
1

Incremental Graph Computation: Anchored
Vertex Tracking in Dynamic Social Networks

Taotao Cai, Shuiqiao Yang, Jianxin Li∗, Quan Z. Sheng, Jian Yang,
Xin Wang, Wei Emma Zhang, and Longxiang Gao

Abstract—User engagement has recently received significant attention in understanding the decay and expansion of communities in
many online social networking platforms. When a user chooses to leave a social networking platform, it may cause a cascading dropping
out among his friends. In many scenarios, it would be a good idea to persuade critical users to stay active in the network and prevent such
a cascade because critical users can have significant influence on user engagement of a whole network. Many user engagement studies
have done to find a set of critical (anchored) users in the static social network. However, social network is highly dynamic and its structure
is continuously evolving. In order to fully utilize the power of anchored users in evolving networks, existing studies have to mine multiple
sets of anchored users at different times, which incurs the expensive computational cost. In this paper, we target a new research problem
called Anchored Vertex Tracking (AVT) that aims to track the anchored users at each timestamp of evolving networks. Nonetheless, it is
nontrivial to handle the AVT problem which we have proved to be NP-hard. To address the challenge, we develop a greedy algorithm
inspired by the previous anchored k-core study in the static network. Furthermore, we design an incremental algorithm to efficiently solve
the AVT problem by utilizing the smoothness of the network structure’s evolution. The extensive experiments conducted on real and
synthetic datasets demonstrate the performance of our proposed algorithms and the effectiveness in solving the AVT problem.

Index Terms—Anchored vertex tracking, user engagement, dynamic social networks, k-core computation

F

1 INTRODUCTION

In recent years, user engagement has become a hot research topic in
network science, arising from a plethora of online social networking
and social media applications, such as Web of Science Core
Collection, Facebook, and Instagram. Newman [26] studied the
collaboration of users in a collaboration network, and found that the
probability of collaboration between two users highly related to the
number of common neighbors of the selected users. Kossinets and
Watts [18], [19] verified that two users who have numerous common
friends are more likely to be friends by investigating a series of
social networks. Cannistraci et al. [8] presented that two social
network users are more likely to become friends if their common
neighbors are members of a local community, and the strength of
their relationship relies on the number of their common neighbors
in the community. Moreover, Laishram et al. [20] mentioned that
the incentives for keeping users’ engagement on a social network
platform partially depend on how many friends they can keep in
touch with. Once the users’ incentives are low, they may leave the
platform. The decreased engagement of one user may affect others’
engagement incentives, further causing them to leave. Considering
a model of user engagement in a social network platform, where the
participation of each user is motivated by the number of engaged
neighbors. The user engagement model is a natural equilibrium
corresponding to the k-core of the social network, where k-core
is a popular model to identifies the maximal subgraph in which
every vertex has at least k neighbors. The leaving of some critical
users may cause a cascading departure from the social network
platform. Therefore, the efforts of user engagement studies [5], [6],

• Email: taotao.cai@mq.edu.au; shuiqiao.yang@uts.edu.au.
• Taotao Cai and Shuiqiao Yang are the joint first authors.

Manuscript is under review.

[25], [27], [33] have been devoted to finding the crucial (anchored)
users who significantly impact the formation of social communities
and the operations of social networking platforms.

The previous studies in user engagement can reveal the evolu-
tion of the community’s decay and expansion in social networks.
The study of user engagement benefits to many applications in real-
life business markets. However, most of the previous researches
dedicated to user engagement depend on a strong assumption -
social networks are modelled as static graphs. This simple premise
rarely reflects the evolving nature of social networks, of which
the topology often evolves over time in real world [10], [21].
Therefore, for a given dynamic social network, the anchored users
selected at an earlier time may not be appropriate to be used for
user engagement in the following time due to the evolution of the
network.

To better understand user engagement in evolving networks,
one possible way is to re-calculate the anchored users after the
network structure is dynamically changed. A natural question is that,
given a limited budget, how to find l users (denoted as anchored
vertices) at each timestamp of an evolving social network, so
that a k-core community size can be maximized by l number
of anchored users at each timestamp. We refer this problem as
Anchored Vertex Tracking (AVT) in this paper, which aims to find
a series of anchored vertex sets with each set size limited to l. By
solving the proposed problem, we can efficiently track the anchored
users to improve the effectiveness of user engagement in evolving
networks.

Tracking the anchored vertices could be very useful for
many practical applications, such as sustainable analysis of social
networks, impact analysis of advertising placement, and social rec-
ommendation. Taking the impact analysis of advertising placement
as an example. Given a social network, the users’ connection often
evolves, which leads to the dynamic change of user influences and

ar
X

iv
:2

10
5.

04
74

2v
1

 [
cs

.S
I]

 1
1

M
ay

 2
02

1

2

17u

2u

4u

3u

8u
1u

7u

10u

5u

6u

11u 15u

8u

9u
1u

7u

10u2u
5u

4u

3u
6u

11u

12u

13u

14u

15u

16u

17u

12u
13u

16u

17u

4u 8u

9u

14u

15u

…...

12u

13u

17u

4u 8u

9u1u
5u

14u

15u

16u

t=1 t=2

t=3t=T

12u
13u

16u
9u

14u

2u

3u

1u

7u

10u

5u

6u

11u

2u

3u

7u

10u6u

11u

Fig. 1. An example of Anchored Vertex Tracking (AVT).

roles. The AVT study can continuously track the critical users to
locate a set of users who favor propagating the advertisements at
different times. In contrast, traditional user engagement methods
like OLAK [33] and RCM [20] only work well in static networks.
Therefore, AVT can deliver timely support of services in many
applications. Here, we utilize an example in Figure 1 to explain the
AVT problem in details.

Example 1. Figure 1 presents an evolving social network with
17 members and their relationships. The amount of a member’s
neighbor in the network reflects his willingness to engage in the
network. If one member has many friends, the member would
be the core members and willing to remain engaged in the
network. According to the above engagement model, if we motivate
(anchored) users {u7, u10} to keep engaged in the network at
the timestamp t = 1, then the number of k-core members would
increase from 5 (lavender) to 12 (gray) where k is 3. With the
evolution of the network, at the timestamp t = 2, a new relationship
between users u2 and u5 is established (black dotted line) while
the relationship of users u2 and u11 is broken (white dotted line).
Under this situation, the number of 3-core members would increase
from 5 to 14 if we anchor users {u7, u15}. However, if we keep
users {u7, u10} engaged in the network, the 3-core members would
only increase to 11. Similarly, if users {u1, u12} are anchored
at timestamp t = T , there are 8 users that will become the 3-
core members, but no new members will add into 3-core while
anchoring {u7, u10}. From the above procedure, it can be seen
that the optimal anchored vertices selection may vary in each
timestamp of an evolving network. Thus, it is critical to track the
optimal anchored vertices at each timestamp.

Challenges. Considering the dynamic change of social networks
and the scale of network data, it is infeasible to directly use the
existing methods [6], [12], [20], [33] and compute the anchored
user set for every timestamp. We prove that the AVT problem
is NP-hard. To the best of our knowledge, there is no existing
work to solve the AVT problem, particularly when the number of
timestamps is large.

To conquer the above challenges, we first develop a Greedy

algorithm by extending the previous anchored k-core study in the
static graph [5], [33]. However, the Greedy algorithm is expensive
for large-scale social network data. Therefore, we optimize the
Greedy algorithm in two aspects: (1) reducing the number of
potential anchored vertices; and (2) accelerating computation of
followers. To further improve the efficiency, we also design an
incremental algorithm by utilizing the smoothness of the network
structure’s evolution.

Contributions. We state our major contributions as follows:

• We formally define the problem of AVT and explain the
motivation of solving the problem with real applications.

• We propose a Greedy algorithm by extending the core
maintenance method in [36] to answer the AVT problem.
Besides, we built several pruning strategies to accelerate
the Greedy algorithm.

• We develop an efficient incremental algorithm by utilizing
the smoothness of the network structure’s evolution and the
well-designed fast-updating core maintenance methods in
evolving networks.

• We conduct extensive experiments to demonstrate the
efficiency and effectiveness of proposed approaches using
real and synthetic datasets.

Organization. We present the preliminaries in Section 2. Section 3
formally defines the AVT problem. We propose the Greedy algo-
rithm in Section 4, and further develop an incremental algorithm
to solve the AVT problem more efficiently in Section 5. The
experimental results are reported in Section 6. Finally, we review
the related works in Section 7, and conclude the paper in Section 8.

2 PRELIMINARIES

We define an evolving network as a sequence of graph snapshots
G = {Gt}T1 , and {1, 2, .., T} is a finite set of time points. We
assume that the network snapshots in G share the same vertex set.
Let Gt represent the network snapshot at timestamp t ∈ [1, T],
where V and Et are the vertex set and edge set of Gt, respectively.
Besides, we set nbr(u,Gt) as the set of vertices adjacent to vertex
u ∈ V in Gt, and the degree d(u,Gt) represents the number of
neighbors for u in Gt, i.e., |nbr(u,Gt)|. Table 1 summarizes the
mathematical notations frequently used throughout this paper.

2.1 Anchored k-core

We first introduce a notion of k-core, which has been widely used
to describe the cohesiveness of subgraph.

Definition 1 (k-core). Given a graph Gt, the k-core of Gt is the
maximal subgraph in Gt, denoted by Ck, in which the degree of
each vertex in Ck is at least k.

The k-core of a graph Gt, can be computed by repeatedly
deleting all vertices (and their adjacent edges) with the degree less
than k. The process of the above k-core computation is called core
decomposition [4], which is described in Algorithm 1.

For a vertex u in graph Gt, the core number of u, denoted as
core(u), is the maximum value of k such that u is contained in
the k-core of Gt. Formally,

Definition 2 (Core Number). Given a graph Gt = (V,Et), for a
vertex u ∈ V , its core number, denoted as core(u), is defined as
core(u,Gt) = max{k : u ∈ Ck}.

3

TABLE 1
Notations Frequently Used in This Paper

Notation Definition
G an evolving graph
Gt the snapshot graph of G at time instant t
V ; Et the vertex set and edge set of Gt

nbr(u,Gt) the set of adjacent vertices of u in Gt

d(u,Gt) the degree of u in Gt

deg+(u) the remaining degree of u
deg−(u) the candidate degree of u
Ck the k-core subgraph
O(Gt) the K-order of Gt where O(Gt) =

{O1,O2, ...}
Ck(St) the anchored k-core that anchored by St
St the anchored vertex set of Gt

Fk(u,Gt) followers of an anchored vertex u in Gt

Fk(St, Gt) followers of an anchored vertex set St in Gt

E+; E− the edges insertion and edges deletion from
graph snapshots Gt−1 to Gt

mcd(u) the max core degree of u

When the context is clear, we use core(u) instead of
core(u,Gt) for the sake of concise presentation.

Example 2. Consider the graph snapshot G1 in Figure 1. The
subgraph C3 induced by vertices {u8, u9, u12, u13, u16} is the
3-core of G1. This is because every vertex in the induced subgraph
has a degree at least 3. Besides, there does not exist a 4-core in
G1. Therefore, we have core(v) = 3 for each vertex v ∈ C3.

If a vertex u is anchored, in this work, it supposes that such
vertex meets the requirement of k-core regardless of the degree
constraint. The anchored vertex u may lead to add more vertices
into Ck due to the contagious nature of k-core computation. These
vertices are called as followers of u.

Definition 3 (Followers). Given a graph Gt and an anchored
vertex set St, the followers of St in Gt, denoted as Fk(St, Gt),
are the vertices whose degrees become at least k due to the selection
of the anchored vertex set St.

Definition 4 (Anchored k-core). Given a graph Gt and an
anchored vertex set St, the anchored k-core Ck(St) consists of
the k-core of Gt, St, and the followers of St.

Example 3. Consider the graph G1 in Figure 1, the 3-core is
C3 = {u8, u9, u12, u13, u16}. If we give users u7 and u10 a
special budget to join in C3, the users {u2, u3, u5, u6, u11} could
be brought into C3 because they have no less than 3 neighbors in
C3 now. Hence, the size of C3 is enlarged from 16 to 23 with the
consideration of u7 and u10 being the “anchored” vertices where
the users {u2, u3, u5, u6, u11} are the “followers” of anchored
vertex set S = {u7, u10}. Also, the anchored 3-core of S would
be C3(S) = {u2, u3, u5, .., u14, u16}.

2.2 Problem Statement
The traditional anchored k-core problem aims to explore anchored
vertex set for static social networks. However, in real-world social
networks, the network topology is almost always evolving over
time. Therefore, the anchored vertex set, which maximizes the
k-core size, should be constantly updated according to the dynamic
changes of the social networks. In this paper, we model the evolving
social network as a series of snapshot graphs G = {Gt}T1 . Our goal
is to track a series of anchored vertex set S = {S1, S2, .., ST }

Algorithm 1: Core decomposition(Gt, k)

1 k ← 1;
2 while V is not empty do
3 while exists u ∈ V with nbr(u,Gt) < k do
4 V ← V \ {u};
5 core(u)← k − 1;
6 for w ∈ nbr(u,Gt) do
7 nbr(w,Gt)← nbr(w,Gt)− 1;

8 k ← k + 1;

9 return core;

that maximizes the k-core size at each snapshot graph Gt where
t = 1, 2, .., T . More formally, we formulate the above task as the
Anchored Vertex Tracking problem.

Problem formulation: Given an evolving graph G = {Gt}T1 ,
the parameter k, and an integer l, the problem of anchored vertex
tracking (AVT) in G aims to discover a series of anchored vertex
set S = {St}T1 , satisfying

St = arg max
|St|≤l

|Ck(St)| (1)

where t ∈ [1, T], and St ⊆ V .

Example 4. In Figure 1, if we set k = 3 and l = 2, the result of the
anchored vertex tracking problem can be S = {S1, S2, S3, .., ST }
with S1 = {u7, u10}, S2 = {u7, u15}, S3 = {u12, u15}, ...,
ST = {u1, u12}. Besides, the related anchored k-core would be
Ck(S1) = {u2, u3, u5, u6, .., u13, u16}, Ck(S2) = {u2, u3, u5,
u6, .., u16}, Ck(S3) = {u2, u3, u5, u6, .., u16}, ..., Ck(ST) =
{u1, u2, .., u14, u16}.

3 PROBLEM ANALYSIS

In this section, we discuss the problem complexity of AVT. In
particular, we will verify that the AVT problem can be solved
exactly while k = 1 and k = 2 but become intractable for k ≥ 3.

Theorem 1. Given an evolving general graph G = {Gt}T1 , the
problem of AVT is NP-hard when k ≥ 3.

Proof. (1) When k = 1 and t ∈ [1, T], the followers of any
selected anchored vertex would be empty. Therefore, we can
randomly select l vertices from {Gt \ C1} as the anchored vertex
set of Gt where Gt is the snapshot graph of G and C1 is the
1-core of Gt. Besides, the time complexity of computing the set
of {Gt \ C1} from snapshot graph Gt is O(|V | + |Et|). Thus,
the AVT problem is solvable in polynomial time with the time
complexity of O(

∑T
t=1(|V |+ |Et|)) while k = 1.

(2) When k = 2 and t ∈ [1, T], we note that the AVT
problem can be solved by repeatedly answering the anchored
2-core at each snapshot graph Gt ∈ G. Besides, Bhawalkar et
al. [5] proposed an exactly Linear-Time Implementation algorithm
to solve the anchored 2-core problem in the snapshot graph Gt
with time complexity O(|Et|+ |V |log|V |). From the above, we
can conclude that there is an implementation of the algorithm
to answer the AVT problem by running in time complexity
O(

∑T
t=1(|Et| + |V |log|V |)). Therefore, the AVT problem is

solvable in polynomial time while k = 2.
(3) When k ≥ 3 and t ∈ [1, T], we first note that the anchored

vertex tracking problem is equivalent to a set of anchored k-core

4

problem at each snapshot graphs in evolving graph G. Thus, we
can conclude that the anchored vertex tracking problem is NP-hard
once the anchored k-core problem is NP-hard.

Next, we prove the problem of anchored k-core at each snapshot
graph Gt ∈ G is NP-hard, by reducing the anchored k-core
problem to the Set Cover problem [16]. Given a fix instance l of set
cover with s sets S1, .., Ss and n elements {e1, .., en} =

⋃s
i=1 Si,

we first give the construction only for instance of set cover such
that for all i, |Si| ≤ k − 1. Then, we construct a corresponding
instance of the anchored k-core problem in Gt as follow, by lifting
the above restriction while still obtaining the same results.

Considering Gt contains a set of nodes V = {u1, ..., un}
which is associated with a collection of subsets S = {S1, ..., Ss},
Si ⊆ V . We construct an arbitrarily large graph G′, where each
vertex in G′ has degree k except for a single vertex v(G′) that
has degree k − 1. Then, we set H = {G′1, ..., G′m} as the set of
n connected components G′j of G′, where G′j is associated with
an element ej . When ej ∈ Si, there is an edge between ui and
v(G′j). Based on the definition of k-core in Definition 1, once there
exists i such that ui is the neighbor of v(G′j), then all vertices in
G′j will remain in k-core. Therefore, if there exists a set cover C
with size l, we can set l anchors from ui while Si ∈ C for each
i, and then all vertices in H will be the member of k-core. Since
we are assuming that |Si| < k for all sets, each vertex ui will not
in the subgraph of k-core unless ui is anchored. Thus, we must
anchor some vertex adjacent to v(G′j) for each G′j ∈ G′, which
corresponds precisely to a set cover of size l. From the above, we
can conclude that for instances of set cover with maximum set size
at most k − 1, there is a set cover of size l if and only if there
exists an assignment in the corresponding anchored k-core instance
using only l anchored vertices such that all vertices in H keep in
k-core. Hence, the remaining question of reducing the anchored
k-core problem to the Set Cover problem is to lift the restriction
on the maximum set size, i.e. |Si| ≤ k − 1. Bhawalkar et al. [5]
proposed a d-ary tree (defined as tree(d, y)) method to lift this
restriction. Specifically, to lift the restriction on the maximum set
size, they use tree(k − 1, |Si|) to replace each instance of ui.
Besides, if y1, ..., y|Si| are the leaves of the d-ary tree, then the
pairs of vertices (yj , uj) will be constructed for each uj ∈ Si.

Since the Set Cover problem is NP-hard, we prove that the
anchored k-core problem is NP-hard for k ≥ 3, and so is the
anchored vertex tracking problem.

We then consider the inapproximability of the anchored vertex
tracking problem.

Theorem 2. For k ≥ 3 and any positive constant ε > 0, there
does not exist a polynomial time algorithm to find an approximate
solution of AVT problem within an O(n1−ε) multiplicative factor
of the optimal solution in general graph, unless P = NP.

Proof. We have reduced the anchored vertex tracking (AVT) prob-
lem from the Set Cover problem in the proof of Theorem 1. Here,
we show that this reduction can also prove the inapproximability
of AVT problem. For any ε > 0, the Set Cover problem cannot
be approximated in polynomial time within (n1−ε)− ratio, unless
P = NP [13]. Based on the previous reduction in Theorem 1,
every solution of the AVT problem in the instance graph G
corresponds to a solution of the Set Cover problem. Therefore,
it is NP-hard to approximate anchored vertex tracking problem on
general graphs within a ratio of (n1−ε) when k ≥ 3.

Algorithm 2: The Greedy Algorithm

Input: G = {Gt}T1 : an evolving graph, l: the allocated
size of anchored vertex set, and k: degree constraint

Output: S = {St}T1 : the series of anchored vertex sets

1 S ← ∅;
2 for each t ∈ [1, T] do
3 i← 0; St ← ∅
4 while i < l do
5 /* Candidate Anchored Vertex */
6 for each u ∈ V do
7 /* Computing Followers */
8 Compute Fk(u,Gt);

9 u′ ← the best anchored vertex in this iteration;
10 St ← St ∪ u′; i← i+ 1;

11 S ← S ∪ St;
12 return S

4 THE GREEDY ALGORITHM

Considering the NP-hardness and inapproximability of the AVT
problem, we first resort to developing a Greedy algorithm to solve
the AVT problem. Algorithm 2 summzrizes the major steps of the
Greedy algorithm. The core idea of our Greedy algorithm is to
iteratively find the l number of best anchored vertices which have
the largest number of followers in each snapshot graph Gt ∈ G
(Lines 2-11). For each Gt ∈ G where t is in the range of [1, T]
(Line 2), in order to find the best anchored vertex in each of the l
iterations (Lines 4), we compute the followers of every candidate
anchored vertex by using the core decomposition process mentioned
in Algorithm 1 (Lines 6-8). Specifically, considering the k-core
Ck of Gt, if a vertex u is anchored, then the core decomposition
process repeatedly deletes all vertices (except u) of Gt with the
degree less than k. Thus, the remaining vertices that do not belong
to Ck will be the followers of u with regard to the k-core. In
other words, these followers will become the new k-core members
due to the anchored vertex selection. From the above process of
the Greedy algorithm, we can see that every vertex will be the
candidate anchored vertex in each snapshot graph Gt = (V,Et),
and every edge will be accessed in the graph during the process
of core decomposition. Hence, the time complexity of the Greedy
algorithm is O(

∑T
t=1 l · |V | · |Et|).

Since the Greedy algorithm’s time complexity is cost-
prohibitive, we need to accelerate this algorithm from two aspects:
(i) reducing the number of potential anchored vertices; and (ii)
accelerating the followers’ computation with a given anchored
vertex.

4.1 Reducing Potential Anchored Vertices
In order to reduce the potential anchored vertices, we present the
below definition and theorem to identify the quality anchored vertex
candidates.

Definition 5 (K-order [36]). Given two vertices u, v ∈ V , the
relationship � in K-order index holds u � v in either core(u) <
core(v); or core(u) = core(v) and u is removed before v in the
process of core decomposition.

Figure 2 shows a K-order index O = {O1,O2,O3} of graph
snapshot G1 in Figure 1. The vertex sequence Ok ∈ O records

5

1

2 1 2 2 2 2 2 1

1 1

3 2 2 1 0𝑂3：

𝑂2：

𝑂1：𝑢17

𝑢1 𝑢4 𝑢15 𝑢7 𝑢14 𝑢3 𝑢2 𝑢11

𝑢10 𝑢5

𝑢8 𝑢9 𝑢12 𝑢13 𝑢16

2𝑢6

Fig. 2. The K-order O of graph G1 in Figure 1

all vertices in k-core by following the removing order of core
decomposition, i.e., O2 records all vertices in 2-core and vertex
u1 is removed early than vertex u4 during the process of core
decomposition in G1.

Theorem 3. Given a graph snapshot Gt, a vertex x can become
an anchored vertex candidate if x has at least one neighbor vertex
v in Gt that satisfies: the neighbor vertex’s core number must be
k-1 (i.e., core(v) = k−1), and x is positioned before the neighbor
node v in K-order (i.e., x � v).

Proof. We prove the correctness of this theorem by contradiction.
If v � x in the K-order of Gt, then v will be deleted prior to x in
the process of core decomposition in Algorithm 1. In other words,
anchoring x will not influence the core number of v. Therefore,
v is not the follower of x when v � x. On the other hand, it is
already proved in [33] that only vertices with core number k − 1
may be the follower of an anchored vertex. If no neighbor of vertex
x has core number k − 1, then anchoring x will not bring any
followers, which is contradicted with the definition of the anchored
vertex. From above analysis, we can conclude that the candidate
anchored vertex only comes from the vertex x which has at least
one neighbor v with core number k − 1 and behind x in K-order,
i.e., {x ∈ V |∃v ∈ nbr(x,Gt) ∧ core(v) = k − 1 ∧ x � v}.
Hence, the theorem is proved.

According to Theorem 3, the anchored vertex candidates will
be probed only from the vertices that can bring some followers
into the k-core. This also meets the requirement of anchored k-core
in Definition 4. Thus, the size of potential anchored vertices at
each snapshot graph Gt can be significantly reduced from |V | to
|{x ∈ V |∃v ∈ nbr(x,Gt) ∧ core(v) = k − 1 ∧ x � v}|.

Example 5. Given the graph G1 in Figure 1 and k = 3, u15 can
be selected as an anchored vertex candidate because anchoring
u15 would bring the set of followers, {u14}, into the anchored
3-core.

4.2 Accelerate Followers Computation
To accelerate the computation of followers, a feasible way is to
transform the followers’ computation into the core maintenance
problem [23], [36], which aims to maintain the core number of
vertices in a graph when the graph is changed. The above problem
transformation is based on an observation: given an anchored vertex
u, its followers’ core number can be increased to k value if core(u)
is treated as infinite according to the concept of anchored node.

Therefore, we modify the state-of-the-art core maintenance
algorithm, OrderInsert [36], to compute the followers of an
anchored vertex u in snapshot graph Gt. Explicitly, we first build
the K-order of Gt using core decomposition method described in
Algorithm 1. For each anchored vertex candidate u, we set the core
number of u as infinite and denote the set of its followers as V ∗

initialized to be empty. After that, we iteratively update the core

Algorithm 3: ComputeFollower(Gt, u, O(Gt))

1 K-order O(Gt) = {O1,O2, ...,Omax}
2 Fk(u,Gt)← ∅;
3 for v ∈ nbr(u,Gt) do
4 deg−(.)← 0; V ∗ ← ∅;
5 /* Core phase of the OrderInsert algorithm [36] */
6 if core(v) = k − 1 & u � v then
7 deg+(v)← deg+(v) + 1
8 if deg+(v) + deg−(v) > k − 1 then
9 remove v from Ok−1 and append it to V ∗;

10 for w ∈ nbr(v) ∧ w ∈ Ok−1 ∧ v � w do
11 deg−(w)← deg−(w) + 1;

12 Visit the vertex next to v in Ok−1;

13 else
14 if deg−(v) = 0 then
15 Visit the vertex next to v in Ok−1;

16 else
17 for each w ∈ nbr(v) ∧ w ∈ V ∗ do
18 if deg+(w) + deg−(w) < k then
19 remove w from V ∗;
20 update deg+(w) and deg−(w);
21 nbr(v)← nbr(v) ∪ nbr(w);
22 Insert w next to v in Ok−1;

23 Visit the vertex with deg−(.) = 0 and next
to v in Ok−1;

24 else
25 Continue;

26 Insert vertices in V ∗ to the beginning of Ok in O(Gt);
27 Fk(u,Gt)← Fk(u,Gt) ∪ V ∗;
28 return Fk(u,Gt)

number of u’s neighbours and other affected vertices by using the
OrderInsert algorithm, and record the vertices with core number
increasing to k in V ∗. Finally, we output V ∗ as the follower set of
u.

Besides, we introduce two notations, remaining degree (de-
noted as deg+()) and candidate degree (denoted as deg−()),
to depict more details of the above followers’ computation
method. Specifically, for a vertex u in snapshot graph Gt where
core(u) = k − 1, deg+(u) is the number of remaining neighbors
when u is removing during the process of core decomposition,
i.e., deg+(u) = |v ∈ nbr(u,Gt) : u � v|. And deg−(u) records
the number of u’s neighbors v included in Ok−1 but appearing
before u in Ok−1, and v is in followers set V ∗, i.e., deg−(u) =
|{v ∈ nbr(u,Gt) : v � u ∧ core(v) = k − 1 ∧ v ∈ V ∗}|.
Since, deg+(u) records the number of u’s neighbors after u in
the K-order having core numbers larger than or equal to k − 1,
deg+(u) + deg−(u) is the upper bound of u’s neighbors in the
new k-core. Therefore, all vertices s in follower set V ∗ must have
deg+(s) + deg−(s) ≥ k.

The pseudocode of the above process is shown in Algo-
rithm 3. Initially, the K-order of Gt is represented as O(Gt) =
{O1,O2, ...,Omax} where max represents the maximum core
number of vertices in Gt (Line 1). We then set the followers set
of anchored vertex u, Fk(u,Gt) as empty (Line 2). For each

6

u’s neighbours v (Line 3), we iteratively using the OrderInsert
algorithm [36] to update the core number of v and the other
affected vertices due to the core number changes of v, and record
the vertices with core number increasing to k in a set V ∗ (Lines 6-
26). After that, we add V ∗ related to each u’s neighbors v into u’s
follower set Fk(u,Gt) (Line 27). Finally, we output Fk(u,Gt) as
the followers set of u (Line 28).

Example 6. Using Figure 2 and Figure 1, we would like to show
the process of followers’ computation. Assume k = 3, V ∗ = ∅,
and the K-order, O = {O1,O2,O3}, in graph G1. Initially,
the deg+(u) value of each vertex u is recorded in O(G1), i.e.,
deg+(u14) = 2, deg−() = 0 for all vertices in G1 as V ∗ is
empty. If we anchor the vertex u15, i.e., core(u15) =∞, then we
need to update the candidate degree value of u15’s neighbours
in O2, i.e., deg−(u11) = 0 + 1 and deg−(u14) = 0 + 1. We
then start to visit the foremost neighbours of u15 in O2, i.e., u14.
Since deg+(u14) + deg−(u14) = 2 + 1 ≥ 3 and deg+(u11) +
deg−(u11) = 1 + 1 < 3, we can add u14 in V ∗ and then
update the deg−() of its impacted neighbours. After that, we
sequentially explore the vertices s after u14 in O2, and operate
the above steps once deg+(s) + deg−(s) ≥ 3. The follower
computation terminates when the last vertex in O2 is processed,
i.e., u11. Therefore, the V ∗ related to u14 is {u14}, and the
follower set of u15 is Fk(u15, G1) = ∅ ∪ V ∗ = {u14}. Finally,
we output the follower set of u15, i.e., Fk(u15, G1) = {u14}.

The time complexity of Algorithm 3 is calculated as follows.
The followers’ computation of an anchored vertex u can be
transformed as the core maintenance problem under inserting edges
(u, v) where v is the neighbor of u. Meanwhile, Zhang et al. [36]
reported that the core maintenance process while inserting an
edge takes O(

∑
v∈V + deg(v) · logmax{|Ck−1|, |Ck|}) (Lines 6-

26), and V + is a small set with average size less than 3.
Therefore, we conclude that the time complexity of Algorithm 3
is O(

∑
v∈nbr(u)

∑
v∈V + deg(v) · logmax{|Ok−1|, |Ok|}). The

time complexity of the above followers’ computation method is
far less than directly using core decomposition to compute the
followers of a given anchored vertex.

5 INCREMENTAL COMPUTATION ALGORITHM

For an evolving graph G, the Greedy approach individually
constructs the K-order and iteratively searches the anchored
vertex set at each snapshot graph Gt of G. But it does not fully
exploit the connection of two neighboring snapshots to advance the
performance of solving AVT problem. To address the limitation, in
this section, we propose a bounded K-order maintenance approach
that can avoid the reconstruction of the K-order at each snapshot
graph. With the support of our designed K-order maintenance, we
develop an incremental algorithm, called IncAVT, to find the best
anchored vertex set at each graph snapshot more efficiently.

5.1 The Incremental Algorithm Overview
Let G = {G1, G2, .., GT } be an evolving graph, St be the
anchored vertex result set of AVT in Gt where t ∈ [1, T]. E+

and E− represent the number of edges to be inserted and deleted
at the time when Gt−1 evolves to Gt. To find out the anchored
vertex sets S = {St}T1 of G using the IncAVT algorithm, we first
build the K-order of G1, and then compute the anchored vertex
set S1 of G1. Next, we develop a bounded K-order maintenance
approach to maintain the K-order by considering the change of

edges from Gt−1 to Gt. The benefit of this approach is to avoid the
K-order reconstruction at each snapshot Gt. Meanwhile, during
the process of K-order maintenance, we use vertex sets VI and
VR to record the vertices that are impacted by the edge insertions
and edge deletions, respectively. After that, we iteratively find the l
number of best anchored vertices in each snapshot graph Gt, while
the potential anchored vertices are selected to probe from VI , VR,
and St−1. The l anchored vertices are recorded in St. Finally, we
output S = {St}T1 as the result of the AVT problem.

5.2 Bounded K-order Maintenance Approach

In this subsection, we devise a bounded K-order maintenance
approach to maintain the K-order while the graph evolving from
Gt−1 to Gt, i.e., t ∈ [2, T]. Our bounded K-order maintenance
approach consists of two components: (1) EdgeInsert, handling
the K-order maintenance while inserting the edges E+; and (2)
EdgeRemove, handling the K-order maintenance while deleting
the edges E−.

5.2.1 Handling Edge Insertion
If we insert the edges in E+ into Gt−1, then the core number
of each vertex in Gt−1 either remains unchanged or increases.
Therefore, the k-core of snapshot graph Gt−1 is part of the k-core
of snapshot graph Gt where Gt = Gt−1 ⊕ E+. The following
lemmas show the update strategies of core numbers of vertices
when the edges are added.

Lemma 1. Given a new edge (u, v) that is added into Gt−1, the
remaining degree of u increases by 1, i.e., deg+(u) = deg+(u) +
1, if u � v holds.

Proof. From Section 4.2 of the remaining degree of a vertex, we
get deg+(u) = |{v ∈ nbr(u) | u � v}|. Inserting an edge (u, v)
into graph snapshot Gt−1 brings one new neighbour v to u where
u � v in theK-order ofGt−1, i.e.,O(Gt−1). Therefore, deg+(u)
needs to increase by 1 after inserting (u, v) into Gt−1.

Example 7. Consider the snapshot graph G1 in Figure 1, if we
add a new edge (u2, u5) into G1 where u2 � u5 (mentioned
in Figure 2), then the remaining degree of u2, deg+(u2) =
deg+(u2) + 1 = 3.

Lemma 2. Let deg+(u) and core(u) be the remaining degree and
core number of vertex u in snapshot graphGt respectively. Suppose
we insert a new edge (u, v) into Gt and update deg+(u). Thus,
the core number core(u) of u may increase by 1 if core(u) <
deg+(u). Otherwise, core(u) remains unchanged.

Proof. We prove the correctness of this lemma by contradiction.
From Definition 2 and the definition of remaining degree in
Section 4.2, we know that if u’s core number do not need to
update after inserting edge (u, v) intoGt−1, then the number of u’s
neighbours v with u � v must be no more than core(u). Therefore,
the value of updated deg+(u) should be no more than core(u),
which is contradicted with the fact that core(u) < deg+(u).

Example 8. Considering a vertex u2 in graph G1, we can
see deg+(u2) = 2, and core(u2) = 2 as shown in Figure 1
and Figure 2. If an edge (u2, u5) is inserted into G1, we can
get deg+(u2) = deg+(u2) + 1 = 3 (refer Lemma 1). Since
core(u2) = 2 < deg+(u2) = 3, the core(u2) may increase by 1
according to Lemma 2.

7

Algorithm 4: EdgeInsert(G′t, O, E+, k)

1 i← 1, VI ← ∅, m← 0, O′ ← ∅;
2 for each e = (u, v) & e ∈ E+ do
3 m← max{m,min(core(u), core(v))};
4 u � v ? deg+(u)+ = 1 : deg+(v)+ = 1;

5 while i ≤ m do
6 VC ← ∅, deg−(.)← 0;
7 u∗ ← the first vertex of Oi ∈ O;
8 while u∗ 6= nil do
9 if deg+(u∗) + deg−(u∗) > i then

10 remove u∗ from Oi; append u∗ into VC ;
11 if i = k − 1 then
12 add u∗ into VI

13 for each
v ∈ nbr(u∗, G′t) ∧ core(v) = i ∧ u∗ � v do

14 deg−(v)← deg−(v) + 1;

15 else
16 if deg−(u∗) = 0 then
17 remove u∗ from Oi; append u∗ to Oi′ ;

18 else
19 deg+(u∗)← deg+(u∗) + deg−(u∗);
20 deg−(u∗)← 0;
21 remove u∗ from Oi; append u∗ to Oi′ ;
22 update the deg+(.) of u∗’s neighbors;

23 u∗ ← the vertex next to u∗ in Oi;

24 for v ∈ VC do
25 deg−(v)← 0; core(v)← core(v) + 1;
26 if i = k − 1 then
27 remove v from VI ;

28 insert vertex set VC into the beginning of Oi+1;
29 if i = k − 2 then
30 VI ← VI ∪ VC ;

31 add Oi′ to new K-order O′ in G′t;
32 i← i+ 1;

33 return the K-order O′ in G′t, and VI

We present the EdgeInsert algorithm for K-order maintenance.
It consists of three main steps. Firstly, for each vertex u relating
to the inserting edges (u, v) ∈ E+, we need to update its
remaining degree, i.e., deg+(u) (refer Lemma 1). Then, we identify
the vertices impacted by the insertion of E+ and update its
remaining degree value, core number, and positions in K-order
(refer Lemma 2). This step is the core phase of our algorithm.
Finally, we add the vertex u into the vertex set VI if u has the
updated core number core(u) = k − 1 after inserting E+. This is
because the followers only come from vertices with core number
k − 1 (refer Theorem 3).

The detailed description of our EdgeInsert algorithm is outlined
in Algorithm 4. The inputs of the algorithm are snapshot graph
Gt−1 where t ∈ [2, T], the K-order O = {O1,O2, ..,Ok, ..} of
Gt−1, the edge insertion E+, and a positive integer k. Initially, for
each inserted edge (u, v) ∈ E+, we increase the remaining degree
of u by 1 where vertex u � v (refer Lemma 1), use m to record
the maximum core number of all vertices related to E+ (Lines 2-4).
Next, for i ∈ [0,m], we iteratively identify the vertices in Oi ∈ O
whose core number increases after the insertion of E+, and we
also update Oi of K-order (Lines 5-32). Here, a new set VC is
initialized as empty and it will be used to maintain the new vertices

whose core number increases from i− 1 to i. And then, we start
to select the first vertex u∗ from Oi (Line 7). In the inner while
loop, we visit the vertices in Oi in order (Lines 8-22). The visited
vertex u∗ must satisfy one of the three conditions: (1) deg+(u∗) +
deg−(u∗) > i; (2) deg+(u∗)+deg−(u∗) ≤ i ∧ deg−(u∗) = 0;
(3) deg+(u∗) + deg−(u∗) ≤ i ∧ deg−(u∗) > 0. For condition
(1), the core number of the visited vertex u∗ may increase. Then,
we remove u∗ from Oi and add it into VC . Besides, the candidate
degree of each neighbour v of u∗ should increase by 1 if u∗ � v
(Lines 9-14). For condition (2), the core number of u∗ will not
change. So we remove u∗ from the previous Oi and append it
into Oi′ of the new K-order O′ of graph G′t = Gt−1 ⊕ E+

(Lines 16-17). For condition (3), we can identify that u∗’s core
number will not increase. So we need to update the remaining
degree and candidate degree of u∗, and remove u∗ from Oi and
append it to Oi′ . We also need to update the remaining degree of
the neighbours of u∗ (Lines 19-22). After that, VI maintains the
vertices that are affected by the edge insertion, and these vertices
have core number k−1 in new K-order O′ of graph G′t (Lines 24-
30). Finally, when the outer while loop terminates, we can output
the maintained K-order and the affected vertices set VI (Line 33).

5.2.2 Handling Edge Deletion
Here, we present the procedure of K-order maintenance for edge
deletions. The following definitions and lemmas show the update
strategies of core numbers of vertices when the edges are deleted.

Lemma 3. Suppose an edge (u, v) is deleted while graph evolves
from Gt−1 to Gt, then the remaining degree of u from Gt−1 to Gt
decreases by 1, i.e., deg+(u) = deg+(u)− 1, if u � v holds.

Proof. From Section 4.2 of the remaining degree of a vertex, we
get deg+(u) = |{v ∈ nbr(u) | u � v}|. Deleting an edge (u, v)
from graph snapshot Gt−1 evolving to Gt removes one neighbour
v of u where u � v in the K-order of Gt. Therefore, the deg+(u)
needs to decrease 1 after deleting (u, v) from Gt−1.

Example 9. Consider the snapshot graph G1 and G2 in Figure 1,
if we remove edge (u2, u11) from G1 to G2 where u2 � u11
(mentioned in Figure 2), then the remaining degree of u2 will
decrease from 2 to 1.

We then introduce an important notion, called max core degree,
and the related lemma.

Definition 6 (Max core degree [28]). Given a graph Gt, the max-
core degree of a vertex u in Gt, denoted as mcd(u), is the number
of u’s neighbours whose core number no less than core(u).

Example 10. Consider the snapshot graphG1 in Figure 1, we have
core(u9) = 3, core(u14) = 2, core(u15) = 2, core(u16) = 3,
and core(u17) = 1. Therefore, the max core degree of vertex u14
is 3 due to 3 of u14’s neighbors {u9, u15, u16} has core number
no less than core(u14).

Based on k-core definition (refer Definition 1), mcd(u) <
core(u) means that u does not have enough neighbors who meet
the requirement of k-core. Thus, u itself cannot stay in k-core
as well. Therefore, it can conclude that for a vertex, its max
core degree is always larger than or equal to its core number, i.e,
mcd(u) ≥ core(u).

Lemma 4. Let mcd(u) and core(u) be the Max-core degree and
core number of vertex u in snapshot graph Gt. Suppose we delete
an edge (u, v) from Gt and the updated mcd(u). Thus, the core

8

Algorithm 5: EdgeRemove(G′t, O
′, E−, k)

1 /* mcd(u) is the number of u’s neighbour v with
core(u) ≤ core(v) */

2 Gt := G′t ⊕ E−, O′ = {O1,O2, ...};
3 VR ← ∅, and m← 0;
4 let Q be an empty queue and V ∗ = {V1, V2, ..}, Vi ∈ V ∗ be

the empty list;
5 /* identify the vertex need to remove from O′ */
6 for each e = (u, v) & e ∈ E− do
7 u′ ← u if u � v, otherwise v;
8 deg+(u′)← deg+(u′)− 1
9 compute mcd(u′, Gt) of u′; i← core(u′);

10 if mcd(u′, Gt) < core(u′) then
11 remove u′ from O′i, enqueue u′ to Q;
12 core(u′)← core(u′)− 1;

13 while Q is not empty do
14 dequeue u from Q, i← core(u);
15 append u to Vi, m← max{m, i};
16 for u′ ∈ nbr(u,G′t) ∧ core(u′) > i do
17 repeat lines 9-12;

18 /* update the k-order O′ */
19 for i← m to 1 do
20 for each u ∈ Vi in order do
21 deg+(u)← 0;
22 for u′ ∈ nbr(u,Gt) do
23 if core(u′) > core(u) ∨ u′ ∈ Vi then
24 deg+(u)← deg+(u) + 1;

25 recompute deg+(u′);

26 append u to the end of Oi;

27 VR ← Vk−1, O(Gt)← O′;
28 return the K-order O(Gt) of Gt, and VR

number core(u) of u may decrease by 1 if mcd(u) < core(u).
Otherwise, core(u) remain unchanged.

Proof. Based on Definition 1 and Definition 2, the core number
of vertex u is identified by the number of it’s neighbours with
core number no less than u. Moreover, a vertex u must have at
least core(u) number of neighbours with core number no less than
core(u). From Definition 6, the max core degree of a vertex u is
the number of u’s neighbour with core number no less than u, i.e,
mcd(u) = |{v | v = nbr(u) ∧ core(v) ≥ core(u)}|. Therefore,
we can conclude that mcd(u) ≥ core(u) always holds. Hence,
if mcd(u) < core(u) after delete an edge from Gt and update
mcd(u), then core(u) also needs to be decreased by 1 to ensure
mcd(u) > core(u) in the changed graph.

Example 11. Consider the vertex u17 of evolving graph G =
{G1, G2, .., GT } in Figure 1. Both of the core number and the max
degree of u17 are 1 in G2, i.e., core(u17) = 1 and mcd(u17) =
1. From G2 to G3, the edge (u14, u17) is deleted, and u17’s
max degree, mcd(u17) is decreased to 0 due to no neighbor of
u17 having core number no less than u17 in G3. Then we have
mcd(u17) = 0 < core(u17). At this situation, the core number of
u17 also decreases from 1 to 0 after the deletion of edge (u14, u17).

The EdgeRemove algorithm is presented in Algorithm 5. The
inputs of the algorithm are the graph G′t constructed by Gt−1 with
the insertion edges of E+, i.e., G′t = Gt−1 ⊕ E+, and O′ is the
K-order of G′t. The main body of Algorithm 5 consists of three
steps. In the first step (Lines 6-17), we identify the vertices that

Algorithm 6: IncAVT

Input: G = {Gt}T1 : an evolving graph, l: the allocated
size of anchored vertex set, and k: degree constraint

Output: S = {St}T1 : the series of anchored vertex sets

1 Build the K-order O(G1) of G1; /* using Algorithm 1 */
2 Compute the anchored vertex set S1 of G1 with size l

using Algorithm 2;
3 S := {S1}; t := 2;
4 while t < T do
5 G′t := Gt−1 ⊕ E+, St ← St−1;
6 /* maintain K-order by using Algorithm 4, 5 */
7 (O′, VI)← EdgeInsert(G′t, O(Gt−1), E

+, k);
8 (O(Gt), VR)← EdgeRemove(G′t, O

′, E−, k);
9 for each u ∈ St−1 do

10 compute Fk(St, Gt), F ← |Fk(St, Gt)|;
11 Fmax ← 0, u′ ← u;
12 for each /* Theorem 3 */

{v|v ∈ {VI ∪ VR ∪ nbr(VI ∪ VR) \Ck(Gt)} ∧
{∃u ∈ nbr(v)∧ core(u) = k− 1∧ v � u}} do

13 if Fmax < Fk(St \ u ∪ v,Gt) then
14 Fmax ← Fk(St \ u ∪ v,Gt), u′ ← v;

15 if Fmax > F then
16 remove u from St, add u′ to St;

17 S := S ∪ St; t← t+ 1;

18 return S

needs to be removed from their previous position of K-order O′

after the edges deletion. Specifically, we first update the remaining
degree of vertices related with E− to reflect the deletion of edges
in E− based on Lemma 3 (Lines 6-8), and then compute the max
core degree of these vertices (Line 9). Meanwhile, we add the
influenced vertex u related to the deleting edges, i.e., mcd(u) <
core(u), into a queue Q. All vertices in Q need to update their
core numbers based on Lemma 4 (Lines 10-12). After that, the
algorithm recursively probes each neighboring vertex v of vertices
in Q, and adds v into the vertex set V ∗ if mcd(v) < core(v)
(Lines 13-17). In the second step, we maintain the K-order O′

by adjusting the position of vertices in V ∗, which is identified
in Step 1, to reflect the edges deletion of E− (Lines 19-26). In
details, for each u ∈ Vi, we update the deg+(.) of u and its
neighbours, remove u from O′t, and insert u to the end of O′t−1.
In the final step, we use VR to record the vertices that may become
the potential followers once the anchored vertices are selected, i.e.,
these vertices’ core number becomes k− 1 in the new K-order O′

(Line 27).

5.3 The Incremental Algorithm
Base on the aboveK-order maintenance strategies and the impacted
vertex sets VI and VR, we propose an efficient incremental
algorithm, IncAVT, for processing the AVT query. Algorithm 6
summarizes the major steps of IncAVT. Given an evolving graph
G = {Gt}T1 , the allocated size of selected anchored vertex set
l, and a positive integer k, the IncAVT algorithm returns a series
of anchored vertex set S = {St}T1 of G where each St has
size l. Initially, we build the K-order O(G1) of G1 by using
Algorithm 1, and then compute the anchored vertex set S1 of
G1 by using Algorithm 2 where T is set as 1 (Lines 1-3). The

9

TABLE 2
Statistics of the selected datasets

Dataset Nodes Edges davg T Type
email-Enron 36,692 183,831 10.02 30 Communication

Gnutella 62,586 147,878 4.73 30 P2P Network
Deezer 41,773 125,826 6.02 30 Social Network

while loop at lines 4-17, computes the anchored vertex set of
each snapshot graph Gt ∈ G. E+ and E− represent the edges
insertion and edges deletion between Gt−1 to Gt respectively, and
we initialize the anchored vertex set St in Gt as St−1 (Line 5).
The K-order is maintained by using Algorithm 4 while considering
the edge insertion E+ to Gt−1 and consequently, the vertex
set VI is returned to record the vertices, which is impacted by
inserting E+ and has core number k − 1 in the updated K-
order (Line 7). Similarly, we use Algorithm 5 to update the K-
order while considering the edges deletion of E− and use VR
to record the vertices which has core number k-1 and impacted
by the edge deletion (Line 8). Next, an inner for loop is to track
the anchored vertex set of Gt (Lines 9-16). More specifically,
we first compute St’s followers set size F (Line 10). Then, for
each vertex u in St−1, we only probe the vertices v in vertex
set {VI ∪ VR ∪ nbr(VI ∪ VR) \ Ck(Gt)} based on Theorem 3
(Lines 9-14). If the number of followers of anchored vertex set
{St \ u ∪ v} is large than F , we then update St by using v to
replacement u (Lines 15-16). After the inner for loop finished, we
add the anchored vertex set St of Gt into S (Line 17). The IncAVT
algorithm finally returns the series of anchored vertex set S as the
final result (Line 18).

6 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of our
proposed approaches for the AVT problem: the Greedy algorithm
(Greedy); and the incremental algorithm (IncAVT).

6.1 Experimental Setting

Algorithms. To the best of our knowledge, no existing work
investigates the Anchored Vertex Tracking (AVT) problem. To
further validate, we compared with two baselines adapted from the
existing works: (i) OLAK, which is proposed in [33] to find out the
best anchored vertices at each snapshot graphs. (ii) RCM, which is
the state-of-the-art anchored k-core algorithm that proposed in [20],
for tracking the best anchored vertices selection at each snapshot
graphs.
Datasets. We conduct the experiments using three publicly avail-
able datasets from the Stanford Large Network Dataset Collection1:
email-Enron, Gnutella, and Deezer. The statistics of the datasets are
shown in Table 2. As the orginal datasets do not contain temporal
information, we thus generate 30 synthetic time evolving snapshots
for each dataset by randomly inserting new edges and removing
old edges. More specifically, we use it as the first snapshot T1.
Then, we randomly remove 100− 250 edges from T1, denoted as
T ′1 and randomly add 100 − 250 new edges into T ′1, denoted as
T2. By repeating the similar operation, we generate 30 snapshots
for each dataset.

1. http://snap.stanford.edu/

TABLE 3
Parameters and their values

Parameter Values Default
l [5, 10, 15, 20] 10
k [2, 3, 4, 5] or [5, 10, 15, 20] 3 or 10
T [0− 30] 30

Parameter Configuration. Table 3 presents the parameter settings.
We consider three parameters in our experiments: core number k,
anchored vertex size l, and the number of snapshots T . In each
experiment, if one parameter varies, we use the default values for
the other parameters. Besides, we use the sequential version of
the RCM algorithm in the following discussion and results. All
the programs are implemented in C++ and compiled with GCC
on Linux. The experiments are executed on the same computing
server with 2.60GHz Intel Xeon CPU and 96GB RAM.

6.2 Efficiency Evaluation

In this section, we study the efficiency of the approaches for the
AVT problem regarding running time under different parameter
settings.

6.2.1 Varying Core Number k
We compare the performance of different approaches by varying
k. Due to the various average degree of three datasets, we set
different k for them. Figure 3(a) - 3(c) show the running time of
OLAK, Greedy, IncAVT, and RCM, on the three datasets. From
the results, we can see that Greedy and RCM perform faster than
OLAK, and IncAVT performs one to two orders of magnitude faster
than the other three approaches in all datasets. As expected, we do
not observe any noticeable trend from all three approaches when
k is varied. This is because, in some networks, the increase of the
core number may not induce the increasing of the size of k-core
subgraph and the number of candidate anchored vertices needing
to probe.

5 10 15 20
K

101

102

103

104

105

106

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(a) email-Enron

2 3 4
K

101

102

103

104

105

106

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(b) Gnutella

2 3 4 5
K

101

102

103

104

105

106

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(c) Deezer

Fig. 3. Time cost of algorithms with varying k

Since the performance of Greedy, OLAK, and IncAVT are highly
influenced by the number of visited candidate anchored vertices in
algorithm execution, we also investigate the number of candidate
anchored vertices that need to be probed for these approaches in
different datasets. Figure 4(a) - 4(c) show the number of visited
candidate anchored vertices for the three approaches when k is
varied. We notice that OLAK visits much more number of candidate
anchored vertices than the other two approaches, and IncAVT shows
the minimum number of visited candidate anchored vertices.

10

5 10 15 20
K

101

103

105

107

109

1011
Ti

m
e

(s
ec

)
OLAK
Greedy
IncAVT

(a) email-Enron

2 3 4
K

101

103

105

107

109

1011

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT

(b) Gnutella

2 3 4 5
K

101

103

105

107

109

1011

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT

(c) Deezer

Fig. 4. Number of candidate anchored vertices with varying k

6.2.2 Varying Anchored Vertex Set Size l
Figure 5(a) - 5(c) show the average running time of the approaches
by varying l from 5 to 20. As we can see, IncAVT is significantly
efficient than Greedy and OLAK. Specifically, IncAVT can reduce
the running time by around 36 times and 230 times compared
with Greedy and OLAK respectively under different l settings on
the Gnutella dataset. The improvements are built on the facts that
IncAVT visits less number of candidate anchored vertices than
Greedy and OLAK. Besides, IncAVT performs far well than RCM
in Enron and Gnutella. Meanwhile, the running time of IncAVT is
slightly higher than RCM in Deezer. From the result, we notice
that the performance of above approaches are also influenced by
the type of networks.

5 10 15 20
l

101

102

103

104

105

107

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(a) email-Enron

5 10 15 20
l

101

102

103

104

105

107

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(b) Gnutella

5 10 15 20
l

101

102

103

104

105

107

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(c) Deezer

Fig. 5. Time cost of algorithms with varying l

Figure 6(a) - 6(c) show the total number of visited anchored
vertices. We can see that IncAVT visits much less anchored vertices
than the other two methods even though it shows a slightly
increased number of visited vertices as l increases. The visited
candidate anchored vertices in OLAK is around 2.8 times more
than Greedy, and 102 times more than IncAVT on the Gnutella
dataset. The total number of visited candidate anchored vertex set
in IncAVT is minimum during the anchored vertex tracking process
across all the datasets.

6.2.3 Varying Snapshot Size T
We also test our proposed algorithms by varying T from 2 to
30. Figure 7(a) - 7(c) present the running time with varied values
of T . The results show similar findings that IncAVT outperforms
OLAK, Greedy, and RCM significantly in efficiency as it utilizes
the smoothness of the network structure in evolving network to
reduce the visited candidate anchored vertices. Meanwhile, the
speed of running time increasing in IncAVT is much slower than
the other three algorithms in each snapshot when T increases. In

5 10 15 20
l

101

103

105

107

109

1011

Vi
sit

ed
 V

er
tic

es

OLAK
Greedy
IncAVT

(a) email-Enron

5 10 15 20
l

101

103

105

107

109

1011

Vi
sit

ed
 V

er
tic

es

OLAK
Greedy
IncAVT

(b) Gnutella

5 10 15 20
l

101

103

105

107

109

1011

Vi
sit

ed
 V

er
tic

es

OLAK
Greedy
IncAVT

(c) Deezer

Fig. 6. Number of candidate anchored vertices with varying l

other words, the performance advantage of IncAVT will enhance
with the increase of the network snapshot size.

2 6 10 14 18 22 26 30
T

101

102

103

104

105

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(a) email-Enron

2 6 10 14 18 22 26 30
T

101

102

103

104

105

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(b) Gnutella

2 6 10 14 18 22 26 30
T

101

102

103

104

105

Ti
m

e
(s

ec
)

OLAK
Greedy
IncAVT
RCM

(c) Deezer

Fig. 7. Time cost of algorithms with varying T

Figure 8(a) - 8(c) report our further evaluation on the number of
visited candidate anchored vertices when T is varied. As expected,
IncAVT has the minimum number of visited candidate anchored
vertices than the other two approaches. What is more, the number
of visited candidate anchored vertices by IncAVT in each snapshot
is steady than Greedy and OLAK.

2 6 10 14 18 22 26 30
T

101

103

105

107

109

1011

Vi
sit

ed
 V

er
tic

es

OLAK
Greedy
IncAVT

(a) email-Enron

2 6 10 14 18 22 26 30
T

101

103

105

107

109

1011

Vi
sit

ed
 V

er
tic

es

OLAK
Greedy
IncAVT

(b) Gnutella

2 6 10 14 18 22 26 30
T

101

103

105

107

109

1011
Vi

sit
ed

 V
er

tic
es

OLAK
Greedy
IncAVT

(c) Deezer

Fig. 8. Number of candidate anchored vertices with varying T

6.3 Effectiveness Evaluation
In this experiment, we evaluate the number of followers produced
by the AVT problem with different datasets and approaches in
Figure 9 - Figure 12 by varying one parameter and setting the
other two as defaults. As we can see, the number of followers in
each snapshot discovered by all four approaches increases rapidly
in all datasets with the evolving of the network. For example,
in Figure 9(a), the follower size in the Deezer dataset is about
one thousand when T = 2 and goes up to 50,000 when T =

11

2 6 10 14 18 22 26 30
T

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(a) Vary (T)

5 10 15 20
l

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(b) Vary (l)

2/5 3/10 4/15
K

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(c) Vary (k)

Fig. 9. Number of followers discovered by IncAVT

2 6 10 14 18 22 26 30
T

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(a) Vary (T)

5 10 15 20
l

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(b) Vary (l)

2/5 3/10 4/15
K

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(c) Vary (k)

Fig. 10. Number of followers discovered by OLAK

2 6 10 14 18 22 26 30
T

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(a) Vary (T)

5 10 15 20
l

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(b) Vary (l)

2/5 3/10 4/15
K

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(c) Vary (K)

Fig. 11. Number of followers discovered by Greedy

2 6 10 14 18 22 26 30
T

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(a) Vary (T)

5 10 15 20
l

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(b) Vary (l)

2/5 3/10 4/15
K

102

103

104

105

106

107

108

Fo
llo

we
rs

email-Enron
Gnutella
Deezer

(c) Vary (K)

Fig. 12. Number of followers discovered by RCM

30. Similar pattern can also be found in Figure 9(b) as more
followers can be found when we increase l with the other two
parameters fixed. As expected, we do not observe a noticeable
followers trend from all four approaches when varying k. This is
because the anchored k-core size is highly related to the network
structure. From the above experimental results, we can conclude
that tracking the anchored vertices in an evolving network is
necessary to maximize the benefits of expanding the communities.

7 RELATED WORK

k-core Decomposition: The model of k-core was first introduced
by Seidman et al. [29], and has been widely used as a metric

for measuring the structure cohesiveness of a specific community
in the topic of social contagion [30], user engagement [5], [25],
Internet topology [2], [9], influence studies [17], [22], and graph
clustering [14], [23]. The k-core can be computed by using core
decomposition algorithm, while the core decomposition is to
efficiently compute for each vertex its core number [4]. Besides,
with the dynamic change of the graph, incrementally computing
the new core number of each affected vertices is known as core
maintenance, which has been studied in [1], [3], [15], [23], [28],
[35], [36].
Anchored k-core Problem: User engagement in social networks
has attracted much attention while quantifying user engagement
dynamics in social networks is usually measured by using k-
core [5], [7], [11], [20], [24], [31], [32], [34], [37]. Bhawalker et
al. [5] first introduced the problem of anchored k-core, which was
inspired by the observation that the user of a social network remains
active only if her neighborhood meets some minimal engagement
level: in k-core terms. Specifically, the anchored k-core problem
aims to find a set of anchored vertices that can further induce
maximal anchored k-core. Then, Chitnis et al. [11] proved that
the anchored k-core problem on general graphs is solvable in
polynomial time for k ≤ 2, but is NP-hard for k > 2. Later, Zhang
et al. in 2017 [36] proposed an efficient greedy algorithm by using
the vertex deletion order in k-core decomposition, named OLAK.
In the same year, another research [34] studied the collapsed k-core
problem, which aims to identify critical users that may lead a large
number of other users to drop out from a social network once they
leave. Zhou et al. [37] introduced a notion of resilience in terms
of the stability of k-cores while the vertex or edges are randomly
deleting, which is close to the anchored k-core problem. Cai et
al. [7] focused on a new research problem of anchored vertex
exploration that considers the users’ specific interests, structural
cohesiveness, and structure cohesiveness, making it significantly
complementary to the anchored k-core problem in which only
the structure cohesiveness of users is considered. Very recently,
Ricky et al. in 2020 [20] proposed a novel algorithm by selecting
anchors based on the measure of anchor score and residual degree,
called Residual Core Maximization (RCM). The RCM algorithm
is the state-of-the-art algorithm to solve the anchored k-core
problem. However, all of the works mentioned above on anchored
k-core only consider the static social networks. To the best of
our knowledge, our work is the first to study the anchored vertex
tracking problem to find the anchored vertices at each timestamp
of evolving networks.

8 CONCLUSIONS

In this paper, we focus on a novel problem, namely the anchored
vertex tracking (AVT) problem, which is the extension of the
anchored k-core problem towards dynamic networks. The AVT
problem aims at tracking the anchored vertex set dynamically such
that the selected anchored vertex set can induce the maximum
anchored k-core at any moment. We develop a Greedy algorithm to
solve this problem. We further accelerate the above algorithm from
two aspects, including (1) reduce the potential anchored vertices
that need probing; and (2) propose an algorithm to improve the
followers’ computation efficiency with a given anchored vertex.
Moreover, an incremental computation method is designed by
utilizing the smoothness of the evolution of the network structure
and the well-designed Bounded K-order maintenance methods in
an evolving graph. Finally, the extensive performance evaluations

12

also reveal the practical efficiency and effectiveness of our proposed
methods in this paper.

REFERENCES

[1] H. Aksu, M. Canim, Y. Chang, I. Korpeoglu, and Ö. Ulusoy. Distributed
k -core view materializationand maintenance for large dynamic graphs.
IEEE Trans. Knowl. Data Eng., 26(10):2439–2452, 2014.

[2] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. K-
core decomposition of internet graphs: hierarchies, self-similarity and
measurement biases. NHM, 3(2):371–393, 2008.

[3] W. Bai, Y. Chen, and D. Wu. Efficient temporal core maintenance of
massive graphs. Inf. Sci., 513:324–340, 2020.

[4] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition
of networks. CoRR, cs.DS/0310049, 2003.

[5] K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma.
Preventing unraveling in social networks: The anchored k-core problem.
In ICALP, pages 440–451, 2012.

[6] K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma.
Preventing unraveling in social networks: The anchored k-core problem.
SIAM J. Discrete Math., 29(3):1452–1475, 2015.

[7] T. Cai, J. Li, N. A. H. Haldar, A. Mian, J. Yearwood, and T. Sellis.
Anchored vertex exploration for community engagement in social
networks. In ICDE, pages 409–420, 2020.

[8] C. V. Cannistraci, G. Alanis-Lobato, and T. Ravasi. From link-prediction
in brain connectomes and protein interactomes to the local-community-
paradigm in complex networks. Scientific Reports, 3(1):1613, 2013.

[9] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model
of internet topology using k-shell decomposition. Proceedings of the
National Academy of Sciences, 104(27):11150–11154, 2007.

[10] X. Chen, G. Song, X. He, and K. Xie. On influential nodes tracking in
dynamic social networks. In SDM, pages 613–621, 2015.

[11] R. Chitnis, F. V. Fomin, and P. A. Golovach. Parameterized complexity of
the anchored k-core problem for directed graphs. Inf. Comput., 247:11–22,
2016.

[12] R. H. Chitnis, F. V. Fomin, and P. A. Golovach. Preventing unraveling in
social networks gets harder. In AAAI, 2013.

[13] U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

[14] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis.
Corecluster: A degeneracy based graph clustering framework. In AAAI,
pages 44–50, 2014.

[15] H. Jin, N. Wang, D. Yu, Q. Hua, X. Shi, and X. Xie. Core maintenance
in dynamic graphs: A parallel approach based on matching. IEEE Trans.
Parallel Distrib. Syst., 29(11):2416–2428, 2018.

[16] R. M. Karp. Reducibility among combinatorial problems. In Proceedings
of a symposium on the Complexity of Computer Computations, pages
85–103, 1972.

[27] G. Rossetti, L. Pappalardo, R. Kikas, D. Pedreschi, F. Giannotti, and
M. Dumas. Community-centric analysis of user engagement in skype
social network. In ASONAM, pages 547–552, 2015.

[17] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley,
and H. A. Makse. Identification of influential spreaders in complex
networks. Nature Physics, 6:888–893, 2010.

[18] G. Kossinets and D. Watts. Origins of homophily in an evolving social
network. American Journal of Sociology, 115(2):405–450, 2009.

[19] G. Kossinets and D. J. Watts. Empirical analysis of an evolving social
network. Science, 311(5757):88–90, 2006.

[20] R. Laishram, A. E. Sariyüce, T. Eliassi-Rad, A. Pinar, and S. Soundarajan.
Residual core maximization: An efficient algorithm for maximizing the
size of the k-core. In SDM, pages 325–333, 2020.

[21] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic
evolution of social networks. In SIGKDD, pages 462–470, 2008.

[22] C. Li, L. Wang, S. Sun, and C. Xia. Identification of influential spreaders
based on classified neighbors in real-world complex networks. Appl. Math.
Comput., 320:512–523, 2018.

[23] R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic
graphs. IEEE Trans. Knowl. Data Eng., 26(10):2453–2465, 2014.

[24] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang. Global
reinforcement of social networks: The anchored coreness problem. In
SIGMOD, pages 2211–2226, 2020.

[25] F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling
engagement dynamics in social graphs. In CIKM, pages 469–478, 2013.

[26] M. Newman. Clustering and preferential attachment in growing networks.
Physical Review E, 64(2):025102, 2001.

[28] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V. Çatalyürek.
Streaming algorithms for k-core decomposition. PVLDB, 6(6):433–444,
2013.

[29] S. B. Seidman. Network structure and minimum degree. Social Networks,
5(3):269 – 287, 1983.

[30] J. Ugander, L. Backstrom, C. Marlow, and J. M. Kleinberg. Structural
diversity in social contagion. Proc. Natl. Acad. Sci. U.S.A., 109(16):5962–
5966, 2012.

[31] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O efficient core graph
decomposition at web scale. In ICDE, pages 133–144, 2016.

[32] F. Zhang, C. Li, Y. Zhang, L. Qin, and W. Zhang. Finding critical users in
social communities: The collapsed core and truss problems. IEEE Trans.
Knowl. Data Eng., 32(1):78–91, 2020.

[33] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. OLAK: an efficient
algorithm to prevent unraveling in social networks. PVLDB, 10(6):649–
660, 2017.

[34] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical users
for social network engagement: The collapsed k-core problem. In AAAI,
pages 245–251, 2017.

[35] Y. Zhang and J. X. Yu. Unboundedness and efficiency of truss maintenance
in evolving graphs. In SIGMOD, pages 1024–1041, 2019.

[36] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based approach
for core maintenance. In ICDE, pages 337–348, 2017.

[37] Z. Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen. K-core maximization:
An edge addition approach. In IJCAI, pages 4867–4873, 2019.

	1 Introduction
	2 Preliminaries
	2.1 Anchored k-core
	2.2 Problem Statement

	3 Problem analysis
	4 The Greedy Algorithm
	4.1 Reducing Potential Anchored Vertices
	4.2 Accelerate Followers Computation

	5 Incremental Computation Algorithm
	5.1 The Incremental Algorithm Overview
	5.2 Bounded K-order Maintenance Approach
	5.2.1 Handling Edge Insertion
	5.2.2 Handling Edge Deletion

	5.3 The Incremental Algorithm

	6 Experimental Evaluation
	6.1 Experimental Setting
	6.2 Efficiency Evaluation
	6.2.1 Varying Core Number k
	6.2.2 Varying Anchored Vertex Set Size l
	6.2.3 Varying Snapshot Size T

	6.3 Effectiveness Evaluation

	7 Related work
	8 Conclusions
	References

