
response is minimum. The results also show that the numerical acceleration optimization response is 
maximum. In Figure 17 (b), similar results can be seen yet the bottom storey response are close to each 
other. 

Table 5 Top storey acceleration response index under four earthquakes 

    Numerical  Analytical 
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Earthquake 
excitation  Uncontrolled  Fixed-point  

by Lazar 
Acceleration 
as objective 

Storey drift 
as objective  

Equivalent 
linearization 

method 
El Centro Peak 11.4368  7.2923 7.2653 7.5854  7.4933 

 RMS 1.3865  0.8413 0.8473 0.8474  0.8411 
         

Hachinohe Peak 13.2460  6.6335 6.2211 7.1146  6.0693 
 RMS 1.6623  0.7531 0.7287 0.7739  0.7250 
         

Northridge Peak 38.5638  32.7261 32.1234 32.9864  32.3597 
 RMS 3.4523  1.9957 1.9665 2.0892  1.9883 
         

Kobe Peak 36.5941  25.7308 23.8145 26.3603  23.7050 
 RMS 3.2608  1.8512 1.7423 1.9579  1.7445 

 

Table 6 Bottom storey drift response index under four earthquakes 

    Numerical  Analytical 

Earthquake 
excitation  Uncontrolled  Fixed-point  

by Lazar 
Acceleration 
as objective 

Storey drift 
as objective  

Equivalent 
linearization 

method 
El Centro Peak 1.65E-02  1.04E-02 1.05E-02 1.04E-02  1.05E-02 

 RMS 2.11E-03  1.38E-03 1.46E-03 1.35E-03  1.42E-03 
         

Hachinohe Peak 1.97E-02  8.81E-03 8.57E-03 8.69E-03  8.29E-03 
 RMS 2.50E-03  1.18E-03 1.24E-03 1.13E-03  1.18E-03 
         

Northridge Peak 5.44E-02  4.07E-02 4.19E-02 3.85E-02  4.03E-02 
 RMS 5.18E-03  3.12E-03 3.33E-03 3.07E-03  3.22E-03 
         

Kobe Peak 5.82E-02  3.66E-02 3.74E-02 3.38E-02  3.43E-02 
 RMS 4.91E-03  2.92E-03 2.99E-03 2.90E-03  2.86E-03 

 

All response indices on key storeys under four earthquakes are shown in Table 5 and Table 6. It is clear 
that the TID system has excellent control performance. Furthermore, the effectiveness of the proposed 
analytical approach is proved since the results achieved by the proposed approach are very similar to that 
of complex numerical optimization. To add on, the analytical approach can better suppress the 
acceleration and storey drift response simultaneously while the numerical approaches 2 and 3 cannot. To 
summarize, the proposed approach has simple design procedure and the effect is convincing and 
satisfactory. 

6 The Conclusions 
This study aims to provide a simplified analytical approach to design the tuned inerter damper for seismic 
protection of both SDOF and MDOF damped structures. Determining the optimal design parameters 
(tuning ratio and damping ratio) and installation location of TID is the main objective of the TID design 
in this paper. A numerical approach also is developed as a reference for the analytical approach. The 
principal contributions of this research are as follow: 

i. For damped SDOF structure, a closed-form formula based on equivalent linearization method is 
derived. The idea of this method is to replace the damped structure by an equivalent undamped 
structure. The proposed formula can obtain analytically both the tuning ratio and damping ratio of 
TID and the results are close to the exact solutions obtained by the numerical approach in Appendix 
A.  

ii. For MDOF damped structure, a simple design procedure is proposed to obtain the design parameters 
of TID when targeting a modal. The method is based on the equivalent inertance to modal mass 
ratio  and the results of SDOF one can be used directly through . An additional finding is 
that the high-order modal damping effect of TID is due to the curving shape of high-order modal 
shape. The method can also calculate the additional modal damping ratio provided by TID for a 
modal of MDOF structure and was confirmed by a 3-storey structure case study. 

iii. A detailed procedure is proposed to design TID for suppressing the absolute acceleration response 



or the inter-storey drift response of a MDOF damped structure considering the seismic excitations. 
The optimal design parameters and the optimal installation location of TID are determined 
numerically. The results show that the optimal installation location for both control objectives are 
all on the bottom storey. 

iv. A numerical case study on the seismic performance of a three DOF structure considering four 
benchmark earthquakes as excitation are carried out finally. It is found that the proposed analytical 
approach achieves similar results compared with other proved numerical procedure. Thus the 
seismic performance of the proposed approach is satisfactory. 

In conclusion, the proposed approach is proved valid in design of TID for both SDOF and MDOF damped 
structure. The advantages of its simple and convenient make it an attractive choice in engineering 
application. 
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Appendix A: Numerical search method for SDOF system 
In case of damped main structure (i.e. 𝜉𝜉s ≠ 0), the simultaneous equations Eq. (20) are very complex 
and cannot be solved analytically. Here we carry out a numerical approach to obtain directly the optimal 
parameters of TID for minimizing the performance index 𝐼𝐼.  

The problem can be described as 

 

where the lower bounds on 𝛾𝛾  and 𝜉𝜉d  are both zero and the above that are according to physical 
situation. The start points of 𝛾𝛾 and 𝜉𝜉d are the results of Eq. (24). 

The performance index i.e. 𝐻𝐻2 norm, attains minimum value when the design parameters of TID system 
take the optimal values obtained from numerical technique. This can be verified by the fact that the 
optimal parameters curve is the lowest of all the curves in Figure . However, when the original 
configuration of structure changes because of structural damage or when we can only obtain the 
approximate solution calculated by analytical expression, it indicates that the design parameters are on 
detuning. Figure A depicts the detuning effect of tuning ratio 𝛾𝛾 and damping ratio 𝜉𝜉d on the 𝐻𝐻2 norm 
under different structural inherent damping ratio 𝜉𝜉s, where various curves represent the TID parameters 
shift away from their respective optimal values in varying degrees. We can see that the 𝐻𝐻2  norm 
increases considerably when tuning ratio 𝛾𝛾  deviates 20%  from the optimal value, whereas the 𝐻𝐻2 
norm almost shows no increase even when the damping ratio 𝜉𝜉d deviates 30% from the optimal value. 
This suggests that the performance of TID is far more sensitive to the 𝛾𝛾 than the 𝜉𝜉d, in other words, the 
significance of accuracy of 𝛾𝛾 is more important than that of 𝜉𝜉d. 



 
Figure A (a) detuning effect of tuning ratio  on the  norm. (b) detuning effect of damping ratio 
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Appendix B: Numerical search method for MDOF system 
An n-storey structure subjected to ground motion is considered as the main structure, and a TID will be 
installed on certain storey as a control device. One of the most important aspect in various optimization 
strategies is the choice of the target response. Here we use the absolute acceleration or the storey drift 
response as objective of optimization because they are often primarily responsible for structural 
damage. The equation of motion in the Laplace domain of the system in Figure 7 is given by 

  (B.1) 

Where   are, respectively, the mass, stiffness and damping matrices of primary 

structure;   represents the Laplace transform of the structure response vector 
  in time domain;   is the effective earthquake forces vector;   is the TID 

control forces vector. 

When the objective response is absolute acceleration of storey, the response  should be defined as the 
absolute displacement of the  storey, then the matrices in Eq. (B.1) are 

  (B.2) 

where   denote the lumped mass of   storey;   represent, respectively, the structure 
damping and stiffness between storeys  ;   is the Laplace transform of the ground 
displacement ; and  is defined at Eq. (30). 

While the  is defined as the storey drift between storeys  when the objective response is 
storey drift, note that  denotes the displacement of  floor relative to the ground, then these matrices 
become as follow 

 (B.3) 

where  represents the Laplace transfer of ground acceleration . Other parameters are the same as 
before. 

Now the  can be obtained as the solution of Eq. (B.1), that is 

  (B.4) 

and the transfer function from ground acceleration to structure response can be solved from Eq. (B.4) 



  (B.5) 

where  represents the transfer function from ground acceleration to response of  
storey. The response vector  can denotes either absolute acceleration or storey drift response. 

Now the objective function of numerical optimization can be defined as 

  (B.6) 

where   is the  norm of transfer function  , i.e.  , thus the objective 

function OF can automatic search for the key storey. then the numerical optimization problem is 
described as 

  (B.7) 
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