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Abstract 
Epidemiological studies have shown that maternal exposure to cigarette smoke and air 

pollution are two predominant in utero environmental toxicants which can increase the risk of 

developing multiple respiratory diseases in the offspring.  The proposed mechanisms include 

reducing mitochondrial function and mitochondrial renewal mechanisms (mitophagy) and 

activating inflammasome and other inflammatory pathways. However, whether maternal 

smoking could induce the sex-dependent susceptibility in respiratory disorders and whether 

chronic low dose particulate matter (PM) exposure which is within the international standard 

could induce any transgenerational pulmonary disease has not been widely studied.  

Firstly, Female Balb/c mice (8 weeks) were exposed to cigarette smoke (SE) for 6 weeks prior 

to mating, during gestation and lactation. Half of the SE dams (mothers) were given L-

Carnitine supplementation (1.5mM in drinking water, SE+LC) during gestation and lactation. 

Then, another Male Balb/c Mice (6 weeks, Animal Resources Centre, WA, Australia) batch 

was intranasally exposed to saline or traffic-related PM10 (1 µg or 5 µg/day) for 3 weeks. 

Furthermore, the female BALB/c mice (6 weeks) were exposed to PM2.5 (PM2.5, 5 µg/day) or 

saline (SHAM) 6 weeks before pregnancy and during pregnancy and lactation; or for only 6 

weeks before pregnancy (Cessation, 5 µg/day). Lung tissues from models were analysed.  

Results: Compared to female offspring, maternal SE significantly increased levels of 

inflammatory markers (phosphorylated(p)-extracellular signal-regulated kinase (ERK1,2), p-

p38 Mitogen-activated protein kinase (P38) MAPK, p-Mitogen-activated protein kinase (NF-

kB). Three weeks of PM exposure (5 µg/day) significantly increased total macrophages and 

lymphocytes number in the bronchoalveolar lavage fluid (BALF) accompanied by increased 

levels of NLRP3 and Interlukin-1 (IL1-β). Chronic exposure to low dose PM significantly 

increased tissue elastance and damping during lung function tests, followed by increased 

leukocytes in the BALF, mitochondrial dysfunction, and airway remodelling, including 

alveolar membrane damage and increased collagen deposition. Maternal exposure to low dose 
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PM also significantly increased tissue elastance and damping during lung function test 

followed by increased leukocytes in the BALF and mitochondrial dysfunction without airway 

remodelling. The mouse model of asthma induced by olvabumin (OVA) showed that maternal 

exposure to the low dose PM could significantly increase tissue elastance during lung function 

test in the offspring, suggesting the worse asthmatic symptoms. 

In conclusion, male offspring are more susceptible to the adverse effects of maternal smoking. 

Chronic exposure to the low dose PM could induce chronic obstructive pulmonary disease 

(COPD)-likes pathology in the dams and worsen asthmatic symptoms in the female offspring. 
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Chapter 1 General Introduction 
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Wang B, Chen H, Chan YL, Wang G, Oliver BG. Why Do Intrauterine Exposure to Air 

Pollution and Cigarette Smoke Increase the Risk of Asthma? Frontiers in Cell and 

Developmental Biology 2020; 8: 38. 
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1.1 Ambient particulate matter in air pollution 
 
1.1.1 Different sources of PM 
Air pollution plays an important role in the global burden of disease. Epidemiological cohort 

studies have identified that Sulphur dioxide1, Nitrogen dioxide2, Nitrous oxide3, Carbon 

monoxide4, Ozone5, and particulate matter (PM) are the top 6 factors in air pollution and can 

induce various diseases. Those components of air pollution have diverse health impacts, such 

as the development of asthma, chronic obstructive pulmonary disease (COPD) and even lung 

cancer 6. When compared with other components of air pollution, PM was detected as the main 

putative culprit to cause morbidity and mortality 7,8. More than 3 million global premature 

deaths each year can be attributed to the PM pollution9.  

The prenatal stage, crucial to the organogenesis of the developing foetus, is highly susceptible 

to the environmental toxicants exposure 10. Current study proved that the chemical composition 

on the PM surface can be transferred to the foetal circulation via blood placental barrier and 

induce various adverse impacts in the offspring11. Particulate matter, especially fine PM with 

a diameter of less than ten microns (PM10), has significant adverse effects on pregnant women12. 

The underlying mechanisms for the influence of maternal PM exposure on adverse birth 

outcomes are not clearly understood. The current consensus opinion is that it is related to 

oxidative stress and inflammation during pregnancy13,14. 

Although PM can be produced through volcanic eruption and forest fire, the main source of 

PM comes from anthropogenic activities. These pollutants can be broadly divided into two 

categories: indoor and outdoor contaminants and both categories consist of similar particulate 

matter15. During the global urbanization, emissions from vehicle exhausts have become an 

important source of outdoor air pollution in both developed and developing countries. 

Urbanisation has resulted in residents living within 500 metres of busy roads which exposes 

them to a variety of adverse respiratory health outcomes16,17.  
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Indoor air pollution mainly comes from residential energy use such as heating and cooking 

which is prevalent in India and China, where it has the largest impact on premature mortality 

globally. Acute respiratory infections in children and patients with COPD are also strongly 

associated with living in poorly ventilated homes18. 

 

1.1.2 Classification of PM  
Researchers define the inhaled fraction of ambient PM as PM10 with a median aerodynamic 

diameter less than 10um. According to the size, PM10 can be further divided into three major 

fractions based on the size: coarse PM (2.5-10 um) which can easily deposit in the upper 

airways, being removed by mucociliary clearance; fine PM (0.1-2.5 um), and ultrafine 

particulate matter(<0.1 um), which can reach deep into the lung (ie. alveoli) 19 and can even 

reach other organs through blood circulation. Suspended PMs with a median diameter of less 

than 2.5 um are defined as PM2.5, including the fine and ultrafine particles. Sometimes, PM1 

(median diameter less than 1 um) is also be used. In fact, due to the complexity of PM, the 

content of PM10 also encompasses more than 50% of fine and ultrafine particles. Furthermore, 

most researchers believe that the smaller components (PM2.5 or PM0.1) in PM10 have higher 

toxicity compared to PM10 itself 20. Furthermore, smaller particles have a larger surface area 

which can adsorb more metal and other toxic components.  

Many publications have explored the health risks of exposure to various sizes of PM. The study 

havs proved that PM2.5 has a higher chance to be retained in the airways and alveoli 21.  This 

study was further confirmed by the analytical electron microscopy measurements, which 

showed that  PM2.5 could retain in the lung parenchyma with more than 90% efficiency. 

Numerous studies also found that increasing in PM2.5 exposure during pregnancy could 

significantly increase various respiratory diseases in the offspring, such as asthma, COPD 22,23. 

Therefore, the size of the PM plays an important role in the cytotoxic effects. 
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During the PM forming, carbonaceous cores will be surrounded by the diverse chemicals, 

minerals and organic components. PM produced in different cities and countries is produced 

from different sources such as combustion sources and climate change. Because of this PM can 

also be defined by chemical composition in addition to classifying by size. Suspended PM 

consists of a mixture of organic material (polycyclic aromatic hydrocarbons (PAH) and 

endotoxins), minerals (quartz and silicates), salts (sulphates and nitrates), and other inorganic 

components (transition metals)24.  

No single compound in the PM was identified to explain the cytotoxic effects of PM. The biotic 

contaminants, such as endotoxin, allergens, and pollen fragments, can be adsorbed on the 

carbon core of PM25. A study in Germany suggested that the concentration of endotoxin in 

coarse particles were 10-fold higher than PM2.5
26.  Endotoxin exerts its effects on the intact and 

isolated lung cells as well, such as activating Toll-like receptors (TLR2/4) signaling pathways 

which are closely associated with asthma 27. In animal models, endotoxin was also found to 

change the physiological functions of both airways and pulmonary circulations resulting in 

changes in lung function28. PM2.5 with polycyclic aromatic hydrocarbons (PAH)-like 

characteristics can form an undesired mutagenic risk29. In mice, high PAH concentration could 

induce higher a chance of mutations30. Another study demonstrated that PAH can even cross 

the blood placental barrier and interfere with the development process of the foetus. Metals, 

another contaminant on the surface of PM, can penetrate cellular organelles and interfere with 

their functions 31.  For example, lead could accelerate Ca2+ release from the cell and reduce 

membrane potential, leading to the reduced mitochondrial function and further cellular 

dysfunction 31. Metals, like iron, copper and chromium could induce redox cycling and further 

damage cell function. Other metals like lead, cadmium could cause oxidative stress by using 

up the antioxidants. It has been shown that these metals caused an increase in the production 

of ROS, such as hydroxyl radical (HO-), leading to oxidative stress in cardiopulmonary 
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damage32. The same process may also happen in the other organs, including the lung, liver and 

even the growing foetus 33. 

 

1.1.3 Inflammation in the lung 

Inhalable PM smaller than 10µm (PM10) can reach the lower airways, while smaller particles 

can reach the alveoli and are therefore considered to be more damaging to the lung 34. The 

inhalation of PM regardless of the size can induce oxidative stress and result in increased 

inflammation 35. Nuclear factor-kB (NF-κB) and Mitogen-activated protein kinase (MAPK) 

are the common inflammatory signalling pathways which could be activated through the 

endocytosis or phagocytosis of PM2.5  36,37. NF-κB, is a major transcription factor that is 

crucially involved in inflammation, apoptosis, and proliferation in lung 38. A previous study 

found that PM2.5 exposure triggered nuclear translocation, DNA-binding, and transcriptional 

activation of the NF-κB pathway in human alveolar epithelial cell line A549 39. NF-κB can also 

activate MAPK signalling cascades, including extracellular signal-regulated kinase (ERK), c-

JUN N-terminal kinase (JNK), and p38 Mitogen-activated protein kinase (p38) 40. The 

activated NF-κB and MAPK pathways result in the release of pro-inflammatory cytokines, 

such as interleukin-1β (IL-1β), leading to heightened inflammatory responses. 

In order to avoid the excessive damage induced by inflamaiton, autophagy is a selfregulation 

mechanism important for stress adaptation and cellular homeostasis 41. Autophagy can 

modulate inflammation through eliminating unwanted intracellular components, eg. proteins, 

to reduce the inflammatory stimuli to suppress the inflammation 42. PM2.5 has been shown to 

induce autophagy in A549 cells through oxidative stress 43. 

 

1.2 Intrauterine exposure to particulate matter and cigarette smoke and asthma  
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1.3 Overall hypothesis and aims of this thesis   
We hypothesised that, in utero exposure to environmental pollutants such as cigarette 

smokeand PM would cause respiratory diseases in offspring.   

   

To address this hypothesises, in mouse models, we aimed to investigate,   
1. The inflammatory response in the offspring. This was evaluated by measuring the 

number of inflammatory cells BAL, and in tissue sections, as well as individual factors 

by both PCR and Western blotting  

2. Mitochondrial dysfunction and oxidative stress in the offspring. This was evaluated by 

measuring the mitophagy markers by Western blotting and ROS level in cryo sections 

by immunofluorescence.  

3. Respiratory hyper-responsiveness and lung remodelling in the offspring. This was 

evaluated by measuring lung function by FlexiVent measurements, and pathology in 

tissue sections using histological staining and immunohistochemical staining of 

individual factors .    

The abovementioned aims were addressed in the studies in Chapters 2, 3, and 4.  
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Chapter 2 Offspring sex affects the susceptibility to maternal smoking-induced lung 

inflammation and the effect of maternal antioxidant supplementation in mice 
 

This chapter has been published in 

Wang B, Chan YL, Zhou S, Saad S, Chen H, Oliver BG. Offspring sex affects the 

susceptibility to maternal smoking-induced lung inflammation and the effect of maternal 

antioxidant supplementation in mice. Journal of Inflammation 2020 5;17:24. 

Contribution:  

• All tissue analysis  

• Draft preparation  

• Finalising the manuscript  

  

http://hdl.handle.net/10453/145282
http://hdl.handle.net/10453/145282
http://hdl.handle.net/10453/145282
https://doi.org/10.1186/s12950-020-00253-5
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Abstract 

Background: Cigarette smoke exposure (SE) during pregnancy is the largest modifiable risk 

factor for the development of lung disorders in offspring. We have previously shown that 

maternal L-Carnitine treatment can reduce the adverse impacts of maternal SE on renal and 

brain disorders in offspring. Here, we investigated the effect of maternal L-Carnitine 

supplementation on lung inflammatory pathways, autophagy, and mitophagy markers in the 

offspring in response to maternal SE.  

Female Balb/c mice (8 weeks) were exposed to cigarette smoke for 6 weeks prior to mating, 

during gestation and lactation. Half of the SE mothers were given L-Carnitine supplementation 

(1.5mM in drinking water, SE+LC) during gestation and lactation. Lungs from the offspring 

were studied at birth and adulthood (13 weeks) in both genders.  

Results: At birth, in male offspring, there were increased levels of inflammatory markers 

(phosphorylated(p)-ERK1,2, p-P38 MAPK, p-NF-kB), and inflammasome marker (NLRP3), 

as well as mitophagy fission marker Drp-1 and autophagosome marker (LC3A/B-II) in the lung. 

Maternal L-Carnitine supplementation significantly reduced NLRP3 level. In contrast, 

maternal SE only increased IL1-β in female offspring, which was reversed by maternal L-

Carnitine supplementation.  At 13 weeks, there was an increase in LC3A/B-II and p-NF-kB in 

the male SE offspring with reduced p-JNK1,2, which were partially normalised by maternal L-

Carnitine treatment. Female offspring were not affected by maternal SE at this age. 

Conclusion: Maternal SE had adverse impacts on the male offspring’s lung, which were 

partially alleviated by maternal L-Carnitine supplementation. Females seem to be protected 

from the adverse effects of maternal SE. 

 

Keywords: antioxidant, sex differences, inflammasome, mitophagy. 
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Background 

Smoking during pregnancy is a major cause of maternal and newborn morbidity and mortality 

(1), with pulmonary diseases being a major adverse outcome (2, 3). In-utero smoke exposure 

(SE) reduces lung function in human newborns (4, 5). Animal models have shown a decreased 

number of saccules, septal crests, and decreased elastin fibres in foetuses (6) and suckling pups 

(7), as well as increased airway thickness, collagen deposition, inflammation, and airway 

hyper-responsiveness due to intrauterine SE (8-10). 

 

In humans, certain diseases including chronic obstructive pulmonary disease (COPD), occur 

disproportionately in males and females (11). The common pathophysiological process 

includes increased inflammation, oxidative stress, impaired mitochondrial renew mechanism 

(mitophagy), and cellular self-cleaning mechanism (autophagy)(12). In keeping with this, our 

previous murine studies found that the changes in inflammation, oxidative stress, mitophagy, 

and autophagy have a marked sex difference in the offspring’s brain and kidney following in-

utero SE, wherein female offspring are more protected from such adverse effects(13, 14).  

 

A previous study only demonstrated that maternal SE  causes lung inflammatory response in 

the male offspring (15); whereas a recent study suggested that prenatal SE can differentially 

affect methylation in mice lungs in different sexes, which found hypo and hypermethylation 

(CpG-site-specific methylation) in male in female offspring respectively because of the various 

exons in the Igf1 gene response to the hormone (estrogen) activation (16). Therefore, we 

hypothesised that sex differences also exist regarding the effects of in-utero SE on other 

pulmonary changes. 

 

The regulation of inflammation involves several signalling pathways, such as NF-κB and 
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MAPK pathways (17). Three well-characterised subfamilies of MAPK include the 

extracellular signal-regulated kinase (ERK)1/2, Jun N-terminal kinase (JNK) stress-activated 

protein kinase, and p38 (18). NF-κB is often regarded as the master controller of inflammation 

(19). Inflammatory response requires a considerable amount of energy derived from the 

mitochondria (20), whereas mitochondrial function is often compromised during this process. 

There is a close relationship between the activation of the nucleotide-binding domain and 

leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome 

(increasing IL-1β activity) and mitochondrial dysfunction (21). Thus, the inflammasome is 

regarded as the bridge between inflammatory response and subsequent mitochondrial damage 

(21), including oxidative stress (21) and mitochondrial DNA impairment (22). This has been 

observed in conditions like COPD but has not been investigated in the setting of maternal 

SE(23). 

  

The autophagic elimination of injured mitochondria is termed mitophagy, which is regulated 

by fusion and fission (24). The balance between fusion and fission is essential to mitochondrial 

integrity. Fission is to separate damaged mitochondrial fragments from the healthy part, while 

fusion is to generate a new mitochondrion from two healthy mitochondrial fragments (25, 26). 

We have observed dysregulated mitophagy in the brain and kidney caused by maternal SE 

which was associated with organ pathology(13, 27); however, whether this also occurs in the 

lung is unknown.  

 

In-utero SE results in considerable foetal oxidative stress and inhibits the endogenous 

antioxidant activity (28). Therefore, improving the antioxidant ability may alleviate the adverse 

effects of maternal SE. L-Carnitine has been shown to attenuate age-related disorders by 

reducing oxidative stress and increasing antioxidant capacity in rats (29, 30). A clinical study 
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also showed that L-Carnitine supplementation can suppress serum levels of inflammatory 

cytokines in humans (31). We have shown that maternal L-Carnitine supplementation during 

pregnancy and lactation can alleviate brain (13) and renal dysfunction (32) in offspring from 

the SE mothers. As such, this approach may also ameliorate the adverse impact of maternal SE 

on lung health in the offspring. 

 

Given the known differences in the susceptibility of developing lung diseases between males 

and females(33), we hypothesised that in-utero smoke exposure would result in chronic 

hyperactivation of inflammatory markers and dysregulated autophagy and mitophagy in male 

offspring, but not in female offspring.  Maternal L-carnitine may ameliorate the adverse impact 

of maternal SE on the offspring’s lung. 

 

 

Results: 

Effect of maternal SE on body weight  

At P1, both male and female offspring from the SE dams appeared smaller than the SHAM 

offspring (Table 1). Maternal L-Carnitine supplement during gestation and lactation increased 

the birth weight of both male and female offspring (P<0.05 vs SE). There were no differences 

in body weight among the 3 groups at 13weeks for both males and females (Table 1). 

 

Effect of maternal SE on lung p-ERK, p-p38, p-JNK, and p-NF-kB in the offspring.   

At P1, maternal SE significantly increased the levels of p-ERK1,2 (P<0.01 vs SHAM, Figure 

1A), p-P38 (P<0.01 vs SHAM, Figure 1E) and p-NF-kB (P<0.01 vs, SHAM, Figure 1G) in the 

male offspring. Only p-NF-kB appeared to be partially reversed by maternal L-Carnitine 

treatment without statistical significance (Figure 1G). In the female offspring, maternal SE did 
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not significantly affect phosphorylated ERK1,2, JNK1,2, p38, or NF-kB levels, whereas 

maternal L-Carnitine supplementation significantly reduced p-ERK1,2 (P<0.05 vs SHAM, 

P<0.01 vs SE, Figure 1B) and p-P38 (P<0.05 vs SHAM, Figure 1F) levels.  

 

At 13 weeks, p-JNK1,2 level was lower and p-NF-kB was higher in the male offspring (P<0.05 

vs SHAM offspring, Figure 2C, G). which was not reversed by maternal L-Carnitine 

supplementation. In the adult females, neither maternal SE nor maternal L-Carnitine 

supplementation had any effect on the abovementioned proteins (Figure 2). 

 

Effect of maternal SE on lung NLRP3 and IL1-β levels in the offspring.  

In P1 offspring, a trend towards increased NLRP3 and IL-1β was observed in male and female 

offspring, however only NLRP3 in the male (P<0.01 vs SHAM, Figure 3A) and IL-1β in female 

(P<0.05 vs SHAM, Figure 3D) were significant. Maternal L-Carnitine treatment normalised 

both markers (P<0.05 vs SE, Figure 3A). 

At 13 weeks, maternal cigarette smoke exposure significantly increased NLRP3 expression in 

female offspring (P<0.01 vs SHAM, Figure 3F); maternal L-Carnitine supplementation did not 

have any effect (P<0.01 vs SE, Figure 3F). Maternal smoke exposure significantly increased 

IL-1β level (P<0.01 vs SHAM, Figure 3G) in the male offspring, which was further increased 

after maternal L-Carnitine treatment (P<0.01 vs SE, Figure 3G. 

 

Effect of maternal SE on lung mitophagy markers in the offspring 

At P1, total cell autophagy marker LC3A/B-II and mitochondrial fission marker Drp-1 protein 

levels were significantly increased in the male SE offspring (P<0.05, Figure 4A, C). Maternal 

L-carnitine supplementation further increased LC3A/B-II level, but normalised Drp-1 levels in 

the SE+LC offspring (P<0.001 vs SHAM, Figure 4A, C). No changes in autophagy and 
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mitophagy markers were found in P1 female offspring among the 3 groups (Figure 4B, D, E). 

 

At 13 weeks, LC3A/B-II protein was significantly increased by maternal SE in the male 

offspring (P<0.01, Figure 5A) which was not affected by maternal L-Carnitine 

supplementation. In the females offspring, no difference in autophagy and mitophagy markers 

was observed among the 3 groups (Figure 5B, D, E).  

 

Discussion 

Maternal smoking during pregnancy is well-documented to cause long-term adverse effects on 

the offspring’s health outcomes in multiple organs, including respiratory, neurological, and 

renal systems (34). However, the sex difference in such susceptibility in respiratory disorders 

has not been broadly studied, perhaps due to the preference of using one gender to model 

asthma or COPD.  

 

In this study, male offspring from the SE dams had smaller body weight from birth to adulthood, 

consistent with previous studies and human birth weight suggesting the reproducibility and 

human relevance of our model  (35, 36). Maternal SE activated inflammatory NF-kB and 

MAPK pathways, which were more prominent in the male offspring at P1. It is well known 

that cigarette smoking can induce inflammation via the  MAPK signalling cascade (37), 

reflected by increased phosphorylation of ERK and P38 (38, 39). MAPK pathway activation 

can also lead to increased phosphorylation of certain transcription factors, such as NF-kB (40). 

In the current study, these effects in P1 male SE offspring are likely due to the chemicals 

including free radicals in cigarette smoke accessing the foetal circulation via the placenta. 

NLRP3 inflammasome activation in the male offspring at P1 is in accordance with other 

inflammatory pathways especially NF-kB. However, only NF-kB hyperactivation was 
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maintained at adulthood. This may be due to a lack of a second insult after birth. As NF-kB 

regulates acute responses to external stimuli, its innate hyperactivation may enhance the 

response to postnatal environmental factors, such as an increased risk of asthma or COPD (41). 

This requires further investigation with additional modelling in the offspring.   

 

It is not surprising to observe that female offspring are mostly protected from the adverse effect 

of maternal SE compared with the male littermates. Such a lack of response in the females is 

consistent with our previous observations in the brain and kidney(14, 42, 43). One possible 

reason is the different innate and adaptive immune responses in the boys and girls, and the 

influence of sex hormones (44, 45).  

 

A recent study found that inflammasomes can be regarded as the bridge between inflammation 

and mitochondrial function(46). There is increasing recognition that mitochondrial dysfunction 

plays a key role in the development of various diseases including COPD and asthma(24, 47, 

48). Maternal smoking can induce high oxidative stress levels in the developing foetus (49) 

persistent until adulthood which can directly damage mitochondria(14, 50). Injured 

mitochondria can also induce more oxidative stress and inflammation. As such, mitophagy and 

autophagy are key to recycle intact mitochondrial fragments and eliminate damaged ones to 

maintain cellular homeostasis (51).  

 

Increased fission maker Drp-1 and autophagosome marker LC3A/B-II in the male SE offspring 

at birth, suggest increased damaged mitochondria due to maternal SE. The fusion marker Opa-

1 was not increased accordingly suggesting less healthy fragment can be recycled. At adulthood, 

only LC3A/B-II remained elevated, suggesting a higher demand to eliminate other injured 

cellular elements by maternal SE. This may drive the development of lung disorders in the SE 
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offspring (52). Interestingly, mitophagy markers in the lung were not changed in the female 

offspring at any age, again suggesting gender-specific protection from maternal SE. These 

results are consistent with our previous research in other organs (13).  

 

In vivo and in vitro studies have demonstrated that L-Carnitine can prevent oxidative stress-

induced injury (53-55). In this study, maternal L-Carnitine supplementation increased the birth 

weight in both male and female SE offspring. This suggests that L-Carnitine can ameliorate 

in-utero underdevelopment caused by maternal SE. Additionally, maternal L-Carnitine 

supplementation exhibited some anti-inflammatory effects in newborns from the SE dams, by 

partially supressing  NF-kB activation and NLRP3 inflammasome formation in the males as 

well as  MAPK pathway and IL-1β in the females. This may be due to its ability to inhibit 

oxidative stress induced by maternal SE in utero. However, the protection of maternal L-

Carnitine supplementation on the lung did not persist until adulthood, especially in the male 

offspring.  

 

The protection effects of L-Carnitine were observed in the other organs (13, 27, 32, 56), 

however, we did not found significant protective effect in the lung. This is surprising, but may 

be explained by the limitation of how we assessed the lung in this study. firstly, we did not 

collect BAL fluid, and as such typical markers of inflammation such as cytokine levels in 

bronchoalveolar lavage fluid to perform inflammatory cell counts which is a more direct way 

to access lung inflammation. The hyperactivation of signalling cascades may represent an 

increased ability to respond to external stimuli such as allergens or cigarette smoke, but in and 

of itself may not cause lung disorders. We did not measure reactive oxygen species (ROS) 

levels, and as such whilst it is likely that L-Carnitine supplementation acts via scavenging ROS, 

we can not definitively say this was the case. 
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Conclusions 

In conclusion, there are gender differences in the susceptibility to lung disorders in response to 

maternal smoking, with male offspring more vulnerable to increased inflammatory changes. 

Maternal L-Carnitine supplementation during pregnancy may partially alleviate the adverse 

effects of maternal SE on lung health outcomes only in the newborn offspring. 

 

Materials and Methods: 

Animals 

The animal experiments were approved by the Animal Care and Ethics Committee at the 

University of Technology Sydney (ACEC#2011-313A). All protocols were performed 

according to the Australian National Health and Medical Research Council Guide for the Care 

and Use of Laboratory Animals. Female Balb/c mice (8 weeks, Animal Resources Centre, Perth, 

WA, Australia) were housed at 20 ± 2°C and maintained on a 12 h light, 12 h dark cycle (lights 

on at 06:00 h) with ad libitum access to standard rodent chow and water. Female Balb/c mice 

were divided into 3 groups. The SHAM group (n=12) was exposed to air in a 15L perspex 

chamber for 6 weeks prior to mating, during gestation and lactation, SE group (n=12) was 

exposed to cigarette smoke generated from 2 cigarettes (Winfield Red, 1.2 mg nicotine; VIC, 

Australia) per session (5-minute interval between), twice daily during the same period of time 

as we have previously described (43). A sub-group of the SE dams (n=12) was provided with 

L-Carnitine in drinking water (1.5 mM, SE+LC) during gestation and lactation as we have 

previously described (13). L-Carnitine dose was determined according to a previous 

publication(57). Mice pregnancy was detected through continuous weight gain during matting. 

P1 mice were sacrificed by decapitation, while animals older than 20 days were sacrificed by 

anesthetic overdose (Pentothal®, 0.1 mg/g, i.p., Abbott Australasia Pty. Ltd., Macquarie Park, 
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NSW, Australia) between 9:00–12:00 h. The lungs from the offspring were collected at birth 

(postnatal day (P)1) and adulthood (13 weeks) and stored at -80℃ for later analysis.  

 

Western Blotting 

The protein levels of the markers of interest were measured in the lung, including inflammatory 

markers, phosphate(p)-ERK1,2 (1:2,000; Cell Signalling Technology), p-JNK1,2 (1:2,000; 

Cell Signalling Technology), p-p38 MAPK (1: 2,000; Cell Signalling Technology), p-NF-kB 

(1:2,000; Cell Signalling Technology), and autophagy markers light chain 3 microtubule-

associated protein A/B (LC3A/B)-II (1:2,000; Cell Signalling  Technology), mitophagy fission 

marker dynamin-related protein (Drp)-1 (1:2,000; Cell Signalling  Technology) and mitophagy 

fusion marker optic atrophy (OPA)-1 (1:2,000; Cell Signalling  Technology), inflammasome 

marker NLRP3 (1:2,000; Abcam), IL-1β (1:2,000; Cell Signalling Technology).  Β-actin 

(1:10000; Cell Signalling Technology). 

 

The lung was homogenised using cell lysis buffers for whole protein and mitochondrial protein 

extraction through differential centrifugation as previously described (32). Protein 

concentrations were measured using DC Protein assay (Bio-Rad, Hercules, CA); 15ug of 

proteins were separated on CtiterionTMTGX Stain Free Precast Gel (BIO-RAD, USA) and then 

transferred to PVDF membranes (BIO-RAD, USA), which was then blocked with TBST. The 

membranes were incubated with the primary antibodies, followed by horseradish peroxidase-

conjugated secondary antibody (Santa Cruz Biotechnology). Protein expression was detected 

by SuperSignal West Pico Chemiluminescent substrate (Thermo, MA, USA) by exposure of 

the membrane in ChemiDoc (BIO-RAD, USA). The density of the protein band was 

determined using Image J (National Institute of Health, Bethesda, Maryland, USA). 
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Statistical Methods 

The results are expressed as mean ± SEM. Normality was tested prior to the statistical analysis. 

If the data were not normally distributed, they were log transformed to research normality. The 

differences between groups were analysed by one-way ANOVA followed by Tukey’s post hoc 

tests. P<0.05 was considered statistically significant. 

 

 

Abbreviations: 

SE: smoke exposure; 

COPD: chronic obstructive pulmonary disease; 

ERK: extracellular signal-regulated kinase; 

JNK: Jun N-terminal kinase; 

NLRP3: nucleotide-binding domain and leucine-rich repeat-containing family pyrin domain 

containing 3; 

p38: p38 Mitogen-activated protein kinase;  

NF-kB: Nuclear factor-Kb; 

SE+LC, maternal smoke exposure with L-Carnitine supplement; 
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Table 1: Body weight of the offspring at different ages. 

 

Male offspring 

Day 1 13 weeks 

SHAM SE SE+LC SHAM SE SE+LC 

n=8 n=9 n=8 n=8 n=7 n=8 

Body weight (g) 1.53±0.29 1.30±0.12 1.62±0.2* 25.6±0.9 24.7±0.9 25.7±1.24 

Female offspring 
SHAM SE SE+LC SHAM SE SE+LC 

n=8 n=6 n=8 n=8 n=8 n=8 

Body weight (g) 1.48±0.38 1.21±0.06 1.68±0.19* 22.0±1.2 20.7±1.0 21.0±0.7 

 

Results are expressed as mean ± SEM. Data were analysed by one-way ANOVA followed by 

Tukey’s post hoc tests. *P < 0.05, compared with the SE offspring at the same age. SE, maternal 

smoke exposure; SE+LC, maternal smoke exposure with L-Carnitine supplement. 
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Table 2 Litter demographics 

 SHAM SE SE+LC 

Litter size (pup / litter) 6.2 ± 0.8 5.3 ± 1.0 6.0 ± 1.0 

Male pup / litter 3.5 ± 0.5 2.9 ± 0.7 3.0 ± 0.6 

Female pup / litter 2.6 ± 0.6 2.4 ± 0.6 3.0 ± 0.5 

Results are expressed as Mean ± SEM. n = 9–12. The data were analysed by One-way ANOVA 

followed by Turkey’s post hoc tests. SE, maternal smoke exposure; SE+LC, maternal smoke 

exposure with L-Carnitine supplement. 
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Figure legends 

Figure 1. Lung p-ERK1,2, p-JNK1,2, p-p38 and p-NF-kB in the offspring at P1.   

Protein expression of p-ERK1,2 (A, B), p-JNK1,2 (C, D), p-p38 (E, F) and p-NF-kB(G, H) in 

the lung of the male and female offspring at P1. Results are expressed as means ± SE, (male n 

= 8, female, n = 6-8).  Data were analysed by one-way ANOVA followed by Tukey’s post hoc 

tests. *P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001. ERK, extracellular signal-

regulated kinase; JNK, c-JUN N-terminal kinase; p38, p38 Mitogen-activated protein kinase; 

NF-kB: Nuclear factor-kB. SE, maternal smoke exposure; SE+LC, maternal smoke exposure 

with L-Carnitine supplement. 

 

Figure 2. Lung p-ERK1,2, p-JNK1,2, p-p38 and p-NF-kB in the offspring at 13 weeks.   

Protein expression of p-ERK1,2 (A, B), p-JNK1,2 (C, D), p-p38 (E, F) and p-NF-kB(G, H) in 

the lung of the male and female offspring at 13 weeks. Results are expressed as means ± SE, 

(male n =7-8, female n = 8).  Data were analysed by one-way ANOVA followed by Tukey’s 

post hoc tests. *P < 0.05, **P < 0.01. ERK, extracellular signal-regulated kinase; JNK, c-JUN 

N-terminal kinase; p38, p38 Mitogen-activated protein kinase; NF-kB: Nuclear factor-kB. SE, 

maternal smoke exposure; SE+LC, maternal smoke exposure with L-Carnitine supplement. 

 

Figure 3. Lung inflammasome markers NLRP3 and IL-1 β in the offspring at P1 and 13 weeks.  

Protein expression of NLRP3 (A, B) and IL-1β (C, D) in the lung of male and female offspring 

at P1. Protein expression of NLRP3 (E, G) and IL-1β (F, H) in the lung of male and female 

offspring at 13 weeks. Results are expressed as means ± SE (male n = 8, female n = 6-8). Data 

were analysed by one-way ANOVA followed by Tukey’s post hoc tests. *P < 0.05, **P < 0.01, 

****P < 0.0001. NLRP3, nucleotide-binding domain and leucine-rich repeat-containing (NLR) 

family pyrin domain containing 3; SE; maternal smoke exposure; SE+LC, maternal smoke 
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exposure with L-Carnitine supplement. 

 

Figure 4. Lung LC3A/B-II, Drp-1 and Opa-1 in the offspring at P1.  

Protein expression of LC3A/B-II (A, B), Drp-1 (C, D) and Opa-1 (E, F) in the lung of male 

and female offspring at P1. Results are expressed as means ± SE, (male n = 8, female n =6-8). 

Data were analysed by one-way ANOVA followed by Tukey’s post hoc tests. * P < 0.05, **P 

< 0.01, ***P < 0.001. LC3A/B, light chain 3 microtubule-associated protein; Drp-1, dynamin-

related protein; Opa-1, optic atrophy-1; SE, maternal smoke exposure; SE+LC, maternal 

smoke exposure with L-Carnitine supplement. 

 

Figure 5. Lung LC3A/B-II, Drp-1 and Opa-1 in the offspring at 13 weeks.  

Protein expression of LC3A/B-II (A, B), Drp-1 (C, D) and Opa-1 (E, F) in the lung of male 

and female offspring at 13 weeks. Results are expressed as means ±SE, (male n = 7-8, female 

n =8). Data were analysed by one-way ANOVA followed by Tukey’s post hoc tests. **P < 

0.01. Drp-1. LC3A/B, light chain 3 microtubule-associated protein; dynamin-related protein; 

Opa-1, optic atrophy-1; SE, maternal smoke exposure; SE+LC, maternal smoke exposure with 

L-Carnitine supplement. 
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Fig. 1 
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Fig. 2 

 



Ph.D Thesis-----Baoming WANG                                 University of Technology Sydney-Life Science 
 

 69 

Fig 3. 
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Fig. 4 
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Fig. 5 
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Chapter 3 Pulmonary inflammation induced by low-dose particulate 
matter exposure in mice 
 
 

Published as:  

Chan YL*, Wang B*, Chen H, Ho KF, Cao J, Hai G, Jalaludin B, Herbert C, Thomas PS, Saad 

S. Pulmonary inflammation induced by low-dose particulate matter exposure in mice. 

American Journal of Physiology-Lung Cellular and Molecular Physiology 2019; 317: L424-

L430. 

 *Joint first author 
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• All tissue analysis in Figures 1 and 2  

• wrote the first draft of the manuscript  
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Chapter 4 Maternal particulate matter exposure impairs 
transgenerational lung health and is associated with mitochondrial 
damage 
 

This chapter is currently under review at the Journal of Hazardous Materials  

Wang B, Chan YL, Li G, Ho K, Anwer A, Smith B, Hai G, Jalaludin B, Herbert C, Thomas 

P, Liao J, Chapman D, Foster P, Saad S, Chen H, Li G, Oliver BG. Maternal particulate 

matter exposure impairs transgenerational lung health and is associated with mitochondrial 

damage.  

Contribution:  

• Animal experiments and all tissue analysis  

• preparing the manuscript   

• Finalising the manuscript 
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Abstract:  

Relatively little is known about the transgenerational effects of chronic maternal exposure to 

low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects 

of removing such exposure prior to pregnancy. Female BALB/c mice were exposed to PM2.5 

(PM2.5, 5 µg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup, 

PM was removed after mating to model mothers moving away from TRAP during pregnancy 

to protect their unborn child (Cessation). Lung pathology was characterised in both dams and 

offspring. A subcohort of offspring were also exposed to ovalbumin to model allergic airways 

disease. PM2.5 and Cessation dams exhibited airways hyper-responsiveness (AHR) with mucus 

hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitocondrical 

dysfunction in the lung. Offspring from PM2.5 and Cessation dams displayed AHR with 

increased lung inflammation and mitochondrial ROS production. After the ovalbumin 

challenge, airway resistance was worse in offspring from PM2.5 dams compared with those 

from control dams. Using an in-vitro model the mitochondria-targeted antioxidant MitoQ 

reversed mitochondrial dysfunction by PM stimulation, suggesting the lung pathology is 

oxidative stress-driven. In conclusion, chronic exposure to low dose PM2.5 exerted 

transgenerational impairment on lung health.  

 

Keywords: air pollution, lung function, reactive oxygen species, mitochondrial dysfunction, 

asthma 
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Chapter 5 General Discussion and future perspective 
 

Epidemiological studies have shown that maternal smoking is one of the prominent in utero 

environmental risk factors for the development of respiratory diseases in childhood. Smoking 

during pregnancy is a risk factor for asthma, COPD and lung cancer in the offspring 83,84. 

However, the sex difference in such susceptibility to respiratory disorders has not been well 

studied, perhaps due to the preference in animal models to use only one gender to model asthma 

or COPD.  

 

Our study in Chapter 2 shows that male offspring are more vulnerable to the adverse effects of 

maternal cigarette smoke exposure during pregnancy, which was demonstrated by the smaller 

body weight, and higher levels of inflammatory markers in the lung, such as increased 

expression level of p-ERK1,2, total p-P38, and p-NF-kB. Maternal cigarette smoke exposure 

also increased the levels of mitochondrial fission marker Drp-1. The fusion marker Opa-1 was 

not increased accordingly suggesting less healthy mitochondrial fragment can be recycled. 

Those results demonstrated that maternal smoking during pregnancy could induce 

mitochondrial dysfunction in the offspring.  

Maternal cigarette smoke exposure is also an in utero environmental toxicant which can induce 

excessive oxidative stress. In vivo and in vitro studies have demonstrated that the antioxidant 

L-Carnitine can prevent oxidative stress-induced injuries to the  kidneys and cardiometabolic 

systems in mouse models 85-87.  In our study (Chapter 2), maternal L-Carnitine supplementation 

increased the birth weight of both male and female SE offspring and partially ameliorated the 

adverse impacts of maternal cigarette smoke on lung health outcome. This suggests that 

oxidative stress may be the primary mechanism of in-utero underdevelopment by maternal 

smoking and L-Carnitine is capable of ameliorating such oxidative stress. 
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Summary of the markers expression levels in chapter 2 

 

Another well-known environmental toxicant to foteal lung development is air pollution 88. It is 

common sense that high levels of air pollution could induce adverse impacts on foetal lung 

development and health. Previous mouse models also demonstrated the possible mechanisms, 

such as changed immune cell development 59,89. Those mouse models using high levels of PMs 

may reflect the high levels of annual ambient air pollution in Asia and Africa 60. However, the 

population weighted mean annual PM concentrations in Europe, North America, and Oceania 

are lower (5-15 µg/m3) than Asia and Africa regions 60. Few studies explored whether exposure 

to PM lower than the WHO air quality guideline (50 μg/m3 24-hour mean) can also induce 

adverse impacts on lung development.  

The study in Chapter 3 shows that even low dose PM10 exposure (5 µg/day) for 3 weeks can 

still cause a high level of inflammation in mice. In this study, we found several effects similar 

to the model using high doses of PM exposure. For example, PM induced marked pulmonary 

activation of the NLRP3 inflammasome. Inflammasome activation has been observed in 

asthma and COPD, as well as during pulmonary inflammation 90-92 suggesting that continuous 

exposure to even a low level of PM may increase the susceptibility to these conditions. 
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Mitochondria play an important role in lung function. Mitophagy plays a key role in 

maintaining mitochondrial integrity and normal mitochondrial function through the balance of 

fusion and fission. Mitochondrial dysfunction is related to several pulmonary diseases, such as 

asthma, COPD and IPF93. In this study, we found PM10 exposure impaired mitophagy markers 

only after 3 weeks of exposure, which may promote lung structure damage and functional 

impairment in the long term, as we have shown in PM exposed dams in Chapter 4.  This 

suggests that even living in the less polluted areas where the PM concentration is within the 

WHO air quality guideline still can induce pulmonary diseases. 

Summary of the markers expression levels in chapter 3 

 

People living near busy roads and industrial areas are exposed to more to air pollution and thus 

have a higher risk of developing respiratory diseases. A previous study confirmed that air 

pollution exposure during pregnancy decreases placental growth factor 55, increases cord blood 

immune biomarkers (e.g. Ig E, IL-33) 56, and causes mitochondrial oxidative DNA damage 57. 

Previous studies in mouse models have also found in-utero exposure to 100 μg PM from 
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residential roof spaces impaired somatic growth, reduced lung volume and lung function in 

offspring 58. Pregnant mice exposed to combustion generated free radical containing particles 

(200nm, 50 μg) have systemic oxidative stress and the offspring developed asthma 59.  Those 

mouse models demonstrated the adverse impacts induced by high levels of air pollution.  Our 

study in Chapter 4 found that chronic exposure to low dose PM (5 µg/day) induced airway 

hyper-responsiveness, increased inflammation level in the lung, and higher number of 

leukocytes in the bronchial alveolar lavage fluid. We also observed lung tissue remodelling 

with increased collagen deposition, excessive mucous production and damaged alveolar 

membranes.  

A previous study showed that chronic exposure to environmental toxicants could induce COPD 

in humans 94.  The characteristic of the COPD lung is airflow limitation because of the airway 

obstruction and parenchymal destruction. In the COPD lung, there is increased tissue density 

(small airway fibrosis) in the places where the alveolar membrane is not damaged 95. We 

observed increased tissue elastance and tissue damping, excessive inflammation, and airway 

remodelling which resemble lung pathology in patients with COPD. Those results 

demonstrated that chronic low dose PM exposure could induce COPD-liked pathology in the 

mouse. 

Maternal exposure to the low dose PM also induced AHR and higher inflammation in the 

offspring, which can’t be reversed by removing PM exposure during pregnancy. These results 

indicate that exposure to low dose PM in the dams also can induce respiratory diseases in the 

offspring, even only exposed before pregnancy. Multiple epidemiological studies confirmed 

that maternal PM exposure could increase the risk of asthma in the offspring. A classical 

Ovalbumin (OVA)-sensitized and challenged asthmatic model confirmed that maternal low 

dose PM exposure can possess the same risk in the offspring and worsen their asthmatic 

symptoms. 
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We suspected that the mitochondrial dysfunction was closely associated with these  

transgenerational adverse impacts induced by maternal low dose PM exposure, as the 

mitochondria in offspring are exclusively inherited from the mothers 96.  As shown in Chapter 

3, 3-week low dose PM exposure, 5 µg/day impaired mitophagy, with increased level of total 

ROS in the lung tissue further confirming increased oxidative stress. Similar results were found 

in the female offspring, including high mitochondrial density, mitochondrial ROS and total 

ROS level. The mitophagy markers were also impaired by maternal PM exposure. In order to 

further confirm the role of mitochondria in PM exposure induced pathology, we examined the 

mitochondrial functional change in Beas-2B cells. Results in Chapter 4 show that MitoQ, a 

mitochondrion targeted antioxidant, significantly ameliorated mitochondrial dysfunction 

induced by the PM exposure. These results strongly suggest that mitochondrial dysfunction is 

closely associated with the adverse impacts induced by PM exposure. 
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Summary of the markers expression levels in chapter 4 

 

In conclusion, this thesis confirmed that male offspring are more susceptible to in utero 

environmental toxin exposure. Maternal low dose PM exposure can induce transgenerational 

adverse impacts on pulmonary health in offspring. 

Limitations: 

Our studies do have limitations. We measured the targeted proteins expression levels in the 

chapter 2 with western blot without more dimentional approaches, such as PCR and 

immonohistochemistry. More analysis approaches will be used in the future work. 
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Take home message 
 
 

1. Male offspring are more vulnerable to maternal smoking induced lung impairment than 

their female littermates. 

2. Maternal L-Carnitine supplement during pregnancy could partially alleviate the adverse 

impacts on the offspring’s lung induced by maternal smoking. 

3. Short-term exposure to low dose PM can increase the pulmonary inflammatory 

response 

4. Chronic exposure to low dose PM could induce COPD-like pathology in the lung 

5. In utero exposure to low dose PM could exacerbate asthmatic symptoms in the 

adulthood 
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