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Abstract

Epidemiological studies have shown that maternal exposure to cigarette smoke and air
pollution are two predominant in utero environmental toxicants which can increase the risk of
developing multiple respiratory diseases in the offspring. The proposed mechanisms include
reducing mitochondrial function and mitochondrial renewal mechanisms (mitophagy) and
activating inflammasome and other inflammatory pathways. However, whether maternal
smoking could induce the sex-dependent susceptibility in respiratory disorders and whether
chronic low dose particulate matter (PM) exposure which is within the international standard
could induce any transgenerational pulmonary disease has not been widely studied.

Firstly, Female Balb/c mice (8 weeks) were exposed to cigarette smoke (SE) for 6 weeks prior
to mating, during gestation and lactation. Half of the SE dams (mothers) were given L-
Carnitine supplementation (1.5mM in drinking water, SE+LC) during gestation and lactation.
Then, another Male Balb/c Mice (6 weeks, Animal Resources Centre, WA, Australia) batch
was intranasally exposed to saline or traffic-related PMio (1 pg or 5 pg/day) for 3 weeks.
Furthermore, the female BALB/c mice (6 weeks) were exposed to PM» 5 (PMz 5, 5 pg/day) or
saline (SHAM) 6 weeks before pregnancy and during pregnancy and lactation; or for only 6
weeks before pregnancy (Cessation, 5 pg/day). Lung tissues from models were analysed.
Results: Compared to female offspring, maternal SE significantly increased levels of
inflammatory markers (phosphorylated(p)-extracellular signal-regulated kinase (ERK1,2), p-
p38 Mitogen-activated protein kinase (P38) MAPK, p-Mitogen-activated protein kinase (NF-
kB). Three weeks of PM exposure (5 pg/day) significantly increased total macrophages and
lymphocytes number in the bronchoalveolar lavage fluid (BALF) accompanied by increased
levels of NLRP3 and Interlukin-1 (IL1-). Chronic exposure to low dose PM significantly
increased tissue elastance and damping during lung function tests, followed by increased
leukocytes in the BALF, mitochondrial dysfunction, and airway remodelling, including

alveolar membrane damage and increased collagen deposition. Maternal exposure to low dose
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PM also significantly increased tissue elastance and damping during lung function test
followed by increased leukocytes in the BALF and mitochondrial dysfunction without airway
remodelling. The mouse model of asthma induced by olvabumin (OVA) showed that maternal
exposure to the low dose PM could significantly increase tissue elastance during lung function
test in the offspring, suggesting the worse asthmatic symptoms.

In conclusion, male offspring are more susceptible to the adverse effects of maternal smoking.
Chronic exposure to the low dose PM could induce chronic obstructive pulmonary disease

(COPD)-likes pathology in the dams and worsen asthmatic symptoms in the female offspring.

11
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Chapter 1 General Introduction

Section 1.2 has been published as a review article in,
Wang B, Chen H, Chan YL, Wang G, Oliver BG. Why Do Intrauterine Exposure to Air
Pollution and Cigarette Smoke Increase the Risk of Asthma? Frontiers in Cell and

Developmental Biology 2020; 8: 38.
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1.1 Ambient particulate matter in air pollution

1.1.1 Different sources of PM
Air pollution plays an important role in the global burden of disease. Epidemiological cohort

studies have identified that Sulphur dioxide!, Nitrogen dioxide?, Nitrous oxide®, Carbon
monoxide*, Ozone’, and particulate matter (PM) are the top 6 factors in air pollution and can
induce various diseases. Those components of air pollution have diverse health impacts, such
as the development of asthma, chronic obstructive pulmonary disease (COPD) and even lung
cancer ®. When compared with other components of air pollution, PM was detected as the main
putative culprit to cause morbidity and mortality 7*. More than 3 million global premature
deaths each year can be attributed to the PM pollution’.

The prenatal stage, crucial to the organogenesis of the developing foetus, is highly susceptible
to the environmental toxicants exposure '°. Current study proved that the chemical composition
on the PM surface can be transferred to the foetal circulation via blood placental barrier and
induce various adverse impacts in the offspring'!. Particulate matter, especially fine PM with
a diameter of less than ten microns (PMy), has significant adverse effects on pregnant women'2,
The underlying mechanisms for the influence of maternal PM exposure on adverse birth
outcomes are not clearly understood. The current consensus opinion is that it is related to
oxidative stress and inflammation during pregnancy'*!'.

Although PM can be produced through volcanic eruption and forest fire, the main source of
PM comes from anthropogenic activities. These pollutants can be broadly divided into two
categories: indoor and outdoor contaminants and both categories consist of similar particulate
matter'”. During the global urbanization, emissions from vehicle exhausts have become an
important source of outdoor air pollution in both developed and developing countries.
Urbanisation has resulted in residents living within 500 metres of busy roads which exposes

them to a variety of adverse respiratory health outcomes'®!7.
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Indoor air pollution mainly comes from residential energy use such as heating and cooking
which is prevalent in India and China, where it has the largest impact on premature mortality
globally. Acute respiratory infections in children and patients with COPD are also strongly

associated with living in poorly ventilated homes'®.

1.1.2 Classification of PM
Researchers define the inhaled fraction of ambient PM as PMio with a median aerodynamic

diameter less than 10um. According to the size, PMio can be further divided into three major
fractions based on the size: coarse PM (2.5-10 um) which can easily deposit in the upper
airways, being removed by mucociliary clearance; fine PM (0.1-2.5 um), and ultrafine
particulate matter(<0.1 um), which can reach deep into the lung (ie. alveoli) ! and can even
reach other organs through blood circulation. Suspended PMs with a median diameter of less
than 2.5 um are defined as PMz s, including the fine and ultrafine particles. Sometimes, PM;
(median diameter less than 1 um) is also be used. In fact, due to the complexity of PM, the
content of PM¢ also encompasses more than 50% of fine and ultrafine particles. Furthermore,
most researchers believe that the smaller components (PMz.s or PMo.1) in PMio have higher
toxicity compared to PMy itself 2°. Furthermore, smaller particles have a larger surface area
which can adsorb more metal and other toxic components.

Many publications have explored the health risks of exposure to various sizes of PM. The study
havs proved that PM; s has a higher chance to be retained in the airways and alveoli 2!. This
study was further confirmed by the analytical electron microscopy measurements, which
showed that PMzs could retain in the lung parenchyma with more than 90% efficiency.
Numerous studies also found that increasing in PMas exposure during pregnancy could
significantly increase various respiratory diseases in the offspring, such as asthma, COPD 2>,

Therefore, the size of the PM plays an important role in the cytotoxic effects.
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During the PM forming, carbonaceous cores will be surrounded by the diverse chemicals,
minerals and organic components. PM produced in different cities and countries is produced
from different sources such as combustion sources and climate change. Because of this PM can
also be defined by chemical composition in addition to classifying by size. Suspended PM
consists of a mixture of organic material (polycyclic aromatic hydrocarbons (PAH) and
endotoxins), minerals (quartz and silicates), salts (sulphates and nitrates), and other inorganic
components (transition metals)>*.

No single compound in the PM was identified to explain the cytotoxic effects of PM. The biotic
contaminants, such as endotoxin, allergens, and pollen fragments, can be adsorbed on the
carbon core of PM*. A study in Germany suggested that the concentration of endotoxin in
coarse particles were 10-fold higher than PM, 5*°. Endotoxin exerts its effects on the intact and
isolated lung cells as well, such as activating Toll-like receptors (TLR2/4) signaling pathways
which are closely associated with asthma ?’. In animal models, endotoxin was also found to
change the physiological functions of both airways and pulmonary circulations resulting in
changes in lung function®®. PM,s with polycyclic aromatic hydrocarbons (PAH)-like
characteristics can form an undesired mutagenic risk?. In mice, high PAH concentration could
induce higher a chance of mutations®. Another study demonstrated that PAH can even cross
the blood placental barrier and interfere with the development process of the foetus. Metals,
another contaminant on the surface of PM, can penetrate cellular organelles and interfere with

their functions 3!.

For example, lead could accelerate Ca2+ release from the cell and reduce
membrane potential, leading to the reduced mitochondrial function and further cellular
dysfunction 3'. Metals, like iron, copper and chromium could induce redox cycling and further
damage cell function. Other metals like lead, cadmium could cause oxidative stress by using

up the antioxidants. It has been shown that these metals caused an increase in the production

of ROS, such as hydroxyl radical (HO"), leading to oxidative stress in cardiopulmonary
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damage®?. The same process may also happen in the other organs, including the lung, liver and

even the growing foetus >,

1.1.3 Inflammation in the lung

Inhalable PM smaller than 10pm (PMio) can reach the lower airways, while smaller particles
can reach the alveoli and are therefore considered to be more damaging to the lung **. The
inhalation of PM regardless of the size can induce oxidative stress and result in increased
inflammation *°. Nuclear factor-kB (NF-«kB) and Mitogen-activated protein kinase (MAPK)
are the common inflammatory signalling pathways which could be activated through the
endocytosis or phagocytosis of PMys 637, NF-kB, is a major transcription factor that is
crucially involved in inflammation, apoptosis, and proliferation in lung **. A previous study
found that PM, 5 exposure triggered nuclear translocation, DNA-binding, and transcriptional
activation of the NF-«xB pathway in human alveolar epithelial cell line A549 **. NF-«B can also
activate MAPK signalling cascades, including extracellular signal-regulated kinase (ERK), c-
JUN N-terminal kinase (JNK), and p38 Mitogen-activated protein kinase (p38) “°. The
activated NF-kB and MAPK pathways result in the release of pro-inflammatory cytokines,
such as interleukin-1 (IL-1B), leading to heightened inflammatory responses.

In order to avoid the excessive damage induced by inflamaiton, autophagy is a selfregulation

41 Autophagy can

mechanism important for stress adaptation and cellular homeostasis
modulate inflammation through eliminating unwanted intracellular components, eg. proteins,

to reduce the inflammatory stimuli to suppress the inflammation **. PM> s has been shown to

induce autophagy in A549 cells through oxidative stress +*.

1.2 Intrauterine exposure to particulate matter and cigarette smoke and asthma
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Abstract

The prevalence of childhood asthma is increasing worldwide and increased in-utero exposure
to environmental toxicants may play a major role. As current asthma treatments are not
curative, understanding the mechanisms underlying the aetiology of asthma will allow better
preventative strategies to be developed. This review focuses on the current understanding of
how in-utero exposure to environmental factors increases the risk of developing asthma in
children. Epidemiological studies show that maternal smoking and particulate matter exposure
during pregnancy are prominent risk factors for the development of childhood asthma. We
discuss the changes in the developing foetus due to reduced oxygen and nutrient delivery
affected by intrauterine environmental change. This leads to foetal underdevelopment and
abnormal lung structure. Concurrently an altered immune response and aberrant epithelial and
mesenchymal cellular function occur possibly due to epigenetic reprogramming. The sequelae
of these early life events are airway remodelling, airway hyperresponsiveness, and
inflammation, the hallmark features of asthma. In summary, exposure to inhaled oxidants such
as cigarette smoking or particulate matter increases the risk of childhood asthma and involves
multiple mechanisms including impaired foetal lung development (structural changes),
endocrine disorders, abnormal immune responses, and epigenetic modifications. These make
it challenging to reduce the risk of asthma, but knowledge of the mechaisms can still help to

develop personalised medicines.

Keywords: asthma; foetus; placental; smoking; particulate matter.
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Intreduction

Asthma is a disease that generally affects 5-20% of children globally (1, 2). It is a complex
condition in which symptoms are mainly caused by bronchoconstriction (3). Airway
constriction occurs rapidly in response to a variety of inhaled substances, for example,
allergens such as pollen and house dust mite, and environmental sources such as dust and
smoke, which usually can be fully or partially reversed by bronchodilators. Pathologically it is
defined by airway remodelling, typified by increased smooth muscle and epithelial layer
thickness, and increased numbers of inflammatory cells. However, the type of inflammation
varies. For example, sputum based phenotyping of inflammation categorises people into
eosinophilic, neutrophilic, or paucigranulocytic asthma. The other factors that can add to the
complexity of asthma including the age of onset, aetiological cause (if known), co-existence of
other respiratory diseases, comorbidities, the degree of reversibility, and the ability for the

symptoms being effectively controlled by pharmaceutical interventions.

The susceptibility to asthma is complex, which involves both genetic sucipitibility,
environmental insults (both pre and post birth), and is further complicated by asthma syptoms
initating and sometimes ceasing at different ages, as well as differences in asthma prevalence

between the male and female sexes.

It is known that boys are more susceptible than girls before puberty, but less than girls after
puberty. Many therories exsist to explain this phenomina including: dysnapsis due to different
sized lungs in boys and girls, increased allergy (more IgE production in boys), different innate
and adaptive immune responces in boys and grils, and the influence of sex hormones (4-6).
The incidence of asthma is also related to the use of life saving medical inteventions in
premiture and newborn children such as oxygen supplementation or mechanical ventilation due

to physical permanent damage to the newborn’s lungs (7).

However, it has increasingly been recognised that certain factors during the intrauterine period
affects childhood asthma susceptibility. In particular, maternal smoking (MSE) and particulate
matter (PM) exposure (8, 9), are the best described/researched in-utero challenges which affect
asthma sucipitibility. This review will discuss the current understanding of multiple

mechanisms underlying these two factors, which may help to develop personalised medicines.

Epidemiology of asthma
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The prevalence of allergic disorders has been rising since the early 1980s. The average global
rate of allergic disorders is 22%, ranging from 15%-35% of the population in different
countries (10). According to the WHO, the number of children with asthma is around 14%
globally (11). Severe asthma is common in children. A recent study reported that the
prevalence of severe asthma was 4.9% in 6-7 years old children, however, the incidence was
increased to 6.9% in 13-14 years olds. These phenomena demonstrated that age is an important

factor for the onset of asthma (12).

Environmental toxicant exposure during pregnancy is a significant factor that has been shown
to increase the incidence of asthma (13). In particular, maternal smoke exposure (MSE) is the
largest modifiable risk factor for the development of asthma. Although the harmful effect of
smoking is well-known in the general public, smoking mothers find it difficult to quit due to
nicotine addiction, even during pregnancy when nicotine metabolism is faster than non-
pregnant status(14). A systematic review and meta-analysis in the Lancet showed that the top
3 countries with the highest smoking rate during pregnancy are Ireland (38.4%), Uruguay
(29.7%) and Bulgaria (29.4%) (15). Even in Australia where anti-smoking legislation is one of

the most aggressive in the world, the smoking rate in pregnant women is 11.7% (16).

Epidemiological studies have demonstrated a dose-dependent increase in asthma risk in
offspring due to MSE (Table 1). Currently, several cohort studies have confirmed the
association between MSE and asthma risk in the offspring (17-20). For example, a birth cohort
study has found that women smoking during pregnancy could increase asthma incidence in the
offspring with an adjusted hazard ratio of 1.79 (95% CI 1.20-2.67) (21). The same outcome
has been found in another cohort study where MSE during pregnancy caused higher asthma
risk in the child in the first year of life with an odds ratio (OR) of 1.83 (22). Similarly, a
systematic review of 14 studies revealed a wheezing (OR 1.41 (95% CI 1.19-1.67)) and asthma
risk (OR 1.85 (95% CI 1.35-2.53)) in 2 vears old and younger children, followed by a higher
asthmatic risk in 5-18 years old children (OR 1.23 (95% CI 1.12-1.36)) caused by smoking
during pregnancy (18). One study found a strong asthma risk in 14 year old girls whose mothers
smoked during pregnancy, however this was not found in boys (23); whereas a different study
found that boys at the age of 11 are more susceptible to the maternal and postnatal secondhand
smoke (24). These differences might be related to the changes in asthma prevelance in boys

and girls around puberty.
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Around 91% of the world’s population are living in the areas where the levels of air pollutants
exceed the WHO limits (25). Epidemiological studies demonstrated a strong association
between pulmonary disease and particular matter (PM) exposure(9). Compared to cigarette
smoking which can be avoided through quitting, the dangers of airborne pollution are hard to
avoid in heavily polluted countries, such as China and India. In China, 74,000 premature deaths
were attributed to PM2s exposure in the year 2013 (26). It was estimated that 22% of these
deaths could have been avoided if indoor PM> 5 level met National Class I standards (26).

There are many different types of airborne pollution, but simplistically these can be divided
into gasses and particulate matter (PM). PM is considered as particularly dangerous as

respirable particles can remain airborne over large distances.

As shown in Table 2, prenatal PM exposure is also associated with childhood asthma. A cohort
study found that prenatal PMio exposure could cause pulmonary function changes with higher
minute ventilation in newborns (27). Another birth cohort study including pre-school and
school-age children demonstrated that prenatal PM o exposure increased the risk of developing
asthma in both age groups, especially for those pregnant mothers who lived near the highways
(28). The correlation between maternal PM exposure and asthma risk in different genders was
also investigated. High levels of PMa»s exposure during mid-gestation increased the
development of asthma by the age of 6 years in boys, but not in girls (29). The above evidence
indicates that maternal PM exposure during pregnancy has similar effects to MSE in terms of

increasing the risks of developing asthma in childhood.

The difference of asthma prevalence between boys and girls and the change in prevalence
which occurs around pubertiy naturally gives credance to the involvement of sex hormones.
Animal models of estrogen receptor knockouts suggests that estrogen promotes the
development of the asthma (30); while male mice lacking testosterone showed more severe
asthma symptom (31). These studies help to explain why boys are more susceptible to asthma
before puberty, and girls more susceptible after puberty. However, the eitology of asthma is

complex and is multifactorial.

The role of oxidative stress in the development of asthma in children
Various chemicals can be found in both cigarette smoke and PM. It is unlikely that a single

chemical is responsible for all the adverse effects of in-utero exposure to cigarette smoke or
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PM on lung health in the offspring. Cigarette smoke and PM are two major environmental
sources of inhaled free radicals and strong oxidants. The balance between excessive oxidant
activity and the antioxidant capacity can tip in favour of excess oxidants causing oxidative
stress. However, it is important to note that the production of oxidants is necessary to maintain
healthy cell function, and important in regulating processes such as inflammatory responses.
Oxidative stress induces adverse effects in tissues. The developing foetus is highly vulnerable
to oxidative stress injury, as the immune system remains immature during the prenatal period
(32). Free radicals and chemicals inhaled during MSE and maternal PM exposure can pass the
blood-placental barrier to directly increase the level of oxidative stress in the offspring.
Therefore, we propose the first common and prominent mechanism underlying these two

factors to induce pathological changes in the offspring is oxidative stress.

Our previous studies in mice have repeatedly shown that MSE can reduce the level of
endogenous antioxidant Manganese Superoxide Dismutase in the brain, kidney, and lungs of
adult offspring accompanied by increased Reactive Oxygen Species (ROS) levels in those
organs; interestingly, antioxidant supplementation during pregnancy could completely or
partially reverse the adverbse effects on those organs induced by MSE (33-35). The
endogenous antioxidant enzyme system is established in the second and third trimester of
pregnancy and continues to develop in early childhood (36). Interestingly, lung development
also matures in the early postnatal period, suggesting that the antioxidant system may protect
early-life lung development from the adverse impacts of environmental oxidant pollutants (37).
After all, the function of the respiratory system is vital for survival immediately after birth.
Vitamin C is an antioxidant which contributes to cellular antioxidant defence(38, 39). A study
in pigs found that vitamin C deficiency during pregnancy could cause brain damage in the
offspring (40). Giving smoking women vitamin C during pregnancy was shown to improve
lung function (better airflow and less wheezing) in children during the first year of life (41).
This again provided evidence that oxidative stress and insufficient capacity of antioxidants play
a key role in organ dysfunction in the offspring due to MSE. PM consists of metals and
endotoxins (polycyclic aromatic hydrocarbons) which also can generate ROS (42) and produce
oxidative damage (43). Therefore, the pathways associated with oxidative stress are regarded
as playing an important role in inducing adverse respiratory outcomes after the exposure to

environmental pollutants (44, 45).

In utero, any adverse effects that occur during foetal development can have long-lasting
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negative influences on organ development and later function after birth (46, 47). In fact, local
tissue oxidative stress and injury due to the imbalance between free radicals and antioxidant
capacity is a key factor in asthma pathogenesis. As such we propose that oxidative stress is the
pathological insult that drives changes in the intrauterine environment and disturbs normal
foetal development which subsequently increases the risks of developing asthma. It is also
worth noting that maternal smoking is a strong risk factor for miscarriage, a process also linked

to oxidative stress (48).

Intrauterine growth restriction — The Barker Hypothesis

In 1990, the epidemiologist David Barker presented his hypothesis which linked chronic and
degenerative diseases, such as heart disease, to the poor intrauterine environment caused
intrauterine growth retardation (IUGR), low birth weight, and premature birth. This theory
inspired scientists and has been expanded to the other organ systems including the respiratory
system (49). Numerous studies have confirmed that environmental toxicant exposure during
pregnancy, such as cigarette smoke, can cause IUGR and subsequently abnormal lung
development in the offspring (49). Nicotine is the most widely studied component in cigarette
smoke due to its addictive effects. Early studies showed that cotinine, the stable metabolite of
nicotine, can be found in foetal circulation and body fluids (50). This indicates that chemicals
in cigarette smoke can cross the blood-placental barrier and reach the foetus. A more recent
study by Geelhoed et al showed that MSE can decrease blood flow in the ascending aorta
because of higher arterial resistance in the uterus, which can reduce the oxygen and nutrient
delivery to the growing foetus resulting in [UGR (51). Inadequate nutrient availability in the
developing foetus, especially during the periods of rapid lung growth, has been shown to induce
lung developmental defects (52, 53) and respiratory morbidity in the offspring (54, 55). Animal
studies have demonstrated a decrease in both alveolarisation and vessel density in the lung of

sheep with IUGR (56).

How do MSE and maternal PM exposure impact on foetal lung development?

In brief, MSE can induce such effects in two ways: the direct influence on the developing
foetus, and indirect effects on the fetoplacental unit. Recently, studies have demonstrated that
a small fraction of the circulating nicotine in the mothers can cross the trophoblastic membrane
and reach the unborn child, and as such cotinine can accumulate in the foetal circulation and
fluids in measurable concentrations (57, 58). Furthermore, a similar concentration of cotinine

in both foetal lung tissue and blood was found, suggesting cotinine may bind to the receptors
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in the lung to directly affect foetal lung development (59). Maternal air pollution exposure can
also cause foetal growth restriction (60). Polyeyclic aromatic hydrocarbons on the surface of
PM can easily cross the blood-placental barrier and circulate in the foetal blood because of its
small size (61). Therefore, lung development in the foetus can be directly affected by the PM
inhaled by the mothers.

The fetoplacental unit has a significant influence on foetal development. The damage to
fetoplacental unit caused by maternal smoking can be seen during early pregnancy. For
example, MSE significantly increases villous membrane thicknesses and trophoblastic layer in
the placenta during the first trimester (58). There are also signs of reduced capillary volume in
placental vasculature in pregnant smokers (62). The consequence of reduced capillary volume
is nutrient delivery decrement. Intrauterine nutrient deficiency has been suggested as the major
factor contributing to foetal growth restriction and low birth weight due to MSE (63). Low
birth weight can increase the asthma risk in later life, evidenced by a meta-analysis including
1.1 million people (64). In rat models, maternal PM exposure was found to change placental
morphology, and decrease placental weight, size and surface area (65). Similar findings have
also been confirmed in humans, where PMi; exposure can decrease placental weight with
higher anti-angiogenic factors in cord blood (66). As a result, increased vascular resistance
can be predicted, which will reduce uteroplacental perfusion and lead to various maternal and

foetal complications, such as low birth weight and miscarriage (67-69).

The abovementioned evidence indicates that MSE and maternal PM exposure during
pregnancy can impair foetal lung development through a direct effect on the foetus and indirect
influence on placental morphology and function. However, the molecular mechanisms
underlying the increased risk of asthma due to MSE and maternal PM exposure are not well
understood. In monkeys, MSE upregulated nicotinic acetylcholine receptors in the foetal lung,
associated with lung function decline after birth (70, 71). Several in vitro and in vivo animal
models have also shown that both MSE and PM exposure during pregnancy affects the
development of the neonatal immune system, lung structure, and lung function in the offspring,
making them more susceptible to the development of asthma(72, 73). These will be discussed

in greater detail later.

The development of asthma in children

The role of altered lung structure
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Just as discussed above, MSE and maternal PM exposure during pregnancy can result in
oxidative stress, and cause nutrition deficiency resulting in IUGR, which eventually alters lung
development and structure. Foetal lung development starts from embryo Weeks 3-5 when the
laryngotracheal groove forms on the floor of the foregut and matures during the early postnatal
year. Therefore, inhaled environmental toxicants by pregnant mothers may change lung
morphology and function as early as gestational Weeks 5-17 when epithelial and smooth
muscle cell differentiation takes place. Epidemiological evidence well supports this theory,
where significant lung function impairment was found in the newborns of mothers who smoked
during pregnancy or inhaled high levels of PM (74, 75). Such lung function disorders can last
until later childhood (76, 77). It needs to be noted that lung function deficiency in early life has

been correlated with increased asthma incidence later on (78).

ILung dysfunction after birth can be attributed to lung structural changes during foetal
development. Animal studies have shown that both MSE and maternal PM exposure could
decrease lung volume, alveoli number and mean linear intercept in the offspring as well as
reduced alveolar-bronchiolar attachment points (72, 73, 79). Nicotine as the ‘addictive
substance’ in tobacco smoke has often been used in animal models to investigate the potential
mechanisms underlving the adverse effects of maternal tobacco smoking. For example,
increased airway collagen deposition and altered vascular structure were found in a monkey
model after prenatal nicotine exposure (80, 81). However, it is uncertain if these results can
be translated to humans as nicotine replacement therapy during pregnancy has not been found
to be associated with the same adverse outcomes as maternal cigarette smoking (82) or nicotine
administration in animal models (80, 81). This suggests that the whole constituent of tobacco

smoke is needed to study the mechanism in animals.

The role of endocrine disorders.

Endocrine disruption during pregnancy is a potential cause of adverse pregnancy outcomes.
Endocrine glands form an important part of the fetoplacental unit that can secrete a significant
amount of hormones including the oestrogen to support pregnancy. Oestrogen plays a key role
in regulating neuroendocrine homeostasis in the developing foetus and promotes Th2 immune
cell development in the foetus (83, 84). A human study demonstrated that abnormal oestrogen
level in pregnant mothers affects foetal development (85). A reduction in oestrogen and
oestrone (a weak oestrogen) levels in the cord blood has been found if the mother smoked

during pregnancy (86)(87). This is because smoking can produce an anti-oestrogenic effect
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and induce androgenisation in pregnant mothers to disturb hormonal homeostasis (88). Such

changes may influence the risk of asthma in offspring (89).

The evidence to prove the relationship between maternal PM exposure and its impact on
endocrine homeostasis are scarce. It has been shown that the endocrine-disrupting chemicals
(EDCs) on the surface of PM can disrupt sex hormone synthesis (90). Polycyclic aromatic
hydrocarbons in both tobacco smoke and PM, can also affect steroidogenesis through inhibiting
steroidogenic enzymes (91). However, there is no direct evidence suggesting the correlation
between hormone change induced by maternal PM exposure and foetal lung development,

neither is known about the risk of asthma in the offspring (92).

However, the information collected from cord blood at birth can’t accurately reflect the
changes in foetal lung development during particular sensitive windows of embryo
development induced by MSE and Maternal PM exposure. Amniocentesis is an alternative
method to measure hormone levels at different time points and explore endocrine disruption,
but access is limited. Animal modelling may shed a light on the correlation between placental
hormone changes and foetal lung development, as well as postnatal lung function and
susceptibility to asthma. Future research can focus on this aspect to better understand the niche

factors contributing to lung development and the risk of asthma.

The role of epigenetic programming

Programming is a term used to describe an altered phenotype due to changes in the in utero
environment. Epigenetic programming describes stable inheritable phenotypic changes without
the alteration in the DNA sequence. Such a process controls mRNA expression and protein
production through changing the transcriptome, including DNA methylation and histone
modifications. Mounting evidence has closely linked asthma to epigenetic programming due
to intrauterine environmental changes. For example, asthma is also an inheritable disease (93).
The parent-of-origin effect which is usually due to epigenetic mechanism, also shows a
prominent influence on the development of asthma, eg. asthmatic mothers are more likely to
have offspring with asthma than the asthmatic fathers (94). As mitochondrial DNA is 100%
inherited from the mothers, epigenetic modification of this genome may largely contribute to
this phenomenon. In addition, the foetal period is a vulnerable stage and thus very sensitive to

environmental toxicant exposure, when maternal protection is vital. During embryogenesis,
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cells divide rapidly and therefore the genome is in a relatively unstable status. During this
period, oxidative stress induced by environmental toxicant exposure may easily interrupt
genomic duplication process (95), leading to abnormal epigenetic modifications or even

mutation, rendering the foetus susceptible to future chronic diseases after birth, such as asthma.

In a cohort study on MSE, CpGs methylation has been found on genes responding to the
pollutants in tobacco smoke in the newborns of smokers who smoked during pregnancy (96).
In addition, CpG methylation was also found in the genes involved in foetal development in
cord blood by MSE, suggesting a mechanism by which MSE results in intrauterine
underdevelopment (96). Previous studies have shown that maternal PM exposure could alter
DNA methylation in the offspring. Prenatal PM1y exposure induced superoxide dismutase 2
(SOD2) protomer methylation in cord blood cells (97), which is related to phthalate and
diisocyanate-induced asthma (98, 99). As the epigenetic changes are inheritable, they will
change gene expression to affect normal embryo development and persist throughout life,
resulting in the susceptibility to chronic diseases in later life (100). It may also result in the
transfer of certain respiratory diseases to subsequent generations, such as asthma, establishing
a family history. For a detailed review on epigenetic changes due to in utero oxidative

challenges, please see Zakarya ef al. 2019 (101).

The role of the immune response

The mother’s immune system plays a central role in the protection of foetal development. The
foetus and newborns need maternal antibodies (Ig) to protect them from infectious diseases
(102). Previous studies have shown that parental smoking and PM exposure increased Ig E
levels in the cord blood (43, 103). MSE and maternal PM exposure can also alter immune
responses through activating inflammatory macrophages and memory B cells in the offspring
(104, 105). These changes in immune responses suggest that MSE and maternal PM exposure
can alter the innate and adaptive immune response in the offspring. In addition, MSE and
maternal PM exposure have also been shown to delay the maturation of immune system

(106)(107) \which may also make such offspring more susceptible to allergic disorders.

Toll-like receptors (TLRs) play an important role in the neonatal immune response (108). MSE
can inhibit neonatal immune system maturation through impairing TLR mediated responses
(such as TLR2 and TLLR9) (109). We also have similar observations in the brains of mice who

are offspring which had MSE. At postnatal day 1, mRNA expression of TLR4 was decreased
11
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in the offspring from MSE compared to those from Sham-exposed mothers, suggesting
suppressed immune response or delayed maturation of immune response (110). However,
TLR4 mRNA expression was increased in 13 weeks old offspring which had MSE along with
increased inflammatory cytokines expression (110), suggesting that MSE has a sustainable
influence on the immune system leading to heightened inflammatory c¢ytokines production.
Maternal PM exposure could induce similar adverse effects. High levels of TLR2 and TLR4
expression were found in the human offspring and animals from mothers exposed to increased

levels of PM during pregnancy(106).

Asthma is typified by T cell dysregulation, including Thl, Th2 and Th17 cells (111). In most
asthmatic patients, accumulating evidence shows the suppression of Thl cytokines (for
example IFNv) with higher Th2 cytokine expression (IL-4, IL-5, and IL-13) (112). Furthermore,
clinical data showed that allergic responses are more prevalent among the children who have
developed attenuated Thl responses during infancy (113). Similar changes were found in
animal studies. In pregnant C57BI./6 mice, intranasal exposure to diesel exhaust particles has
been shown to increase the Th2 cell percentage in the bronchoalveolar lavage fluid with higher
levels of pro-inflammatory cytokines (I1.-4 and I[1.-5) in the offspring with asthma (114). MSE
was also shown to increase Th2 cytokines (IL-4 and IL-5) and other pro-inflammatory
cytokines (such as I1.6) with suppressed Thl cytokines (IFN-vy) due to reduced NK cell
activities (115, 116).

However, the immune response is complicated, and difficult to investigate from a broader
spectrum. A study has found that PM: s exposure differentially impacts the immune system at
different stages of gestation. High level of CD3+ and CD4+ lymphocytes and low percentage
of CD19+ lymphocytes and NK cells can be found in the cord blood during the early gestation;
however, the opposite changes with low level of CD3+ and CD4+ lymphocytes and high
percentage of CD19+ lymphocytes and NK cells were found if PM exposure occurs during late
gestation (117). These studies suggest that immune response has been programmed by in-ufero
exposure to air pollution, however, future studies are needed to fully understand the extent of

the changes in this system.
Conclusion and perspectives
In conclusion, cigarette smoking and PM exposure during pregnancy is detrimental to foetal

development and increase the risk of childhood asthma. As summarised in Fig 1, Fig 2 and Fig
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3, oxidants inhaled by the mother result in increased oxidative stress in the intrauterine
environment. This results in persistent changes to both the structure of the lung and the
epigenome, altering immune and endocrine systems. Collectively these changes increase the
risk of childhood asthma. Although smoking cessation is preferred, the success rate remains
low during pregnancy. Given the similarity between MSE and maternal PM exposure,
antioxidant supplementation during pregnancy may be a plausible prophylactic strategy, which

is yet to be confirmed by large clinical trials.
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Figure 1. MSE and maternal PM exposure can increase the rate of childhood asthma.

MSE and maternal PM exposure can induce various adverse impacts on the foetus during
different intrauterine developmental stages, such as DNA methylation, oxidative stress,
inflammatory responses, and placental dystunction. The resulting intrauterine growth
retardation, low birth weight, and premature birth can increase the risk of childhood asthma

with a lower alveolar number and reduced lung function, as well as increased lung inflammation.

Figure 2. MSE and maternal PM exposure increase oxidative stress in the womb which
increases the risk of developing asthma due to the epigenetic modification of fetal DNA.
Environmental toxicants can induce histone modifications and DNA methylation, which results
in Th2 cvtokine overproduction, eosinophils accumulation, goblet cell hyperplasia, and mucin

hypersecretion.

Figure 3. MSE and maternal PM exposure can dysregulate the immune system in the foetus.
The numbers of Th2 and Th17 cells are increased with a lower number of Th1 cells. This is
caused by several epigenetic mechanisms, for example, miRNA 223 is increased in Treg
cells. B cell and macrophages differentiation are also affected, and a lower number of NK

cells are found.
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Table 1. Maternal smoking during pregnancy and the risk of asthma in children

Relative risk Odds ratio (95%

Smoking exposure Age References
Male Female
Smoker at some stage 14 vears 1.15(1.01- | 1.25 (0.85-1.22) (118)
1.72)
=20 cigarettes (early and 14 years 0.57(0.20- | 1.09 (0.47-2.51) (118)
late) 1.60)
Total of 1-9 cigarettes/day | 4-16 years 1:19 (0.98, 1.43) (119)
< 10 Cigarettes per day 7 years 1.20(1.04, 1.38) (120)
Total of 210 cigarettes/day <5 years 1.68 (1.10 to 2.58) (121)
> 10 Cigarettes per day 7 years 1.31(1.09, 1.58) (120)
Total of >10 cigarettes/day | 4-16 years 1:66 (1.29, 2.15) (119)
Smoking during pregnancy | First 3 years 1.88 (1.14 -3.12) (122)
Smoking during pregnancy 4-6 years 1.65(1.18-2.31) (123)
Smoking during pregnancy 2-7 years 1.7(1.2-2.2) (124)
Smoking during pregnancy 5-9 years 0.97 (0.51 to 1.84) (125)
Smoking during pregnancy 14 years 1.49 (0.91-2.45) (126)
Smoking during pregnancy | 7-16 years 0.99 (0.78 t0 1.25) (127)
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Table 2. Maternal PM exposure and the development of asthma in offspring

Pollutant Age Concentration increase Relative Risk | References
PMazs 6 years 1.7 pg/m? (per IQR) 1.15(1.03-1.26) (128)
PMas 3-4 years | 1 pg/m’ (exposure interval) | 0.95 (0.91-1.00) (129
PM2s 0-5vears 1.45 pg/m? (per IQR) 0.99 (0.97-1.01) (130)
PMas 6-10 years 1.46 pg/m’ (per IQR) 1.01 (0.97-1.06) (130)
PMas 0-6years 3.7 ng/m* (per IQR) 1.01 (0.99 — 1.04) (131)
PMio 3-6 years 12 pg/m?* (per IQR) 0.89 (0.68, 1.16) (132)
PMig 3-4 years | 1 pg/m® (exposure interval) | 1.09 (1.05-1.13) (129
PMio 0-5vears 1.3 pg/m?® (per IQR) 1.12 (1.05-1.19) (130)
PMio 6-10 years 1.36 ug/m? (per IQR) 1.09 (0.96-1.24) (130)

IQR: interquartile range.
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Figure 1.TIF

—F R

Inhaled oxidants during pregnancy

/ Epigenetics

In-utero consequences of inhaled oxidants

Inflammatory responses

GW

methylation

Oxidative stress

-

Sy antioxidant
oxidative
stress capaclty

«
.

VY4

Oxygen
Macrophages
B cells NK cells

* Nutrition

0O e

TH

|
\ elpercells  Treg cells/ \ J

Placental dysfunction: \

!
Intrauterine growth retardation, low birth weight , premature birth, programming
!
( Increased risk of Developmg Asthma \
1 A % e I q. "’01' J W
S FEVlg Healthy : -‘ ﬂ/\ w‘{
2 EV | L\ T 5
& " Asthma |- LB N ]
' Wiewe T aa tt
= ! &f "\Vv &S
s ; CEAA A Pt
- Rl i | .3';{‘}-‘ ™
A IS L), Pl
Time (second)
\ Lower FEV1 Higher inflammation Lower alveolar number _/

41



Ph.D Thesis

Baoming WANG

University of Technology Sydney-Life Science

Figure 2. TIF
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Figure 3. TIF
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1.3 Overall hypothesis and aims of this thesis
We hypothesised that, in utero exposure to environmental pollutants such as cigarette

smokeand PM would cause respiratory diseases in offspring.

To address this hypothesises, in mouse models, we aimed to investigate,
1. The inflammatory response in the offspring. This was evaluated by measuring the

number of inflammatory cells BAL, and in tissue sections, as well as individual factors
by both PCR and Western blotting

2. Mitochondrial dysfunction and oxidative stress in the offspring. This was evaluated by
measuring the mitophagy markers by Western blotting and ROS level in cryo sections
by immunofluorescence.

3. Respiratory hyper-responsiveness and lung remodelling in the offspring. This was
evaluated by measuring lung function by FlexiVent measurements, and pathology in
tissue sections using histological staining and immunohistochemical staining of

individual factors .

The abovementioned aims were addressed in the studies in Chapters 2, 3, and 4.
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Chapter 2 Offspring sex affects the susceptibility to maternal smoking-induced lung

inflammation and the effect of maternal antioxidant supplementation in mice

This chapter has been published in
Wang B, Chan YL, Zhou S, Saad S, Chen H, Oliver BG. Offspring sex affects the
susceptibility to maternal smoking-induced lung inflammation and the effect of maternal
antioxidant supplementation in mice. Journal of Inflammation 2020 5;17:24.
Contribution:

e All tissue analysis

e Draft preparation

¢ Finalising the manuscript
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Abstract

Background: Cigarette smoke exposure (SE) during pregnancy is the largest modifiable risk
factor for the development of lung disorders in offspring. We have previously shown that
maternal L-Carnitine treatment can reduce the adverse impacts of maternal SE on renal and
brain disorders in offspring. Here, we investigated the effect of maternal L-Carnitine
supplementation on lung inflammatory pathways, autophagy, and mitophagy markers in the
offspring in response to maternal SE.

Female Balb/c mice (8 weeks) were exposed to cigarette smoke for 6 weeks prior to mating,
during gestation and lactation. Half of the SE mothers were given L-Carnitine supplementation
(1.5mM in drinking water, SE+LC) during gestation and lactation. Lungs from the offspring
were studied at birth and adulthood (13 weeks) in both genders.

Results: At birth, in male offspring, there were increased levels of inflammatory markers
(phosphorylated(p)-ERK1,2, p-P38 MAPK, p-NF-kB), and inflammasome marker (NLRP3),
as well as mitophagy fission marker Drp-1 and autophagosome marker (LC3A/B-II) in the lung.
Maternal L-Carnitine supplementation significantly reduced NLRP3 level. In contrast,
maternal SE only increased IL1-f in female offspring, which was reversed by maternal L-
Carnitine supplementation. At 13 weeks, there was an increase in LC3A/B-II and p-NF-kB in
the male SE offspring with reduced p-JNK1,2, which were partially normalised by maternal L-
Carnitine treatment. Female offspring were not affected by maternal SE at this age.
Conclusion: Maternal SE had adverse impacts on the male offspring’s lung, which were
partially alleviated by maternal L-Carnitine supplementation. Females seem to be protected

from the adverse effects of maternal SE.

Keywords: antioxidant, sex differences, inflammasome, mitophagy.
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Background

Smoking during pregnancy is a major cause of maternal and newborn morbidity and mortality
(1), with pulmonary diseases being a major adverse outcome (2, 3). In-utero smoke exposure
(SE) reduces lung function in human newborns (4, 5). Animal models have shown a decreased
number of saccules, septal crests, and decreased elastin fibres in foetuses (6) and suckling pups
(7), as well as increased airway thickness, collagen deposition, inflammation, and airway

hyper-responsiveness due to intrauterine SE (8-10).

In humans, certain diseases including chronic obstructive pulmonary disease (COPD), occur
disproportionately in males and females (11). The common pathophysiological process
includes increased inflammation, oxidative stress, impaired mitochondrial renew mechanism
(mitophagy), and cellular self-cleaning mechanism (autophagy)(12). In keeping with this, our
previous murine studies found that the changes in inflammation, oxidative stress, mitophagy,
and autophagy have a marked sex difference in the offspring’s brain and kidney following in-

utero SE, wherein female offspring are more protected from such adverse effects(13, 14).

A previous study only demonstrated that maternal SE causes lung inflammatory response in
the male offspring (15); whereas a recent study suggested that prenatal SE can differentially
affect methylation in mice lungs in different sexes, which found hypo and hypermethylation
(CpG-site-specific methylation) in male in female offspring respectively because of the various
exons in the Igfl gene response to the hormone (estrogen) activation (16). Therefore, we
hypothesised that sex differences also exist regarding the effects of in-utero SE on other

pulmonary changes.

The regulation of inflammation involves several signalling pathways, such as NF-kB and
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MAPK pathways (17). Three well-characterised subfamilies of MAPK include the
extracellular signal-regulated kinase (ERK)1/2, Jun N-terminal kinase (JNK) stress-activated
protein kinase, and p38 (18). NF-kB is often regarded as the master controller of inflammation
(19). Inflammatory response requires a considerable amount of energy derived from the
mitochondria (20), whereas mitochondrial function is often compromised during this process.
There is a close relationship between the activation of the nucleotide-binding domain and
leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome
(increasing IL-1P activity) and mitochondrial dysfunction (21). Thus, the inflammasome is
regarded as the bridge between inflammatory response and subsequent mitochondrial damage
(21), including oxidative stress (21) and mitochondrial DNA impairment (22). This has been
observed in conditions like COPD but has not been investigated in the setting of maternal

SE(23).

The autophagic elimination of injured mitochondria is termed mitophagy, which is regulated
by fusion and fission (24). The balance between fusion and fission is essential to mitochondrial
integrity. Fission is to separate damaged mitochondrial fragments from the healthy part, while
fusion is to generate a new mitochondrion from two healthy mitochondrial fragments (25, 26).
We have observed dysregulated mitophagy in the brain and kidney caused by maternal SE
which was associated with organ pathology(13, 27); however, whether this also occurs in the

lung is unknown.

In-utero SE results in considerable foetal oxidative stress and inhibits the endogenous
antioxidant activity (28). Therefore, improving the antioxidant ability may alleviate the adverse
effects of maternal SE. L-Carnitine has been shown to attenuate age-related disorders by

reducing oxidative stress and increasing antioxidant capacity in rats (29, 30). A clinical study
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also showed that L-Carnitine supplementation can suppress serum levels of inflammatory
cytokines in humans (31). We have shown that maternal L-Carnitine supplementation during
pregnancy and lactation can alleviate brain (13) and renal dysfunction (32) in offspring from
the SE mothers. As such, this approach may also ameliorate the adverse impact of maternal SE

on lung health in the offspring.

Given the known differences in the susceptibility of developing lung diseases between males
and females(33), we hypothesised that in-utero smoke exposure would result in chronic
hyperactivation of inflammatory markers and dysregulated autophagy and mitophagy in male
offspring, but not in female offspring. Maternal L-carnitine may ameliorate the adverse impact

of maternal SE on the offspring’s lung.

Results:

Effect of maternal SE on body weight

At P1, both male and female offspring from the SE dams appeared smaller than the SHAM
offspring (Table 1). Maternal L-Carnitine supplement during gestation and lactation increased
the birth weight of both male and female offspring (P<0.05 vs SE). There were no differences

in body weight among the 3 groups at 13weeks for both males and females (Table 1).

Effect of maternal SE on lung p-ERK, p-p38, p-JNK, and p-NF-kB in the offspring.

At P1, maternal SE significantly increased the levels of p-ERK1,2 (P<0.01 vs SHAM, Figure
1A), p-P38 (P<0.01 vs SHAM, Figure 1E) and p-NF-kB (P<0.01 vs, SHAM, Figure 1G) in the
male offspring. Only p-NF-kB appeared to be partially reversed by maternal L-Carnitine

treatment without statistical significance (Figure 1G). In the female offspring, maternal SE did
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not significantly affect phosphorylated ERK1,2, INKI1,2, p38, or NF-kB levels, whereas
maternal L-Carnitine supplementation significantly reduced p-ERK1,2 (P<0.05 vs SHAM,

P<0.01 vs SE, Figure 1B) and p-P38 (P<0.05 vs SHAM, Figure 1F) levels.

At 13 weeks, p-JNK1,2 level was lower and p-NF-kB was higher in the male offspring (P<0.05
vs SHAM offspring, Figure 2C, G). which was not reversed by maternal L-Carnitine
supplementation. In the adult females, neither maternal SE nor maternal L-Carnitine

supplementation had any effect on the abovementioned proteins (Figure 2).

Effect of maternal SE on lung NLRP3 and IL1-p levels in the offspring.

In P1 offspring, a trend towards increased NLRP3 and IL-13 was observed in male and female
offspring, however only NLRP3 in the male (P<0.01 vs SHAM, Figure 3A) and IL-1 in female
(P<0.05 vs SHAM, Figure 3D) were significant. Maternal L-Carnitine treatment normalised
both markers (P<0.05 vs SE, Figure 3A).

At 13 weeks, maternal cigarette smoke exposure significantly increased NLRP3 expression in
female offspring (P<0.01 vs SHAM, Figure 3F); maternal L-Carnitine supplementation did not
have any effect (P<0.01 vs SE, Figure 3F). Maternal smoke exposure significantly increased
IL-1B level (P<0.01 vs SHAM, Figure 3G) in the male offspring, which was further increased

after maternal L-Carnitine treatment (P<0.01 vs SE, Figure 3G.

Effect of maternal SE on lung mitophagy markers in the offspring

At P1, total cell autophagy marker LC3 A/B-II and mitochondrial fission marker Drp-1 protein
levels were significantly increased in the male SE offspring (P<0.05, Figure 4A, C). Maternal
L-carnitine supplementation further increased LC3 A/B-II level, but normalised Drp-1 levels in

the SE+LC offspring (P<0.001 vs SHAM, Figure 4A, C). No changes in autophagy and
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mitophagy markers were found in P1 female offspring among the 3 groups (Figure 4B, D, E).

At 13 weeks, LC3A/B-II protein was significantly increased by maternal SE in the male
offspring (P<0.01, Figure 5A) which was not affected by maternal L-Carnitine
supplementation. In the females offspring, no difference in autophagy and mitophagy markers

was observed among the 3 groups (Figure 5B, D, E).

Discussion

Maternal smoking during pregnancy is well-documented to cause long-term adverse effects on
the offspring’s health outcomes in multiple organs, including respiratory, neurological, and
renal systems (34). However, the sex difference in such susceptibility in respiratory disorders
has not been broadly studied, perhaps due to the preference of using one gender to model

asthma or COPD.

In this study, male offspring from the SE dams had smaller body weight from birth to adulthood,
consistent with previous studies and human birth weight suggesting the reproducibility and
human relevance of our model (35, 36). Maternal SE activated inflammatory NF-kB and
MAPK pathways, which were more prominent in the male offspring at P1. It is well known
that cigarette smoking can induce inflammation via the MAPK signalling cascade (37),
reflected by increased phosphorylation of ERK and P38 (38, 39). MAPK pathway activation
can also lead to increased phosphorylation of certain transcription factors, such as NF-kB (40).
In the current study, these effects in P1 male SE offspring are likely due to the chemicals
including free radicals in cigarette smoke accessing the foetal circulation via the placenta.
NLRP3 inflammasome activation in the male offspring at P1 is in accordance with other

inflammatory pathways especially NF-kB. However, only NF-kB hyperactivation was
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maintained at adulthood. This may be due to a lack of a second insult after birth. As NF-kB
regulates acute responses to external stimuli, its innate hyperactivation may enhance the
response to postnatal environmental factors, such as an increased risk of asthma or COPD (41).

This requires further investigation with additional modelling in the offspring.

It is not surprising to observe that female offspring are mostly protected from the adverse effect
of maternal SE compared with the male littermates. Such a lack of response in the females is
consistent with our previous observations in the brain and kidney(14, 42, 43). One possible
reason is the different innate and adaptive immune responses in the boys and girls, and the

influence of sex hormones (44, 45).

A recent study found that inflammasomes can be regarded as the bridge between inflammation
and mitochondrial function(46). There is increasing recognition that mitochondrial dysfunction
plays a key role in the development of various diseases including COPD and asthma(24, 47,
48). Maternal smoking can induce high oxidative stress levels in the developing foetus (49)
persistent until adulthood which can directly damage mitochondria(14, 50). Injured
mitochondria can also induce more oxidative stress and inflammation. As such, mitophagy and
autophagy are key to recycle intact mitochondrial fragments and eliminate damaged ones to

maintain cellular homeostasis (51).

Increased fission maker Drp-1 and autophagosome marker LC3 A/B-II in the male SE offspring
at birth, suggest increased damaged mitochondria due to maternal SE. The fusion marker Opa-
1 was not increased accordingly suggesting less healthy fragment can be recycled. At adulthood,
only LC3A/B-II remained elevated, suggesting a higher demand to eliminate other injured

cellular elements by maternal SE. This may drive the development of lung disorders in the SE
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offspring (52). Interestingly, mitophagy markers in the lung were not changed in the female
offspring at any age, again suggesting gender-specific protection from maternal SE. These

results are consistent with our previous research in other organs (13).

In vivo and in vitro studies have demonstrated that L-Carnitine can prevent oxidative stress-
induced injury (53-55). In this study, maternal L-Carnitine supplementation increased the birth
weight in both male and female SE offspring. This suggests that L-Carnitine can ameliorate
in-utero underdevelopment caused by maternal SE. Additionally, maternal L-Carnitine
supplementation exhibited some anti-inflammatory effects in newborns from the SE dams, by
partially supressing NF-kB activation and NLRP3 inflammasome formation in the males as
well as MAPK pathway and IL-1P in the females. This may be due to its ability to inhibit
oxidative stress induced by maternal SE in utero. However, the protection of maternal L-
Carnitine supplementation on the lung did not persist until adulthood, especially in the male

offspring.

The protection effects of L-Carnitine were observed in the other organs (13, 27, 32, 56),
however, we did not found significant protective effect in the lung. This is surprising, but may
be explained by the limitation of how we assessed the lung in this study. firstly, we did not
collect BAL fluid, and as such typical markers of inflammation such as cytokine levels in
bronchoalveolar lavage fluid to perform inflammatory cell counts which is a more direct way
to access lung inflammation. The hyperactivation of signalling cascades may represent an
increased ability to respond to external stimuli such as allergens or cigarette smoke, but in and
of itself may not cause lung disorders. We did not measure reactive oxygen species (ROS)
levels, and as such whilst it is likely that L-Carnitine supplementation acts via scavenging ROS,

we can not definitively say this was the case.
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Conclusions

In conclusion, there are gender differences in the susceptibility to lung disorders in response to
maternal smoking, with male offspring more vulnerable to increased inflammatory changes.
Maternal L-Carnitine supplementation during pregnancy may partially alleviate the adverse

effects of maternal SE on lung health outcomes only in the newborn offspring.

Materials and Methods:

Animals

The animal experiments were approved by the Animal Care and Ethics Committee at the
University of Technology Sydney (ACEC#2011-313A). All protocols were performed
according to the Australian National Health and Medical Research Council Guide for the Care
and Use of Laboratory Animals. Female Balb/c mice (8 weeks, Animal Resources Centre, Perth,
WA, Australia) were housed at 20 = 2°C and maintained on a 12 h light, 12 h dark cycle (lights
on at 06:00 h) with ad libitum access to standard rodent chow and water. Female Balb/c mice
were divided into 3 groups. The SHAM group (n=12) was exposed to air in a 15L perspex
chamber for 6 weeks prior to mating, during gestation and lactation, SE group (n=12) was
exposed to cigarette smoke generated from 2 cigarettes (Winfield Red, 1.2 mg nicotine; VIC,
Australia) per session (5-minute interval between), twice daily during the same period of time
as we have previously described (43). A sub-group of the SE dams (n=12) was provided with
L-Carnitine in drinking water (1.5 mM, SE+LC) during gestation and lactation as we have
previously described (13). L-Carnitine dose was determined according to a previous
publication(57). Mice pregnancy was detected through continuous weight gain during matting.
P1 mice were sacrificed by decapitation, while animals older than 20 days were sacrificed by

anesthetic overdose (Pentothal®, 0.1 mg/g, i.p., Abbott Australasia Pty. Ltd., Macquarie Park,
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NSW, Australia) between 9:00-12:00 h. The lungs from the offspring were collected at birth

(postnatal day (P)1) and adulthood (13 weeks) and stored at -80°C for later analysis.

Western Blotting

The protein levels of the markers of interest were measured in the lung, including inflammatory
markers, phosphate(p)-ERK1,2 (1:2,000; Cell Signalling Technology), p-JNK1,2 (1:2,000;
Cell Signalling Technology), p-p38 MAPK (1: 2,000; Cell Signalling Technology), p-NF-kB
(1:2,000; Cell Signalling Technology), and autophagy markers light chain 3 microtubule-
associated protein A/B (LC3A/B)-II (1:2,000; Cell Signalling Technology), mitophagy fission
marker dynamin-related protein (Drp)-1 (1:2,000; Cell Signalling Technology) and mitophagy
fusion marker optic atrophy (OPA)-1 (1:2,000; Cell Signalling Technology), inflammasome
marker NLRP3 (1:2,000; Abcam), IL-1p (1:2,000; Cell Signalling Technology). B-actin

(1:10000; Cell Signalling Technology).

The lung was homogenised using cell lysis buffers for whole protein and mitochondrial protein
extraction through differential centrifugation as previously described (32). Protein
concentrations were measured using DC Protein assay (Bio-Rad, Hercules, CA); 15ug of
proteins were separated on Ctiterion™TGX Stain Free Precast Gel (BIO-RAD, USA) and then
transferred to PVDF membranes (BIO-RAD, USA), which was then blocked with TBST. The
membranes were incubated with the primary antibodies, followed by horseradish peroxidase-
conjugated secondary antibody (Santa Cruz Biotechnology). Protein expression was detected
by SuperSignal West Pico Chemiluminescent substrate (Thermo, MA, USA) by exposure of
the membrane in ChemiDoc (BIO-RAD, USA). The density of the protein band was

determined using Image J (National Institute of Health, Bethesda, Maryland, USA).
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Statistical Methods

The results are expressed as mean + SEM. Normality was tested prior to the statistical analysis.
If the data were not normally distributed, they were log transformed to research normality. The
differences between groups were analysed by one-way ANOVA followed by Tukey’s post hoc

tests. P<0.05 was considered statistically significant.

Abbreviations:

SE: smoke exposure;

COPD: chronic obstructive pulmonary disease;

ERK: extracellular signal-regulated kinase;

JNK: Jun N-terminal kinase;

NLRP3: nucleotide-binding domain and leucine-rich repeat-containing family pyrin domain
containing 3;

p38: p38 Mitogen-activated protein kinase;

NF-kB: Nuclear factor-Kb;

SE+LC, maternal smoke exposure with L-Carnitine supplement;
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Table 1: Body weight of the offspring at different ages.

Day 1 13 weeks
Male offspring SHAM SE SE+LC SHAM SE SE+LC
n=8 n=9 n=8 n=8 n=7 n=8
Body weight (g) | 1.53+0.29 1.30+£0.12  1.62+0.2* 25.6+0.9  24.7+0.9  25.7+1.24
SHAM SE SE+LC SHAM SE SE+LC
Female offspring
n=8 n=6 n=8 n=8 n=8 n=8
Body weight (g) | 1.48+0.38 1.21+0.06  1.68+0.19* | 22.0+1.2  20.7+1.0  21.0+0.7

Results are expressed as mean = SEM. Data were analysed by one-way ANOVA followed by

Tukey’s post hoc tests. *P < 0.05, compared with the SE offspring at the same age. SE, maternal

smoke exposure; SE+LC, maternal smoke exposure with L-Carnitine supplement.
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Table 2 Litter demographics

University of Technology Sydney-Life Science

SHAM SE SE+LC
Litter size (pup / litter) 6.2+0.8 53+1.0 6.0+1.0
Male pup / litter 3.5+£0.5 2.9+0.7 3.0£0.6
Female pup / litter 2.6+0.6 24+0.6 3.0£0.5

Results are expressed as Mean + SEM. n = 9-12. The data were analysed by One-way ANOVA

followed by Turkey’s post hoc tests. SE, maternal smoke exposure; SE+LC, maternal smoke

exposure with L-Carnitine supplement.
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Figure legends

Figure 1. Lung p-ERK1,2, p-JNK1,2, p-p38 and p-NF-kB in the offspring at P1.

Protein expression of p-ERK1,2 (A, B), p-JNK1,2 (C, D), p-p38 (E, F) and p-NF-kB(G, H) in
the lung of the male and female offspring at P1. Results are expressed as means + SE, (male n
= 8, female, n = 6-8). Data were analysed by one-way ANOV A followed by Tukey’s post hoc
tests. *P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001. ERK, extracellular signal-
regulated kinase; JNK, c-JUN N-terminal kinase; p38, p38 Mitogen-activated protein kinase;
NF-kB: Nuclear factor-kB. SE, maternal smoke exposure; SE+LC, maternal smoke exposure

with L-Carnitine supplement.

Figure 2. Lung p-ERK1,2, p-JNK1,2, p-p38 and p-NF-kB in the offspring at 13 weeks.

Protein expression of p-ERK1,2 (A, B), p-JNK1,2 (C, D), p-p38 (E, F) and p-NF-kB(G, H) in
the lung of the male and female offspring at 13 weeks. Results are expressed as means + SE,
(male n =7-8, female n = 8). Data were analysed by one-way ANOVA followed by Tukey’s
post hoc tests. *P < 0.05, **P < 0.01. ERK, extracellular signal-regulated kinase; JNK, c-JUN
N-terminal kinase; p38, p38 Mitogen-activated protein kinase; NF-kB: Nuclear factor-kB. SE,

maternal smoke exposure; SE+LC, maternal smoke exposure with L-Carnitine supplement.

Figure 3. Lung inflammasome markers NLRP3 and IL-1 B in the offspring at P1 and 13 weeks.
Protein expression of NLRP3 (A, B) and IL-1B (C, D) in the lung of male and female offspring
at P1. Protein expression of NLRP3 (E, G) and IL-1p (F, H) in the lung of male and female
offspring at 13 weeks. Results are expressed as means = SE (male n = 8, female n = 6-8). Data
were analysed by one-way ANOVA followed by Tukey’s post hoc tests. *P < 0.05, **P <0.01,
*x%% P <0.0001. NLRP3, nucleotide-binding domain and leucine-rich repeat-containing (NLR)

family pyrin domain containing 3; SE; maternal smoke exposure; SE+LC, maternal smoke
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exposure with L-Carnitine supplement.

Figure 4. Lung LC3A/B-II, Drp-1 and Opa-1 in the offspring at P1.

Protein expression of LC3A/B-II (A, B), Drp-1 (C, D) and Opa-1 (E, F) in the lung of male
and female offspring at P1. Results are expressed as means + SE, (male n = 8, female n =6-8).
Data were analysed by one-way ANOVA followed by Tukey’s post hoc tests. * P <0.05, **P
<0.01, ***P <0.001. LC3A/B, light chain 3 microtubule-associated protein; Drp-1, dynamin-
related protein; Opa-1, optic atrophy-1; SE, maternal smoke exposure; SE+LC, maternal

smoke exposure with L-Carnitine supplement.

Figure 5. Lung LC3A/B-II, Drp-1 and Opa-1 in the offspring at 13 weeks.

Protein expression of LC3A/B-II (A, B), Drp-1 (C, D) and Opa-1 (E, F) in the lung of male
and female offspring at 13 weeks. Results are expressed as means £SE, (male n = 7-8, female
n =8). Data were analysed by one-way ANOVA followed by Tukey’s post hoc tests. **P <
0.01. Drp-1. LC3A/B, light chain 3 microtubule-associated protein; dynamin-related protein;
Opa-1, optic atrophy-1; SE, maternal smoke exposure; SE+LC, maternal smoke exposure with

L-Carnitine supplement.
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Fig. 2
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Fig 3.
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Abstract

Air pollution is a ubiquitous problem and comprises gaseous and particulate matter (PM).
Epidemiological studies have clearly shown that exposure to PM is associated with impaired
lung function and the development of lung diseases such as chronic obstructive pulmonary
disease and asthma. To understand the mechanisms involved, animal models are often used.
However, the majority of such models represent high levels of exposure and are not
representative of the exposure levels in less polluted countrics, such as Australia. Therefore,
m this study we aimed to determine whether low dose PM;¢ exposure has any detrimental
effect on the lungs. Mice were intranasally exposed to saline or traffic-related PM;, (1pg or
Sug per day) for three weeks. Bronchoalveolar lavage (BAL) and lung tissue were analysed.
PM;q at 1pg did not significantly affect inflammatory and mitochondrial markers. At Sug,
PM; exposure increased lymphocytes and macrophages in BAL fluid. Increased NACHT,
LRR and PYD domains-containing protein 3 (NLRP3) and IL-1f production occurred
following PM;, exposure. PM;, (Sug) exposure reduced mitochondrial antioxidant manganese
superoxide (antioxidant defence system) and mitochondrial fusion marker (OPA-1) whilst
increased fission marker (Drp-1). Autophagy marker Light chain 3 microtubule-associated
protein (LC3)-II and phosphorylated-AMPK were reduced, and apoptosis marker (Caspase-3)
was increased. No significant change of remodelling markers was observed. In conclusion, a
sub-chronic low level exposure to PM can have an adverse effect on lung health, which

should be taken into consideration for the planning of roads and residential buildings.
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Introduction

The World Health Organisation (WHO) air quality model demonstrates that ambient air
pollution annually causes 4.2 million deaths, and 91% of the world’s population lives in
places where air quality exceeds the limits of WHO guidelines. Air pollution causes 1.8
million deaths from lung diseases (1). Forty three percent of chronic obstructive pulmonary
diseases (COPD) and 29% of lung cancer deaths are attributable to air pollution (2). PM is
the sum of all particles suspended in the air which includes both organic and inorganic
particles such as dust, pollens, and vehicle emissions. Respirable PM is thought to be the
most detrimental to human health. PM sized equal or below 10 microns (PM;) 1s capable of
entering the lungs, whilst PM sized equal or below 2.5 microns (PM;s) can reach the distal

lung segments including alveoli (17) .

In adults, every 5 pg/m’ increment of PM exposure is associated with a 39% to 56%
increased risk of developing COPD (13). In developed countries such as the UK, traffic
related air pollution (TRAP) accounts for 13% of total PM (4). In Sydney Australia, the
levels of TRAP are amongst the lowest in the world, accounting for 14% of total PM (5),
which often assumed to be safe. However, a study on 65,000 children in Canada found that
children exposed to TRAP, even in urban areas with low levels of pollution, had a 25%

increased risk of developing asthma by the age of 5 years.

PM 1s a strong oxidant, with its oxidant capacity regulated by antioxidants such as manganese
superoxide dismutase (16). However, in humans, even short-term exposure of PM), increased
circulating levels of Interleukins (IL)-1B, IL-6 and TNF-a (28). PM,, contains approximately
10% free radicals/g which can increase oxidative stress in human macrophages and lung

epithelial cells (8, 29). ROS can induce inflammatory responses via the activation of the
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nucleotide-binding domain and leucine-rich repeat protein (NLRP)3 inflammasome, which
in-turn cleaves pro-interleukin (IL)-1p into IL-1f. Interestingly, Hirota et al have shown that
PM activates the NLRP3 inflammasome resulting in increased IL-1p in bronchial epithelial

cells (14).

Mitochondria can be damaged by both oxidative stress and the activation of NLRP3
inflammasome, resulting in reduced capacity to produce ATP. Mitophagy is a quality control
process where fission removes damaged mitochondria fragments and fusion merges healthy
mitochondrial fragments to regenerate new mitochondria (7), which has been shown to
ameliorate inflammatory disorders (23). The impact in low level PM exposure on mitophagy

markers has not been reported.

TRAP contains both gaseous and PM components. While the gaseous components are
equally toxic as PM, gascs dissipate quicker in air than the PMs which can remain airborne
for long periods of time. However, most PM / TRAP exposure models used very high PM
exposure regimens (e.g. 50 to 200 pg (11, 21)), which are not relevant to the PM/TRAP
levels in countries with low levels of air pollution. We hypothesized that exposure to low
levels of PM would be detrimental for lung health. Our objective was to establish an
environmentally relevant model of TRAP-related PM exposure and to characterise
pulmonary changes including inflammasome activation (NLRP 3 and IL-1p), IL-6 production,
mitochondrial fission and fusion markers (Optic atrophy (Opa)-1 and dynamin-related protein
(Drp)-1), autophagy markers and fibrotic markers (fibronectin, collagen III and transforming

growth factor beta 1 (TGF1)).

Materials and Methods

PAM collection
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Twenty-four-hour integrated PM;, were collected through a 47-mm Teflon (Pall Life
Sciences, Ann Arbor, MI) and pre-fired (800 °C, 3 hr) 47-mm quartz-fibre filters (Whatman
Inc., Clifton, NJ) from a busy roadside in Hong Kong (114,000 vehicles per day) with URG
PM samplers (URG-2000-30EH) in the summer (24th June to 11th July, 2017) with a flow
rate of 8 L/min at cach channel. Filter preparation (e.g. equilibrated for 24 hr at 25 °C and
relative humidity of 40% before and after sampling) and gravimetric analysis were conducted
in a high-efficiency particulate absorption clean room (ISO 14644 Class 7) at The Hong
Kong Polytechnic University. All filters were stored at -20 °C and in dark prior to the
analysis. PM was extracted in 90% ethanol with 5 minutes of sonication, followed by freeze

drying overnight.

PM analysis

Energy-dispersive x-ray fluorescence spectrometry (PANalytical Epsilon 5) was used to
determine concentrations of Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba and Pb. Each
sample was analysed for 30 min. Thin-film standards were used for calibration (MicroMatter,
Arlington, USA) (34). All reported chemical concentrations were corrected for field blanks,

and duplicated samples were analyzed for quality assurance.

Ion chromatography (IC) for water-soluble inorganic ions analysis. One quarter of the filter
was extracted with 10 mL of distilled deionized water and the extract underwent IC (Dionex
DX-600) analysis (TonPac CS12A and AS14A columns) Six species were analysed as
previously described (36). Analysis of organic carbon and elemental carbon were by thermal
optical reflectance (TOR) technique on a thermal/optical carbon analyser (DRI Model 2001,

Atmoslytic Inc., Calabasas, CA as described in Pathak et al (22).
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In vivo PM exposure.

Animal experiments were approved by the Animal Care and Ethics committee at the
University of Technology Sydney (ACECZETH16-0886). Male Balb/c mice (6 weeks,
Animal Resources Centre, Perth, Australia) were housed at 20 + 2 °C and maintained on a
12-h light, 12-h dark cycle (lights on at 06:00 h) with ad /ibifum access to standard laboratory
chow and water. After the acclimatisation period, mice were assigned to 3 groups (n =10)
which were exposed to either particulate matter with 1pg (PM;o(1pg)) or Sug (PM,o(5pg)) or
saline as control (SHAM). In urban Sydney, the average PM levels are 17 pg/m’, equating
to a daily human exposure of 181ug (3). Based on the breathing volumes, mice should be
exposed to around Spg/day to reflect air pollution levels in Sydney. Mice were exposed

intranasally by instillation of 40ul of saline or saline resuspended PM; daily for three weeks.

At the endpoint, the animals were sacrificed via cardiac puncture afier deep anacsthesia (3%
isoflurane). Lungs were perfused with phosphate buffered saline to obtain bronchoalveolar
lavage (BAL) fluid. Lungs were then harvested, snap frozen and stored at -80°C for protein
analysis. Anthropometry measurements were done following dissection and measurement on

a microbalance.

BAL analysis.
The BAL cells evaluated by Diff-Quik staining (Polyscience Inc, Taipei, Taiwan).
Differential cell counts were performed for macrophages, lymphocytes, eosinophils and

ncutrophils.

Western blotting.
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Lung tissue homogenates (20pg) were analysed using standard techniques, as described
previously (9). Antibodies were purchased from Cell Signaling Technology, USA: IL-1f and
IL-6 (1:1000); Caspase-3, p-Akt, Akt, p- AMP-activated protein kinase (AMPK), AMPK,
light chain 3 microtuble-associated protein (LC)3A/B-I/II (1:2000); from Novus
Biotechnology, USA: Drp-1, Opa-1 (1:2000) and Collagen-III (1:1000); from Millipore,
USA: MnSOD (1:2000,); from Sigma-Aldrich, USA Fibronectin (1:2000); and R&D systems,

USA: TGF-B1 (1:500).

Mitochondrial DNA copy number.

mtDNA was measured using gPCR on DNA as we have previously published (25, 26).

Statistical methods.
The data conformed to the normal distribution and differences between groups were analysed
using one-way ANOVA followed by a Bonferroni post-hoc tests. P<0.05 was considered

significant.

Results

PM characterisation

The main components of the PM were organic carbons. Sulphate, elemental carbon, chloride
and nitrate were the other components in abundance in the PM sample. Traces of other

substances such as titanium, manganese, lead, chromium and nickel were also detected, see

Table 1.

Anthropometry markers
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Weight gain was used as a generic indicator of health status. As shown in Table 2, body
weight was not affected by PM exposure (Table 2). However, PM;q (5Sug)-exposed animals
had significantly more retroperitoneal fat mass compared to the SHAM group (p<0.05).

There were no significant changes in liver or muscle weights.

Bronchoalveolar (BAL) cell count

PM;o (5pg) exposure increased leukocyte counts in BAL fluid (P<0.01, PM;p (Spg) vs
SHAM, Figure 1A), as well as lymphocytes and macrophages (both P<0.01 vs SHAM,

Figure 1A, B). There were no neutrophils or eosinophils observed.

TLung Inflammation

NLRP 3 and IL-1p were increased in the PM;o (Sug) group compared to the SHAM group

(P<0.03, Figure 1D/E), but not IL-6 (Figure 1F).

Markers of matrix remodelling

Protein levels of fibronectin, TGF-B1 and collagen-III were not changed in any of the PM

groups compared to the SHAM group (Figure 1G-I).

Mitochondrial antioxidant, mitophasy markers and mitochondrial DN A copy number

PMyy (5pg) exposure significantly increased mitochondrial fission protein Drp-1 (P<0.05,
PMjq (5pg) vs SHAM, Figure 2A) and reduced mitochondrial fusion protein OPA-1 and the
antioxidant MnSOD levels (both P<0.05, PM;j (Sug) vs SHAM, Figure 2B/C). Mitochondrial

DNA copy number was not changed between SHAM and PM;, (Sug) (Figure 2D).

Autophaey and apoptosis
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Autophagy marker LC3A/B-II, LC3A/B-II to I ratio were reduced in PM;q (5pg) compared to
SHAM (P<0.05, Figure 2E/F). Apoptotic marker Caspase-3 was increased in the PM;q (Sug)
group compared to the SHAM group (P<0.05, Figure 2G). The upstream marker of
autophagy, p-AMPK and p-AMPK to AMPK ratio were reduced by the exposure to PM;,
(5ug) compared to the SHAM exposure (P<0.05 vs SHAM, Figure 2K/M). Akt and AMPK
protein levels were increased in the PMy, (5ug) group compared to the SHAM group (P<<0.05
vs SHAM, Figure 2I/L), but there were no changes in p-Akt protein levels and p-Akt to Akt

ratio by PM,, exposure (Figure 2I/]).

Discussion
We found that the exposure to low levels of traffic related PMio induced marked pulmonary
activation of NLRP3 inflammasome, and inflammation, as well as reduced mitochondrial

antioxidants, and impaired mitophagy capacity.

PM,, exposure for three weeks did not affect the overall wellbeing of the mice reflected by
body weight, suggesting low toxicity. However, fat mass was increased following the

exposure to Spg of PMq, consistent with other human and mouse studies (27, 31).

We found increased lymphocytes and macrophages, which has also been observed with high
dose PM exposure (8). However, PM;; (5pg) did not induce cosinophilic or neutrophilic
inflammation. Increased IL-1p was accompanied by NLRP3 inflammasome activation as
expected. Zheng et al (37) also found that 3 weeks exposure to 50ug of PM> s daily increased
IL-1p and TGF-p1 levels in BAL. Inflammasome activation has been observed in asthma,
COPD and during pulmonary inflammation (10, 18, 35), suggesting that continuous exposure

to even low level of PM may increase the susceptibility to these conditions.
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Mitochondrial dysfunction is associated with various pulmonary disecases. COPD patients
have mitochondrial fragmentation through an increase in Drp-1. In-vitro prolonged cigarette
smoke exposure increased mitochondrial fission (6, 15). Damaged mitochondria increase
oxidative stress which can consume the antioxidative MnSOD. Our study shows that Spg of
PM reduced MnSOD, suggesting reduced antioxidant capacity. Mitochondrial DNA copy
number was unaffected, suggesting mitochondrial biogenesis was not changed by PM in this
model. The reduction in LC3A/B-II protein in the PMo (5pg) group indicates that there was
reduced capacity of autophagy which can increase apoptosis. This was confirmed with the

increased protein levels of caspase-3 in our study.

Activated AMPK was reduced by PM; exposure. AMPK is a stress sensor which is crucial
for maintaining intracellular homeostasis during oxidative stress and importantly, AMPK
deficient mice have increased progression of COPD (19). AMPK typically supresses Akt, but
we found no change in Akt levels, suggesting dysregulation of AMPK/Akt signalling. In our
study we found PM reduced AMPK activation with reduced autophagy, however in-vitro
studies have found PM increases AMPK and autophagy. We postulate that such differences
are related to the 10-20 times higher dose of PM used in-vitro which induce cell death, in-
addition to activating AMPK and autophagy (20, 30, 32). The in-vitro response is consistent
with the notion that autophagy generally acts to keep cells alive, and 1s upregulated in
response to stress (for a review see (12)). Differences may also occur due to PM processing
for in-vitro studies in which steam sterilisation to remove LPS may also remove other PM

components. Interestingly LLPS inhibits AMPK activation (33).
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Inflammasome activation by asbestos or crystalline silica is strongly associated with the
development of lung fibrosis (24). However, in this study, exposure to a low level of PM did
not induce fibrosis. The negative findings are most likely attributable to the low PM dose

and the short duration of this study.

This study has several limitations. PM;¢ composition varies by generation source, and as such
future studies need to compare different types of PM. We did not assess endotoxin levels in
PM which are likely to influence the proinflammatory capacity of the PM. The lung tissues
were not fixed to assess any histological changes or mitochondrial morphology, which need

to be addressed in future studies.

In conclusion, this study shows that the exposure to low levels of roadside PM has
detrimental effects on lung health. As such people living alongside major traffic corridors
need to be aware of the potential adverse effects on their respiratory health. Our results also

have implications for government agencies responsible for urban planning.
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Figure Legends

Figure 1. Leukocytes counts bronchoalveolar lavage (A-C). Lung protein levels of NLRP3
(D), IL-1p (E), IL.-6 (F), fibronectin (G), TGF-B1 (H) and collagen-III (I) in Sham, particulate
matter (PM)o (1pg) and PM;, (5pg) groups. Results are expressed as mean = SEM, n = 8-10
(one-way ANOVA followed by Bonferroni post hoc test). *p<0.05, **p<0.01, compared with

SHAM: #P<0.05, ##p=<0.01, compared with PM;, (1pg).

Figure 2. Lung mitochondrial protein levels of Drp-1(A), Opa-1(B), MnSOD (C),
Mitochondrial DNA copy number (D) , Lung protein levels of LC3A/B-II (E), LC3A/B-II to
I ratio (F), Caspase-3 (G), p-Akt (H), Akt (I), p-Akt/Akt ratio (J), p-AMPK (K), AMPK (1)
and p-AMPK to AMPK ratio (M) in Sham, PM;, (1pg) and PM, o (5ug) groups. Results are
expressed as mean = SEM, n=5-8. (one-way ANOVA with Bonferroni tests). *P<0.05
compared to SHAM. *¥P<0.01 compared to SHAM, #P<0.05, compared to PM;, (1pg). Akt,
protein kinase 3; AMPK, 5° adenosine monophosphate-activated protein kinase; Drp-1,
dynamin related protein 1; LC3A/B, Light chain 3 microtubule-associated protein A/B;

MnSOD, manganese superoxide dismutase;, Opa-1, optic atrophy 1; PM, particulate matter.
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418  Chemical components of PM

419 Table 1. Chemical characteristic of PMjp

ng/m’ pg/m®
PM,; mass 22.61+£1.26 Ammonium 0.16x0.03
Organic Carbon (OC)  4.19+0.20 Barium 0.08+0.003
Sulfate 4.00£0.34  Zinc 0.08+0.01
Elemental Carbon (EC) 3.26x0.17 Copper 0.04=0.03
Chloride 2.52=0.41  Titanium 0.02+0.004
Nitrate 1.92+0.13  Manganese 0.02+0.002
Iron 0.85£0.04 Lead 0.02+0.002
Calcium 0.43£0.03  Vanadium  0.01=0.002
Silicon 0.35£0.02  Chromium 0.01+0.001
Aluminium 0.17£0.02  Nickel 0.01+0.001

420  Results are expressed as mean + SEM. Data showing different components inside the traffic
421  related air pollutants (n=10).
422

423

424  Table 2. The effects of PM;y exposure on anthropometry markers

SHAM PMyy (1pg)  PMj, (Sug)
Body Weight 22.39+0.31 22.26+0.36 22.13+0.37
Liver (g) 1.26+0.045 1.21+0.037 1.15+0.037
Liver % 5.62+0.0015 5.47+0.0011  5.21=0.0015
Muscle (g) 0.073+£0.0024 0.075+0.0023  0.072+0.0032
Muscle % 0.33+0.00013 0.34+0.00011 0.33+0.00019
Retroperitoneal fat weight (g) 0.077+0.0037  0.109+0.014  0.12+0.012*

Retroperitoneal fat % 0.34+0.00016

Glucose (mM) 9.13+1.14

0.50+£0.00064 0.55+0.00052*

9.6+1.07 9.27+1.1
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425  Results are expressed as mean + SEM, n = 10. Data were analysed by one-way ANOVA
426  followed by Bonferroni post hoc test. *p<0.05, compared with SHAM. PM;q: particulate

427 matter.

89



Ph.D Thesis-----Baoming WANG University of Technology Sydney-Life Science

A Total celis B ©
Total Lymphocytes Total Macrophages
3x10°+ *kH 1.5%10
2.0x10°
% 2x10° 5 1.0x10 . ~§1'5"1° *
3 ] 5
£ £ N 2 1.0x10
,g o! » - a A:A‘A g . - A:A g 50x10 %
o T r r 0.0 i,:' - T : [) ot S
SHAM  PM10 (1pg) PM10 (5pg) N SHAM  PM10 (1pg) PM10 (5ug)
D NLRP3 E IL1B F iL-6
3n * 2.0- * 4 A
A
A ™ A
£ = N o 1.5 M = £3
5 A g1 . 1 ° = I
] A - LI T L]
© 14 L] A . ' A
3 _BE_ = 0.5 * = _:E L
o® . tee
" SHAM  PM10 (1ug) PM10 (5ug) ~ SHAM  PM10 (1pg) PM10 (5ug) " SHAM  PM10 (1ug) PM10 (5ug)
G Fibronectin H TGF-1 | Collagen Il
2.0+ 2.5+ 2.5+
£ 1.5 N 2.0 W g 20
L) c 207 . g “" A
S c
3 s e 3 s
= n @ 157 % = 1.5 n A
2 Bl - T L. o] = e
.§ 0.5 o [ ] s ... . 4
= [=4 L] =
' 0.5 3 05 .
0.0 . T T 0.0 T T T 0.0 : r T
SHAM  PM10 (1pg) PM10 (5ug) SHAM  PM10 (1ug) PM10 (5ug) SHAM  PM10 (1ug) PM10 (5ug)
1 1
I .
118 kDa b — T =i -*--“-xﬁ;.s“m NLRP3
17.5 KDa @i g o <o sl el g =y _——— IL-1B
25 kDa Zz = 1 m SRS l~—-’8_-_._";__-,_ IL-6
. I I
220 kDa TR ETD R TIETEYT S e TSN Fibronectin

D5 KDg  — s o ] e o i s . e s . . . s e e TGF-B1

130kDa = & S - w J-gmnqﬂiw “ Collagen-Il
42 kDa | —— .r, B actin

SHAM [ PM;q (1ug) | PM;, (5ug)

Figure 1.

90



Ph.D Thesis-----Baoming WANG University of Technology Sydney-Life Science

A Mitochondrial Drp-1 B Mitochondrial Opa-1 C Mitochondrial MnSOD D Mitochondrial DNA copy number
2.0 * 1.2: 2.0 1
S —__:E— R g 0 u_an a 3 1.0 {— : K g9 .
2 (] & 0 LY 3 ; ° :
g‘ 05 ® w 8 - ﬂ;_ E 0. ¢ ] —% S 0.1
0.8 A ° A (5] °
L * §
SHAM  PMI10(lpg) PM10 (5pg) . SHAM _PM10(1ng) P10 Gr) o SHAM  PM10 (1ug) PM10 (5ug) ° SHAM PM10 (Sug)
| |
MOkDa === — — — v = —_————— — — = = = Opa-1
24kDaw—- — | -—-—-.—~-|~‘&-’_ MnSOD
15 KD e S ——— COX IV
SHAM [ PMo (1ug) [ PMjo (5ug)
E LC3A/B-II F LC3A/B - I/l ratio G Caspase3
1.59 1.5 0.6 *
e n * - u ‘AA
§ 1.0 a':— = A, € 4.0- —é.é _TE * K 304- -~ —E iz
g = A 2
7]
< 0.5 = < 0.5- g 0.1 g
9 S 8 -
0.0 T T T 0.0 T T T 0.0 T T T
SHAM  PM10 (1ug) PM10 (5ug) SHAM  PM10 (1ua) PM10 (5ua) SHAM  PM10 (1ug) PM10 (5ug)
H p-Akt I Akt J p-Akt/Akt
47 31 * 4-
n
| |
% 3+ [ ] % 2 AAA o 3
©
@ 5 N s j.ﬁ' —I=— g N
> = S . " “ 3 R
L e & 5 3w 7T Y R o
I ] B e e e
n o™ A
N SHAM  PM10 (1ng) PM10 (5ug) L" SHAM  PM10 (1ug) PM10 (5ug) N SHAM  PM10 (1pg) PM10 (S5ug)
p-AMPK AMPK M p-AMPK/AMPK
2.5+ 3m 2.5=
£ 20 3 * ¢ 207 .
E 15 . % 2 " %
5 1 1.5+
{ a = 19 L LL A
N R e - T
0.0 ad
0 T T T 0 T T T 0.0 T T T
SHAM  PM10 (1ug) PM10 (5ug) SHAM  PM10 (1ug) PM10 (5ug) I SHAM  PM10 (1ug) PM10 (5ug)
16 kDa e I LC3A/B-
. - & 3 3 E & 22 1 B -
14kDa —— E=-=es LC3A/B-I
22 kDa } S — m Caspase-3
63 kDa = mm— 9 AMPK
42 kDa m_——r————-. B actin
SHAM I PMso (1ug) I PM, (5ug)
Figure 2.

91



Ph.D Thesis-----Baoming WANG University of Technology Sydney-Life Science

Chapter 4 Maternal particulate matter exposure impairs
transgenerational lung health and is associated with mitochondrial
damage

This chapter is currently under review at the Journal of Hazardous Materials

Wang B, Chan YL, Li G, Ho K, Anwer A, Smith B, Hai G, Jalaludin B, Herbert C, Thomas
P, Liao J, Chapman D, Foster P, Saad S, Chen H, Li G, Oliver BG. Maternal particulate
matter exposure impairs transgenerational lung health and is associated with mitochondrial
damage.
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e preparing the manuscript

¢ Finalising the manuscript
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Abstract:

Relatively little is known about the transgenerational effects of chronic maternal exposure to
low-level traffic-related air pollution (TRAP) on the offspring lung health, nor are the effects
of removing such exposure prior to pregnancy. Female BALB/c mice were exposed to PMa s
(PM25, 5 pg/day) for 6 weeks before mating and during gestation and lactation; in a subgroup,
PM was removed after mating to model mothers moving away from TRAP during pregnancy
to protect their unborn child (Cessation). Lung pathology was characterised in both dams and
offspring. A subcohort of offspring were also exposed to ovalbumin to model allergic airways
disease. PM» s and Cessation dams exhibited airways hyper-responsiveness (AHR) with mucus
hypersecretion, increased mitochondrial reactive oxygen species (ROS) and mitocondrical
dysfunction in the lung. Offspring from PM»s and Cessation dams displayed AHR with
increased lung inflammation and mitochondrial ROS production. After the ovalbumin
challenge, airway resistance was worse in offspring from PM> s dams compared with those
from control dams. Using an in-vitro model the mitochondria-targeted antioxidant MitoQ
reversed mitochondrial dysfunction by PM stimulation, suggesting the lung pathology is
oxidative stress-driven. In conclusion, chronic exposure to low dose PM,s exerted

transgenerational impairment on lung health.

Keywords: air pollution, lung function, reactive oxygen species, mitochondrial dysfunction,

asthma
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[Production Note: This chapter is not included in this digital copy due to copyright
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Chapter 5 General Discussion and future perspective

Epidemiological studies have shown that maternal smoking is one of the prominent in utero
environmental risk factors for the development of respiratory diseases in childhood. Smoking
during pregnancy is a risk factor for asthma, COPD and lung cancer in the offspring 354,
However, the sex difference in such susceptibility to respiratory disorders has not been well

studied, perhaps due to the preference in animal models to use only one gender to model asthma

or COPD.

Our study in Chapter 2 shows that male offspring are more vulnerable to the adverse effects of
maternal cigarette smoke exposure during pregnancy, which was demonstrated by the smaller
body weight, and higher levels of inflammatory markers in the lung, such as increased
expression level of p-ERK1,2, total p-P38, and p-NF-kB. Maternal cigarette smoke exposure
also increased the levels of mitochondrial fission marker Drp-1. The fusion marker Opa-1 was
not increased accordingly suggesting less healthy mitochondrial fragment can be recycled.
Those results demonstrated that maternal smoking during pregnancy could induce
mitochondrial dysfunction in the offspring.

Maternal cigarette smoke exposure is also an in utero environmental toxicant which can induce
excessive oxidative stress. /n vivo and in vitro studies have demonstrated that the antioxidant
L-Carnitine can prevent oxidative stress-induced injuries to the kidneys and cardiometabolic
systems in mouse models 3°%7. In our study (Chapter 2), maternal L-Carnitine supplementation
increased the birth weight of both male and female SE offspring and partially ameliorated the
adverse impacts of maternal cigarette smoke on lung health outcome. This suggests that
oxidative stress may be the primary mechanism of in-utero underdevelopment by maternal

smoking and L-Carnitine is capable of ameliorating such oxidative stress.
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Summary of the markers expression levels in chapter 2

Smoking L-carnitine = Smoking L-carnitine Smoking L-carnitine = Smoking L-carnitine

P-ERK1,2 * PY = 3 - - - -
-JNK1,2

Inflammation P = _— = = ¥ $ = =
p-P38 * * - 3 — — - —
P-NF-kB Y - — = * = = =
NLRP3 + 3 - - - - 1+ PN

Inflammasome
Autophagy bl t * = — * t* - —
Drp-1 _ _ - - - -

Mitophagy e

Another well-known environmental toxicant to foteal lung development is air pollution *. It is
common sense that high levels of air pollution could induce adverse impacts on foetal lung
development and health. Previous mouse models also demonstrated the possible mechanisms,
such as changed immune cell development **, Those mouse models using high levels of PMs
may reflect the high levels of annual ambient air pollution in Asia and Africa °°. However, the
population weighted mean annual PM concentrations in Europe, North America, and Oceania
are lower (5-15 pg/m’) than Asia and Africa regions . Few studies explored whether exposure
to PM lower than the WHO air quality guideline (50 pg/m’ 24-hour mean) can also induce
adverse impacts on lung development.

The study in Chapter 3 shows that even low dose PMio exposure (5 pg/day) for 3 weeks can
still cause a high level of inflammation in mice. In this study, we found several effects similar
to the model using high doses of PM exposure. For example, PM induced marked pulmonary
activation of the NLRP3 inflammasome. Inflammasome activation has been observed in

90-92

asthma and COPD, as well as during pulmonary inflammation suggesting that continuous

exposure to even a low level of PM may increase the susceptibility to these conditions.
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Mitochondria play an important role in lung function. Mitophagy plays a key role in
maintaining mitochondrial integrity and normal mitochondrial function through the balance of
fusion and fission. Mitochondrial dysfunction is related to several pulmonary diseases, such as
asthma, COPD and IPF**. In this study, we found PMo exposure impaired mitophagy markers
only after 3 weeks of exposure, which may promote lung structure damage and functional
impairment in the long term, as we have shown in PM exposed dams in Chapter 4. This
suggests that even living in the less polluted areas where the PM concentration is within the
WHO air quality guideline still can induce pulmonary diseases.

Summary of the markers expression levels in chapter 3

| PMI10 (lug/day) PM10 (Sug/day)

Immune cells number

Total cells number - *

Total lymphocytes = 1

Total Macrophages = 1t

Inflammasome activation

NLRP3 = 1)

IL1-B = L)
Mitophagy

Drp-1 (Fission) = %t

Opa-1 (Fussion) = %
Autophagy

LC3A/B-II = A 4

People living near busy roads and industrial areas are exposed to more to air pollution and thus
have a higher risk of developing respiratory diseases. A previous study confirmed that air
pollution exposure during pregnancy decreases placental growth factor *°, increases cord blood
immune biomarkers (e.g. Ig E, IL-33) °°, and causes mitochondrial oxidative DNA damage °’.

Previous studies in mouse models have also found in-utero exposure to 100 pg PM from
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residential roof spaces impaired somatic growth, reduced lung volume and lung function in
offspring °%. Pregnant mice exposed to combustion generated free radical containing particles
(200nm, 50 pg) have systemic oxidative stress and the offspring developed asthma *°. Those
mouse models demonstrated the adverse impacts induced by high levels of air pollution. Our
study in Chapter 4 found that chronic exposure to low dose PM (5 pg/day) induced airway
hyper-responsiveness, increased inflammation level in the lung, and higher number of
leukocytes in the bronchial alveolar lavage fluid. We also observed lung tissue remodelling
with increased collagen deposition, excessive mucous production and damaged alveolar
membranes.

A previous study showed that chronic exposure to environmental toxicants could induce COPD
in humans **. The characteristic of the COPD lung is airflow limitation because of the airway
obstruction and parenchymal destruction. In the COPD lung, there is increased tissue density
(small airway fibrosis) in the places where the alveolar membrane is not damaged *°. We
observed increased tissue elastance and tissue damping, excessive inflammation, and airway
remodelling which resemble lung pathology in patients with COPD. Those results
demonstrated that chronic low dose PM exposure could induce COPD-liked pathology in the
mouse.

Maternal exposure to the low dose PM also induced AHR and higher inflammation in the
offspring, which can’t be reversed by removing PM exposure during pregnancy. These results
indicate that exposure to low dose PM in the dams also can induce respiratory diseases in the
offspring, even only exposed before pregnancy. Multiple epidemiological studies confirmed
that maternal PM exposure could increase the risk of asthma in the offspring. A classical
Ovalbumin (OVA)-sensitized and challenged asthmatic model confirmed that maternal low
dose PM exposure can possess the same risk in the offspring and worsen their asthmatic

symptoms.
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We suspected that the mitochondrial dysfunction was closely associated with these
transgenerational adverse impacts induced by maternal low dose PM exposure, as the
mitochondria in offspring are exclusively inherited from the mothers °°. As shown in Chapter
3, 3-week low dose PM exposure, 5 pg/day impaired mitophagy, with increased level of total
ROS in the lung tissue further confirming increased oxidative stress. Similar results were found
in the female offspring, including high mitochondrial density, mitochondrial ROS and total
ROS level. The mitophagy markers were also impaired by maternal PM exposure. In order to
further confirm the role of mitochondria in PM exposure induced pathology, we examined the
mitochondrial functional change in Beas-2B cells. Results in Chapter 4 show that MitoQ, a
mitochondrion targeted antioxidant, significantly ameliorated mitochondrial dysfunction
induced by the PM exposure. These results strongly suggest that mitochondrial dysfunction is

closely associated with the adverse impacts induced by PM exposure.
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Summary of the markers expression levels in chapter 4

Lung Function

Tissue Elastance ) 1)

Tissue Damping 1 2 =
Cells differenatiation

Macrophages % —

Eosinophils %+ -

Neutrophils % =

Lymphocytes 1t =

Inflammation Level

2 3
Airway Remodelling

Epithelial thickness * *
Alveolar Damage (MLI) 1 3 -
Fibrosis level * -
Mucus secretion 1) )
Muscle thickness %+ 1)

In conclusion, this thesis confirmed that male offspring are more susceptible to in utero
environmental toxin exposure. Maternal low dose PM exposure can induce transgenerational
adverse impacts on pulmonary health in offspring.

Limitations:

Our studies do have limitations. We measured the targeted proteins expression levels in the
chapter 2 with western blot without more dimentional approaches, such as PCR and

immonohistochemistry. More analysis approaches will be used in the future work.

134



Ph.D Thesis-----Baoming WANG University of Technology Sydney-Life Science

Take home message

L.

Male offspring are more vulnerable to maternal smoking induced lung impairment than
their female littermates.

Maternal L-Carnitine supplement during pregnancy could partially alleviate the adverse
impacts on the offspring’s lung induced by maternal smoking.

Short-term exposure to low dose PM can increase the pulmonary inflammatory
response

Chronic exposure to low dose PM could induce COPD-like pathology in the lung

In utero exposure to low dose PM could exacerbate asthmatic symptoms in the

adulthood
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