
Elsevier required licence: © <2021>. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The definitive publisher version is available online at
 [https://www.sciencedirect.com/science/article/abs/pii/S0890540121000833?via%3Dihub]

http://creativecommons.org/licenses/by-nc-nd/4.0/

ar
X

iv
:2

00
8.

02
51

1v
1

 [
m

at
h.

G
R

]
 6

 A
ug

 2
02

0

Cayley Polynomial–Time Computable Groups

Dmitry Berdinskya,b, Murray Elderc,1, Prohrak Kruengthomyaa,b

aDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400,

Thailand
bCentre of Excellence in Mathematics, Commission on Higher Education, Bangkok,

10400, Thailand
cSchool of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo,

NSW 2007, Australia

Abstract

We propose a new generalisation of Cayley automatic groups, varying the
time complexity of computing multiplication, and language complexity of the
normal form representatives. We first consider groups which have normal
form language in the class C and multiplication by generators computable in
linear time on a certain restricted Turing machine model (position–faithful
one-tape). We show that many of the algorithmic properties of automatic
groups are preserved (quadratic time word problem), prove various closure
properties, and show that the class is quite large; for example it includes all
virtually polycyclic groups. We then generalise to groups which have normal
form language in the class C and multiplication by generators computable in
polynomial time on a (standard) Turing machine. Of particular interest is
when C = REG (the class of regular languages). We prove that REGCayley
polynomialtime computable groups includes all finitely generated nilpotent
groups, the wreath product Z2 ≀ Z

2, and Thompsons group F .

Keywords: Cayley position–faithful linear–time computable group; Cayley
polynomialtime computable group; position–faithful one–tape Turning
machine; Cayley distance function

Email addresses: berdinsky@gmail.com (Dmitry Berdinsky),
murray.elder@uts.edu.au (Murray Elder), prohrakju@gmail.com (Prohrak
Kruengthomya)

1The second author is supported by Australian Research Council grant DP160100486.

http://arxiv.org/abs/2008.02511v1

1. Introduction

How one can represent elements of an infinite finitely generated group G?
A natural way to do this is to assign for each group element g ∈ G a unique
normal form which is a string over some finite alphabet (not necessarily a
generating set). Kharlampovich, Khoussainov and Miasnikov used this ap-
proach to introduce the notion of a Cayley automatic group [1] that naturally
extends the classical notion of an automatic group introduced by Thurston
and others [2]. They require that the language of normal forms to be regular,
and that for each s from some finite set of semigroup generators S ⊂ G there
is a two–tape synchronous automaton recognizing all pairs of strings (u, v)
for which u is the normal form of some group element g and v is the normal
form of the group element gs. Case, Jain, Seah and Stephan showed that
this is equivalent to the existence of a position–faithful2 one–tape Turing ma-
chine for each s ∈ S which computes the output v from the input u in linear
time [3]. Is it possible to extend the notion of a Cayley automatic group
which admit normal forms satisfying this (linear time) property? Can it be
extended further requiring not linear but polynomial time?

In this paper we consider groups which admit normal forms from some
formal language class (not necessarily regular) where multiplication satisfies
the (linear time) and (polynomial time) properties. We study their algorith-
mic and closure properties. We analyse examples of such groups and their
normal forms. Furthermore, we study the characterization of these normal
forms in terms of the Cayley distance function (as defined in [4] and studied
in [5, 6]). In particular, we investigate examples of non-automatic groups for
which this function can be diminished to the zero function for some normal
forms satisfying either (linear time) or (polynomial time) properties. This is
quite different to the situation for Cayley automatic representations of these
groups, where the Cayley distance function is always separated from the zero
function by some unbounded nondecreasing function which depends only on
the group.

Contribution and paper outline. In Section 2 we recall the notion of a
Cayley automatic group and a Cayley automatic representation.

In Section 3 we introduce the notion of a C–Cayley position–faithful (p.f.)
linear–time computable group and a C–Cayley p.f. linear–time computable
representation, for a given class of languages C, where we require a language of

2see Definition 2

2

normal forms to be in the class C and right multiplication by each semigroup
generator to be computed by a position–faithful one–tape Turing machine in
linear time.

We show that C–Cayley p.f. linear–time computable groups preserve some
key properties of Cayley automatic groups. In Theorem 1 we show that
each C–Cayley p.f. linear–time computable representation has quasigeodesic
normal form. In Theorem 2 we show that there is a quadratic time algorithm
computing this normal form. The latter implies that for every C–Cayley
p.f. linear–time computable group the word problem is decidable in quadratic
time, see Corollary 1. In Theorems 4, 5 and 6 we prove that under some
very mild restrictions on the class C, the family of C–Cayley p.f. linear–time
computable groups is closed under taking finite extension, direct product and
free product, respectively. Furthermore, in Theorem 8 we show that (under
similar mild restrictions) the family of C–Cayley p.f. linear–time computable
groups is contained in the family of C–graph automatic groups introduced by
the second author and Taback. The collection of all C–Cayley p.f. linear–time
computable groups for all classes C forms the family of Cayley p.f. linear–
time computable groups. In Theorem 7 we show that the family of Cayley
p.f. linear–time computable groups is closed under taking finitely generated
(f.g.) subgroups. In Theorem 3 we notice that for each Cayley p.f. linear–time
computable representation the language of normal forms must be recursively
enumerable. Moreover, in Proposition 2 we give an example of a Cayley
p.f. linear–time computable representation for which the language of normal
forms is not recursive. In Theorem 9 we show that the family of Cayley
p.f. linear–time computable groups comprises all f.g. subgroups of GL(n,Q);
in particular, it includes all polycyclic groups.

In Section 4 we consider further generalization of Cayley p.f. linear–time
computable groups – the notion of a C–Cayley polynomial–time computable
group and a C–Cayley polynomial–time computable representation, for a given
class of languages C, where we require a language of normal forms to be in
the class C and the right multiplication by each semigroup generator to be
computed by a one–tape Turing machine in polynomial time. We note that
a C–Cayley polynomial–time computable representation does not necessary
have quasigeodesic normal form (in contrast to the p.f. linear-time case).
However, assuming that a C–Cayley polynomial–time computable represen-
tation has quasigeodesic normal form, in Theorem 10 we show that there is
a polynomial–time algorithm computing this normal form. The latter im-
plies that the word problem is decidable in polynomial time, see Corollary

3

3. In Theorem 12 we notice that, similarly to C–Cayley p.f. linear–time
computable groups, the families of C–Cayley polynomial–time computable
groups and the ones with quasigeodesic normal forms are closed under tak-
ing a finite extension, direct product and free product. The collection of all
C–Cayley polynomial–time computable groups for all classes C forms the fam-
ily of Cayley polynomial–time computable groups. In Theorem 13 we show
that the family of Cayley polynomial–time computable groups and the ones
with quasigeodesic normal forms are each closed under taking f.g. subgroups.
In the end of Section 4 we show that the class of REG–Cayley polynomial–
time computable groups comprises all f.g. nilpotent groups, where REG is
the class of regular languages. Moreover, it includes examples such as the
wreath product Z2 ≀ Z

2 and Thompson’s group F .
In Section 5 we study the Cayley distance function for Cayley p.f. linear–

time computable and REG–Cayley polynomial–time computable representa-
tions. We demonstrate that some properties of the Cayley distance func-
tion which hold for Cayley automatic representations (shown in the previous
works [4, 5]) do not hold neither for Cayley p.f. linear–time computable and
nor for REG–Cayley polynomial–time computable representations. Section 6
concludes the paper. Figure 1 shows a Venn diagram for different classes of
groups considered in this paper.

Related work. We briefly mention some previous works which extend the
notion of an automatic group. The motivation to introduce such extensions
was principally to include all fundamental groups of compact 3–manifolds.
Bridson and Gilman introduced the notion of an asynchronously A–combable
group for an arbitrary class of languages A [7]. Baumslag, Shapiro and Short
introduced the class of parallel poly–pushdown groups [8]. Brittenham, Her-
miller and Holt introduced the notion of an autostackable group [9]. Khar-
lampovich, Khoussainov and Miasnikov introduced the notion of a Cayley
automatic group [1] from which the present paper developed. The second
author and Taback extended the notion of a Cayley automatic group replac-
ing the class of regular languages with more powerful language classes [10],
which we refine here.

4

automatic

Cayley automatic=
REG–Cayley p.f. linear–time computable

C–Cayley p.f. linear–time computable

C–Cayley polynomial–time with
quasigeodesic normal form

C–Cayley polynomial–time computable

REG–Cayley polynomial–time computable

Figure 1: A Venn diagram of classes of interest.

2. Cayley Automatic Groups

Kharlampovich, Khoussainov and Miasnikov introduced the notion of a
Cayley automatic group3 [1] as a natural generalization of the notion of an
automatic group [2] which uses the same computational model – a two–tape
synchronous automaton. The class of Cayley automatic groups not only
comprises all automatic groups, but it includes a rich a family of groups
which are not automatic. In particular, it includes all f.g. nilpotent groups
of nilpotency class two [1], the Baumslag–Solitar groups [11], higher rank
lamplighter groups [12] and all wreath products of the form G ≀ H , where
G is Cayley automatic and H is virtually infinite cyclic [6]. We assume
that the reader is familiar with the notion of a regular language, a finite
automaton and a multi–tape synchronous automaton. Below we briefly recall

3A Cayley automatic group is also referred to as a Cayley graph automatic or graph
automatic group in the literature.

5

both definitions: for automatic and Cayley automatic groups.
Let G be a finitely generated group with a generating set A = {a1, . . . , an}

⊂ G. We denote by A−1 the set of the inverses of elements of A, that is,
A−1 = {a−1

1 , . . . , a−1
n }. Let S = A∪A−1. For a given word w = aσ1i1 . . . a

σm
im

∈
S∗, where i1, . . . , im ∈ {1, . . . , n} and σ1, . . . , σm ∈ {+1,−1}, let π(w) be
the product of elements aσ1i1 . . . a

σm
im

in the group G; if w is the empty string:
w = ǫ, then π(w) is the identity of the group G. For a given language L ⊆ S∗,
we denote by π : L → G the canonical map which sends a string4 w ∈ L to
the group element π(w) ∈ G.

It is said that the group G is automatic, if there is a regular language
L ⊆ S∗ such that the canonical map π : L → G is bijective and for every
a ∈ A the relation La = {(u, v) ∈ L × L | π(u)a = π(v)} is recognized by a
two–tape synchronous automaton. A string w ∈ L is called a normal form for
the group element π(w) ∈ G; accordingly, L is called a language of normal
forms. We call the bijection π : L → G an automatic representation of the
group G.

It is said that the group G is Cayley automatic if there is a regular
language L ⊆ Σ∗ and a bijection ψ : L → G such that for every a ∈ A the
relation Ra = {(u, v) ∈ L × L |ψ(u)a = ψ(v)} is recognized by a two–tape
synchronous automaton. Similarly, we say that L is a language of normal
forms and a string w ∈ L is a normal form for the group element ψ(w) ∈ G.
We call the bijection ψ : L → G a Cayley automatic representation of the
group G. We note that the notion of a Cayley automatic group does not
require the bijection ψ : L → G to be canonical. As long as for every a ∈ A
the relation Ra is recognized by a two–tape synchronous automaton, ψ can
be an arbitrary bijection. Similarly, as longs as L is regular, it can be a
language over an arbitrary alphabet Σ.

It is said that a function f : Σ∗ → Σ∗ is automatic if the relation Rf =
{(w, f(w)) ∈ Σ∗ × Σ∗ |w ∈ Σ∗} is recognized by a two–tape synchronous
automaton. So one can equivalently define Cayley automatic groups in the
following way.

Definition 1 (Cayley automatic groups). We say that the group G is Cayley
automatic if there exists a regular language L ⊆ Σ∗ over some finite alphabet
Σ, a bijective mapping ψ : L → G and automatic functions fs : Σ∗ → Σ∗,
s ∈ S, such that:

4We use the terms “string” and “word” interchangeably.

6

• fs(L) ⊆ L, that is, fs maps a normal form to a normal form;

• for every w ∈ L: ψ(fs(w)) = ψ(w)s, that is, the following diagram
commutes:

L L

G G

fs

ψ ψ

×s

for all s ∈ S. We call ψ : L→ G a Cayley automatic representation of G.

Remark 1. The original motivation to study Cayley automatic groups stemmed
not only from the notion of an automatic group [2], but also from the notion
of a FA–presentable structure [13]. Namely, a f.g. group is Cayley automatic
if and only if its labelled directed Cayley graph is a FA–presentable structure
[1]. For a recent survey of the theory of FA–presentable structures we refer
the reader to [14].

3. Cayley position–faithful linear–time computable groups

The notion of a Cayley automatic group can be naturally extended further
to a notion of a Cayley position–faithful linear–time computable group which
we introduce in this section.

Let us first recall the notion of a position–faithful one–tape Turing ma-
chine (as defined in [3, p. 4]).

Definition 2 (Position–faithful one–tape Turing machine). A position–faithful
one–tape Turing machine is a Turing machine which uses a semi-infinite tape
(infinite in one direction only) with the left–most position containing the spe-
cial symbol ⊞ which only occurs at this position and cannot be modified. The
initial configuration of the tape is ⊞x⊡∞, where ⊡ is a special blank symbol,
and x ∈ Σ∗ for some alphabet Σ with Σ ∩ {⊞,⊡} = ∅. During the compu-
tation the Turing machine operates as usual, reading and writing cells to the
right of the ⊞ symbol.

A function f : Σ∗ → Σ∗ is said to be computed by a position–faithful
one–tape Turing machine, if when started with tape content being ⊞x⊡∞, the
head initially being at ⊞, the Turing machine eventually reaches an accepting
state (and halts), with the tape content starting with ⊞f(x)⊡. There is no
restriction on the output beyond the first appearance of ⊡.

7

Case, Jain, Seah and Stephan established the equivalence of the following
classes of functions [3]:

• automatic functions f : Σ∗ → Σ∗;

• functions f : Σ∗ → Σ∗ computed in linear time by a deterministic
position–faithful one–tape Turing machine.

• functions f : Σ∗ → Σ∗ computed in linear time by a nondeterministic
position–faithful one–tape Turing machine.

We say that a function f : Σ∗ → Σ∗ is position–faithful (p.f.) linear–time
computable if it is computed by a (deterministic) position–faithful one–tape
Turing machine in linear time. By the equivalence above f : Σ∗ → Σ∗ is p.f.
linear–time computable if and only if it is automatic. So we may use the
terms automatic and p.f. linear–time computable interchangeably.

We note that the requirements of being one–tape and position–faithful
matter. Consider the following example from [3, p. 4]: a function which takes
input w ∈ Σ and outputs the binary string v ∈ {0, 1}∗ where w = uvxy with
u ∈ (Σ \ {0, 1})∗, x ∈ Σ \ {0, 1}. An ordinary semi–infinite tape Turing
machine can easily compute this: simply move the read head to the first
occurrence of 0, 1 on the tape (or replace all cells u, x, y by blank symbols,
depending on the Turing machine model). The position–faithful model is
not able to perform this function in linear time: it would have to somehow
copy the contents of the cells containing v forwards so that they start after
the ⊞ symbol, but this would involve at least O(|u|2) steps. Note also that
this function can be computed by a deterministic position–faithful two–tape
Turing machine in linear time. The functions computed by position–faithful
one-tape Turing machines are in a certain sense a small natural class of linear
time computable functions.

In order to make our first generalisation of Cayley automatic, we do
not require any longer a language of normal forms to be regular like we do
for Cayley automatic groups. But we require the right multiplication by a
generator, or its inverse, to be computed by an automatic function. Let G be
a f.g. group and S = {s1, . . . , sn} ⊂ G be a finite set of semigroup generators
of G: that is, every g ∈ G can be represented as a product of elements from
S. Let C be a nonempty class of languages.

Definition 3 (C–Cayley position–faithful linear–time computable group).
We say that the group G is C–Cayley position–faithful (p.f.) linear–time

8

computable group if there exist a language L ⊆ Σ∗ from the class C over some
finite alphabet Σ, a bijective mapping ψ : L→ G between the language L and
the group G and p.f. linear–time computable functions fi : Σ

∗ → Σ∗ such that
fi(L) ⊆ L and for every w ∈ L: ψ(fi(w)) = ψ(w)si, for all i = 1, . . . , n. We
call ψ : L→ G a C–Cayley p.f. linear–time computable representation of the
group G. If the requirement for L to be in a specific class C is omitted, then
we say that G is a Cayley p.f. linear–time computable group and ψ : L → G
is a Cayley p.f. linear–time computable representation of G.

The class of REG–Cayley p.f. linear–time computable groups is simply the
class of Cayley automatic groups. Below we show that, similarly to Cayley
automatic groups, Definition 3 does not depend on the choice of generators.

Proposition 1. The notion of a C–Cayley p.f. linear–time computable group
does not depend on the choice of generators.

Proof. Let G be a C–Cayley p.f. linear–time computable group for a set of
semigroup generators S = {s1, . . . , sn}. Then there is a language L ⊆ Σ∗

from the class C, a bijective mapping ψ : L → G and automatic functions
fi : Σ∗ → Σ∗ such that fi(L) ⊆ L and ψ(fi(w)) = ψ(w)si for all i =
1, . . . , n and w ∈ L. Let S ′ = {s′1, . . . , s

′

k} ⊆ G be another set of semigroup
generators of the group G. Each element s′ ∈ S ′ is a product of elements
from S. Therefore, for a given j = 1, . . . , k there exist sj1, . . . , sjm ∈ S
for which s′j = sj1 . . . sjm. We define f ′

j : Σ∗ → Σ∗ to be the composition:
f ′

j = fjm ◦ · · · ◦ fj1 . For every j = 1, . . . , k the function f ′

j is automatic,
f ′

j(L) ⊆ L and ψ(f ′

j(w)) = ψ(w)s′j for all w ∈ L. This shows that the
definition of the class of C–Cayley p.f. linear–time computable groups does
not depend on the choice of semigroup generators S.

Remark 2. By Proposition 1 one can always assume that a set of semigroup
generators S is symmetric. That is, S = A ∪ A−1 for some finite set A
generating G, where A−1 is the set of inverses of elements from A: A−1 =
{a−1 | a ∈ A}.

Remark 3. Similarly to Cayley automatic groups, Cayley p.f. linear–time
computable groups are related to the notion of a FA–presentable structure.
Let B be the structure B = (Σ∗; Graph(f1), . . . ,Graph(fn)) for some Σ and
f1, . . . , fn from Definition 3, where Graph(f) for a function f : Σ∗ → Σ∗

is the binary relation Graph(f) = {(w, f(w)) ∈ Σ∗ × Σ∗ |w ∈ Σ∗}. Then

9

every structure B
′ = (B′; f ′

1, . . . , f
′

n) isomorphic to the structure B is FA–
presentable. Let Γ be the directed labelled graph Γ = (G;E1, . . . , En), where
Ei = {(g1, g2) ∈ G × G | g1si = g2}. Then the bijection ψ−1 : G → L is an
embedding of the structure Γ into the structure B.

3.1. Quasigeodesic Normal Form

We notice that the analogue of the bounded difference lemma (see [2,
Lemma 2.3.9] for automatic and [1, Lemma 8.1] for Cayley automatic groups)
holds for Cayley p.f. linear–time computable groups as well. Let G be a
Cayley p.f. linear–time computable group with a set of generators A ⊂ G
and ψ : L→ G be a Cayley p.f. linear–time computable representation of G
for some language L ⊆ Σ∗.

Lemma 1. There exists a constant K > 0 such that for every g ∈ G and
s ∈ A ∪ A−1, if u, v ∈ L are the strings representing g and gs, respectively:
ψ(u) = g and ψ(v) = gs, then ||u| − |v|| 6 K.

Proof. For every s ∈ A ∪ A−1 there is an automatic function fs : Σ
∗ → Σ∗

such that fs(u) = v for all u, v ∈ L for which ψ(u)s = ψ(v) in the group G.
For a given s ∈ A∪A−1, letMs be a (nondeterministic) two–tape synchronous
automaton recognizing the relation Rfs = {(w, fs(w)) ∈ Σ∗ × Σ∗ |w ∈ Σ∗}.
By the pumping lemma, for every (u, v) ∈ Rfs the following inequality holds:

|v| 6 |u|+Ns,

where Ns is the number of states of the automaton Ms. Therefore, for all
u, v ∈ L, if ψ(u) = g and ψ(v) = gs for some g ∈ G and s ∈ A ∪ A−1, then
||u| − |v|| 6 K, where K = max{Ns | s ∈ A ∪A−1}.

For a given group element g ∈ G we denote by dA(g) the length of a
geodesic word representing g with respect to the set of generators A.

Theorem 1 (Quasigeodesic normal form). For a given Cayley p.f. linear–
time computable representation ψ : L → G and a set of generators A, there
exists a constant C such that for every w ∈ L the following inequality holds:

|w| 6 C(dA(ψ(w)) + 1). (1)

Proof. For a given w ∈ L, let a1 . . . an, for ai ∈ A ∪ A−1, i = 1, . . . , n, be a
geodesic in G with respect to the set of generators A such that a1 . . . an =

10

ψ(w) in G; so, dA(ψ(w)) = n. We denote by w0 the string representing
the identity e: ψ(w0) = e. For a given i ∈ {1, . . . , n}, let wi = a1 . . . ai.
By Lemma 1, |wi+1| 6 |wi| + K for all i = 0, . . . , n − 1 and some constant
K. Therefore, |w| 6 nK + |w0|. Let C = max{K, |w0|}. Thus, |w| 6

C(dA(ψ(w)) + 1).

3.2. Algorithmic Properties

A key property of Cayley automatic groups which they share with auto-
matic groups is the existence of a quadratic time algorithm which for a given
word v ∈ (A ∪ A−1)

∗

finds the normal form u ∈ L, i.e., the string for which
ψ(u) = π(v); see [2, Theorem 2.3.10] and [1, Theorem 8.2] for automatic and
Cayley automatic groups, respectively. Below we show that this property
holds for Cayley p.f. linear–time computable groups as well.

Theorem 2 (Computing normal form in quadratic time). There is an al-
gorithm which for a given input word v ∈ (A ∪ A−1)∗ computes the string
u ∈ L, for which ψ(u) = π(v) in the group G. Moreover, this algorithm can
be implemented by a deterministic position–faithful one–tape Turing machine
in quadratic time.

Proof. Let us be given the string u0 ∈ L representing the identity e ∈ G:
ψ(u0) = e. Let v = b1 . . . bk, where bi ∈ A∪A−1. For a given i = 1, . . . , k we
denote by TMbi a position–faithful deterministic one–tape Turing machine
which computes the function fbi in linear time. An algorithm which finds the
representative string u ∈ L for the input word v works as follows. First it
computes the representative u1 ∈ L of b1 by feeding u0 to TMb1 as the input.
Then it feeds the string u1 to TMb2 as the input to obtain the representative
u2 ∈ L of the group element b1b2. Continuing in this way it computes the
representative uk ∈ L of the group element b1 . . . bk. By Lemma 1, for every
uj ∈ L, j = 1, . . . , k: |uj| 6 |u0| +Kj. Moreover, there are constants C1, C0

such that for every j = 1, . . . , k the Turing machine TMbj computes uj from
the input uj−1 in time at most C1|uj−1|+ C0 6 C1(|u0|+K(j − 1)) + C0. If
the head of a Turing machine points at the initial cell then 2(j−1) moves are
required to read off the symbol bj and return the head back to the initial cell.
Thus, the time required to compute the representative u = uk is bounded by
C2k

2 for some constant C2. Clearly, this algorithm can be implemented by
a position–faithful one–tape deterministic Turing machine for which initially
the word v is written on a tape with the head pointing at the initial cell
containing the symbol b1.

11

Corollary 1 (Solving word problem in quadratic time). For a Cayley p.f. linear–
time computable group the word problem can be solved by a deterministic
one–tape Turing machine in quadratic time.

Proof. An algorithm solving the word problem in G is as follows. For a given
input word v ∈ (A ∪ A−1)∗ it first finds the string u ∈ L representing π(v):
ψ(u) = π(v), as it is described in Theorem 2, and then compares u with the
string u0 representing the identity e ∈ G: if u = u0, then π(v) = e; otherwise,
π(v) 6= e. This algorithm can be implemented by a deterministic one–tape
Turing machine.

Theorem 3. Let RE denote the class of recursively enumerable languages.
For every Cayley p.f. linear–time computable representation ψ : L → G the
language L is in the class RE.

Proof. A procedure listing all words of the language L is as follows. It consec-
utively takes v ∈ (A ∪A−1)∗ as the input to produce the output ψ−1(v) ∈ L
using the algorithm described in Theorem 2. This procedure lists all strings
of the language L.

Proposition 2. Let R denote the class recursive languages. The class of
(RE \ R)–Cayley p.f. linear–time computable groups is non–empty.

Proof. There exists a f.g. subgroup H 6 F2 × F2 with undecidable mem-
bership problem [15]: given a word w over some generating set of F2 × F2,
decide whether π(w) is an element of H . Let ψ : L → F2 × F2 be a Cayley
p.f. linear–time computable representation of F2 × F2 (e.g., it can be Cayley
automatic or even automatic one). Let L′ = ψ−1(H) and ψ′ : L′ → H be
the restriction of ψ onto L′: ψ′ = ψ|L′. By Theorem 7 below, ψ′ : L′ → H is
a Cayley p.f. linear–time computable representation of H . If L′ is recursive,
then the algorithm solving membership problem for H is as follows. For a
given word w over some generating set of F2 × F2 we first find the string
u ∈ L for which ψ(u) = π(w) in F2 × F2 (see the algorithm in Theorem 2)
and then verify whether u is in the language L′ or not. Therefore, assuming
that L′ is recursive, we get that the membership problem for the subgroup
H 6 F2×F2 must be decidable, which leads to a contradiction. Therefore, L′

is not a recursive language, although it is recursively enumerable by Theorem
3.

12

3.3. Closure Properties

Now we turn to closure properties for Cayley p.f. linear–time computable
groups. Let C be a given class of languages. Throughout the paper we
assume that C is closed under a change of symbols in the alphabet. That is,
if ξ : Σ → Σ′ is a bijection between two finite alphabets Σ and Σ′ and L is
in the class C, then the image of L under the homomorphism induced by ξ
is also in the class C.

Theorem 4 (Finite extensions). Assume that a class of languages C satisfies
the following closure property: if L ⊆ Σ∗ is in the class C and L0 is a finite
language over some Σ0 for which Σ ∩ Σ0 = ∅, then the concatenation LL0

is in the class C. Then, a finite extension of a C–Cayley p.f. linear–time
computable group is C–Cayley p.f. linear–time computable.

Proof. Let H be a subgroup of finite index of a group G. Suppose that
H is C–Cayley p.f. linear–time computable. Then there exists a C–Cayley
p.f. linear–time computable representation ψ : L → H for some language
L ⊆ Σ∗ in the class C. The following is similar to the argument from [1,
Theorem 10.1] which shows that a finite extension of Cayley automatic group
is Cayley automatic. Every g ∈ G is uniquely represented as a product g =
hk, where h ∈ H and k ∈ K for some finite subset K = {k0, k1, . . . , km} ⊂ G
that contains the identity: k0 = e ∈ G. Let Σ0 = {σ1, . . . , σm} for some
symbols σ1, . . . , σm, which are not in Σ, and L0 ⊂ Σ∗

0 be a finite language
L0 = {ǫ, σ1, . . . , σm}. We denote by L′ = LL0 the concatenation of the
languages L and L0. By the assumption of the theorem, the language L′ is
in the class C. Let A = {a1, . . . , an} be some set of generators of H . Then
A ∪ A−1 ∪K is a set of semigroup generators for G.

We define a bijection ψ′ : L′ → G as follows. For a given w′ ∈ L′, w′ is
the concatenation: w′ = wu for some w ∈ L and u ∈ L0. Let ϕ : L0 → K be
a bijection between L0 and K for which ϕ(ǫ) = k0, ϕ(σ1) = k1, . . . , ϕ(σm) =
km. We put ψ′(w′) = ψ(w)ϕ(u). The right multiplication of g ∈ G by
q ∈ A ∪A−1 ∪K is given by the formula:

gq = hkq = hs1 . . . sℓk
′,

for some s1, . . . , sl ∈ A ∪ A−1 and kj ∈ K which depend only on k and q:
kq = s1 . . . sℓkj . An algorithm transforming the input ψ′−1(g) to the output
ψ′−1(gq), implemented by a position–faithful one–tape Turing machine, is
as follows. First the head moves to the rightmost cell which contains the

13

symbol ϕ−1(k) (or blank symbol if k = e), reads it off, stores it in the
memory and changes it to the blank symbol; then the head moves back to
the initial cell. Now the string ψ−1(h) is written on the tape. After that an
algorithm computing multiplication by s1 . . . sℓ in the group H is run; once
it is finished, the string ψ−1(hs1 . . . sℓ) is written on the tape. Then the head
moves to the first blank symbol to change it to ϕ−1(k′), unless k′ = e – in
this case no action is needed. Then this Turing machine halts. Now the
string ψ−1(hs1 . . . sℓ)ϕ

−1(k′), which is equal to ψ′−1(gq), is written on the
tape. Clearly, at most linear time is required for this algorithm. Thus, G is
C–Cayley p.f. linear–time computable.

Theorem 5 (Direct products). Assume that a class of languages C satisfies
the following closure property: if L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2 are some languages
in the class C for which Σ1 ∩ Σ2 = ∅, then the concatenation L1L2 is in the
class C. Then, the direct product of two C–Cayley p.f. linear–time computable
groups is C–Cayley p.f. linear–time computable.

Proof. Let G1 and G2 be two C–Cayley p.f. linear–time computable groups.
Then there exist C–Cayley p.f. linear–time computable representations ψ1 :
L1 → G1 and ψ2 : L2 → G2 for some languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2

in the class C for which Σ1 ∩ Σ2 = ∅. We denote by L the concatenation:
L = L1L2. By the assumption of the theorem the language L is in the class
C. Let A = {a1, . . . , an1

} and B = {b1, . . . , bn2
} be some sets of generators

for the groups G1 and G2, respectively. Then A ∪ A−1 ∪B ∪ B−1 is a set of
semigroup generators for the group G = G1 × G2. The groups G1 and G2

can be considered as subgroups of G. Every group element g ∈ G can be
uniquely represented as the product: g = g1g2, where g1 ∈ G1 and g2 ∈ G2.

Let ψ : L → G be a bijection defined as follows. For a given w ∈ L,
let w be the concatenation w = uv for some u ∈ L1 and v ∈ L2. We put
ψ(w) = ψ1(u)ψ2(v). The right multiplication of g = g1g2, where g1 ∈ G1

and g2 ∈ G2, by q ∈ A ∪ A−1 ∪ B ∪ B−1 is given by gq = (g1q)g2 if q ∈
A ∪ A−1 and gq = g1(g2q) if q ∈ B ∪ B−1. For the case q ∈ A ∪ A−1, an
algorithm transforming the input ψ−1(g) = ψ−1

1 (g1)ψ
−1
2 (g2) to the output

ψ−1(gq), implemented by a position–faithful one–tape Turing machine, is as
follows. First it transforms the prefix ψ−1

1 (g1) to the prefix ψ−1
1 (g1q). If

overlapping with the substring ψ−1
2 (g2) occurs, then it can be encoded by

special symbols: for example, if symbols A and B appear on the same cell
of the tape, then it can be encoded by the symbol A ⊗ B. After that the
algorithm shifts the substring ψ−1

2 (g2) either to the left or to the right, so it

14

is written right after the string ψ−1
1 (g1q). By Lemma 1, only shifting (left or

right) by a finite number of cells is needed. Therefore, at most linear time
is required for our algorithm. If q ∈ B ∪ B−1, an algorithm just updates
the suffix ψ−1

2 (g2) to the suffix ψ−1
2 (g2q) while the prefix ψ−1

1 (g1) remains
unchanged. Clearly, at most linear time is needed for this algorithm to be
implemented by a one–tape position–faithful Turing machine. Finally we
conclude that G is a C–Cayley p.f. linear–time computable group.

Theorem 6 (Free products). Assume that a class of languages C satisfies
the following closure properties:

(a) if a nonempty language L is in the class C and ǫ /∈ L, then for every
w ∈ L the language (L \ {w}) ∨ {ǫ} is in the class C;

(b) if L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2 are some languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2 in the
class C which contain the empty string ǫ ∈ L1, L2 and for which Σ1∩Σ2 =
∅, then the language L = (L′

1L
′

2)
∗∨(L′

1L
′

2)
∗L′

1∨(L
′

2L
′

1)
∗∨(L′

2L
′

1)
∗L′

2∨{ǫ}
is in the class C, where L′

1 = L1 \ {ǫ} and L′

2 = L2 \ {ǫ}.

Then, the free products of two C–Cayley p.f. linear–time computable groups
is C–Cayley p.f. linear–time computable.

Proof. Let G1, G2 be C–Cayley p.f. linear–time computable groups. There
exist C–Cayley p.f. linear–time computable representations ψ1 : L1 → G1

and ψ2 : L2 → G2 for some languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2 in the class C
for which Σ1 ∩ Σ2 = ∅. Suppose that ǫ ∈ L1 and for some string w ∈ L1,
w 6= ǫ: ψ1(w) = e in G1. Let ψ′

1 : L1 → G1 be a bijective map for which
ψ′

1(u) = ψ1(u) for all u ∈ L1 \ {ǫ, w} and ψ′

1(w) = ψ(ǫ) and ψ′

1(ǫ) = e. It can
be easily seen that ψ′

1 : L1 → G1 is a C–Cayley p.f. linear–time computable
representation. Now suppose that ǫ 6∈ L1. Let w be a word from L1 for which
ψ1(w) = e. By the property (a), the language L′′

1 = (L1 \ {w}) ∨ {ǫ} is in
the class C. Let ψ′′

1 : L′′

1 → G1 be a bijective map for which ψ′′

1 (u) = ψ1(u)
for all u ∈ L1 \ {w} and ψ′′

1 (ǫ) = e. Then ψ′′

1 is a C–Cayley p.f. linear–time
computable representation. Thus we can always assume that ǫ ∈ L1 and
ψ1(ǫ) = e in G1. We assume the same for L2 and ψ2: ǫ ∈ L2 and ψ2(ǫ) = e
in G2.

The groups G1 and G2 are naturally embedded in the free product G =
G1 ⋆ G2, so we consider them as the subgroups of G. Now let L = (L′

1L
′

2)
∗ ∨

(L′

1L
′

2)
∗L′

1 ∨ (L′

2L
′

1)
∗ ∨ (L′

2L
′

1)
∗L′

2 ∨ {ǫ}, where L′

1 = L1 \ {ǫ} and L′

2 =

15

L2 \ {ǫ}. By the property (b), the language L is in the class C. We define a
bijection ψ : L → G as follows. We put ψ(ǫ) = e. For w = u1v1 . . . unvn ∈
(L′

1L
′

2)
∗, where ui ∈ L′

1 and vi ∈ L′

2 for i = 1, . . . , n, we put: ψ(w) =
ψ1(u1)ψ2(v1) . . . ψ1(un)ψ2(vn). For w ∈ (L′

1L
′

2)
∗L′

1, (L
′

2L
′

1)
∗ and (L′

2L
′

1)
∗L′

2,
ψ(w) is defined in a similar way. Let A = {a1, . . . , an1

} and B = {b1, . . . , bn2
}

be some sets of generators for the groups G1 and G2, respectively. Then
A∪A−1∪B∪B−1 is a set of semigroup generators for the group G = G1 ⋆G2.
For a given g ∈ G let us assume that ψ−1(g) = u1v1 . . . unvn ∈ (L′

1L
′

2)
∗. If

q ∈ B ∪ B−1, an algorithm transforming the input ψ−1(g) to the output
ψ−1(gq) updates the suffix vn to the suffix ψ−1

2 (ψ2(vn)q) while the prefix
u1v1 . . . vn−1un is left unchanged. If q ∈ A∪A−1, an algorithm simply attaches
the string ψ−1

1 (q) to ψ−1(g) as a suffix. For ψ−1(g) ∈ (L′

1L
′

2)
∗L′

1 ∨ (L′

2L
′

1)
∗ ∨

(L′

2L
′

1)
∗L′

2 an algorithm transforming ψ−1(g) to ψ−1(gq) is implemented in a
similar way. The case g = e is trivial. Clearly, this algorithm is implemented
by a one–tape position–faithful Turing machine in at most linear time. Thus,
the group G is C–Cayley p.f. linear–time computable.

Remark 4. We note that the conditions imposed on the class C in Theo-
rems 4, 5 and 6 are weak. Obviously, these conditions are satisfied for many
classes of languages including, e.g., regular, (deterministic) context–free, (de-
terministic) context–sensitive, recursive, k–counter, k–context–free.

Theorem 7 (Finitely generated subgroups). A finitely generated subgroup
of a Cayley p.f. linear–time computable group is Cayley p.f. linear–time com-
putable.

Proof. Let G be a Cayley p.f. linear–time computable group and S = A ∪
A−1 = {s1, . . . , sn} be a set of semigroup generators of G. Then there is
a Cayley p.f. linear–time computable representation ψ : L → G for some
language L ⊆ Σ∗. Let H 6 G be a finitely generated subgroup of G and
S ′ = A′ ∪ A′−1 = {s′1, . . . , s

′

k} be a set of semigroup generators of H . Let
L′ = ψ−1(H) ⊂ L. We define ψ′ : L′ → H as the restriction of ψ onto L′:
for a given w ∈ L′, ψ′(w) = ψ(w). In order to prove that the representation
ψ′ : L′ → H is Cayley p.f. linear–time computable we repeat the argument
from Proposition 1. Let fi : Σ

∗ → Σ∗ be automatic functions corresponding
to multiplications in G by the semigroup generators si, for i = 1, . . . , n
respectively: ψ(fi(w)) = ψ(w)si for all w ∈ L. For a given j = 1, . . . , k there
exist j1, . . . , jm for which s′j = sj1 . . . sjm. For every j = 1, . . . , k the function
f ′

j = fjm ◦ · · · ◦ fj1 is automatic, f ′

j(L
′) ⊆ L′ and ψ′(f ′

j(w)) = ψ′(w)s′j for all
w ∈ L′. Therefore, the group H is Cayley p.f. linear–time computable.

16

Remark 5. We remark that the language L′ in the proof of Theorem 7 is
not necessarily in the same class as the language L. An illustrative example,
when L is a regular language but L′ is not recursive, is shown in Proposition
2.

3.4. Relation with C–graph Automatic Groups

In order to extend the class of Cayley automatic groups, the second author
and Taback introduced the notion of a (B, C)–graph automatic group [10].
Let G be a group, S be a symmetric generating set of G and Σ be a finite
alphabet. A tuple (G, S,Σ) is said to be (B, C)–graph automatic if there is a
bijection ψ : L→ G between a language L ⊆ Σ∗ from the class B and a group
G such that for every s ∈ S the language Ls = {u⊗v | u, v ∈ L, ψ(u)s = ψ(v)}
is in the class C. If B = C, then the tuple (G, S,Σ) is said to be C–graph
automatic.

Theorem 8. Assume that a class of languages C satisfies the following prop-
erties:

(a) if L ⊆ Σ∗ is some language in the class C, then L ⊗ Σ∗ = {u ⊗ v|u ∈
L, v ∈ Σ∗} is in the class C;

(b) if R is a regular language and L is in the class C, then R ∩ L is in the
class C.

Then, for a given C–Cayley p.f. linear–time computable group G, the tuple
(G, S,Σ) is C–graph automatic for some alphabet Σ and every symmetric
generating set S.

Proof. Let G be a C–Cayley p.f. linear–time computable group for some class
C satisfying the conditions (a) and (b) of the theorem. Then there exists a
C–Cayley p.f. linear–time computable representation ψ : L → G for some
language L ⊆ Σ∗ in the class C. By the condition (a), the language L⊗Σ∗ is in
the class C. Let A be a set of generators ofG. For a given semigroup generator
s ∈ S = A ∪ A−1 there exists an automatic function fs : Σ

∗ → Σ∗ such that
fs(L) ⊆ L and ψ(fs(w)) = ψ(w)s for all w ∈ L. Since fs is automatic, the
language Rs = {u⊗ fs(u) | u ∈ Σ∗} ⊆ Σ∗ ⊗ Σ∗ is regular. Therefore, by the
condition (b), the language (L ⊗ Σ∗) ∩ Rs is in the class C. Thus, for every
s ∈ S the language {u⊗ v | u, v ∈ L, ψ(u)s = ψ(v)} = (L⊗Σ∗)∩Rs is in the
class C, so (G, S,Σ) is C–graph automatic.

17

Remark 6. We note that the condition imposed on the class C in Theorem
8 is satisfied for a wide family of languages including all those mentioned in
Remark 4.

Remark 7. We denote by DCS the class of deterministic context–sensitive
languages. By [10, Theorem 15], a finitely generated group G is DCS–graph
automatic with quasigeodesic normal form if and only if it is a group with DCS

word problem. Therefore, by Theorems 1 and 8, a DCS–Cayley p.f. linear–
time computablegroup is a group with DCS word problem.

3.5. Examples

Thurston proved that an automatic nilpotent group must be virtually
abelian [2]. Kharlampovich, Khoussainov and Miasnikov showed that every
f.g. nilpotent group of nilpotency class at most two is Cayley automatic
[1]. However, it is conjectured that there exists a f.g. nilpotent group of
nilpotency class three which is not Cayley automatic [16]. The main purpose
of this subsection is to show that Cayley p.f. linear–time computable groups
comprise a wide family of groups including all f.g. subgroups of GL(n,Q).
This implies that all polycyclic groups are Cayley p.f. linear–time computable.
The latter, in particular, shows that all f.g. nilpotent groups are Cayley
p.f. linear–time computable. The groups SL(n,Z) are also Cayley p.f. linear–
time computable.5

Theorem 9. A finitely generated subgroup of GL(n,Q) is Cayley p.f. linear–
time computable.

Proof. Let G be a f.g. subgroup of GL(n,Q) and S be a set of semigroup
generators of G. Each s ∈ S corresponds to a matrix Ms ∈ GL(n,Q) with
rational coefficients ms,ij =

ps,ij
qs,ij

for i, j = 1, . . . , n, where ps,ij, qs,ij ∈ Z and

qs,ij > 0. Now we notice that there exist an integer k > 0 and integers
rs,ij such that ms,ij =

rs,ij
k

for all s ∈ S and i, j = 1, . . . , n; for example,

one can put k =
∏

s∈S

n∏

i,j=1

qs,ij. Therefore, we may assume that for all s ∈ S

and i, j = 1, . . . , n: ms,ij ∈ Z[1/k], where Z [1/k] is the abelian group of all
rational numbers of the form d

kℓ
for d, ℓ ∈ Z and ℓ > 0. For example, if k = 10,

5We recall that SL(2,Z) is automatic; so, it is also Cayley automatic. It is not known
whether the groups SL(n,Z) for n > 2 are Cayley automatic or not.

18

then Z [1/k] is just the group of all finite fractional decimal numbers, i.e., the
rational numbers for which the number of digits after the dot is finite. Since
all coefficients of the matrices Ms, s ∈ S are in Z [1/k], then for every matrix
from G the coefficients of this matrix are also in Z[1/k]. That is, G consists of
matrices with coefficients from Z [1/k]. Therefore, G ⊂ Mn(Z [1/k]), where
Mn(Z [1/k]) is the ring of n× n matrices with coefficients in Z [1/k].

The abelian group (Z [1/k] ,+) is FA–presentable, see the proof, e.g., in
[17]. If k = 10, then one can simply use the standard decimal representation
of numbers from Z [1/k]. For other values of k, one can use a representation in
base k. Let us choose any FA–presentation of (Z [1/k] ,+), i.e., a bijection ϕ :
L1 → Z [1/k] from some regular language L1 to Z [1/k] for which the relation
R+ = {(u, v, w) ∈ L1×L1×L1 |ϕ(u)+ϕ(v) = ϕ(w)} is FA–recognizable. The
latter also implies that multiplication by any fixed number t = p

ki
∈ Z [1/k] is

FA–recognizable. That is, the relation Rt = {(u, v) ∈ L1×L1 |ϕ(u)t = ϕ(v)}
is FA–recognizable. Now, every matrix C ∈ Mn(Z [1/k]) with coefficients
cij ∈ Z [1/k] for i, j = 1, . . . , n we represent as the convolution ϕ−1(c11) ⊗
ϕ−1(c12) ⊗ · · · ⊗ ϕ−1(cnn). The collection of all such convolutions form a
regular language Ln = {u11 ⊗ · · · ⊗ unn | uij ∈ L1, i, j = 1, . . . , n}. This gives
the bijection ϕn : Ln → Mn(Z [1/k]) between Ln and Mn(Z [1/k]).

For a given matrix C, the result of the multiplication of C by a matrix
Ms for s ∈ S is given by the following: for given i, j = 1, . . . , n, the coefficient
dij of the matrix D = CMs equals dij = ci1ms,1j + · · ·+ cinms,nj. Therefore,
since R+ and Rt for all t ∈ Z [1/k] are FA–recognizable, the relation Rs =
{(u, v) ∈ Ln × Ln |ϕn(u)Ms = ϕn(v)} is FA–recognizable for every s ∈ S.
Let L = {w ∈ Ln |ϕn(w) ∈ G} and ψ be the restriction of ϕn onto L. Then
ψ : L→ G is a Cayley p.f. linear–time computable representation of G.

Corollary 2. A virtually polycyclic group is Cayley p.f. linear–time com-
putable.

Proof. By Theorem 7, it is enough only to show that a polycyclic group
is Cayley p.f. linear–time computable. Auslander showed that a polycyclic
group has a faithful representation in SL(n,Z) [18]. Therefore, a polycyclic
group is isomorphic to a f.g. subgroup of GL(n,Q) which is Cayley p.f. linear–
time computable by Theorem 9.

4. Cayley Polynomial–Time Computable Groups

The notion of a Cayley p.f. linear–time computable group can be extended
further to the notion of a Cayley polynomial–time computable group which

19

we introduce in this section.
We say that a function f : Σ∗ → Σ∗ is polynomial–time computable if

it is computed by a deterministic one–tape Turing machine in time O(p(n)),
where p(n) is a polynomial and n is a length of the input. Note that (in
contrast to the linear–time case) restricting to position–faithful Turing ma-
chines has no effect: a function computed by a deterministic one–tape Turing
machine in polynomial time can be computed by a deterministic position–
faithful one–tape Turing machine in polynomial time by performing the same
steps and at the end copying the output to the front of the tape (this takes
at most polynomial time).

Let G be a f.g. group and S = {s1, . . . , sn} ⊆ G be a finite set of
semigroup generators of G. Let C be a nonempty class of languages.

Definition 4 (Cayley polynomial–time computable groups). We say that the
group G is C–Cayley polynomial–time computable if there exist a language
L ⊆ Σ∗ from the class C over some finite alphabet Σ, a bijective mapping
ψ : L → G between the language L and the group G and polynomial–time
computable functions fi : Σ

∗ → Σ∗ such that fi(L) ⊆ L and for every w ∈
L: ψ(fi(w)) = ψ(w)si, for all i = 1, . . . , n. We call ψ : L → G a C–
Cayley polynomial–time computable representation of the group G. If the
requirement for L to be in a specific class C is omitted, then we just say that
G is a Cayley polynomial–time computable group and ψ : L→ G is a Cayley
polynomial–time computable representation of G.

A C–Cayley p.f. linear–time computable group is C–Cayley polynomial–
time computable. Similarly to C–Cayley p.f. linear–time computable groups,
the notion of a C–Cayley polynomial–time computable group does not depend
on the choice of generators.

Proposition 3. The notion of a C–Cayley polynomial–time computable group
does not depend on the choice of generators.

Proof. We first notice that if given functions fji : Σ∗ → Σ∗, i = 1, . . . , m
are polynomial–time computable, then the composition fjm ◦ · · · ◦ fj1 is
polynomial–time computable. The rest literally repeats the proof of Proposi-
tion 1 modulo changing the term automatic (p.f. linear–time) to polynomial–
time.

Remark 8. We note that if the degree of a polynomial p(n) is greater than
one, then the composition g ◦ f of two functions f and g computed in time

20

O(p(n)) is in general not necessarily computed in time O(p(n)); we may
only guarantee it is computed in time O(p(p(n))). So, fixing an upper bound
for the time complexity in Definition 4 one looses the independence on the
choice generators. An alternative approach could be to use a more powerful
computational model (for example, a two–tape Turing machine) and force the
time complexity to be at most linear. In this case one gets the independence
on the choice generators without necessity to update the time complexity.

Following [10, Definition 4] we introduce the notion of a Cayley polynomial–
time computable representation which has quasigeodesic normal form (n.f.).
Let A be some set of generators of G.

Definition 5. We say that a C–Cayley polynomial–time computable repre-
sentation ψ : L → G has quasigeodesic normal form if there is a constant
C such that for all w ∈ L: |w| 6 C (dA(ψ(w)) + 1). In this case we say
that G is C–Cayley polynomial–time computable with quasigeodesic normal
form. If the requirement for L to be in a specific class C is omitted, then
we just say that G is Cayley polynomial–time computable with quasigeodesic
n.f. and a Cayley polynomial–time computable representation ψ : L → G has
quasigeodesic n.f.

We note that a Cayley polynomial–time computable representation ψ :
L→ G does not necessary have quasigeodesic normal form like every Cayley
p.f. linear–time computable representation (see Theorem 1). Therefore, the
argument used in Theorem 2 cannot be generalized for an arbitrary Cayley–
polynomial time computable representation. However, the following analogue
of Theorem 2 holds:

Theorem 10 (Computing normal form in polynomial time). Suppose that
a Cayley polynomial–time computable representation ψ : L → G has quasi-
geodesic normal form. Then there is an algorithm which for a given in-
put word v = b1 . . . bk ∈ (A ∪ A−1)∗ computes the string u ∈ L for which
ψ(u) = π(v). Moreover, this algorithm can be implemented by a determinis-
tic one–tape Turing machine in polynomial time.

Proof. The proof repeats Theorem 2 modulo the following minor changes.
Since ψ : L → G has quasigeodesic normal form, for every string uj−1 =
ψ−1(b1 . . . bj−1), j = 1, . . . , k, the following inequality is satisfied: |uj−1| 6
C(dA(b1 . . . bj−1)+1) 6 C(j−1)+C 6 Ck+C for some constant C. Therefore,
polynomial time is required to compute the string uj from uj−1. So the total

21

time required to compute the string uk from the input b1 . . . bk is polynomial.

Similarly to Corollary 1 we immediately obtain the following.

Corollary 3 (Solving word problem in polynomial time). If a given group G
is Cayley polynomial–time computable with quasigeodesic normal form, the
word problem in G can be solved by a deterministic one–tape Turing machine
in polynomial time.

Clearly, the analogue of Theorem 3 holds for a Cayley polynomial–time
computable representation ψ : L→ G.

Theorem 11. For every Cayley polynomial–time computable representation
ψ : L→ G the language L is in the class RE.

Furthermore, all closure properties with respect to taking a finite ex-
tension, the direct product, the free product and a finitely generated sub-
group, shown in Theorems 4, 5, 6 and 7, respectively, remain valid for Cayley
polynomial–time computable groups and the ones with quasigeodesic normal
forms. Namely, we have the following.

Theorem 12 (Finite extensions, direct products, free products). For a given
class of languages C, assuming that the relevant conditions are satisfied 6, the
class of C–Cayley polynomial–time computable groups is closed under taking
a finite extension, the direct product and the free product. The same holds for
the class of C–Cayley polynomial–time computable groups with quasigeodesic
normal forms.

Proof. For the first statement of the theorem the proof repeats Theorems
4, 5 and 6 with minor obvious changes. For the second statement of the
theorem it is enough to notice that the quasigeodesic property is preserved
for all representations which appear in the proofs of these theorems.

Theorem 13 (Finitely generated subgroups). The class of Cayley polynomial–
time computable groups is closed under taking a finitely generated subgroup.
The same holds for the class of Cayley polynomial–time computable groups
with quasigeodesic normal forms.

6See the conditions on the class C in Theorems 4, 5 and 6 for finite extensions, direct
products and free products, respectively.

22

Proof. For the first statement of the theorem the proof repeats Theorem 7
with obvious changes. In order to show the second statement of the theorem,
in the proof of Theorem 7 it is enough to notice that if ψ : L → G has
quasigeodesic normal form, then for each w ∈ L′ ⊂ L the inequalities |w| 6
C(dA(ψ(w)) + 1) 6 C(C ′dA′(ψ(w)) + 1) hold for some constants C,C ′ > 0.
This implies that ψ′ : L′ → H , which is the restriction of ψ onto L′, also has
quasigeodesic normal form.

We note that Theorem 8 cannot be directly generalized to C–Cayley poly-
nomial – time computable groups, so in general we cannot say how they
compare with C–graph automatic groups. However, for some special classes
of languages C, it is possible to relate these two classes of groups, see Remark
9 below.

Remark 9. In [10, Theorem 10] the second author and Taback showed that
for a Sk–graph automatic group with quasigeodesic normal form, the normal
form is computable in polynomial time, where Sk is the class of languages
accepted by a non–blind non–deterministic k–counter automaton running in
quasi–realtime. We recall that such automaton is a non–deterministic au-
tomaton augmented with k integer counters which are initially set to zero
[19]. These counters can be incremented, decremented, set to zero and com-
pared to zero. Running in quasi–realtime means that the number of allowed
consecutive ǫ–transitions is bounded from above by some constant. A string
is accepted by this automaton exactly if it reaches an accepting state with all
counters returned to zero.

Now let G be a Sk–graph automatic group with a symmetric set of semi-
group generators S = {s1, . . . , sn} ⊂ G. Then there is a bijection ψ : L→ G
from a language L ⊆ Σ∗ in the class Sk to G for which the languages
Ls = {u ⊗ v | u, v ∈ L, ψ(v) = ψ(u)s} are in Sk for every s ∈ S. As-
sume that there is a polynomial p such that for all s ∈ S and u, v ∈ L for
which ψ(v) = ψ(u)s the inequality |v| 6 p(|u|) holds; we note that the latter
necessarily holds if ψ : L→ G is a Cayley polynomial–time computable repre-
sentation. Then G is Sk–Cayley polynomial–time computable and ψ : L→ G
is a Sk–Cayley polynomial–time computable representation of G. In order to
prove this one only needs to show that for a given s ∈ S there is a polynomial–
time algorithm which for the input u ∈ L produces the output v ∈ L such that
u⊗ v ∈ Ls. The reader may look up this algorithm and the explanation why
it runs in polynomial time in [10, Theorem 10].

23

What are examples of Cayley polynomial–time computable groups? Es-
pecially we are interested in examples of REG–Cayley polynomial–time com-
putable groups because, similarly to Cayley p.f. linear–time computable
groups, this class naturally extends the class of Cayley automatic groups.

First, in order to show that the class of REG–Cayley polynomial–time
computable groups is wide, we notice that it comprises all f.g. nilpotent
groups. Let G be a f.g. nilpotent group. Suppose first that G is torsion–free.
There is a central series G = G1 > · · · > Gn+1 = 1 such that Gi/Gi+1 is an
infinite cyclic group for all i = 1, . . . , n. Then there exist a1, . . . , an ∈ G for
which Gi = 〈ai, Gi+1〉. This implies that every element g ∈ G has a unique
normal form g = ax11 . . . axnn , where x1, . . . , xn are integers. Let L be a lan-
guage of such normal forms over the alphabet Σ = {a1, . . . , an, a

−1
1 , . . . , a−1

n }.
Clearly, L is a regular language. The canonical mapping π : L → G gives a
bijection between L and G. For given two group elements g1 = ax11 . . . axnn and
g2 = ay11 . . . aynn , the product g1g2 equals a

q1
1 . . . a

qn
n for some integers q1, . . . qn.

This defines the functions qi(x1, . . . , xn, y1, . . . , yn), i = 1, . . . , n of 2n integer
variables x1, . . . , xn, y1, . . . , yn; in fact it can be shown that qi depends only
on x1, . . . , xi and y1, . . . , yi for every i = 1, . . . , n. Hall showed [20] that the
functions qi are polynomials qi ∈ Q[x1, . . . , xn, y1, . . . , yn]. Therefore, for each
semigroup generator s ∈ {a1, . . . , an, a

−1
1 , . . . , a−1

n } there exist polynomials
ps,i ∈ Q[x1, . . . , xn] for i = 1, . . . , n such that ax11 . . . axnn s = a

ps,1
1 . . . a

ps,n
n . It

can be seen that these right multiplications are polynomial–time computable
functions. Therefore, π : L → G is a REG–Cayley polynomial–time com-
putable representation. If the group G is not torsion–free, it has a torsion–
free nilpotent subgroup of finite index. Therefore, by Theorem 12, G also
has a REG–Cayley polynomial–time computable representation.

Other nontrivial examples of REG–Cayley polynomial–time computable
groups include the wreath product Z2 ≀ Z

2 and Thompson’s group F . We
denote by IND the class of indexed languages. In [21, S 5] the first author and
Khoussainov showed that the group Z2 ≀ Z

2 is (REG, IND)–graph automatic7

by constructing a certain bijection between a regular language and the group
Z2 ≀ Z

2. It can be verified that this bijection is a REG–Cayley polynomial–
time computable representation of Z2 ≀ Z2. Therefore, Z2 ≀ Z2 is a REG–
Cayley polynomial–time computable group. This representation does not

7 (B, C)–graph automatic is defined in [10]: the normal form is in the language class B
and the 2-tape language for multiplication is in the class C.

24

have quasigeodesic normal form, see [21, Remark 9].
Let DS1 be the class of non–blind deterministic 1–counter languages (see

Remark 9 where the definition of non–blind non–deterministic k–counter
languages is recalled). In [22] the second author and Taback showed that
Thompson’s group F is (REG,DS1)–graph automatic. It follows from the
metric inequalities established in [22, Proposition 3.3] and the observation
made in the end of Remark 9 that F is REG–Cayley polynomial–time com-
putable group with quasigeodesic normal form.

For the last example of a Cayley polynomial–time computable group we
mention the wreath product Z2≀F2. We denote by DCFL the class of determin-
istic context–free languages. In [21, S 4] it was shown that the group Z2 ≀F2 is
DCFL–graph automatic by constructing a certain bijection between a DCFL

language and the group Z2≀F2. It can be verified that this bijection is a DCFL–
Cayley polynomial–time computable representation of Z2 ≀ F2. Moreover, it
immediately follows from the metric inequalities shown in [21, Theorem 5]
that this representation has quasigeodesic normal form. Therefore, Z2 ≀F2 is a
DCFL–Cayley polynomial–time computable group with quasigeodesic normal
form.

5. Cayley distance function for Cayley polynomial–time computable

groups

Let G be a f.g. group with a finite generating set A ⊂ G. Let ψ : L→ G
be a bijection from a language L ⊆ Σ∗ to the group G. For each symbol σ ∈ Σ
one can assign a group element gσ ∈ G. This assignment defines a mapping
α : Σ → G, not necessarily injective, for which α(σ) = gσ for all σ ∈ Σ. Then
we can define the canonical mapping πα : L→ G as follows: for a given string
w = σ1 . . . σk ∈ L we define πα(w) ∈ G as πα(w) = α(σ1)α(σ2) . . . α(σk) and
πα(w) = e if w = ǫ. Thus, for fixed ψ : L→ G and α : Σ → G, the following
nondecreasing function hψ,α : [N,+∞) → R+ is defined by:

hψ,α(n) = max{dA(πα(w), ψ(w)) |w ∈ L6n}, (2)

where dA(πα(w), ψ(w)) is the distance between πα(w) and ψ(w) in the word
metric relative to A, L6n = {w ∈ L | |w| 6 n} and N = min{n ∈ N |L6n 6=
∅}. For given ψ and α we call hψ,α a Cayley distance function. This function
was introduced in [4] and studied in [5, 6] in the context of Cayley automatic

25

groups8.
Clearly, if G is automatic, then for an automatic representation π : L →

G, L ⊂ (A ∪ A−1)∗ and a natural mapping α : A ∪ A−1 → G for which
α(s) = s, s ∈ A∪A−1 all values of the Cayley distance function hπ,α are equal
to zero. [4, Theorem 8] shows that if a group G has some Cayley automatic
representation ψ : L → G and mapping α : Σ → G for which the Cayley
distance function hψ,α is bounded from above by a constant, then G must
be automatic. In [6] the first two authors and Taback ask: can the Cayley
distance function can become arbitrarily close to a constant function for
some non-automatic Cayley automatic group? Here we show that the answer
is no when we generalise to Cayley p.f. linear–time computable and REG–
Cayley polynomial–time computable representations: we furnish examples
which have Cayley p.f. linear–time computable and REG–Cayley polynomial–
time computable representations for which the Cayley distance function is
zero.

For given two nondecreasing functions h1 : [N1,+∞) → R+ and h2 :
[N2,+∞) → R+ we say that h1 � h2, if there exist integer constants
K,M > 0 and N > max{N1, N2} such that h1(n) 6 Kh2(Mn) for all
n > N . It is said that h1 ≍ h2 if h1 � h2 and h2 � h1. We say that a
Cayley automatic group G is separated from automatic groups if there exists
a non–decreasing unbounded function f such that f � hψ,α for all Cayley
automatic representations ψ : L → G and mappings α : Σ → G. We denote
by z : N → R+ the zero function: z(n) = 0 for all n ∈ N. We say that a
Cayley distance function hψ,α vanishes if hψ,α ≍ z: this equivalently means
that hψ,α(n) = 0 for all n ∈ domhψ,α. We denote by i : N → R+ the identity
function: i(n) = n for all n ∈ N.

Theorem 14. There exists a Cayley automatic group G separated from au-
tomatic groups but for which the Cayley distance function hψ,α vanishes for
some Cayley p.f. linear–time computable representation ψ of G and a map-
ping α.

Proof. In order to prove the theorem one needs to provide an example of a
group G satisfying the condition of the theorem. For such an example we

8In [4, 5] it is assumed from the beginning that L is a language over some symmetric
set of generators. It can be seen that this assumption is purely a matter of convenience
and it does not have any effect on the study of the Cayley distance function hψ,α.

26

take the lamplighter group G = Z2 ≀Z. The lamplighter group Z2 ≀Z is Cayley
automatic [1]; but not automatic because it is not finitely presented [2]. By
[4, Theorem 13], for every Cayley automatic representation ψ : L → Z2 ≀ Z
and a mapping α : Σ → Z2 ≀ Z the corresponding function hψ,α given by
(2) is coarsely greater or equal than i: i � hψ,α. Below we will show that
there exist a Cayley p.f. linear–time computable representation of Z2 ≀Z and
a mapping for which the Cayley distance function vanishes.

Each element of the lamplighter group Z2 ≀ Z is identified with a pair
(f, z), where f is a function f : Z → {0, 1} with finite support (that is, only
for finitely many integers i, f(i) = 1) and z is an integer. We denote by
a the pair (f0, 1), where f0(j) = 0 for all j ∈ Z, and by b the pair (f1, 0),
where f1(j) = 0 for all j 6= 0 and f1(0) = 1. The group elements a and b
generate Z2 ≀ Z and the right multiplications by a, a−1 and b = b−1 are as
follows. For a given g = (f, z) ∈ Z2 ≀Z, ga = (f, z+1), ga−1 = (f, z− 1) and
gb = gb−1 = (f ′, z), where f ′(i) = f(i) for i 6= z, f ′(z) = 0 if f(z) = 1 and
f ′(z) = 1 if f(z) = 0. The identity e of Z2 ≀Z corresponds to the pair (f0, 0).

Let g = (f, z) be a given group element of Z2 ≀Z. Let r = max{z, i | f(i) =
1, i ∈ Z} and ℓ = min{z, i | f(i) = 1, i ∈ Z}. Let Σ = {b, a, a−1, ↑,#}. Let us
define a normal form w ∈ Σ∗ of g to be the string w = aℓ#u#az−r, where the
string u is as follows. Initially i = ℓ, the procedure to construct the string u
is the following:

• If f(i) = 1, we write b as the first symbol of u. If z = i, we write ↑ as
the next symbol of u. Update i→ i+ 1;

• If i 6 r, we write a as the the next symbol of u, then b if f(i) = 1 and
then ↑ if z = i+ 1. Update i→ i+ 1;

• If i 6 r, we write a as the next symbol of u, then b if f(i) = 1 and then
↑ if z = i+ 2. Update i→ i+ 1;

• This process is continued until i 6 r. The result is the string u.

Informally speaking, the normal form w = aℓ#u#az−r is obtained as
follows. First the pointer is moved from the position i = 0 to the position
i = ℓ. After that the pointer is moved to the right scanning the values f(i)
and the position of the lamplighter z until it reaches the position i = r. Then
the pointer moves to the left until it reaches the position of the lamplighter
i = z. Let us give two examples. Let g1 = (f, z) be the pair for which z = 1,

27

f(−1) = 1, f(0) = 1, f(2) = 1 and f(i) = 0 for all i 6= −1, 0, 2. The normal
form of g1 is u = a−1#baba ↑ ab#a−1. Let g2 = (f, z) be the pair for which
z = 1, f(−2) = 1 and f(i) = 0 for all i 6= −2. The normal form of g2 is
u = a−1a−1#baaa ↑ #.

Let L be the language of all such normal forms. We denote by C1 the class
of languages recognized by a (quasi–realtime) blind deterministic 1–counter
automaton9. It follows from the simple argument below that the language L
is in the class C1. Let w = aℓ#u#az−r. The string u is of the form u = p ↑ s,
where p is the prefix of u preceding the symbol ↑ and s is the suffix. The
counter is increased by one each time the automaton reads the symbol a in
the suffix s of u. The counter is decreased by one each time the automaton
reads the symbol a−1 in the suffix az−r of w. Then w ∈ L if and only if the
counter returns to 0.

Construction of automatic functions recognizing the right multiplications
by a, a−1 and b is easy, so we skip it for brevity. Thus, we constructed a
C1–Cayley p.f. linear–time computable representation ψ : L → Z2 ≀ Z of the
lamplighter group Z2 ≀ Z which sends a normal form w = aℓ#u#az−r to the
corresponding group element g = (f, z). Now let α : Σ → Z2 ≀ Z be the
following mapping: α(a) = a, α(a−1) = a−1, α(b) = b, α(↑) = e and α(#) =
e. Clearly, for the C1–Cayley p.f. linear–time computable representation ψ
and the mapping α, the Cayley distance function hψ,α vanishes.

Theorem 15. There exist a Cayley automatic group G separated from au-
tomatic groups but for which the Cayley distance function hψ,α vanishes for
some REG–Cayley polynomial–time computable representation ψ of G and a
mapping α.

Proof. Let us consider the Baumslag–Solitar groupsBS(p, q) = 〈a, t | tapt−1 =
aq〉 for 1 6 p < q. These groups are not automatic [2], but they are Cayley
automatic [1, 11]. By [5, Corollary 2.4], for every Cayley automatic represen-
tation ψ : L→ BS(p, q) and a mapping α : Σ → BS(p, q) the corresponding
function hψ,α given by (2) is coarsely greater or equal than i: i � hψ,α. We will
show that for the Baumslag–Solitar group BS(p, q) there are a REG–Cayley

9We recall that a blind deterministic 1–counter automaton is a finite automaton aug-
mented by an integer counter, initially set to zero, which can be incremented and decre-
mented, but not read. A string is accepted by such an automaton exactly if it reaches an
accepting state with the counter returned to zero.

28

polynomial–time computable representation and a mapping for which the
Cayley distance function vanishes.

As a HNN extension of the infinite cyclic group the Baumslag–Solitar
group BS(p, q) admits the following normal form, see, e.g., [23, Chapter IV].
Every group element g ∈ BS(p, q) can be uniquely written as a freely reduced
word over the alphabet Σ = {a, a−1, t, t−1} of the form wℓt

εℓ . . . w1t
ε1ak,

where εi ∈ {+1,−1}, k ∈ Z, wi = {ǫ, a, . . . , ap−1} if εi = −1 and wi =
{ǫ, a, . . . , aq−1} if εi = +1. The language L of such normal forms is clearly reg-
ular. For a bijection between the language L and the group BS(p, q) we take
the canonical mapping: π : L → G. The right multiplications by a and a−1

are as follows: wℓt
εℓ . . . w1t

ε1ak
×a
−→ wℓt

εℓ . . . w1t
ε1ak+1, wℓt

εℓ . . . w1t
ε1ak

×a−1

−−−→
wℓt

εℓ . . . w1t
ε1ak−1. Let k = mq + r for m ∈ Z and r ∈ {0, 1, . . . , q − 1}. The

right multiplication by t is as follows (different cases are considered sepa-
rately):

• if r 6= 0, then wℓt
εℓ . . . w1t

ε1ak
×t
−→ wℓt

εℓ . . . w1t
ε1artamp;

• if r = 0, ℓ > 1 and ε1 = +1, then

wℓt
εℓ . . . w1t

ε1ak
×t
−→ wℓt

εℓ . . . w1tta
mp;

• if r = 0, ℓ > 1 and ε1 = −1, then

wℓt
εℓ . . . w1t

ε1ak
×t
−→ wℓt

εℓ . . . w2t
ε2w1a

mp;

• if r = 0 and ℓ = 0, then ak
×t
−→ tamp.

Let k = np + s for n ∈ Z and s ∈ {0, 1, . . . , p− 1}. The right multiplication
by t−1 is as follows:

• if s 6= 0, then wℓt
εℓ . . . w1t

ε1ak
×t−1

−−−→ wℓt
εℓ . . . w1t

ε1ast−1anq;

• if s = 0, ℓ > 1 and ε1 = +1, then

wℓt
εℓ . . . w1t

ε1ak
×t−1

−−−→ wℓt
εℓ . . . w2t

ε2w1a
nq;

• if s = 0, ℓ > 1 and ε1 = −1, then

wℓt
εℓ . . . w1t

ε1ak
×t−1

−−−→ wℓt
εℓ . . . w1t

−1t−1anq;

29

• if s = 0 and ℓ = 0, then ak
×t−1

−−−→ t−1anq.

It can be seen that each of the right multiplications by a, a−1, t and t−1

shown above is polynomial–time computable. Therefore, π : L → BS(p, q)
is a REG–Cayley polynomial–time computable representation. Moreover, for
π : L → BS(p, q) and a natural mapping α : Σ → BS(p, q), for which
α(a) = a, α(a−1) = a−1, α(t) = t and α(t−1) = t−1, the Cayley distance
function hπ,α vanishes.

Remark 10. It follows from the metric estimates for the Baumslag–Solitar
group BS(p, q) obtained by Burillo and the second author [24] that the REG–
Cayley polynomial–time computable representation π : L → BS(p, q) from
the proof of Theorem 15 does not have quasigeodesic normal form; see also a
proof of the analogous fact in [10, p. 317].

6. Conclusion

In this paper we introduced the notion of a C–Cayley p.f. linear–time
computable and a C–Cayley polynomial–time computable group which ex-
tend the notion of a Cayley automatic group introduced by Kharlampov-
ich, Khoussainov and Miasnikov. We proved some algorithmic and closure
properties for these groups, and showed examples. We analysed behaviour
of the Cayley distance function for Cayley p.f. linear–time computable and
REG–Cayley polynomial–time computable representations. For future work
we plan to focus on the classes of Cayley p.f. linear–time computable and
REG–Cayley polynomial–time computable groups.

References

[1] O. Kharlampovich, B. Khoussainov, A. Miasnikov, From automatic
structures to automatic groups, Groups, Geometry, and Dynamics 8 (1)
(2014) 157–198.

[2] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Pa-
terson, W. P. Thurston, Word Processing in Groups, Jones and Barlett
Publishers. Boston, MA, 1992.

[3] J. Case, S. Jain, S. Seah, F. Stephan, Automatic functions, linear time
and learning, Logical Methods in Computer Science 9 (3:19).

30

[4] D. Berdinsky, P. Trakuldit, Measuring closeness between Cayley au-
tomatic groups and automatic groups, in: S. Klein, C. Martn-Vide,
D. Shapira (Eds.), Language and Automata Theory and Applications,
Vol. 10792, Springer International Publishing, 2018, pp. 245–257.

[5] D. Berdinsky, P. Trakuldit, Towards quantitative classification of Cayley
automatic groups, East–West J. of Mathematics 20 (2) (2018) 107–124.

[6] D. Berdinsky, M. Elder, J. Taback, Separating automatic from Cayley
automatic groups, to be submitted (2020).

[7] M. R. Bridson, R. H. Gilman, Formal language theory and the geometry
of 3–manifolds, Commentarii Mathematici Helvetici 71 (1) (1996) 525–
555.

[8] G. Baumslag, M. Shapiro, H. Short, Parallel poly–pushdown groups,
Journal of Pure and Applied Algebra 140 (3) (1999) 209–227.

[9] M. Brittenham, S. Hermiller, D. Holt, Algorithms and topology of Cay-
ley graphs for groups, Journal of Algebra 415 (2014) 112–136.

[10] M. Elder, J. Taback, C–graph automatic groups, Journal of Algebra 413
(2014) 289–319.

[11] D. Berdinsky, B. Khoussainov, On automatic transitive graphs, in:
A. Shur, M. Volkov (Eds.), Developments in Language Theory 2014,
Vol. 8633 of Lecture Notes in Computer Science, Springer International
Publishing, 2014, pp. 1–12.

[12] S. Bérubé, T. Palnitkar, J. Taback, Higher rank lamplighter groups are
graph automatic, Journal of Algebra 496 (2018) 315–343.

[13] B. Khoussainov, A. Nerode, Automatic presentations of structures, in:
D. Leivant (Ed.), Logic and Computational Complexity, Vol. 960 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1995,
pp. 367–392.

[14] F. Stephan, Automatic structures – recent results and open questions,
Journal of Physics: Conference Series 622 (012013).

[15] K. A. Mikhailova, The occurrence problem for direct products of groups,
Mat. Sb. (N.S.) 70(112) (2) (1966) 241–251.

31

[16] S. Jain, B. Khoussainov, F. Stephan, Finitely Generated Semiautomatic
Groups, Computability 7 (2–3) (2018) 273–287.

[17] A. Nies, P. Semukhin, Finite automata presentable abelian groups, An-
nals of Pure and Applied Logic 161 (3) (2009) 458–467.

[18] L. Auslander, On a problem of Philip Hall, Annals of Mathematics 86 (1)
(1967) 112–116.

[19] R. Book, S. Ginsburg, Multi–stack–counter languages, Math. Systems
Theory 6 (1972) 37–48.

[20] P. Hall, Notes of Lectures given at the Canadian Mathematical Congress,
University of Alberta, 1957.

[21] D. Berdinsky, B. Khoussainov, Cayley automatic representations of
wreath products, International Journal of Foundations of Computer
Sceince 27 (2) (2016) 147 – 159.

[22] M. Elder, J. Taback, Thompson’s group F is 1–counter graph automatic,
Groups Complexity Cryptology 8 (1) (2016) 21–33.

[23] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Springer–
Verlag Berlin Heidelberg New York, 1977.

[24] J. Burillo, M. Elder, Metric properties of Baumslag–Solitar groups, In-
ternational Journal of Algebra and Computation 25 (5) (2015) 799–811.

32

	Elsevier required licence
	1aa4ce20-3351-4a5b-97ff-97c750dfadc4
	1 Introduction
	2 Cayley Automatic Groups
	3 Cayley position–faithful linear–time computable groups
	3.1 Quasigeodesic Normal Form
	3.2 Algorithmic Properties
	3.3 Closure Properties
	3.4 Relation with C–graph Automatic Groups
	3.5 Examples

	4 Cayley Polynomial–Time Computable Groups
	5 Cayley distance function for Cayley polynomial–time computable groups
	6 Conclusion

