

Characterization and Control of Quantum Systems using Machine Learning and Information Theory

by Akram Youssry Abdelaziz Mohamed

Thesis submitted in fulfillment of the requirements of the degree of

Doctor of Philosophy (Engineering)

under the supervision of

A/Prof. Dr. Marco Tomamichel

A/Prof. Dr. Christopher Ferrie

A/Prof. Dr. Min-Hsiu Hsieh

University of Technology Sydney Faculty of Engineering and Information Technology

November, 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Akram Youssry Abdelaziz Mohamed declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:Production Note:Signature removed prior to publication.

Date: 09/02/2021

Acknowledgments

I would like to start by praising and thanking God for His unlimited blessings on me. I would like to express my gratitude to Dr. Marco Tomamichel my principal supervisor for opening the door for me to travel to Australia, join his group at UTS. and get to interact with all the researchers there. I also thank him for trusting me being the first Egyptian, Middle Eastern, and African student to join the group, and for supporting me from day one. Next, I would like to express my gratitude to my co-supervisor Dr. Christopher Ferrie, who influenced my research interests substantially. I would like to thank him for giving me the opportunity to join an AUSMURI collaborative project as a part-time research student and get to interact with many researchers across Australia. I acknowledge their continuous support and I have learnt a lot from them. I thank them for supporting my academic visits to other research groups, resulting in a multiple of successful collaborations. I would like to acknowledge my co-supervisor Dr. Min-Hsiu Hsieh for his support and guidance. I would like to thank my collaborators Dr. Alberto Peruzzo at RMIT, Dr. Robert Chapman at University of Innsbruck, and Dr. Gerardo Paz-Silva at Griffith University. I would like to acknowledge the support I got from UTS to pursue my research including the iHPC facility for executing the intensive computation needed in my research. I also acknowledge the Australian Research Training Program scholarship. I acknowledge all my friends and colleagues whom I enjoyed interacting with throughout my journey. I would like to mention particularly Maria Quadeer, Madhav Krishnan Vijayan, Arinta Auza, Elija Perrier, Mauricio Morales, Lirandë Pira, and Bin Cheng. I would like to thank my professors at Ain Shams University who taught me during my undergraduate and postgraduate studies communication systems engineering and fundamentals of quantum information science, as well as how to do research. Finally, I would like to acknowledge my parents for their continuous support throughout my life, and particularly during my travel. I thank my mother for the great sacrifices she made to make it possible for me to travel. I thank my father for assisting me logistically before and during my travel.

This is a THESIS BY COMPILATION. Parts of this thesis have been already published. The content have been edited to suit the formatting of the thesis and to maintain its coherence.

DECLARATION OF PUBLICATIONS INCLUDED IN THE THESIS

Chapter	:	3
Name	:	Efficient online quantum state estimation using a matrix-exponentiated gradient method
Authors	:	Akram Youssry, Christopher Ferrie, Marco Tomamichel
Contributions	:	AY implemented and tested the proposed algorithm. AY did the convergence proof with contributions from CF and MT. All the authors wrote and modified the paper. CF and MT supervised the project.
Status	:	Published in "New Journal of Physics"
Address	:	https://doi.org/10.1088/1367-2630/ab0438
Signatures	:	Akram Youssry
		Christopher Ferrie
		Marco Tomamichel

Chapter	:	4
Name	:	Modeling and control of a reconfigurable photonic circuit us- ing deep learning
Authors	:	Akram Youssry, Robert J Chapman, Alberto Peruzzo, Christopher Ferrie, Marco Tomamichel
Contributions	:	RC and AP designed the photonic chip. RC developed the simulator for the chip. AY modified the simulator to include distortion effects. AY developed, implemented, and tested the proposed algorithm. AY wrote the paper, with contributions from RC. AP, CF, and MT supervised the project.
Status	:	Published in "Quantum Science and Technology"
Address	:	https://doi.org/10.1088/2058-9565/ab60de
Signatures	:	Akram Youssry
		Robert J Chapman
		Alberto Peruzzo
		Christopher Ferrie
		Marco Tomamichel

Chapter	:	5
Name	:	Characterization and control of open quantum systems be- yond quantum noise spectroscopy
Authors	:	Akram Youssry, Gerardo A Paz-Silva, Christopher Ferrie
Contributions	:	AY designed the proposed architecture with feedback from all authors. AY implemented, trained, and tested the algorithm. GPS and CF equivalently supervised the project. All the authors wrote and modified the paper.
Status	:	Published in "npj Quantum Information"
Address	:	https://doi.org/10.1038/s41534-020-00332-8
Signatures	:	Akram Youssry
		Gerardo A Paz-Silva
		Christopher Ferrie

Contents

\mathbf{Li}	ist of	Figur	es	v
\mathbf{Li}	ist of	Table	s	vii
\mathbf{Li}	ist of	Abbro	eviations	ix
A	bstra	nct		xi
1	Inti	coduct	ion	1
	1.1	Topic		. 1
	1.2	Stakel	holders and Aims	. 2
	1.3	Objec	tives and Significance	. 3
	1.4	Resea	rch Methods	. 4
		1.4.1	Classical Machine Learning	. 4
		1.4.2	Quantum Information Theory	. 5
		1.4.3	Software Implementation	. 5
	1.5	Thesis	s Organization	. 6
2	Bac	kgrou	nd	7
	2.1	Prelin	ninaries	. 7
		2.1.1	Overview on Neural Networks and Gated-Recurrent Units	. 7
		2.1.2	Cumulants of Gaussian Random Variables	. 10
	2.2	Model	lling Quantum Systems	. 14
		2.2.1	Noise as a Quantum Channel	. 15
		2.2.2	The Lindblad Master Equation	. 16
		2.2.3	Effective Observable Dynamics	. 19
		2.2.4	Other Modelling Approaches	. 23
	2.3	Applie	cation: Modelling a Noisy Qubit	. 23
		2.3.1	Physical Model	. 24
		2.3.2	Free Evolution	. 24
			2.3.2.1 Markovian Evolution	. 29
			2.3.2.2 Non-Markovian Evolution	. 30

		2.3.3	Controlled-Evolution and Dynamical Decoupling	31
		2.3.4	Numerical Simulation	36
	2.4	Chara	cterization of Quantum Systems	37
		2.4.1	Quantum State Tomography	37
			2.4.1.1 Overview on the diluted maximum likelihood method	40
			2.4.1.2 Overview on the least-squares method	41
		2.4.2	Quantum Process Tomography	42
		2.4.3	Quantum Noise Spectroscopy	42
		2.4.4	Other Techniques	43
	2.5	Quant	$\operatorname{fum} \operatorname{Control} \ldots \ldots$	44
		2.5.1	Targets and Constraints	44
		2.5.2	Controllability	46
		2.5.3	Types of Quantum Control	50
			2.5.3.1 Open-loop versus closed-loop control	50
			2.5.3.2 Online versus offline control	51
		2.5.4	Overview on GRAPE	52
	2.6	Conclu	$usion \ldots \vdots$	54
9	ГĤ.	aiont (Online Quantum State Estimation	55
ა	E /110	Introd	nume Quantum State Estimation)) 55
	ວ.1 ຊຸດ	Summ	action	57
	J.⊿ 2.2	Drolin	inprior	51 60
	0.0	2 2 1	Problem Statement	60
		0.0.1 2 2 9	The Matrix Exponentiated Cradient Method	61
		3.3.4 3.3.3	Auviliary Lommas	62
	34	Conve		64
	0.4	3 4 1	General Bounds on the Loss Function	64
		342	Convergence Analysis for Noiseless Measurements	67
		343	Convergence Analysis for Noisy Measurements	73
		344	Convergence of the Noisy Measurements case with Averaging	82
	35	Simul	ation Results	83
	0.0	3 5 1	Methods	83
		352	Discussion	85
	3.6	Concli	usion	88
	0.0	Conten		00
4	Mo	delling	and Control of Closed Quantum Systems 8	39
	4.1	Introd	uction \ldots \ldots \ldots \ldots \ldots \ldots \ldots	90
	4.2	Proble	$em Setup \dots \dots$	94
		121	Chip Model	04
		4.2.1		94

Bi	ibliog	graphy		165
6	Cor	nclusio	ns and Future Work	161
	5.6	Supple	ementary Figures	. 153
	5.5	Conclu	usion	. 152
		5.4.4	Discussion	. 151
			5.4.3.2 Quantum noise spectroscopy	. 149
			5.4.3.1 Dynamical decoupling and quantum control	. 146
		5.4.3	Applications	. 146
		5.4.2	Results	. 146
		5.4.1	Implementation	. 142
	5.4	Simula	ation Results	. 141
		5.3.5	Training and Testing	. 140
		534	Dataset Construction	138
			5.3.3.3 Model blackboyes	. 155
			5.3.3.2 Model upits and outputs	. 133
		5.3.3	Model Architecture	. 133 199
		5.3.2 5.2.2	Mathematical Properties of the V_O Operator	. 130
		5.3.1	Overview	. 128
	5.3	Metho	ds	. 128
	5.2	Proble	$\stackrel{\text{em Statement}}{\longrightarrow} \dots \dots$. 125
	5.1	Introd	luction	. 123
5	Mo	delling	; and Control of Open Quantum Systems	123
	1.0	Suppr		• • • •
	4.6	Supple	ementary Figures	. 112
	4.5	4.4.5 Conch		. 110
		4.4.2	Results	. 107
		4.4.1	Implementation	. 106
	4.4	Simula	ation Results	. 106
		4.3.4	Fully-quantum model	. 105
		4.3.3	Controller Architecture	. 103
		4.3.2	Training and Testing	. 101
		4.3.1	Chip Model Architecture	. 99
	4.3	Metho	ds	. 98

List of Figures

2.1	Examples of the filter function
3.1	Simulation results of applying MEG, MLE, and LS on multi-qubit
2.0	The effect of the state of the state of MEC 24
3.2	The effect of learning rate on the performance of MEG
3.4	The effect of the number of shots on the performance of MEG for a
0.5	5-qubit system
3.5	Comparison between MEG and PGD
3.6	The average runtime of one iteration of MEG, ML, and LS 88
4.1	The schematic of the photonic chip $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 92
4.2	A schematic for measuring phase shifts using a Mach-Zehnder inter-
	ferometer
4.3	The proposed ML structure for modelling the chip
4.4	The proposed ML structure for the controller of the chip $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
4.5	The performance of the proposed ML model of the chip 109
4.6	The performance of the proposed ML controller of the chip 110
4.7	The resulting infidelity for a sequence of target quantum gates to run
	on the chip $\hfill \ldots $
4.8	Example 1 from the testing dataset of chip ML model
4.9	Example 2 from the testing dataset of chip ML model
4.10	Example 3 from the testing dataset of chip ML model
4.11	The control voltages to implement a sequence of target gates 117
4.12	The controlled output distribution using the proposed ML method 118
4.13	The predicted interferometer output distribution for Example 1 of the
	testing dataset $\ldots \ldots 119$
4.14	The predicted interferometer output distribution for Example 2 of the
	testing dataset $\ldots \ldots \ldots$
4.15	The infidelity evaluated between the predicted actual unitary for Ex-
	amples 1 and 2 of the testing set
4.16	The control voltages to implement another sequence of target gates $~$. 122

5.1	The proposed ML architecture for modelling the noisy qubit 134
5.2	The effect of the number of realization on the performance of the
	Monte Carlo simulation of a noisy qubit
5.3	PSD of the noise signals that were used to generate the datasets in
	categories 1 and 2 of the noisy qubit
5.4	The average MSE versus the iteration number for the various datasets
	of the noisy qubit
5.5	Comparison between the MSE of the various datasets at the end of
	the training phase, evaluated over the testing subsets only
5.6	The control pulses to implement a universal set of quantum gates on
	the noisy qubit $\ldots \ldots \ldots$
5.7	The estimated and actual theoretical coherence measurements and
	noise power spectrum using model trained on the CPMG_G_X_28 $$
	dataset
5.8	Comparison of the MSE evaluated over the testing datasets of the
	noisy qubit $\ldots \ldots 153$
5.9	The worst, average, and best case examples for the CPMG_G_X_28 $$
	testing dataset. $\ldots \ldots \ldots$
5.10	The worst, average, and best case examples for the CPMG_S_X_28 $$
	testing dataset. $\ldots \ldots 155$
5.11	The worst, average, and best case examples for the CPMG_G_XY_7 $$
	testing dataset. $\ldots \ldots 156$
5.12	The worst, average, and best case examples for the CPMG_G_XY_pi_7 $$
	testing dataset. $\ldots \ldots 157$
5.13	The worst, average, and best case examples for the CPMG_G_XY_7_nl $$
	testing dataset
5.14	The worst, average, and best case examples for the CPMG_G_XY_pi_7_nl $$
	testing dataset

List of Tables

3.1	Summary of runtime complexities per iteration for the MLE, LS, and
	MEG algorithms
4.1	Definitions of the target Hamiltonians for testing the proposed ML
	controller of the chip
5.1	The global simulation parameters used for generating the datasets of
	the noisy qubit. $\ldots \ldots 142$
5.2	The parameters defining the datasets of the noisy qubit
5.3	The average MSE evaluated over the various datasets of the noisy qubit 146
5.4	The performance of the optimal controller of the noisy qubit $\ldots \ldots 150$

List of Abbreviations

CAD	Computer-Aided Design
CDD	Concatenated Dynamical Decoupling
CPMG	Carr–Purcell–Meiboom–Gill
CPTP	Completely-Positive Trace-Preserving
CRAB	Chopped Random Basis
DD	Dynamical Decoupling
GRAPE	Gradient Ascent Pulse Engineering
\mathbf{GRU}	Gated-Recurrent Unit
GST	Gate Set Tomography
LS	Least-squares Estimation
LSTM	Long Short-Term Memory
MEG	Matrix Exponentiated Gradient
MLE	Maximum Likelihood Estimation
NISQ	Noisy Intermediate-Scale Quantum
NN	Neural Network
OC	Optimal Control
PDD	Periodic Dynamical Decoupling
PGD	Projected Gradient Descent
PSD	Power Spectral Density
QCVV	Quantum Characterization, Verification, Verification

and

\mathbf{QIP}	Quantum Information Processing
\mathbf{QNS}	Quantum Noise Spectroscopy
\mathbf{QPT}	Quantum Process Tomography
\mathbf{QST}	Quantum State Tomography
RNN	Recurrent Neural Network
RWA	Reconfigurable Waveguide Array
SPAM	State Preparation and Measurement
UDD	Uhrig Dynamical Decoupling

Abstract

The tasks of characterization and control of quantum systems are becoming more challenging with the advancement of quantum technology. Standard methods that were successful for simple quantum systems are becoming inadequate for more complex engineered systems. Modelling assumptions and approximations (such as Markovianity) are not justifiable anymore. As a result, the usual models fail to fit experimental measurements. In this thesis, we use state-of-the-art machine learning methods, assisted by tools from information theory as needed, to develop new frameworks that try to address these challenges. We focus on three directions. The first is developing an efficient online quantum state estimation algorithm with provable convergence properties. The second is developing a deep learning framework for characterizing and controlling closed quantum systems. The final direction is upgrading that framework to be suitable for characterization and control of open quantum systems. This thesis opens the door for a novel way of utilizing machine learning techniques for applications in quantum information specially and physics in general.