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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 

Procedia CIRP 93 (2020) 1025–1030

2212-8271 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems
10.1016/j.procir.2020.04.025

© 2020 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems

53rd CIRP Conference on Manufacturing Systems

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2019) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

2212-8271 © 2019 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems 

53rd CIRP Conference on Manufacturing Systems 

Unsupervised Learning for Opportunistic Maintenance Optimization in 
Flexible Manufacturing Systems 

Michael Wockera,b,*, Naomi Kimberly Betza, Christian Feuersängera,                                 
Alexander Lindworskya, Jochen Deuseb 

aBMW Group, Petuelring 130, 80788 Munich, Germany 
bTechnische Universität Dortmund, Institut für Produktionssysteme, 44227 Dortmund, Germany  

* Corresponding author. Tel.: +49-151-601-52564. E-mail address: michael.wocker@tu-dortmund.de 

Abstract 

Large scale manufacturing systems with a high degree in automation and the ability to produce several product variants in parallel meet current 
requirements of a highly flexible and at the same time productive manufacturing process. In practice, however, the non-transparency as well as 
the complexity of these systems overwhelm the maintenance department in the effective planning and implementation of maintenance tasks. As 
a result, major maintenance tasks are postponed to non-production times which causes increased maintenance cost as well as a decrease in system 
availability. This research explores a method that uses unsupervised learning algorithms to analyze type mixes and related process performances 
inside the system. The information is used to determine the optimal master production schedule prior to maintenance activities which leads to 
more frequent and extended time windows for maintenance activities during production time and thus to an increase in system availability. 
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1. Introduction 

The automotive industry faces the challenge of providing a 
growing diversity of engine variants in times of volatile and 
competitive markets. This leads to an increasing demand for a 
flexible and at the same time productive manufacturing process 
[1,2]. A Flexible Manufacturing System (FMS) for mid- and 
high-volume engine-production offers the best trade-off with 
respect to high productivity and flexibility [3]. To realize a 
production rate of several hundred thousand units per year, the 
system consists of processing stations with multiple redundant 
machining centers that can process a variety of product variants. 
FMSs are built to “exploit the benefits of the Economy of Scope 
while achieving the efficiencies of the Economy of Scale” [4]. 
In reality, the system availability as well as the performance 
however fall short of expectations [5] which is presented in 
more detail in the following subsection. To restore system 

availability to a competitive level, an effective maintenance 
planning is crucial [5,6]. The proposed, data-driven approach 
contributes to the concept of Opportunistic Maintenance (OM), 
which is about cost-effective time windows for maintenance 
during production. The presented research for the optimization 
of a maintenance opportunity window (MOW) applies 
clustering algorithms to real production data to determine the 
varying throughput of processing stations given different type 
mixes as their input. The knowledge about process performance 
in relation to produced type mixes can be used to adopt the 
production schedule and to improve the MOWs for an effective 
maintenance. The approach is based on the CRISP-DM 
(CRoss-Industry Standard Process for Data Mining) that 
divides a data analytics project into six phases such as business 
and data understanding, data preparation, modeling, evaluation 
and the deployment. Shearer [7] provides additional 
background to the CRISP-DM. 
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This paper is structured as follows. First, the main 
characteristics of the considered manufacturing system are 
described and the problem as well as the requirements for the 
method developed are defined. Chapter 2 summarizes existing 
approaches for OM in FMS and describes the fundamentals of 
the applied clustering algorithms. Subsequently, in chapter 3, 
the development of the method as well as the application results 
are presented. Chapter 4 summarizes the proposed solution and 
discusses further research issues.   

1.1. Complexity in Flexible Manufacturing Systems 

An FMS has multiple aspects of flexibility such as machine 
flexibility, material handling flexibility, process and product 
flexibility as well as volume flexibility [8,9]. The extend of 
these flexibility dimensions as well as the scaling of the system 
varies depending on production requirements. The research of 
this paper focuses on high-volume FMSs with numerous 
processing steps. The processing stations 𝑃𝑃𝑛𝑛 are interconnected 
by an automated material handling system and decoupled 
through the implementation of a buffer with variable capacity. 
A processing station consists of several redundant machining 
centers 𝑀𝑀𝑚𝑚  which all perform the same processing step in 
parallel to increase the production volume. Each machining 
center is flexible and has an automized tool change which 
enables it to process various part types. Fig. 1 shows the 
conceptual layout of the FMS.  

 

 

Fig. 1. Concept of the examined Flexible Manufacturing System. 

The simultaneous production of part types with different 
cycle times combined with the flexible material handling 
system lead to a non-transparent material flow. Variable buffer 
capacities and an increased amount of random failures due to 
the high degree of automation cause fast changing bottlenecks 
and increase the complexity of the system [10].   

1.2. Problem definition and requirements 

The system’s dynamics, like rapidly changing bottlenecks, 
as well as the lack of knowledge due to non-transparent 
processes make it difficult for the maintenance department to 
plan maintenance tasks in a way that minimizes their impact on 
system performance. As a result, maintenance tasks are either 
conducted causing unexpected production losses or they are 
postponed to non-production periods. Postponement leads to a 
less efficient use of the maintenance personnel capacities 
during production time and thus to additional labor costs due to 

extra shifts of maintenance during the non-production period. 
Eventually, the postponement of maintenance measures causes 
an increased risk of failure and thus a lower system availability. 
The strategy of OM, which is essentially the dynamic search for 
non-critical time windows for maintenance activities during 
production, is a promising concept to address this issue [11] and 
leads to the first requirement. Secondly, the method required 
has to be applicable in an FMS as presented above. The high 
degree of automation needed to manage the flexible material 
flow makes the FMS a cyber physical system and sets the 
prerequisite for a comprehensive data base [10]. Analyzing this 
database with big data technologies offers a huge potential to 
support the cognitively overwhelmed personnel in FMS [12]. 
Consequently, the use of real data to develop a method for an 
effective maintenance planning sets the third requirement for 
this research.  

2. State of the art and research 

The term “Opportunistic Maintenance” first appeared in 
publications by McMill and Radner as well as Jorgenson in 
1963 [13,14]. According to the survey of Ab-Samat, the 
research interest for OM increased continuously in recent years 
but is still at the beginning and thereby full of potential [15]. 
There are two dimensions of OM which need to be looked at 
separately. First, OM can be defined as a policy for the 
replacement of one part or several parts at the same time 
(opportunity), given the condition of the other parts [14]. The 
other dimension, which defines the scope for this paper, 
considers the system as a whole and aims to find MOWs in 
which a maintenance activity in general can be executed 
without adverse effects on production goals  [16]. 

2.1. Opportunistic Maintenance Methods for Flexible 
Manufacturing Systems 

Gu et al. [17] mathematically described a basic 
configuration of a “two machines, one buffer” system that can 
be combined to larger and more complex systems. The MOWs 
are calculated using a simulation model that is fed with current 
buffer states. In addition to buffer states, Chang et al. [18,19] 
also investigated the failures of surrounding machines to 
determine MOWs in a transfer line using a simulation 
approach. Both papers consider systems that produce only one 
product and therefore fail to meet the requirement of an FMS. 
Furthermore, the use of simulation in FMS to gain highly 
dynamic information, such as MOWs is a complex and cost 
intensive method that might not lead to the desired accuracy 
[20,21]. Wocker et al. use real data to train a prediction 
algorithm that estimates MOWs in an FMS and outlines the 
proactive optimization of these MOWs using an appropriate 
production schedule [11]. In the context of production 
scheduling, further research exists that does not explicitly 
address OM and MOWs but whose methods and goals relate to 
the idea of this paper. Feng et al. [22] investigated different 
scheduling approaches to analyze the impact on system 
throughput in general. According to Sawik [23], cyclic 
scheduling is the best approach for maximizing the throughput 
of a Multi-Job Production system. Alavian et al. 

 Author name / Procedia CIRP 00 (2019) 000–000  3 

mathematically analyzed the system throughput as well as 
system bottlenecks as a function of the product-mix. The 
findings lead them to “a so-called Product-mix Performance 
Portrait, which represents the system behavior for all feasible 
product-mixes and which can be used for operations 
management and improvement” [24]. Other than required by 
this approach, Alavian et al. consider a system with fixed 
material flow (first in first out). Furthermore, the approach does 
not use real data but theoretical assumptions that, for the 
application in a rather simple system with 11 machines and two 
variants, lead to an error in throughput calculation with an 
average of 5.1%.  

On the one hand, existing approaches for OM in FMS focus 
on the given condition of the system but do not consider the 
potential of the possibility to adapt the production schedule for 
MOW optimization. On the other hand, current research on 
production scheduling and sequencing lacks the use of real data 
and does not treat the MOW of individual machines as a 
criterion for optimization. Using clustering algorithms to 
automatically determine the most relevant produced type mixes 
together with the corresponding process throughput provides 
promising information for a scheduling approach that 
optimizes maintenance in FMS with multiple products.  

2.2. Clustering Algorithms 

In general, clustering algorithms are unsupervised machine 
learning techniques that support the extraction of latent data 
structures from a given unlabeled data set. In order to find a 
convenient, structured organization of the data, clustering 
methods classify each data sample into a previously identified 
group, a so-called cluster. Following the definition of Jain and 
Dubes [25], “a cluster is comprised of a number of similar 
objects collected or grouped together”. The underlying 
characteristics whether samples belong to the same cluster or 
not differ depending on the applied clustering technique.  

The variety of clustering techniques available can be 
categorized into hierarchal and partitional approaches [26]. 
Given this paper’s objective, the large amount of data and its 
high degree of dimensionality, hierarchical approaches are not 
considered due to their high time complexity. From partitional 
approaches, the most commonly applied clustering models 
have been implemented, i.e. k-means (centroid-based), 
Expectation-Maximization (EM)  algorithm (distribution-
based), mean shift clustering and DBSCAN (both density-
based). [27,28] 

The following paragraphs provide a concise overview of 
these four clustering algorithms and their application. 

2.2.1. k-means 
k-means is a widely used non-probabilistic clustering 

technique, which assigns each data point 𝒙𝒙𝑖𝑖 ∈ ℝ𝐷𝐷 to one of 𝑘𝑘 
circular clusters based on their Euclidean distance, where the 
number of clusters 𝑘𝑘 must be determined a-priori [28].  

The location of each cluster 𝑘𝑘  is defined by its centroid 
𝒎𝒎𝑘𝑘 ∈ ℝ𝐷𝐷. The method then maps each data point 𝒙𝒙𝒊𝒊 to one of 
the 𝑘𝑘 clusters such that the distance between all data points and 
their respective cluster centroids are minimized. Therefore, the 
iterative k-means algorithm from Lloyd [29] is applied, which 

performs an alternating optimization of data point classification 
and the cluster centroid locations 𝒎𝒎𝑘𝑘.  

First, the cluster centroids 𝒎𝒎𝑘𝑘  are randomly initialized. 
Second, each data point 𝒙𝒙𝑖𝑖 is assigned to its nearest cluster, i.e. 
the cluster whose centroid 𝒎𝒎𝑘𝑘 has the shortest distance to the 
respective data point. Then, based upon the classification of all 
data points, the cluster centroid location 𝒎𝒎𝑘𝑘  is updated by 
taking the mean of all data points assigned to its cluster, which 
in turn affects the classification of data points. These iteration 
steps are repeated until 𝒎𝒎𝑘𝑘 converges, i.e. until no changes 
occur in either the cluster indicator or the cluster centroid 
location after one iteration step. [29,30] 

2.2.2. EM Algorithm for Gaussian Mixture Models 
Provided that the data approximates a Gaussian distribution, 

the clusters are allowed to take different forms than pure 
circles. In a Gaussian Mixture Model (GMM), the shape of 
each cluster is defined via the mean and standard deviation of 
the underlying data, which allows each cluster to take on any 
form of ellipse [28]. This approach is probabilistic as the 
component density parameters maximize the likelihood of a 
sample. The two parameters of each Gaussian cluster, i.e. the 
mean 𝜇𝜇𝑘𝑘 and covariance Σ𝑘𝑘, can be specified by applying the 
EM algorithm as introduced by Dempster et al. [31].  

This concept suggests a simple scheme of alternative 
iterations until the specified error converges. First, the model 
parameters are initialized with random values. Then, the 
algorithm iteratively updates the probability of each data point 
belonging to a particular cluster, i.e. the so-called 
responsibilities, and the model parameters in what is called the 
E- and M-Step. The E-step, or expectation step, evaluates the 
responsibilities based on the current parameter values. During 
the maximization step, or M-step, these responsibilities are 
used to reevaluate the model parameters of each cluster, i.e. the 
means, covariances and mixing coefficients. [28,31] 

2.2.3. Mean shift 
Introduced by Fukunaga and Hostetler [32] in 1975, the 

basic principle of the non-parametric clustering algorithm is the 
interpretation of the feature space of the parameter as an 
empirical Probability Density Function (PDF) using a 
generalized kernel approach, where the bandwidth ℎ defines a 
kernel’s window radius. The distribution modes, i.e. cluster 
centroids, are space regions of high density in the Euclidean 
space and hence cause local maxima in the PDF. The location 
of each mode identified in the underlying distribution can be 
determined by performing a gradient ascent procedure for each 
data point 𝒙𝒙𝒊𝒊 until convergence, i.e. the gradient of the density 
function is equal to zero. The location at which the gradient 
equals zero represents the stationary positions of the cluster 
centroids. All data points that converge to the same stationary 
point can then be grouped into the same cluster. [33,34] 

2.2.4. DBSCAN 
The Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) uses, as the name implies, a density 
distribution as basis for the cluster estimation. The method 
starts the clustering process by visiting an arbitrary point 𝒙𝒙𝑖𝑖 
and retrieving all neighboring points within a predefined 
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This paper is structured as follows. First, the main 
characteristics of the considered manufacturing system are 
described and the problem as well as the requirements for the 
method developed are defined. Chapter 2 summarizes existing 
approaches for OM in FMS and describes the fundamentals of 
the applied clustering algorithms. Subsequently, in chapter 3, 
the development of the method as well as the application results 
are presented. Chapter 4 summarizes the proposed solution and 
discusses further research issues.   

1.1. Complexity in Flexible Manufacturing Systems 

An FMS has multiple aspects of flexibility such as machine 
flexibility, material handling flexibility, process and product 
flexibility as well as volume flexibility [8,9]. The extend of 
these flexibility dimensions as well as the scaling of the system 
varies depending on production requirements. The research of 
this paper focuses on high-volume FMSs with numerous 
processing steps. The processing stations 𝑃𝑃𝑛𝑛 are interconnected 
by an automated material handling system and decoupled 
through the implementation of a buffer with variable capacity. 
A processing station consists of several redundant machining 
centers 𝑀𝑀𝑚𝑚  which all perform the same processing step in 
parallel to increase the production volume. Each machining 
center is flexible and has an automized tool change which 
enables it to process various part types. Fig. 1 shows the 
conceptual layout of the FMS.  

 

 

Fig. 1. Concept of the examined Flexible Manufacturing System. 

The simultaneous production of part types with different 
cycle times combined with the flexible material handling 
system lead to a non-transparent material flow. Variable buffer 
capacities and an increased amount of random failures due to 
the high degree of automation cause fast changing bottlenecks 
and increase the complexity of the system [10].   

1.2. Problem definition and requirements 

The system’s dynamics, like rapidly changing bottlenecks, 
as well as the lack of knowledge due to non-transparent 
processes make it difficult for the maintenance department to 
plan maintenance tasks in a way that minimizes their impact on 
system performance. As a result, maintenance tasks are either 
conducted causing unexpected production losses or they are 
postponed to non-production periods. Postponement leads to a 
less efficient use of the maintenance personnel capacities 
during production time and thus to additional labor costs due to 

extra shifts of maintenance during the non-production period. 
Eventually, the postponement of maintenance measures causes 
an increased risk of failure and thus a lower system availability. 
The strategy of OM, which is essentially the dynamic search for 
non-critical time windows for maintenance activities during 
production, is a promising concept to address this issue [11] and 
leads to the first requirement. Secondly, the method required 
has to be applicable in an FMS as presented above. The high 
degree of automation needed to manage the flexible material 
flow makes the FMS a cyber physical system and sets the 
prerequisite for a comprehensive data base [10]. Analyzing this 
database with big data technologies offers a huge potential to 
support the cognitively overwhelmed personnel in FMS [12]. 
Consequently, the use of real data to develop a method for an 
effective maintenance planning sets the third requirement for 
this research.  

2. State of the art and research 

The term “Opportunistic Maintenance” first appeared in 
publications by McMill and Radner as well as Jorgenson in 
1963 [13,14]. According to the survey of Ab-Samat, the 
research interest for OM increased continuously in recent years 
but is still at the beginning and thereby full of potential [15]. 
There are two dimensions of OM which need to be looked at 
separately. First, OM can be defined as a policy for the 
replacement of one part or several parts at the same time 
(opportunity), given the condition of the other parts [14]. The 
other dimension, which defines the scope for this paper, 
considers the system as a whole and aims to find MOWs in 
which a maintenance activity in general can be executed 
without adverse effects on production goals  [16]. 

2.1. Opportunistic Maintenance Methods for Flexible 
Manufacturing Systems 

Gu et al. [17] mathematically described a basic 
configuration of a “two machines, one buffer” system that can 
be combined to larger and more complex systems. The MOWs 
are calculated using a simulation model that is fed with current 
buffer states. In addition to buffer states, Chang et al. [18,19] 
also investigated the failures of surrounding machines to 
determine MOWs in a transfer line using a simulation 
approach. Both papers consider systems that produce only one 
product and therefore fail to meet the requirement of an FMS. 
Furthermore, the use of simulation in FMS to gain highly 
dynamic information, such as MOWs is a complex and cost 
intensive method that might not lead to the desired accuracy 
[20,21]. Wocker et al. use real data to train a prediction 
algorithm that estimates MOWs in an FMS and outlines the 
proactive optimization of these MOWs using an appropriate 
production schedule [11]. In the context of production 
scheduling, further research exists that does not explicitly 
address OM and MOWs but whose methods and goals relate to 
the idea of this paper. Feng et al. [22] investigated different 
scheduling approaches to analyze the impact on system 
throughput in general. According to Sawik [23], cyclic 
scheduling is the best approach for maximizing the throughput 
of a Multi-Job Production system. Alavian et al. 

 Author name / Procedia CIRP 00 (2019) 000–000  3 

mathematically analyzed the system throughput as well as 
system bottlenecks as a function of the product-mix. The 
findings lead them to “a so-called Product-mix Performance 
Portrait, which represents the system behavior for all feasible 
product-mixes and which can be used for operations 
management and improvement” [24]. Other than required by 
this approach, Alavian et al. consider a system with fixed 
material flow (first in first out). Furthermore, the approach does 
not use real data but theoretical assumptions that, for the 
application in a rather simple system with 11 machines and two 
variants, lead to an error in throughput calculation with an 
average of 5.1%.  

On the one hand, existing approaches for OM in FMS focus 
on the given condition of the system but do not consider the 
potential of the possibility to adapt the production schedule for 
MOW optimization. On the other hand, current research on 
production scheduling and sequencing lacks the use of real data 
and does not treat the MOW of individual machines as a 
criterion for optimization. Using clustering algorithms to 
automatically determine the most relevant produced type mixes 
together with the corresponding process throughput provides 
promising information for a scheduling approach that 
optimizes maintenance in FMS with multiple products.  

2.2. Clustering Algorithms 

In general, clustering algorithms are unsupervised machine 
learning techniques that support the extraction of latent data 
structures from a given unlabeled data set. In order to find a 
convenient, structured organization of the data, clustering 
methods classify each data sample into a previously identified 
group, a so-called cluster. Following the definition of Jain and 
Dubes [25], “a cluster is comprised of a number of similar 
objects collected or grouped together”. The underlying 
characteristics whether samples belong to the same cluster or 
not differ depending on the applied clustering technique.  

The variety of clustering techniques available can be 
categorized into hierarchal and partitional approaches [26]. 
Given this paper’s objective, the large amount of data and its 
high degree of dimensionality, hierarchical approaches are not 
considered due to their high time complexity. From partitional 
approaches, the most commonly applied clustering models 
have been implemented, i.e. k-means (centroid-based), 
Expectation-Maximization (EM)  algorithm (distribution-
based), mean shift clustering and DBSCAN (both density-
based). [27,28] 

The following paragraphs provide a concise overview of 
these four clustering algorithms and their application. 

2.2.1. k-means 
k-means is a widely used non-probabilistic clustering 

technique, which assigns each data point 𝒙𝒙𝑖𝑖 ∈ ℝ𝐷𝐷 to one of 𝑘𝑘 
circular clusters based on their Euclidean distance, where the 
number of clusters 𝑘𝑘 must be determined a-priori [28].  

The location of each cluster 𝑘𝑘  is defined by its centroid 
𝒎𝒎𝑘𝑘 ∈ ℝ𝐷𝐷. The method then maps each data point 𝒙𝒙𝒊𝒊 to one of 
the 𝑘𝑘 clusters such that the distance between all data points and 
their respective cluster centroids are minimized. Therefore, the 
iterative k-means algorithm from Lloyd [29] is applied, which 

performs an alternating optimization of data point classification 
and the cluster centroid locations 𝒎𝒎𝑘𝑘.  

First, the cluster centroids 𝒎𝒎𝑘𝑘  are randomly initialized. 
Second, each data point 𝒙𝒙𝑖𝑖 is assigned to its nearest cluster, i.e. 
the cluster whose centroid 𝒎𝒎𝑘𝑘 has the shortest distance to the 
respective data point. Then, based upon the classification of all 
data points, the cluster centroid location 𝒎𝒎𝑘𝑘  is updated by 
taking the mean of all data points assigned to its cluster, which 
in turn affects the classification of data points. These iteration 
steps are repeated until 𝒎𝒎𝑘𝑘 converges, i.e. until no changes 
occur in either the cluster indicator or the cluster centroid 
location after one iteration step. [29,30] 

2.2.2. EM Algorithm for Gaussian Mixture Models 
Provided that the data approximates a Gaussian distribution, 

the clusters are allowed to take different forms than pure 
circles. In a Gaussian Mixture Model (GMM), the shape of 
each cluster is defined via the mean and standard deviation of 
the underlying data, which allows each cluster to take on any 
form of ellipse [28]. This approach is probabilistic as the 
component density parameters maximize the likelihood of a 
sample. The two parameters of each Gaussian cluster, i.e. the 
mean 𝜇𝜇𝑘𝑘 and covariance Σ𝑘𝑘, can be specified by applying the 
EM algorithm as introduced by Dempster et al. [31].  

This concept suggests a simple scheme of alternative 
iterations until the specified error converges. First, the model 
parameters are initialized with random values. Then, the 
algorithm iteratively updates the probability of each data point 
belonging to a particular cluster, i.e. the so-called 
responsibilities, and the model parameters in what is called the 
E- and M-Step. The E-step, or expectation step, evaluates the 
responsibilities based on the current parameter values. During 
the maximization step, or M-step, these responsibilities are 
used to reevaluate the model parameters of each cluster, i.e. the 
means, covariances and mixing coefficients. [28,31] 

2.2.3. Mean shift 
Introduced by Fukunaga and Hostetler [32] in 1975, the 

basic principle of the non-parametric clustering algorithm is the 
interpretation of the feature space of the parameter as an 
empirical Probability Density Function (PDF) using a 
generalized kernel approach, where the bandwidth ℎ defines a 
kernel’s window radius. The distribution modes, i.e. cluster 
centroids, are space regions of high density in the Euclidean 
space and hence cause local maxima in the PDF. The location 
of each mode identified in the underlying distribution can be 
determined by performing a gradient ascent procedure for each 
data point 𝒙𝒙𝒊𝒊 until convergence, i.e. the gradient of the density 
function is equal to zero. The location at which the gradient 
equals zero represents the stationary positions of the cluster 
centroids. All data points that converge to the same stationary 
point can then be grouped into the same cluster. [33,34] 

2.2.4. DBSCAN 
The Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) uses, as the name implies, a density 
distribution as basis for the cluster estimation. The method 
starts the clustering process by visiting an arbitrary point 𝒙𝒙𝑖𝑖 
and retrieving all neighboring points within a predefined 
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distance 𝜀𝜀 . If the number of retrieved points is sufficiently 
large, i.e. exceeds the specified threshold 𝑁𝑁min, a new cluster 
can be formed using the current data point as first cluster point. 
If not, the data point is considered to be noise, and the next 
arbitrary data point is considered. All points within the ε 
distance proximity of the first cluster point are considered part 
of the same cluster. The process of assigning all points in the 
vicinity of 𝜀𝜀 to the same cluster is repeated for all new points 
that have been allocated to the cluster group. Upon completion 
of the current cluster, a new unexplored data point is queried, 
resulting in either the discovery of another cluster or noise. This 
process is repeated until all points have been either assigned to 
a cluster or marked as noise. [35] 

3. Method development and Evaluation 

The clustering algorithms are applied to data that originates 
in a real FMS for the crankcase production of a car 
manufacturer. The explanation of the data preparation and 
preprocessing is followed by the presentation of the clustering 
results and its use for maintenance optimization in FMS. 

3.1. Data Preparation and Preprocessing 

The raw data record 𝐷𝐷 consists of an event-based table with 
one row per production event (part leaves machine) and with 
the corresponding timestamp as its label. Moreover, attributes 
like serial number, machining type, processing time or 
processing events during the recorded production step are 
stored in 𝐷𝐷 . The objective of the clustering analysis is to 
identify relevant type mixes of parts produced within a certain 
period of time. Accordingly, the underlying data set for the 
clustering model must also reflect possible type mixes. In order 
to agglomerate individually produced parts to type mixes, a 
sliding window method is introduced, see Fig. 2. 

 

 

Fig. 2. Data preprocessing: Scheme of windowing function. 

The sliding window method takes a data subset 𝑊𝑊 ⊂ 𝑆𝑆 
where 𝑆𝑆 is a subset of the original data record 𝐷𝐷, filtered by a 
specific processing station. Subset 𝑊𝑊  contains all data rows 
from 𝑆𝑆 within a predetermined time period 𝑇𝑇 which has to be 
chosen according the cycle time of the system. For W, the type 
mix can be determined by calculating the share of each part 
type in the total production of the considered processing 
station. In order to explore the development of the type mixes 
of the regarding station, the time window of size 𝑇𝑇 iteratively 
slides through the record 𝑆𝑆 , which is why this is called the 
sliding window method. Since all parts must pass through the 
initial station 𝑃𝑃1 , the dataset  𝑆𝑆1 ⊂ 𝐷𝐷  filtered by 𝑃𝑃1  is most 

suitable for the identification of type mix clusters. Fig. 3 shows 
the windowed type mix distribution based on dataset 𝑆𝑆1 
containing one week of production data. The frame size of the 
window was set to one hour.   

 

 

Fig. 3. Produced type mix for one week at initial process P1. 

During the considered week, six types of crankcases have 
been produced. A maximum of three different crankcases have 
been manufactured at the same time, see the range starting at 
datapoint 6239 in Fig. 3.  

3.2. Results and Evaluation of the Clustering Algorithms 

Applying clustering algorithms to the corresponding 
preprocessed dataset 𝑆𝑆1 enables the automatic identification of 
common type mixes in large production data sets. Due to the 
varying properties of the proposed clustering methods (see 
subsection 2.2) the four clustering algorithms (a) k-means, (b) 
EM for Gaussian mixture models, (c) mean shift and (d) 
DBSCAN are implemented and their respective performances 
are compared. The clustering results for the data represented in 
Fig. 3 are shown in Fig. 4.  

 

 

Fig. 4. Clusters of the investigated clustering algorithms. 

The k-means and the EM algorithm are not able to 
automatically specify the optimal number of clusters 𝑘𝑘 . In 
order to enable an automatic determination of 𝑘𝑘  for both 
methods, the silhouette coefficient is utilized. The silhouette 
coefficient is a measure of the quality of a clustering which is 
independent of the number of clusters k [36]. The 
implementation of the two remaining clustering methods, mean 
shift and DBSCAN, requires the specification of one and two 
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hyperparameters, respectively: the bandwidth ℎ  defining the 
kernel window radius in mean shift, as well as the two 
parameters 𝜀𝜀  and 𝑁𝑁min  specifying the neighborhood in 
DBSCAN.  

By a visual comparison, it can be determined that the 
DBSCAN algorithm identifies the cleanest clusters, as 
displayed by the cluster centroids in Fig. 4.d. Since the 
algorithm is able to detect noise automatically, the transitions 
between type mixes are disregarded, which results in very 
cleanly separated clusters. The three outlier-sensitive 
algorithms are not able to distinguish between clear type mixes 
and transitions of type mixes, see e.g. transition from type 2 
(orange) to type 1 (blue) in Fig. 3 and the respective shift of the 
cluster centroids in Fig. 4.a-c. Mean shift shows the least 
distortion followed by k-means and the EM algorithm. The 
clear distinction of clusters using DBSCAN can be observed in 
the 3D data representation obtained by applying a Principle 
Component Analysis (PCA). The PCA reduces the 
dimensionality and calculates eigenvectors (principal 
components) that lie along the axis of maximum variation in 
the data  [37]. The DBSCAN algorithm confirms its ability to 
separate classes sharply by defining noise data points, as can be 
derived from Fig. 5.d.  

 

 

Fig. 5. PCA plot of the investigated clustering algorithms. 

Nevertheless, the PCA again suggests that the EM 
algorithm, despite distorting the cluster centroids due to noisy 
data, effectively separates the data points of one class from 
those of other classes. In the respective Class 2 of the k-means 
(Fig. 5.a) and Class 3 of the mean shift (Fig. 5.c) algorithms, 
for example, data points that are positioned closer to the second 
or third Class, respectively, are assigned Class 1. Meanwhile, 
the PCA of the EM method in Fig. 5b shows that these data 
points are still included in Class 3. The observed results are 
evidenced in both smaller and larger datasets ranging from one 
day to one month, given an appropriate hyperparameter tuning 
for DBSCAN and mean shift. The high sensitivity of DBSCAN 
towards its parameters 𝑁𝑁min and 𝜀𝜀 and as well as of mean shift 
towards its bandwidth ℎ makes them not feasible for automated 

clustering in an industrial environment. Even minor changes in 
the setup or in the dimension of input data require re-tuning of 
the parameters since unnoticed changes in the surrounding 
conditions can induce large deviations in the results of the 
algorithm, rendering them unreliable in practice. On the other 
hand, further research reveals that by cleaning the data by 
performing a gradient ascent procedure and thereby deleting 
transitions between type mixes, the EM algorithm delivers as 
good of results as DBSCAN. Since EM algorithm is 
independent of hyperparameter tuning, it was used for further 
method development. By projecting the clusters calculated by 
the EM algorithm onto other processes datasets 𝑆𝑆𝑖𝑖  and 
evaluating the corresponding throughput using the ratio parts 
per hour (pph), type mix specific throughput of a processing 
station can be evaluated. Since the overall availability of a 
processing station varies in time, the throughput is not 
comparable without scaling the data to a certain availability 
level which was chosen to be the average of the real system. 
Tab. 1 shows the process performance 𝑝𝑝 of a random process 
per cluster with 𝑝𝑝  being the quotient of the real processing 
station’s throughput and the target throughput of the system. 
Numbers greater one indicate that the throughput of the 
processing station for an assumed availability of 95% is above 
the desired target throughput of the system. The maintenance 
Key Performance Indicator (KPI) 𝑇𝑇M is calculated as  

𝑇𝑇𝑀𝑀 = 𝑛𝑛 ∙ (1 − 1
𝑝𝑝),                                                            (1) 

with 𝑛𝑛  representing the number of machining centers of a 
processing station. Assuming that every machining center is set 
up for the same part types, 𝑇𝑇M is a measure to determine the 
amount of machining centers that can be shut down for 
maintenance by still providing enough capacity to produce the 
target output of the system.  

Tab. 1: Performance of a processing station and Maintenance-KPI per cluster. 

Cluster Process Performance p Maintenance-KPI TM 

1 1.196 0.982 

2 1.223 1.096 

3 1.230 1.121 

4 1.188 0.948 

5 1.192 0.965 

6 1.266 1.262 

7 1.366 1.608 

8 1.287 1.338 

 
This information can be used for the proactive optimization 

of the MOW of a certain processing station. By scheduling the 
type mix of the cluster with largest value for 𝑇𝑇M, the MOW of 
the considered processing station is extended. This results in 
less performance losses caused by maintenance. Furthermore, 
it gives the maintenance management the opportunity to more 
frequently schedule maintenance tasks during production time 
instead of postponing them into non-production periods. This 
allows the existing maintenance personnel capacities to be used 
more efficiently and the system availability increases as 
maintenance tasks are more often carried out on time. 
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distance 𝜀𝜀 . If the number of retrieved points is sufficiently 
large, i.e. exceeds the specified threshold 𝑁𝑁min, a new cluster 
can be formed using the current data point as first cluster point. 
If not, the data point is considered to be noise, and the next 
arbitrary data point is considered. All points within the ε 
distance proximity of the first cluster point are considered part 
of the same cluster. The process of assigning all points in the 
vicinity of 𝜀𝜀 to the same cluster is repeated for all new points 
that have been allocated to the cluster group. Upon completion 
of the current cluster, a new unexplored data point is queried, 
resulting in either the discovery of another cluster or noise. This 
process is repeated until all points have been either assigned to 
a cluster or marked as noise. [35] 

3. Method development and Evaluation 

The clustering algorithms are applied to data that originates 
in a real FMS for the crankcase production of a car 
manufacturer. The explanation of the data preparation and 
preprocessing is followed by the presentation of the clustering 
results and its use for maintenance optimization in FMS. 

3.1. Data Preparation and Preprocessing 

The raw data record 𝐷𝐷 consists of an event-based table with 
one row per production event (part leaves machine) and with 
the corresponding timestamp as its label. Moreover, attributes 
like serial number, machining type, processing time or 
processing events during the recorded production step are 
stored in 𝐷𝐷 . The objective of the clustering analysis is to 
identify relevant type mixes of parts produced within a certain 
period of time. Accordingly, the underlying data set for the 
clustering model must also reflect possible type mixes. In order 
to agglomerate individually produced parts to type mixes, a 
sliding window method is introduced, see Fig. 2. 

 

 

Fig. 2. Data preprocessing: Scheme of windowing function. 

The sliding window method takes a data subset 𝑊𝑊 ⊂ 𝑆𝑆 
where 𝑆𝑆 is a subset of the original data record 𝐷𝐷, filtered by a 
specific processing station. Subset 𝑊𝑊  contains all data rows 
from 𝑆𝑆 within a predetermined time period 𝑇𝑇 which has to be 
chosen according the cycle time of the system. For W, the type 
mix can be determined by calculating the share of each part 
type in the total production of the considered processing 
station. In order to explore the development of the type mixes 
of the regarding station, the time window of size 𝑇𝑇 iteratively 
slides through the record 𝑆𝑆 , which is why this is called the 
sliding window method. Since all parts must pass through the 
initial station 𝑃𝑃1 , the dataset  𝑆𝑆1 ⊂ 𝐷𝐷  filtered by 𝑃𝑃1  is most 

suitable for the identification of type mix clusters. Fig. 3 shows 
the windowed type mix distribution based on dataset 𝑆𝑆1 
containing one week of production data. The frame size of the 
window was set to one hour.   

 

 

Fig. 3. Produced type mix for one week at initial process P1. 

During the considered week, six types of crankcases have 
been produced. A maximum of three different crankcases have 
been manufactured at the same time, see the range starting at 
datapoint 6239 in Fig. 3.  

3.2. Results and Evaluation of the Clustering Algorithms 

Applying clustering algorithms to the corresponding 
preprocessed dataset 𝑆𝑆1 enables the automatic identification of 
common type mixes in large production data sets. Due to the 
varying properties of the proposed clustering methods (see 
subsection 2.2) the four clustering algorithms (a) k-means, (b) 
EM for Gaussian mixture models, (c) mean shift and (d) 
DBSCAN are implemented and their respective performances 
are compared. The clustering results for the data represented in 
Fig. 3 are shown in Fig. 4.  

 

 

Fig. 4. Clusters of the investigated clustering algorithms. 

The k-means and the EM algorithm are not able to 
automatically specify the optimal number of clusters 𝑘𝑘 . In 
order to enable an automatic determination of 𝑘𝑘  for both 
methods, the silhouette coefficient is utilized. The silhouette 
coefficient is a measure of the quality of a clustering which is 
independent of the number of clusters k [36]. The 
implementation of the two remaining clustering methods, mean 
shift and DBSCAN, requires the specification of one and two 
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hyperparameters, respectively: the bandwidth ℎ  defining the 
kernel window radius in mean shift, as well as the two 
parameters 𝜀𝜀  and 𝑁𝑁min  specifying the neighborhood in 
DBSCAN.  

By a visual comparison, it can be determined that the 
DBSCAN algorithm identifies the cleanest clusters, as 
displayed by the cluster centroids in Fig. 4.d. Since the 
algorithm is able to detect noise automatically, the transitions 
between type mixes are disregarded, which results in very 
cleanly separated clusters. The three outlier-sensitive 
algorithms are not able to distinguish between clear type mixes 
and transitions of type mixes, see e.g. transition from type 2 
(orange) to type 1 (blue) in Fig. 3 and the respective shift of the 
cluster centroids in Fig. 4.a-c. Mean shift shows the least 
distortion followed by k-means and the EM algorithm. The 
clear distinction of clusters using DBSCAN can be observed in 
the 3D data representation obtained by applying a Principle 
Component Analysis (PCA). The PCA reduces the 
dimensionality and calculates eigenvectors (principal 
components) that lie along the axis of maximum variation in 
the data  [37]. The DBSCAN algorithm confirms its ability to 
separate classes sharply by defining noise data points, as can be 
derived from Fig. 5.d.  

 

 

Fig. 5. PCA plot of the investigated clustering algorithms. 

Nevertheless, the PCA again suggests that the EM 
algorithm, despite distorting the cluster centroids due to noisy 
data, effectively separates the data points of one class from 
those of other classes. In the respective Class 2 of the k-means 
(Fig. 5.a) and Class 3 of the mean shift (Fig. 5.c) algorithms, 
for example, data points that are positioned closer to the second 
or third Class, respectively, are assigned Class 1. Meanwhile, 
the PCA of the EM method in Fig. 5b shows that these data 
points are still included in Class 3. The observed results are 
evidenced in both smaller and larger datasets ranging from one 
day to one month, given an appropriate hyperparameter tuning 
for DBSCAN and mean shift. The high sensitivity of DBSCAN 
towards its parameters 𝑁𝑁min and 𝜀𝜀 and as well as of mean shift 
towards its bandwidth ℎ makes them not feasible for automated 

clustering in an industrial environment. Even minor changes in 
the setup or in the dimension of input data require re-tuning of 
the parameters since unnoticed changes in the surrounding 
conditions can induce large deviations in the results of the 
algorithm, rendering them unreliable in practice. On the other 
hand, further research reveals that by cleaning the data by 
performing a gradient ascent procedure and thereby deleting 
transitions between type mixes, the EM algorithm delivers as 
good of results as DBSCAN. Since EM algorithm is 
independent of hyperparameter tuning, it was used for further 
method development. By projecting the clusters calculated by 
the EM algorithm onto other processes datasets 𝑆𝑆𝑖𝑖  and 
evaluating the corresponding throughput using the ratio parts 
per hour (pph), type mix specific throughput of a processing 
station can be evaluated. Since the overall availability of a 
processing station varies in time, the throughput is not 
comparable without scaling the data to a certain availability 
level which was chosen to be the average of the real system. 
Tab. 1 shows the process performance 𝑝𝑝 of a random process 
per cluster with 𝑝𝑝  being the quotient of the real processing 
station’s throughput and the target throughput of the system. 
Numbers greater one indicate that the throughput of the 
processing station for an assumed availability of 95% is above 
the desired target throughput of the system. The maintenance 
Key Performance Indicator (KPI) 𝑇𝑇M is calculated as  

𝑇𝑇𝑀𝑀 = 𝑛𝑛 ∙ (1 − 1
𝑝𝑝),                                                            (1) 

with 𝑛𝑛  representing the number of machining centers of a 
processing station. Assuming that every machining center is set 
up for the same part types, 𝑇𝑇M is a measure to determine the 
amount of machining centers that can be shut down for 
maintenance by still providing enough capacity to produce the 
target output of the system.  

Tab. 1: Performance of a processing station and Maintenance-KPI per cluster. 

Cluster Process Performance p Maintenance-KPI TM 

1 1.196 0.982 

2 1.223 1.096 

3 1.230 1.121 

4 1.188 0.948 

5 1.192 0.965 

6 1.266 1.262 

7 1.366 1.608 

8 1.287 1.338 

 
This information can be used for the proactive optimization 

of the MOW of a certain processing station. By scheduling the 
type mix of the cluster with largest value for 𝑇𝑇M, the MOW of 
the considered processing station is extended. This results in 
less performance losses caused by maintenance. Furthermore, 
it gives the maintenance management the opportunity to more 
frequently schedule maintenance tasks during production time 
instead of postponing them into non-production periods. This 
allows the existing maintenance personnel capacities to be used 
more efficiently and the system availability increases as 
maintenance tasks are more often carried out on time. 
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4. Conclusion and future research 

In this paper, unsupervised learning in the form of clustering 
algorithms has been investigated for its suitability of detecting 
major type mixes in real data of an FMS. With regard to an 
automated applicability in industry, the EM algorithm has 
performed the best among the tested algorithms when 
additional data preparation was done. If the application of the 
algorithm is supervised by an expert who constantly updates 
the hyperparameters, DBSCAN would be the algorithm of 
choice since it handles noise the best. The information about 
the found type mix clusters and the corresponding throughput 
have been used to calculate a meaningful KPI which allows the 
production schedule to adapt for maintenance optimization by 
extending maintenance opportunity windows.  

The investigation of other clustering algorithms and further 
research into other FMSs needs to be conducted to prove 
stability and transferability of this method. Furthermore, in 
case of different setup states of machines belonging to the same 
processing station, the proposed KPI needs to be refined to 
express the impact of shutting down each machine individually. 
Since this paper established an initial approach and focused on 
the evaluation of the clustering algorithms and the development 
of a meaningful KPI, the optimization method needs to be 
applied and evaluated as part of operations and maintenance 
management during real production in an FMS.  
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