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Abstract

To perform any degree of autonomy, a system needs to localise itself, generally requiring
knowledge about its environment. While satellite technologies, like GPS or Galileo, allow
individuals to navigate throughout the world, the level of accuracy of such systems, and
the necessity to have a direct view of the sky, do not match the precision and robustness
requirements needed to deploy robots in the real world. To overcome these limitations,
roboticists developed localisation and mapping algorithms traditionally based on camera
images or radar/LiDAR data. Across the last two decades, Inertial Measurement Units
(IMUs) became ubiquitous. Thus, LiDAR-inertial and visual-inertial pose estimation al-

gorithms represent now the majority of the state estimation literature.

Preintegration became a standard method to aggregate inertial measurement units (IMUs)
readings into pseudo-measurements for navigation systems. This thesis presents a novel
preintegration theory that leverages data-driven continuous representations of the inertial
data to perform analytical inference of the signal integrals. The proposed method proba-
bilistically infers the pseudo-measurements, called Gaussian Preintegrated Measurements
(GPMs), over any time interval, using Gaussian Process (GP) regression to model the
IMU measurements and leveraging the application of linear operators to the GP covari-

ance kernels. Thus, the GPMs do not rely on any explicit motion-model.

This thesis presents two inertial-aided systems that leverage the GPMs in offline batch-
optimisation algorithms. The first one is a framework called IN2LAAMA for INertial
Lidar Localisation Autocalibration And MApping. The proposed method addresses the
issue of motion distortion present in most of today’s LiDARs’ data thoroughly by using
GPMs for each of the LiDAR points.

The second GPM application is an event-based visual-inertial odometry method that uses
lines to represent the environment. Event-cameras generate highly asynchronous streams

of events that are individually triggered by each of the camera pixels upon illumination
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changes. Our framework, called IDOL for IMU-DVS Odometry using Lines, estimates the
system’s pose as well as the position of 3D lines in the environment by considering the
camera events in the framework’s cost function individually (no aggregation in image-like
data). The GPMs allow for the continuous characterisation of the system’s trajectory,

therefore accommodating the asynchronous nature of event-camera data.

Extensive benchmarking of the GPMs is performed on simulated data. The performance
of IN2LAAMA is thoroughly demonstrated throughout simulated and real-world exper-
iments, both indoor and outdoor. Evaluations on public datasets show that IDOL per-
forms at the same order of magnitude as current frame-based state-of-the-art visual-inertial

odometry frameworks.



“Vous savez, moi je ne crois pas qu’il y ait de bonne ou de mauvaise situation. Moi, st

je devais résumer ma vie aujourd’hui avec vous, je dirais que c’est d’abord des rencontres.”t

Edouard Beaer

L«well, you see... I don’t believe that there are good or bad situations. If I had to summarise my life,
here, with you, I would say that it is all about encounters.”
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