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Abstract

The tasks of characterization and control of quantum systems are becoming more

challenging with the advancement of quantum technology. Standard methods that

were successful for simple quantum systems are becoming inadequate for more

complex engineered systems. Modelling assumptions and approximations (such as

Markovianity) are not justifiable anymore. As a result, the usual models fail to fit

experimental measurements. In this thesis, we use state-of-the-art machine learn-

ing methods, assisted by tools from information theory as needed, to develop new

frameworks that try to address these challenges. We focus on three directions. The

first is developing an efficient online quantum state estimation algorithm with prov-

able convergence properties. The second is developing a deep learning framework

for characterizing and controlling closed quantum systems. The final direction is

upgrading that framework to be suitable for characterization and control of open

quantum systems. This thesis opens the door for a novel way of utilizing machine

learning techniques for applications in quantum information specially and physics

in general.

xi





Chapter 1

Introduction

1.1 Topic

Recently, there have been many developments in the field of quantum information

processing (QIP) on experimental as well as theoretical aspects. These developments

have been motivated by the wide range of prospective applications of quantum com-

puting, quantum cryptography, and quantum communications. The emergence of

Noisy Intermediate-Scale Quantum (NISQ) devices [1] has been a major technolog-

ical breakthrough. These devices are capable of performing computations on an

intermediate number of qubits with limited performance. This makes it difficult to

execute quantum algorithm such as Shor’s integer factorization or Grover’s search

algorithm. However, there are many potential near-term applications such as quan-

tum machine learning, quantum simulations and quantum chemistry [1]. There is

also experimental and theoretical evidence of the capability of such devices to have

computational advantages compared to classical computers [1–3].

There are many challenges in designing and operating NISQ devices. On the

physical side, the qubits suffer from noise, spatial correlations (crosstalk) and tem-

poral correlations (See [4] for an example). Modelling these effects theoretically is

difficult. Thus, many assumptions and approximations are made which might not

be sufficiently accurate. On the classical hardware side, there are many experimen-

tal constraints such as limited power and bandwidth of control signals that can be

generated. On the classical software side, the nature of quantum information makes

it difficult to store or simulate on a classical computer without exponential compu-

tational resources. Therefore, a standard verification task such as reconstructing a

quantum state given a set of physically acquired measurements becomes impossible

for a device with just a 100 qubits. Additionally, standard optimal control tech-

niques become unsuitable because they require either having an exact mathematical

description of the quantum system (which is difficult to obtain without assump-

1



2 CHAPTER 1. INTRODUCTION

tions), or alternatively simulating the system dynamics (which is computationally

infeasible). These kinds of challenges need to be addressed in order to realize the full

potential of NISQ devices. As a result, there is a need for developing novel methods

that facilitate the tasks of engineering a quantum system.

This thesis targets two main categories of audience. The first category is machine

learning engineers who would like to contribute to advancing quantum technology.

The second category is quantum engineers and experimentalists who focus on build-

ing quantum computers. In this thesis we try to bridge the gap between the two

communities. The thesis will cover the fundamentals of modelling, characterization,

and control of quantum systems as well as multiple novel contributions of utilizing

machine learning for these purposes.

1.2 Stakeholders and Aims

Besides academic experimental research groups, there are many industrial organi-

zations that could benefit from this thesis. Examples include gigantic organizations

working on quantum technology such as Microsoft, Google, IBM, Intel, and NASA;

as well as other smaller organizations that are emerging in a fast-growing economy.

For such organizations there are many aims that they would like to fulfil. The

first aim is to develop a functional large-scale fault-tolerant quantum computer. The

laws of quantum physics put many constraints on the extent to which we can control

quantum systems. Additionally, noise has far more impact on quantum systems than

classical systems, and at the same time more difficult to model and mitigate.

The second aim is to facilitate the design and operation of quantum computers

through the development of suitable Computer-Aided Design (CAD) tools. One

of the reasons that classical technology has progressed enormously is the use of

such tools, many of which are even automated (such as tools for designing digital

integrated circuits). For quantum technology, the situation is more complicated

as any system would involve classical and quantum components. Additionally, for

classical technology, the existence of well-defined well-separated abstraction layers

facilitate the design and verification stages. So far, this has not been the case with

quantum technology, with difficulty in even fundamentally defining such abstraction

layers. For example, designing control pulses to implement a quantum gate depends

on the physical implementation of the qubits (lower abstraction level), and would

change significantly if quantum error correction is used (higher abstraction level).

At the same time, selecting a universal set of quantum gates into which any quantum

algorithm is compiled, would depend on the physical implementation of the qubits.

For example, it is easier to implement a CZ for some systems rather than a CNOT

gate, and the other way around for other systems. Finally, it can be the case that
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designing the control pulses depends on the order of the target gates required, due

to non-Markovian effects in the system. In this case, designing the control pulses

(low abstraction level) requires the full knowledge of the target algorithm (highest

abstraction level). Therefore, a different set of CAD tools, backed up by new design

methodologies, is required for progressing quantum technology.

The third aim is to minimize the time-to-market. There is a high competition

between companies to lead the new industry. The first to get to the market will

have the greatest share of profits. Fulfilling this aim requires among other things

reducing the time taken for the verification process. Standard techniques such as

quantum tomography can take up few days on a high-performance computer for a

system of few qubits. In many cases, the procedure has to be repeated iteratively

(for example tuning the system to some operating point or controlling the dynamics

of the system). This means that the whole design process would consume a huge

amount of time, resulting in considerable delays.

The fourth aim is to minimize the production cost of a quantum computer.

Although qubits are the building blocks of a quantum computer, it is still mandatory

to have classical hardware at least to be able for control. Theoretically, it is possible

to enhance the performance of many quantum systems if we can generate arbitrary

control signals such as a train of ideal impulses, or an extremely high frequency

sinusoidal. Practically, this might not be possible, or would require special hardware

equipment (such as high-performance arbitrary waveform generators, or high-quality

cables, etc.) which would contribute significantly to the overall cost. So, it might

be more profitable if such requirements are relaxed, so cheaper hardware could be

used.

1.3 Objectives and Significance

This thesis targets three main objectives. The first objective is to develop an online

quantum state estimation algorithm suitable for quantum tomography as well as

quantum control applications. The algorithm must produce an estimate that is

accurate compared to standard methods. Additionally, there must be a guarantee

on the convergence of the algorithm. This is one of the drawbacks of many standard

techniques; that is, the lack of proofs of convergence. Finally, since this algorithm is

an online estimation algorithm, there will be an issue of choosing the learning rate

(or the step size). This choice will be taken into account while proving convergence.

Achieving this objective will result in an efficient verification scheme, reducing the

design time, which is the third aim of the stakeholders. Additionally, the software

implementation of the algorithm could be a part of a CAD for quantum systems

which is the second aim of the stakeholders.
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The second objective of this thesis, is to develop a novel framework suitable for

modelling a closed quantum system in practical experimental situations (such as the

existence of unknown deterministic distortions on control pulses, or uncertain terms

in the Hamiltonian). This framework must be suitable for performing quantum con-

trol as well, taking into consideration further constraints such as limited-amplitude

control pulses. Finally, the experimental procedure must be practical, not involving

physical quantities that are impossible to measure such as parasitic voltages in a

chip. This objective will directly contribute to fulfilling the first, second, and fourth

aims of the stakeholders. Being able to model and control a quantum system fa-

cilitates the design of a quantum computer. Like the first objective, the software

implementation can also be a part of a CAD system. Finally, taking into considera-

tion experimental constraints of available hardware makes it possible to use cheaper

equipment and compensating for the performance degradation on the software side.

This directly reduces the overall cost as exactly aimed.

The final objective of this thesis is to develop a novel framework suitable for

characterizing open quantum systems beyond the standard quantum noise spec-

troscopy technique. The framework must work independent of any assumptions on

noise and control which is the main limitation of the standard technique. Addition-

ally, it must be suitable for performing usual tasks such as decoherence suppression,

quantum control, and estimation of the power spectral density of the noise. Finally,

the experimental procedures must be practical and possible to implement. It also

needs to take any experimental constraints into consideration for designing control.

This objective contributes to the first, second, and fourth aims of the stakeholders in

similar way as the second objective. Since this objective focuses on noisy quantum

systems and how to control them, this contributes more significantly to the first aim

compared to the second objective.

1.4 Research Methods

1.4.1 Classical Machine Learning

For the first objective of this thesis, the Matrix-Exponentiated Gradient (MEG)

method will be utilized to develop an online quantum state estimation algorithm.

This method was introduced in classical machine learning literature in the context

of kernel learning in support vector machines [5, 6]. The original proposal was to

develop an estimation algorithm for real symmetric matrices. In this thesis, the

MEG update rule as well as the related convergence identities will be ported to

the quantum domain. This will be done by generalizing the mathematics to work

with complex Hermitian matrices instead of real symmetric matrices. However, the
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original statements about convergence and their proofs would have to be modified

entirely to suit the objective of this problem which is quantum state estimation.

Tools from quantum information theory will be utilized as will be discussed later in

this section.

Additionally, techniques from classical machine learning will be utilized and

adapted to model quantum systems. The problem of using standard “blackbox”

architectures, is that they do not respect the mathematical constraints of quantum

quantities such as Hermiticity, Unitarity, etc. As a consequence, the standard al-

gorithms will not result in sound predictions (for example having Pauli observables

that are outside the range [−1, 1]). Additionally, due to the abstract nature of these

structures, it is not possible to extract useful physical quantities required for fur-

ther applications. On the other hand, training a “whitebox” model derived from

the physics of the system is not possible without assumptions, approximations, and

idealizations. So, we will propose an approach that provides a mix between those

two architectures. Standard blackbox layers (such as Gated-Recurrent Units (GRU)

and Neural Networks (NN)) as well as novel customized structures whitebox layers

(such as layers to compute Hamiltonians) will be merged together in a hybrid ar-

chitecture. We will refer to this architecture as a “graybox”. This novel approach

will be utilized to model closed quantum systems as well as open quantum systems,

satisfying the second and third objectives of this thesis. Moreover, it will be used to

design control pulses for different purposes under realistic experimental conditions.

1.4.2 Quantum Information Theory

We will utilize many tools from quantum information theory particularly for proving

the convergence of the MEG-based algorithm for the first objective of this thesis.

This will include the use of information-theoretic quantities (such as the quantum

relative entropy), distance measures (such as the trace distance), matrix inequali-

ties (such as Golden-Thompson inequality and Jensen’s inequality), methods and

techniques (such as quantum unitary t-designs), and probabilistic notions (such as

Markov’s inequality and stochastic convergence). Additionally, the notion of quan-

tum channels and quantum tomography will be needed as a foundation for the three

objectives of this thesis.

1.4.3 Software Implementation

MATLAB will be used to implement the algorithm for the first objective. The

algorithms developed in this thesis for the second and third objectives will be im-

plemented in Python together with Tensorflow [7] and Keras [8]. As in any machine

learning research, datasets are needed to train and assess the performance of any
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novel algorithm. For this purpose, simulators for closed as well as open quantum

systems will be implemented in Python and used to generate suitable datasets. The

source code for all the methods will be available as open source. Since the computa-

tions are very intensive, the proposed methods will be executed on the UTS iHPC

cluster facility.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 covers the essential back-

ground including standard calculations presented in detail as needed for the rest of

this thesis. Particularly, it provides an overview on modelling, simulating, character-

izing, and controlling quantum systems. Starting Chapter 3, the novel contributions

are presented consecutively with each chapter targeting one objective of this thesis.

The first result in Chapter 3 is an online quantum state estimation algorithm with

provable convergence. Chapter 4 presents a novel machine learning framework to

model closed quantum systems. This framework is applied in a practical application

which is modelling and controlling a photonic circuit. The framework is then gener-

alized to open quantum systems in Chapter 5. The proposed method is applied to

the case of spin qubits in the presence of a classical environment. Finally in Chapter

6, a summary and an outlook on the future work of this thesis is provided.



Chapter 2

Background

This chapter gives an extensive background needed for presenting the novel results

in this thesis. The chapter starts with preliminaries from machine learning and

signal processing in Section 2.1. Next, in Section 2.2 an overview is given on the

different ways to mathematically model noisy quantum systems. After that, Section

2.3 provides an extensive analysis of a noisy qubit subjected to a classical environ-

ment, and the different models introduced earlier are applied and contrasted. The

chapter then moves on introducing quantum tomography as a fundamental tool for

characterizing quantum systems in Section 2.4. Finally, the chapter ends with a

brief overview on quantum control in Section 2.5. This chapter is written with the

purpose of trying to introduce concepts from machine learning and quantum infor-

mation in an accessible way to readers across both communities, and thus can be

skipped by advanced readers.

2.1 Preliminaries

2.1.1 Overview on Neural Networks and Gated-Recurrent

Units

In this section we give a brief overview on some of the commonly used classical ma-

chine learning blackboxes that will be used later in this thesis. The first is the neural

network, which is a non-linear modular structure composed of basic computational

units called neurons. A neuron calculates a weighted average of its inputs and then

applies a non-linear transformation, generating a single output. If we denote the set

of inputs as x = [x1, x2, · · · xn]T , then the output would be

y = f

(
w0 +

n∑
i=1

wixi

)
(2.1)

= f (Wx + w0) (2.2)

7
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where wi are called the weights of the neuron, w0 is called the bias and the generally

non-linear function f(·) is called the activation function. The most commonly-used

activations are the linear f(x) = x, the sigmoid f(x) = 1
1+e−x

, and hyperbolic

tangent f(x) = tanh(x). The nice property about those particular functions is that

their gradients are easy to evaluate (1, f(x)(1− f(x)), and 1− f 2(x) respectively).

Nonetheless other functions can be used. The weights and the bias are chosen

through the training process to generate some desired output. For instance, if the

neuron output is denoted by y, and the desired output is yd, then by constructing

the loss function

L = (y − yd)2, (2.3)

we can use the steepest descent method to find the optimal weights as

w
(t+1)
i = w

(t)
i − η

∂L

∂w
(t)
i

, (2.4)

where w
(t)
i is the ith weight at iteration t and η is the learning rate. So, starting

with random weights w
(0)
i the iterations are applied until convergence. Now, this

single neuron generates one output only. If we want to generate multiple outputs

then we can construct a layer of neurons each acting on the same input. In many

applications, this structure might not be complex enough to model our data. So, we

can connect multiple layers where the output of one layer is fed as input to the next

layer. The last layer is called the output layer, and the number of neurons there

should match the number of desired outputs. The other layers are called hidden

layers and they can have arbitrary number of neurons. One can also derive an

update equation (using the chain rule) which is referred to as the backpropagation.

There exist many variants that enhance the basic update rule. NNs turn out to be

very useful many applications such as classification and regression.

The second type of blackboxes that will be used in this thesis is the Recurrent

Neural Network (RNN). This is a structure that allows processing sequences. Besides

its input xt and output yt at time instant t, it has an internal hidden state denoted

by ht. At each time instant, the RNN processes the inputs to update the hidden

state from the previous time instant, as well as generates the new output. So, it

works like a feedback system. Generally, the new hidden state ht+1 and the output

yt can both depend on xt and ht. The relations between different variables would

depend on some weights which are adjusted during training to produce some desired

output. Based on this idea, there are many “update rules” resulting in various kinds

of structures. In this thesis, we make use of the Gated Recurrent Unit (GRU) [9].

It consists of the following structure. First, there is a “reset gate”, which is a single-
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layer neural network with sigmoid activation that operates on the concatenation of

current input at time instant t and the previous hidden state ht, to produce the

output rt. In other words,

rt = σ (Wrxt + Urht−1 + br) , (2.5)

where Wr, Ur, and br are the weights and the bias of the neural network, and σ(·)
is the sigmoid function. The second component of a GRU is the update gate, which

is similarly a single-layer neural network with sigmoid activation,

zt = σ (Wzxt + Uzht−1 + bz) . (2.6)

After computing the outputs from the reset and update gates we can now calculate

h̃t which represents the new information we need to add to our hidden state,

h̃t = tanh (Whxt + Uh (rt � ht−1) + bh), (2.7)

where � is the Hadamard product (i.e. element-wise multiplication (A � B)ij =

(A)ij(B)ij). The final step is to calculate the new hidden state which would be

a weighted average of the existing state ht and the new information h̃t, using the

output of the update gate zt

ht = zt � ht−1 + (1− zt)� h̃t. (2.8)

The output of the GRU at time t is simply yt = ht. The training will involve

updating all the weight matrices and bias vectors, such that we obtain a target

sequence of vectors yt at every time instant t. The GRU is a special class of a more

general structure called the Long Short-Term Memory (LSTM) [10]. In an LSTM,

there is a third gate that calculates the output given the hidden state rather than

just an identity gate as in the case of a GRU. The name LSTM comes from the fact

that the hidden state gets updated at every time step without neither completely

neglecting the new information h̃t nor forgetting completely the old information

ht−1. In this sense, it retains both a long and a short-term memory. These recurrent

networks turn out to be very successful in application of time series analysis and

natural language processing. However, they are generic enough for any application

that involves sequence processing.

Although ML techniques have proven to be successful for an endless amount of

applications in all domains, one has to understand the limitations and challenges of

those methods. The first challenge is that the training procedure requires the prepa-

ration of large datasets, over which the loss function is optimized. This is needed
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so that the ML models are able to generalize to new examples, and not just predict

the outputs corresponding to the training examples. For some applications (such as

image recognition), this can be easily done because of the availability of thousands

of images. For other applications (such as characterization of devices), this requires

physically performing a large number of experiments which might be very time-

consuming to the extent of becoming infeasible. The second challenge is then how

to choose the size of the dataset. There is no systematic way to answer this question,

as it depends on the application itself and how accurate we want our predictions. It

also depends on the model complexity (such as number of nodes in an NN) and the

number of the inputs and outputs of the model. The general rule of thumb is that

the higher these numbers are, the larger the dataset is needed. The third challenge

is that even if we are able to construct a large dataset, there is no guarantee that this

will work for every possible input. This is very similar to non-linear curve fitting.

If the points are concentrated at some interval, then the prediction of the fitted

curve will most likely be accurate on that interval but might not be as accurate

for points outside the interval. Finally, a major part of the design process of ML

algorithms is based on heuristics rather than a systematic approach. Usually, there

are many hyperparameters that can be tuned which includes the model structure,

the loss function, the training algorithm, and the learning rate. Although there are

emerging techniques that automate the choice of these hyperparameters, they are

all computationally intensive and might not be feasible to implement.

Regarding the nature of the applications we are presenting in this thesis, namely

characterization and control of quantum devices, these challenges are still manage-

able to address for small-scale devices. In Chapters 4 and 5, we will discuss the

utilization of ML techniques for these applications as well as the associated limita-

tions and challenges.

2.1.2 Cumulants of Gaussian Random Variables

In this section, we present for the sake of completeness the calculations of the statis-

tics of a particular random variable that appears frequently in the context of open

quantum systems and quantum control. We are interested in the random variable

of the form

Φ(T ) =

∫ T

0

β(τ)y(τ)dτ , (2.9)

where y(t) is any deterministic signal, and β(t) is a Gaussian random process. Recall

that a random process β(t) has a Gaussian distribution if at each time instant t, β(t)

is a random variable drawn from a Gaussian distribution. This means that the joint
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distribution over any finite set of indices is also Gaussian, as well as any linear com-

bination of β(t) over different time instants. This implies that the random variable

Φ(T ) is also Gaussian distributed. Next, recall the cumulant generating function

χ(t) of a random variable X can be defined in terms of the moment generating

function MX(t) as

χ(t) = logMX(t) (2.10)

= logE {etX} (2.11)

= log
∞∑
k=0

tk

k!
mk, (2.12)

wheremk = E {Xk} is kth moment ofX. The cumulants Ck are defined by expanding

the cumulant generating function as a Taylor series:

χ(t) =
∞∑
k=0

tk

k!
Ck, (2.13)

where

Ck = χ(t)(k)|t=0. (2.14)

For example, the first three cumulants can be calculated as follows.

C0 = χ(0) (2.15)

= logE {etX}|t=0 (2.16)

= log 1 (2.17)

= 0. (2.18)

This is why the cumulant expansion usually starts at k = 1.

C1 =
d

dt
logE {etX}|t=0 (2.19)

=
E {XetX}
E {etX}

|t=0 (2.20)

= E {X}. (2.21)

C2 =
d2

dt2
logE {etX}|t=0 (2.22)

=
d

dt

E {XetX}
E {etX}

|t=0 (2.23)
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=
E {etX}E {X2etX} − E {XetX}E {XetX}

(E {etX})2
|t=0 (2.24)

= E {X2} − E {X}2 (2.25)

= var {X}. (2.26)

Now, if X has a Gaussian distribution with mean µ and variance σ2, then

MX(t) = E {etX} (2.27)

=

∫ ∞
−∞

fX(x)etxdx (2.28)

=

∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 etxdx (2.29)

= e
1
2
σ2t2+µt

∫ ∞
−∞

1√
2πσ

e−
(x−(µ+1

2σ
2t))2

2σ2 dx (2.30)

= e
1
2
σ2t2+µt (2.31)

Therefore, the cumulant generating function in this case is

χ(t) = logMX(t) (2.32)

= log e
1
2
σ2t2+µt (2.33)

= µt+
1

2
σ2t2, (2.34)

and so the cumulants are simply: C1 = µ,C2 = σ2, Ck>0 = 0.

Going back to the random variable of interest Φ(T ), assuming that β(t) has zero

mean, then

C1 = E {Φ(T )} (2.35)

= E
{∫ T

0

β(τ)y(τ)dτ

}
(2.36)

=

∫ T

0

E {β(τ)}y(τ)dτ (2.37)

= 0, (2.38)

and,

C2 = E {Φ(T )2} (2.39)

= E
{∫ T

0

∫ T

0

β(τ2)β(τ1)y(τ2)y(τ1)dτ2dτ1

}
(2.40)

=

∫ T

0

∫ T

0

E {β(τ2)β(τ1)}y(τ2)y(τ1)dτ2dτ1 (2.41)
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=

∫ T

0

∫ T

0

Rβ(τ1, τ2)y(τ2)y(τ1)dτ2dτ1. (2.42)

Assuming the process β(t) is a stationary process (i.e. statistics do not depend on

time), and that y(τ) = 0 for τ > T or τ < 0, then:

C2 =

∫ T

0

∫ T

0

Rβ(τ1, τ2)y(τ2)y(τ1)dτ2dτ1 (2.43)

=

∫ T

0

∫ T

0

Rβ(τ1 − τ2)y(τ2)y(τ1)dτ2dτ1 (2.44)

=

∫ T

0

dτ1y(τ1)

∫ T

0

Rβ(τ1 − τ2)y(τ2)dτ2 (2.45)

=

∫ ∞
−∞

dτ1y(τ1)

∫ ∞
−∞

Rβ(τ1 − τ2)y(τ2)dτ2 (2.46)

=
1√
2π

∫ ∞
−∞

dτ1y(τ1)

∫ ∞
−∞

S(ω)Y (ω)e+iωτ1dω (2.47)

=
1√
2π

∫ ∞
−∞

S(ω)Y (ω)

∫ ∞
−∞

y(τ1)e+iωτ1dτ1dω (2.48)

=

∫ ∞
−∞

S(ω)Y (ω)Y ∗(ω)dω (2.49)

=

∫ ∞
−∞

S(ω)|Y (ω)|2dω, (2.50)

where S(ω) is the power spectral density of the random process β(t), and Y (ω) is

the Fourier transform of the function y(τ) (we take the definition of the Fourier

transform to be symmetric with the 1/
√

2π factor). Now, we can write down the

expression of the cumulant generating function for the process Φ(t).

E {evΦ(T )} = eχ(v) (2.51)

= e
∑∞
k=1

vk

k!
Ck (2.52)

= eC1v+ v2

2!
C2 (2.53)

= e
v2

2

∫∞
−∞ S(ω)|Y (ω)|2dω, (2.54)

In particular when v = −i, we get

E {e−iΦ(T )} = E
{
e−i

∫ T
0 β(τ)y(τ)dτ

}
= e−

1
2

∫∞
−∞ S(ω)|Y (ω)|2dω. (2.55)

This expression is of extreme importance as it is the foundation of dynamical decou-

pling and quantum noise spectroscopy. This will be discussed later in this chapter.

To emphasize again the assumptions are: β(t) is zero-mean, stationary, Gaus-
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sian random process, and y(t) has support on [0, T ]. If those assumptions

are not satisfied, then it is more challenging to find a closed-form expression for this

expectation. Particularly, if the process β(t) is not Gaussian distributed, then the

cumulant expansion is infinite. In this case it is truncated for calculation purposes,

limiting the accuracy of any quantum calculations. Now, if y(t) = 1 for 0 < t < T ,

and 0 otherwise, then

Y (ω) =
1√
2π

∫ ∞
−∞

y(τ)e−iωτdτ (2.56)

=
1√
2π

∫ T

0

e−iωτdτ (2.57)

=
1√
2π
e−iωT/2

T sin(ωT/2)

ωT/2
(2.58)

=
T√
2π
e−iωT/2sinc(ωT/2), (2.59)

and the expectation reduces to

E {e−iΦ(T )} = E
{
e−i

∫ T
0 β(τ)dτ

}
= e−

T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω. (2.60)

2.2 Modelling Quantum Systems

In this chapter, we denote the quantum system of interest S, and associate it with a

Hilbert space HS. We focus only on finite-dimensional systems. The space of linear

operators on S is denoted by L(S). The space of positive semidefinite operators

(Hermitian operators with non-negative eigenvalues) is defined as

P (S) = {A†A : A ∈ L(S)}, (2.61)

the space of density operators D(S) is defined as

D(S) = {ρ ∈ P (S) : tr(ρ) = 1}. (2.62)

A quantum system is completely characterized by its state ρ ∈ D(S). The process

of estimating the state of the system given a set of measurements is referred to as

quantum state tomography. An isolated system with no unwanted interactions with

its environment is referred to as a closed system. In this case, the state of the system

evolves in time via the Liouville–von Neumann equation (setting ~ = 1)

ρ̇ = −i[HS, ρ], (2.63)
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where HS is the system Hamiltonian which encodes all the physical forces acting on

the system. The solution is

ρ(t) = U(t)ρ(0)U(t)†, (2.64)

where the evolution matrix U(t) = e−iHSt if HS is time-independent. On the other

hand, if HS is time-dependent, then the evolution is given by

U(t) = T+e
−i

∫ t
0 HS(s)ds (2.65)

:= lim
M→∞

e−iHS(tM )∆T e−iHS(tM−1)∆T · · · e−iHS(t0)∆T , (2.66)

where T+ is the time-ordering operator, tk = k∆T and ∆T = T
M

.

In general, many quantum systems are very hard to completely isolate, and

thus would interact non-trivially with the environment. This imposes challenges

regarding engineering quantum systems for purposes such as quantum computation,

quantum sensing, quantum communications, etc. Modelling such “open” quantum

systems is not as straightforward as the case for closed systems. In this chapter,

we emphasize on three approaches for modelling open quantum systems. The first

approach is information-theoretic where the noise is modelled as a quantum channel.

The second approach is physics-driven through the use of master equations and is

only valid under very specific assumptions. The final approach is also physics-driven

and is based on studying the effective dynamics of the observables rather than the

dynamics of the state. These three approaches will be presented next.

2.2.1 Noise as a Quantum Channel

The first method to model an open quantum system is using an information-theoretic

approach, where the noise effectively acts a quantum channel acting on the system.

We define the identity map as I(ρ) = ρ. A quantum channel is described by a

Completely-Positive Trace-Preserving (CPTP) map E : L(S) → L(S). Complete-

Positivity refers to the condition that for any auxiliary system S ′,

∀ρ ∈ L(S ⊗ S ′) : (E ⊗ IS′)(ρ) ≥ 0. (2.67)

That is, applying the channel to a part of a composite system produces a new

physically valid composite state (with non-negative eigenvalues). Trace-Preserving

refers to the condition that,

∀ρ ∈ L(S) : tr(E(ρS)) = tr(ρS). (2.68)
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These constraints are required to preserve the mathematical properties of the quan-

tum state after applying the channel. We can also consider the environment E which

is everything outside the system of interest having unwanted interactions with it. In

this case, the composite system and environment become closed, and so their joint

evolution is unitary. The state of the system alone after applying the channel can

be extracted by taking the partial trace over the environment,

E(ρ) = trE
(
U(ρS ⊗ ρE)U †

)
, (2.69)

where, ρS is the initial state of the system, ρE is the initial state of the environment,

and U is some unitary gate acting on the composite system. Equivalently, this can

be expressed using the Kraus representation:

E(ρS) =
∑
k

EkρSE
†
k, (2.70)

where the Kraus operators Ek are also called superoperators (since they act on

L(S) rather than HS). These operators must satisfy the normalization condition

that
∑

k E
†
kEk = 1. Finally, a quantum channel can be described using the Choi-

Jamiolkowski isomorphism (which is conceptually similar to the idea of an impulse

response of a classical channel). Introducing an identical system S ′ to S, and choos-

ing a set of orthonormal basis {|i〉}i for each of them, we can define the un-normalized

maximally entangled state as |Ψ〉 =
∑

i |i〉S |i〉S′ . The Choi-Jamiolkowski state J of

a quantum map E can be defined as follows.

J = (E ⊗ I)(|Ψ〉 〈Ψ|), (2.71)

The result of applying the channel to any state ρS can then be expressed as

E(ρS) = trS′ (J(I ⊗ ρᵀS)) . (2.72)

The complete-positivity of the channel E is equivalent to the positive definiteness

of J , i.e. J ≥ 0. The trace-preserving condition of E is equivalent to the condition

that trS′(J) = IS. The representations in Equations 2.69, 2.70, and 2.72 are all

equivalent for CPTP maps, one representation can be calculated from another.

2.2.2 The Lindblad Master Equation

The information-theoretic modelling with its way of abstracting out the exact physics

of the system is suitable for many applications including quantum information the-

ory, quantum error correction, and quantum tomography. However, it is not suffi-
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cient for quantum control applications, where we need to have more access to the

actual physics of the system. The purpose of quantum control is to find pulse se-

quences that drive the system to a desired target. Thus, we need to know exactly

how the pulses affect the dynamics of the system, and so we need a continuous-time

model rather than the discrete-time quantum channel model. If the system is closed,

we can just use the Liouville–von Neumann equation. When the system is open,

it becomes more complicated to model the dynamics. In this section, we describe

one approach which is the Lindblad master equation. The equation describes the

evolution of the system’s state ρS, subjected to a Hamiltonian HS, in the presence

of an interaction with the environment encoded by a set of dissipators Dk as

ρ̇S = L[ρS] = −i[HS, ρS] +
∑
k

Dk[ρS] (2.73)

L is called the Lindbladian, and the terms Dk take the form:

Dk[ρS] = LkρSL
†
k −

1

2

(
L†kLkρS + ρSL

†
kLk

)
, (2.74)

with each of the Lk being a superoperator. For few quantum systems, we can

derive exactly this form. However, for most quantum systems, this is only possi-

ble under very non-rigorous and non-justifiable approximations such as the “Born-

Markov” approximation, or some more justifiable approximations such as the “Ro-

tating Wave Approximation (RWA)” which is only valid in certain experimental con-

ditions. Other more rigorous approaches are the “weak-coupling limit” and “strong-

coupling limit” which may not be valid in actual experimental setups. Sometimes

it is possible to derive an effective Lindbladian by fitting measured data under free

evolution (absence of control). The problem is that this effective model does not

take into account the effect of controls. In other words, the control would change

the Lindbladian. For these reasons, we avoid working with master equations in this

thesis. Nonetheless, we present the idea for the sake of completeness as a major part

of the literature on quantum control relies on this formulation. In what follows, we

give a non-formal derivation of the Lindblad master equation. Starting from the

Kraus representation of a quantum channel, looking at the state of the system after

an infinitesimal increment in time,

ρS(t+ δt) =
∑
k

Ek(δt)ρS(t)E†k(δt). (2.75)
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By taking the limit as δt→ 0, then the infinitesimal change in ρ up to first order in

δt is

ρS(t+ δt) = ρS(t) + δtδρS +O(δt2) (2.76)

Assuming the Kraus operators can be expanded as power series in
√
δt, in the

form Ek = E
(0)
k +

√
δtE

(1)
k + δtE

(2)
k + · · · . We can express E0 arbitrarily utilizing

the system Hamiltonian HS in the form E0 = I + δt(−iHS + K) + O(δt2), and

Ek =
√
δtLk + O(δt). We need to ensure that we get an infinitesimal change in ρS

to the first order in δt, and also ensure that we keep the normalization of the Kraus

operators. This will be fixed by appropriately choosing K as will be shown later.

Getting back to the evolution equation and expanding it in terms of the chosen

representation of the Kraus operator

ρS(t+ δt) =
∑
k

Ek(δt)ρS(t)E†k(δt) (2.77)

= E0(δt)ρS(t)E†0(δt) +
∑
k>0

Ek(δt)ρS(t)E†k(δt) (2.78)

= ρS(t) + δt(−iHS +K)ρ(t) + ρ(t)δt(iHS +K†)

+ δt
∑
k>0

LkρS(t)L†k +O(δt2) (2.79)

= ρS(t) + δt

(
−i [HS, ρS(t)] +KρS(t) + ρS(t)K† +

∑
k>0

LkρS(t)L†k

)
+O(δt2). (2.80)

Now, for ρS(t+ δt) to be Hermitian, K must be Hermitian. So,

ρS(t+ δt) = ρS(t) + δt

(
−i [H, ρS(t)] +KρS(t) + ρS(t)K +

∑
k>0

LkρS(t)L†k

)
+O(δt2). (2.81)

Now, we need to fix K so that normalization of the Kraus operators is preserved.∑
k

E†kEk = E†0E
†
0 +

∑
k>0

E†kEk

= (I + δt(iH +K))(I + δt(−iH +K)) + δt
∑
k>0

L†kLk +O(δt2)

= I + δt(−iH +K) + δt(iH +K) + δt
∑
k>0

L†kLk +O(δt2)

= I + 2δtK + δt
∑
k>0

L†kLk +O(δt2) (2.82)
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So, for
∑

k E
†
kEk = I, neglecting higher orders of δt

K = −1

2

∑
k>0

L†kLk. (2.83)

Substituting back this result we get

ρS(t+ δt) = ρS(t) + δt

(
−i [H, ρS(t)]− 1

2

(∑
k>0

L†kLkρ(t) +
∑
k>0

ρ(t)L†kLk

))
+ δt

∑
k>0

LkρS(t)L†k +O(δt2) (2.84)

Now, if we take the limit as δt → 0, neglecting higher order terms in δt we finally

get the Lindblad master equation,

dρ(t)

dt
= L[ρ], (2.85)

where

L[ρS] = −i [H, ρ(t)] +
∑
k=1

(
Lkρ(t)L†k −

1

2
L†kLkρ(t)− 1

2
ρ(t)L†kLk

)
. (2.86)

As a final note, In this non-formal proof we assumed Markovian dynamics, which

means that ρS(t + δt) depends only on ρS(t), and not earlier times (hence the

first-order differential equations). In general, this may not be the case. For non-

Markovian dynamics, not only does the information dissipate from the system to

the environment, but it can also flow back from the environment to the system. It

is as if the environment has a memory that stores the information from the system.

2.2.3 Effective Observable Dynamics

The third approach for modelling open quantum systems, is through modelling the

effective dynamics of the observables using a modified interaction picture. At the

end, a quantum state is not directly measurable in experiment but can only be

reconstructed from measured observables. We will start with the usual interaction

picture, then see why it will not be suitable for our purpose, and finally present the

modified interaction picture that will yield the desired form.

As it is known the Schrödinger picture is where the states are time-dependent

while the operator are time-independent, which is the more famous picture. The

Heisenberg picture is the opposite, so the states are constants while the operators are

time-dependent. Finally, there is the interaction (Dirac) picture, where both states

and operators are time-dependent. The three pictures are equivalent to each other
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in the sense that they all yield the same expectation values of quantum observables,

which is what can be measured physically. We can also move from one picture to

another. The use of particular picture depends on the application, and one picture

can make calculations easier more than another picture.

The most general form of the Hamiltonian for an open quantum system can be

written in the form

H(t) = Hctrl(t) +HE(t) +HSE(t), (2.87)

where HE is the Hamiltonian acting on the environment, HSE is the coupling Hamil-

tonian acting on both system and environment, and Hctrl(t) is in the control Hamil-

tonian acting on the system including also the drifting Hamiltonian which acts as

the free evolution in the absence of control. In general, the coupling Hamiltonian can

be stochastic, in which case for each possible realization we get a different evolution

“trajectory”. In an actual experiment, it is only possible to measure expectations of

observables, by repeating a prepare-evolve-measure experiment multiple times and

averaging the results. Therefore, averaging over these realizations is implicit when

calculating analytically any observables. Now, starting with the system in the ini-

tial state ρS(0), the expectation of some observable O acting on the system at time

t = T is given by

E{O(T )} =
〈
tr [U(t)(ρS(0)⊗ ρE)U †(t)(O ⊗ I)]

〉
c
, (2.88)

where ρE is the initial state of the environment, the expectation 〈·〉c is taken with

respect to the noise realizations, and U(t) is the total unitary which can be expressed

as the time-ordered evolution of the total Hamiltonian H(t)

U(t) = T+e
−i

∫ t
0 H(s)ds. (2.89)

The problem with this form is that U(t) depends on both the noise and the control.

We are interested to find a form where we can separate both so that we can design

then protocols for dynamical decoupling, quantum control and quantum noise spec-

troscopy. So, we are going to move to the interaction picture to help us separate

the noise and control. This is a standard procedure. We start by separating the

Hamiltonian into two parts, H(t) = H0(t) +H1(t), H0(t) = Hctrl which includes the

free evolution term and the control terms, and H1(t) = HE +HSE, has all the noise

(environment) terms. Next, we define the unitary

U0(t) = T+e
−i

∫ t
0 H0(s)ds, (2.90)
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and use it to transform the states and operators as follows. First, the composite

state becomes

ρI(t) = U †0(t)ρSE(t)U0(t) (2.91)

= U †0(t)U(t)ρSE(0)U †(t)U0(t). (2.92)

The operator H0(t) does not change between the two pictures (because U0(t) com-

mutes with H0(t), conjugating H0(t) by U0(t) has no effect). Next, we transform

H1(t) to become HI(t) as

HI(t) = U †0(t)H1(t)U0(t), (2.93)

and consequently, the interaction unitary is

UI(t) = T+e
−i

∫ t
0 HI(s)ds. (2.94)

On the other hand, we know that the time-evolution of the state in the interaction

picture is given by

d

dt
ρI(t) = [HI(t), ρI(t)], (2.95)

which is equivalent to

ρI(t) = UI(t)ρI(0)U †I (t). (2.96)

By comparing this form with that in Equation 2.92 (and noticing that ρI(0) =

ρSE(0)) we find that

U(t) = U0(t)UI(t) (2.97)

which means we separated the noise and control parts. Thus, the expectation be-

comes

E{O(t)} =
〈
tr [U(t)(ρS(0)⊗ ρE)U †(t)(O ⊗ I)]

〉
c

(2.98)

=
〈

tr [U0(t)UI(t)(ρS(0)⊗ ρE)UI
†(t)U †0(t)(O ⊗ I)]

〉
c

(2.99)

Now, the problem with that form is that the initial state gets conjugated by the

noise unitary first. This will result in the dependence of the classical expectation

on the initial quantum state and will not facilitate expressing the optimal control

problem. This is why the conventional interaction picture does not solve the problem

completely. The form we need is the one where the state is conjugated with the
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control unitary first. So, we are going to modify the interaction picture as follows.

U(t) = U0(t)UI(t) (2.100)

= U0(t)UI(t)U0
†(t)U0(t) (2.101)

= U0(t)T+e
−i

∫ t
0 HI(s)dsU0

†(t)U0(t) (2.102)

= U0(t)

(
1− i

∫ t

0

HI(t1)dt1

+
(−i)2

2!

∫ t

0

∫ t

0

HI(t1)HI(t2)dt1dt2 + · · ·

)
U0
†(t)U0(t) (2.103)

=

(
1− i

∫ t

0

U0(t)HI(t1)U †0(t)dt1

+
(−i)2

2!

∫ t

0

∫ t

0

U0(t)HI(t1)
(
U †0(t)U0(t)

)
HI(t2)U †0(t)dt1dt2 + · · ·

)
U0(t)

(2.104)

=
(
T+e

−i
∫ t
0 U0(t)HI(s)U†0 (t)ds

)
U0(t) (2.105)

:= ŨI(t)U0(t). (2.106)

Notice, the second line is just multiplying the identity from left. In the fifth and

the sixth lines we multiplied U0(t) from the left to all terms in the infinite series

and U †0(t) from the right. We also resolved the identity between each HI term. This

means effectively the HI terms gets conjugated by U0(t) inside the time-ordered

exponential as in the last line. So, now we can finally express the expectation value

of the observable as

E{O(t)} =
〈
trSE

[
U(t)(ρS(0)⊗ ρE)U †(t)O

]〉
c

(2.107)

=
〈

trSE

[
ŨI(t)U0(t)(ρ(0)S ⊗ ρE)U †0(t)ŨI

†(t)O
]〉

c
(2.108)

=
〈

trSE

[
ŨI
†(t)OŨI(t)U0(t)(ρS(0)⊗ ρE)U †0(t)

]〉
c

(2.109)

=
〈

trSE

[
ŨI
†(t)OŨI(t)(U0(t)ρS(0)U †0(t)⊗ ρE)OO−1

]〉
c

(2.110)

= trS

〈[
trE
[
O−1ŨI

†(t)OŨI(t)ρE
]〉

c
U0(t)ρS(0)U †0(t)O

]
(2.111)

= trS

[
〈O−1ŨI

†(t)OŨI(t)〉U0(t)ρ(0)U †0(t)O
]

(2.112)

≡ trS [VOU0(t)ρS(0)U †0(t)O]. (2.113)

In the third line we applied the cyclic property of the trace twice. In the fourth

line we added an identity I = OO−1 at the end. In the fifth line, we applied the

cyclic property again, and moved the classical expectation inside and it acts only on
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the first part that depends on the noise (i.e. the ŨI). Note that we have also used

that trSE[VSE(AS ⊗ AE)] = trS[AS trE[VSEAE]].

Now, this is exactly the form we want, because we can recover the closed system

dynamics (H1 = 0, and thus UI = I, and so VO = I). The initial state is now

conjugated with U0 which is just the control part of the Hamiltonian which we have

access to. Thus, we can formulate different quantum control problems utilizing this

form, and the VO operator encodes everything about the noise and its interaction

with the control, independent on the initial state of the quantum system. It rep-

resents all the non-unitary effects that occur due to the noise. Thus, knowing the

VO operator completely determines the deviation of open system dynamics from

the corresponding closed system dynamics. This form is valid for any quantum

system (not necessarily qubits) as long as it is possible to write the interaction pic-

ture (which is the case for finite-dimensional quantum systems). Finally, calculating

those operators analytically is very difficult and requires again assumptions and ap-

proximations similar to that used in deriving a master equation. However, as will be

discussed later in Chapter 5, combined with machine learning techniques we show

that it is possible to estimate these operators for a quantum system experimentally

given some measurement data.

2.2.4 Other Modelling Approaches

There are other methods to model open quantum systems. There are variations

of the master equation such as the Bloch-Redfield master equation which relates

the evolution of a quantum state to the power spectrum of the noise affecting the

system. Similar to Lindblad master equation, deriving the equation depends on

some assumptions and approximations. Another information-theoretic framework is

the process tensor (also known as process matrix) in [11, 12] which is based on the

idea of quantum combs [13]. The process tensor can be thought of a map between

a sequence of control operations and the evolved state of the system, taking into

consideration interaction with the environment. The framework is general requiring

no assumptions on the noise, and thus is suitable for modelling non-Markovian

systems. It is also suitable if the control sequence is correlated (for example when

doing a feedback control). Finally, it has many foundational applications such as

quantum causality [14].

2.3 Application: Modelling a Noisy Qubit

We conclude the discussion on modelling quantum systems by giving an extensive

analysis of a noisy qubit undergoing dephasing, and how to apply the different
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modelling approaches discussed in the previous section.

2.3.1 Physical Model

Assume a qubit with the Hamiltonian

H(t) =
1

2
(Ωσz + f(t)σx) +

1

2
β(t)σz. (2.114)

The first term consists of the drifting (free evolution) which happens to be a rotation

around z-axis with frequency Ω, and control with a pulse sequence f(t) along x-

axis. The second term represents the noise, modelled by a random process β(t), and

thus we have no control over this term. This term effectively represents a random

rotation of the qubit around z-axis. The Hamiltonian of the system is stochastic.

This means that every time the qubit is initialized to the same state and under the

same control, the evolved final state will be random with some distribution related

to the distribution of the noise. In order to be able to find analytical closed-from

solution, we will assume that β(t) is a stationary, zero-mean, Gaussian process.

2.3.2 Free Evolution

Now, we will analyse the system in more detail. First, we will start with the free

evolution case (i.e. we do not apply any controls, f(t) = 0). In this case, the

two terms in the Hamiltonian commute, and so the evolution matrix of the system

obtained by solving Schrödinger’s equation over any time interval [t0, t1] is given by

Uf (t1, t0) = e−i
∫ t1
t0
Hdτ (2.115)

= e−i
1
2

∫ t1
t0

(Ω+β(τ))dτσz (2.116)

= e−i
1
2(Ω(t0−t1)+

∫ t1
t0
β(τ)dτ)σz . (2.117)

Assume we start with a general initial state at time t = 0,

ρS(0) =

(
ρ00 ρ01

ρ10 ρ11

)
, (2.118)

then the evolved state at time t = T given a realization of the noise process is

ρS(T )|β(t) = Uf (T, 0)ρS(0)Uf (T, 0)† (2.119)

= e−i
1
2
φ(T,0)σzρ(0)e

1
2
iφ(T,0)σz (2.120)

=

(
e−i

1
2
φ(T,0) 0

0 ei
1
2
φ(T,0)

)(
ρ00 ρ01

ρ10 ρ11

)(
ei

1
2
φ(T,0) 0

0 e−i
1
2
φ(T,0)

)
(2.121)
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=

(
ρ00 e−iφ(T,0)ρ01

eiφ(T,0)ρ10 ρ11

)
, (2.122)

where φ(t1, t0) = Ω(t1 − t0) +
∫ t1
t0
β(τ)dτ . This corresponds to a single trajectory of

the evolution. However, all other trajectories are possible evolutions, thus we need

to take an average over all possible realization of noise. In experiment we only have

access to expectation of observables. Therefore, we can write the final evolved state

of the system as

ρS(T ) = Eβ
{
ρS(T )|β(t)

}
(2.123)

=

(
ρ00 Eβ

{
e−iφ(T,0)

}
ρ01

Eβ
{
eiφ(T,0)

}
ρ10 ρ11

)
(2.124)

=

(
ρ00 Γ(T )ρ01

Γ(T )∗ρ10 ρ11

)
, (2.125)

and

Γ(T ) = 〈e−iφ(T,0)〉β (2.126)

= 〈e−i(ΩT+
∫ T
0 β(τ)dτ)〉β (2.127)

= e−iΩT 〈e−i
∫ T
0 β(τ)dτ 〉β (2.128)

= e−iΩT e−
T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω. (2.129)

where S(ω) is the power spectral density of the noise process β(t). The last step

utilizes the result of the calculation in 2.60. Now, define the coherence function at

time t = T to be

W (T ) : =

∣∣∣∣∣〈ρ01(T )〉β
〈ρ01(0)〉β

∣∣∣∣∣ (2.130)

= |Γ(T )|. (2.131)

This quantity is physically very significant and can be measured experimentally.

Consider doing a measurement along x-axis, the average expectation of the observ-

able at time t = T is given by

〈X(T )〉 = 〈tr (ρS(T )|βX)〉β (2.132)

=

〈
tr

(
ρ00 e−iφ(T,0)ρ01

eiφ(T,0)ρ10 ρ11

)(
0 1

1 0

)〉
β

(2.133)

=

〈
tr

(
e−iφ(T,0)ρ01 ρ00

ρ11 eiφ(T,0)ρ10

)〉
β

(2.134)
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= 〈e−iφ(T,0)ρ01 + eiφ(T,0)ρ10〉β (2.135)

= 2<
(
〈e−iφ(T,0)〉β ρ01

)
(2.136)

= 2<(W (T )ρ01) (2.137)

= W (T ) 〈X(0)〉 (2.138)

This means that the value of the observable would vary with time due to the pres-

ence of the noise. If W (T ) decays as T increases, then the observable would decay

till it reaches zero for large T . This is what is referred to as dephasing or deco-

herence. The state of the qubit loses its off-diagonal elements which encode the

“quantumness”, and eventually the state becomes diagonal (the completely-mixed

state or a classical state). The decay rate then determines the lifetime of the qubit.

This is an important aspect when designing quantum memories. Notice, that the

dephasing effect is basis-dependent. If we start with a state like |0〉, then we will

not observe decoherence under the given Hamiltonian as ∀t, ρ01 = 0. For this state

however, if the stochastic term in the Hamiltonian was in the form βx(t)σx, then

once again there is decoherence. Moreover, in the general case of multi-axis noise

(i.e. having the stochastic part of the Hamiltonian in the form
∑3

k=1 βk(t)σk), we

will observe decoherence for all states. Measuring W (T ) experimentally is easy. We

need to prepare a state where we can observe the decoherence (for instance for the

given Hamiltonian choose the eigenstate of the Pauli-X operator |+〉). In this case,

〈X(0)〉 = 1. Then we let the system evolve to time T , and measure the expectation

of the X observable (〈X(T )〉), and this value would correspond to W (T ). For the

free evolution case, the coherence is given by

W (T ) = e−
T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω (2.139)

The low frequency components of the PSD of the noise affects the coherence more

than the high frequency components. A worst case scenario would a coloured 1/fα

noise (which exists for many physical systems). In the limit as f → 0, we see that

S(0) → ∞, and thus W (T ) → 0, which means losing coherence rapidly. However,

this is not the end of the story. We will see later how to overcome this problem

using dynamical decoupling.

We can also represent the free evolution dynamics as a quantum channel. Fixing

the time at t = T , and using the Kraus operators:

E0 =
√

1− pRz(θ) (2.140)

E1 =
√
pRz(θ)σz =

√
pRZ(θ + π), (2.141)
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where

p =
1−W (T )

2
(2.142)

θ = ΩT (2.143)

Rz(α) = e−i
α
2
σz , (2.144)

we can write the evolved state in the form E(ρ) = (1 − p)E0ρE
†
0 + pE1ρE

†
1. We

can know proceed to calculate the Choi-Jamiolkowski state as follows. First, we

calculate the output of the map for the basis states,

E(|0〉 〈0|) = |0〉 〈0| (2.145)

E(|0〉 〈1|) = Γ(T ) |0〉 〈1| (2.146)

E(|1〉 〈0|) = Γ(T )∗ |1〉 〈0| (2.147)

E(|1〉 〈1|) = |1〉 〈1| . (2.148)

Next, using the definition of the Choi-Jamiolkowski state we get

J = (E ⊗ I)(|Ψ〉 〈Ψ|) (2.149)

= (E ⊗ I)(|0〉 |0〉+ |1〉 |1〉)(〈0| 〈0|+ 〈1| 〈1|) (2.150)

= (E ⊗ I)(|0〉 〈0| ⊗ |0〉 〈0|) + (E ⊗ I)(|0〉 〈1| ⊗ |0〉 〈1|)

+ (E ⊗ I)(|1〉 〈0| ⊗ |1〉 〈0|) + (E ⊗ I)(|1〉 〈1| ⊗ |1〉 〈1|) (2.151)

= |0〉 〈0| ⊗ |0〉 〈0|+ Γ(T ) |0〉 〈1| ⊗ |0〉 〈1|+ Γ(T )∗ |1〉 〈0| ⊗ |1〉 〈0|+ |1〉 〈1| ⊗ |1〉 〈1|
(2.152)

=


1 0 0 Γ(T )

0 0 0 0

0 0 0 0

Γ(T )∗ 0 0 1

 . (2.153)

We can verify the calculation by doing the inverse transformation as follows

E(ρ) = trS′(J(I ⊗ ρᵀ)) (2.154)

= trS′


1 0 0 Γ(T )

0 0 0 0

0 0 0 0

Γ(T )∗ 0 0 1



ρ00 ρ10 0 0

ρ01 ρ11 0 0

0 0 ρ00 ρ10

0 0 ρ01 ρ11

 (2.155)
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= trS′


ρ00 ρ10 Γ(T )ρ01 Γ(T )ρ11

0 0 0 0

0 0 0 0

Γ(T )∗ρ00 Γ(T )∗ρ10 ρ01 ρ11

 (2.156)

=

(
ρ00 Γ(T )ρ01

Γ(T )∗ρ10 ρ11

)
, (2.157)

which is exactly the evolution we obtained earlier.

Next, we show how to express the dynamics using the effective observables pic-

ture. Defining H0 = 1
2
Ωσz, and H1 = 1

2
β(t)σz, then at time t = T , we can evaluate

the control unitary as

U0(T ) = T+e
−i

∫ t
0 H0(s)ds (2.158)

=

(
e−i

1
2

ΩT 0

0 ei
1
2

ΩT

)
. (2.159)

We previously showed that the full evolution unitary is given by

U(T ) =

(
e−i

1
2

∫ T
0 (Ω+β(τ))dτ 0

0 e−i
1
2

∫ T
0 (Ω+β(τ))dτ

)
, (2.160)

thus, the interaction unitary can be calculated as

UI(T ) = U0(T )†U(T ) (2.161)

=

(
e−i

1
2

∫ T
0 β(τ)dτ 0

0 ei
1
2

∫ T
0 β(τ)dτ

)
, (2.162)

and

ŨI(T ) = U0(T )UI(T )U †0(T ) (2.163)

=

(
e−i

1
2

∫ T
0 β(τ)dτ 0

0 ei
1
2

∫ T
0 β(τ)dτ

)
. (2.164)

Now, we can evaluate the VO = 〈O−1ŨI(T )†OŨI(T )〉c operators for O ∈ {X, Y, Z}.

VX = 〈XŨI(T )†XŨI(T )〉c (2.165)

=

(
〈e−i

∫ T
0 β(τ)dτ 〉c 0

0 〈ei
∫ T
0 β(τ)dτ 〉c

)
(2.166)

=

e−T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω 0

0 e−
T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω

 . (2.167)
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Similarly,

VY = 〈Y ŨI(T )†Y ŨI(T )〉c (2.168)

=

e−T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω 0

0 e−
T2

4π

∫∞
−∞ S(ω)sinc2(ωT/2)dω

 . (2.169)

Finally, by noticing that ŨI(T ) commutes with Z, we get

VZ = 〈ZŨI(T )†ZŨI(T )〉c (2.170)

=

(
1 0

0 1

)
. (2.171)

2.3.2.1 Markovian Evolution

Consider now the special case when the noise is white (i.e. S(ω) = σ2). This means

that the noise at different time instants is uncorrelated. In this case, we find that

Γ(T ) = e−iΩT e−
1
2

∫∞
−∞ S(ω)|Y (ω)|2dω (2.172)

= e−iΩT e−
σ2

2

∫∞
−∞ |Y (ω)|2dω (2.173)

= e−iΩT e−
2πσ2

2

∫∞
−∞ |y(τ))|2dτ (2.174)

= e−iΩT e−πσ
2
∫ T
0 dτ (2.175)

= e−iΩT e−Tπσ
2

, (2.176)

where the third line follows from Parseval’s theorem. The coherence in this case is

W (T ) = e−Tπσ
2

. (2.177)

The observation here is that the evolution dynamics are Markovian. The fact that

there exist no correlations in the noise means that the environment is not storing

information from previous time instants, i.e. it has no memory. Mathematically, the

form of W (T ) being an exponential of the first-order polynomial of the evolution

time T , allows writing a first-order differential equation for ρS in the form of the

Lindblad master equation. This can be shown as follows.

ρ̇S =
d

dt

(
ρ00 e−T (πσ2+iΩ)ρ01

e−T (πσ2−iΩ)ρ10 ρ11

)
(2.178)

=

(
0 (πσ2 − iΩ)e−t(πσ

2+iΩ)ρ01

(πσ2 + iΩ)e−t(πσ
2−iΩ)ρ10 0

)
(2.179)
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=

(
0 (πσ2 − iΩ)ρ01(t)

(πσ2 + iΩ)ρ10(t) 0

)
(2.180)

=

(
0 −iΩρ01(t)

iΩρ10(t) 0

)
+

(
0 πσ2ρ01(t)

πσ2ρ10(t) 0

)
(2.181)

=
−1

2

(
iΩρ00(t) iΩρ01(t)

−iΩρ10(t) −iΩρ11(t)

)
− −1

2

(
iΩρ00(t) −iΩρ01(t)

iΩρ10(t) −iΩρ11(t)

)

+

(
πσ2ρ00(t) −πσ2ρ01(t)

−πσ2ρ10(t) πσ2ρ11(t)

)
−

(
πσ2ρ00(t) πσ2ρ01(t)

πσ2ρ10(t) πσ2ρ11(t)

)
(2.182)

=
−iΩ

2

(
ρ00(t) ρ01(t)

−ρ10(t) −ρ11(t)

)
− −iΩ

2

(
ρ00(t) −ρ01(t)

ρ10(t) −ρ11(t)

)

+
1

2
πσ2

(
ρ00(t) −ρ01(t)

−ρ10(t) ρ11(t)

)
− 1

2
πσ2

(
ρ00(t) ρ01(t)

ρ10(t) ρ11(t)

)
(2.183)

= −i
(

1

2
Ωσzρ(t)− ρ(t)

1

2
Ωσz

)
+ πσ2σzρ(t)σz − πσ2ρ(t) (2.184)

= −i
[

1

2
Ωσz, ρ(t)

]
+

1

2
πσ2

(
σzρ(t)σz −

1

2
(σzσzρ(t) + ρ(t)σzσz)

)
(2.185)

≡ −i[H, ρ(t)] + L1ρ(t)L†1 −
1

2

(
L1L

†
1ρ(t) + ρ(t)L1L

†
1

)
, (2.186)

where H = 1
2
Ωσz, and Lk =

√
πσ2

2
σz, which is exactly the Lindblad form ρ̇S = L[ρ].

2.3.2.2 Non-Markovian Evolution

Now, if the noise is coloured (i.e. the noise at different time instants is correlated),

then the situation changes. For simplicity, assume that the noise has a Lorentzian

PSD, S(ω) = 1
1+ω2 , then the overlap integral can be evaluated in closed-form as

Γ(T ) = e−iΩT e−
1
2

(T+e−T−1), (2.187)

which results in a coherence in the form

W (T ) = e−
1
2

(T+e−T−1) (2.188)

= e−
1
2
T 2+O(T 3) (2.189)

In this case, the evolution dynamics are non-Markovian. The environment is effec-

tively storing information from previous time instants which is modelled through

the correlation of the noise. Additionally, the exponent of the coherence function is

second-order in T and thus writing a Lindblad master equation is mathematically

impossible.
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2.3.3 Controlled-Evolution and Dynamical Decoupling

Now, let’s see how the model changes when we apply control. Assume we apply a

train of n-ideal instantaneous Dirac delta pulses along the x-axis. The pulses are

applied at time-instants {ti : 0 < ti < T}ni=1, and each with power π. In other words,

f(t) =
n∑
i=1

πδ(t− ti), (2.190)

The effect of one of these pulses is to introduce the evolution

Ux = e−i
π
2
σx = −iσx. (2.191)

The total evolution over the time interval [0, T ] is

U(T, 0) = Uf (T, tn)Ux · · ·UxUf (t1, t0)UxUf (t0, 0) (2.192)

= e−i
1
2
φ(T,tn)σz(−iσx) · · · (−iσx)e−i

1
2
φ(t1,t0)σz(−iσx)e−i

1
2
φ(t0,0)σz . (2.193)

Let’s find the matrix elements of this unitary Urs = 〈r|U(T, 0) |s〉 in the computa-

tional basis {|0〉 , |1〉}, define t0 = 0 and tn+1 = T ,

UxUf (tk+1, tk) |s〉 = (−iσx)e−i
1
2
φ(tk+1,tk)σz |s〉 (2.194)

= (−i)e−i
1
2
φ(tk+1,tk)(−1)s |s̄〉 . (2.195)

If we have even number of pulses we get

U(T, 0) |s〉 = (−i)ne−i
1
2

∑n
k=0 φ(tk+1,tk)(−1)(k+s) mod 2 |s〉 , (2.196)

while if we have odd number of pulses we get

U(T, 0) |s〉 = (−i)ne−i
1
2

∑n
k=0 φ(tk+1,tk)(−1)(k+s) mod 2 |s̄〉 , (2.197)

and so generally we get

U(T, 0) |s〉 = (−i)ne−i
1
2

∑n
k=0 φ(tk+1,tk)(−1)(k+s) mod 2 |(n mod 2)⊕ s〉 . (2.198)

So,

Urs = (−i)ne−i
1
2

∑n
k=0 φ(tk+1,tk)(−1)(k+s) mod 2 〈r|(n mod 2)⊕ s〉 . (2.199)
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Now if we define the switching function y(τ) that switches between +1 and -1 when-

ever the π pulse is applied, i.e.

y(τ) =
n∑
k=0

(−1)ku(τ − tk)u(tk+1 − τ), (2.200)

where u(t) is the unit step function, and define

φ̃(tk+1, tk) =

∫ tk+1

tk

(Ω + β(τ)) y(τ)dτ , (2.201)

then we can write the matrix elements of the evolution matrix as

Urs = (−i)ne−i
1
2

(−1)s mod 2
∑n
k=0 φ̃(tk+1,tk) 〈r|(n mod 2)⊕ s〉 (2.202)

= (−i)ne−i
1
2

(−1)s mod 2φ̃(T,0) 〈r|(n mod 2)⊕ s〉 . (2.203)

Neglecting the global phase shift, for even n the matrix can be written as

U(T, 0)|n even =

(
e−i

1
2
φ̃(T,0) 0

0 ei
1
2
φ̃(T,0)

)
, (2.204)

and the evolved state becomes

ρS(T )|n even,β(t) =

(
ρ00 e−iφ̃(t)ρ01

eiφ̃(t)ρ10 ρ11

)
. (2.205)

On the other hand for odd n, the evolution matrix can be written as

U(T, 0)|n odd =

(
0 ei

1
2
φ̃(T,0)

e−i
1
2
φ̃(T,0) 0

)
, (2.206)

and evolved state becomes

ρS(T )|n odd,β(t) =

(
ρ11 eiφ̃(t)ρ10

e−iφ̃(t)ρ01 ρ00

)
(2.207)

= σxρS(T )|n even,β(t)σx. (2.208)

Therefore, to obtain the same evolved state at time t = T , We either apply an even

number of pulses or apply an odd number of pulses and at the end of evolution

time apply an X-gate. In what follows, we restrict the control to this setting. The
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averaged evolved state becomes

ρS(T ) =

(
ρ00 Γc(T )ρ01

Γc(T )∗ρ10 ρ11

)
, (2.209)

with

Γc(T ) = 〈e−i
∫ T
0 (Ω+β(τ))y(τ)dτ 〉β (2.210)

= e−iΩ
∫ T
0 y(τ)dτe−

1
2

∫∞
−∞ S(ω)|Y (ω)|2dω. (2.211)

The last line follows from 2.60. |Y (ω)|2 is called the filter function, where Y (ω) is

the Fourier transform of the switching function y(τ). This means the location of the

pulses and the evolution duration T affects the filter function. This result is quite

significant. If we calculate the coherence function, we get

W (T ) = |Γc| (2.212)

= e−
1
2

∫∞
−∞ S(ω)|Y (ω)|2dω. (2.213)

This implies that if we want to suppress decoherence, then we need the value of the

integral in the exponent to be as close as possible to zero, so that the exponential

evaluates to 1. This means for different noise processes, we can engineer the pulses

such that the filter function has minimal overlap with the power spectral density

of the noise. This technique is referred to as Dynamical Decoupling (DD) and is

proven both theoretically (for finite dimensional environments) and experimentally

to be very successful. One of the oldest and most famous DD control sequences

is the CPMG sequence [15]. It is characterized by applying the π-pulses at time

instants tk = δkT , where

δk =
1

n

(
k − 1

2

)
(2.214)

The special case n = 1 corresponds to spin echo. Another technique is the Periodic

Dynamical Decoupling (PDD) sequence [16] described by

δk =
k

n+ 1
(2.215)

Practically, CPMG outperforms PDD for small n, but both perform equally for large

n [17]. There is also the Uhrig Dynamical Decoupling (UDD) sequence [18] which

is optimal for a noise with Gaussian PSD. It is described by

δk = sin2

(
πk

2(n+ 1)

)
. (2.216)
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(a) n = 4 (b) n = 10

Figure 2.1: The plot of the filter function for CPMG, PDD, and UDD sequences
where the evolution time is chosen to be T = 1, and the number of pulses is (a)
n = 4 and (b) n = 10.

In general, these control sequences will have switching functions with Fourier trans-

form in the form

Y (ω) =
1√
2π

∫ ∞

−∞
y(τ)e−iωτdτ (2.217)

=
1√
2π

∫ t

0

y(τ)e−iωτdτ (2.218)

=
1√
2π

n+1∑
k=0

∫ tk+1

tk

(−1)ke−iωτdτ (2.219)

=
1√
2π

n+1∑
k=0

(−1)k
e−iωtk+1 − e−iωtk

−iω
(2.220)

=
1√
2π

n+1∑
k=0

(−1)k
e−iωtk − e−iωtk+1

iω
(2.221)

=
1√
2π

(1)(1− e−ωt1) + (−1)(e−ωt1 − e−ωt2) + (1)(e−ωt2 + e−ωt3) + · · ·
iω

(2.222)

=
1√
2π

1 + (−1)n+1e−iωt + 2
∑n

k=1(−1)ke−iωtk

iω
. (2.223)

Figure 2.1 shows a plot of the filter function for an example of these sequences.

The plot shows that as ω → 0, the filter function almost vanishes, and the more

we increase the number of pulses n, the more it approaches 0. Finally there is

also the Concatenated Dynamical Decoupling (CDD) sequence [19] which is defined

recursively by concatenating basic pulse sequences together to form higher-order

sequences.

If the noise is white, then no matter how we design the pulses, the coherence



2.3. APPLICATION: MODELLING A NOISY QUBIT 35

will not be suppressed. This is reflected by the fact that the PSD of the noise

is a constant, and thus it will overlap with any filter function no matter how we

choose it. This technique works only if the noise is coloured. This result can also

be applied in reverse to learn the power spectrum of colored noise, which is referred

to as quantum noise spectroscopy and will be discussed later.

A final important thing to note is that a qubit with short lifetime (as measured

by the coherence for the free evolution) is not the end of the story. In fact, the

PSD of the noise may be shaped in such a way that facilitates the design of the

control pulses to maximize the coherence of the controlled evolution. Moreover,

this controlled qubit will outperform another qubit suffering from noise with a PSD

that makes designing the control difficult to implement experimentally (for example

due to limited bandwidth of some electronics). Therefore, the lifetime measures of

qubits (such as T1 and T2) do not provide the full story and should not be a base of

comparison between different realizations of qubits. The assessment must take into

consideration the PSD of the noise, and whether the experimental constraints can

still support the optimal control design.

We can also derive the effective observable dynamics for this case. Defining

H0 = 1
2
Ωσz + f(t)σx, and H1 = 1

2
β(t)σz, and restricting the control to have even

number of pulses, then at time t = T , we showed that the full evolution unitary is

given by

U(T ) =

(
e−i

1
2

∫ T
0 (Ω+β(τ))y(τ)dτ 0

0 e−i
1
2

∫ T
0 (Ω+β(τ))y(τ)dτ

)
. (2.224)

Similarly, we can calculate the full control unitary (which for the given Hamiltonian

would be the exact calculation if we set β(t) = 0)

U0(T ) = T+e
−i

∫ t
0 H0(s)ds (2.225)

=

(
e−i

1
2

∫ T
0 Ωy(τ)dτ 0

0 ei
1
2

∫ T
0 Ωy(τ)dτ

)
. (2.226)

Thus, the interaction unitary can be calculated as

UI(T ) = U0(T )†U(T ) (2.227)

=

(
e−i

1
2

∫ T
0 β(τ)y(τ)dτ 0

0 ei
1
2

∫ T
0 β(τ)y(τ)dτ

)
, (2.228)

and

ŨI(T ) = U0(T )UI(T )U †0(T ) (2.229)
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=

(
e−i

1
2

∫ T
0 β(τ)y(τ)dτ 0

0 ei
1
2

∫ T
0 β(τ)y(τ)dτ

)
. (2.230)

Now, we can evaluate the VO = 〈O−1ŨI(T )†OŨI(T )〉c operators for O ∈ {X, Y, Z}.

VX = 〈XŨI(T )†XŨI(T )〉c (2.231)

=

(
〈e−i

∫ T
0 β(τ)y(τ)dτ 〉c 0

0 〈ei
∫ T
0 β(τ)y(τ)dτ 〉c

)
(2.232)

=

(
e−

1
2

∫∞
−∞ S(ω)|Y (ω)|2dω 0

0 e−
1
2

∫∞
−∞ S(ω)|Y (ω)|2dω

)
. (2.233)

Similarly,

VY = 〈Y ŨI(T )†Y ŨI(T )〉c (2.234)

=

(
e−

1
2

∫∞
−∞ S(ω)|Y (ω)|2dω 0

0 e−
1
2

∫∞
−∞ S(ω)|Y (ω)|2dω

)
. (2.235)

Finally, by noticing that ŨI(T ) commutes with Z, we get

VZ = 〈ZŨI(T )†ZŨI(T )〉c (2.236)

=

(
1 0

0 1

)
. (2.237)

It is clear that in the absence of noise all three operators are the identity. Moreover,

they depend both on noise and control as discussed before. We were able to find a

simple closed form as we assumed the control is formed of ideal pulses and that the

noise is stationary zero-mean and Gaussian.

2.3.4 Numerical Simulation

The basic idea behind simulating the noisy qubit is to generate different realizations

of the noise process, evaluate the Hamiltonian for each realization, simulate the

time-ordered evolution to calculate the observables, and finally average over all

realizations. As a result of the central limit theorem, the more noise realizations

we average over, the more the sample average converges to the population average.

This procedure is repeated for each input state and measurement operator.

There are three basic components in the simulator. The first is a function that

calculates the time-ordered evolution of a Hamiltonian to generate a unitary. This is

based on approximating the calculation using Equation 2.66. The second component

is a simulator that generates random realizations of the noise given its power spectral
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density (PSD). The algorithm consists of three steps. First, a random phase is added

to each sample of the normalized desired PSD. Second, the complex-valued PSD is

concatenated with a flipped version that is also complex conjugated. This step is

done to ensure that the signal is symmetric around the middle (i.e the sample at

M/2). Finally, we take the inverse Fourier transform of the signal and this will

be real-valued as a result of the symmetry. We assume here that the desired PSD

is single-side band, which means that the total power of the signal is obtained by

integrating over positive frequencies only. The third component of the simulator

is the main loop that simulates the quantum measurement. Inside the loop, we

calculate the observables for each realization, and after that we average over all

realizations. A pseudocode of the simulator implementation is shown in Algorithm

1.

2.4 Characterization of Quantum Systems

Characterization refers to the process of determining the parameters of some mathe-

matical model of a quantum system given a set of experimentally acquired measure-

ments. This is an important method of verification of engineered quantum systems.

The relevant information about the system is encoded either through the state or

through evolution dynamics. In the section, we describe few standard characteriza-

tion techniques for finite-dimensional quantum systems.

2.4.1 Quantum State Tomography

The term ”tomography” refers to the process of reconstructing images from pro-

jections. In the quantum setting, quantum tomography refers to the process of

reconstructing mathematical descriptions of quantum systems using measurements

given an infinite number of identical copies of the system. These descriptions can

either be the quantum state of the system, the quantum channel representing the

evolution of the system, or the quantum measurement representing the detection

device. The most important problem is quantum state tomography, because the

other two characterizations can be transformed and formulated as a quantum state

tomography problem. In the literature, the term quantum state tomography can

also refer to the process of estimating the state of a continuous-variable quantum

system. If the system is discrete the problem is commonly known as quantum state

estimation and can be formulated as follows. Given a set of measurements {mi}Ki=1

obtained by measuring an unknown state ρ, using the operators {Xi}Ki=1, it is re-

quired to find an estimate for that quantum state. The basic assumption is that we

have an infinite copies of the unknown state, so that we can perform any required
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Algorithm 1 Monte Carlo simulation of a noisy qubit

function Evolve(H, δ)
U ← I
for t← 0,M − 1 do

Ut ← e−iHtδ

U ← UtU
end for
return U

end function
function GenerateNoise(S, T , M)

N ← M
2

for j ← 0, N − 1 do
φ← Random(0, 1)
Pj ← M√

T

√
Sje

2πiφ

QN−j ← P̄
end for
P ← Concatenate(P , Q)
β ← Re{ifft(P )}
return P

end function
function simulate(ρ, O, T , M , fx, fy, fx, SX , SY , SZ )

δ ← T
M

E ← 0
for k ← 0, K − 1 do

βx ← GenerateNoise(SX , T , M)
βy ← GenerateNoise(SY , T , M)
βz ← GenerateNoise(SZ , T , M)
for j ← 0,M − 1 do

t← (0.5 + j)δ
Hj ← 1

2
(Ω + βz(t)) σz + 1

2
(fx(t) + βx(t)) σx + 1

2
(fy(t) + βy(t)) σy

end for
U ← Evolve(H, δ)
E ← E + tr [UρU †O])

end for
E ← E

K

return E
end function

number set of measurements. The straightforward approach to solving this problem

is to realize that the problem constitutes a system of linear equations in the form

tr(ρ̂Xi) = mi, (2.238)

where ρ̂ is the required estimate, and is the only unknown. Thus, upon inverting

the system, we can obtain the estimate. The problem with this approach is that the

obtained estimate is not guaranteed to represent a physical state. In other words,
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the eigenvalues can be outside the allowed range. Consequently, other approaches

are needed to solve this problem. The most common methods are the maximum

likelihood and the least-squares methods which will be introduced in the next sec-

tion.

Another related issue is how to choose the set of measurements in order to esti-

mate the state. This is an interesting information-theoretic question. For example,

considering a qubit: if we only measure two of the Pauli operators, we cannot

uniquely determine the state till we measure the third Pauli operator. Another

way to investigate this question is to consider the space D(S) of density operators

defined for the system S. Each point in this space is a valid state of the system.

If we choose a basis for this space, we can uniquely describe each point in terms

of the basis. For a system of n qubits, the set of Pauli operators on local qubits

(i.e. {
⊗n

i=1 Xi}, where Xi ∈ {I,X, Y, Z}) form an orthonormal basis with respect

to the Hilbert-Schmidt inner product 〈A,B〉 = tr(A†B). For a general quantum

systems of dimension d, we can define a generalization of the Pauli orthogonal basis

{ujk, vjk, wl} for 1 ≤ j ≤ k ≤ d, and 1 ≤ l ≤ d− 1 where

ujk = |j〉 〈k|+ |k〉 〈j| (2.239)

vjk = −i(|j〉 〈k| − |k〉 〈j|) (2.240)

wl =

√
2

l(l + 1)

(
−l |l + 1〉 〈l + 1|+

l∑
j=1

|j〉 〈j|

)
. (2.241)

This set consists of d2 − 1 traceless Hermitian matrices which reduce to the usual

Pauli matrices for d = 2, and the Gell-Mann matrices for d = 3. Experimentally, we

might choose other basis for measurements that might be easier to implement. Also,

in many cases due to noise effects, we might choose to perform measurements using

an overcomplete basis to boost the robustness of the estimation procedure. Now,

this represents a major problem for systems with large number of qubits because in

this case d = 2n where n is the number of qubits. The reason quantum computing

is more powerful than classical computing is the very same reason that makes the

full characterization of a large system very difficult or even impossible. At the end,

the whole idea of tomography is to write a classical description of a quantum state

and this definitely will require exponential resources to do. Therefore, tomography

is only used for characterizing small quantum systems. For large systems, this is

a currently a major challenge and entirely different characterization techniques are

needed. This doesn’t decrease the importance of tomography as it is typically used

as first verification procedure for individual qubits as well as single and two-qubit

gates.
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2.4.1.1 Overview on the diluted maximum likelihood method

In this section an overview on the diluted maximum likelihood [20] is given. The

maximum likelihood method of quantum estimation is based on trying to find the

state ρ̂ that maximizes the log-likelihood function

log(L) =
∑
j

fj log(tr(ρ̂Πj)), (2.242)

where fj is the relative frequency of outcome j described by the POVM set {Πj}.
This can be achieved by doing iterations in the form

ρ̂k+1 = Rρ̂kR, (2.243)

where

R =
∑
j

fj
tr(ρ̂Πj)

Πj. (2.244)

This is the RρR algorithm. However, there is no guarantee that this form of update

equation will generally converge. So, a modification on the form of the update

equation is done to become,

ρ̂t+1 =
(I + εR)ρ̂t(I + εR)

tr ((I + εR)ρ̂t(I + εR))
. (2.245)

This is called the diluted maximum likelihood because it “dilutes” R by mixing it

with the identity operator I. The step parameter ε can be chosen arbitrarily and

can be constant or adaptive. When ε → ∞, the iterations revert back to the RρR

form. Choosing a value of ε � 1 ensures that after each iteration the likelihood

function is non-decreasing. On the other hand, a higher value of ε is better in terms

of speed of convergence. A fewer number of iterations is required to achieve the

same accuracy compared to a low value of ε.

An important thing to notice is that Pauli operators {X(i)}d2−1
i=1 do not form a

set of POVM. But fortunately it is easy to construct a set of POVM out of the Pauli

operators, by taking all the “up/down” projectors normalized. So, the POVM set

becomes { 1
d2−1

Π
(i)
↑ ,

1
d2−1

Π
(i)
↓ }

d2−1
i=1 .

Finally, maximum likelihood is a batch algorithm. So, the iterations are repeat-

edly run on a set of data. To modify this algorithm to become online, the iterations

must be performed on the dataset after each new data point obtained.
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2.4.1.2 Overview on the least-squares method

This section gives a short brief on the least-squares method for quantum estimation.

More details are given in [21]. The basic idea is to construct a parametric model of

the state in the form

ρ =
I

d
+

d2−1∑
i=1

θiUi, (2.246)

where the set {Ui}d
2−1
i=1 are some Hermitian basis, and θi = tr(ρUi) are the param-

eters. The problem of quantum tomography then becomes trying to estimate this

parameter vector given the measurement dataset. So given a set of measurement

operators represented using their “up/down” projectors in the form {Πj}2d2−2
j=1 =

{Π(i)
↑ ,Π

(i)
↓ }

d2−1
i=1 , the associated probabilities are

pj = tr(Πjρ) =
1

d
+

d2−1∑
i=1

θi tr(ΠjUi). (2.247)

These probabilities can be obtained experimentally but with some errors due to

performing finite number of shots. The noisy data is denoted by p̂j. By defining the

matrix expansion of the projectors in terms of the chosen basis Xi,j = tr(ΠiUj), the

dependent vector with components Yj = p̂j − 1
d
, the model can be rewritten as

Y = Xθ + e, (2.248)

where e is the error vector which converges to a normal distributed random variable

at the limit of very large number of measurements. The optimal parameter is defined

to minimize the sum of squared errors as

θ̂LS = argminθ(Y −Xθ)T (Y −Xθ), (2.249)

and the solution of this optimization problem is

θ̂LS = (XTX)−1XTY. (2.250)

After the estimation of the unknown parameter, the quantum state is reconstructed

as

ρ̂ =
I

d
+

d2−1∑
i=1

θ̂iUi. (2.251)
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The reconstructed state might be generally unphysical due to non-positivity of the

estimate. So, in this case the state must be projected back to the physical space.

One way to do is to redistribute the negative eigenvalues over all other eigenvalues,

until there are no more negative eigenvalues. It can be shown [22] that this is an

optimal projection method, in the sense that the projected state is nearest to the

unphysical state in terms of the Frobenius norm. This method is batch, but can be

adapted to become online by doing the whole procedure of estimation and projection

after each new data point obtained.

2.4.2 Quantum Process Tomography

Quantum Process Tomography (QPT) refers to the procedure by which an estimate

of the quantum channel affecting the quantum system is obtained from a set of

measured data. The procedure is to apply a set of input states {ρi}Ki=1, and estimate

the output states {E(ρi)}Ki=1. Then utilizing the Choi-Jamiolkowski isomorphism for

a CPTMP map discussed earlier, the problem can be formulated as estimating the

d2 × d2 positivize matrix J such that

E(ρi) = trS′ (J(I ⊗ ρᵀi )) . (2.252)

Similar estimation methods could be used, with the extra trace-preserving constraint

must be satisfied for the estimate besides positivity. Now, it is impossible to directly

measure E(ρi), and so quantum state estimation procedure has to be performed for

each input state. So even for few qubits, the overall procedure becomes too complex

and might be infeasible. The main application of QPT is characterizing quantum

gates to verify their operation, and this becomes a major challenge for large systems.

2.4.3 Quantum Noise Spectroscopy

Quantum Noise Spectroscopy (QNS) is a procedure that targets to obtain an es-

timate of the PSD of the noise affecting a quantum system. The idea is to the

quantum system itself as a sensor (probe) to study the environment. Going back to

Equation 2.213, we see that there are three quantities there. The coherence W (T ),

which as discussed before can be easily measured experimentally, the PSD of the

noise which in this application is assumed to be unknown, and finally the filter func-

tion which is known given a particular control sequence. So, this can be used to

actually estimate the PSD of the noise. One way is to use the Alvarez-Suter (AS)

method for QNS [23], which is based on discretizing the overlap integral, approxi-

mating the filter function as a series of impulses, and neglecting harmonics beyond

certain point np. In this case can express the logarithm of the measured coherence
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as

logW (t) = −1

2

∫ ∞
−∞

S(ω)|Y (ω)|2dω (2.253)

≈
np∑
k=1

SkAk, (2.254)

where Ak can be expressed in terms of the filter function. Now, if we choose a set of

DD sequences and for each sequence we measure the coherence experimentally, then

we can form a system of linear equations, which can be inverted to find the vector

Sk representing the sampled PSD of the noise. One way to choose this set is to fix

the type of DD sequence (for example CPMG), and each element in the set would

correspond to one choice of the number of pulses n. This method is useful; however

it suffers from multiple drawbacks. First, it depends on many approximations and

assumptions on the control pulses that allow us to simplify the overlap integral as a

discrete finite sum. This might not be valid for all cases (for example if the pulses

are not ideal and have finite width). Second, the overlap integral formula itself is

based on assumptions on the noise (stationary, zero-mean, and Gaussian). In a

practical situation where we are studying experimentally a new quantum system,

in the absence of any prior information about the noise, these assumptions are not

justified. Finally, because we are fixing the total evolution time T , there is a limit on

the resolution of the estimated PSD. So, probing low frequency components would

require long sequences. Additionally, if the control pulses have finite width (which

is the practical situation), then there will be an upper limit on how many pulses can

be included in one sequence, resulting in an upper limit on the largest frequency

component that can be estimated.

2.4.4 Other Techniques

There exist many other techniques in the literature for characterizing quantum sys-

tems in a fast growing field known as Quantum Characterization, Verification, and

Verification (QCVV). We mention here two examples. The first is Hamiltonian

learning [24–27]. In this case, the assumption is that the system evolves under a

Hamiltonian (and thus the system is closed). This reduces the complexity of QPT as

the goal is now estimating a d×d matrix rather than a d2×d2 matrix. The second is

Gate Set Tomography (GST) [28,29]. This is a characterization technique that takes

into consideration State Preparation and Measurement (SPAM) errors. The prob-

lem in standard QST and QPT is that we assume that the measurement operators

or the input states we perform experimentally are exact with no errors. However,

this might not be the case (for example there might be an over-rotations when ap-
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plying Pauli operators). GST solves this problem by applying a set of sequences of

gates. So, for example if we apply a Pauli X twice on a state, it should have no

effect (X2 = I). But, if we find a different state, then there exist over-rotations. So

GST aims to find the kind of sequences that are needed to discover such errors and

then given the experimental measurements have an estimate for the actual state and

operations happening in the quantum system. The main drawback of this method

is that it is computationally very intensive, and thus becomes challenging to apply

even for a system of few qubits.

2.5 Quantum Control

In this section, we give a brief overview on quantum control. We start with the

basic definition of the problem. Next, we discuss the typical control targets as

well as the common constraints that occur in actual experiments. After that we

discuss controllability of quantum systems using the Lie Algebra criteria, followed

by a discussion on the different control architectures. Finally, we end the section

with an overview on GRAPE, one of the most famous numerical quantum control

algorithms.

The Hamiltonian of any quantum system can be written in the general form

H(t) = H0(t) +
N∑
k=1

αk(t)Hk, (2.255)

where H0(t) is called the drifting Hamiltonian, the terms Hk are called the control

Hamiltonian, and αk(t) are the control pulses. The drifting Hamiltonian repre-

sents the free evolution of the system, possibly under the influence of static forces.

The control Hamiltonian part represents external dynamical forces that can be “con-

trolled” in a way to modify the dynamics of the system. Given a particular quantum

system, there will be a set of allowed control Hamiltonians that are experimentally

possibly to implement depending on the system. Quantum control then refers to the

problem of finding the set of control pulses given the drifting and control Hamiltoni-

ans such that a particular target objective is achieved. The most common objectives

are explained as follows.

2.5.1 Targets and Constraints

1. Target state:

It is desired that a system starting at state ρ(0) to evolve to some target state

ρT , at time t = T . This target could be relaxed to require only reaching a

state that is close enough to the target state using some distance measure.
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This can be expressed mathematically as F (ρ(T ), ρT ) ≤ ε, where ρ(T ) is the

evolved state, ε is some target distance (level of accuracy), and F is a distance

measure such as fidelity.

2. Target gate:

It is required that a system evolves according to some target unitary UT . This

means that whatever the initial state of the system is, we require that the

final state becomes ρ(T ) = UTρ(0)U †T , ∀ρ(0). This problem is generally more

difficult than the first problem in the following non-formal sense. To evolve

from a particular state to a target state, there is an infinite number of paths

connecting both states and any of them is a valid solution. However, in the

second problem the requirement is to transform every possible state the same

way, so it is more constrained in this case. Similarly, in this problem one could

relax the requirement to be reaching a unitary that is close enough to the

target unitary using some distance measure.

3. Decoherence suppression:

The aforementioned targets assume that the system is closed. If the system

is open (which is the case for most implementations), it becomes much more

complicated. In this case, the effects of decoherence need to be suppressed

first. As discussed previously, DD sequences can be designed to do this if we

have enough information about the noise. This is a target on its own with the

typical application of a quantum memory. The state of the system at time

t = 0 is required to stay unchanged until time t = T . This is also equiv-

alent to implementing the identity gate UT = I. In practical systems, such

a “pure” unitary evolution might not be possible, because the impossibility

of completely eliminating the noise (by the very definition of an open system

being in interaction with the environment). Thus, it is more practical that the

target is relaxed to become in the form F (ρ(T ), ρ(0)) ≤ ε.

4. Decoherence suppression and a target gate:

This is the most general target for an open quantum system. Besides targeting

to minimize the decoherence, it is required simultaneously to implement a

target quantum gate. This is more challenging because it becomes a multi-

object optimization problem. It can be the case that the optimal pulses that

minimizes decoherence are not optimal for implementing the gate, and vice

versa. There can also be a trade-off on how much each target it realized.

In general, the control problem is a contained optimization problem. The con-

straints come from the experimental capabilities (hardware specifications) that are

available to a particular system. The most common constraints are listed as follows.
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1. The pulse shape:

In many experiments, it is only possible to generate a particular type of wave-

forms such as Gaussian pulses or square pulses. Therefore, the solution of the

quantum control problem must be of the same pulse shape. Moreover, the

pulses need to be physical. For example, perfect Dirac delta pulses that usu-

ally occur in designing DD sequences, are impossible to implement physically.

We can only approximate the impulse by a narrow Gaussian or square pulse.

2. Limited pulse power:

In many experimental situations, there is a limitation on the maximum am-

plitude of the control pulse that can be applied. This can be due to hardware

specifications making it hard to generate pulses with arbitrary high ampli-

tudes. The other situation is where the system itself might break if a very

high amplitude pulse is applied (for example, extremely high voltages can

breakdown integrated photonic circuits).

3. Limited bandwidth:

There can be additionally limitations on the bandwidths of control signals that

can be generated in experiments. This might be due to the specifications of

the available waveform generator, or the control pulses will be upconverted to

a higher frequency band. In that situation, there will be a limitation on the

bandwidth due to the specifications of the modulation system.

4. The Evolution time:

It might be required to perform the quantum control in the shortest possible

time. Doing this allows implementing more quantum gates in the same time

interval which means increasing the overall execution speed of the quantum

algorithm. Also, this might be advantageous for noisy quantum systems, be-

cause the longer the evolution time, the more the qubits will decohere. When

the evolution time is to be minimized as well, the problem is referred to as

time-optimal quantum control. In general, there is a limitation on the shortest

possible evolution time known as the quantum speed limit.

2.5.2 Controllability

Before attempting to design the control pulses, we need to make sure that it is ac-

tually possible to achieve the target. For instance, consider a qubit undergoing a

closed evolution with both the drift and control Hamiltonians in the same directions

(say along z-axis). In this case, it is impossible to implement a Pauli-X gate, because

there is no term in the Hamiltonian that results in a X gate upon time evolution.

But, if we also have one other controllable direction (say y-axis), then in that case,
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we can design a control pulse sequence to implement the X gate. This problem is re-

ferred to as controllability which aims to find whether a particular quantum state or

quantum gate can be implemented given the drift and control Hamiltonians. For the

simple case of a qubit undergoing closed evolution, it is easy to answer the question

just by thinking geometrically about the Bloch sphere representation. However, for

more complicated systems (such as higher-dimensional systems (qudits), multi-qubit

systems, spin chains and lattices, etc.), we need a systematic way of answering the

question. It turns out the answer is known for the case of closed finite-dimensional

quantum systems with arbitrary control. We will give here a brief overview focusing

on the case where the control objective is a target unitary. The idea is to look into

the reachable set of unitaries starting from the identity (at t = 0, U(0, 0) = I). This

is the set of all unitaries we can reach given the drift and control Hamiltonians. It

is easier to study the problem with Hamiltonians (at the end any unitary can be

expressed in terms of some Hamiltonian in the form U = e−iH). Denoting the set of

reachable Hamiltonians by R, it turns out we have the following:

1. H0 +
∑N

k=1 λkHk ∈ R
This is because we can choose each of the control pulses αk(t) = λk.

2. ∀λ > 0 : H ∈ R =⇒ λH ∈ R
This can be achieved simply by rescaling the evolution time by λ.

3. I ∈ R
This follows from the quantum recurrence theorem which is a generalization of

Poincaré recurrence theorem. The theorem states that given a sufficiently large

but finite time, we can always reach the initial state of the system arbitrarily

close. In other words, for a Hamiltonian H, and some matrix distance ‖·‖,

∀T0 > 0, ∀ε > 0, ∃T > T0 :
∥∥e−iHT − I∥∥ < ε. (2.256)

This holds for any finite-dimensional quantum system. The rigorous proof of

the theorem depends on the fact that the set of unitaries U(d) of dimension

d <∞ is a compact space (closed and bounded), and thus any sequence in this

space will have have a convergent subsequence with the limit in the space. So,

if we define a sequence Un := e−iHn, then we can find a convergent subsequence

Un(k) → U . We can then write the limit

lim
k→∞

Un(k+T )U
†
n(k) = lim

k→∞
Un(k+T ) lim

k→∞
U †n(k) (2.257)

= UU † (2.258)

= I. (2.259)
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Equivalently from our definition of the sequence,

lim
k→∞

e−iH(n(k+T )−n(k)) = I, (2.260)

and so, by finally defining T0 = n(k + T )− n(k) ≥ T , the proof is complete.

4. H ∈ R =⇒ −H ∈ R
This also follows from the recurrence theorem. By observing that there exist

a time τ such that e−iHτ ≈ I. If we stop the evolution before that time

particularly at τ − 1, we find that e−iH(τ−1) = e−iHτe−i(−H) ≈ e−i(−H). This

implies that it is possible to obtain the evolution e−i(−H), and thus −H ∈ R.

5. H1, H2 ∈ R =⇒ (H1 +H2) ∈ R
This follows from the Lie-Trotter formula

lim
n→∞

(
e−iH1/ne−iH2/n

)n
= e−i(H1+H2) (2.261)

This means that if we apply whatever control sequence needed to implement

H2 for a very short time followed by that needed for realizing H1 also for very

short time, and we then we repeat alternating between both controls for a very

long time, effectively we implement the average of both Hamiltonians.

6. H1, H2 ∈ R =⇒ [H1, H2] ∈ R
This follows from the commutator formula

lim
n→∞

(
e−iH1/ne−iH2/neiH1/neiH2/n

)n
= e−i[H1,H2] (2.262)

This means that alternating between the control sequence to realize each of

−H2, −H1, H2, H1 each for a very short amount of time, and repeating for a

very long time can effectively implement the commutator [H1, H2].

Now, properties 1 – 5, implies the linear real span of the Hamiltonians {H0, Hk}
is in the reachable set. This implies that the reachable set must be closed under real

linear combinations and commutation operation. This is exactly the definition of a

Lie Algebra. In other words, the reachable set of Hamiltonians is the Lie Algebra

generated by the drift and control Hamiltonians. The lie group corresponding to

the Lie Algebra, represents the reachable set of unitaries. Therefore, the conclusion

is that if the target Hamiltonian is in the Lie Algebra, then theoretically we can

reach this target with arbitrary precision. Now, if we want to make sure that every

possible quantum gate is achievable, then we need to ensure that any arbitrary set

of basis for the space of Hamiltonians is a subset of the Lie Algebra. If this is the
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case, then by linearity of quantum mechanics, we can achieve any target because it

can be expressed as a linear combination of the basis.

There are two important points to mention in this context. First, this discussion

is only theoretical in the sense that it does not provide a practical way of finding

the control pulses. In other words, the guarantees mentioned 1 – 6 are asymptotic,

and thus it might not be practical to utilize these arguments (such as Trotteriza-

tion,...etc.) for pulse design. The second point is that under experimental control

constraints, it might not be possible to achieve the target even though a controlla-

bility study shows it is possible. For example, we might need a pulse with very high

power that exceeds the limits of a quantum device. In that case, there will be a limit

on the accuracy of the target. Finally, if the system is open or infinite-dimensional,

then the problem becomes more challenging and is a current subject of research.

We end this discussion with two examples. The first is a single qubit with

Hamiltonian H = σz + f(t)σx. We find that [σz, σx] = 2iσy. This means that the

set {σx, σy, σz} ⊂ R. But, we know that the set of Pauli’s form a basis for the space

of 2 × 2 Hermitian matrices, and thus any target Hamiltonian (and consequently

any quantum gate) can be implemented. The interesting observation is that we only

need one control pulse and rely on the fact that the qubit is naturally drifting. In

practice, relying on one control pulse, would probably require a longer evolution time

to achieve the target, and generally having more controls is better. On the other

hand, in many systems, having more controls can be challenging. For example,

superconducting qubits need to operate at cryogenic temperatures inside a dilution

fridge. However, the waveform generators and other control hardware are located

outside the fridge, and they are connected to the chip inside the fridge through

cables. The size of the fridge is limited, and thus the presence of a large number

of cables inside the fridge can become impossible simply because of the the lack of

space.

The second example is for a two-qubit system with Hamiltonian

H = σz ⊗ I + I ⊗ σz + fx1(t)σx ⊗ I + f1x(t)I ⊗ σx + fxx(t)σx ⊗ σx. (2.263)

This Hamiltonian represent a drifting along the Z-axis for each of the two qubits, a

local control on each qubit along X-axis, and a controllable coupling term between

the two qubits. If we calculate all possible commutators of these terms, including

commutators with the intermediate results, we can obtain the set {σi ⊗ σj} for

all possible Pauli’s including the identity, which spans the space of 4× 4 Hermitian

matrices. This is a known result also in quantum computation, where any two-qubit

gate can be decomposed into local Pauli gates and one entangling gate.
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2.5.3 Types of Quantum Control

Next, we will discuss the different architectures of quantum control systems. We

can categorize them in two different ways as follows.

2.5.3.1 Open-loop versus closed-loop control

Open-loop refers to the situation where the control pulses are designed beforehand

and then applied to the quantum system during operation. This requires the knowl-

edge of the dynamical model in order to be able to design the pulses. If the model

is not accurate enough, then the designed pulses will not perform well. Once the

pulses are designed over the time interval [0, T ], they are fixed and directly applied

to the system. On the other hand, closed-loop control refers to the case where

the control pulses are designed autonomously during operation through a feedback

mechanism. In this scenario, continuous quantum measurements are performed and

fed through a controller which evaluates the control pulses that are feedbacked to

the quantum system. This does not require full knowledge of the model since the

feedback mechanism can compensate for it. The task then becomes how to design

the controller such that the control target is achieved. As a result, the controller

becomes itself part of the system, and affects its evolution. Continuously monitoring

the quantum system will also affect the evolution, and thus the dynamics have to be

expressed including both the controller and the measurements. This becomes more

challenging, and usually requires a different set of mathematical tools. Particularly,

we know that quantum measurements are inherently stochastic. This means that

observing certain outcome will determine the post-measured state. As a result, the

usual description of the evolution using Schrödinger’s equation is not suitable, and

usually a stochastic differential equation is used [30]. This requires assumptions on

the way measurement process such as the statistical distribution of the outcomes, as

well as the Markovianity assumption [31]. This means that at any point in time, the

measurement outcome is used instantaneously by the controller to find the value

of the pulse at that moment, and then the outcome is thrown away without any

storage. The problem with this assumption is that practical controllers have a non-

flat frequency response due to the fact that any actual hardware (even as simple

as an RC circuit) cannot act as an ideal filter. So, the controller will always keep

memory of some previous measurement and its output can only be expressed as a

convolution integral. This makes it impossible to write a stochastic master equa-

tion, and the whole situation become much more challenging in this case. Moreover,

because of the way the dynamics of a quantum system work, the whole problem can

be considered a non-linear control problem, which is generally hard to study and

solve. The reason that most classical engineering feedback systems work perfectly,
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is that the practical systems are either linear, or can be linearised at some operating

point. In quantum mechanics however, the evolution itself is non-linear in the con-

trol pulses, and is not possible to linearise. Besides the difficulty of modelling and

designing feedback control in the quantum case, the actual implementation may also

be challenging. The controller should operate at the same speed as the quantum

system so that it can keep track of the evolution. In many systems, there will be

a gap between the fastest possible available electronics and the time scales of the

quantum system. As a result, quantum feedback control is much more challenging

and usually open-loop is preferred whenever possible.

2.5.3.2 Online versus offline control

This is another way of classifying quantum control architectures. Online control

refers to the case where the control pulses are designed based on probing the actual

quantum system. In other words, we directly access the system to get essential

information to design the pulses, and we do not use a model for the system. Offline

quantum control refers to the case where a computational model for the actual quan-

tum system is utilized to design the control pulses in place of the actual quantum

system. The parameters of the model are chosen based on an experimental char-

acterization of the system. Offline methods are usually preferred experimentally

to minimize the interaction with the quantum system. However, it is not possible

for large quantum systems because simulating such systems can quickly exceed the

limits of classical computation. Now, this categorization is independent on whether

we use open-loop or closed-loop control. For example, the GRAPE algorithm (will

be discussed later), is an open-loop technique. We obtain the pulses without having

to continuously monitor the system physically and feeding the measurement out-

come to a controller that is also physically connected to the system in feedback. We

just use numerical optimization to design the pulses. Now, this technique can be

implemented offline in which the system is simulated on a classical computer and

used with a optimizer. It can also be implemented online; in which case the numer-

ical optimizer will have access to the actual physical system to probe it whenever

needed. Another example is an atom in a cavity interacting with an electromag-

netic field in feedback mode. In this case, the field is applied to the cavity as an

input, and due to interaction with atom inside the cavity, the output field emerging

from the cavity will change (for example the number of photons can change due to

absorption/emission by the atom). This output field can then be processed by a

controller (for example through homodyne detection or photon counting) and then

feedbacked again to the cavity. This is a closed-loop control system. There is contin-

uous monitoring of the atom through the measurement on the fields. The controller

can also be tuned online or offline. In the offline case, a computer simulation of
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the atom–field system can be used to tune the controller. In the online mode, the

controller is connected to the actual system, and tuned in place.

2.5.4 Overview on GRAPE

In this section, we give an overview on one of the most famous and widely used

numerical algorithms for quantum control, which is Gradient Ascent Pulse Engi-

neering (GRAPE) [32]. This is an open-loop numerical technique that can be used

to design control pulses under experimental constraints. It is based on three ideas.

The first idea is to discretize the control pulses over the evolution duration into short

time steps, such that the evolution during each time interval can be approximated

by a simple matrix exponential of the Hamiltonian rather than a time-ordered ex-

ponential. This requires understanding the time scales of the system to ensure no

variations are happening during one time step. In classical control, this is usually

referred to as bang-bang control when the pulses are piecewise constant. This fa-

cilitates the design process, because now we have a parametrization of the control

pulses, and so they can be expressed as a real high-dimensional vector rather than a

continuous function. This makes numerical optimization much easier, and standard

tools such as gradient ascent can be used. Moreover, constraints such as limited

amplitudes can be taken into consideration very easily because it translates directly

bounds on the amplitude of the pulses at each time step. In other words, the search

space becomes compact. The second idea is expressing the target as a cost function

including global constraints (such as total power or bandwidth of the control signal).

For state transfer this would be simply the fidelity between the target state and the

actual state, and for gate implementation this would be the fidelity between the

target unitary and the actual evolution. The final and the most remarkable idea is

calculating the gradient of the cost function with respect to the pulse amplitudes at

each time step in a closed-form. The algorithm can then proceed as any gradient-

based approach. We start with a set of random amplitudes for each time step. Next,

we calculate the gradient of the cost function, and finally we update the amplitudes

using gradient ascent. Now, we will show an example of this approach for control to

achieve a target state ρT . Going back to Equation 2.255, if we discretize the evolu-

tion duration [0, T ] into M time steps of length ∆t = T/M , denoting the amplitude

of kth control pulse at time step j by αk(j), starting from state ρ(0) we can write

the evolved state at time t = T as

ρ(T ) = UM · · ·U1ρ(0)U †1 · · ·U
†
M , (2.264)
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where each propagator is defined as

Uj = e−i∆t(H0+
∑N
k=1 αk(j)Hk). (2.265)

The cost function can be written as

Φ0 = 〈ρT |ρ(T )〉 (2.266)

= 〈ρT |UM · · ·U1ρ(0)U †1 · · ·U
†
M〉 (2.267)

= 〈U †j+1 · · ·U
†
MρTUM · · ·Uj+1|Uj · · ·U1ρ(0)U †1 · · ·U

†
j 〉 (2.268)

:= 〈λj|ρj〉 . (2.269)

The third line follows from the invariance of the trace under cyclic permutations,

ρj is the evolved state at time step j due to forward propagation starting at time

t = 0, and λj is the backward propagated target state from time t = T . It can be

shown that up to first order in δt, the gradient of the cost function can be written

compactly as

δΦ0

δαk(j)
= −〈λj|i∆t[Hk, ρj]〉 . (2.270)

So finally, the update equation for the control pulses would be

αk(j)→ αk(j) + η
δΦ0

δαk(j)
, (2.271)

where η is the step size for the gradient ascent. If we repeat the iterations for

enough number, making sure ∆t is small enough, then we can find the optimal

pulse sequence. It is important to notice that due to using gradient ascent, the

obtained solution is a local maximum with no guarantee that is global maximum.

Also, we need to choose the step size carefully to ensure convergence at a reasonable

rate. Finally, including amplitude constraints can be implemented by replacing the

updated pulse amplitude by the maximum or the minimum allowed value whenever

the update results in an out-of-range value.

There are many possible extensions and modifications to this idea. For in-

stance, the update rule can be modified to include higher-order gradients as well

as momentum-terms [33, 34]. The step size can also be chosen adaptively. Another

related algorithm is the Chopped Random Basis (CRAB) [35] which works similarly

but the control signal is represented in some basis (such as the Fourier basis), trun-

cated to a maximum number of components (harmonics in case of Fourier basis).

This makes the optimization procedure more efficient. Randomness is introduced to

the basis in order to enhance the convergence. Finally, with the recent development
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of auto-differentiation and numerical packages such as Tensorflow, similar control

algorithms have been developed [36–38].

2.6 Conclusion

In this chapter, we gave an overview on three main aspects of studying quantum

systems. These are also consecutive steps in the design flow of any engineered quan-

tum system. The first aspect is how to mathematically model a quantum system in

the presence of noise. We introduced three methods: modelling noise as a quantum

channel, Lindblad master equation, and effective observable dynamics. We applied

these three methods to model a qubit undergoing dephasing due to interaction with

a classical environment. The second aspect is characterization of a quantum system

given experimental measurements. This can be used to characterize quantum states,

processes, and noise. Finally, we gave an overview on quantum control, discussing

the problem setting, controllability of finite-dimensional closed quantum systems

and an overview on GRAPE as a numerical optimal control method. In the next

chapter, we are going to introduce a novel method to characterize quantum states

efficiently inspired by a classical machine learning algorithm.



Chapter 3

Efficient Online Quantum State

Estimation

Abstract In this chapter, we explore an efficient online algorithm for quantum

state estimation based on a matrix-exponentiated gradient method previously used

in the context of machine learning. The state update is governed by a learning rate

that determines how much weight is given to the new measurement results obtained

in each step. We show convergence of the running state estimate in probability

to the true state for both noiseless and noisy measurements. We find that in the

latter case the learning rate has to be chosen adaptively and decreasing to guarantee

convergence beyond the noise threshold. As a practical alternative we then propose

to use running averages of the measurement statistics and a constant learning rate to

overcome the noise problem. The proposed algorithm is numerically compared with

batch maximum-likelihood and least-squares estimators. The results show a superior

performance of the new algorithm in terms of accuracy and runtime complexity.

3.1 Introduction

The field of quantum information processing has grown rapidly over the past decade,

largely motivated by the wide range of prospective applications of quantum com-

puting, quantum cryptography, and quantum communications. However, building

scalable quantum devices is still an enormous challenge. A core unsolved problem

is the efficient characterization of quantum systems of intermediate size—can we

check efficiently whether a quantum device comprised of a few qubits performs as

intended? Practical considerations and, in particular, efficiency of the estimation

procedure are at the forefront as quantum systems move beyond the curiosity of

experimental physics to prototype quantum technology devices.

The most fundamental characterization problem concerns state estimation—

55
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determining an unknown state of a quantum system using a series of different mea-

surements. This procedure is referred to as quantum state estimation or quantum

state tomography. Quantum state estimation usually refers to estimating the state

using incomplete information, whereas quantum state tomography is often used to

describe the situation where complete (and sometimes even noise-free) information

about the state is assumed. The two terms can be used interchangeably, though

we stick to the former throughout the chapter. The literature on quantum state

estimation is extensive (see, e.g. the survey text [39]) with methods ranging from

simple linear inversion to least-squares (LS) regression [21], maximum likelihood

estimation (MLE) [20, 40], methods based on compressed sensing [41, 42], and the

Bayesian approach (see, e.g., [43]). The maximum likelihood method is considered

optimal in the sense that it yields a valid state that maximizes the probability of the

observed data, and converges to the true state in the limit of many measurements.

A disadvantage of the method is that it often yields estimates at the boundary of

the state set, i.e. states that are rank deficient.

Gradient-based approximation methods [44, 45], promise to be much faster but

they can produce non-physical states (with the estimate either having negative eigen-

values, or being unnormalized) and convergence is in many cases not guaranteed.

The former problem can be solved in practice by projecting the state back into the

physical space [22]. The same problem is also present in linear regression meth-

ods. The matrix exponentiated gradient (MEG) method has found use in classical

machine learning [5, 6] and offers an appealing alternative as it by construction en-

sures positive semidefiniteness of the matrix estimate. In [46], MEG was applied to

perform quantum tomography on qubits and approximate the maximum likelihood

estimate efficiently. In this chapter, we chose MEG among other online estimation

methods as we can show strong convergence results. Other efficient methods such

as projected-gradients would be also interesting to explore, but this is outside the

scope of this chapter.

In this work, we use the MEG technique to devise an efficient online estimator

for quantum states. Our algorithm satisfies the following three desiderata: (1) it

is online—providing a running estimate of the state as data is collected; (2) it is

fast—its runtime scales well with the dimension of the system; and (3) it comes

with a convergence proof. Many other techniques satisfy some of these properties,

but we are not aware of any that satisfy all. The main results of our work can be

summarized as follows.

� We present the MEG algorithm suitable for online quantum state estimation

and robust to noise.

� We prove convergence for noiseless and noisy measurements.
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� We numerically compare one of the proposed algorithms with online versions

of MLE and LS methods and find that it converges equally fast.

� The proposed algorithm is computationally more efficient than other approaches

(such as online versions of MLE and LS), scaling as O(d3) instead of O(d4),

where d is the dimension of the quantum system.

Our algorithm is naturally online, which makes it interesting for many appli-

cations. For example, when large amounts of measurements need to be taken to

verify a state or when the state is likely to change over time, it can be beneficial to

have a running estimate that allows for a rapid diagnosis of error. While any batch

algorithm (like the maximum likelihood estimator) can be run on a subset of the

initial data points to create an online estimate, this creates a significant overhead

and can be avoided using an online estimator.

Related work: A different perspective on quantum state learning has been taken

in [47, 48] where instead of learning a full description of the state the goal is only

to predict future measurement outcomes. Concurrent with our work, this approach

has also been generalized to the online setting in [49], also using variations of the

MEG method. The main difference is that their work targets obtaining predictions

of future measurement outcomes based on previous ones, which can be achieved

without full state tomography. The authors show, somewhat surprisingly, that this

can be done up to constant error using only a number of measurements linear in

the number of qubits. In contrast full characterization requires exponentially many

measurements (see, e.g. [50]). Second, the error criterion to be minimized is based

on a mistake bound (i.e. the number of time steps where the prediction was far

from the true value), whereas we aim to show asymptotic convergence to the true

state. A technical consequence of this is that in [49] the learning rate can be chosen

to be a constant whereas we find that for convergence a decreasing learning rate is

necessary.

3.2 Summary of Main Results

Let us first describe the MEG update rule (see also Section 3.3 for more details).

We assume that the true state, ρ, is finite-dimensional. The update algorithm takes

four inputs: ρ̂t is the estimate of ρ calculated in the previous step; Xt and ŷt are

the observable and measurement outcome at time step t; and ηt is the learning rate

at time step t. The algorithm then returns the next estimate of the state, ρ̂t+1, as

follows.
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Algorithm 2 Matrix-exponentiated gradient update rule for quantum state esti-
mation

function Update(ρ̂t, Xt, ŷt, ηt)
Gt+1 ← log(ρ̂t)− 2ηt(tr(ρ̂tXt)− ŷt)Xt . correct by the gradient of the loss

function
return ρ̂t+1 ← exp(Gt+1)

tr exp(Gt+1)
. our next estimate, properly normalized

end function

First, we introduce the use of MEG for online quantum state estimation in the

ideal case where there is no noise in the measurements. This case may approximate

the situation where experimentally a very large number of shots of each measurement

are taken. The number of shots refers to the number of copies of the state that

are needed to estimate the counts of each possible outcome. So, first the initial

estimate is chosen arbitrarily to be the completely mixed state, i.e. ρ̂1 = 1
d
Id. Next,

a measurement operator Xt is selected at random, and the noiseless measurement

is done to obtain ŷt = tr(ρXt). In this setting the learning rate is chosen to be any

constant such that 0 < η < 1
2
. Finally, the estimate is updated according to the

MEG rule as in Algorithm 2. The estimate in this case converges in probability to

the true state if the random set of measurements form a unitary one-design, e.g. if

they are Pauli measurements in the case of one or more qubits. In other words, we

show that for all δ > 0,

lim
t→∞

Pr {‖ρ̂t − ρ‖F < δ} = 1, (3.1)

where ‖·‖F denotes the Frobenius norm (or any other matrix norm) and the probabil-

ity is taken over the choice of measurements. In fact, we can show that convergence

in Frobenius norm is essentially as fast as 1/
√
t in the following sense. For any

α ∈ (0, 1
2
), we have

lim
T→∞

Pr

{
‖ρ̂t − ρ‖F <

1

tα

}
= 1 . (3.2)

Here the probability is taken over the measurement choices as well as over t uniformly

chosen from the set {1, 2, . . . , T}. Essentially this tells us that the probability of

a random t exceeding the bound 1/tα vanishes, even though we cannot guarantee

that the bound is satisfied for any fixed t. The proof of this behavior is presented

in Section 3.4.2.

Let us next discuss the (more realistic) case of noisy measurements. Here we are

taking a finite number of shots per measurement so that ŷt is a random variable with

mean tr(ρXt) and a variance that depends on the number of shots. In this noisy

case the previous scheme will not converge. To see this, assume at some iteration
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Figure 3.1: Simulation results for different multi-qubit systems: (a) 1-qubit, (b)
2-qubit, (c) 3-qubit, and (d) 4-qubit. The infidelity is averaged over 1000 randomly
generated quantum states and plotted versus the iteration number. The three lines
correspond to the proposed matrix exponential gradient (MEG) method, maximum
likelihood estimator (MLE) and least-squares (LS) estimator. The number of shots
per measurement is taken to be 1000 shots.

we hit the true state, ρ̂t = ρ. We then see that even for this state the gradient will

be non-zero because in general ŷt 6= tr(ρXt) and thus the update rule will push the

estimate away from the true state. To avoid this behavior, we propose a scheme

with an adaptive, decreasing learning rate. We show that a convergence guarantee

in the form of (3.2) holds, although the convergence will be slower. To achieve this,

for any α ∈ (0, 1
4
), we set the learning rate to ηt = 1

4
t−β with β = 3

4
− α to find that

the MEG algorithm satisfies

lim
T→∞

Pr

{
‖ρ̂t − ρ‖F <

1

tα

}
= 1 , (3.3)

where the probability is taken over the measurement choices and outcomes, as well

as t uniformly from the set {1, 2, . . . , T}. Section 3.4.3 discusses the proof of this
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statement.

Finally, for our numerical testing in low dimensions we propose another approach

to solve the problem with noisy measurements by using a running average of the

measurement outcomes for each measurement. This is effectively equivalent to in-

creasing the number N of shots when certain measurements are repeated. This

means that eventually the algorithm approaches the noise-free case and convergence

is thus ensured (we leave this as an informal statement). Moreover, numerical simu-

lations show that this method converges faster than using an adaptive learning rate.

Figure 3.1 compares the convergence of our algorithm to an MLE and LS estimator

for 1-, 2-, 3- and 4-qubit systems, showing that the proposed algorithm converges to

the other two methods. We use infidelity between the true state ρ and the estimate

ρ̂t as an accuracy measure, which is defined as 1−
(
tr
∣∣√ρ√ρ̂t∣∣)2

. So, in terms of ac-

curacy measured by infidelity, MEG can perform as well as other methods. Further

numerical results can be found in Section 3.5.

In terms of complexity however, MEG outperforms the other methods with com-

plexity of O(d3) per update compared to O(d4) for MLE and LS. The bottleneck for

MEG is the matrix exponentiation step in the update as seen in Algorithm 2.

3.3 Preliminaries

We give a detailed description of the problem of online quantum state estimation

and an overview of the matrix-exponentiated gradient (MEG) update rule.

3.3.1 Problem Statement

Given a quantum system in an unknown state ρ, it is required to find an estimated

quantum state ρ̂, based on the classical outcomes of some measurements performed

on copies of the system. The system has dimensions d, and so for the case of an

m-qubit system, we have d = 2m. For the numerical simulations in this chapter we

consider such m-qubit systems and perform Pauli measurements on each individual

qubit. We shall denote the set of measurements operator by {X [i]}d2−1
i=1 .

The outcome of such a binary measurement is a classical bit. We shall call

these outcomes “up” and “down” corresponding to the ±1 eigenvalues of the Pauli

operator. In order to do tomography, we assume that we have an ensemble of

identically prepared quantum systems in the same unknown state ρ, so we can

perform independent measurements on each of the subsystems, and calculate the

average outcome. So, selecting a measurement operator Xt = X [i(t)] at time step

t, the expected value of the measurement denoted by yt as predicted by the Born

rule is given by yt = tr(ρXt), while the actual average we calculate if we repeat the
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experiment N times is the random variable

ŷt =
n↑ − n↓
N

=
2n↑ −N

N
. (3.4)

Here, n↑ is the number of times the “up” outcome was observed, while n↓ is the

number of times the “down” outcome was observed. We know that n↑ follows a

binomial distribution. Given a measurement operator represented in terms of its

eigenvalue projectors as Xt = Π↑ − Π↓, we have n↑ ∼ B(N, p) with p = tr(ρΠ↑). It

is then easy to verify that

E{ŷt} = 2p− 1 = yt , and Var{ŷt} =
4p(1− p)

N
=

1− y2
t

N
. (3.5)

We can then repeat the whole procedure and obtain a sequence of data points

in the form {(X1, ŷ1), ...(Xt, ŷt), ...}. Notice that the measurement outcomes ŷt form

an independent and identically distributed (i.i.d.) set of random variables. Since we

are proposing an online algorithm, we do not have the whole data set in advance.

We obtain one point at a time, and use it to update an estimate ρ̂t of the true state.

We would like that ρ̂t converges to ρ as t increases.

3.3.2 The Matrix-Exponentiated Gradient Method

The MEG method was proposed in [5, 6] for some classical machine learning appli-

cations and symmetric matrices. The algorithm trivially generalizes to Hermitian

matrices. Given a new data point (Xt, ŷt), the loss function at time step t, evaluated

for a general quantum state σ, is defined as

Lt(σ) := (tr(σXt)− ŷt)2. (3.6)

The gradient of the loss function at time step t is then

∇Lt = 2(tr(σXt)− ŷt)Xt. (3.7)

Consider now the following online cost function

D(ρ̂t+1||ρ̂t) + ηtLt(ρ̂t+1), (3.8)

whereD is Umegaki’s quantum relative entropy [51] defined as D(ρ||σ) = tr(ρ log(ρ)−
ρ log(σ)) for any two states ρ and σ, and ηt is the learning rate. This cost function

represents two conflicting goals. The first one is to have an estimate that is near

the previous estimate, quantified by the relative entropy. This is important because

in the online setting of the problem, we do not want the algorithm to forget what
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it has learnt so far. The second goal is to move the new estimate so that the loss

function at the new data point is hopefully smaller. The learning rate ηt controls

this trade-off. Minimizing the cost function with respect to ρ̂t+1 by taking the gra-

dient (see Appendix A in [5] for the details of the calculation) and setting it to zero

results in

log(ρ̂t+1) = log(ρ̂t)− η∇Lt(ρ̂t+1)− I, (3.9)

where I denotes the identity matrix. Now, since we cannot find an explicit form

for ρ̂t+1, we may approximate ρ̂t+1 by ρ̂t in the gradient to arrive at log(ρ̂t+1) =

log(ρ̂t)− η∇Lt(ρ̂t)− I, or, equivalently,

ρ̂t+1 = exp (log (ρ̂t)− η∇Lt(ρ̂t)− I) . (3.10)

This form of the update rule ensures that if we start with a positive definite matrix

ρ̂t, and a Hermitian operator Xt, then we are sure that the new estimate ρ̂t+1 is

positive definite. This is because the terms inside the exponential function are

Hermitian, and thus the matrix exponential results in a positive definite matrix.

Next, we want to make sure that the estimate has unit trace, to be a valid quantum

state. So, we normalize to finally obtain the MEG rule:

ρ̂t+1 =
exp (log (ρ̂t)− η∇Lt(ρ̂t))

tr (exp (log (ρ̂t)− η∇Lt(ρ̂t)))
. (3.11)

The update rule can also be expressed in the following compact alternative form:

Gt = Gt−1 − η∇Lt(ρ̂t), G0 = log(ρ̂0), and ρ̂t =
exp(Gt)

tr exp(Gt)
. (3.12)

3.3.3 Auxiliary Lemmas

In this Subsection, we present some auxiliary lemmas needed for some proofs. We

will start by stating the following lemma [5], which is proved as Lemma 1 in [52].

Lemma 1. Let 0 ≤ q ≤ 1, then for any p,

log (1− q (1− exp (p))) ≤ pq +
p2

8
. (3.13)

Next, we state the Golden-Thompson inequality [53,54].

Lemma 2 (Golden-Thompson Inequality). Let A and B be two Hermitian matrices,

then

tr(exp(A+B)) ≤ tr(exp(A) exp(B)). (3.14)
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The following result is presented as Lemma 2.1 in [5].

Lemma 3 (Jensen’s Inequality). Let 0 ≤ A ≤ I, and x, y ≥ 0, then

exp(xA+ y(I − A)) ≤ exp(x)A+ exp(y)(I − A) (3.15)

= I exp(y) + (exp(x)− exp(y))A. (3.16)

Finally, we state the following lemma relating convergence in mean to conver-

gence in probability.

Lemma 4. Given a sequence of positive random variables Zt,

lim
t→∞

E{Zt} = 0 =⇒ ∀δ > 0, lim
t→∞

Pr {Zt ≤ δ} = 1. (3.17)

Proof. The statement

lim
t→∞

E{Zt} = 0. (3.18)

is equivalent to the statement

∀ε > 0, δ > 0, ∃Tδ : ∀t > Tδ,E{Zt} ≤ δε. (3.19)

Now, Markov inequality states that for a non-negative random variable X,

Pr{X ≥ a} ≤ E{X}
a

. (3.20)

So, the previous definition of the limit becomes

∀ε > 0, δ > 0, ∃Tδ : ∀t > Tδ,Pr {Zt ≥ δ} ≤ ε, (3.21)

or,

∀ε > 0, δ > 0, ∃Tδ : ∀t > Tδ,Pr {Zt < δ} ≥ 1− ε. (3.22)

Writing back as a limit, the expression becomes

∀δ > 0, lim
t→∞

Pr {Zt < δ} = 1, (3.23)

which is the definition of convergence in probability.
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3.4 Convergence Analysis

This section starts with stating some bounds related to the MEG update rule. Next,

the proof of convergence for the noise-free case is given, followed by the proof of

convergence in the noisy case. Finally, a discussion about the proposed running-

average technique is presented.

3.4.1 General Bounds on the Loss Function

We will start by stating the following lemma which bounds the normalization con-

stant that appears in the MEG update rule

log(ρ̂t+1) = log(ρ̂t) + δtXt − log(tr(exp(log(ρ̂t) + δtXt))), (3.24)

where

δt = −2η(tr(ρ̂tXt)− ŷt), (3.25)

and measurement operators satisfying −I ≤ Xt ≤ I to ensure that the updated

estimate has unit trace. This bound will be used to prove other important results.

The proof generalizes the methods that involved real symmetric matrices in [5] to

complex Hermitian matrices.

Lemma 5. The normalization constant in the MEG rule update is bounded by

log(tr(exp(log(ρ̂t) + δtXt))) ≤
δ2
t

2
+ δt tr (ρ̂tXt) . (3.26)

Proof. Recall that

δt = −2η(tr(ρ̂tXt)− ŷt). (3.27)

Applying Golden-Thompson inequality in Lemma 2, we get

log(tr(exp(log(ρ̂t) + δtXt))) ≤ log(tr(ρ̂t exp(δtXt))) (3.28)

= log

(
tr

(
ρ̂t exp(−δt) exp

(
2δt

Xt + I

2

)))
(3.29)

= −δt + log

(
tr

(
ρ̂t exp

(
2δt

Xt + I

2

)))
. (3.30)

Applying Jensen’s inequality in Lemma 3 by choosing A = Xt+I
2

, x = 2δt, and y = 0;
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we get that

log(tr(exp(log(ρ̂t) + δtXt))) ≤ −δt + log

(
tr

(
ρ̂t

(
I − (1− exp(2δt))

Xt + I

2

)))
(3.31)

= −δt + log

(
1− (1− exp(2δt))

tr (ρ̂t(Xt + I))

2

)
(3.32)

= −δt + log

(
1− (1− exp(2δt))

tr (ρ̂tXt) + 1

2

)
.

(3.33)

Applying now the log identity in Lemma 1, with p = 2δt, and q = tr(ρ̂tXt)+1
2

, we

obtain

log(tr(exp(log(ρ̂t) + δtXt))) ≤ −δt +
(2δt)

2

8
+ 2δt

tr (ρ̂tXt) + 1

2
(3.34)

=
δ2
t

2
+ δt tr (ρ̂tXt) , (3.35)

which completes the proof.

Next, we state the following lemma which puts a bound on the difference between

the loss function evaluated at the estimate, and a general state. The lemma relates

this difference to the progress of the estimator towards that general state. This is

the main lemma that will be used to prove the convergence of MEG. The proof

generalizes the results in [5] to the quantum setting.

Lemma 6. Given the loss function Lt(ρ̂t) = (tr(ρ̂tXt) − ŷt)
2 with measurement

operators −I ≤ Xt ≤ I and learning rate 0 < η < 1
2
, then for any state σ,

ηLt(ρ̂t)−
η

1− 2η
Lt(σ) ≤ D(σ||ρ̂t)−D(σ||ρ̂t+1). (3.36)

Proof. We start with calculating the right hand side,

D(σ||ρ̂t)−D(σ||ρ̂t+1) = tr(σ log(σ)− σ log(ρ̂t))− tr(σ log(σ)− σ log(ρ̂t+1))

(3.37)

= − tr(σ log(ρ̂t)) + tr(σ log(ρ̂t+1)) (3.38)

= − tr(σ log(ρ̂t)) + tr(σ log(ρ̂t)) + tr(σδtXt)

− tr(σ log(tr(exp(log(ρ̂t) + δtXt)))) (3.39)

= δt tr(σXt)− log(tr(exp(log(ρ̂t) + δtXt))) (3.40)
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Applying Lemma 5 we get

D(σ||ρ̂t)−D(σ||ρ̂t+1) ≥ δt tr(σXt)−
δ2
t

2
− δt tr (ρ̂tXt) (3.41)

= −2η(tr(ρ̂tXt)− ŷt)(tr(σXt)− tr(ρ̂tXt))− 2η2(tr(ρ̂tXt)− ŷt)2

(3.42)

= −2η(tr(ρ̂tXt)− ŷt)(tr(σXt)− ŷt + ŷt − tr(ρ̂tXt))

− 2η2(tr(ρ̂tXt)− ŷt)2 (3.43)

=
(
2η − 2η2

)
(tr(ρ̂tXt)− ŷt)2 − 2η(tr(σXt)− ŷt)(tr(ρ̂tXt)− ŷt)

(3.44)

≥
(
2η − 2η2

)
Lt(ρ̂t)− 2η

√
Lt(ρ̂t)Lt(σ) (3.45)

=

(√
η − 2η2

√
Lt(ρ̂t)−

√
η2

η − 2η2

√
Lt(σ)

)2

+ ηLt(ρ̂t)−
η2

η − 2η2
Lt(σ). (3.46)

If we now choose η − 2η2 > 0, then the square roots in the last expression are real

valued. As a result,

D(σ||ρ̂t)−D(σ||ρ̂t+1) ≥ ηLt(ρ̂t)−
η

1− 2η
Lt(σ), (3.47)

and the learning factor η must satisfy

0 < η <
1

2
, (3.48)

which completes the proof of the lemma. To account for noiseless measurements, ŷt

is just replaced by yt.

This leads to the following corollary that bounds the loss function of the esti-

mate when the true state is used as the comparison state, in the case of noise-free

measurements (i.e. ŷt = yt).

Corollary 1. Given the loss function Lt(ρ̂t) = (tr(ρ̂tXt) − yt)2 with measurement

operators −I ≤ Xt ≤ I and learning rate 0 < η < 1
2
. Then, given the true state ρ,

the following relation holds:

ηLt(ρ̂t) ≤ D(ρ||ρ̂t)−D(ρ||ρ̂t+1). (3.49)

Proof. Apply Lemma 6, set σ = ρ, and use the fact that Lt(ρ) = 0.
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3.4.2 Convergence Analysis for Noiseless Measurements

The choice of measurements for doing quantum state estimation is arbitrary. How-

ever, in this chapter we consider the case of performing local Pauli measurements

on each qubit of a multi-qubit system. This facilitates the experimental realization

compared to performing some other, possibly global, measurement. The proofs will

start by calculating some expectation values involving Pauli operators and loss func-

tions. These results will be used to prove the main theorem showing the convergence

of MEG in the noise-free case. We start with the following lemma about the the set

of Pauli operators for multi-qubit systems.

Lemma 7. The set U = {Ui}d
2−1
i=0 of Pauli operators including the identity operator

in a d-dimensional quantum system satisfy

1

d

∑
i

Ui ⊗ U †i = P21, (3.50)

where P21 is the swap operator defined as

P21 =
∑
i,j

|i〉〈j| ⊗ |j〉〈i|. (3.51)

Proof. The Pauli’s form a unitary orthonormal basis of Hermitian d × d matrices.

Therefore, they form a quantum 1-design due to Proposition 6 in [55]. In other

words, ∫
U

UρU †dU =
∑
i

1

d2
UiρU

†
i . (3.52)

Now, from (3.27) and (3.29) in [55],
∑

i
1
d2
Ui ⊗ U †i = P21

d
.

Next, we calculate the expectation value of a Pauli operator that is tensored

with itself. This calculation will be needed in the calculation of the expectation of

the loss function.

Lemma 8. The expectation value of the Pauli operators chosen uniformly at random

from the set U − {I} satisfies the relation:

EX {X ⊗X} =
d

d2 − 1
P21 −

1

d2 − 1
Id ⊗ Id (3.53)

Proof. We have

EX {X ⊗X} =
1

d2 − 1

d2−1∑
j=1

X [j] ⊗X [j] (3.54)
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=
1

d2 − 1

(
d2−1∑
i=0

Ui ⊗ Ui − Id ⊗ Id

)
(3.55)

=
d

d2 − 1
P21 −

1

d2 − 1
Id ⊗ Id, (3.56)

where the last equality holds from Lemma 7, and Id is the identity operator of

dimension d.

The following lemma is a commonly-used result in quantum information. The

proof is direct—see for example Lemma 1.2.1 in [56].

Lemma 9 (Swap trick). For any quantum system with arbitrary dimensions, and

for two operators M and N , we have tr(MN) = tr
(
(M ⊗N)P21

)
, where P21 is the

swap operator on the quantum system (interchanges any two copies).

We are now ready to prove the following lemma in which the expectation of the

loss function is calculated.

Lemma 10. Assuming we select the measurement operator Xt at each time iteration

uniformly at random from the set U − {I} then for any true state ρ and any state

σ independent of Xt,

EXt{Lt(σ)} =
d

d2 − 1
‖σ − ρ‖2

F . (3.57)

Proof. From the definition of the loss function,

Lt(σ) = (tr(σXt)− tr(ρXt))
2. (3.58)

Taking the expectation of the loss function with respect to Xt we get:

EXt{Lt(σ)} = EXt{(tr(σXt)− tr(ρXt))
2} (3.59)

= EXt{(tr(σ − ρ)Xt)
2} (3.60)

= EXt
{

tr
(

((σ − ρ)Xt)⊗ ((σ − ρ)Xt)
)}

(3.61)

= EXt
{

tr
(

((σ − ρ)⊗ (σ − ρ)) (Xt ⊗Xt)
)}

(3.62)

= tr
(

((σ − ρ)⊗ (σ − ρ))EXt {Xt ⊗Xt}
)
. (3.63)

Then, applying Lemma 8,

EXt{Lt(σ} = tr

(
((σ − ρ)⊗ (σ − ρ))

(
d

d2 − 1
P21 −

1

d2 − 1
I ⊗ I

))
(3.64)

=
d tr

(
((σ − ρ)⊗ (σ − ρ))P21

)
d2 − 1

−
tr
(

((σ − ρ)⊗ (σ − ρ)) (I ⊗ I)
)

d2 − 1
.

(3.65)
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Now, applying the swap trick in Lemma 9,

EXt{Lt(σ)} =
d

d2 − 1
tr
(
(σ − ρ)(σ − ρ)

)
− 1

d2 − 1
tr (σ − ρ) tr (σ − ρ) (3.66)

=
d

d2 − 1
tr
(
(σ − ρ)2

)
(3.67)

=
d

d2 − 1
‖σ − ρ‖2

F . (3.68)

In particular, it is clear that at any time step t, if σ 6= ρ, then E{Lt(σ)} > 0.

Now, we can show the following theorem considering convergence of the noiseless

MEG.

Theorem 1. The state estimate using the MEG update rule converges in probability

to the true state, i.e. for any δ > 0,

lim
t→∞

Pr
{
‖ρ̂t − ρ‖2

F < δ
}

= 1. (3.69)

Proof. We know from Corollary 1 that,

ηLt(ρ̂t) ≤ D(ρ||ρ̂t)−D(ρ||ρ̂t+1). (3.70)

Taking the expectation with respect to Xt,

η EXt{Lt(ρ̂t)} ≤ EXt{D(ρ||ρ̂t)} − EXt{D(ρ||ρ̂t+1)}. (3.71)

Applying Lemma 10, and using the fact that ρ̂t is independent of Xt we get

ηd

d2 − 1
‖ρ̂t − ρ‖2

F ≤ D(ρ||ρ̂t)− EXt{D(ρ||ρ̂t+1)}. (3.72)

Taking the expectation of the above inequality over all past time iterations E =

EX1 ...EXt−1 we get

ηd

d2 − 1
E{‖ρ̂t − ρ‖2

F} ≤ E{D(ρ||ρ̂t)} − E{D(ρ||ρ̂t+1)}. (3.73)

Next, we sum the inequality over the time iterations to get

ηd

d2 − 1

T∑
t=1

E{‖ρ̂t − ρ‖2
F} ≤ E{D(ρ||ρ̂1)} − E{D(ρ||ρ̂T+1)} (3.74)

≤ E{D(ρ||ρ̂1)}. (3.75)
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If we now take the limit as T →∞, we obtain

∞∑
t=1

E{‖ρ̂t − ρ‖2
F} ≤

d2 − 1

ηd
E{D(ρ||ρ̂1)} (3.76)

=
d2 − 1

ηd
D(ρ||ρ̂1). (3.77)

Where the last line follows from the fact that the true state ρ and the initial estimate

ρ̂1 are independent of Xt and yt. Now the right hand side of the inequality is

constant, so the series on the left hand side of the inequality converges. This implies

by the divergence test that

lim
t→∞

E{‖ρ̂t − ρ‖2
F} = 0. (3.78)

Now we can apply Lemma 4 on the random variable Zt = ‖ρ̂t − ρ‖2
F to conclude

that

∀δ > 0 : lim
t→∞

Pr
{
‖ρ̂t − ρ‖2

F ≤ δ
}

= 1. (3.79)

Therefore, the estimate ρ̂t converges in probability to the true state ρ.

Finally, we prove the main theorem that shows a stronger statement for the

convergence of MEG algorithm in the case of noise-free measurements.

Theorem 2. Let δ ∈ (0, 1). Then for any α ∈ (0, 1), and learning rate 0 < η < 1
2
,

there exists T0 given by

T0 =

(
d2−1
ηd

log d+ 2

δ

) 3
1−α

, (3.80)

such that for any T > T0 we have,

Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
≥ 1− δ, (3.81)

where the probability is taken over all measurement choices and t uniformly in

{1, 2, . . . , T}. Moreover,

lim
T→∞

Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
= 1 . (3.82)

Proof. Let the initial estimate be ρ̂1 = Id
d

. We know from Corollary 1 that,

ηLt(ρ̂t) ≤ D(ρ||ρ̂t)−D(ρ||ρ̂t+1). (3.83)
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Taking the expectation with respect to Xt,

η EXt{Lt(ρ̂t)} ≤ EXt{D(ρ||ρ̂t)} − EXt{D(ρ||ρ̂t+1)}. (3.84)

Applying Lemma 10, and using the fact that ρ̂t is independent of Xt we get

ηd

d2 − 1
‖ρ̂t − ρ‖2

F ≤ D(ρ||ρ̂t)− EXt{D(ρ||ρ̂t+1)}. (3.85)

Taking the expectation of the above inequality over all past time iterations E =

EX0 EX1 ...EXt−1 we get

ηd

d2 − 1
E{‖ρ̂t − ρ‖2

F} ≤ E{D(ρ||ρ̂t)} − E{D(ρ||ρ̂t+1)}. (3.86)

Next, we sum the inequality over the time iterations to get

ηd

d2 − 1

T∑
t=1

E{‖ρ̂t − ρ‖2
F} ≤ E{D(ρ||ρ̂1)} − E{D(ρ||ρ̂T+1)} (3.87)

≤ E{D(ρ||ρ̂1)} (3.88)

≤ log d. (3.89)

Now, let εt = E{‖ρ̂t − ρ‖2
F}, δt = 1

tα+γ
, and γ = 2

3
(1 − α). Notice that α + γ < 1.

Define the set

T :=

{
t ∈ {1, 2, ..T} : εt ≥

1

tα+γ

}
. (3.90)

Rearranging the terms in the inequality we get

d2 − 1

ηd
log d ≥

T∑
t=1

εt (3.91)

≥
T∑
t=1

(1εt>δt) εt (3.92)

≥
T∑
t=1

(1εt>δt)
1

tα+γ
(3.93)

≥
T∑
t=1

(1εt>δt)
1

T α+γ
(3.94)

≥ |Tδ|
T α+γ

. (3.95)

In other words, the ratio between the number of iterations in which E{‖ρ̂t − ρ‖2
F} ≥
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1
tα+γ

and the total number of iterations T we performed so far is bounded by

|Tδ|
T
≤ KT α+γ−1, (3.96)

where K := d2−1
ηd

log d. This implies that

lim
T→∞

(
Tδ
T

)
= 0, (3.97)

because α + γ < 1. This means that increasing the number of iterations results in

decreasing the number of times where the estimate was not accurate enough. Let’s

state this formally. Assume we do a total number of iterations T . If we select at

random a fixed time step 1 ≤ t̃ ≤ T , then there will be two possible outcomes.

Either εt̃ ≤ δt̃ or εt̃ > δt̃. Assume we get the first outcome, then by applying

Markov’s inequality,

εt̃ ≤ δt̃ =⇒ Pr

{
‖ρ̂t̃ − ρ‖

2
F} ≥

1

t̃α

}
≤ E

{
‖ρ̂t̃ − ρ‖

2
F

}
t̃α (3.98)

≤ δt̃t̃
α (3.99)

= t̃−γ. (3.100)

Now, we can find the joint probability

Pr
t,ρ̂t

{
‖ρ̂t − ρ‖2

F ≥
1

tα

}
= Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
Pr
{
t̃ ∈ Tδ

}
+ Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
Pr
{
t̃ 6∈ Tδ

}
(3.101)

≤ Pr
{
t̃ ∈ Tδ

}
+
∑
t̃6∈Tδ

Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
1

T
(3.102)

≤ |Tδ|
T

+
1

T

T∑
t̃=1

Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
(3.103)

≤ |Tδ|
T

+
1

T

T∑
t̃=1

t̃−γ (3.104)

≤ |Tδ|
T

+
1

T

T∑
t̃=1

(
1

t̃2

) γ
2

. (3.105)

Applying Jensen’s inequality on the second term (noting that f(x) = xr is a
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concave function for 0 < r < 1) yields

Pr

{
‖ρ̂t − ρ‖2

F ≥
1

tα

}
=
|Tδ|
T

+

(
1

T

T∑
t̃=1

1

t̃2

) γ
2

(3.106)

≤ |Tδ|
T

+

(
1

T

∞∑
t̃=1

1

t̃2

) γ
2

(3.107)

=
|Tδ|
T

+

(
π2

6

1

T

) γ
2

(3.108)

≤ |Tδ|
T

+ 2T−
γ
2 (3.109)

Therefore,

Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
≥ 1− |Tδ|

T
− 2T−

γ
2 (3.110)

≥ 1−KT α+γ−1 − 2T−
γ
2 (3.111)

= 1−KT−
1−α
3 − 2T−

1−α
3 (3.112)

= 1− T−
1−α
3 (K + 2) . (3.113)

Now, let

T0 =

(
K + 2

δ

) 3
1−α

, (3.114)

then, if choose T > T0, then

δ ≥ T−
1−α
3 (K + 2) , (3.115)

or,

1− δ ≤ 1− T−
1−α
3 (K + 2) (3.116)

≤ Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
. (3.117)

Notice, that taking the limit as T →∞ we obtain that δ = 0, and therefore

lim
T→∞

Pr

{
‖ρ̂t − ρ‖2

F ≥
1

tα

}
= 0 . (3.118)

3.4.3 Convergence Analysis for Noisy Measurements

In this part, we show that using an adaptive learning rate with noisy measurements

results in the convergence of the MEG estimate to the true state. First, some
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expectation values will be calculated based on similar techniques discussed in the

noiseless case. After that, the optimal adaptive learning rate is derived in such a way

to ensure the convergence of the estimate to the true state in probability. However,

the learning rate in this case depends on the true state which is not practical. So,

finally we show that we can choose a learning rate independent of the true state and

prove even a stronger statement of convergence.

We will start with the following lemma to calculate the expectation value of

the noise term that appears in the loss function due to performing finite number of

measurements.

Lemma 11. The expectation value of the Pauli operators chosen uniformly at ran-

dom from the set U − {I} satisfy the relation:

EXt
{

1− y2
t

N

}
=

d

N(d2 − 1)

(
d− ‖ρ‖2

F

)
. (3.119)

Proof. We have

EXt
{

1− y2
t

N

}
=

1− EXt{y2
t }

N
(3.120)

=
1− EXt{tr(ρXt)

2}
N

(3.121)

=
1− EXt{tr((ρ⊗ ρ)(Xt ⊗Xt))}

N
(3.122)

=
1− tr((ρ⊗ ρ)EXt{Xt ⊗Xt})

N
. (3.123)

Applying now Lemma 8, we get

EXt
{

1− y2
t

N

}
=

1− tr
(
(ρ⊗ ρ)( d

d2−1
P21 − 1

d2−1
I ⊗ I)

)
N

(3.124)

=
1

N(d2 − 1)

(
d2 − 1− d tr(ρ2) + tr(ρ)2

)
(3.125)

=
d

N(d2 − 1)

(
d− ‖ρ‖2

F

)
, (3.126)

where the swap trick in Lemma 9 is used in the second line.

Next, we give the following lemma to calculate the expectation of the loss func-

tion for the case of noisy measurements.

Lemma 12. Assuming we select the measurement operator Xt at each time iteration

uniformly at random from the set U − {I} then for any true state ρ and any state
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σ independent of Xt and ŷt for any t,

Et{Lt(σ)} =
d

d2 − 1

(
‖σ − ρ‖2

F +
d− ‖ρ‖2

F

N

)
. (3.127)

Proof. Recall the noisy loss function,

Lt(σ) = (tr(σXt)− ŷt)2. (3.128)

Note that σ is independent of ŷt, but can depend on the previous history. So, the

expectation can be calculated as

Eŷt{Lt(σ)} = Eŷt{(tr(σXt)− ŷt)2} (3.129)

= tr(σXt)
2 − 2 tr(σXt)Et{ŷt}+ Et{ŷ2

t } (3.130)

= tr(σXt)
2 − 2 tr(σXt)yt + y2

t +
1− y2

t

N
(3.131)

= (tr(σXt)− yt)2 +
1− y2

t

N
. (3.132)

Now, Let’s take the expectation with respect to Xt as

Et{Lt(σ)} = EXt Eŷt{Lt(ρ̂t)} (3.133)

= EXt
{

(tr(σXt)− yt)2 +
1− y2

t

N

}
(3.134)

= EXt{(tr(σXt)− yt)2}+ EXt
{

1− y2
t

N

}
(3.135)

=
d

d2 − 1

(
‖σ − ρ‖2

F +
d− ‖ρ‖2

F

N

)
, (3.136)

where we used the results of Lemmas 10 and 11 in the last step. Notice that as

N →∞, the result of the noiseless case is recovered.

Consequently, the following result shows that the true state is the optimal state

that minimizes the loss function.

Corollary 2. The state ρ is the unique state that minimizes the expectation of the

noisy loss function, where

Et{Lt(ρ)} =
d

d2 − 1

d− ‖ρ‖2
F

N
. (3.137)

The following theorem shows how to select an adaptive learning rate that results

in convergence of the MEG estimate in probability for noisy measurements.
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Theorem 3. In the presence of noise, the state estimate using the MEG update rule

with learning rate

ηt =
1

2

E{‖ρ̂t − ρ‖2
F}

E{‖ρ̂t − ρ‖2
F}+ 2

(
d2−1
Nd

) , (3.138)

converges in probability to the true state, i.e. for all δ > 0,

lim
t→∞

Pr
{
‖ρ̂t − ρ‖2

F ≤ δ
}

= 1. (3.139)

Proof. We know from Lemma 6 that,

ηtLt(ρ̂t)−
ηt

1− 2ηt
Lt(ρ) ≤ D(ρ||ρ̂t)−D(ρ||ρ̂t+1). (3.140)

Taking the expectation with respect to yt followed by the the expectation with

respect to Xt we get,

ηt Et{Lt(ρ̂t)} −
ηt

1− 2ηt
Et{Lt(ρ)} ≤ D(ρ||ρ̂t)− Et{D(ρ||ρ̂t+1)}. (3.141)

Applying Lemma 12, we get

ηt
d

d2 − 1

(
‖ρ̂t − ρ‖2

F +
d− ‖ρ‖2

F

N

)
− ηt

1− 2ηt

d

d2 − 1

(
d− ‖ρ‖2

F

N

)
≤ D(ρ||ρ̂t)− Et{D(ρ||ρ̂t+1)}. (3.142)

Simplifying this expression and taking the expectation with respect to all previous

time instants we get

ηt E{‖ρ̂t − ρ‖2
F} −

2η2
t

1− 2ηt

(
d− ‖ρ‖2

F

N

)
≤ d2 − 1

d
E{D(ρ||ρ̂t)−D(ρ||ρ̂t+1)}.

(3.143)

The second term on the left hand side depends on the purity of the true state, and

it can be bounded to become

ηt E{‖ρ̂t − ρ‖2
F} −

2η2
t

1− 2ηt

(
d2 − 1

Nd

)
≤ d2 − 1

d
E{D(ρ||ρ̂t)−D(ρ||ρ̂t+1)}. (3.144)

Selecting the learning rate to be

ηt =
1

2

E{‖ρ̂t − ρ‖2
F}

E{‖ρ̂t − ρ‖2
F}+ 2

(
d2−1
Nd

) , (3.145)
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then summing up the inequality over different time steps yields

T∑
t=1

1

4

E
{
‖ρ̂t − ρ‖2

F

}2

E
{
‖ρ̂t − ρ‖2

F

}
+ 2

(
d2−1
Nd

) ≤ d2 − 1

d
(E{D(ρ||ρ̂1)−D(ρ||ρ̂T+1)}) (3.146)

≤ d2 − 1

d
D(ρ||ρ̂1), (3.147)

where E{D(ρ||ρ̂1)} = D(ρ||ρ̂1) because ρ̂1 and ρ are independent of Xt and ŷt for

any t. Now taking the limit as T →∞ we get

∞∑
t=1

E
{
‖ρ̂t − ρ‖2

F

}2

E
{
‖ρ̂t − ρ‖2

F

}
+ 2

(
d2−1
Nd

) ≤ 4

(
d2 − 1

d

)
D(ρ||ρ̂1). (3.148)

Since, the left-hand side of the inequality is constant, then the series on the right

hand side must converge. Consequently using the divergence test,

lim
t→∞

E
{
‖ρ̂t − ρ‖2

F

}2

E
{
‖ρ̂t − ρ‖2

F

}
+ 2

(
d2−1
Nd

) = 0. (3.149)

Assume that

lim
t→∞

E
{
‖ρ̂t − ρ‖2

F

}
= K > 0, (3.150)

then

lim
t→∞

E
{
‖ρ̂t − ρ‖2

F

}2

E
{
‖ρ̂t − ρ‖2

F

}
+ 2

(
d2−1
Nd

) =
K2

K + 2
(
d−‖ρ‖2F

N

) 6= 0, (3.151)

which contradicts the condition in (3.149). This means that it must be the case that

lim
t→∞

E
{
‖ρ̂t − ρ‖2

F

}
= 0. (3.152)

Now we can apply Lemma 4 on the random variable Zt = ‖ρ̂t − ρ‖2
F to conclude

that

∀δ > 0, lim
t→∞

Pr
{
‖ρ̂t − ρ‖2

F ≤ δ
}

= 1. (3.153)

Therefore, the estimate ρ̂t converges in probability to the true state ρ.

The problem with this choice of learning rate, is that it depends on the true

state. This might be useful in other applications like state tracking, but it will

not be practical for tomography applications, where the true state is unknown. So,

we show next that in fact we can select another form of the learning rate that is
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independent of the true state and show a stronger statement of convergence.

Theorem 4. Let δ ∈ (0, 1), α ∈
(
0, 1

2

)
and β ∈

(
1
2
, 1− α

)
. If we choose a learning

rate of the form

ηt =
η0

tβ
with η0 <

1

2
, (3.154)

then there exists T0 given by

T0 =

 d2−1
η0d

(
log d+ 2

N

η20
1−2η0

ζ(2β)
)

+ 2

δ


3

1−α−β

, (3.155)

such that for any T > T0 we have,

Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
≥ 1− δ, (3.156)

where the probability is taken over all measurement choices and t uniformly in

{1, 2, . . . , T}. Moreover,

lim
T→∞

Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
= 1 . (3.157)

Proof. Let the initial estimate be ρ̂1 = Id
d

. We know from Lemma 6 that,

ηtLt(ρ̂t)−
ηt

1− 2ηt
Lt(ρ) ≤ D(ρ||ρ̂t)−D(ρ||ρ̂t+1). (3.158)

Taking the expectation with respect to yt followed by the the expectation with

respect to Xt we get,

ηt Et{Lt(ρ̂t)} −
ηt

1− 2ηt
Et{Lt(ρ)} ≤ D(ρ||ρ̂t)− Et{D(ρ||ρ̂t+1)}. (3.159)

Applying Lemma 12, we get

ηt
d

d2 − 1

(
‖ρ̂t − ρ‖2

F +
d− ‖ρ‖2

F

N

)
− ηt

1− 2ηt

d

d2 − 1

(
d− ‖ρ‖2

F

N

)
≤ D(ρ||ρ̂t)− Et{D(ρ||ρ̂t+1)}. (3.160)

Simplifying this expression and taking the expectation with respect to all previous
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time instants we get

ηt E{‖ρ̂t − ρ‖2
F} −

2η2
t

1− 2ηt

(
d− ‖ρ‖2

F

N

)
≤ d2 − 1

d
E{D(ρ||ρ̂t)−D(ρ||ρ̂t+1)}.

(3.161)

The second term on the left hand side is a function of the purity of the true state

(defined as ‖ρ‖2
F ). This term comes from the variance of the noise which varies

according to the location of the state. It can be bounded to become

ηt E{‖ρ̂t − ρ‖2
F} −

2η2
t

1− 2ηt

(
d2 − 1

Nd

)
≤ d2 − 1

d
E{D(ρ||ρ̂t)−D(ρ||ρ̂t+1)}. (3.162)

Summing up the inequality over different time steps we get

T∑
t=1

ηt E{‖ρ̂t − ρ‖2
F} −

2η2
t

1− 2ηt

(
d2 − 1

Nd

)
≤ d2 − 1

d
E{D(ρ||ρ̂1)−D(ρ||ρ̂T+1)}

(3.163)

≤ d2 − 1

d
E{D(ρ||ρ̂1)} (3.164)

≤ d2 − 1

d
D(ρ||ρ̂1) (3.165)

≤ d2 − 1

d
log d. (3.166)

Now, by choosing learning rate in the form

ηt =
η0

tβ
: η0 <

1

2
, (3.167)

the inequality becomes

d2 − 1

d
log d ≥

T∑
t=1

η0

tβ
E{‖ρ̂t − ρ‖2

F} −
2η2

0

t2β − 2η0tβ

(
d2 − 1

Nd

)
(3.168)

≥
T∑
t=1

η0

tβ
E{‖ρ̂t − ρ‖2

F} −
2η2

0

t2β − 2η0t2β

(
d2 − 1

Nd

)
(3.169)

≥
T∑
t=1

η0

tβ
E{‖ρ̂t − ρ‖2

F} −
2η2

0

1− 2η0

(
d2 − 1

Nd

) T∑
t=1

1

t2β
(3.170)

≥
T∑
t=1

η0

tβ
E{‖ρ̂t − ρ‖2

F} −
2η2

0

1− 2η0

(
d2 − 1

Nd

) ∞∑
t=1

1

t2β
(3.171)

= − 2η2
0

1− 2η0

(
d2 − 1

Nd

)
ζ(2β) +

T∑
t=1

η0

tβ
E{‖ρ̂t − ρ‖2

F} (3.172)
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≥ − 2η2
0

1− 2η0

(
d2 − 1

Nd

)
ζ(2β) +

T∑
t=1

η0

T β
E{‖ρ̂t − ρ‖2

F}, (3.173)

where ζ(·) is the Riemann zeta function. Now, let εt = E{‖ρ̂t − ρ‖2
F}, δt = 1

tα+γ
, and

γ = 2
3
(1− α− β). Notice that α + β + γ < 1 as long as α + β < 1. Define the set

Tδ := {t ∈ {1, 2, ..T} : εt ≥ δt} . (3.174)

Rearranging the terms in the inequality we get

d2 − 1

η0d

(
log d+

2

N

η2
0

1− 2η0

ζ(2β)

)
≥ 1

T β

T∑
t=1

εt (3.175)

≥ 1

T β

T∑
t=1

(1εt>δt) εt (3.176)

≥ 1

T β

T∑
t=1

(1εt>δt)
1

tα+γ
(3.177)

≥ 1

T β

T∑
t=1

(1εt>δt)
1

T α+γ
(3.178)

≥ |Tδ|
T α+β+γ

. (3.179)

In other words, the ratio between the number of iterations in which E{‖ρ̂t − ρ‖2
F} ≥

1
tα+γ

and the total number of iterations T we performed so far is bounded by

|Tδ|
T
≤ KT α+β+γ−1, (3.180)

where K := d2−1
η0d

(
log d+ 2

N

η20
1−2η0

ζ(2β)
)

. This implies that

lim
T→∞

(
Tδ
T

)
= 0, (3.181)

because α+ β + γ < 1. This means that increasing the number of iterations results

in decreasing the number of times where the estimate was not accurate enough.

Let’s state this formally. Assuming we do a total number of iterations T , then if

we select at random a fixed time step 1 ≤ t̃ ≤ T , then there will be two possible

outcomes. Either εt̃ ≤ δt̃ or εt̃ > δt̃. Assume we get the first outcome, then by

applying Markov’s inequality,

εt̃ ≤ δt̃ =⇒ Pr

{
‖ρ̂t̃ − ρ‖

2
F} ≥

1

t̃α

}
≤ E

{
‖ρ̂t̃ − ρ‖

2
F

}
t̃α (3.182)
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≤ δt̃t̃
α (3.183)

= t̃−γ. (3.184)

Now, we can find the joint probability

Pr
t,ρ̂t

{
‖ρ̂t − ρ‖2

F ≥
1

tα

}
= Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
Pr
{
t̃ ∈ Tδ

}
+ Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
Pr
{
t̃ 6∈ Tδ

}
(3.185)

≤ Pr
{
t̃ ∈ Tδ

}
+
∑
t̃6∈Tδ

Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
1

T
(3.186)

≤ |Tδ|
T

+
1

T

T∑
t̃=1

Pr

{
‖ρ̂t − ρ‖2

F} ≥
1

tα

∣∣∣∣t = t̃

}
(3.187)

≤ |Tδ|
T

+
1

T

T∑
t̃=1

t̃−γ (3.188)

≤ |Tδ|
T

+
1

T

T∑
t̃=1

(
1

t̃2

) γ
2

. (3.189)

Applying Jensen’s inequality on the second term (noting that f(x) = xr is a concave

function for 0 < r < 1). Thus,

Pr
t,ρ̂t

{
‖ρ̂t − ρ‖2

F ≥
1

tα

}
=
|Tδ|
T

+

(
1

T

T∑
t̃=1

1

t̃2

) γ
2

(3.190)

≤ |Tδ|
T

+

(
1

T

∞∑
t̃=1

1

t̃2

) γ
2

(3.191)

=
|Tδ|
T

+

(
π2

6

1

T

) γ
2

(3.192)

≤ |Tδ|
T

+ 2T−
γ
2 (3.193)

Therefore,

Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
≥ 1− |Tδ|

T
− 2T−

γ
2 (3.194)

≥ 1−KT α+β+γ−1 − 2T−
γ
2 (3.195)

= 1−KT−
1−α−β

3 − 2T−
1−α−β

3 (3.196)

= 1− T−
1−α−β

3 (K + 2) . (3.197)



82 CHAPTER 3. EFFICIENT ONLINE QUANTUM STATE ESTIMATION

Now, let

T0 =

(
K + 2

δ

) 3
1−α−β

, (3.198)

then, if choose T > T0, then

δ ≥ T−
1−α−β

3 (K + 2) , (3.199)

or,

1− δ ≤ 1− T−
1−α−β

3 (K + 2) (3.200)

≤ Pr

{
‖ρ̂t − ρ‖2

F <
1

tα

}
. (3.201)

Now, taking the limit as T →∞ we obtain finally that,

lim
T→∞

Pr
t,ρ̂t

{
‖ρ̂t − ρ‖2

F ≥
1

tα

}
= 0, (3.202)

or, equivalently,

lim
T→∞

Pr
t,ρ̂t

{
‖ρ̂t − ρ‖2

F <
1

tα

}
= 1. (3.203)

3.4.4 Convergence of the Noisy Measurements case with

Averaging

As discussed previously, doing the running-average over the measurements with a

small number of shots is equivalent to increasing the number of shots without having

to do this experimentally per each measurement. This method also does not require

the use of an adaptive learning rate. So, given the data point (Xt, ŷt), we calculate

the running average ȳt:

ȳt =
ŷr1 + ŷr2 + ...ŷrn−1 + ŷt

nXt
=

(nXt − 1)ȳt−1 + ŷt
nXt

, (3.204)

such that {ri}
nXt
i=1 = {t′ : Xt′ = Xt} are the time indices in which the measurement

operator Xt appeared before (which means that rn = t), and nXt is the number

of times it appeared until time t. If we are choosing the measurement operators

randomly then after enough number of iterations we may assume that we visited all

operators the same number of iterations. So as t → ∞, nXt → ∞. Now from the
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strong law of large numbers:

1

nXt

nXt∑
i=1

ŷrj → E{ŷt} = yt a.s. (3.205)

So the gradient of the loss function satisfies that:

∇Lt(ρ̂t) = 2(tr(ρ̂tXt)− ȳt)Xt → 2(tr(ρ̂tXt)− tr(ρXt))Xt a.s. (3.206)

In other words, after enough number of iterations, the situation becomes similar to

the noise-free measurements case which allows the possibility of convergence to the

true state with a constant learning rate.

3.5 Simulation Results

This section discusses the methods and results of the numerical simulations. An

overview of the simulations settings is given first, followed by discussion on the

significance of the results.

3.5.1 Methods

In order to assess the performance of the proposed method, we created a dataset

consisting of 1000 randomly generated quantum states for 1-, 2-, 3-, 4-, and 5-qubit

systems, as well as simulating 100000 random measurement outcomes for 10, 100,

1000, 10000 shots for each of these states. The estimate after each measurement is

calculated, and compared to the true state using the infidelity measure defined as

1− F (ρ, ρ̂t) = 1−
(

tr
∣∣∣√ρ

√
ρ̂t

∣∣∣)2

. (3.207)

Figure 3.2 shows the behavior of MEG under different learning rates in the form

ηt = 0.5t−β, compared to using the running average (RA) method with a constant

learning rate. The plot shows that using the running average leads to the fastest

convergence compared to the case of adaptive learning rate. So, we choose the RA

method for further discussion.
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Figure 3.2: Simulation results for MEG estimation for a single-qubit system and 100
shots per measurement. The infidelity of the proposed matrix exponential gradient
(MEG) method is averaged over 1000 randomly generated quantum states and plot-
ted versus the iteration number. The plot is for the running average case, as well as
the variable learning rate ηt = 0.5t−β for different values of β

In addition to the matrix exponential gradient (MEG) estimator, the least squares

(LS) method in [21] and the diluted maximum likelihood (MLE) in [20] are also im-

plemented and used for comparison in the setting of 1-, 2-, 3-, and 4-qubit systems.

In these simulations, the learning rate of the MEG rule is 0.5. For the maximum

likelihood method, the iteration step parameter ε (controlling the dilution) is taken

to be 0.1. Since this value is much smaller than 1, it is guaranteed that after each

internal iteration, the likelihood is increased as proved in [20]. The number of inter-

nal MLE iterations is chosen to be 10, which is a small number to reduce the total

runtime of this method. In other words, for every new data point, we recalculate

the MLE estimate starting from the previous estimate using 10 iterations, and then

evaluate the infidelity. An optimal setting would be a variable number of internal it-

erations that starts out large and decreases afterwards. However, it should be noted

that in this work the objective is not optimizing the implementation of the MLE,

but to have the simplest implementation for comparison purpose. Additionally, we

are interested more in the asymptotic behavior of the estimators. So, after a large

number of data points, the estimate will be very near the true state. Consequently,

there will be no need to have a large number of MLE internal iterations at that

stage. The source code is publicly available1. Figure 3.1 shows the infidelity versus

the number of iterations for 1-, 2-, 3- and 4-qubits when the number of shots per

measurement is taken to be 1000. Figure ?? shows the performance for a 4-qubit

system at different number of measurement shots. For 5-qubit systems, only the

performance of MEG is assessed as shown in Figure 3.4.

1https://github.com/akramyoussry/MEG_online_QST

https://github.com/akramyoussry/MEG_online_QST
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Figure 3.4: Simulation results for a five-qubit system. The infidelity of the proposed
matrix exponential gradient (MEG) method is averaged over 1000 randomly gener-
ated quantum states and plotted versus the iteration number. The number of shots
per measurement is taken to be 10, 100, 1000, and 10000 shots.

Additonally, we compared with the projected-gradient method (PGD) proposed

in [44] in the batch setting. We implemented this method in the online setting, and

investigated its performance numerically in this case. The estimate at time iteration

t+ 1 is given by

ρ̂t+1 = P (ρ̂t − η∇Lt(ρ̂t)) , (3.208)

where η is the learning rate, Lt is the loss function as defined previously, and P
denotes projection into the physical space as discussed in Section 2.4.1.2.

3.5.2 Discussion

The maximum likelihood method is a batch method that requires that the whole

dataset is available for post-processing. So, if a new measurement is done, the entire

algorithm must be repeated again from the beginning. Additionally, the storage

requirement of the data operators may be large, especially for multi-qubit systems.

Our proposed method does not need to store all the data set, just the last averaged

outcome for each measurement operator in the most sophisticated case. The same

comparison applies to least-squares, which also acts on the whole batch of data and

is not an online algorithm.

An additional advantage of our algorithm is that it guarantees positivity of the

estimated operator at all times. Least-squares and similar approaches are not guar-

anteed to produce a physical state unless a further step of projection back to the

physical space is done. This forms an additional choice and overhead on the algo-

rithm. Moreover, the use of running average allows using a constant learning rate.
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(a) PGD with learning rate of 0.5

100 101 102 103 104 105

Iteration

10-6

10-4

10-2

100

In
fid

el
ity

MEG =0.5
MEG RA
PGD =0.05
PGD RA

(b) PGD with learning rate of 0.05

Figure 3.5: Simulation results for comparing MEG with constant learning rate of 0.5
and MEG with running averages to the projected-gradient descent method (PGD)
with constant learning rate as well as running averages for learning rate of (a) 0.5 and
(b) 0.05. The infidelity is averaged over 1000 randomly generated quantum states
and plotted versus the iteration number. The number of shots per measurement is
taken to be 10 shots.

This solves the problem of having to evaluate the optimum learning rate at each

time step.

For the projected-gradient method, it turns out the performance is highly depen-

dent on choosing the learning rate, and generally seems very similar to MEG when

the learning rate is chosen low. In Figure 3.5a, we compared MEG with constant

learning rate, MEG with running average (RA), PGD with constant learning rate

and PGD with running average. The same value of η = 0.5 was used in the four

of them. This plot shows that the MEG method has better convergence. On the

other hand, by changing the step size of the PGD methods to 0.05, we see that both

methods seem to have similar performance for the running average case after signif-

icant number of iterations as shown in Figure 3.5b. This makes it very difficult to

give a fair comparison with MEG. Note that even for MEG we were not particularly

concerned with finding the optimal learning rate — we simply tested a few learn-

ing rates that are compatible with the limitations given by the convergence proof.

However, faster (but not provable) convergence might be possible, as it often is, if

we go outside that range. For PGD we simply do not know what the restrictions

on the learning rate are so that the algorithm still provably converges with similar

parameters as MEG. Thus, it will be interesting as a future work to look into the

convergence of the PGD method.

Considering the accuracy of the estimate, the simulation results show that after a

sufficient number of iterations, the MEG estimates converge to both the maximum-

likelihood and least squares estimates which are considered the optimal estimators in
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batch processing systems. MLE produces a point estimate for the model that max-

imizes the probability of the observed data, while LS minimizes the sum of squared

errors due to observation noise. As the number of shots increase, the accuracy of all

estimators gets better (i.e lower average infidelity for a given number of iterations)

because the noise becomes less effective. On the other hand, as the number of qubits

gets higher, more iterations are needed to achieve a low average infidelity. This is

because at each iteration one basis is selected randomly for measurement. However,

for high-dimensional systems there are many more bases that need to be covered to

form a complete set (d2 − 1 bases).

As for complexity, maximum-likelihood scales as O(d4). This is because the

bottleneck operation is calculating the gradient of the log-likelihood function R =∑
j

fj
NPrj

Πj. For a complete set of measurement, at least d2− 1 measurement opera-

tors are needed, each of dimension d×d. So, this implies that calculating R requires

O(d4) complex multiplication operations. For the least-squares method, the com-

plexity is O(d4) as discussed in [21]. In this case the bottleneck operation is the ma-

trix multiplication part XTY of the estimation equation θ̂ = (XTX)−1XTY . That is

because again for a complete set of measurements we need at least d2− 1 operators,

and thus Y is of dimensions (d2− 1)× 1, and X is of dimensions (d2− 1)× (d2− 1).

Finally, for the proposed method, the bottleneck is in calculating the matrix ex-

ponential. The complexity will depend on the particular way of implementation.

The most common way is by performing eigendecomposition, followed by exponen-

tiating the diagonal matrix of eigenvalues. In this case, the complexity is usually

assumed to be O(d3) [57, 58]. It should be noted that the complexities discussed

here are obtained per iteration, i.e for each update given a new data point. Table

3.1 summarizes these results.

Table 3.1: Summary of runtime complexities per iteration for the MLE, LS, and
MEG algorithms

Algorithm Runtime
MLE O(d4)
LS O(d4)

MEG O(d3)

In order to verify the claim that MEG should have the fastest performance,

the execution times per 1 iteration were recorded in the simulation for the three

methods. Figure 3.6 shows the average of these execution times. It is clear that as

the number of qubits increases, MEG has the least runtime compared to the other

two methods.
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Figure 3.6: The average runtime of the update step for the maximum-likelihood
(MLE), least-squares (LS), and matrix-exponentiated gradient (MEG) methods,
measured for increasing number of qubits.

3.6 Conclusion

In this chapter, we introduced the idea of using the running average on the noisy

measurements together with the MEG update rule to construct a fast and simple

online quantum state estimator. We proved convergence of the proposed algorithm

using information-theoretic tools for both ideal and noisy measurements. We also

showed numerically the accuracy and efficiency of the estimator. The focus of this

chapter was on characterization of quantum states. In the next two chapters, we

will focus on characterization as well as control of quantum processes. We will start

first by presenting a novel deep learning based framework suitable for modelling

quantum systems, and apply it to closed evolution dynamics.



Chapter 4

Modelling and Control of Closed

Quantum Systems

Abstract The complexity of experimental quantum information processing devices

is increasing rapidly, requiring new approaches to control them. In this chapter, we

address the problems of practically modeling and controlling an integrated optical

waveguide array chip—a technology expected to have many applications in telecom-

munications and optical quantum information processing. This photonic circuit can

be electrically reconfigured, but only the output optical signal can be monitored. As

a result, the conventional control methods cannot be naively applied. Characterizing

such a chip is challenging for three reasons. First, there are uncertainties associated

with the Hamiltonian model describing the chip. Second, we expect distortions of

the control voltages caused by the chip’s electrical response, which cannot be di-

rectly observed. And third, there are imperfections in the measurements caused

by losses from coupling the chip externally to optical fibers. We have developed a

deep neural network approach to solve these problems. The architecture is designed

specifically to overcome the aforementioned challenges using a Gated Recurrent Unit

(GRU)-based network as the central component. The Hamiltonian is estimated as a

blackbox, while the rules of quantum mechanics such as state evolution is embedded

in the structure as a whitebox. The resulting overall graybox model of the chip

shows good performance both quantitatively in terms of the mean square error and

qualitatively in terms of the shape of the predicted waveforms. We use this neural

network to solve a classical and a quantum control problem. In the classical appli-

cation we find a control sequence to approximately realize a time-dependent output

power distribution. For the quantum application we obtain the control voltages to

realize a target set of quantum gates. The method we propose is generic and can be

applied to other systems that can only be probed indirectly.

89
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4.1 Introduction

The complexity of experimental quantum information processing devices is increas-

ing rapidly, requiring new approaches to control them. Noisy Intermediate-Scale

Quantum (NISQ) devices are emerging nowadays, with lots of experimental chal-

lenges [1,2,59]. In this present work, we deal with the problem of modelling a device

that can process some input signals to generate output signals, and the operation

of the device can be manipulated using control signals. There are three possible

methods to model such a device presented as follows.

The first approach is through direct physical modelling. We look for a mathe-

matical description of the output signals expressed in terms of the input and control

signals. The equations will involve some unknown parameters which should be cho-

sen to match the performance of an actual realization of the device. And thus, we

perform measurements on the device and use methods of parameter estimation in

order to find the unknown parameters of the model. We call this approach a white-

box approach. This would be the first approach one would try to use. The problem

however is that if there are uncertainties in the relations between some variables, or

some assumptions are made to derive some formulas (which might not be true for

an actual device), then the resulting model might not be accurate enough to fit and

predict actual measurements. Imperfections in the measurement process will also

decrease the accuracy of the obtained model. Additionally, relations between some

variables may be completely unknown and thus the problem becomes not just esti-

mating parameters but also estimating functional forms (maps between variables).

Moreover, there are situations where estimating the unknown parameters requires

measurements that are not experimentally possible. For instance, if we want to esti-

mate the parameters of a transfer function of an electrical circuit, then we will need

to measure voltages at some nodes of the circuit. However, if we cannot physically

access those nodes then the problem becomes more difficult. Finally, the complexity

of the problem increases if the physical models involve non-linear relations. Thus,

the whitebox approach might face lots of challenges in practical situations.

The second way to solve the problem is through the blackbox approach. We do

not obtain a set of physical equations describing the device, but rather we construct

a generic function that approximates the relationship between the output and the

input and control signals. This is usually a highly non-linear function with a large

number of parameters that can be estimated using the measurements. If the function

is complex enough, then it can model and predict any unknown relations between

variables. For that type of modelling, machine learning structures, such as artificial

neural networks, are very suitable. This approach has an advantage of being capable

of predicting the output signals given the input and control signals. However, there
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are few drawbacks. First, the resulting model provides the least amount of informa-

tion about the physics of how the device works. And so it would be difficult to use

the model for re-engineering the device if required. Second, the resulting accuracy

may not be as high as expected. This is because the structure does not have any

prior information about the map between inputs and outputs, and so it might need

to “discover” some complicated laws of physics (such as the evolution of quantum

systems) beside other unknown relations. This makes the training process harder.

Consequently, a larger dataset and higher number of iterations would be needed to

reach a good level of accuracy, which might turn out to be impractical.

The last approach is a combination of the other two approaches, we would refer

to as a graybox model. In this case, we use direct physical modelling for parts

of the description that we have complete certainty about (whitebox part), while

we use a blackbox for the other parts that we are uncertain about. The model

should be built such that the measurements required for the learning process are

physically available; there is enough physical modelling through the whiteboxes to

allow extracting useful information about the behaviour of the device; and any

measurement imperfections should be accounted for. Machine learning structures

are also suitable for this type of modelling. Standard machine learning layers would

be used for the blackboxes. However, we also need to define non-standard layers to

account for the whiteboxes, and these are application specific. The overall structure

should be consistent to allow standard learning algorithms to work. In this chapter,

we explore the use of hybrid deep learning architecture to solve problems related

to experimental modelling and control of quantum systems. Although the focus is

on a photonic device that will be introduced shortly, the graybox approach can be

considered very general, applying to many situations where there is a system that

cannot be probed arbitrarily as discussed.

An example of this approach is when we have a quantum device described by

a quantum system. The input signal is modelled by the initial quantum state.

The output signal is modelled by a measurement performed on the system after

evolving according to a given Hamiltonian. The control signals would then be some

external forces applied to the system, and they are modelled by some terms in

the Hamiltonian. Using the laws of quantum mechanics, we could write down the

relation between the input, output, and control. This would correspond to the

whitebox part of the model. Some of the terms inside the Hamiltonian might be

unknown, so we would use a blackbox to evaluate these terms. The resulting overall

model is then a graybox model. This is a useful approach because it still gives

an insight on the physics of the device and one can evaluate physically significant

quantities. Additionally, the terms that reduce the accuracy of the models, due to

inaccurate physical modelling, are now replaced by blackboxes, resulting in a more
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Figure 4.1: a) Top view and b) cross section schematics of a three waveguide re-
configurable array. The waveguides initially fan-in from 127µm spacing to enable
coupling to optical fibres. The waveguides in the array are separated by 10µm
which enables nearest-neighbour evanescent coupling. The electric field between the
electrodes causes a local change in refractive index to the waveguide or the cladding.

accurate overall model.

In this chapter, we focus on a particular system, currently being developed by

some of the authors, which is an array of nearest neighbour coupled waveguides with

a reconfigurable Hamiltonian. Characterizing such a chip is a significant challenge

as will be discussed later. The device we consider is an array of nearest neighbour

coupled waveguides that implements a continuous time quantum walk on photons

propagating along the array [60,61]. In all previous work, static quantum walks were

studied with fixed coupling parameters. Here, we demonstrate a reconfigurable

waveguide array by exploiting the electro-optic control of Lithium Niobate. The

waveguides are fabricated by reverse proton exchange and we apply local electric

fields to change the properties of the coupled array. Figure 4.1 shows the schematic

of the chip. We inject laser light into one input waveguide of the array and measure

the output optical power distribution across all the waveguides. The electrodes can

be controlled to alter the output distribution.

Numerical simulations of such a device shows a host of potential applications.

The chip can operate as a classical device with possible applications in telecom-
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munications such implementing a Mach-Zehnder interferometer or an electro-optic

modulator. Being able to characterize and control such a device is important and

has a strong economic impact, but at the same time is very challenging as will be

discussed later. Additionally, the chip can work as a quantum device. This includes

operating as a quantum router, where single photons can be directed to propagate

and be detected at one of the output ports by dynamically changing the control

voltages. It can also be used to generate complicated quantum states (such as W

state) and realize different quantum gates on single or multiple photons.

We focus on two different scenarios of using this device. The first is when ex-

perimentally we are only measuring powers at the output of the chip. This is also

equivalent to a single-photon experiment where we only detect photons at the out-

puts. In this situation, we can use classical modelling only. However, we use a

quantum model for two reasons. First, to show the applicability of the graybox ap-

proach when the whitebox parts are quantum. The second reason is that although

we only measure powers at the output, we allow for arbitrary states in the input, in-

cluding entangled states which cannot be described by a pure classical model. Also,

if there are multiple input photons at different waveguides, then a quantum mechan-

ical description of the chip is required to describe the correlations of the photons at

the output [61]. The second application is when we can also measure phases through

Mach-Zehnder type of interferometry. In this case, we show the possibility of im-

plementing single-qubit quantum gates with high fidelity, where the qubits live in

the subspace formed of the two far-end waveguides. The proposed framework allows

finding the set of control voltages required to obtain a target sequence of quantum

gates, given the different challenges faced during the characterization process.

Machine learning has been a very active area of research recently, with focus on

both the algorithms as well as the wide range of applications touching every field of

science and beyond. Deep learning has particularly gained attention as it becomes

more and more feasible. This is due to today’s enormous computational power,

as well as the availability of big datasets for training. The survey [62] covers the

common architectures used in deep learning and the range of possible applications.

The physics community is also currently exploring the use machine learning to

solve some practical problems faced in designing, controlling, and automating ex-

periments. Some examples of recent work include the automated design of quantum

optical setups [63] using reinforcement learning [64], and using deep learning and

genetic algorithms [65]. Machine learning was also used in [66] to configure an opti-

cal signal processor, which itself can work as an artificial neural network with linear

activation functions. Deep learning was also used in Ref. [67] to discover and charac-

terize topological phases of matter and phase transitions. Techniques of both deep

learning and reinforcement learning have been applied in quantum control [68–70].
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These works differ from ours by treating the entire learned model, including quantum

dynamics, as a blackbox, with no detailed modeling of an experimental realization.

Methods of machine learning have also been used in other areas of quantum

information. For example, the work presented in [49,71] is about developing online

quantum state estimation algorithms inspired by the matrix exponentiated gradient

method, a technique used in classical machine learning. Other applications include

the use of neural networks in quantum cryptography [72] and in quantum error

correction [73]. Another related problem to what we present here is Hamiltonian

learning [24–27]. This is a Bayesian framework that allows updating the priors on

Hamiltonian estimates given observed measurements. This approach although very

useful on its own, is not suitable for the problem under consideration. The reason

is that we are interested in estimating the map between control voltages and the

Hamiltonian through indirect measurements. The Bayesian approach is suitable if

the Hamiltonian is fixed (the control voltages are fixed). Another Bayesian approach

is presented in [74] where the focus is on the real-time prediction of the set of optimal

measurements to perform on a quantum dot, using partial information available so

far. This allows efficient characterization of the device.

The structure of the remainder of the chapter is as follows. The discussion starts

with an overview on the quantum-mechanical description of the chip in Section 4.2.1,

followed by the experimental constraints and challenges in Section 4.2.2. Next, in

Section 4.3 we present the proposed deep learning architecture in detail. After that,

we present the numerical results of the simulations and discuss their significance

in Section 4.4. Finally, we end with the conclusion in Section 4.5. Section 4.6

contains figures related to Section 4.4 placed there for maintaining the readability

and continuity of the text.

4.2 Problem Setup

This section starts with describing quantum mechanically the photonic circuit we

are trying to model and control, followed by the challenges we face in characterizing

it experimentally.

4.2.1 Chip Model

The chip with n-waveguides can be described quantum mechanically in Cn Hilbert

space, with the computational basis encoding the presence of photons in each waveg-

uide. For example for n = 3 the state |0〉 = [1, 0, 0]T encodes a photon present at the

first waveguide, the state |1〉 = [0, 1, 0]T encodes a photon in the second waveguide

and so on. The evolution of the system represents the behaviour of the chip when



4.2. PROBLEM SETUP 95

light propagates along the waveguides. So, the initial state of the system represents

the mode distribution at the inputs of the waveguides, while the final state repre-

sents the distribution at the output of the waveguides. For example, if the system

evolves from the state |0〉 to the state |1〉, then this means that we started with

injecting a photon at the first waveguide (at one end of the chip), and the photon

got perfectly transferred to the second waveguide after propagating along the chip

until the output. This evolution can be described by the unitary

U = e−iHl, (4.1)

where l is the length of the chip, and H is the Hamiltonian of the chip. In general,

we can write the Hamiltonian in the form

H = H0 +HI(v), (4.2)

where H0 is the zero-voltage Hamiltonian, and HI is the interaction Hamiltonian

which is a function of the voltages v applied on the electrodes. Note that the control

voltages are time-dependent, however, the time scale of the change is much slower

than the time scale of the photon travel across the chip. That is, each photon can

see only one time-independent Hamiltonian from the moment it enters the chip until

the moment it reaches the output. But the next photon to arrive can experience a

different Hamiltonian. This assumption is plausible since it is impossible to change

the voltage faster than the flight time of the photon in the chip. This is what

allows us to write the evolution as the matrix exponential of the Hamiltonian as in

Equation 4.1, without the time-ordering operator.

In the basic experimental setup we can only measure output power distribution.

For example, for an n = 3 chip, if the input state is |0〉, and the output state after

evolution is U |0〉 = α |0〉+ β |1〉+ γ |2〉, then the output distribution we measure is

(|α|2, |β|2, |γ|2). However, to characterize a fully quantum model, we need to measure

phases at the output. One of the convenient ways experimentally to measure relative

phase shifts between two optical paths is through Mach-Zehnder interferometry as

shown in Figure 4.2. Recall the basic idea is to construct a quantum circuit whose

output probability amplitude depends on the phase shift required to be measured.

With an initial state |0〉, a standard calculation shows that the final state after the

beamsplitter at the bottom-right of the diagram is

|ψ〉 =
1√
2

(
α + eiθ√

2
|0〉+ β |1〉+ γ |2〉+

α− eiθ√
2
|3〉
)

(4.3)

Now, if we measure the power at the detector, we get P (θ) = 1
4
|α+ eiθ|2. Now if we
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Figure 4.2: A schematic for a typical Mach-Zehnder interferometer to measure the
phase shift between the inputs and outputs of the photonic chip. The kets on
the optical paths represent the encoding along this direction. The dotted lines are
mirrors, while the solid thick lines are beamsplitters.

do two of such measurements corresponding to values of θ = 0 and θ = π
2
, we can

exactly calculate both the amplitude and phase of this output. Particularly,

|α|2 + 1 + 2|α| cos∠α = 4P (0) (4.4)

|α|2 + 1 + 2|α| sin∠α = 4P
(π
2

)
, (4.5)

where ∠α denotes the phase of α. These two equations can be solved simultaneously

to find the amplitude and phase of α. Now, the procedure can be repeated by placing

the mirror at the top-right of the diagram at all other outputs of the chip and obtain

the amplitude and phase of this part of the state. Since we have an n-dimensional

pure state, it is completely defined by 2n degrees of freedom corresponding to real

and imaginary part of each coefficient. (In fact, only 2n−2 are needed since we have

the normalization constraint, and a non-significant global phase shift). The same

procedure can be executed to characterize the output state when other inputs are

activated. Finally, it is worth mentioning that this setup for measuring phase is not

the only possible way, there might be a more efficient way to measure the phases

at the output without requiring to move the optical components spatially. This is

however out of the scope of this chapter.

4.2.2 Experimental Challenges

There are many experimental challenges faced when characterizing a fabricated chip,

as well as designing the control voltages to implement some desired behaviour. Any

model for the device should account for these constraints. These challenges are listed

as follows.
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1. The drifting in the measured output optical power.

This problem is caused by charges getting trapped at the interface between

the Silicon Dioxide and the Lithium Niobate [75–77]. These charges have very

low mobility and therefore take a long time to accumulate and a long time to

diffuse when the voltage is removed. These trapped charges are the central

reason we have difficultly controlling and characterizing this device. The long

diffusion time results in the voltage never ‘resetting’ to zero. It then becomes

extremely difficult to infer what electric field is being applied to the waveguide.

In any case, the chip has some equivalent electrical circuit model. But this

is difficult to model and characterize experimentally, as we cannot measure

physically the voltages the chip actually senses when we apply externally some

control voltages. The only available measurements are the output waveguide

power distribution, which depends non-linearly on the control voltages. This

makes the problem a non-linear control and estimation problem and that is

classically difficult to solve. These effects cannot be neglected as well because

the distortions in the control voltages will be reflected on the measured power

distribution. It will also have a memory effect in the sense that when we apply

some control pulse, the output power will be affected by that pulse in addition

to the previous pulses that were applied. This means that if at some point in

time we set all the control voltages to ground, we will still observe variation

of the power distribution in time. The classic way of overcoming this problem

is during fabrication by etching the buffer layer between the electrodes [75].

However, for the particular chip we are working with, the dimensions are very

small and technologically it is difficult to do this process. Thus, this problem

has to be addressed differently. Therefore, the model should account for these

unknown distortions, and it should be trainable using only available power

measurements.

2. The uncertainties regarding the structure of the Hamiltonian.

Usually, the Hamiltonian in these chips is assumed to have a tridiagonal form

reflecting the fact that only adjacent waveguides are coupled [61,78]. But there

is a possibility that there are non-negligible higher order couplings between

the waveguides leading to more off-diagonal terms. Also, one could assume

the linear dependence of the Hamiltonian on the control voltages. But this

assumption might not be true as there might be higher order terms. Thus, the

model should not assume any particular form of the Hamiltonian except that

it is Hermitian as required by quantum mechanics.

3. The power losses at the output.
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Losses in the measured power occur due to the coupling of the chip to the

external optical fibres connected to the photodetector. These will cause in-

accuracies in the measurements affecting any parameter estimations. These

losses also have to be characterized so that we can make corrections for the

detected power signals. We will model the losses by

P̂k =
εkPk∑n
i=1 εiPi

, (4.6)

where P̂k is the kth normalized measured power at waveguide k, and Pi is the

actual power at the output of the chip for waveguide i. The normalization is

for making the measurements constitute a probability distribution. The model

should account for these losses.

4. The limitation on the control voltages.

Generally, in order to obtain some target output for the device, we need control

voltages that can be arbitrarily large. However, if the potential difference

across any pair of electrodes exceeds some maximum value, the device will

break down. It might be the case that within this limitation one cannot

obtain the target with infinite precision. This controllability issue is a different

problem and is a subject of the future work of this thesis. And so, any control

algorithm should try to maximize the accuracy of the target output without

exceeding the allowed range for the control voltages.

As a result of all the previous challenges, estimating and controlling the Hamil-

tonian directly from measured data is very difficult using the whitebox approach.

The complete blackbox might perform well but as discussed it will not give physical

insights on the device. Thus, we will seek the graybox approach for modelling the

chip under the aforementioned constraints. The blackbox part will represent the

map between the Hamiltonian and the control voltages. This allows getting rid of

any assumptions on the Hamiltonian as well as accounting for the pulse distortions.

The whitebox part will represent the other certain relations derived from quantum

mechanics. The next section will give more details about how to construct such a

model using deep learning.

4.3 Methods

In the previous section we described the challenges we face in experimentally charac-

terizing the chip if we use conventional methods of model and parameter estimation.

In order to address all these challenges, we propose to use a completely data-driven
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approach rather than a parametric approach. We are going to use graybox model

where the Hamiltonian will be treated as a blackbox, while the quantum evolution

and quantum measurement will be treated as whitebox. This is because all the

uncertainties are in the Hamiltonian, while the all the laws of quantum mechanics

are known. We will design a deep learning structure to implement this idea. The

problem will be divided into two stages. The first stage, a set of known control

voltages and corresponding power distribution will be used by a supervised deep

learning algorithm to find a complete graybox model for the chip. The second stage

will be creating another deep learning structure to find the control voltages that

results in some desired behaviour of the chip, using the estimated model from the

first stage.

This section starts with a detailed description of the architecture used to model

the chip. Next, the training and testing procedures are presented. After that,

the detailed description of the control voltages predictor for the chip is presented.

Finally, the section ends with extending the proposed structure to account for a

fully-quantum setting where phases can be measured at the output.

4.3.1 Chip Model Architecture

The deep learning architecture is shown in Figure 4.3. The first layer in the model

is a Gated Recurrent Unit (GRU) [9]. This is a variant of the Long-Short Term

Memory (LSTM) structure often used in sequence prediction and classification [10].

GRU is more efficient than LSTM as it has fewer parameters to be learned during

the training stage. However, in terms of accuracy, it is not very clear which is

better generally, and this remains an open topic under investigation within the

machine learning community [79]. The number of inputs is equal to the number

of electrodes which is 2n. For our implementation, the number of hidden units

of the GRU is chosen to be 60. In general, more hidden units allow modelling

more complex waveforms, but on the expense of more parameters to learn and thus

more computational resources required. The objective of this layer is to learn the

interaction Hamiltonian, i.e. learn how the Hamiltonian depends on the external

voltages. This should also include the parasitic effects in the chip causing distortions

of the applied voltage waveforms. The number of free parameters of any real-valued

symmetric Hamiltonian of size n× n is n
2

(n+ 1). However, the output of the GRU

is the output of each hidden node. So, to extract the required number of outputs,

we add a neural network (NN) formed of a single layer that is fully-connected to all

of the outputs of the GRU. The number of neurons is exactly equal to n
2

(n+ 1),

as each neuron generates one output. Linear activation is used for all neurons, to

allow the output to take any value and not be restricted in some range if we use
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Figure 4.3: The different layers for the proposed graybox architecture to model a
3-waveguide chip (n = 3), with inputs representing the control voltages and outputs
representing the measured optical power. The first two layers together represent
the blackbox part of the model, while all other layers represent the whitebox part.
The Gated Recurrent Unit “GRU” layer together with the Neural Network “NN”
layer model the map between the interaction Hamiltonian and the control voltages,
as well as the distortions of the control voltages. The “Hamiltonian construction”
layer converts the output from the previous layer into a Hermitian matrix and adds
the zero-voltage Hamiltonian. The “Quantum Evolution” layer calculates the prob-
ability amplitudes of the evolved quantum state given the Hamiltonian from the
previous layer. The “Coupling Loss” layer models the power loss during measure-
ment. The branching ensures that we get the same Hamiltonian for different initial
states to be consistent with linearity of quantum mechanics. The graybox model
is trained over two stages. The first stage is training the whitebox parts using
zero-voltage measurements. The second stage is training the blackbox parts using
random pulse measurements.

other activations such as sigmoid. Notice, that the GRU is a sequential layer, so

the output has an extra dimension of time. However, the NN layer is static acting

equivalently on each time slice of the output of the GRU. This means that weights

applied to the GRU output at every time instant are the same. These two layers

together act as a device to learn the free parameters of the Hamiltonian as a function

of the input voltages.

The third layer in the structure is a custom-defined layer that has two function-

alities. The first one is to reconstruct a symmetric matrix from the output of the

previous layer. This is done by reshaping the outputs as an upper triangular ma-

trix, and then sum it with its transpose. The second functionality is to add to the

drifting Hamiltonian, that is the zero-voltage Hamiltonian that models the inherent

coupling between the waveguides. The parameters of this drifting Hamiltonian are

learned during the training process as will be illustrated later. The final output of

this layer is therefore the full Hamiltonian of the system.

The next layer of the model is the quantum evolution layer. This is a custom

defined layer, that takes some Hamiltonian as input, an initial quantum state as a

defining parameter, and generates the probability amplitudes of the evolved state
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as output. These probability amplitudes correspond to the waveguide power dis-

tribution. So, the layer first calculates the evolution matrix U = e−iHl. Next, it

calculates the evolved state |ψF 〉 = U |ψ0〉. Finally, it calculates the probability

amplitudes of the evolved state | 〈m|ψF 〉 |2,m = 0, 1, . . . , n− 1.

Now, a problem arises if we train the model with the structure so far. Since, only

one initial state is used in the quantum layer, then the learned Hamiltonian will be

valid only for evolutions of this state. But, if we use the same Hamiltonian to evolve

other initial states, we might not obtain a correct evolution. So, the algorithm will

need to learn a different Hamiltonian for each initial state. This is a major problem,

since quantum mechanics is a linear theory, so the Hamiltonian should not depend

on the quantum state being evolved. Thus, we have to constrain the Hamiltonian in

some sense so that it works for all states. The way we propose to solve this problem

is to have different copies of the quantum layer each parametrized by a different

initial state. Then, we connect the input of all these layers to the same output

of the previous Hamiltonian layer. In this case, during the training, the model

will be enforced to generate a Hamiltonian that correctly evolves each of the initial

states. Since a unitary can be completely characterized by knowing the outputs

corresponding to each of the computational bases as input states, we only need n

of ‘parallel’ quantum structures each generating n outputs. So, the total number of

outputs for this whole layer is n2.

The final layer in the model is also a custom-defined layer that models losses

during power measurements. This physically occurs due to coupling between be-

tween the chip and optical fibres connected to the photodetectors. The layer simply

implements the calculation P̂k = εkPk∑n
i=1 εiPi

, where P̂k is the kth measured power at

waveguide k, and Pi is the actual power at the output of the chip for waveguide

i. The denominator in the expression is to ensure that the measured powers are

normalized, (i.e. form a distribution). The coupling coefficients are learned during

the training stage as will be discussed later. For each quantum block in the quantum

evolution layer, we cascade one of these coupling layers. However, all of these copies

of the coupling layers are identical (i.e. have the same parameters). This reflects

the fact that the losses are independent of which waveguide was used as input, and

just related to the hardware of the experiment.

4.3.2 Training and Testing

There are two stages to do the training of the model, where all the unknown param-

eters of the model are leaned by providing examples. The first stage is to learn all

the zero-voltage parameters, i.e. the drifting Hamiltonian and the coupling losses

coefficients. All these parameters are static and do not depend on the input volt-
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ages. For this training step, we detach the GRU and NN layers from the model. The

input of the model is directly connected to the Hamiltonian construction layer, and

is fixed to be all zeros. The output is the lossy power distribution. This is obtained

experimentally by fixing the physical voltage on the chip to zero, using one of the

waveguides as input and measure the power across each waveguide. The procedure is

repeated for all input waveguides. Since, the distribution in this case is static, we get

a total of n2 readings. With this pair of training data (zero voltage as input, and n2

readings as output), the model is trained by backpropagation using RMSprop [80],

and all the unknown parameters are learned. We use the mean square error (MSE)

as the loss function and also as the performance metric. This is because the problem

is predicting a waveform, and MSE is one of the most commonly-used metrics for

quantifying similarity between two waveforms. The lack of phase information at

the output prevents us from constructing a full quantum state and thus evaluating

quantum measures such as fidelity is not possible.

The second stage of training is to obtain the dynamic behaviour of the chip,

(i.e. how the waveguide power distribution changes in time being a function of the

input time-varying voltage. In this stage, the full model is used, and the input is

connected to the GRU layer. All parameters learned from the first stage are fixed

and do not change during this stage. Backpropagation is used to train the remaining

unknown parameters using the pair of some voltage waveforms as input, and the

corresponding measured power distribution waveforms as output, with MSE acting

as loss function. After this stage, all the learned parameters are fixed and the model

can be used in the testing phase.

In the testing phase, the model is given a new input that was not in the training

set, and the predicted output is compared with the actual output. A good model is

a one that generalizes well over new inputs. The end goal of using this architecture

is a graybox model of the chip, capable of predicting the output distribution for

any control voltage. However, practically this is a hard requirement due to the

behaviour of machine learning algorithms. Usually, these structures have the ability

to generalize for inputs that share some similarity with the training examples. In

our case, the voltage waveform shape should be the same for the training and testing

datasets (i.e. fix the pulse shapes to be square, Gaussian, raised cosine, etc.). After

fixing the shape, the waveform parameters (such as amplitude, phase shift, etc.)

for each example can be arbitrary. If we want the model to predict the output for

other waveform shapes, then the training set has to include the other shapes as well.

In this chapter, we restrict all the voltage waveforms to have the form of arbitrary

synchronized square pulses. This means that for each example, the pulses across

all electrodes start at the same time instant, have the same width, but can have

different amplitudes. These parameters will differ though across different examples
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Figure 4.4: The proposed architecture of the controller for the n = 3 chip, with
inputs representing the target sequence of Hamiltonians and outputs representing
the target controlled optical power distribution. The trained graybox model of the
chip is fixed preventing any further changes. An extra blackbox is added at the
beginning. The Gated Recurrent Unit “GRU” and the Neural Network “NN” layers
model the map between the sequence of target Hamiltonians and control voltages.
The activation function in the NN layer is chosen to ensure that the resulting control
voltages are limited to the allowed range the chip supports. After training, the
control voltages can be estimated by probing the output of the “NN” layer.

in the datasets.

The architecture of this model has a major advantage which is the possibility

of monitoring the output of each layer during testing, each corresponds to a phys-

ically significant quantity. So, the output of the NN layer is a prediction of the

interaction Hamiltonian as a function of the input voltages and time. The output

of the “Hamiltonian Construction” layer is a prediction of the total Hamiltonian

matrix. The “Quantum Evolution” layers predict the ideal power distribution for

each initial state, while the output of the last layer is prediction of the measured

power distribution. This shows that relevance of this deep learning structure. For

instance, had we used one LSTM-based blackbox instead of the proposed graybox,

we would have been able to predict the measured power distribution only, but not

the other quantities.

4.3.3 Controller Architecture

The second major task required after characterizing the chip is finding the control

voltages needed to obtain a desired power distribution, resulting from the evolution

of a target Hamiltonian. The architecture of prosed controller is shown in Figure

4.4. The first layer is a GRU layer followed by a fully-connected neuron layer similar

to that used in the model architecture. However, the input is some desired target

Hamiltonian, and output shall represent the control voltages which is a 2n vector.

Since we need at least one of the electrodes to be connected to ground, we actual

enforce the very first electrode to zero. Also, we enforce the last electrode arbitrarily

to zero. This leaves out 2n− 2 control voltages to predict. For efficiency purposes,

we actually input only the upper triangular part of the Hamiltonian flattened into
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an n
2

(n+ 1) vector.

One major issue to consider is that the voltage across any two adjacent electrodes

should not exceed in absolute value Vmax. So, all the neurons at the output have a

scaled hyperbolic tangent sigmoid activation in the form f(x) = 1
2
Vmax tanh(x). This

ensures the output at each electrode is in [− 1
2
Vmax,

1
2
Vmax], and thus the potential

difference across any two adjacent electrodes is limited to [−Vmax, Vmax].

Next, we cascade a copy of the previously trained model without the coupling

loss layers. The reason behind dropping that layer is that the power loss is due to

the measurement process, and not the operation of the chip. For instance, if two

chips were connected in cascade with perfect coupling, then we would be interested

to predict the control voltages for the first chip to produce some desired state at its

output, and there will be no effects of the losses for the first chip. All the trained

parameters of the model are fixed and do not change during the training of the

controller. Connecting the pre-trained model enforces the whole controller struc-

ture to generate the ideal target power distribution. Thus, all the distortions that

appear in the power distribution are dealt with automatically by the controller. The

algorithm is enforced to produce voltage waveforms that undo the distortion effects

in order to minimize the MSE. This means the algorithm is effectively learning an

inverse model of the equivalent circuit of the chip, and simultaneously ensuring the

final quantum state is correct. In some sense, this structure does both classical con-

trol (undoing the distortions) and quantum control (obtaining the target quantum

state). By probing the output of the NN layer, the desired control voltage can be

estimated.

It is worth mentioning that there is no requirement on the controller to general-

ize to every possible target Hamiltonian/target-distribution pair. Whenever we are

interested to realize some sequence of operation on the chip, we redo the training of

the controller, and probe the output of the NN layer. So, in some sense we are using

backpropagation as a direct optimization procedure rather than a learning proce-

dure. Additionally, the controller input is a sequence representing the Hamiltonian

at each time step. This means we can obtain control voltages that allows changing

the behaviour of the chip dynamically whilst operating.

The last point to note is that not every possible Hamiltonian can be realized

with the chip model. Some Hamiltonians may require voltages that exceed the

maximum allowed range. An open question is what kind of quantum gates can be

actually implemented using this chip given the constraints. This is however outside

the scope of this chapter.
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4.3.4 Fully-quantum model

The architectures described so far are not fully quantum in the sense that the Hamil-

tonian is assumed to be real, and that we can only measure powers at the output

(corresponding to probability amplitudes). However, it is possible to extend the

proposed method to the fully quantum case, if we perform the Mach-Zehnder type

of measurements as discussed previously. The overall architecture is quite similar,

with the following modifications:

� The neural layer after the GRU is set to produce n2 outputs instead of the n(n+

1)/2, to account for the imaginary part of the Hamiltonian matrix elements.

� The Hamiltonian layer reshapes the output of the neural layer to an n × n

matrix, where the lower triangular part represents the imaginary part of the

Hamiltonian while the upper triangular part represents the real part. So, by

multiplying the lower triangular part by i and adding the whole matrix to

its Hermitian conjugate, we end up with an n × n Hermitian matrix. Also,

the zero-voltage Hamiltonian H0 is manipulated similarly to account for the

possibility of complex-valued entries.

� The quantum layer outputs the Mach-Zehnder interferometer power measure-

ments instead of the probability amplitudes. So if the final state is
∑

k αk |k〉,
then the layer’s outputs are Pk(0) = 1

4
|αk + 1|2, and Pk

(
π
2

)
= 1

4
|αk + i|2, for

all k = 1, ...n. So, the total number of outputs for this layer is 2n, and for the

whole model is 2n2. We do not need to explicitly calculate the amplitude and

phases from the interferometer measurements for the training. We will just

use the interferometer measurements directly. The training follows the same

procedure as discussed previously.

� For simplicity, we removed the coupling layer as the focus in this application

is on exploring the possibility of learning a fully quantum system. However,

in general we can include it.

� We still use MSE as a loss function and performance metric because the output

is still a waveform (although representing interference measurements now).

However, since there is complete information to reconstruct the state and the

evolution matrix, we can use other metrics for performance evaluation such as

fidelity.

� The controller architecture is the same, the only difference is the input of the

first layer is the real and imaginary parts of the target unitaries, rather than

the Hamiltonians. This seemed to perform better than having the Hamil-

tonians as input. This might be due to the fact that there exist infinitely
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many Hamiltonians (all related with a factor of integer multiple of 2π in the

eigenvalues) giving rise to the same unitary. And thus, the GRU might have

trouble finding some of these equivalent Hamiltonians. However, if the input is

directly the unitary then there is no redundancy. For the classical application,

this did not seem to cause any problems because there was more freedom as

the optimization is over the power distribution only. In the quantum applica-

tion, it is more restrictive since the optimization is over the phase information

as well.

4.4 Simulation Results

This section discusses the implementation details of our method and the results of

the numerical simulations. A discussion on the significance of the results is given

afterwards.

4.4.1 Implementation

For implementing the proposed architecture we used the “Tensorflow” Python pack-

age [7], and its high-level API package “Keras” [8]. The Python implementation of

our algorithm is publicly available1.

In order to do training and testing, we created a dataset consisting of control

voltages in the form of random pulses, and the corresponding waveguide output

power distribution for different input waveguides. We generated a total of 4000

examples, 3500 of which were used for training and 500 for testing. The amplitudes

of the pulses are from -5 to +5 volts and the time domain is limited to the interval

0 ≤ t ≤ 200(ms) with sampling time of 0.2(ms). In each example, the voltage

on the first and last electrodes are fixed at zero, while the pulses are applied on

the remaining electrodes. The restriction on these pulses is that they have to be

synchronized across the different electrodes, starting and ending at the same time.

However, the durations and amplitudes are chosen randomly from one example

to another. The experimental setting would be generating these pulses, applying

them physically to the chip, measuring the output power distribution, and finally

training the model. However, in this chapter, we restrict the study to computer

simulations. So, we created a simulator for the chip that generates the waveguide

power distribution given a set of control voltages, using the Hamiltonian model

1https://github.com/akramyoussry/GRUBI
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described by the tridiagonal real-valued matrix

H =



β1 C1,2 0 0 · · · 0

C1,2 β2 C2,3 0 · · · 0

0 C2,3 β3 C3,4 · · · 0

0 0 C3,4 β4
. . .

...
...

...
...

. . . . . . Cn−1,n

0 0 0 0 Cn−1,n βn


, (4.7)

where βi is the propagation constant along the ith waveguide, and Ci,j is the coupling

coefficient between waveguides i and j. The propagation constant is given by

βi =
2π

λ
(n0 + ∆n∆Vi) , (4.8)

where λ is the wavelength, n0 is the intrinsic refractive index of the waveguide, ∆n is

a dynamical proportionality constant that determines how much the the propagation

constant changes by changing the voltage across the waveguide ∆Vi. The coupling

coefficient is given by

Ci,j = C0 + ∆C1∆Vi,j + ∆C2 (∆Vi + ∆Vj) , (4.9)

where C0 is the intrinsic coupling between two adjacent waveguides, ∆Vi,j is the po-

tential difference across the substrate between the two waveguides i and j, ∆Vi and

∆Vj are the voltages across waveguides i and j, and ∆C1 and ∆C2 are dynamical

proportionality constants that determine the amount of change of the coupling be-

tween two waveguides by changing the voltages across them. These relations assume

that Hamiltonian depends on the voltages linearly, and that the coupling is always

between neighbouring waveguides. The simulator takes into account the non-ideal

effects due to the equivalent circuit behaviour of the chip, by simulating distortions

on voltage pulses. It also simulates coupling losses. For the results presented in

this chapter, the simulation parameters were as follows. n = 3, λ = 808 × 10−9,

l = 3.6 × 10−2, n0 = 2.1753, ∆n = 5 × 10−6, C0 = 100, ∆C1 = 1.5, ∆C2 = −1.3,

and εk = {0.9, 0.8, 0.5}.

4.4.2 Results

For the task of modelling the chip, the MSE obtained after 104 iterations was about

2.1×10−4 for the training dataset. Figure 4.5a shows the MSE versus the number of

iterations. For the testing dataset, the MSE evaluated is 3.4×10−4. Supplementary

Figures 4.8,4.9, and 4.10 show examples selected randomly of the testing dataset
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Table 4.1: Target Hamiltonians used for testing the proposed architecture for the
controller as per Equation 4.10 for the classical model, and Equation 4.12 for the
fully-quantum model.

Symbol Expression Description

I

1 0 0
0 1 0
0 0 1

 Identity (100% decoupling between waveguides)

X13

0 0 1
0 1 0
1 0 0

 Perfect Transfer between waveguide 1 and waveg-
uide 3

H13

 1√
2

0 1√
2

0 1 0
1√
2

0 −1√
2

 50-50 Power split between waveguide 1 and waveg-
uide 3 (Hadamard gate)

X12

0 1 0
1 0 0
0 0 1

 Perfect transfer between waveguide 1 and waveg-
uide 2

Z13

1 0 0
0 1 0
0 0 −1

 Phase shift of π between waveguide 1 and waveg-
uide 3

RX13(θ) exp (−iθX13) Rotation about X-axis by angle θ between waveg-
uide 1 and waveguide 3

RZ13(θ) exp (−iθZ13) Rotation about Z-axis by angle θ between waveg-
uide 1 and waveguide 3

including the control voltages, simulated measured waveguide power distribution

and the predicted power distribution.

To test the control part, we defined as an example a sequence of target unitaries

in the time interval 0 ≤ t ≤ 300(ms), given by

U(t) =



X13 50 ≤ t < 80

H13 (110 ≤ t < 140) ∨ (250 ≤ t < 280)

X12 170 ≤ t < 210

I otherwise

(4.10)

where the unitaries are defined in Table 4.1. The Hamiltonian is then evaluated for

each time interval by taking the matrix logarithm H = i
l
logU .

After training the controller model for 500 iterations, the MSE was 2×10−2. The

MSE versus the number of iterations is plotted in Figure 4.6a. The resulting control

voltages are shown in Supplementary Figure 4.11, and the resulting predicted ideal

power distribution in Supplementary Figure 4.12.

For the second application which is the fully-quantum setting, we use the same

dataset of pulses, but now we have the interferometer power measurements as the
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(a) Classical (b) Quantum

Figure 4.5: The proposed machine learning structure is trained over a set consisting
of 3500 examples. The set consists of random control pulses and the correspond-
ing simulated output optical power for the classical application, and interferometer
power measurements for the fully-quantum application. The plot shows the MSE,
which is used as the loss function for the training, versus the number of iterations
for the (a) classical application and (b) the quantum application.

model output. The number of iterations is 1.3× 104, which is more than the other

model to account for doubling the size of the outputs. Figure 4.5b shows the per-

formance of the training in this case. The MSE evaluated for the testing dataset it

2.88×10−4, while it was 1.74×10−4 for the training set. This is an indication for the

the ability of the model to fit the training dataset as well as generalize to the testing

dataset. Supplementary Figures 4.13 and 4.14 show the result of the predicted wave-

forms using the same control pulses as in Supplementary Figures 4.8 and 4.9. Now,

since the phase is also measured, then we can have a complete quantum description

of the output state, and thus we can construct the evolution unitary. A commonly

used measure for the closeness of two quantum gates U and V of dimension d, is the

gate infidelity defined as

1− F (U, V ) = 1−
| tr

(
U †V

)
|2

d2
. (4.11)

Infidelity is thus a number between 0 and 1, with 0 representing complete overlap

(i.e. same matrices). Supplementary Figure 4.15 shows the infidelity between the

predicted unitary and actual unitary as a function of time for these two examples.

Finally, for evaluating the control algorithm in this setting, we used as an example
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the following sequence for 0 < t < 280(ms)

U(t) =





X13 50 ≤ t < 90

RX13

(
π
4

)
130 ≤ t < 170

RZ13 (0.1) 210 ≤ t < 250

I otherwise

(4.12)

The history of the MSE of the controller during the training is shown in Figure

4.6b. The resulting infidelity between the desired sequence of quantum gates and

the controlled quantum gates are shown in Figure 4.7, while the control voltages are

shown in Supplementary Figure 4.16.

(a) Classical (b) Quantum

Figure 4.6: The proposed controller architecture is trained to obtain the control
voltages needed to achieve the target sequence of (a) optical output power distribu-
tion for the classical application defined in Equation 4.10, and (b) unitary gates for
the quantum model defined in Equation 4.12. The plot shows the MSE used as the
loss function versus the number of iterations.

4.4.3 Discussion

The presented results show the accuracy of the proposed architecture in modeling the

chip with all the constraints mentioned earlier. Quantitatively, the loss represented

by the MSE decreases on average by increasing the number of iterations during the

training phase, reaching a small value that is in order of 10−4. However, this is not

sufficient to completely asses the behaviour of the proposed algorithm. The plots

of the waveforms in Supplementary Figures 4.8,4.9, and 4.10 show qualitatively the

accuracy of the model. The difference between the predicted and simulated power

distribution is almost negligible. More importantly, since the model has not been

trained on the testing set, it proves that the proposed structure can generalize to
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Figure 4.7: The resulting infidelity for the sequence of target quantum gates defined
in Equation 4.12, after training the proposed controller architecture. Photons ar-
riving at different time instants would see different quantum gates. The plot shows
the infidelity of between the ideal quantum gate and the actual gate obtained by
the controller at each time step.

examples that are drawn from the same distribution as the training set. Absolute

generalization to every possible input is not possible when using ML technqiues.

However, this might not be an issue in a hardware experiment, since the nature of

the inputs (control pulses) are usually fixed. The architecture does not allow to give

explicit mathematical expression for the Hamiltonian. But nonethelss, we can use it

directly to estimate the Hamiltonian given the control voltages. Also, quantitatively

the MSE evaluated for the testing set is also in the order of 10−4, without much

degradation than the value for the training set.

The qualitative results also show that the architecture is able to handle all the

challenges described in Section 4.2.2. We were able to model the distortions caused

by the equivalent circuit without the need to explicitly define a particular circuit

model or how the Hamiltonian depends on the circuit response. This also saves us

from having to characterize these parasitic effects experimentally, which is difficult

as discussed previously.

For the control task, the proposed method was also very successful in obtaining

the required control voltages as reflected in Supplementary Figure 4.12. We see that

the distortions that were present in the power distributions are not there anymore,

and at the same time we were able to achieve the required functionality. The control

voltages were also limited to the desired operating range. However, we see that for

the X12 gate, the algorithm could not do full transfer between waveguides 1 and

2. We believe that this is related to the fact that not all gates are possible to

implement, which is a subject of the future work. A final thing to notice is that all

the examples in the training set were limited to the time range 0 ≤ t ≤ 200(ms).

However, the target control sequence has a wider range 0 ≤ t ≤ 300(ms), and still

we are successful in our task. This is a result of using the GRU layers, and shows
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how the whole model generalizes quite well.

The proposed modifications in the architecture to account for fully-quantum

models was also very successful. This is evident from the low MSE value for both

training and testing datasets with small difference between both. This is supported

qualitatively through the plots of the power waveforms and infidelity versus time.

Also, the controller architecture seems to perform quite well. The example we

tested shows the possibility of implementing some basic quantum gates which are

identity, Pauli X, rotation about X-axis with angle π/4 which is equivalent to a

Hadamard gate with phase shifts, and rotation about Z-axis. At each time instant,

the photon travelling through the chip will sense a different quantum gate. The gate

infidelities at all time instants, apart from the transition moments, are low (worst

case was 4×10−2). The gates act on a qubit spatially encoded between the first and

last waveguide. However, there is a major advantage for our proposed controller

architecture, which is the input is the target sequence of quantum gates rather than

a single gate. In general, the control voltages required for realizing a particular

gate can depend on the previous history of gates realized so far due to the drifting

problem described earlier. In other words, the same gate could need different control

pulses at different points in time during the operation of the chip. Our proposed

method deals automatically with this issue compared to standard quantum control

literature that deals with one target quantum gate only [32,35,81].

4.5 Conclusion

In this chapter, we proposed a deep learning structure that is suitable to model a

reconfigurable integrated waveguide array chip. The architecture addresses three

major problems faced when characterizing the chip experimentally. The uncertainty

in the Hamiltonian model, the presence of undesired macroscopic dynamics causing

distortions, and losses due to imperfect measurements. The proposed architecture

followed a graybox model approach, where the Hamiltonian as a function of control

voltages is treated as a blackbox utilizing a GRU network as a main component.

The waveguide power distribution as function of the Hamiltonian is treated as a

whitebox since the laws of quantum mechanics are known. We also proposed another

complementary deep learning structure to obtain the control voltages required to

achieve some target sequence of gates. The qualitative as well as quantitative results

showed a very promising performance for both tasks.

Comparing the proposed method to standard techniques such as GRAPE is not

fair. There are two approaches by which we can apply standard quantum control

techniques. The first approach is to apply the algorithm in an online fashion, where

control pulses are optimized by directly accessing the device. The main drawback of
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this approach is how to experimentally measure the fidelity in an efficient way. The

second approach is to apply GRAPE offline, where a model for the device is used

to estimate the fidelity and optimize the control pulses. The challenge here is the

existence of uncertainties in the model, and thus it is difficult to write down accurate

equations to describe the system. This is actually the main motivation behind the

proposed framework. This leaves us with a final possible option which is using

GRAPE with the proposed ML model after training. In that case the performance

of GRAPE will be dependent on the performance of the trained model, and thus a

fair comparison with the full ML approach is not possible.

Finally, there are limitations of the presented ML-based approach that one has

to consider. The first limitation is related to the scalability of the method. This

method is suitable for small-scale systems, in which constructing a dataset from an

experiment is a feasible task. For large-scale systems, the method could be applied

for a partial characterization (For example a limited set of controls or target out-

puts). The growth of computational power makes it possible to train huge datasets.

The bottleneck is actually constructing those datasets. The second limitation is

related to the generalization capabilities of the model as discussed earlier. This

problem while persistent in most ML applications, it might not be challenge for the

application under consideration. This is because usually the experimental settings

(For example the control pulse shapes and constraints) in which we characterize

and operate the device is usually fixed. The final limitation is that this method

assumes a closed-system evolution dynamics. In the next chapter, we extend this

framework to open quantum systems in the absence of prior information about the

environment.
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4.6 Supplementary Figures

Figure 4.8: Random example from the testing dataset. The left column is the
control voltages applied to the electrodes across the waveguides. The right column
is the waveguide output power distribution, both simulated as in the dataset and
predicted by the proposed algorithm. The initial state is |0〉, i.e. full power at the
first waveguide.
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Figure 4.9: Random example from the testing dataset. The left column is the
control voltages applied to the electrodes across the waveguides. The right column
is the waveguide output power distribution, both simulated as in the dataset and
predicted by the proposed algorithm. The initial state is |2〉, i.e. full power at the
third waveguide.
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Figure 4.10: Random example from the testing dataset. The left column is the
control voltages applied to the electrodes across the waveguides. The right column
is the waveguide output power distribution, both simulated as in the dataset and
predicted by the proposed algorithm. The initial state is |1〉, i.e. full power at the
second waveguide.



4.6. SUPPLEMENTARY FIGURES 117

Figure 4.11: The resulting control voltages to obtain the sequence of targets defined
in Equation 4.10.
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(a) initial state = |0〉 (b) initial state = |1〉

(c) initial state = |2〉

Figure 4.12: The resulting waveguide distribution realizing the sequence of targets
defined in Equation 4.10, for the initial states a) |0〉, b) |1〉, and c) |2〉.
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Figure 4.13: Random example from the testing dataset showing the interferometer
power measurements across each waveguide, both simulated as in the dataset and
predicted by the proposed algorithm. The same control voltages are applied as in
Supplementary Figure 4.8. The initial state is |0〉.
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Figure 4.14: Random example from the testing dataset showing the interferometer
power measurements across each waveguide, both simulated as in the dataset and
predicted by the proposed algorithm. The same control voltages are applied as in
Supplementary Figure 4.9. The initial state is |2〉.
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(a) Infidelity for the example in Supplemen-
tary Figure 4.13

(b) Infidelity for the example in Supplemen-
tary Figure 4.14

Figure 4.15: The gate infidelity evaluated between the predicted evolution unitary
and the actual evolution unitary for two random examples from the testing set.
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Figure 4.16: The resulting control voltages to obtain the sequence of targets defined
in Equation 4.12.



Chapter 5

Modelling and Control of Open

Quantum Systems

Abstract The ability to use quantum technology to achieve useful tasks, be they

scientific or industry related, boils down to precise quantum control. In general, it

is difficult to assess a proposed solution due to the difficulties in characterising the

quantum system or device. These arise because of the impossibility to characterise

certain components in situ, and are exacerbated by noise induced by the environment

and active controls. Here we present a general purpose characterisation and control

solution making use of a deep learning framework composed of quantum features.

We provide the framework, sample datasets, trained models, and their performance

metrics. In addition, we demonstrate how the trained model can be used to extract

conventional indicators, such as noise power spectra.

5.1 Introduction

Accurately controlling the dynamics of open quantum systems is a central task in

the successful implementation of quantum-enhanced technologies. Doing so to the

highest possible level of accuracy involves a two-stage approach: first, quantum

noise spectroscopy (QNS) [23, 38, 82–100] protocols are used to infer characteristics

of the open quantum system that affect the open quantum system dynamics, and

then optimal control routines (OC) exploit this information to minimize the effect

of noise and produce high quality gates [101,102].

In this work, we go beyond the aforementioned approach and pose the problem

in a machine learning (ML) context. By doing so, we provide a common language

in which the “learning” (equivalent to QNS) and “validation” (the precursor to OC)

cycles are directly related to the objective of controlling an open quantum system.

Notably, we show that doing so considerably extends the real-world applicability of

123
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the aforementioned two-stage strategy, as one can forgo some of the non-trivial con-

trol and model assumptions necessary for the implementation of sufficiently general

QNS protocols. The success of the approach relies on the fact that the ML algorithm

learns about the dynamics relative to a given set of control capabilities, which effec-

tively reduces the complexity of the problem in a way meaningful to experimental

constraints (see also [103] for a formal analysis of this problem).

The guiding principles of this work were to develop a framework that enables us

to have models that are independent on any assumptions. It has to be suitable for

estimating physically relevant quantities. And finally, it should have the capacity

to do standard tasks such as decoherence suppression and quantum control.

The proposed method is based on a graybox approach, where all the known

relations from quantum mechanics are implemented as custom whitebox layers—

quantum features—while the parts that depend on assumptions on noise and control

are modelled by standard blackbox machine learning layers. In this chapter, we

show how to construct such a model. The proposed model can be trained from

experimental data consisting of sets of control pulses, and corresponding quantum

observables. However, in this chapter, we do not have access to an actual experiment,

and thus we train the algorithm and asses its performance using synthesized datasets,

obtained by computer simulations of a noisy qubit system. The results show high

accuracy in terms of prediction error. We also show the possibility of utilizing the

trained model to do basic quantum control operations. This chapter opens the door

for a number of possible novel machine-learning methods in the fields of quantum

dynamics and control.

This work complements the existing literature applying classical machine learn-

ing to the quantum domain. Recently, machine learning and its deep learning frame-

work [62] have been applied to many areas of quantum information, and physics

more generally. Application areas include quantum control [68–70], characterization

of quantum systems [49,67,71,104], experiment design [63–65], quantum cryptogra-

phy [72], and quantum error correction [73,105,106]. A related approach is Bayesian

learning which was applied for Hamiltonian learning [26, 27], quantum noise spec-

troscopy [107], and characterization of devices [74].

The structure of the remainder of the chapter is as follows. The chapter starts

with overview on the formulation of the problem under consideration in Section 5.2.

Section 5.3 describes in detail the proposed solution using a graybox ML approach.

Next, Section 5.4 discusses the implementation of the proposed method followed by

the presenting the numerical results and its significance. Section 5.5 concludes the

chapter. Section 5.6 contains supplementary figures related to the results discussed

in Section 5.4.
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5.2 Problem Statement

In broad terms, our objective is to effectively “characterize” and accurately predict

the dynamics of a two-level open quantum system, i.e., a qubit interacting with its

environment, undergoing user-defined control picked from a fixed set, e.g., consistent

with the control capabilities available to a given experimental platform. In what

follows we make this statement precise.

For concreteness we start by choosing a model for our dynamics. We will consider

a qubit evolving in the presence of both quantum and classical noise [90] via a time-

dependent Hamiltonian of the form,

H(t) =
∑

α=x,y,z

σα ⊗ Bα(t) +Hctrl(t), (5.1)

where Bα(t) = B̃α(t)+βa(t)IB is an operator capturing the effect of a quantum bath,

via the operator B̃α(t) typically resulting by working in the interaction picture with

respect to the bath internal Hamiltonian, and classical noise, via the stochastic

process βa(t). Control is implemented via the Hamiltonian

Hctrl(t) = Ω
σz
2

+
∑

α={x,y,z}

fα(t)
σα
2
, (5.2)

where Ω denotes the energy gap of the qubit, fα(t) implements the user-defined

control pulses along the α−direction, and σα is the α Pauli matrix. Notice that this

generic model can accommodate classical noise process simply by making Bα(t) =

βα(t)IB, with βα(t) an stochastic process. In all equations and simulations in this

chapter, we work with units where ~ = 1. Since we are interested in predicting

the dynamics of the qubit in a time interval [0, T ], we will be interested in the

expectation value E{O(T )}ρ of observables O at time T given an arbitrary initial

state of the system ρ and a choice of {fα(t)}.

While these expectation values contain the necessary information, it will be

convenient to further isolate the effect of the noise. To this end we proceed as

follows. Our starting point is the usual expression,

E{O(T )}ρ = 〈tr[U(T )(ρ⊗ ρB)U(T )†O]〉c, (5.3)

where U(T ) = T e−i
∫ T
0 dsH(s) and 〈·〉c denotes classical averaging over the noise re-

alizations of the random process βα(t), and ρB is the initial state of the bath. One

can then move to a toggling-frame with respect to the control Hamiltonian Hctrl(t),
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inducing a control unitary Uctrl(T ) via,

Uctrl(T ) = T+e
−i

∫ T
0 Hctrl(s)ds, (5.4)

which enables the decomposition,

U(T ) = ŨI(T )Uctrl(T ),

with,

ŨI(T ) = T+e
−i

∫ T
0 Uctrl(T )HI(s)U†ctrl(T )ds,

the (modified) interaction picture evolution (see Section 2.2.3 for details), and HI(t)

is defined as

HI(t) = U †ctrl(t)H1(t)Uctrl(t), H1(t) =
∑

α=x,y,z

σα ⊗ Bα(t). (5.5)

In turn, this allows us to rewrite,

E{O(T )}ρ = tr[VO(T )Uctrl(T )ρUctrl(T )†O], (5.6)

where the operator

VO(T ) = 〈O−1Ũ †I (T )OŨI(T )〉 , (5.7)

where 〈·〉 = 〈trB[·ρB]〉c conveniently encodes the influence of the noise. As such, this

operator is central to understanding the dynamics of the open quantum system. If

our objective is, as is common in optimal control protocols and imperative when

quantum-technology applications are considered, to minimize the effect of the noise,

e.g., via a dynamical decoupling [108–110] or composite pulses [111, 112], then one

needs to determine a set of controls for which VO → I. Notice that tr[O 〈Ũ †IOŨI〉]
can be interpreted as the “overlap’ between the observable O and its time evolved

version 〈Ũ †IOŨI〉, which is maximum when the evolution is noiseless. If additionally

one wants to implement a quantum gate G, then we further require that UctrlρU
†
ctrl →

GρG†. Regardless of our objective, it is clear that one needs to be able to predict

VO(T ) given (i) the actual noise affecting the qubit and (ii) a choice of control.

However, realistically the information available about the noise is limited, and by

the very definition of an open quantum system is something that cannot typically

be measured directly.

Fortunately, this limitation can in principle be overcome by quantum noise spec-

troscopy (QNS) protocols [23, 82–93]. These protocols exploit the measurable re-

sponse of the qubit to a known and variable control and the noise affecting it, in
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order to infer information about the noise. The type of accessible information is

statistical in nature. That is, without any other information, e.g., about the type of

stochastic noise process, the best one can hope to learn are the bath correlation func-

tions 〈βα1(t1) · · · βαk(tk)〉. If the QNS protocol is sufficiently powerful to characterize

the leading correlation functions and matches the model, in principle the inferred

information can be plugged into a cumulant expansion or a Dyson series expansion

of VO(t) to successfully obtain an estimate of the operator for any choice of fα(t),

as desired. This has led to a proliferation of increasingly more powerful QNS proto-

cols, including those capable of characterizing the noise model described here [90],

some of which have even been experimentally verified [23,82–84,87,88,93,113,114].

More generally, the idea of optimizing control procedures to a known noise spec-

trum [101] is behind some of the most remarkable coherence times available in the

literature [115].

QNS protocols, however, are not free of complications. The demonstrated success

of these protocols relies on the assumptions which support them being satisfied.

Different protocols have different assumptions, but they can be roughly grouped

into two main flavours:

� Assumptions on the noise.— Existing protocols assume that the only a certain

subset of the correlation functions effectively influence the dynamics or, equiv-

alently that a perturbative expansion ov VO(t) can be effectively truncated to

a fixed order. In practice, this is enforced in various ways. For example, de-

manding that the noise is Gaussian and dephasing or, more generally, that one

is working in an appropriately defined “weak coupling” regime [85,89,91].

� Assumptions on the control.— Many QNS protocols, especially those based

around the so-called “frequency-comb” [23, 85, 89, 90], rely on specific con-

trol assumptions, such as that pulses are instantaneous. This assumption

facilitates the necessary calculations, which ultimately allow the inferring of

the noise information. However, it enforces constraints on the control that

translate into limitations on the QNS protocol, e.g., a maximum frequency

sampling range [23,85]. Moreover, experimentally one cannot realize instanta-

neous pulses, so comb-based QNS protocols are necessarily an approximation

with an error that depends on how far the experiment is from satisfying the

instantaneous pulse assumption.

This work overcomes these limitations by bypassing the step of inferring the bath

correlation functions. We maintain the philosophy of QNS regarding characteriz-

ing the open quantum system dynamics, but pose it in a machine learning context.

Thus, we address the question:
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Can an appropriately designed machine learning algorithm “learn” enough about the

open quantum system dynamics (relative to a given set of control capabilities), so

as to be able to accurately predict its dynamics under an arbitrary element of the

aforementioned set of available controls?

We answer positively to this question by implementing such ML-based approach.

Concretely our ML algorithm (i) learns about the open quantum system dynamics

and (ii) is capable of accurately estimating – without assuming a perturbative ex-

pansion – the operator VO(T ), and consequently measurement outcomes, resulting

from a control sequence picked from the family control pulses {fα(t)} specified by

an assumed (but in principle arbitrary) set of control capabilities.

5.3 Methods

In this section we present in detail the proposed method to solve the problem under

consideration. We start by giving an overall summary of our proposed solution.

Next, in Section 5.3.2 we discuss some of the mathematical properties of the VO

operator. This will allow us to find a suitable parametrization that will be useful to

build the architecture of the ML model. Next, we present exactly the architecture of

the ML model in Section 5.3.3. After that, we give an overview on how to construct

datasets in order to train and test the model in Section 5.3.4. Finally, in Section

5.3.5 we conclude with the training and testing procedures, including the metrics

used to assess the performance of the proposed model.

5.3.1 Overview

The ML approach naturally matches our control problem, which becomes clear from

the following observation. For most optimal control applications, e.g. achieving a

target fidelity for a gate acting on an open quantum system, one does not need

to have full knowledge of the noise. To see this consider a hypothetical scenario

where the available control is band limited [88,91,116], i.e., whose frequency domain

representation F (ω) is compactly supported in a fixed frequency range |ω| ≤ Ω0.

If the response of the open quantum system to the noise [117] is captured by a

convolution of the form I =
∫∞
−∞ dωF (ω)S(ω), where S(ω) represents the noise

power spectrum, then it is clear that one only needs to know S(ω) for |ω| ≤ Ω0.

While this statement can be formalized and made more general, we do so Ref. [103],

the above example captures a key point: only the “components” of the noise that are

relevant to the available control need to be characterized. Conversely, this means

that a fixed set of resources, e.g., a set of control capabilities, can only provide
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information about the “components” of the noise relevant to them. The above

observations make the ML approach particularly well suited for the problem: it is

natural to draw the connection between the control problem of “characterizing a

system with respect to a restricted set of control capabilities in order to predict

the dynamics under any control such capabilities can generate” and the fact that

the training and testing datasets typical in ML make sense when the datasets are

generated in the same way, i.e., by the same “control capabilities”. Of course, the

details of the ML approach which can seamlessly integrate with the quantum control

equations are important, and we now provide them.

In order to address the question presented at the end of section 5.2, we are going

to use an ML graybox based approach similar to the one presented in [104]. The

basic idea of a graybox is to divide the ML model into two parts, a blackbox part

and a whitebox part. The blackbox part is a collection of standard ML layers, such

as neural networks (see Section 2.1.1 for an overview), that allows us to learn maps

between variables without any assumptions on the actual relation. The whitebox

part is a collection of customized layers that essentially implement mathematical

relations that we are certain of. This approach is better than a full blackbox,

because it allows us to estimate physically relevant quantities, and thus enables us

to understand more about the physics of the system. In other words, the blackboxes

are enforced to learn some abstract representations, but when combined with the

whiteboxes we get physically significant quantities. In the parlance of machine

learning, these whitebox layers are “quantum features”, which extract the expect

patterns in the data fed to the network.

In the case of the problem under consideration, we are going to use the blackbox

part to estimate some parameters for reconstructing the VO operators. The reason

behind the use of a blackbox for this task is because the calculation of the VO

operators depends on assumptions on the noise and control signals. So, by using

a blackbox we get rid of such assumptions. Whereas the whitebox parts would be

used for the other standard quantum calculations that we are certain of, such as

the time-ordered evolution, and quantum expectations. Thus, we end up with an

overall graybox that essentially implements Equation 5.6, with input representing

the control pulses, output corresponding to the classical expectation of quantum

observable over the noise, and internal parameters modelling abstractly the noise

and its interaction with the control. With this construction, we would be able to

estimate important quantities such as VO, and Uctrl. Now, since we are using machine

learning, then we will need to perform a training step to learn the parameters of the

blackboxes. Thus, the general protocol would be as follows:

1. Prepare a dataset consisting of pairs of random input pulse sequences applied

to the qubit (chosen from a fixed and potentially infinite set of allowed se-
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quences), and the measured outcomes after evolution.

2. Initialize the internal parameters of the graybox model.

3. Train the model for some number of iterations until convergence.

4. Fix the trained model and use it to predict measurement outcomes for new

pulse sequences as well as the VO operators.

It should be noted the nature of quantum information enforces characterization of

quantum systems of large dimension to blow-up. This is a common problem in any

characterization protocol including quantum state tomography, quantum process

tomography, quantum noise spectroscopy, and even quantum control unless some

simplifying assumptions are made. However, in most practical situations, a full

characterization may not be required. A full characterization of a set of small sub-

systems can be sufficient. This is the case for quantum computing where arbitrary

multi-qubit quantum gates are compiled into 1- and 2- qubit gates. Alternatively,

a partial characterization of the whole system can be sufficient. This is the case for

quantum error correction where only a small subset of observables (error syndromes)

is of interest. In either case, using the proposed machine learning framework will

remain feasible.

5.3.2 Mathematical Properties of the VO Operator

If we look back into the definition of the VO operator, we find that it is convenient

to express it as

VO = O−1 〈Ũ †IOŨI〉 ≡ O−1〈WO〉c, (5.8)

because the observable is independent of the noise. As a result we can see that WO

is a system-only operator with the following properties. Namely, for a given real-

ization of the classical noise process and recalling that O is a traceless qubit-only

(system-only) observable, one has that

1. The trace of WO is bounded. This follows by noting that

tr[WO] = trS[O trB[ŨI(IS ⊗ ρB)Ũ †I ]] (5.9)

= trS[OE(IS)] ∈ [−1, 1], (5.10)

where E(·) = trB[ŨI(· ⊗ ρB)Ũ †I ] is a CPTP map. In the special case where

the noise generates a unital channel, i.e., when E(IS) = IS, as is the case for

classical-only noise, then tr[WO] = 0, since O is a traceless observable.
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2. WO is Hermitian. One can see this by noting that WO can always be written

as WO =
∑

α=0,x,y,z trS[σα trB[Ũ †IOŨI(IS ⊗ ρB)]] σα/2. Since

trS[σα trB[Ũ †IOŨI(IS ⊗ ρB)]] = trSB[OŨI(σα ⊗ ρB)Ũ †I ] (5.11)

= trS[OE(σα)] (5.12)

= trS

[
O

(
E
(
IS + σα

2

)
− E

(
IS − σα

2

))]
∈ R,

(5.13)

it follows that WO = W †
O.

3. Given the above and observing that trS[σαWO] = trS[OE(σα)] ∈ [−1, 1], it

follows that WO has real eigenvalues λ1, λ2 ∈ [−1, 1].

If one also considers the effect of the average over realizations of the stochastic

process, one further finds that the full average (including classical and quantum

components) satisfies the following properties

1. Its trace is bounded, i.e., tr[〈WO〉c] ∈ [−1, 1].

2. It is Hermitian, i.e., 〈WO〉†c = 〈W †
O〉c = 〈WO〉c .

3. Since for any realization WO has real eigenvalues in [−1, 1], the average over

realizations of that process will also have that property, i.e., its eigenvalues

are such that −1 ≤ λ (〈WO〉c) ≤ 1. This can be proved as follows. Suppose

for the sake of convenience that the probability distribution of the WO with

respect to the noise is finite and discrete. That is it can only take values W̃i

with probability Pi. Then

λmax (〈WO〉c) = λmax

(
imax∑
i=1

PiW̃i

)
(5.14)

= λmax

(
P1W̃1 +

imax∑
i=2

PiW̃i

)
(5.15)

≤ λmax

(
P1W̃1

)
+ λmax

(
imax∑
i=2

PiW̃i

)
(5.16)

= P1λmax

(
W̃1

)
+ λmax

(
imax∑
i=2

PiW̃i

)
(5.17)

≤ P1 + λmax

(
imax∑
i=2

PiW̃i

)
. (5.18)

The third line follows from Weyl’s inequality since all the terms of the form

PiW̃i are Hermitian. Now, if we repeat recursively the same steps on the
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second remaining term, we get

λmax (〈WO〉c) ≤ P1 + P2 + · · ·Pimax (5.19)

= 1, (5.20)

as the Pi’s form a probability distribution. Similarly, we can show that

λmin (〈WO〉c) ≥ λmin

(
imax∑
i=1

PiW̃i

)
(5.21)

≥ −1. (5.22)

and so by combining the two results we get

−1 ≤ λ (〈WO〉c) ≤ 1 (5.23)

This proof can be extended to the more realistic situation when the noise distri-

bution is continuous. Thus by specifying a diagonal matrix D whose entries are real

numbers in the interval [−1, 1] adding up to a number that lies in the [-1,1], and by

choosing a general unitary matrix Q, we can reconstruct any VO operator in such a

way that satisfies its mathematical properties, using the eigendecomposition

VO = 〈O−1U †IOUI〉 = O−1QDQ†. (5.24)

In particular for the case of qubit presented in this chapter (i.e. d = 2), we can

completely specify the VO operator using 6 parameters which we would refer to as

ψ, θ, ∆, λ1, and λ2 such that

Q =

(
eiψ 0

0 e−iψ

)(
cos θ sin θ

− sin θ cos θ

)(
ei∆ 0

0 e−i∆

)
, (5.25)

where we neglected a degree of freedom that represents an overall global phase shift,

and

D =

(
λ1 0

0 λ2

)
, (5.26)

satisfying |Λ| = |λ1 + λ2| ≤ 1. The parameters ψ, θ, and ∆ can take any real values

as they are arguments of periodic functions.

In this chapter we will focus on the unital case, i.e., λ1 + λ2 = 0, since we will

validate our ML approach via simulated experiments using classical-only noise. In
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this case, we we can write the eigenvalue matrix as

D =

(
µ 0

0 −µ

)
, (5.27)

and µ ∈ [0, 1]. In what follows, when building our ML machinery, we will specify

how this constraint is implemented and how it can be obviated in each layer. Note

that in an actual experiment, where no assumption on the classicality of the noise

is valid a priori, the general, non-unital, case should be considered.

5.3.3 Model Architecture

The proposed graybox ML model is shown in Figure 5.1. We shall explain in detail

the structure as follows.

5.3.3.1 Model inputs and outputs

The purpose of the proposed architecture is to have a model that relates the control

pulses applied on the qubit (which we have control over in an experiment) to the

classical average of the quantum observables (which we can physically measure).

The model internal parameters will act as an abstract representation for the noise,

as well as how it affects the measurement outcomes. The model inputs represent

different “features” extracted from the control pulse sequence. In this chapter, we

make use of two independently-processed features, and thus the model has two in-

puts. The first feature is a global feature of the control pulse: the parametrization

of the pulse. The other is a local feature: the time-domain representation of the

pulse. These two features are explained as follows.

The first feature represents the set of parameters defining the control pulse se-

quence. We assume in this chapter that the control signal can be parametrized by a

finite set of parameters. This still allows having infinitely large number of possible

control signals since each of the parameters can take infinitely many values. For

example, a train of N Gaussian pulses can be completely defined by 3N parameters:

the amplitude, mean, and variance of each of the N pulses. Similarly, a train of

square pulses can be defined by each of the pulse positions, pulse widths, and pulse

amplitudes. Now, these parameters have to be represented in a way that is suitable

for the subsequent blocks (standard ML blackboxes) to process. So, the first step

is to normalize each of signal parameters to be in the range of [0, 1] across all the

examples. For instance, the pulse locations can be normalized with respect to the

total evolution time T since there will be no pulses beyond this point in time. The

pulse amplitudes could also be normalized such that the maximum amplitude for
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Figure 5.1: The proposed graybox architecture for modeling the noisy qubit fol-
lowing Equation 5.6. The inputs of the model are the sequence of control signal
parameters {αn}, and the actual time-domain waveform f(t). The outputs of the
model are the expectations over the noise for all the Pauli eigenstates as initial states,
and all Pauli’s as measurement operators. The black box part of the model consist
of two layers of GRU followed by a neuron layer. The output of this layer represents
the parameters that can be used to construct the “VO” operator. There are three
different branches corresponding to each of the three possible Pauli observables. The
whitebox part of the model is formed from the layers that implement specific for-
mulas known from quantum mechanics. This includes layers for constructing the VO
operators from the parameters generated from the blackbox, constructing the con-
trol Hamiltonian from the time domain representation of the control pulse sequence,
the time-ordered evolution to generate the control unitary, and the quantum mea-
surement layer. The model is trained using a set of pairs of control pulse sequence
and corresponding expectation values of the observables. After training, the model
can be used to predict the measurements for new pulse sequences. It can also be
probed to estimate one of the “VO” operators, and thus can be used as a part of a
quantum control algorithm to achieve a desired quantum gate.
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any pulse sequence is 1. The second is step is the proper formatting of these pa-

rameters. We choose to organize the signal parameters of an nmax pulse train in the

form of a sequence of vectors {αn}nmax
n=1 , where each vector represents the nth pulse

and has r entries representing the normalized pulse parameters (example: Gaussian

pulse train will have r = 3). For the case of multi-axis control, we concatenate

the parametrization along each direction into one vector assuming the controls are

independent along each direction. We emphasize here that we take Gaussian and

square pulses as examples to demonstrate our ideas, but in general any waveform

with any suitable parametrization could be used. This feature is considered global

since every parameter affects the whole waveform shape of control sequence.

The second feature used for the model is the actual time domain representation

of the pulse sequence, discretized into M steps. In other words, the amplitude of

the pulse at each time step. This feature is considered local, since a change in one

of the parameters does not affect the whole sequence. This input is only processed

by customized whiteboxes. Although in principle we can calculate the time-domain

representation from the signal parameters in the first input, it turns out that the

overall algorithm performs better if we do not do this calculation directly. In other

words treat both features as two “independent inputs” to the model.

The output of the model should be the measurement outcomes. If we initialize

our qubit to each of the eigenstates (“up/down”) of each Pauli operators (that is

a total of 6 states), and measure the three Pauli operators, then we have enough

information (tomographically complete) to predict the dynamics for other configu-

rations. So, we need to perform a total of 18 “prepare-measure” experiments and

collect their results. And so, our model will have 18 outputs corresponding to each

of the measurement settings.

5.3.3.2 Model whiteboxes

As discussed previously, there are lots of known relations from quantum mechanics

that we are certain of. It is better in terms of the overall performance to directly

implement as much as possible of these relations in non-standard customized layers.

This saves the machine from essentially having to learn everything about quantum

mechanics from the data, which would be hard and could decrease the overall ac-

curacy. Moreover, this allows us to evaluate physically significant quantities which

is one of the most important general advantages of the graybox approach. In our

proposed model, we make use of the following whiteboxes.

� Hamiltonian Construction

This layer takes the discretized time domain representation of the control

pulses (which is exactly the second input to the model), and outputs the
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control Hamiltonian Hctrl evaluated at each of the M time steps using Equation

5.2. The layer is also parametrized by the energy gap Ω which we fix at the

beginning.

� Quantum Evolution

This layer follows the “Hamiltonian Construction” layer, and thus it takes

the control Hamiltonian at each time step as input and evaluates the time-

ordered quantum evolution as output (i.e. Equation 5.4). Numerically, this is

calculated using the approximation of an infinitesimal product of exponentials

Uctrl = T+e
−i

∫ T
0 Hctrl(s)ds (5.28)

= lim
M→∞

e−iHctrl(tM )∆T e−iHctrl(tM−1)∆T · · · e−iHctrl(t0)∆T (5.29)

≈ e−iHctrl(tM )∆T e−iHctrl(tM−1)∆T · · · e−iHctrl(t0)∆T , (5.30)

where tk = k∆T and ∆T = T
M

. The last line follows if M is large enough.

� VO Construction

This layer is responsible for reconstructing the VO operator. It takes the pa-

rameters ψ, θ, ∆, and µ as inputs and outputs the VO following the recon-

struction discussed in Section 5.3.2. The blackboxes of the overall model are

responsible for estimating those parameters. The output of this layer can be

probed to estimate the VO operator given a control pulse. This allows us to do

further operations including noise spectroscopy and quantum control. In the

general case for non-unital dynamics, the reconstruction will require the two

parameters λ1 ∈ [−1, 1] and Λ = λ1 + λ2 ∈ [−1, 1], instead of the parameter

µ ∈ [0, 1].

� Quantum Measurement

This layer is essentially the implementation of Equation 5.6. So, it takes

the VO operator as input, together with the control unitary, and outputs the

trace value. It is parameterized by the initial state of the qubit, as well as

the observable to measure. Therefore, in order to calculate all possible 18

measurements, we need 18 of such layers in the model, each with the correct

combination of inputs and parameterization. The outputs of all 18 layers are

concatenated finally and they represent the model’s output.

5.3.3.3 Model blackboxes

The exact calculation of the measurement outcomes requires assumptions on both

the noise and control pulse sequence. So, by using the standard ML blackbox layers,
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such as Neural Networks (NN) and Gated Reccurent Units (GRU) (see Section 2.1.1

for an overview), we can have an abstract assumption-free representation of the noise

and its interaction with the control. This would allow us to estimate the required

parameters for reconstructing the VO operators using a whitebox. The power of

such layers comes from their effectiveness in representing unknown maps due to

their highly non-linear complex structure. In our proposed model we have three

such layers explained as follows.

� Initial GRU

This layer is connected to the first input of the model, i.e. the parameters

of the control pulse sequence. The purpose behind this layer is to have an

initial pre-processing of the input features. Feature transformation is com-

monly used in ML algorithms, to provide a better feature space that would

essentially enhance the learning capability of the model. In the modern deep

learning paradigm, instead of doing feature transformation at the beginning,

we actually integrate it within the overall algorithm. In this way, the algo-

rithm learns the best optimal transformation of features that increases the

overall accuracy. In our application, the intuition behind this layer is to have

some sort of abstract representation of the interaction unitary UI . This would

depend on the noise as well as the control. In this sense, the input of the layer

represents the control pulses, the output represents the interaction evolution

operator, and the weights of the layer represent the noise. This does not mean

that probing the output layer is exactly related to the actual UI as the al-

gorithm might have a completely different abstract representation, which is

a general feature of blackboxes. In the proposed model, we choose the GRU

unit to have 10 hidden nodes.

The reason behind choosing the GRU, which is a type of a recurrent neural

network (RNN), rather than a standard neural network, is to make use of

the feedback mechanism. We would like to have a structure that processes a

sequence not only term by term, but taking into account previous terms. An

RNN-like structure would accomplish this kind of processing. In this sense,

we can abstractly model relations that involve convolution operations which

is exactly the type of relations obtained when we do theoretical calculations

of the dynamics of open quantum systems.

� Final GRU

This is another GRU layer that is connected to the output of the initial GRU

layer. The purpose of this layer is to increase the complexity of the blackboxes

so that the overall structure is complex enough to represent our relations. For
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our application, this layer serves as a way to estimate the operator 〈U †IOUI〉 in

some abstract representation. And thus we need actually three of such layers

to correspond to the three Pauli observables. We choose to have 60 hidden

nodes for each of these layers.

� Neural Network

This is a fully-connected single neural layer consisting of four nodes. The

output of the final GRU layer is connected to each of the nodes. The first

three nodes have linear activation function and their output represent the

actual parameters ψ, θ, and ∆ that are used to construct the VO operator. The

last node has a sigmoid activation function and its output corresponds exactly

to the µ parameter of the VO operator. As discussed before the µ parameter

has to be in the range [0, 1] which is exactly the range of the sigmoid function.

Since the parameters will differ for each of the three observables, we need three

of such layers each connected to one of the final GRU layers. In the case of non-

unital dynamics, the neural network will change as follows. First, the fourth

node will have a hyperbolic tangent (tanh) activation (whose range is [−1, 1])

and would represent the parameter λ1 instead of µ. Second, a fifth node with

a hyperbolic tangent activation will be needed to represent the parameter Λ.

In this way, the constraints of the VO operators will be satisfied, and hence

the architecture would be suitable for modeling the non-unital dynamics.

5.3.4 Dataset Construction

For any ML algorithm, we need a dataset for training it and testing its performance.

A dataset is a collection of “examples” (instances), where each example is a pair of

inputs (that should be fed to the algorithm) and corresponding actual outputs or

“labels” (that the algorithm is required to predict). The dataset is usually split into

two parts, one part is used for training the algorithm while the other part is used

for testing its performance. The examples belonging to the testing portion of the

dataset are not used in the training process at all. In the application presented in

this chapter, the dataset would be a collection of control pulse sequences applied to

a quantum system, and the corresponding measured quantum observables. In the

experimental situation such a dataset can be constructed as follows. We prepare the

qubit in an initial state, apply some a control sequence, then measure the observable.

This is repeated for all 18 possible configurations of initial states/observables. The

pair consisting of the control pulse sequence parametrization and time-domain rep-

resentation, and the value of the 18 measurements would correspond to one example

in the dataset. To generate more examples, we choose different control sequences

and repeat the whole process. In this chapter, we do not have access to an actual
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experiment. However, we need to validate the proposed algorithm, so we generate

datasets by computer simulation of a noisy qubit (See Sections 5.4 and 2.3.4 for de-

tails on how the simulations were done). In a practical application of the algorithm

with experimental data, there is no need to use simulated datasets. The algorithm

will be trained directly from the acquired data.

An important aspect of this discussion is how to choose the examples constitut-

ing the dataset and how large the dataset should be. This is an empirical process,

but there are general principles to follow. First, any ML algorithm should be able

to generalize, i.e. predict the outcomes for examples that were not in the train-

ing portion of the dataset. The way to ensure this is to have the training subset

large enough to represent wide range of cases. For instance, consider constructing

a dataset of CPMG-like sequences [15], i.e., sequences composed of equally spaced

pulses. Then, in order for the model to have the capability of predicting the correct

outcomes if the pulses are shifted (maybe due to some experimental errors), we have

to provide training examples in which the control pulses are randomly shifted. Sim-

ilarly, if we want accurate predictions for control pulses that have powers other than

π, then we need to include such examples for training. Additionally, the prediction

would work for example of the same pulse shape. This means that if all training

examples are square pulses then the predictions would be accurate only for square

pulses. In case we need the trained algorithm to predict outcomes corresponding to

pulses of different shapes, then we must include examples of all desired shapes in the

dataset (for example square and Gaussian pulses). This would result in an increase

in the complexity of training due to two reasons. First, more computations will be

required as we have to increase the size of the dataset to include examples of the

different pulse shapes. The second reason is that consequently we need to increase

the learning capacity of the blackboxes (by increasing the number of nodes in the

neural networks, GRU’s,...etc.). However, this is not a problem in practice specially

in actual physical experiments. The reason is that usually there are constraints

about what types of control sequences can be generated. This would depend on the

specifications of the available hardware in the experiment. For example, it might be

only possible to generate square pulses with some maximum amplitude, or Gaussian

pulses with a fixed pulse duration. In such cases, we will be interested to predict and

control the dynamics of a quantum system driven by that particular kind of pulses

only. Therefore, the dataset needs to consist of examples of control sequences whose

pulse shape is of interest. This would result in a smaller dataset and the training

complexity decreases. Thus, experimental constraints arising from the specifications

of the available hardware defines what control capabilities are available, which in

turn simplifies the process of training the ML algorithm. In this chapter, we do

not consider training the algorithm on datasets consisting of different pulse shapes.
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However, we construct different datasets and train different “instances” of the al-

gorithm on each dataset independently. This is done for the purpose of proving

the concept, and showing that the proposed algorithm works with different pulse

shapes. Section 5.4 gives details about the different datasets we constructed in this

chapter, as well as the results of training and testing the algorithm on each of the

datasets individually.

The size of the dataset (i.e. the number of instances) is usually chosen empiri-

cally. The general rule of thumb is that the more training examples are used, the

better the generalization of the algorithm is. Moreover, the more testing examples

are used in the assessment process, the better the assessment is. So, usually the pro-

cedure is iterative where we start with some size for the dataset, train the algorithm,

assess the performance (see Section 5.3.5 for details), and then decide whether the

size is sufficient or not. Note, however, that we might be constrained by some upper

limit on the dataset size before the process of data collection becomes infeasible.

This is one of the main challenges facing the design of modern ML algorithms.

5.3.5 Training and Testing

The second step after constructing the dataset, is to choose a loss function for the

model. This a function that measures how accurate the outputs predicted by the

model compared to the true outputs. This choice depends on the application under

consideration. In our case, we shall use the Mean-Square-Error (MSE), averaged

over all 18 measurement outcomes. The weights of the model are chosen such that

the loss function is minimized. Ideally, we seek a global minimum of the loss function

but in practice this might be hard and we probably end up with a local minimum.

However, practically, this usually provides sufficient performance.

The third step is to choose an optimization algorithm. The optimization is for

finding the weights of the model that minimizes the loss function averaged over

all training examples. The standard method used in ML is backpropagation which

is essentially a gradient descent based method combined with an efficient way of

calculating the gradients of the loss function with respect to the weights. There are

many variants of the backpropagation method in the literature, the one we choose to

use in this chapter is the Adam algorithm [118]. There exist also other gradient-free

approaches such as Genetic Algorithm (GA) based optimization [106].

The fourth step is to actually perform the training. In this case, we initialize

the weights of the model to some random values, then apply enough iterations of

the optimization algorithm till the loss function reaches a sufficiently small value.

In the case of MSE, we would like it ideally to be as close as possible to 0, but this

could require infinite number of iterations. So, practically we stop either when we
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reach sufficient accuracy or we exceed a maximum number of steps.

A final thing to mention is that because the whiteboxes do not have any trainable

parameters, the blackboxes are enforced through the training to generate outputs

that are compatible with the whiteboxes, so that we end up with the correct physical

quantities.

After executing the aforementioned steps for training the algorithm, it will be

able to predict accurately the outputs of the training examples. In our application,

this by itself is useful because we can easily probe the output of the VO layers and

use that prediction for various purposes. However, we have to ensure the model

is also capable of generalizing to new examples. This is where the portion of the

dataset used for testing comes in place. The trained algorithm is used to predict

the outcomes of the control pulse sequences of the testing subset, and the average

MSE is calculated. Next, the testing MSE is compared to the training MSE. If the

testing MSE is sufficiently low then this indicates the model has good predictive

power. Ideally, we need the MSE of the testing subset to be as close as possible

to the MSE of the training subset. Sometimes this does not happen and we end

up with the testing MSE being significantly higher than that of the training MSE.

This is referred to as overfitting. In order to diagnose this behaviour we usually

plot the MSE of both subsets evaluated at each training iteration on the same

axes, versus the iteration number. Note, that the testing examples or the testing

MSE do not contribute at all to the training process of the algorithm, they are

just used for performance evaluation. If both curves decrease as the number of

iterations increase, until reaching a sufficiently low level, then the model has a good

fit. If the testing MSE saturates eventually or worse starts increasing again, then

the algorithm is overfitting. There are many methods proposed in the classical

machine learning literature to overcome overfitting including decreasing the model

complexity, increasing the number of training examples, and early stopping (i.e.

stop the iterations before the testing MSE of the testing starts to increase). On the

other hand, the significance of overfitting on the performance of a model depends

on the application, and the required level of accuracy. This means that a model

might be experiencing some overfitting behaviour, but the prediction accuracy is

still sufficient.

5.4 Simulation Results

In this section, we describe the numerical simulations we performed in order to

verify the proposed method. We chose to create six datasets of different pulse

configurations to train and test the ML structure. This is described in Section 5.4.1.

Next, in Section 5.4.2 we present the performance analysis results regarding the
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accuracy of trained models for each of the datasets. In Section 5.4.3, we show the

applicability of using our trained model to do standard tasks such as decoherence

suppression and quantum control. Finally, we discuss the significance of these results

in 5.4.4

5.4.1 Implementation

We implemented the proposed protocol using the “Tensorflow” Python package [7],

and its high-level API package “Keras” [8]. The code is publicly available1. We

also implemented a noisy qubit simulator, to generate the datasets for training and

testing. It simulates the dynamics of the qubit using Monte Carlo method rather

than solving a master equation, to be general enough to simulate any type of noise.

The details of the design and implementation of this simulator are presented in

Section 2.3.4. We chose the simulation parameters as shown in Table 5.1.

Parameter Description Value
T Evolution time 1
M Number of discrete time steps 4096
K Number of noise process realizations 1000
Ω Energy gap 10

Table 5.1: The different simulation parameters used for generating the datasets.

In this chapter, we selected the number of noise realizations based on doing

the Monte Carlo simulation of a random pulse sequence, and then observing how

much the expectation values change by increasing the number of realizations. As

shown in Figure 5.2, the values start to stabilize around 500 realizations, so we chose

K = 1000 for generating all the datasets.

We created three categories of datasets using the simulator, summarized in Table

5.2, as follows. The datasets are publicly available2.

1. Qubit with noise on a single-axis and control pulses on an orthogonal axis.

The Hamiltonian in this case takes the form

H =
1

2
(Ω + βz(t)) σz +

1

2
fx(t)σx. (5.31)

We chose the noise to have the following power spectral density (single-side

band representation, i.e. the frequency f is non-negative)

SZ(f) =

 1
f+1

+ 0.8e−
(f−20)2

10 0 < f ≤ 50

0.25 + 0.8e−
(f−20)2

10 f > 50
(5.32)

1https://github.com/akramyoussry/BQNS
2https://doi.org/10.6084/m9.figshare.11967465.v1

https://github.com/akramyoussry/BQNS
https://doi.org/10.6084/m9.figshare.11967465.v1
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(a) Control Pulses

(b) ρ = X+ (c) ρ = Y+ (d) ρ = Z+

Figure 5.2: The effect of the number of realizations on the performance of the
Monte Carlo simulation of a noisy qubit driven by the pulses in (a). The three
Pauli observables are plotted versus the number of noise realizations over which the
averages are calculated. In (b), (c), and (d), different initial states are selected. The
plot shows that starting around 500 realizations, the statistical fluctuations start to
decrease. We choose 1000 realizations to perform all the simulations in this chapter.

Figure 5.3a shows the plot of this power spectral density. The reason for

choosing such a form is to ensure that the resulting noise is general enough,

while also covering some special cases (such as 1/f noise). Also, the total

power of the noise is chosen such the effect of noise is evident on the dynamics

(i.e. having coherence < 1). In this category, we generated two datasets. The

first one is for CPMG pulse sequences with Gaussian pulses instead of the

ideal delta pulses. So, the control function takes the form

f(t) =

nmax∑
n=1

Ae−
(t−τn)2

2σ2 , (5.33)

where σ = 6T
M
, and A = π√

2πσ2
, and τn =

(
n−0.5
nmax

)
T . The highest order of

the sequence was chosen to be nmax = 28. Now, this means we have a set

of 28 examples only in the dataset. In order to introduce more examples

in the dataset, we randomize the parameters of the signal as follows. The

position of the nth pulse of a given sequence is randomly shifted by a small

amount δτ chosen at uniform from the interval [−6σ, 6σ]. As a result, we lose

the CPMG property that all pulses are equally spaced. However, this can be

useful experimentally when there is jitter noise on the pulses. Additionally, we
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also randomize the power of the pulse. In this case, we vary the amplitude A

by scaling it with randomly by amount δA chosen at uniform from the interval

[0, 2]. For this randomization, we scale all the pulses in the same sequence

with the same amount. Again we lose the property of CPMG sequences that

they are π− pulses, but this is needed so that the algorithm can have sufficient

generalization power. With these two sources of randomness, we generate 100

instances of the same order resulting in a total of 2800 examples. Finally, we

split randomly the dataset following the 75:25 ratio convention into training

and testing subsets.

The second dataset in this category is very similar with the only difference

being the shapes of the pulses. Instead of Gaussian pulses we have square

pulses with finite width. The control function takes the form

f(t) =
nmax∑
n=1

Au(t− τn − 0.5σ)u(τn + 0.5σ − t), (5.34)

where u(·) is the unit step function, σ = 6T
M

, and A = π
σ
. The same scheme for

randomization and splitting is used in this dataset.

2. Qubit with multi-axis noise, and control pulses on two orthogonal directions.

The Hamiltonian in that category takes the form

H =
1

2
(Ω + βz(t)) σz +

1

2
(fx(t) + βx(t)) σx +

1

2
fy(t)σy (5.35)

We chose the noise along z− axis to have the same power spectral density as in

Equation 5.36, while the noise along the x-axis has the power spectral density

SX(f) =

 1
(f+1)1.5

+ 0.5e−
(f−15)2

10 0 < f ≤ 20

(5/48) + 0.5e−
(f−15)2

10 f > 20
(5.36)

Figure 5.3b shows the plot of this power spectral density. This category con-

sists of two datasets. The first one consists of CPMG sequences of maximum

order of 7 for the x− and y− directions. We take all possible combinations of

orders along each direction. This leaves us with 49 possible configurations. We

follow the same randomization scheme discussed before applied to the pulses

along the x− and y− directions separately. We generate 100 examples per

each configuration and then split into training and testing subsets. The sec-

ond dataset is similar with the only difference that we do not randomize over

the pulse power, we just randomize over the pulse positions.

3. Qubit without noise (i.e. a closed quantum system), and pulses on two or-
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(a) Z-axis noise (b) X-axis noise

Figure 5.3: Powers Spectral Density of the noise that was used to generate the
datasets in categories 1 and 2.

thogonal directions.

The Hamiltonian takes the form

H =
1

2
Ωσz +

1

2
fx(t)σx +

1

2
fy(t)σy (5.37)

This category has only datasets as well which follow the same scheme of pulse

configuration and randomization as the second category dataset. The only

difference is that the absence of noise.

Cat. Name Pulse Shape Noise Control Train Test
1 CPMG G X 28 Gaussian (z) (x) 2100 700
1 CPMG S X 28 Square (z) (x) 2100 700
2 CPMG G XY 7 Gaussian (x, z) (x, y) 3625 1225
2 CPMG G XY pi 7 Gaussian (x, z) (x, y) 3625 1225
3 CPMG G XY 7 nl Gaussian − (x, y) 3625 1225
3 CPMG G XY pi 7 nl Gaussian − (x, y) 3625 1225

Table 5.2: The datasets generated by computer simulations of a noisy qubit for
training and assessing the performance of the proposed machine learning algorithm.
The datasets are categorized into 3 categories. The first category is for qubits with
noise along z−axis, and control pulses along x− axis. The second category is for
qubits with noise along z− and x− axes, and control pulses along x− and y− axes.
The final category is for noiseless qubits with pulses along x− and y− axes.

It is worth emphasizing here that since we are generating the datasets by simu-

lation, we had to arbitrarily chose some noise models and pulse configurations. In

a physical experiment however, we do not assume any noise models and just di-

rectly measure the different outcomes. Moreover, the pulse configurations should be

chosen according to the capability of the available experimental setup.
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Dataset # Iterations MSE Training MSE Testing
CPMG G X 28 3000 9.86× 10−5 1.03× 10−4

CPMG S X 28 3000 1.05× 10−4 1.14× 10−4

CPMG G XY 7 3000 4.12× 10−4 4.36× 10−4

CPMG G XY pi 7 3000 2.47× 10−4 2.38× 10−4

CPMG G XY 7 nl 3000 8.32× 10−5 8.31× 10−5

CPMG G XY pi 7 nl 3000 1.50× 10−6 1.52× 10−6

Table 5.3: The average MSE evaluated for the various datasets at the end of the
training process. The average is calculated over the mutually exclusive training and
testing subsets. The results show that the model has “good fit” since both MSE’s
for each dataset are close.

5.4.2 Results

The proposed algorithm was trained on each of the different datasets to assess

its performance in different situations. The number of iterations is chosen to be

3000. Table 5.3 summarizes the MSE evaluated at the end of the training stage for

both training and testing examples. Figure 5.4 shows the history of the training

procedure for each of the datasets. The plot shows the MSE evaluated after each

iteration for both the training and testing examples. For the testing examples,

the MSE evaluated is just recorded and does not contribute to the calculation of

the gradients for updating the weights. Figure 5.5 shows a violin plot of the MSE

compared across the different datasets; while Supplementary Figure 5.8 shows the

boxplot. Supplementary Figures 5.9 to 5.14 show the square of the prediction errors

for measurement outcome in the best case, average case, and worst case examples

of the testing examples of each dataset.

5.4.3 Applications

5.4.3.1 Dynamical decoupling and quantum control

For the model trained on the single-axis Gaussian dataset “CPMG G X 28”, we

tested the possibility of using it perform some quantum control tasks. Particularly,

we implemented a simple numerical optimization-based controller that aims to find

the optimal set of signal parameters to achieve some target quantum gate G. We

used the cosine similarity as an objective function, which is defined for two d × d
matrices U and V as

F̃ (U, V ) =

∣∣∣∣∣ tr [U †V ]√
tr [U †U ] tr [V †V ]

∣∣∣∣∣
2

, (5.38)
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satisfying that 0 ≤ F̃ (U, V ) ≤ 1. This is a generalized definition for fidelity that

reduces to the standard definition of gate fidelity when U and V are unitary,

F (U, V ) =
1

d2
| tr [U †V ]|2. (5.39)

Ideally, we target four objectives listed as follows:

F̃ (VO, I) = 1, ∀O ∈ {X, Y, Z} (5.40)

F̃ (Uctrl, G) = 1, (5.41)

where VO and Uctrl are estimated from the trained model. The first three conditions

are equivalent to getting rid of the effects of noise, while the last one is equivalent

to having achieve evolution described by quantum gate G. Practically, it is hard

to completely remove the noise effects, so what we want to do is to find the set of

optimal pulse parameters {α∗n} such that

α∗ = arg minα(F̃ (VX [α], I)− 1)2

+ (F̃ (VY [α], I)− 1)2 + (F̃ (VZ [α], I)− 1)2 + (F̃ (Uctrl[α], G)− 1)2.

(5.42)

Then using this objective function we can numerically find the optimal pulse se-

quence. Utilizing this formulation allows us to treat the problem of dynamical

decoupling exactly the same, with G = I. It is important to mention that this is

just one method to do quantum control which might have some drawbacks because

of its multi-objective nature. For instance, the optimization could result in one or

more of the objectives having sufficient performance, while the others are not. An

example of this case is where Uctrl becomes so close to G, while the VO operators

are still far from the identity. This means that the overall evolution will not be

equivalent to G. There are ways to overcome this problem. For example, we can

optimize over the observables instead of the operators or optimize over the overall

noisy unitary U . However, this is a separate issue, and we defer it to the future

work of this chapter. We present these results as a proof of concept that it is pos-

sible to use the trained model as a part of a quantum control algorithm. We tested

this idea to implement a set of universal quantum gates for a qubit. The resulting

fidelities are shown in Table 5.4. The control pulses obtained from the optimization

procedures are shown in Figure 5.6.



148 CHAPTER 5. MODELLING AND CONTROL OF OPEN SYSTEMS

(a) CPMG G X 28 (b) CPMG S X 28

(c) CPMG G XY 7 (d) CPMG G XY pi 7

(e) CPMG G XY 7 nl (f) CPMG G XY pi 7 nl

Figure 5.4: The average MSE evaluated for the training and testing examples versus
the iteration number for the various datasets. The plots show a “good fit” model
since both lines are close for each datasets, and they are decreasing as the number
of iterations increase. The small fluctuations at the end of the plots result from the
gradients of the loss function being noisy, and are exaggerated due to the logarithmic
scale of the plot.
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Figure 5.5: Comparison between the MSE of the various datasets at the end of the
training phase, evaluated over the testing subsets only. The plot depicts an empirical
kernel density estimate of data distribution, which is referred to as a Violin plot.
The bottom horizontal line represents the minimum value, the middle line represents
the median, and the top line represents the maximum. The plot shows how the data
is “concentrated” with respect to its order statistics.

5.4.3.2 Quantum noise spectroscopy

It is also possible to use the trained model to estimate the power spectral density of

the noise using the standard Alvarez-Suter (AS) method [23]. In this case, we use the

trained model to predict the coherence of the qubit (that is the expectation of the X

observable for the X+ initial state E{X(T )}ρ=X+) for a set of CPMG sequences at

the correct locations and powers. Then, from the predicted coherence we can find the

power spectrum that theoretically produces these values. In order to do so we have

to assume the noise is stationary and Gaussian. Here, we have trained a separate

model with CPMG sequences up to order 50. Since the evolution time T is fixed,

the higher the order of the sequence is, the higher the accuracy of the estimated

spectrum would be specially at high frequencies. On the other hand, because the

pulses still have finite width, there is a maximum we could apply during the evolution

time and thus we can only probe the spectrum up to some frequency. Figure 5.7

shows the plot of the estimated PSD of the noise versus the theoretical one, as well

as the coherences obtained from predictions of the model as well as the theoretical

ones. We emphasize here that the point of presenting this work is to develop a

method that is more general than the standard QNS method. However, we show

in this application that we can still utilize the conventional methods combined with

our proposed one. Also, in this experiment the focus was on showing the possibility
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G 1− F̃ (VX , I) 1− F̃ (VY , I) 1− F̃ (VZ , I) 1− F̃ (Uctrl, G)
I 1.43× 10−4 9.27× 10−5 5.87× 10−5 4.26× 10−4

X 2.64× 10−5 1.09× 10−4 1.57× 10−5 2.69× 10−4

Y 9.42× 10−5 3.82× 10−5 5.34× 10−5 9.27× 10−4

Z 2.78× 10−5 4.37× 10−4 1.23× 10−5 6.64× 10−4

H 3.14× 10−5 1.33× 10−4 5.88× 10−8 7.46× 10−4

RX

(
π
4

)
5.41× 10−5 1.87× 10−4 8.52× 10−5 7.23× 10−5

Table 5.4: The resulting “generalized” infidelity between the predicted VX , VY , VZ ,
and Uctrl from the machine learning model trained on the “CPMG G X 28” dataset,
and the corresponding targets (which would be I, I, I, and G respectively). The
control pulses were obtained by numerical optimization of the cost function taken to
be the average of the generalized infidelities of the four targets, utilizing the trained
model.

of doing spectrum estimation. We did not use the trained models discussed in the

previous section as they are limited to 28 pulses which prevents the probing of the

spectrum using the (AS) method to high frequencies.

(a) I (b) X

(c) Y (d) Z

(e) H (f) RX

(
π
4

)

Figure 5.6: The control pulses to implement various quantum gates obtained by
numerical optimization of the cost function taken to be the average of the generalized
infidelity between the VX , VY , VZ and Uctrl and the target operators I, I, I, and G
respectively. The trained model of the “CPMG G X 28” dataset is utilized.
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(a) Coherences (b) Power Spectrum

Figure 5.7: The estimated and actual theoretical coherence measurements and noise
power spectrum using model trained on the “CPMG G X 28” dataset. 50 CPMG
sequences with finite width pulses were used to measure the Pauli X observable with
the positive Pauli X eigenstate as initial state. The power spectrum is reconstructed
using Alvarez-Suter method using the predicted coherences from the trained model.

5.4.4 Discussion

The plots presented in the previous subsection are useful to assess the performance of

the proposed method. First, we can see that for all datasets, the average MSE curve

evaluated over the training examples versus iterations decreases on average with the

number of iterations. This means that the structure is able to learn some abstract

representation of the each of the VO operators as function of the input pulses. For

the testing subsets, we see that the MSE curves goes down following the training

MSE curves. This indicates that the model is able to predict the observables for the

training and testing examples, and thus the fitting is good. Second, The violin plot

and boxplot of the MSE of the testing subsets show that there exists some minor

outliers which we would expect anyway from a machine learning based algorithm.

However, most of the points are concentrated at or below the median. This indicates

that for most testing examples, the prediction was accurate (Note, the lower the

MSE the better the prediction is). The best performing cases of the algorithm in

terms of the spread of the testing MSE around the median was category 3 datasets.

This is expected since in that category the quantum system is closed. Category 2

dataset had a slightly higher median compared to category 1 datasets. This can be

explained due to the fact that in category 2, the qubit had multi-axis noise, which

means the overall noise strength is higher than the category 1 datasets. This is a

general observation that we would expect that the stronger the noise is, the harder

it is to predict the outcomes.

Finally, if we look into the worst-case examples, we see that they are actually

performing well in terms of accuracy for the different datasets. The overall con-

clusion from this analysis is that proposed model is able to learn how to predict
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the measurement outcomes with high accuracy. The noisy multi-axis datasets had

slightly less accuracy than the single-axis and the noiseless datasets, which might

be worth investigation and is subject to the future work.

The results of the applications of the trained model are also very promising.

The fidelities obtained for the different quantum gates are above 99% including the

identity gate which equivalent to dynamical decoupling. This indicates that we can

use numerical quantum control methods combined with our proposed one. We were

also able to show the possibility of estimating the spectrum of the noise using the AS

method. These results could be enhanced by including longer pulse sequences which

requires increasing the overall time of evolution. Thus, the proposed framework is

general enough to be used for different tasks in quantum control.

5.5 Conclusion

In this chapter, we presented a machine-learning based method for characterizing

and predicting the dynamics of an open quantum system (and eventually controlling

it) based on measurable information. We followed a graybox approach that allows

us to estimate the VO operators, which are generally difficult to calculate analyti-

cally without assumptions on noise and control signals. We showed the method is

applicable to the general case where the noise is defined by a non-unital quantum

map, but restricted the numerical experiments in this chapter on the case of classical

noise (unital dynamics). The numerical results show good performance in terms of

prediction accuracy of the measurement outcomes.

As discussed in Chapter 4, there are two main limitations of using ML models:

scalability and generalizability. The scalability is definitely a major challenge for

the proposed method because the full characterization requires models (and thus

measurements) that go as the square of the dimension of the Hilbert space of the

system. This directly results in the requirement of extremely large datasets for

the training which might be difficult to prepare. This challenge, however, can be

avoided in many applications. In quantum error correction applications, a partial

characterization could be only be required. Thus, the model needs to predict few

observables only rather than an informationally complete set. In quantum comput-

ing applications, the common practice is to optimize quantum gates for 1-qubit and

2-qubit systems rather than multi-qubit systems. The second challenge, which is

generalization to arbitrary inputs, can also be avoided since the experimental setup

for characterizing and operating the device is usually fixed. Therefore, under the

same conditions of the experiment the models will be able to predict different inputs.

In the next chapter, we conclude the thesis and introduce the possible research

directions extending the presented results.
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5.6 Supplementary Figures

Figure 5.8: Comparison between the MSE of the various datasets at the end of the
training phase, evaluated over the testing subsets only. The box is drawn between
the first and third quartiles of the data, and thus the height represents the interquar-
tile range. The middle horizontal line represents the median, the bottom and upper
horizontal lines represent the minimum and maximum respectively. The maximum
and minimum are defined to be the points that are at a distance of 1.5 × the in-
terquartile range measured starting from the upper and lower quartiles respectively.
Any point outside that range is referred to as an outlier and is represented as a small
circle in the plot. The plot shows how the data is “concentrated” with respect to
its order statistics, as well as the distribution of outliers.



154 CHAPTER 5. MODELLING AND CONTROL OF OPEN SYSTEMS

(a) Worst case

(b) Average Case

(c) Best Case

Figure 5.9: The worst, average, and best case examples for the CPMG G X 28
testing dataset.
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(a) Worst case

(b) Average Case

(c) Best Case

Figure 5.10: The worst, average, and best case examples for the CPMG S X 28
testing dataset.
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(a) Worst case

(b) Average Case

(c) Best Case

Figure 5.11: The worst, average, and best case examples for the CPMG G XY 7
testing dataset.
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(a) Worst case

(b) Average Case

(c) Best Case

Figure 5.12: The worst, average, and best case examples for the CPMG G XY pi 7
testing dataset.
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(a) Worst case

(b) Average Case

(c) Best Case

Figure 5.13: The worst, average, and best case examples for the CPMG G XY 7 nl
testing dataset.
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(a) Worst case

(b) Average Case

(c) Best Case

Figure 5.14: The worst, average, and best case examples for the
CPMG G XY pi 7 nl testing dataset.
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Chapter 6

Conclusions and Future Work

In this thesis, we developed machine learning based frameworks for characterization

and control of quantum systems. In Chapter 3, we presented an online quantum

state estimation algorithm inspired by the matrix exponentiated gradient method.

In Chapters 4 and 5, we developed novel graybox deep learning based models for

quantum systems (for open and closed dynamics). The models take into consider-

ation experimental constraints, and do not need assumptions on the control or the

environment. We tried to present the problem in a way that that would facilitate for

researchers from the machine learning community to explore and contribute to this

field. We emphasized the importance of understanding the theoretical aspects so

one can know the limitations and assumptions of various tools. This is the essence

of using the graybox approach, as opposed to using only a blackbox that prevents

the extraction of any physical insights from the trained models.

The presented methods in this thesis show great potential in solving problems in

quantum characterization and control. Nonetheless, there are inevitable limitations

that stem from the utilization of ML techniques as well as the difficulty of encoding

quantum information classically. In Chapter 3, the main limitation is performing

the state estimation on large-scale quantum systems. This is related however to the

nature of the quantum tomography problem. In other words, the problem persists

independent of the design of the algorithm. Thus, there is a need to develop funda-

mentally new frameworks to characterize large-scale systems beyond the standard

tomography paradigm. In Chapters 4 and 5, the limitations arise from the use of

ML techniques which can be summarized as follows. The first problem is scalability.

For large-scale quantum systems, preparing a training dataset will be a challenging

task. The second problem is generalizability. The trained ML models will be able

to generalize only for examples that are sampled from the same distribution from

which the training examples were sampled. This means models work only for the

same experimental situations. If the hardware conditions change (such as changing

some devices, or changing the control pulse characteristics), then a new dataset has

161
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to be constructed and the model have to be re-trained. Therefore, a proper life-

cycle management and fine-tuning needs to be maintained for the models to remain

effective. In conclusion, the presented methods in this thesis are suited more for

characterization and control of small-scale quantum devices, which is the dominant

scale of current technology. One interesting approach that could be explored in the

future is optimizing small-scale devices, and then use them directly to either control

or become the building blocks of large-scale systems.

On the theoretical side, there are many extensions to the presented work. In

Chapter 3, we considered only fixed measurements to do the state estimation. Con-

sidering adaptive measurements could further improve the performance, and prov-

ing convergence in that case would be interesting to explore. Additionally, proving

convergence for the projected-gradient decent method as another online estimation

algorithm is worth considering. In Chapter 4, it would be interesting to study con-

trollability of the chip under model constraints such as limited control voltage to

know the set of gates that are possible to implement. In Chapter 5, there are many

interesting points to explore. The first point is studying the controllability of open

quantum systems using the effective observable dynamics formalism, and also under

constraints of control pulses. Another related direction is utilizing geometric tech-

niques to study different problems of quantum control of open quantum systems.

On the numerical side, it would be interesting to explore other possible machine

learning techniques in the classical literature and investigate their applicability in

the quantum setting. In Chapter 4, fidelity could be used as cost function to do

the training rather than the MSE, and study whether it would yield better results.

The blackboxes introduced in Chapters 4 and 5 are not fully optimized. They

were designed to prove the concept but there is a room for improvement in terms

of accuracy and generalization. Particularly in Chapter 5, the blackboxes can be

further optimized to increase the accuracy specially for the noisy multi-axis datasets.

There are other architectures that one could exploit such as Convolutional Neural

Networks. Moreover, one could make use of existing results in machine learning that

deals with incomplete training data [119–122]. These could be leveraged to reduce

the number of required experiments which would be useful particularly for higher

dimensional systems.

On the experimental side, it would be interesting to test the ideas presented in

this thesis while embedded in a real experiment. The methods would require fine-

tuning according to a particular experimental situation, but nonetheless they are

general enough for any quantum realization technology.

On the applications side there are many ideas to explore. In Chapter 3, the

proposed method could be extended to quantum process tomography. It is also

suitable for quantum state tracking, where a slowly time-varying quantum state
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(due to experimental drifts for example) is tracked through the measurements. The

utilization of the graybox approach in Chapters 4 and 5, could be extended to

modelling of continuously-monitored systems, systems with feedback control, and

continuous-variable systems. Another interesting application is modelling the data-

spectator architecture of quantum systems where some redundant qubits are used

to monitor the noise affecting the qubits that are used for the actual quantum

computations. Finally, there is noise detection, where there exist a discrete set of

possible noise models affecting a quantum system, and the problem is how to find

optimal control pulses and measurements as well as a classifier to decide which noise

model is affecting the system.
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[11] F. A. Pollock, C. Rodŕıguez-Rosario, T. Frauenheim, M. Paternostro, and

K. Modi, “Non-Markovian quantum processes: complete framework and effi-

cient characterization,” Phys. Rev. A, vol. 97, p. 012127, Jan. 2018.

165

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41567-020-0948-z
https://doi.org/10.1038/s41567-020-0948-z
https://arxiv.org/abs/1902.07980
http://www.jmlr.org/papers/v6/tsuda05a.html
http://www.jmlr.org/papers/v6/tsuda05a.html
https://doi.org/10.1145/1273496.1273535
https://doi.org/10.1145/1273496.1273535
https://www.tensorflow.org/
https://keras.io
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://doi.org/10.1162/neco.1997.9.8.1735
https://link.aps.org/doi/10.1103/PhysRevA.97.012127
https://link.aps.org/doi/10.1103/PhysRevA.97.012127


166 BIBLIOGRAPHY
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