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Abstract

The tasks of characterization and control of quantum systems are becoming more
challenging with the advancement of quantum technology. Standard methods that
were successful for simple quantum systems are becoming inadequate for more
complex engineered systems. Modelling assumptions and approximations (such as
Markovianity) are not justifiable anymore. As a result, the usual models fail to fit
experimental measurements. In this thesis, we use state-of-the-art machine learn-
ing methods, assisted by tools from information theory as needed, to develop new
frameworks that try to address these challenges. We focus on three directions. The
first is developing an efficient online quantum state estimation algorithm with prov-
able convergence properties. The second is developing a deep learning framework
for characterizing and controlling closed quantum systems. The final direction is
upgrading that framework to be suitable for characterization and control of open
quantum systems. This thesis opens the door for a novel way of utilizing machine
learning techniques for applications in quantum information specially and physics

in general.

x1
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