
Gaussian Process Preintegration for
Inertial-Aided Navigation Systems

by Cedric Le Gentil

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of A/Prof. Teresa Vidal-Calleja
and A/Prof. Shoudong Huang

University of Technology Sydney
Faculty of Engineering and IT

February 2021

Certificate of Original Authorship

I, Cedric Le Gentil declare that this thesis, is submitted in fulfilment of the requirements

for the award of degree of Doctor of Philosophy, in the Faculty of Engineering and IT

(FEIT) at the University of Technology Sydney (UTS).

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 24/02/2021

iii

Production Note:

Signature removed prior to publication.

Gaussian Process Preintegration for Inertial-Aided

Navigation Systems

by

Cedric Le Gentil

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

Abstract

To perform any degree of autonomy, a system needs to localise itself, generally requiring

knowledge about its environment. While satellite technologies, like GPS or Galileo, allow

individuals to navigate throughout the world, the level of accuracy of such systems, and

the necessity to have a direct view of the sky, do not match the precision and robustness

requirements needed to deploy robots in the real world. To overcome these limitations,

roboticists developed localisation and mapping algorithms traditionally based on camera

images or radar/LiDAR data. Across the last two decades, Inertial Measurement Units

(IMUs) became ubiquitous. Thus, LiDAR-inertial and visual-inertial pose estimation al-

gorithms represent now the majority of the state estimation literature.

Preintegration became a standard method to aggregate inertial measurement units (IMUs)

readings into pseudo-measurements for navigation systems. This thesis presents a novel

preintegration theory that leverages data-driven continuous representations of the inertial

data to perform analytical inference of the signal integrals. The proposed method proba-

bilistically infers the pseudo-measurements, called Gaussian Preintegrated Measurements

(GPMs), over any time interval, using Gaussian Process (GP) regression to model the

IMU measurements and leveraging the application of linear operators to the GP covari-

ance kernels. Thus, the GPMs do not rely on any explicit motion-model.

This thesis presents two inertial-aided systems that leverage the GPMs in offline batch-

optimisation algorithms. The first one is a framework called IN2LAAMA for INertial

Lidar Localisation Autocalibration And MApping. The proposed method addresses the

issue of motion distortion present in most of today’s LiDARs’ data thoroughly by using

GPMs for each of the LiDAR points.

The second GPM application is an event-based visual-inertial odometry method that uses

lines to represent the environment. Event-cameras generate highly asynchronous streams

of events that are individually triggered by each of the camera pixels upon illumination

cedric.legentil@student.uts.edu.au

vi Abstract

changes. Our framework, called IDOL for IMU-DVS Odometry using Lines, estimates the

system’s pose as well as the position of 3D lines in the environment by considering the

camera events in the framework’s cost function individually (no aggregation in image-like

data). The GPMs allow for the continuous characterisation of the system’s trajectory,

therefore accommodating the asynchronous nature of event-camera data.

Extensive benchmarking of the GPMs is performed on simulated data. The performance

of IN2LAAMA is thoroughly demonstrated throughout simulated and real-world exper-

iments, both indoor and outdoor. Evaluations on public datasets show that IDOL per-

forms at the same order of magnitude as current frame-based state-of-the-art visual-inertial

odometry frameworks.

“Vous savez, moi je ne crois pas qu’il y ait de bonne ou de mauvaise situation. Moi, si

je devais résumer ma vie aujourd’hui avec vous, je dirais que c’est d’abord des rencontres.”1

Édouard Beaer

1“Well, you see... I don’t believe that there are good or bad situations. If I had to summarise my life,
here, with you, I would say that it is all about encounters.”

vii

Acknowledgements

The first person I want to thank is someone that I forgot the name of. When people ask

me how I started my PhD, I refer to him as the “Spanish dude”. During a smoko2 on a

building site in April 2016, I told him that I was thinking to quit my labourer job and

attempt to volunteer in random software companies to try to “get back in my field”. To

this, he pronounced words that profoundly changed my life:

“Why don’t you go see a university for that?”.

I cannot thank Shoudong Huang enough for answering my email; even if I suspect the

terms “I am ready to work on a volunteer basis” had a non-negligible role in his decision

to invite me to visit the lab and introduce me to Teresa Vidal-Calleja. After four and

something years, it is always a pleasure to work with Teresa. Her passion for her job is

an inexhaustible source of motivation for everyone she collaborates with. She believed in

me and introduced me to the academic world. She gave me access to unique opportunities

that made me grow not only as a researcher, but also as a person. Both for their technical

expertise and their human qualities, Teresa and Shoudong have been wonderful supervisors

that allowed me to make the best out of my PhD experience.

I want to thank every member of the Centre for Autonomous Systems that I had the

chance to interact with. I especially express my gratitude to Raphaël Falque, Lakshitha

Dantanarayana, and Buddhi Wijerathna for many answers to many questions, for the

laughs and the road trips, more broadly for their friendship inside and outside the lab.

I want to thank Delphine and Flavien Dyiévre-Hamon who have demonstrated invaluable

support when I needed it most. My PhD experience would not have been the same without

rock climbing, its beautiful community, and the UTS Outdoor Adventure Club. Among

the people I actually trust my life with on a weekly basis, I want to thank James Millar,

who is always keen for crazy adventures, Thibaut Géry and Ronny Onggo for teaching me

so much, and Marta Khomyn for changing my vision of the world and life itself. Marta

deserves even more gratitude for her moral support and helping to proofread the very first

version of this thesis.

Last but not least, I want to thank my parents, Valérie and Christophe Le Gentil, for

their love despite the kilometres. During my whole existence, they offered me the best,

even when life was not the easiest for them. The freedom and trust they gave me have

been a blessing. Thank you for understanding and accepting the different choices I made

throughout my life.

2Australian slang term designating a short break during work. Mostly used in the construction industry.

viii

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements viii

1 Introduction 1

1.1 Research topic . 1

1.2 Scope . 2

1.2.1 State estimation . 2

1.2.2 Localisation and mapping . 4

1.2.3 Extrinsic calibration . 5

1.2.4 Lidars and motion distortion . 5

1.2.5 Event-cameras . 5

1.2.6 Motivation . 6

1.3 Objectives and contributions . 7

1.4 Thesis outline . 10

1.5 List of publications . 11

1.5.1 Core contributions . 11

1.5.2 Side contributions . 12

2 Review of Related Work 13

2.1 Preintegration . 14

2.2 Continuous time state representation . 15

2.3 Lidar localisation and mapping . 16

2.4 Event-based odometry . 19

2.5 Extrinsic calibration . 21

3 Gaussian Preintegration 25

3.1 Introduction . 25

3.2 Problem statement . 26

3.2.1 System description . 26

3.2.2 IMU preintegration . 28

3.3 Definitions and background . 29

ix

x Contents

3.3.1 Gaussian Process regression . 30

3.3.2 Gaussian Process inference with linear operators 32

3.4 Gaussian Preintegrated Measurements . 33

3.4.1 GPM - Rotation . 34

3.4.2 GPM - Velocity and position . 36

3.5 Postintegration bias and inter-sensor time-shift corrections 37

3.5.1 Rotation GPM Jacobians . 38

3.5.1.1 Gyroscope biases . 38

3.5.1.2 Inter-sensor time-shift . 39

3.5.2 Velocity and position GPM Jacobians 39

3.5.2.1 Accelerometer and gyroscope biases 39

3.5.2.2 Inter-sensor time-shift . 40

3.6 Experiments and results . 40

3.6.1 Low-frequency benchmarks (0.2 - 20 Hz) 41

3.6.1.1 Accuracy . 41

3.6.1.2 Robustness to noise . 42

3.6.1.3 Computation time . 44

3.6.2 High-frequency benchmarks (> 100 kHz) 45

3.6.2.1 Accuracy . 46

3.6.2.2 Computation time . 47

3.7 Conclusion . 48

4 IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 51

4.1 Introduction . 51

4.2 Method overview . 54

4.2.1 Notation and definitions . 54

4.2.2 Cost function . 55

4.3 Back-end . 56

4.3.1 IMU factors . 56

4.3.2 IMU biases and inter-sensor time-shift 57

4.3.3 Lidar factors . 57

4.4 Front-end . 59

4.4.1 Feature extraction . 59

4.4.2 Feature recomputation . 61

4.4.3 Data association . 63

4.4.3.1 Feature matching . 63

4.4.3.2 Outliers rejection . 65

4.4.4 Loop-closure detection . 65

4.5 On the factor graph and implementation . 68

4.5.1 Factor graph for localisation and mapping 68

4.5.2 Factor graph for autocalibration, localisation, and mapping 68

4.5.3 Robustness of state estimation . 70

4.5.4 Bias observability . 71

4.5.5 GPMs and memory . 71

Contents xi

4.6 Experiments and results . 72

4.6.1 Simulation - localisation and mapping 73

4.6.1.1 Odometry . 73

4.6.1.2 Loop-closure . 75

4.6.1.3 Robustness to inaccurate sensor model 75

4.6.1.4 No motion model . 76

4.6.2 Simulation - front-end . 76

4.6.3 Simulation - calibration . 78

4.6.4 Real-data - Localisation and mapping 79

4.6.4.1 Indoors . 79

4.6.4.2 Outdoors . 82

4.6.5 Real-data - Calibration . 84

4.7 Conclusion . 85

5 IDOL: IMU-DVS Odometry using Lines 87

5.1 Introduction . 87

5.2 Method overview . 90

5.3 Back-end . 91

5.3.1 Event-to-line factors . 92

5.3.2 Line attraction and repulsion factors 92

5.4 Front-end . 94

5.5 Experiments . 96

5.5.1 Datasets and Evaluations . 96

5.5.2 Results . 97

5.6 Conclusions . 104

6 Conclusions and future work 107

6.1 Conclusions . 107

6.2 Future work and associated developments 109

6.2.1 Semantic understanding of the scene 109

6.2.2 Loop closure detection . 110

6.2.3 Calibration trajectories . 111

6.2.4 Event-based visual-lidar-inertial localisation and mapping 112

Appendices 113

A Overview of the Upsampled Preintegration method 115

B Derivation of the bias jacobians for GPM postintegration correction 119

B.1 Accelerometer bias . 120

B.2 Gyroscope bias . 120

C IN2LAAMA Jacobians 123

C.1 IMU factors . 124

xii Contents

C.2 Biases factors . 128

C.3 LiDAR factors . 129

C.3.1 Point reprojection . 129

C.3.2 Point-to-plane . 131

C.3.3 Point-to-line . 132

C.3.4 Noise propagation . 133

D IDOL Jacobians 135

D.1 Event-to-line . 136

D.2 Projection from 3D to 2D . 137

D.2.1 3D transformation . 137

D.3 Splitting force . 140

D.4 Attraction force . 141

Bibliography 143

Acronyms & Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

CAS Centre for Autonomous Systems

CPU Central Processing Unit

DoF Degree-of-Freedom

DVS Dynamic Vision Sensor

EKF Extended Kalman filter

FoV Field-of-View

GNSS Global Navigation Satellite System

GP Gaussian Process

GPM Gaussian Preintegrated Measurement

GPS Global Position System

GPU Graphic Processing Unit

HDR High Dynamic Range

ICP Iterative Closest Point

IDOL IMU-DVS Odometry using Lines

xiii

xiv Contents

IMU Inertial Measurement Unit

IN2LAAMA INertial Lidar Localisation Autocalibration And MApping

KF Kalman Filter

LiDAR Light Detection And Ranging Sensor

LPM Linear Preintegrated Measurement

MAP Maximum A Posteriori

MLE Maximum Likelihood Estimation

NDT Normal Distribution Transform

PM Standard Preintegrated Measurement

RRBT Rapidly Exploring Random Belief Trees

RGB Red-Green-Blue

RGBD Red-Green-Blue-Depth

RMS Root Mean Squared

RMSE Root Mean Squared Error

SE(3) Special Euclidean group in three dimensions

SLAM Simultaneous Localisation And Mapping

so(3) Lie algebra of special orthonormal group in three dimensions

SO(3) Special orthonormal group in three dimensions

UPM Upsampled-Preintegrated-Measurement

UTS University of Technology, Sydney

VI Visual-Inertial

VIO Visual-Inertial Odometry

VO Visual Odometry

Chapter 1

Introduction

1.1 Research topic

To navigate through its environment, a system needs to know where it is in space. Per-

forming localisation corresponds to estimating the system’s pose (position and orientation)

given data collected with one or several sensors. Systems relying on multiple sensors that

provide different type of data are called multi-modal. Any sensor can be classified into

two categories: proprioceptive, that provides information about the system’s state, or

exteroceptive, that measures physical values about the system’s surroundings. Inertial

Measurement Units (IMUs), constituted of gyroscopes and accelerometers, are proprio-

ceptive sensors that measure a system’s angular velocities and proper accelerations. A

multi-modal system that comprises at least one IMU is called an inertial-aided system.

Thanks to the development of consumer electronics, IMUs are now lightweight and afford-

able. Consequently, they became ubiquitous and are used in a large portion of the pose

estimation algorithms present in the literature.

To produce pose information, an IMU’s data need to be processed using the laws of

classical mechanics. The traditional way is to directly compute the integral of the inertial

measurements from known initial conditions. In the context of state estimation, these

initial conditions are not accurately known and change during the estimation process.

Recently, the concept of preintegration was introduced in [1] allowing for the pre-processing

1

2 Chapter 1. Introduction

of the inertial signals in a way that does not rely on the knowledge of the initial conditions.

Since, the efficiency of inertial-aided navigation systems has greatly improved.

Gaussian Processes (GPs) are widely used for data-driven signal modelling. As GPs are

stochastic processes that define signals as multivariate Gaussian distributions, GP regres-

sion is a non-parametric interpolation method. Given noisy discrete observations of a

signal’s value, it allows probabilistic and continuous inference of the signal’s value and its

variance.

This thesis focuses on using GPs as continuous representations of IMU data to perform

accurate preintegration for inertial-aided navigation systems.

1.2 Scope

1.2.1 State estimation

State estimation is the science of evaluating a system’s state given sensory information.

In some scenarios, the nature of the observed system is subject to physical constraints

that make some state configurations unrealistic. Let us consider the problem of pose

estimation of a car. By design and in normal-use conditions, a car cannot drive sideways.

This information can be incorporated in the pose estimation process under the form of a

motion model that constrains the trajectory to be tangential to the rear-wheel axle. While

motion models can originate from physical constraints, they are also often used for their

ability to reduce the computational complexity of an estimation problem. Thus, instead

of estimating the system’s pose at the time of each sensor measurement, the pose can be

estimated at a lower frequency along with the model parameters. Constant-velocity and

constant-acceleration are two popular parametric motion models in the literature.

Motion models necessarily rely on simplifying assumptions about the real world. When

it comes to computing the integrals of acceleration data numerically from an IMU, the

choice of the integration technique embeds some kind of motion model. For example, using

the rectangle rule corresponds to assuming the acceleration is constant in between each

measurement; and using the trapezoidal rule corresponds to constant jerk. It is equivalent

Chapter 1. Introduction 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-35

-30

-25

-20

-15

-10

-5

0

5
Function value

Ground truth
Noisy readings
Zero-order hold interpolation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-70

-60

-50

-40

-30

-20

-10

0

10
Integral from t = 0

Ground truth
Rectangle integration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-35

-30

-25

-20

-15

-10

-5

0

5
Function value

Ground truth
Noisy readings
Linear interpolation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-70

-60

-50

-40

-30

-20

-10

0

10
Integral from t = 0

Ground truth
Trapezoidal integration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-35

-30

-25

-20

-15

-10

-5

0

5
Function value

Ground truth
Noisy readings
GP interpolation
2 Sigma bound

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-70

-60

-50

-40

-30

-20

-10

0

10
Integral from t = 0

Ground truth
GP integration
2 Sigma bound

(a) (b) (c)

Figure 1.1: Illustration of the integration of noisy measurements with different methods.
(a) uses the rectangle rule for numerical integration, whereas (b) uses the trapezoidal
rule. If the signal represents accelerometer data, (a) and (b) correspond to constant-
acceleration and constant-jerk motion models, respectively. (c) integrates analytically
and probabilistically the input signal modelled with a GP. This method does not enforce

any motion model.

to performing analytical integration on signals that have been interpolated with a zero-

order hold and affine functions respectively. GP regression is a data-driven non-parametric

interpolation method that uses a kernel function to represent the signal’s covariance. Un-

like the methods mentioned above, it does not embed any explicit motion model. The

analytical inference of the signal integral is possible via the application of linear operators

to the covariance kernel function. Fig. 1.1 illustrates the different integration methods

mentioned in this paragraph and shows that GP-based integration is far more accurate

than the other-two model-based methods. Previous preintegration works [1] and [2] rely

on the assumption of constant acceleration between IMU measurements (Fig. 1.1(a)).

4 Chapter 1. Introduction

Figure 1.2: Sensors with built-in IMUs. From left to right: a Velodyne LiDAR HDL-
32 (image source: velodynelidar.com), an RGBD Intel Realsense Camera D435i (im-
age source: intelrealsense.com), and an Inivation event-camera DAVIS346 (image source:

rpg.ifi.uzh.ch).

1.2.2 Localisation and mapping

In many pose estimation scenarios, the environment is not known beforehand. Sometimes

this absence of knowledge is actually the very reason why a sensory system is used. In

robotics, the word map refers to a digital model of the real world. In a society that relies

more and more on automation and robotics, the need for Three-Dimensional (3D) maps

is increasing at a fast pace, but not solely for autonomous systems navigation purposes.

A growing number of fields are gaining interest in dense and accurate representations,

especially for monitoring or inspection operations, and augmented reality content. The

term Simultaneous Localisation And Mapping (SLAM) encapsulates the methods that

perform both mapping and pose estimation at the same time.

Originally SLAM techniques were relying solely on one modality; generally camera vision,

Two-Dimensional (2D) Light Detection And Ranging Sensors (LiDARs), or radars [3].

The democratisation of consumer electronics led to the development of more accurate

and affordable sensors along with access to greater computational power. Accordingly,

SLAM and navigation systems started to leverage data from multiple sensors in multi-

modal sensor-fusion algorithms. As mentioned in Section 1.1, IMUs became ubiquitous.

They are the cornerstones of numerous frameworks among the constellation of methods

present in the literature [4]. While high-end IMUs are generally sold individually and

rigidly mounted to a system along with other sensors, it is now common to find cameras

or LiDARs with built-in IMUs (Fig. 1.2). Nowadays, lidar-inertial, visual-inertial, and

lidar-visual-inertial systems represent the majority of every-use autonomous systems.

Chapter 1. Introduction 5

1.2.3 Extrinsic calibration

To perform best, a multi-sensor system needs to include an accurate extrinsic calibration

between the different sensory devices. The term extrinsic calibration can encapsulate

several concepts. It mostly refers to the estimation of the geometric transformations that

spatially separate the sensors, but it can also involve the characterisation of the temporal

asynchronism present in multi-sensory data.

1.2.4 Lidars and motion distortion

LiDARs (2D and 3D) are widely used in robotics. The information provided by a rotating

LiDAR can be interpreted in two ways. One can see LiDAR readings as being full 360-

degree scans of the scene or as an extremely fast succession of range measurements at

different angles of azimuth and elevation. In the first case, it is commonly assumed that

all the points collected are expressed in a single reference frame. In the second case, each

of the points is expressed in a temporally unique reference frame. When the system is

static, both ways give the same outcome. In other words, all the point reference frames

spatially coincide with the scan reference frame. This is not the case when the system

moves. By assuming the points are directly expressed in a common scan reference frame,

the resulting point cloud is distorted. This phenomenon is called motion distortion and

is present in every sensor that acquires sequential exteroceptive information of a physical

area. Rolling-shutter cameras are another example of such sensors. For navigation and

SLAM, an accurate continuous characterisation of the system’s motion is needed.

1.2.5 Event-cameras

Event-cameras, or Dynamic Vision Sensors (DVS’s), are novel sensors that differ from

traditional cameras (or frame-cameras) in the nature of the data they produce (Fig. 1.4).

When the pixels of a frame-camera are triggered at a fixed frequency to acquire an ensemble

of light-intensity readings (called image), the pixels of an event-camera contain a circuitry

that independently triggers events upon change of intensity. Consequently, event-cameras

produce high-bandwidth asynchronous streams of events when the system moves or when

6 Chapter 1. Introduction

Figure 1.3: Example of LiDAR data with and without motion distortion. Left: point
cloud collected while the system is moving. The points’ mismatch at the bottom shows the
evident motion distortion present in the scan. Right: scan of the same location without
motion distortion. Both point clouds are coloured with the normals computed from the

100-closest neighbours.

Figure 1.4: Event-camera data example. Left: grayscale image of the scene. Right: tem-
poral accumulation of events collected with a Inilabs DAVIS240c overlaid on the corre-
sponding grayscale image. The event-camera moves in a static environment. The events’
colours, blue and red, correspond to the direction of the intensity change, positive and

negative, respectively (image source: rpg.ifi.uzh.ch).

dynamic elements are present in the environment. These challenging, unconventional data

have a huge potential for navigation under very fast motions and in scenes with High

Dynamic Range (HDR) of illumination.

1.2.6 Motivation

This thesis proposes a preintegration framework that allows accurate and asynchronous

inference of inertial data for any given time-stamp. While this method has a wide range

of applications for inertial-aided navigation, it is especially suited for use with highly

asynchronous sensors like LiDARs and event-cameras. We apply our novel technique in an

Chapter 1. Introduction 7

autocalibrating lidar-inertial localisation and mapping framework, and in an event-based

visual-inertial odometry method.

1.3 Objectives and contributions

The objectives of the work undertaken in this thesis are:

1. Derivation of a new conceptual method for continuous and probabilistic preintegra-

tion that does not rely on any motion model.

2. Design and implementation of a novel LiDAR-IMU autocalibration, localisation and

mapping framework that accurately addresses the issue of motion distortion based

on the proposed preintegration method.

3. Demonstration of the effectiveness and versatility of the proposed preintegration

method as part of a novel event-based visual-inertial odometry framework that does

not accumulate events into traditional-like images.

For the first objective, we derive a preintegration method that leverages GPs to represent

the inertial data provided by a 6-Degree-of-Freedom (DoF) IMU. With the help of linear

operators applied to the GP covariance kernels, the integration of the inertial signals is

performed analytically (as illustrated in Fig. 1.1). The resulting pseudo-measurements are

denoted Gaussian Preintegrated Measurements (GPMs). The characteristics of the GPs

make the Gaussian preintegration able to probabilistically infer GPMs at any time-stamp

without relying on any motion model. The data-driven nature of GP regression and the

possibility to learn the kernels’ hyperparameters from the inertial data make the GPMs

suitable for virtually any type of motion.

Generally, the accelerometer and gyroscope biases are not accurately known at the time

of integration. A postintegration correction mechanism is derived to allow estimation of

the IMU biases when GPMs are employed in multi-modal estimation frameworks. This

mechanism relies on a first-order Taylor expansion. To further the versatility of the GPMs,

we also derived the correction scheme to account for unknown time-shift between the

8 Chapter 1. Introduction

sensors of the system. Formally, the contributions of our work on Gaussian preintegration

are as follows:

• A versatile GP-based preintegration method that performs analytical integration

of inertial signals over any time interval. The absence of a motion model and the

continuous representation of the inertial data makes the GPM especially suited for

sensor fusion between IMUs and asynchronous sensors.

• A postintegration correction mechanism to allow the seamless integration of the

GPMs into inertial-aided navigation systems.

Regarding the second objective, most of the state-of-the-art LiDAR-IMU SLAM tech-

niques do not propose ways to deal thoroughly with motion distortion and asynchronism

between sensors. Often, a simple motion model is employed, and expensive hardware syn-

chronisation is used. In this thesis, an framework for LiDAR-IMU localisation, mapping

and autocalibration is proposed to demonstrate the use of GPMs for continuous motion

characterisation. The method relies on the registration of edge and plane features in con-

secutive LiDAR frames. The feature extraction is performed in the front-end part of the

framework, while the system trajectory (thus, the motion distortion correction) is esti-

mated in the back-end part through an offline discrete-state batch optimisation. Because

LiDAR scans are originally distorted due to the system’s motion, the associated features

might not accurately capture the true nature of the observed surface. Thus, our approach

manages tight interactions between front-end and back-end to address the issue of motion

distortion also at the front-end level. The design of the proposed framework, called INertial

Lidar Localisation Autocalibration And MApping (IN2LAAMA), leads to the following

contributions:

• A probabilistic localisation and mapping LiDAR-IMU framework (IN2LAAMA) that

rigorously addresses the issue of motion distortion by using GPMs for each of the

collected LiDAR points.

• An target-less extrinsic calibration procedure that is performed alongside localisation

and mapping in IN2LAAMA.

Chapter 1. Introduction 9

• The tight interaction between front-end and back-end for accurate motion-distortion

correction.

• A novel approach for edge and plane feature extraction in sparse LiDAR data. The

proposed technique has the advantage to compute feature scores that are consistent

with the observed surface (i.e., robust to different viewpoint).

• The use of LiDAR scans that sweep more than 360 ◦, associated with a back-and-

forth data association between consecutive LiDAR frames, to allow for robust motion

distortion correction.

• The integration of a simple loop-closure detection mechanism based on the prox-

imity of pose estimates to correct the inherent drift of frame-to-frame estimation

techniques. The proposed mechanism accounts for the collection pattern of the

LiDAR.

• The thorough evaluation of the proposed framework through simulated and real-

world experiments, both indoor and outdoor.

The third objective is to further demonstrate the abilities and versatility of the GPMs. We

propose an event-based visual-inertial odometry framework that uses 3D lines to represent

the environment. The batch optimisation formulation considers the asynchronous events

individually without resorting to event-accumulation into traditional image-like data. The

event data stream can be represented into a 3D spatio-temporal space where 3D-geometry

operations can be performed. In the method’s front-end, events that originate from lines

in the environment are extracted by clustering together events based on the events’ normal

vectors in the spatio-temporal space. At the back-end level, in the cost function of the

batch optimisation, the events belonging to line clusters individually lead to point-to-line

distance residuals leveraging the associated GPMs. As the line clustering does not provide

information about the actual position of the line extremities, we introduce a mechanism

to estimate the position of the line ends in space automatically. The framework is called

IMU-DVS Odometry using Lines (IDOL), and results in the following contributions:

• An optimisation-based odometry framework (IDOL) for event-based visual-inertial

navigation. The proposed method presents a novel paradigm by accounting for the

10 Chapter 1. Introduction

events individually in the cost function without resorting to event aggregation into

image-like data.

• Novel residual types to automatically estimate line endpoints through a mechanism

of attraction / repulsion.

• The evaluation on public datasets and preliminary results showing the potential of

the proposed method for event-based Visual-Inertial Odometry (VIO).

1.4 Thesis outline

This thesis consists of six chapters with three of them representing the technical contri-

bution of our research. Additionally, appendices provide some supplementary derivations

and algorithms used to support the technical chapters.

Chapter 2 presents the literature review. The work in this thesis is related to multiple

robotics subfields. Each of these topics is treated separately in the different sections of

that chapter. First, we discuss the existing work related to the concept of preintegration.

Then, we turn to multiple continuous state representations present in the literature. We

also review different LiDAR-based and event-based pose estimation frameworks, before

presenting the last section on extrinsic calibration.

Chapter 3 first introduces the background knowledge on GP regression, linear operators,

and IMU preintegration. Then we derive our new conceptual method so called Gaus-

sian preintegration. The proposed pipeline first infers the system’s orientation based on

the gyroscope measurements. The newly obtained rotations are used to project the ac-

celerometer readings into a common frame. Finally, the projected acceleration information

is analytically integrated into velocity and position pseudo-measurements. Note that the

exact process differs depending on the nature of the rotational part of the system’s motion.

This chapter also contains thorough experiments showing the accuracy gain provided by

the use of GP models.

Chapter 4 proposes a LiDAR-IMU framework for localisation, mapping, and extrinsic

calibration. Following existing estimation methods built upon exteroceptive data, our

Chapter 1. Introduction 11

algorithm is split into a front-end part that pre-processes the sensor measurements, and a

back-end part that conducts on-manifold non-linear least-square optimisations to estimate

the system’s state. This separation is visible in the organisation of this chapter. Extensive

experiments have been conducted to compare the proposed method against the current

state-of-the-art.

Chapter 5 introduces a novel approach for event-based visual-inertial odometry. The

key innovation is to use the camera events individually in the optimisation cost function.

Consequently, our work drastically differs from traditional vision-based state estimation

methods. It proposes a new paradigm in the way to deal with event-camera data. This

chapter also contains back-end and front-end sections to detail the different elements of the

proposed technique. Due to the lack of open-source event-based visual-inertial odometry

frameworks, in this chapter, we compare our work with the current state-of-the-art frame-

based visual-inertial odometry methods on public datasets.

Chapter 6 is split into two sections. The first discusses the conclusion of our research,

while the second provides the reader with elements of future work. This last section also

discusses concepts and ideas that are currently being explored in our research centre: the

Centre for Autonomous Systems (CAS).

1.5 List of publications

This section presents the list of publications that are relevant to this thesis. The symbol *

indicates the shared first-authorship of a publication.

1.5.1 Core contributions

• C. Le Gentil, T. Vidal-Calleja, S. Huang, “IN2LAAMA: INertial Lidar Localisation

Autocalibration And Mapping”, IEEE Transactions on Robotics, 2021

• C. Le Gentil*, F. Tschopp*, I. Alzugaray, T. Vidal-Calleja, R. Siegwart, J. Nieto,

“IDOL: A framework for IMU-DVS Odometry using Lines”, IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2020

12 Chapter 1. Introduction

• C. Le Gentil, T. Vidal-Calleja, S. Huang, “Gaussian Process Preintegration for

Inertial-Aided State Estimation”, IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 2108–2114, 2020

• C. Le Gentil, T. Vidal-Calleja, S. Huang, “IN2LAMA: INertial Lidar Localisation

And Mapping”, IEEE International Conference on Robotics and Automation, 2019

• C. Le Gentil, T. Vidal-Calleja, S. Huang, “3D Lidar-IMU Calibration based on

Upsampled Preintegrated Measurements for Motion Distortion Correction”, IEEE

International Conference on Robotics and Automation, 2018

1.5.2 Side contributions

• C. Le Gentil*, M. Vayugundla*, R. Giubilato, W. Sturzl, T. Vidal-Calleja, R. Triebel,

“Gaussian Process Gradient Maps for Loop-Closure Detection in Unstructured Plan-

etary Environments”, IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2020

• M. Usayiwevu, C. Le Gentil, J. Mehami, C. Yoo, R. Fitch, T. Vidal-Calleja, “Infor-

mation Driven Self-Calibration for Lidar-Inertial Systems”, IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2020

• B. Dai*, C. Le Gentil*, T. Vidal-Calleja, “Connecting the Dots for Real-Time

LiDAR-based Object Detection with YOLO”, Australasian Conference on Robotics

and Automation, 2018

Chapter 2

Review of Related Work

In its early days, as shown in [5], localisation of autonomous vehicles was mainly relying

on beacons at known positions in the environment. The same concept is used by Global

Navigation Satellite Systems (GNSS’s), in which multiple satellites orbiting about twenty

thousand kilometres above our heads serve as beacons. While GNSS’s provides substantial

localisation information in many outdoor environments worldwide, they cannot be used

indoors or in scenarios where line-of-sight with the satellites cannot be guaranteed. Over

the years, the robotics community have been exploring diverse ways to estimate a system’s

pose using various sensor modalities that do not rely on beacons.

The affordability of both monocular cameras and IMUs makes visual-inertial algorithms

quite popular in the literature [4]. Initially limited by computational power, online state

estimation was mostly relying on filter-based methods such as the one presented in [6].

Later frameworks like [7] and [8] combined both local and global optimisations to estimate

the system trajectory in real-time as well as creating consistent maps with loop-closure de-

tections. Originally expensive and bulky, LiDARs are now affordable sensors that provide

reliable geometric information about the surrounding environment. The system presented

in [9] combines both a 2D LiDAR with an IMU on a spring mechanism to create 3D maps.

Still considered as a state-of-the-art method, LOAM [10] cleverly uses frame-to-frame

and frame-to-map scan registrations loosely coupled with IMU data to outperform any

13

14 Chapter 2. Review of Related Work

other LiDAR-inertial approaches on the KITTI odometry benchmark [11]. All the meth-

ods above leverage only two sensors at a time, but fusion with more sensors is possible,

as demonstrated in [12] with a visual-inertial-GPS system, or [13] with a LiDAR-visual-

inertial odometry pipeline.

2.1 Preintegration

Whether it is for visual-inertial [7, 8] or LiDAR-inertial [14, 15] estimation, many methods

rely on the concept of preintegration originally presented in [1]. The key idea is to dissociate

the computation of the accelerometer data integrals from the initial pose and velocity.

In the context of visual-inertial localisation and mapping, [1] introduces preintegrated

measurements that combine IMU readings collected between two visual key-frames. Unlike

the classic integration of inertial data, preintegration provides pseudo-measurements that

are independent of the linearisation point preventing repetitive computations during the

process of state estimation.

As shown in [16], the authors of [2, 17] introduce a lightweight and accurate VIO algorithm.

The high performance of this algorithm has been made possible with the extension of the

preintegration theory to the rotation manifold [2, 17], instead of the Euler angles repre-

sentation used in [1]. In [14], the inertial data are combined into closed-form preintegrated

measurements as per [18] relying on the assumption of constant local acceleration.

In our preliminary work [19], we introduce the concept of upsampled preintegration that

first interpolates the IMU data before performing numerical integrations as in [17]. The

Upsampled-Preintegrated-Measurements (UPMs) are based on GP regression and do not

rely on any explicit assumption about the system dynamics. In this thesis, we further the

use of GPs and introduce a novel application of linear operators on covariance kernels [20]

to infer analytical integrals of inertial signals.

Chapter 2. Review of Related Work 15

2.2 Continuous time state representation

One issue that arises with multi-sensor systems is the data synchronisation. Even if the

readings of each modality are collected along with accurate real-time timestamps, the

sensor frequencies are generally different and out of phase. Frameworks like [9] and [21]

address this problem by using continuous state representations. In [9, 10, 22–24], the con-

tinuous state is computed through linear pose interpolations over small time intervals. It

corresponds to a constant velocity motion model over short periods of time. The approach

presented in [21] assumes that the continuous state of the system is a linear combina-

tion of basis functions (B-splines). As part of a Maximum Likelihood Estimation (MLE)

batch optimisation, the coefficients of the linear combination are optimised by comparing,

in the cost function, the sensor readings and the estimated state at the corresponding

timestamps. With appropriately chosen basis functions, these methods can reduce the

size of the state vector. Later, [25] extends this concept to address the issue of relative

motion estimation allowing for the approximation of the full MLE solution with constant

computational complexity. The approach presented in [26] also leverages B-splines as in

[21]. However, [26] presents a singularity-free state representation by locally consider-

ing the Special Euclidean group in three dimensions (SE(3)) manifold as opposed to the

Caley-Gibbs-Rodrigues [27] in [21]. This work has later been extended in [28]. While pro-

viding greater representability compared to traditional discrete models, the performance

of continuous state frameworks depends on the veracity of the models assumed.

Based on GP regression [29], a new type of state estimation technique has been presented

in [30] and [31]. Respectively with a minimal orientation representation and with Special

orthonormal group in three dimensions (SO(3)) matrices, the continuous state inference is

guided by embedding a simple motion model in the kernel of the GP-interpolation. While

dealing with a continuous state, this method does not reduce the size of the estimated

state compared to the number of sensor readings. The authors of [30] and [31] explicitly

states in [32], that these methods still discretise the timeline to carry out a Maximum A

Posteriori (MAP) estimation of the state at each sensor-reading timestamp before being

able to infer the state at any other given time.

16 Chapter 2. Review of Related Work

In [15, 19], we propose a different paradigm where GPs are used as continuous representa-

tions of the inertial data allowing the characterisation of the system’s pose in a continuous

manner while relying on a discrete state. The preintegration method developed in this the-

sis is built on a similar concept (GP representation of the inertial data). Like the UPMs

from [19], the GPMs can be both used as a substitute for continuous state representations,

as well as be seamlessly integrated into traditional discrete estimation frameworks. The

non-parametric nature of the GP regression makes the proposed methods agnostic to any

motion model.

2.3 Lidar localisation and mapping

Lidar scan geometric registration is the foundation of most of the laser-based localisation

algorithms. The introduction of Iterative Closest Point (ICP) [33] and generalised ICP

[34] allowed the estimation of the rigid transformation between two point clouds. The

method in [35] estimates a system trajectory using ICP for frame-to-frame relative poses

estimation, and a pose-graph to correct the drift inherent to any odometry-like frameworks.

This method, among others, does not address the phenomenon of motion distortion in

LiDAR scans.

Over the years, different approaches have been presented for state estimation of moving

LiDAR/rolling-shutter sensors. The authors of [22] extend the 2D standard ICP to account

for the LiDAR motion using the assumption of constant velocity during the sweep. This

motion model assumption is often used in the literature as in [10] and [23]. Both techniques

rely on linear pose-interpolation between state variables used as trajectory control points.

In real-world scenarios, the constant-velocity assumption does not necessarily represent

the true nature of the system’s motion. In [10], the 6-DoF pose of the system is estimated

based on data provided by a 3D LiDAR. While also achieving 6-DoF trajectory estimation,

the method introduced in [23] (extended in [9]) uses a 2D LiDAR mounted on a spring

with an IMU. Given that the other end of the spring is fixed to a moving vehicle, the 3D

abilities of this system rely on the random and irregular motion of the spring-mounted

sensor suite.

Chapter 2. Review of Related Work 17

To reach real-time operations, techniques like [36] and [37] consider the correction of motion

distortion at the front-end level, and not as part of the estimation process. This is also

the case in [38] where point clouds are accumulated according to the platform’s inertial-

kinematic state before being registered via an auto-tuned ICP algorithm [39]. In other

words, the prior knowledge of the actual motion is used to undistort the incoming point

clouds, but no other action is taken later to improve the distortion correction according

to the new state estimate. With such a strategy, there is a risk of accumulating drift

due to inaccurate initial conditions. The GPMs proposed in this thesis enable accurate

characterisation of the system’s motion providing inertial information for each point of

a point cloud. Such a feature allows for estimation frameworks to consider and correct

motion distortion seamlessly all along the process.

At the time of writing, there is no global consensus in the literature upon how to represent

and leverage LiDAR data in estimation frameworks. Surfels [40] are surface elements used

to represent 3D information in the form of disks or ellipsoids. In the context of robotics

state estimation, [41] introduces a probabilistic method to merge multiple point clouds

made of surfels. As demonstrated in [9, 24, 36, 42], surfels can provide rich surface infor-

mation and enable localisation and mapping. The method in [9] aggregates data provided

by a 2D LiDAR into 3D surfels according to the IMU data before refining the system’s

trajectory in an open-loop scan-matching fashion. The nature of the system used makes

the registration of LiDAR points fairly challenging. In such a case, surfels acquired under

very fast motion are automatically discarded. The authors of [24] introduce a two-step

mapping approach that reuses the concepts of [9] for local mapping, and [43] for global

mapping. Originally developed for RGBD sensors, [43] presents a map-centric approach

to create consistent global maps based on trajectory-agnostic batch optimisation. Com-

pared to feature-based techniques discussed later, surfel-based methods tend to use more

information for scan registration, generally resulting in computation-intensive processes.

As seen in [36] and [42], a focus of the surfel-based LiDAR mapping is the development of

efficient algorithms. Both methods make use of sub-mapping schemes (with a hierarchical

optimisation mechanism in [42]) to reduce the computation cost of the state estimation.

As for visual data from cameras [4], the use of particular feature points instead of raw

data is a common approach that allows for efficient computation of frame-to-frame LiDAR

18 Chapter 2. Review of Related Work

scan registration. The vast majority of today’s LiDARs consist of one or multiple lasers

swept across the Field-of-View (FoV). It generally implies that LiDAR data are generally

dense in the axis of the lasers’ motion but quite sparse perpendicularly to the sweeping

motion. For this reason, feature descriptors as in [44–47] are not adapted to raw LiDAR

data. In 2014, the authors of [10] introduce a per-channel feature extraction technique as

part of an odometry and mapping framework. This technique computes a curvature score

for each of the points collected in the different LiDAR channels. Depending on that score,

points are classified as edge or plane feature. Associating plane features of one scan with

tuples of three plane features from another scan allows for the computation of point-to-

plane distances that are minimised in the scan registration process. In the same way, the

association of edge features with pairs of edge features lead to point-to-line distances that

are minimised alongside with the point-to-plane ones. This paradigm is especially suited

for spinning LiDARs that have a low vertical resolution and can be found in different

frameworks [37, 48]. It inspired our front-end development in Chapter 4.

IMLS-SLAM [49] leverages more generic “features”, that can be used in weakly structured

environments, by using a specific sampling of LiDAR scans, . In [50], the point sampling

is performed according to a 3D grid. The approach presented in [14] estimates both the

system trajectory and the position of planes in the environment based on a novel plane

representation. Such formulation reduces the complexity of the optimisation problem (fur-

ther than in the methods aforementioned) and filters the individual measurements’ noise.

Nonetheless, this method is suitable solely for highly structured environments that con-

tain very large planar surfaces. The authors of [51] proposed a LiDAR feature extraction

method that efficiently detects planes and 3D-lines in structured environments.

In this paragraph, we give a rapid overview of several LiDAR-camera frameworks for

localisation and mapping. In [52], the authors present a visual-LiDAR algorithm for

pose estimation furthering their previous works on LiDAR odometry [10] and LiDAR-

aided monocular navigation [53]. Later, this visual-LiDAR method is improved by the

integration of inertial data into a coarse-to-fine sequential data processing pipeline [54]

that differs both from traditional filter-based and optimisation-based state estimation.

In addition to achieving fast computation, the authors claim that this novel paradigm

offers more robustness with respect to sensor failures and observability degradation of

Chapter 2. Review of Related Work 19

the individual sensors (e.g., a LiDAR moving in a tunnel does not allow for the position

estimation along the tunnel axis). In [55], a 3-DoF IMU is used to aid an Extended

Kalman filter (EKF)-based visual-LiDAR odometry pipeline. The method in [56] presents

a technique to extract visual feature tracks’ depth from LiDAR data allowing for robustified

bundle adjustment.

Recently, with the development of machine learning algorithms for semantic understanding

of 3D data [57], work has been conducted to perform localisation and mapping leveraging

high-level information about the environment. In [58], a pipeline for loop-closure detec-

tion in LiDAR data is presented. It relies on learnt random forest classifiers [59] using

engineered features (based on Eigenvalues and histograms) extracted from geometrically

segmented point clouds. These concepts are extended to a standalone LiDAR localisation

and mapping framework in [60] with neural-network-based learnt segment descriptors.

Later, the authors of [61] reuse the principle of segmentation and descriptor extraction

on LiDAR data. By associating this previous work with vision-based descriptors from

neural networks [62], and efficiently maintaining a k-d tree database of previously visited

areas, [61] can perform instant localisation of visual-LiDAR systems. In [63], a more tra-

ditional surfel-based framework [42] is extended with semantic information obtained with

RangeNet++ [64], to filter dynamic object in the environment that could perturb the

geometric LiDAR scan odometry. Note that the methods described in this paragraph are

mostly designed for structured environments, especially for urban navigation scenarios.

2.4 Event-based odometry

Traditional frame-based and event-based vision have major differences. Frame-based

Visual Odometry (VO) is challenged in many scenarios. For example, the images collected

in the presence of fast motion are affected by motion blur due to the pixels’ exposure

time. This makes feature extraction and tracking especially difficult, and often leads to

trajectory estimation failures. On the other hand, the data produced by event-cameras

correspond to intensity changes observed in each individual pixel [65, 66]. Hence, the

resulting data stream is not subject to motion-blur. Another advantage of event-based

vision over frame-based vision is the HDR ability that prevents event-cameras from being

20 Chapter 2. Review of Related Work

“blinded” by extremely bright light sources in the FoV. These aforementioned character-

istics make event cameras especially appealing sensors for the task of VO. Nonetheless,

the unconventional nature of the data produced represents a challenge for the robotics

research community, and requires the design of novel algorithms and paradigms.

Despite the relatively recent interest in event cameras, we can already identify several

works on VO employing event cameras over the last few years. The first event-based 2D

SLAM approach is presented in [67]. It relies on the combination of a particle-filter-based

pose estimation algorithm and a dynamically updated map. More recently, the authors of

[68] achieve the estimation of the six DoFs of the camera pose by leveraging EKFs, and

separating the mapping and pose tracking components as in [69]. The method introduced

in [70] proposes a parallel mapping and tracking approach that iteratively co-localises the

pose of the camera against a local map of edges represented by with voxel grid.

The aforementioned approaches avoid the explicit definition of features at the expense of

being relatively demanding in terms of computational resources. Modern event-based VIO

pipelines such as [71] and [72], however, rely on the detection and tracking of corners em-

ploying intermediate image-like representations by accumulating events over time. These

two approaches also make use of IMUs, profiting from their high-rate inertial readings and

making them an appealing type of sensor to be combined with event cameras. Despite

being a promising modality for visual-inertial state estimation, especially for fast motion

and HDR scenes, event-cameras can be challenged in scenarios in which the system is

almost static. In [73], the authors leverage the complementary of events and traditional

images to address the system’s drift, especially in the context of hovering drones.

While the majority of event-based VO approaches still rely on the traditional concept

of key-frames, it is only natural that continuous-time approaches would emerge. In one

of the seminal works [74], the state of the camera is estimated associating events with

line segments in given maps of the environment. The method is evaluated both in sim-

ulation and real-world experiments using fiducial markers detected in intensity images.

The continuous-time estimation relies on cumulative B-Spline interpolation between esti-

mated camera poses. The same authors later expand their approach to consider inertial

measurements in [75].

Chapter 2. Review of Related Work 21

Over the years, significant efforts in the community have been dedicated to the definition

of reliable visual features for event data. It has led to the development of mainly corner

detection and tracking approaches. In [76], the Harris corner detection algorithm [77] is

adapted to the asynchronous nature of the event data by considering local contrast maps

around each event. The local contrast maps are defined as the agglomeration of a fixed

number of events. While this definition is relatively invariant to the systems speed, it is

scene-dependent. The authors of [78] introduce a corner extraction method inspired by

eFAST [79]. It proposes a version of the surface of active events [79, 80] (also referred

as time surface [81]) that filters redundant events to accurately represent the position of

corners in the image space. Another event-based asynchronous corner detector is presented

in [82]. It relies on a novel region descriptor for event data. The approach described in [83]

learns to detect corner events using random forests [59] over a new speed-invariant time

surface. In [84], the authors provide an extensive survey of event-based vision methods.

The progress of line-based features has been comparatively less notable. Among other

works, we could highlight the approaches proposed in [85], detecting and tracking line

clusters in an event-by-event fashion, and in [86], that propose a plane fitting approach on

the event stream based on principal component analysis to track and cluster lines.

The proposed framework in Chapter 5 takes inspiration from [74] and [75] as we also

leverage continuous-time representation and inertial data. However, where [74] and [75]

use a continuous formulation of the state, our framework uses GPMs associated with a

discrete state to accounts rigorously for the continuous trajectories. At the front-end level,

we draw concepts from event-driven line-tracking and clustering approaches (such as the

methods described in [85] and [86]), avoiding the need for supplementary sensing modalities

as frame-based images and operating directly on the asynchronous event stream.

2.5 Extrinsic calibration

Behind the terms of extrinsic calibration stands the technique of estimating the relative

spatial position between two sensors. In most of the cases, the calibration is a punctual

process happening several times in the life of a sensor system. Therefore, the majority

22 Chapter 2. Review of Related Work

of the calibration methods make use of calibration rigs or targets. This extra hardware

allows to partially control, and therefore to partially know, the environment in which the

system is operated. In this section, the reader will find an overview of the current state of

the literature for extrinsic calibration techniques, which are related to IMUs and LiDARs.

The rise of the self-driving cars resulted in a number of specific calibration problems.

One of them was the calibration between a 3D-LiDAR and an inertial navigation system

[87–89]. An inertial navigation system comprises not only an IMU but also a GNSS

and potentially wheel encoders. In [88], the authors estimate the relative transformation

between the sensors using a grid search algorithm and relying on the weak assumption that

3D-points tend to lie on contiguous surfaces. Because current spinning LiDARs provide

sparse geometric information about the environment, it is common to assume that planes

are present in the surroundings of the system. In many real-life scenarios, it is a rightful

supposition, especially in human-made environment.

To determine the relative position between a LiDAR and an IMU, one can use a camera

as a variety of camera-LiDAR, and camera-IMU calibration methods can be found in the

literature.

As stated above, most of the calibration methods make use of particular set-ups. Over the

years, the robotics community has seen the complexity of the calibration rigs decreasing.

In a visual-inertial context, [90] and [91] are examples of the need for complex calibration

rigs. These methods rely on a spinning table with shaft encoders to be able to recover the

geometric transformation between the camera and the IMU. A few years later, techniques

such as [92] and [93] demonstrate high accuracy calibration using only a checkerboard as a

calibration target. In [94], using a similar visual pattern, the authors extend the scope of

the visual-inertial calibration considering separately the three single-axis accelerometers

that an IMU comprises.

When it comes to aligning LiDAR point clouds and camera images, the checkerboard is

again a widely used calibration target. Whether it be in the monocular modality or the

2D and 3D range data, this planar visual pattern can be automatically extracted relatively

easily. There are examples in [95], [96] and the implementation of Autoware [97]. Other

Chapter 2. Review of Related Work 23

visual-geometric patterns are used in [98] for 2D and 3D-LiDARs, and in [99, 100] for

3D-LiDARs only.

As the manufacture of any physical object cannot be perfect, when one uses a particular

installation (rig or target) for its calibration procedure, it incurs some unquantified un-

certainty into the transformation estimated. This fact partially explains the trend in the

literature to limit the use of calibration-dedicated hardware. In addition, having target-less

calibration procedures allows a continuous calibration of the sensors, therefore removing

the necessity for the user to stop the system’s operation to calibrate it regularly. Based on

the assumption that high colour gradient in the visual data corresponds to a high spatial

gradient in 3D-point clouds, [101] and [102] offer good examples of target-less calibra-

tion techniques for cameras and LiDARs. Another interesting work is presented in [103].

After showing the correlation between the laser reflectivity and the camera intensity val-

ues, the authors recover the inter-sensor spatial transformation by optimising the mutual

information in the multi-modal data.

Most calibration procedures are sensor-specific and rely on an overlap, or a “bridge”,

between modalities that often requires a constant FoV overlap. One can think about planes

simultaneously visible in LiDAR and camera data (e.g., [96]), the correlation between

appearance and depth gradients observed with visual-LiDAR systems (e.g., [101]), etc. In

[104], a target-less extrinsic calibration involving a 2D-LiDAR and a visual-inertial sensor

is described. This method does not need any FoV overlap as it optimises the planarity of

LiDAR point clouds that are registered according to the trajectory of the visual-inertial

sensor and the calibration parameters. For this method to be efficient and accurate, the

authors specify a set of assumptions including the presence of planar patches in the LiDAR

data (as in [88]), and the ability for the visual-inertial sensor to be capable of estimating

a sufficiently accurate trajectory.

Pushing further the abstraction, there are in the literature some generic multi-modal

calibration frameworks that perform calibration based on high-level information. The work

presented in [105] (for coplanar sensors only) and [89] base their approach on the different

sensors’ motion. Such methods are very generic for sensors that are able to estimate their

trajectory self-sufficiently. Consequently, this paradigm allows the extrinsic calibration of

24 Chapter 2. Review of Related Work

sensors that do not have overlapping modalities nor intersecting FoVs. In other words, as

long as their trajectories can be computed independently, the inter-sensor transformation

can be estimated. Despite their versatility, these techniques are not suitable for calibrating

with an IMU constituted of only a 3-axis accelerometer and a 3-axis gyroscope. In real-life

scenarios, it is impossible to recover an accurate motion estimation solely from inertial

data as the initial conditions are not precisely known, and the noise of the measurements

rapidly introduces drift in the estimation. Extensive work on multi-modal calibration is

done in [106].

Despite the popularity of LiDARs and IMUs, the calibration between these sensors has

not been extensively studied. Our work in [19] proposes a calibration process based on

a simple calibration target (a set of planes). As we saw in this section, throughout the

years, efforts have been produced to move toward target-less calibration procedures. Our

proposed method described in Chapter 4 follows this line of thought by allowing target-

less extrinsic calibration of a 3D-LiDAR and a 6-DoF-IMU, thus removing the need for a

dedicated calibration rig/environment/pre-defined actions.

Chapter 3

Gaussian Preintegration

3.1 Introduction

As IMUs became ubiquitous, numerous autonomous systems rely on inertial-aided sensor-

fusion algorithms for navigation. If we consider the example of frame-based VIO systems,

the IMU produces measurements at a higher frequency than the camera. Combining IMU

measurements between visual keyframes became a standard way to reduce the computa-

tional cost of pose estimation algorithms.

Given inertial measurements provided by a 6-DoF IMU, constituted of a 3-axis accelerom-

eter and a 3-axis gyroscope, one can use the laws of classical mechanics to estimate the

trajectory of a system by integration from a set of known initial conditions. The trajectory

estimate is tightly coupled with the values of the initial conditions as an accelerometer

measures the proper acceleration of the system. The proper acceleration is the acceleration

relative to a free-fall observer who is at rest with respect to the system under observa-

tion. In other words, the accelerometer’s readings are affected by the Earth’s gravity field.

Therefore, the accurate attitude of the system based on the initial orientation conditions

is needed to deduce the coordinate acceleration from the accelerometer’s readings. In the

context of state estimation, the initial conditions are part of the variables to be estimated.

With the classic integration scheme, any change to the orientation variable leads to the

25

26 Chapter 3. Gaussian Preintegration

re-computation of the integrals to update the trajectory estimate. The concept of prein-

tegration, originally introduced in [1] and later extended to the SO(3) manifold in [2],

allows a dissociation between the computation of the integrals and the initial conditions.

This mechanism helped the state estimation research community to build computationally

more efficient frameworks without sacrificing accuracy.

The proposed method extends further the concept of preintegration by considering contin-

uous and probabilistic representations of the inertial measurements. This novel approach

allows the computation of preintegrated measurements that do not suffer from the numer-

ical integration noise present in [1] and [2].

This chapter presents a method called Gaussian preintegration. It is a continuous preinte-

gration technique based on GP regression and the application of linear operators to the ker-

nel covariance functions. Given 6-DoF IMU measurements as input, the proposed method

outputs pseudo-measurements denoted GPMs that are particularly suited for inertial-aided

state estimation.

The work presented in this chapter corresponds to the contribution published in [107] as

listed in Section 1.5. The rest of this chapter is organised as follows. First, we expose the

problem statement and give background knowledge in Section 3.2 and Section 3.3 respec-

tively. Then, Section 3.4 presents the core of the proposed preintegration method. The

created preintegrated measurements come in parallel with postintegration mechanisms for

bias and time-shift corrections. These mechanisms are developed in Section 3.5. The effec-

tiveness of our method is demonstrated in Section 3.6. Finally, conclusions are displayed

in Section 3.7.

3.2 Problem statement

3.2.1 System description

Let us consider a 6-DoF-IMU composed of a 3-axis accelerometer and a 3-axis gyroscope.

The inertial data acquired consists of proper accelerations f̃(ti) and angular velocities

ω̃(ti) at time ti (i = 1, . . . , Q) measured in the inertial frame FI . The IMU orientation

Chapter 3. Gaussian Preintegration 27

(represented by a rotation matrix), position and velocity at time ti are denoted by Rti
W ,

ptiW and vtiW , respectively. The subscript W corresponds to the world fixed frame FW .

The inertial measurements are modelled considering additive biases and noise terms as

follows:

f̃(t) = Rt
W (t)>(f(t)− g) + bf (t) + ηf (t), (3.1)

ω̃(t) = ω(t) + bω(t) + ηω(t), (3.2)

with f being the true linear acceleration of the sensor in the world frame FW , ω the true

instantaneous angular velocity of the inertial frame relative to FW , g the gravity vector

in FW , bf and bω slowly varying sensor biases, ηf and ηω zero-mean Gaussian noises for

the linear accelerations and angular velocities respectively.

By definition, the dynamics of the sensor is given by:

Ṙt
W (t) = Rt

W (t)ω(t)∧, (3.3)

v̇tW (t) = f(t), (3.4)

ṗtW (t) = vtW (t), (3.5)

where ˙ is the differentiation operator, and ∧ is the operator that transforms a 3-by-1 vector

into a skew-symmetric matrix as follows

ω∧ =


ω1

ω2

ω3


∧

=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (3.6)

28 Chapter 3. Gaussian Preintegration

3.2.2 IMU preintegration

Given known initial conditions at t = t1, the sensor pose and velocity at t2 > t1 can be

computed by integrating (3.3), (3.4) and (3.5):

Rt2
W = Rt1

W

(t2∏
t1

exp
(
ω(t)∧

)dt)
, (3.7)

vt2W = vt1W +

∫ t2

t1

f(t)dt, (3.8)

pt2W = pt1W + vt1W∆t+

∫ t2

t1

∫ t

t1

f(s)dsdt (3.9)

with ∆t = t2− t1 and exp(φ∧) the mapping from Lie algebra of special orthonormal group

in three dimensions (so(3)) to SO(3) computed as (φ a 3-by-1 angle-axis vector):

exp(φ∧) = I +
sin(‖φ‖)
‖φ‖

φ∧ +
1− cos(‖φ‖)
‖φ‖2

(φ∧)2. (3.10)

In the absence of sensor noise and given accurate prior knowledge of the accelerometer

and gyroscope biases b̄f and b̄ω, (3.7), (3.8) and (3.9) can be expressed as a function of

the IMU readings f̃ and ω̃ :

Rt2
W =Rt1

W

(t2∏
t1

exp
(
(ω̃(t)− b̄ω(t))∧

)dt)
, (3.11)

vt2W =vt1W + g∆t+

∫ t2

t1

Rt
W (t)

(
f̃(t)− b̄f (t)

)
dt, (3.12)

pt2W =pt1W + vt1W∆t+
g∆t2

2

+

∫ t2

t1

∫ t

t1

Rs
W (s)

(
f̃(s)− b̄f (s)

)
dsdt. (3.13)

Chapter 3. Gaussian Preintegration 29

The preintegration originally presented in [1] reformulates (3.12) and (3.13) using the fact

that Rt
W (t) = Rt1

WRt
t1(t):

vt2W =vt1W + g∆t+ Rt1
W

∫ t2

t1

Rt
t1

(t)
(
f̃(t)− b̄f (t)

)
dt, (3.14)

pt2W =pt1W + vt1W∆t+
g∆t2

2

+ Rt1
W

∫ t2

t1

∫ t

t1

Rs
t1(s)

(
f̃(s)− b̄f (s)

)
dsdt. (3.15)

The preintegrated measurements are defined as

∆Rt2
t1

=

t2∏
t1

exp
(
(ω̃(t)− b̄ω(t))∧

)dt
, (3.16)

∆vt2t1 =

∫ t2

t1

Rt
t1

(t)
(
f̃(t)− b̄f (t)

)
dt, (3.17)

∆pt2t1 =

∫ t2

t1

∫ t

t1

Rs
t1(s)

(
f̃(s)− b̄f (s)

)
dsdt, (3.18)

and (3.11), (3.12), and (3.13) become

Rt2
W =Rt1

W∆Rt2
t1
, (3.19)

vt2W =vt1W + g∆t+ Rt1
W∆vt2t1 , (3.20)

pt2W =pt1W + vt1W∆t+
g∆t2

2
+ Rt1

W∆pt2t1 . (3.21)

In [1] and [2], (3.16), (3.17) and (3.18) are integrated numerically considering the discrete

raw IMU measurements directly. This work presents a novel approach that models the IMU

measurements with GPs and performs probabilistic analytical inference of the different

integrals.

3.3 Definitions and background

The proposed method in this chapter relies on the use of GP as a continuous probabilistic

representation of the inertial readings, and the application of linear operators on the GP

covariance kernels to infer preintegrated measurements directly. In this section, we first

30 Chapter 3. Gaussian Preintegration

offer a succinct reminder of the standard GP regression and the application of linear

operators. Then, we present the sensory system that will consider in this work. Finally,

we give a reminder about the preintegration concept.

3.3.1 Gaussian Process regression

GP regression is a kernel-based non-parametric probabilistic interpolation method. While

more details about GP regression can be found in [29], this subsection presents the standard

inference method for zero-mean GP signals based on noisy observations.

The key principle of GP regression is the characterisation of a signal by its covariance

function. This function is called the kernel. Let us consider a signal h : R→ R represented

by a GP as

h(x) ∼ GP
(
0, kh(x, x′)

)
. (3.22)

Note that in this work, we only consider single-input-single-output signals. Consequently,

h : R→ R. The kernel function kh(x, x′) gives the covariance between the signal values at

input x and x′:

cov
(
h(x), h(x′)

)
= kh(x, x′). (3.23)

The stacked vector of noiseless observations h of h at input xi (i = 1, · · · , Q) (so called

training inputs), and h∗ an inferred value of h at input x (also call test value) follows a

multivariate Gaussian distributionh

h∗

 ∼ N(0,

Kh(x,x) kh(x, x)

kh(x,x) kh(x, x)

) (3.24)

Chapter 3. Gaussian Preintegration 31

with

h =


h(x1)

· · ·

h(xQ)

 , x =


x1

· · ·

xQ

 , (3.25)

kh(x,x) =
[
kh(x, x1) · · · kh(x, xQ)

]
, kh(x, x) = kh(x,x)>

and

Kh(x,x) =


kh(x1, x1) kh(x1, x2) · · · kh(x1, xQ)

kh(x2, x1) kh(x2, x2) · · · kh(x2, xQ)
...

...
. . .

...

kh(xQ, x1) kh(xQ, x2) · · · kh(xQ, xQ)

 .

By conditioning the joint distribution (3.24), the test value follows a distribution charac-

terised as

h∗|x,x,h ∼ N
(
kh(x,x)Kh(x,x)−1h,

kh(x, x)− kh(x,x)Kh(x,x)−1kh(x, x)
)
.

(3.26)

When considering noisy observations,

yi = h(xi) + η with η ∼ N (0, σ2
y), (3.27)

the covariance function becomes

cov
(
y(x), y(x′)

)
= kh(x, x′) + σ2

yδxx′ , (3.28)

with δxx′ the Kronecker delta function (equal to one if and only if x = x′, zero otherwise).

Consequently, the joint probability of the training and test values is

 y

h∗

 ∼ N(0,

Kh(x,x) + σ2
yI kh(x, x)

kh(x,x) kh(x, x)

), (3.29)

32 Chapter 3. Gaussian Preintegration

and after conditioning, the prediction is obtained as

h∗(x) = kh(x,x)
[
Kh(x,x) + σ2

yI
]−1

y (3.30)

var
(
h∗(x)

)
= kh(x, x)− kh(x,x)

[
Kh(x,x) + σ2

yI
]−1

kh(x, x). (3.31)

3.3.2 Gaussian Process inference with linear operators

In this subsection, we expose the application of linear operators in the context of GP

regression, originally introduced in [20], tailored to our specific usage in the rest of this

chapter.

From a GP modelled signal

h(x) ∼ GP
(
0, kh(x, x′)

)
, (3.32)

with noisy observations

yi = h(xi) + η with η ∼ N (0, σ2
y), (3.33)

we aim at inferring the output g(x) resulting from the application of a linear operator Lg
to h(x):

g(x) = Lxgh(x). (3.34)

In the case of linear operators, Lxgh(x) does not correspond to the multiplication of a

matrix or vector Lxg with h(x). It represents the application of the operator Lxg on h(x).

This work considers the integration or differentiation of single-input-single-output signals.

Therefore, h : R→ R and g : R→ R. Note that the superscript • of a linear operator L•?,

in (3.34) and the rest of this document, represents the variable on which the operator is

applied. Examples of linear operators leveraged in this work are shown in Fig. 3.1, that

includes the derivative and the antiderivative operators.

Chapter 3. Gaussian Preintegration 33

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

Input x Input x Input x

h
(x

)

L
x d
h

(x
)

L
x r
h

(x
)

Figure 3.1: Graphical examples of two linear operators used in this work (center and

right) applied to the signal h(x) (shown on the left). With Lxdh(x) = ∂h(x)
∂x and Lxrh(x) =∫ x

x1
h(t)dt (with x1 = 0).

According to the rules for linear transformations of GPs, the joint distribution of the

training and test values is

y

g∗

 ∼ N(0,

Kh(x,x) + σ2
yI kh(x, x)Lxg

Lxgkh(x,x) Lxgkh(x, x)Lxg

). (3.35)

Applying the conditioning as in (3.26):

g∗(x) = Lxgkh(x,x)
[
Kh(x,x) + σ2

yI
]−1

y

var
(
g∗(x)

)
= Lxgkh(x, x)Lxg − Lxgkh(x,x)

[
Kh(x,x) + σ2

yI
]−1

kh(x, x)Lxg .
(3.36)

Note that the right product of the linear operator implies its application to the second

argument of the preceding kernel function. This is emphasised by the superscript of the

linear operator.

3.4 Gaussian Preintegrated Measurements

Our work in [19] and [15] considers continuous representations of the inertial data to inde-

pendently upsample these signals before numerically integrating (3.16), (3.17) and (3.18),

as in [2]. GP regression is used to perform the probabilistic upsampling of the inertial

data. We name these interpolated measurements Upsampled Preintegrated Measurements

(UPMs). A rapid overview of this method is presented in Appendix A.

Here, the proposed method also leverages continuous models of inertial measurements.

The major difference is that in this case we leverage the use of linear operators [20] to

analytically compute the integral of inertial readings. Fig. 3.2 shows the two step approach

34 Chapter 3. Gaussian Preintegration

3D

Gyroscope

3D Ac-

celerometer

GP fitting
1-axis

rotation?

Upsampling

and

numerical

integration

GP integral

inference

(via linear

operator)

∆R

∆v, ∆p

GP integral

and double

integral

inference

(via linear

operators)

Reprojection

and GP

fitting

ω̃(ti) ω(t)

Yes

No

f̃(ti)

∆Rf(t)

Input

Output

Figure 3.2: Overview of the proposed method of Gaussian Process (GP) preintegration

(rotation first, then velocity and position) proposed for inference of GPMs. In this section,

we assume that the sensors biases are known. In real-world scenarios, the value of the

biases is not accurately known a priori. A first-order expansion technique is presented in

Section 3.5 to allow for postintegration bias and inter-sensor time-shift corrections.

3.4.1 GPM - Rotation

Equation (3.3) does not have a general solution [108]. Nonetheless, if the sensor rotation

is constrained around one-axis, as in many ground vehicle applications, the infinitesimal

rotations become commutative. Therefore, in that case, (3.3) can be solved as:

∆Rt2
t1

= exp
(

∆rt2t1
∧
)
, ∆rt2t1 =

∫ t2

t1

(ω̃(t)− b̄ω(t))dt, (3.37)

Chapter 3. Gaussian Preintegration 35

where the three components of the integral can be computed independently. The integral

is then rewritten with a linear operator

∆rt2t1 =

∫ t2

t1

(ω̃(t)− b̄ω(t))dt =


∆r1

t2
t1

∆r2
t2
t1

∆r3
t2
t1

 =


Ltr(ω1(t)− b̄ω1

(t))

Ltr(ω2(t)− b̄ω2
(t))

Ltr(ω3(t)− b̄ω3
(t))

 . (3.38)

Modelling the three components of (ω̃(t)− b̄ω(t)) with GPs independently,

(ωj(t)− b̄ωj (t)) ∼ GP
(
0, krj (t, t

′)
)
, (3.39)

the components of ∆rt2t1 are inferred independently, following (3.36), as

∆rj
t2
t1
∗ = Ltrkrj (t, t)

[
Krj (t, t) + σ2

ωjI
]−1
ωj , (3.40)

var(∆rj
t2
t1
∗) = Ltrkrj (t, t)Ltr − Ltrkrj (t, t)

[
Krj (t, t) + σ2

ωjI
]−1

krj (t, t)Ltr. (3.41)

with ωj being the vector of training values (ω̃(t)− b̄ω(t))j .

If the rotation spans over multiple axes between t1 and t2, the rotational preintegrated

measurement ∆Rt2
t1

is computed numerically as in [19] and [15]. First, the gyroscope

data is upsampled with the classic GP inference (3.31) at virtual measurement times tvi

(i = 1, · · · , V with tvi < tvi+1 , t1 = tv1 , and t2 = tvV): ω̃∗(tvi). Then, the rotation

preintegrated measurements are iteratively computed as

∆Rt2
t1

=
V−1∏
i=1

exp
((

(ω̃∗(tvi)− b̄ω(tvi))(tvi+1 − tvi)
)∧)

. (3.42)

The uncertainty is also computed iteratively as derived in [2] and [109]:

cov
(
∆r

tv(i+1)

t1

)
= Aicov

(
∆r

tv(i)
t1

)
A>i + Bicov

(
ω̃∗(tvi)

)
B>i , (3.43)

with cov
(
∆r

tv(1)

t1

)
= 03×3,

Ai = exp
((

(ω̃∗(tvi)− b̄ω(tvi))(tvi+1 − tvi)
)∧)>

(3.44)

Bi = Jr

(
(ω̃∗(tvi)− b̄ω(tvi))(tvi+1 − tvi)

)
(tvi+1 − tvi), (3.45)

36 Chapter 3. Gaussian Preintegration

and Jr the right Jacobian of SO(3)

Jr(φ) = I− 1− cos(‖φ‖)
‖φ‖2

φ∧ +
‖φ‖− sin(‖φ‖)

‖φ‖3
(φ∧)2. (3.46)

3.4.2 GPM - Velocity and position

In the case of noiseless measurements and perfect knowledge of the gyroscope biases,

R•t1(•) = ∆R•t1(•). Consequently, velocity and position preintegrated measurements are

functions of both the gyroscope and accelerometer readings. Unfortunately, the preinte-

grated measurements ∆vt2t1 and ∆pt2t1 cannot be expressed analytically solely based on lin-

ear operators and the independent GP models of raw inertial measurements. To overcome

this issue and allow for the direct (non-iterative) GP inference of velocity and position

preintegrated measurements, the proposed method models the accelerometer data after

their reprojection in Ft1I , the inertial frame at t1, according to the rotational preintegrated

measurements. Thus, modelling these new signals with GP models as

(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
j
∼ GP

(
0, kfj (t, t

′)
)
, (3.47)

and rewriting (3.17) and (3.18) as

∆vt2t1 =


∆v1

t2
t1

∆v2
t2
t1

∆v3
t2
t1

 =


Ltv
(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
1

Ltv
(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
2

Ltv
(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
3

 and (3.48)

∆pt2t1 =


∆p1

t2
t1

∆p2
t2
t1

∆p3
t2
t1

 =


Ltp
(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
1

Ltp
(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
2

Ltp
(
∆Rt

t1
(t)(f̃(t)− b̄f (t))

)
3

 , (3.49)

each component of ∆vt2t1 and ∆pt2t1 is inferred independently using (3.36):

∆vj
t2
t1
∗ = Ltvkfj (t, t)

[
Kfj (t, t) + σ2

fj
I
]−1

fj , (3.50)

var(∆vj
t2
t1
∗) = Ltvkfj (t, t)L

t
v − Ltvkfj (t, t)

[
Kfj (t, t) + σ2

fj
I
]−1

kfj (t, t)L
t
v, (3.51)

Chapter 3. Gaussian Preintegration 37

and

∆pj
t2
t1
∗ = Ltpkfj (t, t)

[
Kfj (t, t) + σ2

fj
I
]−1

fj , (3.52)

var(∆pj
t2
t1
∗) = Ltpkfj (t, t)L

t
p − Ltpkfj (t, t)

[
Kfj (t, t) + σ2

fj
I
]−1

kfj (t, t)L
t
p. (3.53)

The vector fj consists of the set of training values
(
∆Rt

t1
(t)(f̃(t) − b̄f (t))

)
j

at t = ti for

every ti present in the training data.

3.5 Postintegration bias and inter-sensor time-shift correc-

tions

By itself, the integration of inertial data is prone to large drift. In addition to Gaussian

noise and the actual physical values of acceleration or angular velocity, the raw inertial

measurements contain a generally unknown bias component. In the context of sensor fu-

sion, and under some specific observability conditions [110], these biases can be estimated.

For that purpose, the authors of the pioneer paper on preintegration [1] introduced a

first-order expansion to correct biases after integration under the assumption of constant

biases during the integration interval. This work extends that concept to integrate the

estimation of inter-sensor time-shift δt . The preintegrated measurements (3.16), (3.17)

and (3.18) can be rewritten as

∆Rt2
t1

(bω, δt) ≈ ∆Rt2
t1

(b̄ω, δ̄t) exp

((
∂∆r

t2
t1

∂b̄ω
b̂ω +

∂∆r
t2
t1

∂δt
δ̂t

)∧)
, (3.54)

∆vt2t1(bf ,bω, δt) ≈ ∆vt2t1(b̄f , b̄ω, δ̄t) +
∂∆v

t2
t1

∂bf
b̂f +

∂∆v
t2
t1

∂b̄ω
b̂ω +

∂∆v
t2
t1

∂δt
δ̂t , (3.55)

∆pt2t1(bf ,bω, δt) ≈ ∆pt2t1(b̄f , b̄ω, δ̄t) +
∂∆p

t2
t1

∂bf
b̂f +

∂∆p
t2
t1

∂b̄ω
b̂ω +

∂∆p
t2
t1

∂δt
δ̂t , (3.56)

with bf = b̄f + b̂f , bω = b̄ω + b̂ω, and δt = δ̄t + δ̂t . Note that •̄ denotes the prior

knowledge of the value at the time of preintegration and •̂ represents the correction.

38 Chapter 3. Gaussian Preintegration

The rest of this section describes how the different Jacobians in (3.54), (3.55), and (3.56)

are computed according to the GPM formulation.

3.5.1 Rotation GPM Jacobians

Similarly to the GPMs calculation, the computation of the Jacobians for the rotational

preintegrated measurements is split into two scenarios. If the motion contains multi-axis

rotations, the Jacobian of ∆Rt2
t1

with respect to the gyroscope biases bω is computed

iteratively as in [2] and [109]:

∂∆r
tvi+1

t1

∂bω
= Ai

∂∆r
tvi
t1

∂bω
+ Bi, (3.57)

with Ai and Bi defined as in (3.44) and (3.45), and
∂∆r

tv1
t1

∂bω
= I3×3.

The Jacobian of ∆Rt2
t1

with respect to the inter-sensor time-shift δt can easily be computed

numerically by offsetting the integration limits of Ltr. The following subsections detail the

computation of these Jacobians in the case of 1-axis rotations.

3.5.1.1 Gyroscope biases

In the inference of ∆rj
t2
t1

, as per (3.40), the biases only impact the training values ωj .

Consequently,

∂∆rj
t2
t1

∂bω
= Ltrkrj (t, t)

[
krj (t, t) + σ2

ωjI
]−1 ∂ωj

∂bω
. (3.58)

The Jacobian of ωj with respect to bω is a column vector of 1 (a simple additive bias).

Chapter 3. Gaussian Preintegration 39

3.5.1.2 Inter-sensor time-shift

The Jacobian of ∆rj
t2
t1

with respect to δt (the partial derivative of (3.38) with respect to

t1) can be written using another linear operator:

∂∆rt2t1
∂δt

=
∂

∂t1

∫ t1+∆t

t1

(ω̃(t)− b̄ω(t))dt =


Ltrδt (ω1(t)− b̄ω1

(t))

Ltrδt (ω2(t)− b̄ω2
(t))

Ltrδt (ω3(t)− b̄ω3
(t))

 , (3.59)

with ∆t = t2− t1. Therefore the Jacobian can be computed with (3.40) replacing Ltr with

Ltrδt .

3.5.2 Velocity and position GPM Jacobians

The derivation of the Jacobians in (3.55) and (3.56) is similar for both the velocity and

position cases.

3.5.2.1 Accelerometer and gyroscope biases

As for ∆Rt2
t1

, the inference of ∆vt2t1 and ∆pt2t1 depends on the IMU biases solely via their

training values fj . Therefore,

∂∆vj
t2
t1

∂b•
= Ltvkrj (t, t)

[
Krj (t, t) + σ2

ωjI
]−1 ∂fj

∂b•
(3.60)

∂∆pj
t2
t1

∂b•
= Ltpkrj (t, t)

[
Krj (t, t) + σ2

ωjI
]−1 ∂fj

∂b•
(3.61)

with b• being either the accelerometer biases bf or the gyroscope biases bω. Note that

fj depends on bω as ∆Rt
t1(t) depends on bω. The derivations to obtain

∂fj
∂bf

and
∂fj
∂bω

are

depicted in Appendix B.

40 Chapter 3. Gaussian Preintegration

3.5.2.2 Inter-sensor time-shift

The differentiation of ∆vt2t1 and ∆pt2t1 with respect to δt cannot be directly inferred with

the help of a linear operator as in the case of ∆rt2t1 . The main difference comes from the

fact that fj depends on δt as ∆Rt
t1(t) depends on δt . Consequently the Jacobian of ∆vt2t1

is computed as

∂∆vj
t2
t1

∂δt
=Ltvδt krj (t, t)

[
krj (t, t) + σ2

ωjI
]−1

fj

+ Ltvkrj (t, t)
[
krj (t, t) + σ2

ωjI
]−1 ∂fj

∂δt
(3.62)

with

Ltvδt =
∂

∂t1
Ltv = Lt1d L

t
v. (3.63)

The computation of the Jacobian of ∆pt2t1 with respect to δt follows (3.62) replacing Lvδt
with

Ltpδt =
∂

∂t1
Ltp = Lt1d L

t
p. (3.64)

Note that the Jacobians of fj with respect to δt can be computed numerically or deduced

from
∂∆rj

t
t1

(t)

∂δt
computed in the previous subsection.

3.6 Experiments and results

This section presents quantitative evaluations of the proposed method on simulated data

in the context of low and high-frequency inferences. As examples of applications, one can

assimilate the low-frequency scenario to VIO-like systems where the inertial information

is needed between frames or keyframes. The high-frequency scenario corresponds to the

need of trajectory characterisation in systems containing high-frequency sensors such as

LiDARs or event cameras. In the following chapters of this thesis, the GPMs will be

Chapter 3. Gaussian Preintegration 41

applied to inertial-aided localisation and mapping systems and validated with real-world

experiments. Our implementation uses the square exponential kernel parameterised by a

length scale and the signal’s variance. Learning the length scale directly from the inertial

data allows for the GP models to adapt their smoothness to the actual shape of the signals

at hand.

3.6.1 Low-frequency benchmarks (0.2 - 20Hz)

In this subsection, we aim to evaluate the performance of the GPM method. We compare

it against our work [19] (UPM, also shown in Appendix A for completeness), and the orig-

inal on-manifold preintegration method [2] (Standard Preintegrated Measurement (PM)).

The evaluation consists of generating random trajectories from sinusoidal functions and

computing the preintegrated measurements using each of the three aforementioned meth-

ods between randomly chosen timestamps (t1 and t2). The frequencies of the sinusoidal

functions range between 0.05 and 0.4 Hz for the position, and between 0.15 and 0.7 Hz for

the rotation. The different metrics for evaluation are presented below.

3.6.1.1 Accuracy

This set of experiments have been designed to simulate the VIO scenarios where preinte-

gration is performed at low frequency to constrain the system pose between consecutive

keyframes (set-up one) or for tracking feature from frame to frame (set-up two). Our first

set-up computes preintegrated measurements over durations ranging anywhere between

1 and 5 seconds. As the trajectories have different characteristics, and the integration

interval length is not fixed across runs, the chosen metric is the relative error with respect

to the travelled (linear or angular) distance. The second experiment has been designed

around smaller integration intervals. We compute the absolute pose error for different

fixed inference frequencies between 1 and 20 Hz. Based on Table 3.1 and 3.2, GPMs and

UPMs outperform PMs by around an order of magnitude. In other words, the assumption

of constant acceleration during the IMU period introduces a non-negligible integration

noise. UPMs upsample the inertial measurements (here by a factor 10) before conduct-

ing numerical integration. It reduces the integration noise significantly. The amount of

42 Chapter 3. Gaussian Preintegration

1-axis rotations (relative errors %)

Motion
PM [2] UPM [19] GPM (proposed)

Rot er. Pos er. Rot er. Pos er. Rot er. Pos er.

Slow 0.253 3.54 0.038 0.381 0.028 0.143
Fast 0.221 2.90 0.024 0.301 0.008 0.073

Multi-axis rotations (relative errors %)

Motion
PM [2] UPM [19] GPM (proposed)

Rot er. Pos er. Rot er. Pos er. Rot er. Pos er.

Slow 0.316 4.79 0.035 0.493 0.035 0.311
Fast 0.308 4.35 0.031 0.433 0.031 0.396

Table 3.1: Average relative error of preintegrated measurements with respect to tra-
jectory length in simulated environments (over 100 trials) for different types of motion.
The integration interval length is between 1s and 5s. Characteristics of the trajectories
during integration interval (1D rot. slow/1D rot. fast/3D rot. slow/3D rot. fast): avg.
distance = 9.7/15/8.8/23 m, avg. velocity = 1.8/3.9/1.9/4.7 m/s , avg angular distance =
2.2/6.8/3.8/16 rad, avg angular velocity = 0.7/2.5/1.3/4.9 rad/s. IMU frequency 100 Hz,
accelerometer noise sd 0.02 m/s2, gyroscope noise sd 0.002 rad/s, UPM upsampled fre-

quency 1 kHz.

integration noise in UPMs directly depends on the upsampled frequency. This creates a

trade-off between accuracy and computation time. GPMs do not suffer from the integra-

tion noise thanks to their analytical approach to the integration. The factor that limits

the accuracy of the GPMs is the ability for the GPs to model the true underlying signal

accurately.

3.6.1.2 Robustness to noise

This set-up evaluates the three methods for different variations of noise. Figure 3.3 plots

the corresponding relative errors. For motion containing only 1-axis rotations, the absence

of noise pushes the GPMs error towards zero where UPMs and PMs cannot go below a

certain error. This observation supports the hypothesis that GPMs are not subject to

integration noise. The final error is mainly driven by the kernel ability to model noisy

signals. In the presence of multi-axis rotations, UPMs and GPMs share the same numerical

approach to estimate the rotational part of the preintegrated measurements. For that

reason, the error difference between the two methods is smaller, but GPMs still outperform

UPMs.

Chapter 3. Gaussian Preintegration 43

0 0.01 0.02 0.03 0.04 0.05

Gyroscope noise (rad.s−1)

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

Accelerometer noise sd. (m.s−2)

R
el

a
ti

v
e

p
o
s.

er
.

(%
)

0

0.1

0.2

0.3

0.4

0.5

R
el

a
ti

v
e

ro
t.

er
.

(%
)

1-axis rotations

PM [2] position error

UPM [19] position error

GPM (proposed) position error

PM [2] rotation error

UPM [19] rotation error

GPM (proposed) rotation error

0 0.01 0.02 0.03 0.04 0.05

Gyroscope noise (rad.s−1)

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

Accelerometer noise sd. (m.s−2)

R
el

a
ti

v
e

p
o
s.

er
.

(%
)

0

0.1

0.2

0.3

0.4

R
el

a
ti

v
e

ro
t.

er
.

(%
)

Multi-axis rotations

Figure 3.3: Average relative error of preintegrated measurements with respect to tra-
jectory length in simulated environments (over 50 trials) for different levels of IMU noise.
All the plots in one graph are subject to the bottom and top axis (in other words, the
gyroscope and accelerometer noises are simultaneously changing along the x axis). The
position error (pos er.) plots relate to the left axis and the rotation error (rot er.) relate
to the right axis. The integration interval lengths are between 1 s and 2 s. IMU frequency

100 Hz, UPM upsampled frequency 1 kHz.

44 Chapter 3. Gaussian Preintegration

1-axis rotations (absolute errors in mrad and mm)

Query PM [2] UPM [19] GPM (proposed)
rate (Hz) Rot er. Pos er. Rot er. Pos Rot er. Pos er.

20 2.41 5.61 0.28 0.60 0.10 0.02
10 4.91 12.1 1.61 1.32 1.40 0.16
2 21.3 61.3 3.09 7.19 0.20 0.61
1 24.9 125 2.51 12.6 0.28 1.80

Multi-axis rotations (absolute errors in rad and mm)

Query PM [2] UPM [19] GPM (proposed)
rate (Hz) Rot er. Pos er. Rot er. Pos Rot er. Pos er.

20 5.48 6.06 0.80 0.65 0.80 0.02
10 11.1 13.1 7.53 2.27 7.18 0.48
2 35.6 65.0 4.72 7.29 3.56 1.74
1 37.5 159 3.75 15.9 3.75 10.3

Table 3.2: Average absolute error of preintegrated measurements for fast trajectories in
simulated environments (over 100 trials) for different fixed query rates.

3.6.1.3 Computation time

While providing more accurate estimates, UPMs and GPMs can be significantly slower

than the original preintegration. This experiment collects the average run time (over 50

runs) of the benchmarked methods. The code is executed on a laptop equipped with an

Intel i5-6300U Central Processing Unit (CPU) working at 2.40 GHz, and 24 GiB of RAM.

Table 3.3 presents the values obtained for different length of integration interval (from

10 Hz to 0.2 Hz). The total execution time of both the UPMs and GPMs can be divided

into two parts: hyperparameter training and inference. With the square exponential

kernel, descent hyperparameters can be deduced from the sensor characteristics and a

vague knowledge of the motion aggressiveness. In the absence of prior knowledge about

the signals or when using complex kernels, the hyperparameter training step is highly

recommended. Nonetheless, for signals that keep consistent smoothness characteristics

over time, the learnt hyperparameters can be safely reused from one integration interval

to another. In such a case, the UPM and GPM computations comply with real-time

constraints as the inference time stays under the integration interval length. The difference

of computation time between UPMs and GPMs is explained by the larger number of

inferences, and the iterative numerical integration carried out to generate UPMs. While

Chapter 3. Gaussian Preintegration 45

PMs and UPMs execution times are consistent for the different motion types (1-axis and

multi-axis rotations), the GPMs are significantly slower when computed over movements

that contain multi-axis rotations. As pointed out before, this is due to the numerical

approach needed to estimate ∆R.

The results of this experiment show that for integration intervals of few seconds, GPMs

can be used in close to real-time operations. Furthermore, one should note that these

values, for all of the three methods, are generated from single-thread Matlab code that is

not optimised for high performance. The GPM computation can easily be parallelised on

3 CPU cores as the hyperparameter training and inferences are independent on each axis.

The training data covariance matrices K•(t, t), presented above, solely depends on the

kernel hyperparameters, the number of training samples used for the integration interval,

and the relative temporal position of these samples. In many practical scenarios, the

IMU readings are generated at a fixed frequency, and the integration interval stays the

same all along the estimation pipeline. When hyper-parameter training is not required,

these conditions can be leveraged to speed-up the UPMs and GPMs inference time by

pre-computing the matrices
[
K•(t, t) + σ2

?I
]−1

. Consequently, the inference complexity is

reduced from O(n3) to O(n2) as matrix inversion is no longer needed.

3.6.2 High-frequency benchmarks (> 100 kHz)

The VIO-like scenario of the previous subsection aims at combining numerous IMU mea-

surements into a single set of preintegrated measurements (rotation, velocity, and position)

over a given integration window. In other words, the frequency of the preintegrated mea-

surements that are generated is smaller than the IMU frequency. In the present subsection,

we benchmark the use of GPMs in the context of sensor-fusion with high-frequency sensors.

Unlike above, here, the objective is to create preintegrated measurements to characterise

the system’s motion at the acquisition times of a higher frequency sensor. For example,

in Chapter 4, a 300 kHz LiDAR (rotation speed of 10 Hz) is coupled with a 100 Hz IMU.

The generation of GPMs for each LiDAR point allows accurate undistortion of the LiDAR

scans.

46 Chapter 3. Gaussian Preintegration

1-axis rotations (computation time ms)

Interval
PM [2]

UPM [19] GPM (proposed)
length (s) Training Inference Training Inference

0.05 0.8 294 18.7 356 1.3
0.1 0.9 335 25.6 399 1.8
0.5 3.1 392 67.3 396 4.2
1 5.8 498 113 502 8.1
2 11.6 1088 279 1085 28.2
3 18.6 2349 534 2332 68.9
4 23.3 4159 824 4144 127
5 28.5 6939 1244 6832 212

Multi-axis rotations (computation time ms)

Interval
PM [2]

UPM [19] GPM (proposed)
length (s) Training Inference Training Inference

0.05 0.6 269 16.9 277 10.2
0.1 0.9 291 22.0 298 11.1
0.5 3.1 362 60.2 367 24.8
1 5.8 530 121 529 51.9
2 11.8 1148 297 1110 138
3 17.5 2347 538 2281 270
4 24.1 4352 875 4243 482
5 28.5 7295 1392 7102 817

Table 3.3: Average computation time of preintegrated measurements (over 50 trials) for
different integration interval lengths. For the UPMs and GPMs, both the hyperparameter
training time and the inference time are shown. IMU frequency 100 Hz, UPM upsampled

frequency 1 kHz.

3.6.2.1 Accuracy

This set-up aims at comparing the accuracy of different preintegration methods for infer-

ence at 300 kHz in a time window of 0.3 s given IMU measurements at 100 Hz. In addition

to the method benchmarked in Subsection 3.6.1, we introduce the Linear Preintegrated

Measurements (LPMs) that follow the same pipeline as the GPM generation presented in

Fig. 3.2, but using linear interpolation between IMU measurements instead of GP regres-

sion. We also distinguish two versions of the PMs. The first one, noted PM-IMU, corre-

sponds to the computation of the preintegrated measurements for each IMU timestamp

followed by the search and copy of the closest IMU-time preintegrated measurements for

each of the 300 kHz query timestamps. The second one, noted PM-HF, corresponds to the

Chapter 3. Gaussian Preintegration 47

1-axis rotations

Method Rotation error (mrad) Position error (mm)

PM-IMU [2] 23.5± 14 12.3± 3.86
PM-HF 5.36± 3.9 1.59± 1.5

LPM (linear) 0.11± 0.035 0.16± 0.062
UPM [19] 0.073± 0.028 0.12± 0.050

GPM (proposed) 0.073± 0.028 0.12± 0.051

Multi-axis rotations

Method Rotation error (mrad) Position error (mm)

PM-IMU [2] 20.9± 6.2 13.6± 4.70
PM-HF 4.96± 1.7 2.8± 1.28

LPM (linear) 0.119± 0.035 0.15± 0.066
UPM [19] 0.102± 0.032 0.14± 0.068

GPM (proposed) 0.102± 0.032 0.13± 0.062

Table 3.4: Average pose RMSE of preintegrated measurements for fast trajectories in
simulated environments (over 100 trials) for a 300 kHz query rate over a time window of

0.3 s given IMU measurements at 100 Hz.

computation of the preintegrated measurements for each of the 300 kHz query timestamps

based on the constant-measurement assumption in [2]. It is equivalent to the computation

of the UPMs using a zero-order-hold interpolation instead of GP regression.

The results presented in Table 3.4 show that the GPMs and UPMs have very similar

performances in this high-frequency scenario, both for motion with 1-axis and multi-axis

rotations. This shrink in accuracy gap is a consequence of the very high upsampling

frequency done when computing the UPMs (300 Hz). At such frequencies, the numeri-

cal integration noise of the UPMs become extremely small. The original preintegration

method, whether it is via PM-IMU or PM-HF, underperforms other techniques by at least

a factor 20. Note that, while displaying inferior accuracy performance, the LPMs show

precision in the same order of magnitude as the GPMs and UPMs.

3.6.2.2 Computation time

In this subsection, we discuss the computation time of the previous set-up. The 300 kHz

preintegrated-measurement frequency over a time window of 0.3 s corresponds to 90 k

48 Chapter 3. Gaussian Preintegration

Computation time in seconds for 90 k inference operations

Method
Motion type

1-axis rotations Multi-axis rotations

PM-IMU [2] 0.059± 0.009 0.057± 0.002
PM-HF 6.33± 0.48 6.38± 0.10

LPM (linear) 2.51± 0.19 3.67± 0.15
UPM [19] 8.26± 0.72 8.18± 0.17

GPM (proposed) 5.74± 0.57 6.56± 0.21

Table 3.5: Average (over 100 trials) computation time for 90 k inferrences over a time
window of 0.3 s given IMU measurements at 100 Hz.

inference operations. Table 3.5 reports the computation time required by the different

benchmarked methods to generate this large amount of preintegrated measurements.

It shows that the GPMs outperform the UPMs not only in terms of accuracy but also

computation-wise. As in the low-frequency scenario, the standard preintegration [2], while

less accurate, offers faster computation. For time-constrained systems, the LPMs offer a

decent compromise between accuracy and execution time.

Here, the evaluations are based on single-threaded Matlab code. The multi-axis-case C++

implementation used in the following chapters is not optimised for computation time, but

leverages a parallelisation over three CPU-cores. The GPM inference time is reduced by

around a factor three (≈ 2 s) when the LPM computation time is divided by approximately

twenty-four (≈ 0.15 s). While a Graphic Processing Unit (GPU) implementation of the

GPM could match real-time constraints for high-frequency inference, one can consider

using LPMs for CPU-based real-time applications at the expense of a slight loss of accuracy.

3.7 Conclusion

This chapter presents a novel theory for preintegration based on a continuous and proba-

bilistic representation of inertial data. The proposed preintegrated measurements, called

GPMs, leverage GP models of the IMU measurements and apply linear operators to the

covariance kernels to analytically infer the integrals of the signals over any time interval.

In combination with a first-order expansion for postintegration bias and inter-sensor time-

shift corrections, GPMs are especially suited for inertial-aided estimation frameworks.

Chapter 3. Gaussian Preintegration 49

Our experiments show that GPMs outperform both UPMs [19] and PMs [2] in terms

of accuracy. The GPMs calculation suffers from the cubic computational complexity of

GPs but is still suitable for close-to-real-time operations in the context of low-frequency

inference operations (like in VIO frameworks). In the following chapters of this thesis,

we propose two frameworks designed to leverage GPMs: a lidar-inertial localisation and

mapping framework (IN2LAAMA), and an event-based odometry method (IDOL).

On the theory side, future work includes relaxing the assumption of constant bias during

preintegration and developing an analytical approximation for the integration of gyroscope

measurements in the multi-axis-rotation case. In terms of the current implementation, for

real-time operations, integration intervals above approximately 0.5 s (actual duration sub-

ject to computer performance and code optimisation) do not allow the hyperparameter

training from scratch for each integration interval. While one can use heuristics, pre-

training or sporadic training (every N integration intervals), a more appealing approach

is the use of filtering methods to update the hyperparameters online. Thus, the computa-

tion cost per integration interval is substantially reduced, while the hyperparameters are

tracked over time. Additionally, the use of GPU can significantly reduce the computation

time. In the context of low-frequency query, some matrix operations as well as the com-

putation of the kernel matrices and vectors’ components can be highly parallelised. For

the high-frequency inference, the parallelisation can be implemented at a higher level as

each inference can be performed independently.

Chapter 4

IN2LAAMA: INertial Lidar

Localisation Autocalibration And

MApping

4.1 Introduction

This chapter presents a LiDAR-inertial framework for simultaneous localisation, mapping,

and inter-sensor extrinsic calibration. This framework is called IN2LAAMA and leverages

the GPMs introduced in the previous chapter. This work corresponds to the contributions

presented in [111].

Unlike global-shutter cameras that take snapshots of the environment, most of today’s

LiDARs collect range information by sweeping the surrounding space with one or multiple

lasers. A popular LiDAR design, such as the iconic Velodyne HDL-64 (Fig. 4.1), consists

of stacking N lasers at different inclination angles, and making them spin around a fixed

axis. Commonly, the measurements collected during each revolution are grouped into 3D

point clouds denoted scans.

51

52 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Figure 4.1: Example of rotative LiDAR: Velodyne HDL-64. Top row: photo
of the sensor and schematic with the different major components (image source:
velodynelidar.com). Bottom row: on the right is one of the first application of
the Velodyne HDL-64 during the DARPA Grand Challenge 2007 (image source:
cs.stanford.edu/group/roadrunner/). On the right the sensor mounted on the “Google
car” (erroneously) considered as being the first self-driving car by the general public

(image source: waymo.com).

Regardless of the sweeping mechanism, be it mechanical, optical or electronic, the time

needed to scan the environment is not instantaneous. Consequently, each individual mea-

surement of a scan is collected at a different time, and therefore from a different position

if the system is moving. Without accurate knowledge of the sensor’s pose at each of the

points’ timestamp, the individual 3D points cannot be registered precisely, resulting in

scans that are affected by motion distortion (cf. Fig. 1.3).

In the context of odometry and mapping, traditionally, a system’s pose is estimated at dis-

crete timestamps corresponding to the sensor’s sampling times. Such a paradigm becomes

intractable when considering LiDAR points as independent measurements (bandwidth over

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 53

Grouping

3D-points

into frames

GPMs

computation

Feature

extraction and

data association

Factor graph

optimisation

Lidar

data

IMU

data

Lidar

frames

Point times-

tamps

GPMs, Sprior

Sprior , IMU factors (Frame-to-frame GPMs)

Lidar factors

S

Figure 4.2: Overview of IN2LAAMA with S the estimated state.

hundreds of kilohertz). In order to reduce the complexity of the estimation problem, many

methods in the literature assume a parametric motion model to describe the system’s mo-

tion and estimate the model parameters. While allowing for computational efficiency, it

generally leads to restrictive assumptions that do not necessarily represent reality in many

real-world scenarios. The method presented in this chapter uses the inertial data in the

form of GPMs to characterise the system’s trajectory in a continuous manner while relying

on a discrete state estimation at a low frequency. As the GPMs do not use any motion

model, the proposed method does not make any assumptions about the sensors’ dynamics.

Like most localisation and mapping frameworks, the proposed method is constituted of two

main modules: a front-end for feature extraction and data association, and a back-end for

state estimation through numerical optimisation. Nonetheless, IN2LAAMA differs from

most frameworks as per the tight relationship between these two major modules. Reliable

geometric feature extraction in LiDAR scans requires the knowledge of the system’s trajec-

tory to be unaffected by motion distortion. Accurate knowledge of the system’s trajectory

relies on the extraction and association of robust features. To address this “chicken-and-

egg” problem, the features (front-end) are periodically recomputed according to the last

state estimate (back-end), as shown in the block diagram of Fig. 4.2.

54 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

4.2 Method overview

4.2.1 Notation and definitions

Let us consider a rigidly mounted 3D LiDAR and a 6-DoF IMU. The LiDAR and IMU

reference frames at time ti are respectively noted FtiL and FtiI . The rotation matrix RL
I and

the translation vector pLI characterise the pose of FtiL in FtiI . Homogeneous transformation

will be used for the rest this chapter, therefore rotation matrices and translations/posi-

tions will be associated with 4× 4 transformation matrices with the same combination of

subscripts and superscripts,

Tb
a =

Rb
a pba

0> 1

 and Tb
a
−1

=

Rb
a
> −Rb

a
>

pba

0> 1

 . (4.1)

The 3D-points xiL provided by the LiDAR at time ti are projected from FtiL to FtiI using

xiI

1

 = TL
I

xiL

1

 . (4.2)

In this work, the LiDAR points are grouped into M frames. Note that in the proposed

method, a frame corresponds to the data collected in scan greater than 360-degree, as

explained in Section 4.4.3. The points that belong to the mth frame form the set Xm. Fm

is a subset of Xm that represents LiDAR feature-points. A feature is a point belonging

to a distinctive type of surface (e.g. plane or edge). The set of feature associations A

contains tuples of 3 or 4 LiDAR feature-points depending on whether they are edges or

planes respectively.

The 6-DoF-IMU is the combination of a 3-axis accelerometer and a 3-axis gyroscope.

Therefore, the inertial data acquired consists of proper accelerations f̃i and angular ve-

locities ω̃i at time ti (i = 1, . . . , Q). GPMs from Chapter 3 are used to infer inertial

information for each of the individual LiDAR points.

The proposed method aims to estimate the IMU orientation Rτm
W , position pτmW and velocity

vτmW for each LiDAR frame (m = 0, . . . ,M -1), as well as the IMU biases and the time-shifts

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 55

I0
I1 I2

I3

Im

fl1,m

fdt0
fdt1 fdt2

fdt3

fdtm

f1
f2 f3

fl• : Lidar factor

fdt• : Time-shift factor

f• : IMU, Lidar, and biases factors

Figure 4.3: Factor graph representation of the optimisation problem solved in
IN2LAAMA. Im = {Rτm

W , pτmW , vτmW , b̂mf , b̂mω , δ̂tm} represents the IMU pose, veloc-
ity, biases and time-shift correction associated to the LiDAR scan Xm at τm. The factor

fl2,m represents a loop-closure.

between the two sensors. The subscript W represents the earth-fixed world reference frame

FW , and τm corresponds to the timestamp at the beginning of the mth LiDAR frame. Fτm•

refers to the reference frame of the IMU or LiDAR (as • represents in this case L or I) at

time τm.

In the following, S indicates the state to be estimated: S = (Rτ0
W , · · · ,R

τM-1
W , pτ1W , · · · ,p

τM-1
W ,

vτ0W , · · · ,v
τM-1
W , b̂0

f , · · · , b̂M -1
f , b̂0

ω, · · · , b̂M -1
ω , δ̂t0 , · · · , δ̂tM-1) with b̂mf , b̂mω , and δ̂tm the bi-

ases and time-shift corrections associated with the mth LiDAR frame (more details about

the biases and time-shift corrections are given in Section 4.3.2). In the case of extrin-

sic autocalibration, the calibration parameters TL
I are also added to S. The calibration

procedure is explained in Section 4.5.2.

4.2.2 Cost function

The proposed method does not rely on any trajectory prior but uses a Gaussian distribution

to constrain the inter-sensor time-shift. Therefore, the localisation and mapping problem

is formulated as a Maximum A Posterior (MAP) estimation:

S∗ = argmin
S

− log(p(Z|S)p(S)) = argmin
S

C(S), (4.3)

with Z representing the available measurements and C the optimisation cost function.

Represented as the factor graph in Fig. 4.3, and under the assumption of zero-mean Gaus-

sian noise, the estimation can be solved by minimising geometric distances da associated

56 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

with LiDAR features, inertial residuals rmI , accelerometer biases residuals rmf , gyroscope

biases residuals rmω , and time-shift residuals rmδt . That is,

C(S) =
∑
a∈A
‖da‖2Σda +

M−1∑
m=0

‖rmδt ‖
2
Σrm
δt

+
M−1∑
m=1

(
‖rmf ‖2Σrm

f

+‖rmω ‖2Σrmω
+‖rmI ‖2Σrm

I

)
. (4.4)

The different components of C(S) are detailed in Section 4.3. Note that Σ• is the covari-

ance matrix of the variable •.

4.3 Back-end

The first two parts of this section present the IMU and bias factors. These are not specific

to IN2LAAMA as they only relates to the inertial data. Consequently, the two following

subsections are also relevant to IDOL presented in Chapter 5. The Jacobians associated

to the different residuals of this section are present in Appendix C.

4.3.1 IMU factors

The IMU factors constitute direct constraints on the IMU poses and velocities. They

leverage the GPMs detailed in Chapter 3. The associated residuals rmI = [rmIr ; r
m
Iv

; rmIp] are

obtained directly by manipulating (3.19), (3.20), and (3.21),

rmIp =Rτm-1
W

>(pτmW − pτm-1
W −∆τmvτm-1

W − ∆τm
2

2
g
)
−∆pτmτm-1

rmIv =Rτm-1
W

>(vτmW − vτm-1
W −∆τmg

)
−∆vτmτm-1

rmIr =Log
(

∆Rτm
τm-1

>Rτm-1
W

>Rτm
W

)
, (4.5)

with ∆τm = τm − τm-1. In (4.4), these residuals are weighted by the information matrix

of the GPMs (∆Rτm
τm-1

, ∆vτmτm-1
, and ∆pτmτm-1

) that is the inverse of ΣrmI
with

ΣrmI
=


Σ∆Rτm

τm-1
03×3 03×3

03×3 Σ∆vτmτm-1
03×3

03×3 03×3 Σ∆pτmτm-1

 . (4.6)

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 57

4.3.2 IMU biases and inter-sensor time-shift

As detailed in Chapter 3, the GPMs computation is a function of the accelerometer biases

bf , gyroscope biases bω, and inter-sensor time-shift δt . However, these values are not

perfectly known at the time of preintegration. In this framework, we model the IMU biases

as a Brownian motion as in [93] and the inter-sensor time-shift as a simple Gaussian. We

consider the biases and time-shift locally constant during LiDAR frames, and adopt the

first-order expansions (3.54), (3.55), and (3.56).

The residuals

rmf = b̄mf + b̂mf − b̄m-1
f − b̂m-1

f (4.7)

rmω = b̄mω + b̂mω − b̄m-1
ω − b̂m-1

ω (4.8)

are used in the biases factors to impose the Brownian motion constraint. The covari-

ance matrices Σrmf
and Σrmω from (4.4) are defined according to the timestamp difference

τm − τm-1, and the random-walk characteristics present in the IMU manufacturer speci-

fications.

The time-shift factor residual is simply rmδt = δ̂tm as per the Gaussian noise model. The

weighting (inverse of Σrmδt) is arbitrarily set as per the prior knowledge of the inter-sensor

time-shift (typically in the order of milliseconds).

4.3.3 Lidar factors

Lidar factors correspond to distance residuals computed between LiDAR feature-points

and their corresponding feature-points from other LiDAR frames. As we will explain in

the front-end section, the set of feature associations A contains tuples of 3 (point-to-edge

constraints) or 4 feature-points (point-to-plane constraints).

For the LiDAR factors, point-to-line or point-to-plane distances are used. The matched

points found in A are projected in the world frame FW using the calibration parameters,

GPMs for each of the points and the current estimates of the IMU poses and velocities

(Fig. 4.4). Therefore, a point xiL ∈ Xm is projected in FW using (4.2), and the GPMs

58 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

FW

F
τ0
I

F
τ0
L

F
τm
I

F
τm
L

F
ti
I

F
ti
L

F
τm+1
I

F
τm+1
L

T
τ0
W

T
τm
W T

ti
W

T
τm+1
W

TLI TLI TLI
TLI

xiL

Figure 4.4: Frames and frame transformations during a sequence of measurements.
FτmI and FτmL respectively represent the IMU and LiDAR frames at time τm. The grey
continuous line arrows represent the transformations between the different frames. FW
is the world fixed frame. The dotted line shows the use of upsampled preintegrated

measurements to reproject the point xiL.

(3.19) and (3.21): xiW

1

 = Tti
WTL

I

xiL

1

 . (4.9)

Let us denote an edge association a3 ∈ A. a3 = {xiL,x
j
L,x

k
L} with xiL ∈ Fm, xjL ∈ Fn,

xkL ∈ Fo and n, o 6= m. These points are projected in FW via (4.9) to get xiW , xjW and

xkW . The point-to-line distance

da3 =
‖
(
xiW − xjW

)
×
(
xiW − xkW

)
‖2

‖
(
xjW − xkW

)
‖2

(4.10)

is used as an edge feature residual.

Let us denote a plane association a4 ∈ A. a4 = {xiL,x
j
L,x

k
L,x

l
L} with xiL ∈ Fm, xjL ∈ Fn,

xkL ∈ Fo, xlL ∈ Fp and n, o, p 6= m. These points are projected in FW via (4.9) to get xiW ,

xjW , xkW and xlW . The point-to-plane distance

da4 =

(
xiW − xjW

)>((
xjW − xkW

)
×
(
xjW − xlW

))
‖
(
xjW − xkW

)
×
(
xjW − xlW

)
‖2

(4.11)

is used as a plane feature residual. The variance of the LiDAR residuals requires the

knowledge of the state. Therefore, the noise propagation Σda = Jda (S)Σz(Jda (S))>, with

Σz the covariance of the corresponding LiDAR and GPMs measurements, and Jda (S) the

Jacobian of da with respect to the sensors measurements evaluated at the current best

estimate of the state S needs to be executed regularly during the optimisation.

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 59

4.4 Front-end

The front-end of the proposed method aims at populating the set A of LiDAR feature-point

associations to allow frame-to-frame and loop closure matching.

4.4.1 Feature extraction

The vertical resolution of most of today’s LiDARs has driven the design of our feature

extraction algorithm toward a channel-by-channel method in a similar way to the one

in [10]. The authors of [10] introduced a computationally efficient smoothness score for

feature extraction/classification. While robust in weakly structured environments and

allowing real-time operations, this score computation is not fully consistent. For example,

points belonging to the same planar surface will have different smoothness scores despite

the same underlying structure. We propose a feature extraction technique based on linear

regression to describe the surface observed by the LiDAR consistently.

Given an N-channel LiDAR, each LiDAR scan Xm is split into N “lines”, Nm
l (l =

1, · · · , N), according to the elevation of the 3D-points collected. All the points are given a

curvature score. The curvature computation aims at fitting lines to two subsets of points

adjacent to the point under examination xiL ∈ Nm
l , and then to retrieve the cosine of

the angle between these two lines. The subsets, Li and Ri contain the D previous and

following measurements (with respect to xiL) in Nm
l .

First, the points need to be reprojected into the LiDAR frame at τm (FτmL) to remove

motion distortion according to the best current estimate of the state S. These reprojected

points xiLm are computed as follows:

xiLm

1

 = (TL
I)−1(Tτm

W)−1Tti
WTL

I

xiL

1

 . (4.12)

The curvature scores are computed under the approximation that around a certain azimuth

the consecutively measured 3D-points belong to the same plane. As shown in Fig. 4.5,

and given αi the new azimuth of xiLm , the points in Li and Ri are projected on a plane

60 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Lidar

Wall

Local
plane

xPi

yPi

Nm
l

Local plane

α i-3
-α i α

i+
2 -
α

i

|xi-3
Lm

| |xi+2
Lm

|
xPi

yPi β

Figure 4.5: Geometric feature extraction based on linear regression. The points around
a given azimuth are assumed to belong to a local plane. On that local plane, linear
regressions are performed considering points inNm

l on both sides of the ith point xi
L ∈ Nm

l

independently. The curvature score is equal to cos(β) with β the angle between the two
fitted lines.

space around αi

xkPi
=|xi+k

Lm
|sin(αi+k − αi), (4.13)

ykPi
=|xi+k

Lm
|cos(αi+k − αi), (4.14)

with k = −D, · · · , D (D = 5 in our implementation).

XLi =




1 x−D
Pi

...
...

1 x0Pi


 ,XRi =




1 x0Pi

...
...

1 xDPi


 , (4.15)

YLi =
[
y−D
Pi

· · · y0Pi

]�
and YRi =

[
y0Pi

· · · yDPi

]�

group the projected points coordinates according to the two adjacent subsets Li and Ri.

In the rest of this section, • represents either Li or Ri. A line of slope s• and y-intercept

q• can be fitted to the subset • with

[
q• s•

]�
=

(
X�

• X•
)−1

X�
• Y•, (4.16)

and an associated unit direction vector can be obtained as

v• =

[
1√
1+s2•

s•√
1+s2•

]�
. (4.17)

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 61

Lidar Wall

(a) Outward edge

Lidar Wall

(b) Inward edge

Figure 4.6: Edge classification for data association robustness.

The average and maximum regression error values, respectively

ēi• =
1

|•|
∑

k|xkL∈•

∣∣∣ykPi − q• − s•xkPi∣∣∣ and (4.18)

ei• = max
k|xkL∈•

(∣∣ykPi − q• − s•xkPi∣∣), (4.19)

are used to reject points or to detect border of occlusions as per Algorithm 1 The score ci =

v>LivRi represents the cosine of the angle between the two fitted lines. As a consequence,

ci is close to 1 when the underlying surface is planar and decreases with the sharpness of

edges.

As in [10], surfaces close to being parallel to the laser beams are rejected as features. We

also use a system of bins and a maximum number of features per bin on each laser line

to ensure the features are spread over the whole scan. The points with the highest scores

in each of the bins of Nm
l are classified as planar points and the lowest scores as edges

according to arbitrarily chosen maximum numbers of features per bin and thresholds on

scores. The edge orientation, classified as inward (pointing toward the LiDAR as shown in

Fig. 4.6(b)) or outward (pointing away from the LiDAR as shown in Fig. 4.6(a)), can be

defined by looking at the values of the regressed lines’ parameters. This edge classification

brings additional robustness to the later feature association as inward and outward edges

cannot be matched together. All the planar features in Nm
l with l = 1, · · · , N , are grouped

into a set Pm, the inward edges in EmI and outward edges in EmO . The reader should note

that the feature set (from the back-end section of this chapter) Fm = Pm ∪ EmI ∪ EmO .

4.4.2 Feature recomputation

The aforementioned process of feature extraction is computationally costly and depends

on the last estimate of the state S. IN2LAAMA integrates a way to check the validity of

62 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Algorithm 1 Algorithm used to reject lidar points as potential features according to the
linear regression errors.

Input:
ēth, eth: Thresholds on mean and max regression error
ēiL, ē

i
R, e

i
L, e

i
R: Regression errors in Li and Ri

Output:
Boolean flag: Accept point or Reject point

function RegressionOK (• = Li or Ri)
return (ēi•<ēth) & (ei•<eth)

end function

function Occlusion (• = Li or Ri)
return (s•x

−1
Pi

+q•< |xiLm |)
end function

1: if RegressionOK(Li) & RegressionOK(Ri) then
2: return Accept point
3: else if !(RegressionOK(Li)) & !(RegressionOK(Ri))
4: then return Reject point
5: else
6: if RegressionOK(Li) then
7: Remove xiL from Ri and recompute regression
8: if !(RegressionOK(Ri)) ‖ Occlusion(Ri) then
9: return Reject point

10: else
11: sRi←(y1Pi−y

0
Pi

)/(x1Pi−x
0
Pi

), recompute vRi
12: return Accept point
13: end if
14: else if RegressionOK(Ri) then
15: Remove xiL from Li and recompute regression
16: if !(RegressionOK(Li)) ‖ Occlusion(Li) then
17: return Reject point
18: else
19: sLi←(y0Pi−y

−1
Pi

)/(x0Pi−x
−1
Pi

), recompute vLi
20: return Accept point
21: end if
22: end if

23: end if

features without the need to recompute all the linear regressions.

For the moment, let us consider planar features only and define Nf as the maximum

number of planar features selected per bin during the feature extraction performed on the

mth LiDAR frame. The set of planar features in the kth bin of the mth LiDAR frame is

denoted Bjm,k with j > 0 corresponding to the jth time the features of frame m have been

computed. Considering the case j = 1, the scores ci are computed for all points in Xm.

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 63

The points are then sorted according to their score in a decreasing order. Starting from

the highest score, points are added to Bjm,k if their score is above a threshold and as long

as |Bjm,k|< Nf . The algorithm also stores the Nf next candidates (even if they do not

match the threshold) in the set Cjm,k. Note that the set union of the planar feature bins

Bjm,k is Pm.

In the case of j > 1, typically after an optimisation iteration of the factor graph, the state

S changes. The features potentially need to be recomputed. The score of the points in

Bj−1
m,k and Cj−1

m,k are recomputed and sorted by decreasing order. The point selection for the

bins is done as if j = 1, but using point scores from Bj−1
m,k ∪ C

j−1
m,k and not from Xm. An

overlap ratio of number of features is computed as

Θj,m =

∣∣∣(⋃
k

Bjm,k
)
∩
(⋃
k

Bj−1
m,k

)∣∣∣∣∣∣(⋃
k

Bj−1
m,k

)∣∣∣ . (4.20)

If Θj,m is close to one, then Bjm,k ← B
j−1
m,k and Cjm,k ← C

j−1
m,k . Otherwise, Bjm,k and Cjm,k are

recomputed from Xm as per the case j = 1. Similar process is used for edge features.

4.4.3 Data association

The proposed scan registration method requires matching features from frame-to-frame.

Feature matching is usually prone to outliers. Thus, a robust process for data association

is needed. This section describes the different processes used in IN2LAAMA for matching

and outlier rejection.

4.4.3.1 Feature matching

Given a pair of LiDAR frames i and m reprojected into FW , the method looks for the 3

nearest neighbours of each point from P i in Pm . For points in E iI and E iO, only the 2 nearest

neighbours are searched in EmI and EmO respectively. In both cases, to limit the impact of

the measurements’ noise on the point-to-line and point-to-plane distances used as LiDAR

residuals, the n = {2, 3} closest points need to be spatially spread over some minimum

64 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

A B C

Figure 4.7: Different data association strategies between a scan Xm (dashed line) and
its previous scan Xm-1 (plain line). The top row represents the data association. The
bottom row shows the potential results after minimising point-to-plane distances. A uses
360◦ scans with back-association. B uses scans greater than 360◦, with back-association.
C extends B with back-and-forth-association. C ensure consistency of the LiDAR scans,

whereas A and B do not.

distances. The n closest points cannot belong to a single LiDAR channel. If the n closest

points do not satisfy these conditions, the subsequent closest points are considered. For

planar feature associations, the collinearity of the 3 points from Pm is checked. Kd-trees

[112] are used for efficient nearest neighbour searches. The data associations are included

in A as tuples of 3 or 4 as per the type of feature.

To enforce LiDAR scans’ consistency without additional constraints, the proposed method

considers scans greater than 360◦ (520◦ in our implementation) and does the data associ-

ation both from i to m, and from m to i. The idea behind these choices is illustrated in

Fig. 4.7 through a 2D example, in which the system moves in a rectangular room detecting

only planar features and leveraging only LiDAR factors. In scenario A, the data associ-

ation between scans of 360◦ (or less) does not necessarily allow for the correction of the

motion distortion in the scans. Individually the LiDAR residuals do not robustly constrain

the motion distortion present in each frame, and the sensor noise can worsen this situation

even more. Without constraints on pose continuity between the last point of Xm-1 and

the first one of Xm, the registration is unlikely to correct the distorted scans properly. In

scenario B, the scans are greater than 360◦, but the lower wall of the first scan does not

appear in any data association. Consequently, under some particular circumstances, the

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 65

registration can still contain some motion distortion in Xm-1. The scenario C fully con-

strains the scan consistency correcting the motion distortion by having both scans greater

than 360◦ combined with back-and-forth data association.

Intuitively, the greater the angle swept by a scan, the better the scan consistency, but there

is a trade-off with the execution time. The GPMs’ GP regressions are computed from the

IMU readings that are collected during a LiDAR scan. Therefore, larger LiDAR scans

imply cubically longer inference time as per the O(n3) complexity of GP interpolation.

4.4.3.2 Outliers rejection

To remove outliers from A, matching points spread over too large areas are disregarded.

For planar features, the outlier detection additionally analyses the patch around the

matched feature-points. Considering a planar point xiW associated with xjW , xkW , and

xlW , the line-neighbours of each of the 3 matched points from Pm (Lj , Rj , Lk, Rk, Ll,

and Rl) are placed in a set U . If the points in U do not belong to the plane described by

xjW , xkW , and xlW , the association is rejected. Formally, an association is valid if

max
xuW∈U

((
xuW − xjW

)>((
xjW − xkW

)
×
(
xjW − xlW

))
‖
(
xjW − xkW

)
×
(
xjW − xlW

)
‖2

)
(4.21)

complies with the LiDAR range noise.

For edge features, the following two nearest neighbours in EmI or EmO (depending on the

edge orientation) are queried. If not all the four neighbours lie on the same line (with

compliance to the LiDAR range noise), the feature association is rejected.

4.4.4 Loop-closure detection

Loop-closures allow localisation and mapping algorithms to correct the accumulated drift

inherent to frame-to-frame trajectory estimation. The proposed method does not address

large drift scenarios (such as the kidnapped robot scenario). It is out of the scope of

this chapter and part of the future work. Here, a simple geometric loop-closure detection

based on estimated poses proximity has been implemented. In other words, if two poses

66 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Lidar FoV Lidar frame FL

Scan A Scan BScan A Scan B
(a) (b)

Figure 4.8: Illustration of two loop-closure scenarios with different orientation gaps
between the LiDAR scans. The sensing system is moved inside a room represented by the
outer rectangle. In (a), between scans A and B, the LiDAR is rotated by 90◦ around its
spinning axis. In (b), it is also rotated by 90◦ but around another axis. In case (a) there
is a lot of geometric overlap to register the two frames, whereas in (b) the registration is

challenging because of the risk of poor data association due the small overlap.

are spatially close enough given the estimated state, a LiDAR factor is built between

these two poses (performing feature matching and adding a set of residuals to the cost

functions). As an intuition, for indoor scenarios, it aims at detecting loop closures when

the drift is smaller than the dimensions of the rooms. An optional ICP test is conducted

to validate or reject a loop closure candidate. In the proposed method, loop-closures are

modelled with additional LiDAR factors, as shown in Fig. 4.3.

Commonly used LiDARs have a 360◦ FoV around the spinning axis (azimuth) but have a

narrower angular range on the other axis (elevation). The nature of that setup results in

big overlaps between scans that have been collected while the LiDAR rotates around its

spinning axis. On the other hand, if the LiDAR rotates around other axes, the geometric

data overlap decreases, making the registration between two scans more challenging. This

is illustrated in Fig. 4.8. Therefore, the direct angle between two orientations cannot be

used as part of the proximity metric. The 360◦ “horizontal” field-of-view of the LiDAR

must be taken into account.

Let us consider a spinning LiDAR that sweeps the environment around the z-axis of its

reference frame. The origin of the frame coincides with the LiDAR optical centre. The

different metrics used to define the closeness between two LiDAR frames FτmL and FτiL are

as follows:

• dr is the radial distance of the origin of FτiL regarding the z-axis of FτmL .

• dh is the point-to-plane distance between the origin of FτiL and the plane formed by

the x and y axes of FτmL .

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 67

• dα is the angle between the z-axes FτiL and FτmL when their origins coincide.

More formally,

dr =

√
xim

2 + yim
2 (4.22)

dh = |zim| (4.23)

cos(dα) = uz
>RL

I
>

Rτm
W
>Rτi

WRL
I uz, (4.24)

with
[
xim yim zim 1

]>
= (TL

I)−1(Tτm
W)−1Tτi

W

pLI

1


and uz =

[
0 0 1

]>
.

To limit the number of redundant loop-closures, IN2LAAMA sets a minimum time between

two consecutive loop-closures, as well as a minimum gap time between the two frames

used for closures. The algorithm looks for loop-closures every time a new frame is added

to the factor graph. The metrics dr, dh, and |cos(dα)| are computed between this new

frame and the previous frames that satisfy the aforementioned time conditions, by order of

increasing timestamp. The first frame that complies with thresholds on the above metrics is

considered as a valid loop-closure candidate. The threshold on dr is dynamically computed

for each frame and is equal to the upper 1-sigma bound (mean plus standard deviation)

of the range measurements of that frame. The threshold on dh is user-defined according

to the type of trajectory and environment, and the one on |cos(dα)| is set according to

the LiDAR vertical FoV (2/3 of the vertical FoV in our implementation). Optionally, in

exchange for an additional computational cost, a standard ICP [34] is conducted between

the new frame and frames contained in a time window around the loop-closure candidate.

In this case, the loop-closure is validated only if the ICP fitness score is below a given

value. The validation of a loop-closure leads to the addition of a new LiDAR factor in the

factor graph as it can be seen in Fig. 4.3.

68 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

4.5 On the factor graph and implementation

4.5.1 Factor graph for localisation and mapping

In the absence of trajectory and velocity priors (no Global Position System (GPS), no

odometry, etc.), the factor graph used for state estimation is built iteratively and optimised

as new factors are added to the cost function. Algorithm 2 shows the proposed strategy.

Intuitively, the first frames need particular attention because the initial state is completely

unknown when the system is switched on. Therefore, during the initialisation step, the

integration of any single new frame triggers both the optimisation of the state S, and the

feature recomputation and data association for every frame already in the graph. Once this

initialisation step is finished, motion-distortion is removed from the corresponding LiDAR

scans. Feature recomputation in these frames is not needed later in the process (the

features are reliable as computed on distortion-free LiDAR scans). Only the latest frames

have their features and data association recomputed as the state S changes. Note that

the method still considers motion distortion in all the frames at all times because GPMs

are used in the LiDAR residuals, and the full trajectory is part of the state S. Integrating

IN2LAAMA into a more complex system that provides reliable prior information (e.g., a

robotic platform with odometry, GPS in outdoor scenarios, etc.), could significantly reduce

the number of iterations needed to build the factor graph (potentially in one go). The

execution time would be greatly reduced.

4.5.2 Factor graph for autocalibration, localisation, and mapping

The localisation and mapping procedure relies on a good knowledge of TL
I . Using inac-

curate calibration parameters can lead to contradicting information in the factor graph.

As a consequence, using the integration of inertial data from the last estimate of the state

provides a prior that drift rapidly. The proposed method allows for the extrinsic calibra-

tion of the LiDAR with respect to the LiDAR. This feature is denoted autocalibration as

no additional factor nor calibration target is required.

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 69

Algorithm 2 Algorithm describing the factor graph construction and optimisation pro-
cedure.

Input:
M : Number of frames in the dataset
Ng: Number of frames to initialise initial conditions
Ne: Number of frames added between each optimisation
Calib: Activate calibration parameters estimation

Output:
S: State estimate

1: // Initialisation
2: F ← Create empty factor graph
3: for n = 0 : Ng − 1 do
4: Add frame n and associated factors to F
5: repeat
6: S ← Optimise(F)
7: Check/recompute features in frames 0 to n
8: until Reach nb. iterations ‖ State converges
9: end for

10: if Calib then
11: N ← 1
12: else
13: N ← Ne
14: end if
15: // End initialisation
16:

17: for n = Ng : M − 1 do
18: Add frame n and associated factors to F
19: if n mod N = 0 ‖ n = M − 1 then
20: repeat
21: S ← Optimise(F)
22: Check/recompute features in frames n−Ne to n
23: until Reach nb. iterations ‖ State converges
24: end if
25: Check loop-closure. If loop detected: S ← Optimise(F)
26: end for
27: if Calib then
28: Add TL

I to S
29: repeat
30: S ← Optimise(F)
31: Check/recompute features in frames 0 to M − 1
32: until Reach nb. iterations ‖ State converges
33: end if

70 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

For the autocalibration procedure, IN2LAAMA runs the localisation and mapping proce-

dure based on any prior knowledge of TL
I , while performing the optimisation step every

time a new frame is added to the factor graph (cf. N ← 1 in the algorithm of Fig. 2).

Once the full trajectory is estimated based on the inaccurate calibration parameters, the

calibration parameters TL
I are included as part of the state S to be estimated along with

the different poses, velocities, and bias and time-shift corrections already in S. Given

this new S, the proposed method iteratively optimises the factor graph and recomputes

features until the estimate converges.

4.5.3 Robustness of state estimation

A major challenge for robotics state estimation is the management of outliers. In a locali-

sation and mapping framework, like the one presented here, outliers can originate through

different phenomena. One is simply wrong data association. Despite conservative LiDAR

feature-association rules, in cluttered environments, it is still likely that outliers pass the

rejection tests mentioned in Subsection 4.4.3.2. To address this issue, bisquare weights

[113] are applied to each individual LiDAR residual.

Another source of outliers is the “quality” of the sensor models used (one can interpret

it the other way around as “the quality of the sensor data”). By definition, a mathe-

matical model is an approximation (more or less accurate) used to describe a real-world

system. IN2LAAMA uses common models for the sensor readings (additive zero-mean

Gaussian noise) and the IMU biases (Brownian motion). These considerations might not

capture reality accurately. In a multi-sensor estimation framework, sensor data that do

not correspond exactly to the models employed create contradicting information in the

estimation process. We propose to overcome this issue by applying Cauchy loss functions

on each of the LiDAR and IMU factors to attenuate these outliers. The experiment in

Subsection 4.6.1.3 shows the robustness gain in the presence of erroneously modelled IMU

measurements.

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 71

4.5.4 Bias observability

The inertial navigation literature have previously studied the observability of IMU biases

in different estimation frameworks [114–116]. It has been proven that in the presence of

inertial data, the biases of the accelerometer are observable only if the attitude of the

system is perfectly known or if the trajectory contains rotations [110]. If none of these

conditions is satisfied, the estimated state S is not unique. In other words, in the presence

of translation-only motions, there is an infinity of orientation-biases combinations that

correspond to a given trajectory.

In the case of LiDAR-inertial fusion, a LiDAR alone cannot provide an accurate global

attitude without relying on strong heuristics that are not desired in generic localisation

and mapping frameworks (e.g. Manhattan world with walls aligned with gravity vector).

Therefore, an extra constraint is needed to tackle the problem of translation-only trajec-

tories. The proposed method overcomes this problem by integrating a simple factor that

penalises the distance between the estimated accelerometer biases and the null vector.

This additional factor on b̂0
f is added to the factor graph upon creation. Once the final

frame’s factors are added to the factor graph, the observability constraint is released

(weight null), and the cost function is minimised. If the magnitude of the accelerometer

biases is far from zero, the constraint is re-established and the optimisation run again.

This strategy covers the scenarios where the estimation ambiguity is present only at the

start of the trajectory. Note that in the non-observable cases (translation-only motion),

the estimated biases and global orientation are inaccurate, but the trajectory, therefore

the map, is still consistent (but not gravity aligned).

4.5.5 GPMs and memory

The main attribute of the GPMs is to make precise inertial data available for each of

the points collected by the LiDAR and therefore allow for the precise motion distortion

correction. The drawbacks of these measurements are the computation time (due to the

GP interpolations and the numerical integration) and memory usage. Because the GPMs

are relatively slow to compute, storing them is essential to limit the global execution

72 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

time. On the other hand, GPMs need a significant amount of memory as each GPM

is stored on at least 150 floating-point numbers (preintegrated measurements, covariance

matrix, Jacobians for bias and time-shift corrections). Based on the Velodyne VLP-16

and double-precision floating-point numbers, it represents a memory consumption of more

than 340MB per second of data solely to store the GPMs. To reduce the memory footprint

and make IN2LAAMA executable on standard computers, only the GPMs associated to

the last NGPM frames are stored. As per the localisation and mapping procedure shown

in the algorithm of Fig. 2, choosing NGPM equal to max(Ng, Ne) does not impact the

estimation time. However, this strategy requires the recomputation of all the GPMs to

export the dense map when the estimation process terminates.

4.6 Experiments and results

The proposed framework has been evaluated in simulation and on real data from our

platform and a public dataset. Our real-world platform is a self-contained LiDAR and

IMU sensor suite;

• Velodyne VLP-16, 16-channel (±15 ◦) LiDAR rotating at 10 Hz with a density of

300k point per second and noise of ±3 cm.

• Xsens MTi-3, 3-axis accelerometer and 3-axis gyroscope sampling at 100Hz with

noise of 0.02 m/s2 and 0.097 ◦/s.

The simulated datasets have been generated to match the characteristics of the above-

mentioned system moving in a virtual room constituted of 7 planes. Both the back-end and

front-end of the proposed method are tested and evaluated in our simulated experiments.

In the rest of this section, the A-LOAM implementation1 of [10] is used to benchmark the

proposed method. This last technique has been chosen for its top performance with LiDAR

systems in the KITTI odometry benchmark [11]. Our implementation of IN2LAAMA is

built upon the non-linear least-square solver Ceres2 with analytical Jacobians of the cost

function.
1https://github.com/HKUST-Aerial-Robotics/A-LOAM
2http://ceres-solver.org

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 73

4.6.1 Simulation - localisation and mapping

This set-up aims at evaluating different configurations of the proposed framework for local-

isation and mapping. The trajectories of the simulated sensor suite have been generated

from sine functions with random frequencies and amplitudes. The extrinsic calibration

between sensors is randomly generated for each trajectory. The results are evaluated over

50-run Monte Carlo simulations.

4.6.1.1 Odometry

First, we want to evaluate the advantages of using IMU factors for odometry-like local-

isation and mapping by comparing the accuracy of IN2LAAMA against our preliminary

work [15] (which did not integrate IMU factors, and [10]. We evaluate the localisation

accuracy of the three frameworks on three sets of trajectories that have different levels of

angular velocities. The loop closure detection is deactivated for these experiments.

Table 4.1 reports the trajectories’ parameters as well as the localisation errors against

ground truth for [10], [15], and IN2LAAMA. The poor performance of [10] is easily

explained by the fact that the motion starts at the very beginning of the simulation.

Consequently, even the first LiDAR frame contains motion distortion. This cannot be

properly corrected by [10], and leads to unrecoverably large localisation error.

In the case of low angular velocities (row “Slow”), both [15] and IN2LAAMA succeed

in estimating the system pose. The integration of IMU factors improves the trajectory

estimate slightly. Note that the presence of higher angular velocities leads to smaller

overlap between LiDAR scans. Thus, the “Moderate” and “Fast” trajectories contain

cases where the overlap between consecutive scans is not enough for the LiDAR factors

to fully constrain the frame-to-frame motion. These “degenerated” trajectories trigger

estimation failure of [15], but are correctly handled by the integration of frame-to-frame

IMU factors. Note that the accuracy metrics of Table 4.1 are computed on successful runs

only, therefore advantaging [15] in the “Fast” scenario.

74 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Slow motion (angular velocity in ◦/s: avg 14.7, max 22.1)

Framework [10]
[15] (No IMU

factors)
IN2LAAMA

Num. fails 0 0 0

Final position error (m) 5.67 ± 2.63 0.11 ± 0.06 0.06 ± 0.03

Final orientation error (◦) 27.9 ± 13.6 0.80 ± 0.42 0.12 ± 0.07

Relative position error (m) 0.47 ± 0.14 0.01 ± 0.002 0.003 ± 3e-4

Relative orientation error (◦) 1.46 ± 0.51 0.03 ± 0.002 0.005 ± 1e-4

RMSE position error (m) 5.62 ± 1.72 0.08 ± 0.03 0.04 ± 0.02

RMSE orientation error (◦) 29.2 ± 8.98 0.56 ± 0.24 0.09 ± 0.04

Moderate motion (angular velocity in ◦/s: avg 49.0, max 78.2)

Framework [10]
[15] (No IMU

factors)
IN2LAAMA

Num. fails 0 1 0

Final position error (m) 7.03 ± 3.41 0.34 ± 0.26 0.30 ± 0.57

Final orientation error (◦) 57.2 ± 26.2 2.17 ± 1.51 1.37 ± 6.31

Relative position error (m) 0.48 ± 0.17 0.02 ± 0.004 0.004 ± 0.002

Relative orientation error (◦) 4.85 ± 1.84 0.06 ± 0.009 0.009 ± 0.018

RMSE position error (m) 6.29 ± 2.22 0.24 ± 0.12 0.19 ± 0.38

RMSE orientation error (◦) 56.1 ± 17.9 1.70 ± 0.86 0.81 ± 3.63

Fast motion (angular velocity in ◦/s: avg 125, max 198)

Framework [10]
[15] (No IMU

factors)
IN2LAAMA

Num. fails 0 37 0

Final position error (m) 16.2 ± 5.60 0.39 ± 0.14 0.96 ± 0.61

Final orientation error (◦) 119 ± 38.2 3.39 ± 1.65 0.59 ± 3.00

Relative position error (m) 0.53 ± 0.12 0.04 ± 0.01 0.007 ± 0.003

Relative orientation error (◦) 13.0 ± 3.45 0.10 ± 0.02 0.007 ± 0.009

RMSE position error (m) 11.1 ± 2.71 0.28 ± 0.09 0.57 ± 0.36

RMSE orientation error (◦) 90.7 ± 20.6 2.38 ± 0.92 0.36 ± 1.71

Table 4.1: Quantitative results of the odometry set-up in simulated environment (50-run
Monte Carlo simulation). The trajectories have an average length of 288.7 m, an average
velocity of 4.85 m/s, and a maximum velocity of 7.35 m/s. The different tables correspond
to different levels of angular velocity during the trajectory. The errors displayed are
computed only on the successful runs against the ground truth. The RMSE errors are
computed all along each trajectory estimates. The relative errors correspond to frame-

to-frame registration errors.

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 75

Loop-closure
Final pos.
error (m)

Final rot.
error (◦)

RMSE pos.
error (m)

RMSE rot.
error (◦)

Without 0.110 ± 0.043 0.30 ± 0.19 0.051 ± 0.021 0.17 ± 0.11

With 0.011 ± 0.011 0.15 ± 0.12 0.019 ± 0.007 0.10 ± 0.07

Table 4.2: Quantitative results of trajectory estimation when integrating loop closures
constraints in the factor graph. The set of trajectories has the following characteristics:
mean distance = 210 m, mean velocity = 3.53 m/s, mean angular velocity = 8.16 ◦/s. The

relative errors correspond to frame-to-frame registration errors.

4.6.1.2 Loop-closure

This set-up aims at demonstrating the ability of the proposed method to perform si-

multaneous localisation and mapping (SLAM) by integrating loop closures in the batch

optimisation. A set of simulated trajectories is generated so that the first and last poses

coincide. Table 4.2 shows the localisation results with and without the proposed loop

closure detection method. The numbers show that loop closures help to reduce both the

final pose error as well as the overall localisation error all along the trajectory.

4.6.1.3 Robustness to inaccurate sensor model

This set-up has been designed to demonstrate the gain of robustness brought by the use

of Cauchy loss functions on LiDAR and IMU factors. As mentioned in Section 4.5.3, a

sensor model is only an approximation of reality. In real data, the sensors do not always

behave as per the manufacturer specifications or noise models. This is the scenario that

we are trying to emulate in this set-up.

To simulate a “mismatch” between model and reality, we perturb the IMU sensitivity by

simply multiplying the inertial data by a constant. By looking at the localisation accuracy

shown in Table 4.3, both in terms of error and number of failure cases, it is clear that the

loss functions make IN2LAAMA more robust to discrepancies between the IMU model

and the actual readings.

76 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Cauchy
loss

IMU data multiplier
1.01 1.03 1.05

Without 0.23 ± 0.09 (0) 0.70 ± 0.27 (12) 1.03 ± 0.31 (34)

With 0.21 ± 0.14 (0) 0.51 ± 0.19 (0) 0.80 ± 0.29 (0)

Table 4.3: Analysis of the robustness gained by using Cauchy loss functions on LiDAR
and IMU factors. The results represent the RMSE position error, in meters, computed
upon a 50-run Monte Carlo simulation. The digits in parenthesis correspond to the
number of failure cases. The trajectories are 47.2 m-long on average and have the “Fast”

velocity (linear and angular) profile from Table 4.1.

Num.
fails

RMSE pos. (m) RMSE rot. (◦)

Constant vel. 18 2.67 ± 4.84 19.9 ± 24.7

IN2LAAMA (no motion model) 0 0.087 ± 0.041 0.088 ± 0.267

Table 4.4: Comparison of IN2LAAMA with a modified version that assumes constant
angular and linear velocities, over a 50-run Monte Carlo simulation. The trajectories are
95.2 m-long on average and have the “Fast” velocity (linear and angular) profile from

Table 4.1.

4.6.1.4 No motion model

Using individual preintegrated measurements for each LiDAR point, while leveraging non-

parametric interpolation, allows the proposed framework to alleviate the constraints of an

explicit motion model. This set-up aims at demonstrating the importance of not imposing

a motion model to the state estimation. We compare IN2LAAMA with a modified version

of it built on the assumption of constant angular and linear velocities during the LiDAR

frames. Table 4.4 displays the pose error of both frameworks over a 50-run simulation.

The results clearly demonstrate the accuracy gain of alleviating the use of such a restrictive

motion model.

4.6.2 Simulation - front-end

This subsection discusses the proposed feature extraction, and compares it with the front-

end of [10]. We show that our method has a consistent behaviour with respect to the

observed surface by using a scoring system robust to the lidar viewpoint. In this regard,

we have computed the feature score for each of the points of simulated scans. Our method

computes a score that represents the cosine of the angle present in a patch. The higher

the score (with 1 being the maximum value), the more planar the patch. In [10], the

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 77

IN2LAAMA
Pose B

-0.5 0 0.5 1

0.5

1

1.5

2

2.5

3 10 4

-0.5 0 0.5 1

5
10
15
20
25

Zoom

IN2LAAMA
Pose A

-0.5 0 0.5 1

0.5

1

1.5

2

2.5

3 10 4

-0.5 0 0.5 1

5
10
15
20
25

Zoom

[10]

Pose B

0 0.02 0.04 0.06 0.08

0.5

1

1.5

2

2.5

3 10 4

0 0.02 0.04 0.06 0.08

5
10
15
20
25

Zoom

[10]

Pose A

0 0.02 0.04 0.06 0.08

0.5

1

1.5

2

2.5

3 10 4

0 0.02 0.04 0.06 0.08

5
10
15
20
25

Zoom

(a) Histogram (b) Score (c) Features

Figure 4.9: Feature score comparison between IN2LAAMA and [10]. (a) Histograms
of the points’ score. (b): Spatial visualisation of the score (same colours as histograms).
(c): Features selected with the 100 “most planar” points of each lidar channel in red and
the 15 sharpest edge points in green. IN2LAAMA’s score exposes a physical value (here,
edges have a score cos(β) < cos(45◦), cf. Fig. 4.5). The blue dots are the lidar position.

point score gives an evaluation of smoothness in a patch but does not correspond to any

particular physical measurement of the actual geometry. Nonetheless, this score tends to

be low in planar patches and high in edge-like patches.

Fig. 4.9 (a) shows the histograms of the scores in simulated environment. The histograms

illustrate that the scores computed by IN2LAAMA are consistent across the scan (the

bin around 1 dominates largely the histogram). The zoomed-in plots show the modes

associated with the different edges of the environment. However, with [10]’s scoring system

(inverse to ours), the distinction of the different surface types is ambiguous. Fig. 4.9 (b)

spatially represents the points’ score with colours, and Fig. 4.9 (c) shows the subsequent

feature selection. One can see that IN2LAAMA’s score is consistent with the observed

surface despite changes in the lidar’s pose. Having features spread all across the scene

leads to better estimation stability.

To evaluate this last point, we compare the proposed method (front-end and back-end)

against a hybrid method that uses our back-end in association with the front-end of [10] in

78 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Avg. error initial
guess

Estimated translation
error (m)

Estimated rotation error
(◦)

0.17 m, 1.74 ◦ 10.5e-3 ± 6.34e-3 0.035 ± 0.037

0.52 m, 3.47 ◦ 11.2e-3 ± 6.94e-3 0.047± 0.053

0.86 m, 8.55 ◦ 10.8e-3 ± 6.92e-3 0.062 ± 0.142

1.22 m, 25.1 ◦ 16.3e-3 ± 18.7e-3 0.125 ± 0.326

Table 4.5: Quantitative results for extrinsic calibration in a 50-run Monte Carlo sim-
ulation. The different rows correspond to different levels of error on the initial guess
used to estimate the LiDAR-IMU geometric transformation. The trajectories used last
19.6 s (95.2 m-long on average), and have the same velocity characteristics as the “Fast”

trajectories of our odometry set-up (Table 4.1).

simulated environment. The proposed method leads to an RMSE pose error of 0.087 m and

0.088 ◦, while the hybrid method resulted in an error of 0.431 m and 0.220 ◦. These numbers

have been computed over a 50-run Monte Carlo simulation. The average trajectory length

is 95.2 m, the average velocity 4.86 m/s, and the average angular velocity 125 ◦/s.

4.6.3 Simulation - calibration

This set-up aims to evaluate the accuracy of the proposed method quantitatively when used

for extrinsic calibration between a LiDAR and an IMU. These series of experiments were

run with different error levels of initial guess. Table 4.5 shows the error of the calibration

estimates. We can see that the estimates’ errors stay small despite an increasingly bad

initial guess. The scenario with the worst initial guess (fourth row of Table 4.5) leads to

an error slightly bigger than in the three other scenarios. Nonetheless, in such a case, it

is possible to run a second iteration using the first iteration’s calibration estimate as the

initial guess. Doing so, the worst initial guess scenario leads to final calibration errors

of 10.8e-3 m, and 0.031 ◦ after the second iteration of IN2LAAMA. Experiments have

also been conducted using longer data recordings, 39.2 s, with the same initial guess as

in the first row of Table 4.5. The average errors over 50 runs are reduced to 7.6e-3 m,

and 0.024 ◦. These results demonstrate similar accuracy as our preliminary work [19] that

relies on observing a calibration target made of at least three non-coplanar planes.

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 79

4.6.4 Real-data - Localisation and mapping

Multiple datasets have been collected with our sensor suite inside the facilities of the

University of Technology Sydney. These datasets contain per-point timestamps, and have

been made publicly available3. Moreover, to demonstrate the versatility of the proposed

method, we have applied IN2LAAMA to the MC2SLAM dataset [50]. This dataset has

been selected because it contains timestamps for every single LiDAR point.

As mentioned above, our sensor suite comprises a Velodyne VLP-16 and a low-cost Xsens

MTi-3 IMU. The snark driver4 and the ROS Xsens driver5 were used to collect the

LiDAR and IMU data, respectively. Lidar points and IMU measurements were logged

with their associated timestamps. There is no explicit hardware or software mechanism

for synchronisation between LiDAR and IMU data.

For quantitative comparisons, we chose to use metrics related to the planarity of planes in

the environment as per none of the datasets used contains ground truth. When available,

we overlay the map generated with the blueprints of the building or satellite images of

the area. In the presence of loop closure, we compute the amount of drift without the

loop-closure.

4.6.4.1 Indoors

This set-up aims to benchmark IN2LAAMA against our preliminary work [15] (no IMU

factors) and the method in [10]. Real indoor datasets from two different locations have

been used for this evaluation: a lab environment and a staircase between floors. In both

cases, we show that the proposed method outperforms both [15] and [10].

For the lab environment, Fig. 4.10 shows the map estimated by IN2LAAMA and Ta-

ble 4.6, first three rows, shows the quantitative comparison between the maps obtained

from the different methods. The metric used is the RMS point-to-plane distance between

the 3D-LiDAR points belonging to a plane and the corresponding plane. The planes are

3https://github.com/UTS-CAS/in2laama datasets
4https://github.com/acfr/snark
5http://wiki.ros.org/xsens driver

80 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

1
6
.5

m

24.5 m

W
a
ll

1

Wall 2

Figure 4.10: Lab environment map generated with IN2LAAMA overlaid over digitalised
pre-construction blueprints (the blueprint does not capture reality accurately due to struc-
tural differences with the original plans and furniture/equipment present in the lab). The
estimated trajectory, in red, starts and ends on the left-hand side of the map. Note that
the trajectory is 6-DoF and the map is 3D. The points are coloured with the values of

the post-processed normals based on the 100 closest neighbours.

Dataset (plane used)
RMS point-to-plane distance (mm)

[10] [15] IN2LAAMA

Lab (floor) 24 19 16

Lab (wall 1) 20 13 11

Lab (wall 2) 16 15 16

Staircase (wall) 81 31 10

Table 4.6: Quantitative comparison on real data. The values shown correspond to RMS
point-to-plane distance between map points and the corresponding plane. Note that the

IN2LAAMA and [15] are offline frameworks, whereas [10] operates in real-time.

estimated by running a principal component analysis on the manually segmented points.

The estimated trajectory is 40.4 m-long and has an average velocity of 1.02 m/s. Without

loop-closure, the proposed method accumulates a drift of 0.11 m and 0.61 ◦. In this first

dataset, the motion is not aggressive, and the use of IMU factors does not impact the final

estimate significantly. All the benchmarked methods perform similarly and lead to RMS

point-to-plane distances inferior to the LiDAR noise specification (±3 cm).

The staircase dataset is more challenging because of the nature of the motion (dynamic

with strong rotations) and the weak geometric information contained in some of the

collected LiDAR scans. The different estimated maps and trajectories are displayed in

Fig. 4.11. Irrespectively, whether it is only to help motion distortion correction as in

[15] or to also fully constrain the pose-graph optimisation (IN2LAAMA approach), tightly

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 81

(a)

9
.2

5
m

(b)

9
.2

5
m

(c)

9.
25

m

Figure 4.11: Staircase maps and trajectories generated with: [10] in (a), [15] in (b),
and IN2LAAMA in (c). The black rectangles highlight the wall used for the quantitative
comparison. The points are coloured with the values of the post-processed normals based

on the 100 closest neighbours.

integrating inertial information in the trajectory estimation leads to greater mapping ac-

curacy than LiDAR-only techniques. The constant velocity motion assumption used in

[10] reaches its limits in this kind of scenarios. To provide a quantitative evaluation of the

maps, point-to-plane distances are computed for points belonging to the same wall across

the different floor levels (black rectangles in Fig. 4.11). The results are shown in the last

row of Table 4.6.

Note that our framework uses extra information (IMU readings) in comparison to [10], and

the incrementally built batch optimisation is not running in real time, thus the comparison

is not totally fair. Table 4.7 shows the computation time and memory usage for the real-

data experiments. We differentiate between the amount of memory used by the non-linear

82 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Dataset (length) Ne Mem. data/prog. Mem. optimiser Exec. time

Lab (41 s) 100 4.70 GiB 0.59 GiB 950 s

Staircase (35 s) 10 4.20 GiB 0.58 GiB 1306 s

Outdoor (85 s) 100 6.45 GiB 5.77 GiB 4699 s

Table 4.7: Memory consumption and execution time. Not that the outdoor dataset is
collected with a Velodyne HDL-32 that produce around four times as much data as the
VLP-16 used in the other experiments. For the outdoor dataset, the optional ICP tests
to validate/reject loop-closures have been activated. It represents 1588 s of the overall

execution time.

least-square optimiser and the rest of the memory consumption (data, GPMs, program,

etc.). While Ceres provides smart implementations of commonly used iterative solvers, its

design is not optimised memory-wise for very large numbers of residuals as the evaluation of

the system’s Hessian matrix requires considerable memory allocations. A potential solution

to greatly reduce the memory load is to directly compute the Hessian matrix as done in

[31]. With further engineering efforts, the execution time can be substantially reduced

as well; parallelisation on GPU could be applied to different operations (e.g. feature

extraction, inertial data upsampling, residual and Jacobian computations, etc.). Note that

the proposed framework introduces a principled and accurate full-batch optimisation that

leverages the full dataset at the cost of computation time and memory usage. Nonetheless,

we believe that, at the cost of accuracy, simple approximations of our framework associated

with the aforementioned effective implementation techniques would enable real-time and

efficient localisation and mapping methods.

4.6.4.2 Outdoors

As mentioned above, the front-end of the proposed method has been designed for struc-

tured geometry. While the geometric features used are largely present in indoor environ-

ments, outdoor scenarios can represent a challenge for our feature extraction algorithm.

We have chosen the MC2SLAM dataset [50] to show the performance of the proposed

approach in an outdoor environment as it provides per-LiDAR-point timestamps. The

data have been acquired by a Velodyne HDL-32 LiDAR and its built-in IMU mounted

on top of a car that is driven around a University campus (sequence “campus drive” of

[50]). Fig. 4.12 shows the map generated by IN2LAAMA with loop-closure. As no ground

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 83

130 m

Figure 4.12: Map generated by IN2LAAMA in outdoor environments (MC2SLAM
dataset [50], sequence “campus drive”) superposed over the corresponding Google Earth
image. The trajectory in red is estimated with IN2LAAMA and the one in black with
A-LOAM. The white dot represents the start of the trajectories. The points are coloured

with the values of the post-processed normals based on the 100 closest neighbours.

truth is given with the dataset, we overlay the map onto the corresponding Google Earth6

image. The estimated trajectory is 409 m long and lasts 85.4 s. Without loop closure, the

accumulated drift of the proposed method is 2.45 m (mostly on the vertical axis: 2.34 m),

and 1.12 ◦. The proposed method outperforms [10] that accumulates a significant drift of

9.78 m and 33.4 ◦ along the recording.

At the start of the dataset, due to the translation-only trajectory, the accelerometer biases

are not observable; the car is driven in a straight line for few meters (before starting a series

of turns). Without any additional constraint on the accelerometer biases (Section 4.5.4)

and given wrong initial orientation (Rτ0
W arbitrarily flipped up-side-down), the estimated

6https://www.google.com/earth/

84 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

state converges toward wrong biases values (magnitude of 2g). The extra factor on b̂0
f

provides the constraint required to contain the estimation error on the accelerometer biases

while the lack of motion variations prevents the estimation from converging toward the

true value of the state.

4.6.5 Real-data - Calibration

Finally, this set-up aims to evaluate the accuracy of the extrinsic calibration performed

by the proposed framework. To do so, we benchmark our method against a “chained

calibration” using an extra sensor, an RGB camera (Intel Realsense D435). The “chained

calibration” computes IMU-camera and camera-LiDAR extrinsic calibrations and com-

pounds them together to obtain the IMU-LiDAR geometric transformation. The intrinsic

camera calibration has been performed with RADOCC [96]. The IMU-camera geometric

transformation has been estimated with Kalibr [93] by moving the sensor suite in front

of a static calibration pattern. The camera-LiDAR extrinsic calibration is the result of

the minimisation of point-to-plane distances of LiDAR points belonging to a checkerboard

itself characterised by plane equations in the camera frame. The data used to estimate

this last “link” are static to avoid the issues of motion distortion and time synchronisation.

The two calibration pipelines are executed independently. Fig. 4.13 displays the map es-

timated during the IN2LAAMA calibration procedure. Then, the evaluation is conducted

by running the proposed method for localisation and mapping (on another dataset) based

on the calibration parameters obtained from the two calibration pipelines.

The aggressive nature of the trajectory (RMS linear and angular velocities of 0.24 m/s

and 81.3 ◦/s) emphasises the need for good calibration to estimate an accurate map. In

the resulting maps, average (over six non-coplanar planes) RMS point-to-plane distances

are computed between 3D points and their associated planes in the scene. The chained

calibration leads to a mean RMS point-to-plane distance of 58 mm while IN2LAAMA’s

map displayed more crispness with an average RMS point-to-plane distance of 27 mm.

The quality of the calibration results depends on the quality of the IMU readings as well

as the environment and trajectory used for calibration. With IN2LAAMA’s front-end

Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping 85

1.85 m

1.85 m

Figure 4.13: Map generated by IN2LAAMA during the calibration of the sensor suite.
From left to right: top view, side view, first-person view. The points are coloured with

the values of the post-processed normals based on the 100 closest neighbours.

being built upon planar an edge features the trajectory of the LiDAR need to allow the

frame-to-frame registration of minimum three non-coplanar planes or non-colinear edges to

constrain the LiDAR pose estimation properly. As demonstrated in [117], some trajectory

types do not lead to observable calibration parameters. The ideal trajectories are random

paths that stimulate the 6-DoF of the IMU.

4.7 Conclusion

This chapter introduced INertial Lidar Localisation Autocalibration And MApping; a

probabilistic framework for LiDAR-inertial localisation, mapping, and extrinsic calibra-

tion. The proposed method aims to deal with the motion distortion present in LiDAR

scans without the need for an explicit motion model. The key idea is to use GPMs to allow

precise characterisation of the system’s motion during each LiDAR scan. The frame-to-

frame scan registration is performed with a full batch on-manifold optimisation based on

point-to-plane, point-to-line, and inertial residuals. The integration of IMU factors allows

us to add robustness to highly dynamic motion. Extensive experiments have been con-

ducted to demonstrate the performances of IN2LAAMA both on simulated and real-world

data. A comparison with the state-of-the-art LiDAR localisation and mapping algorithm

shows that our method performs better in diverse environments. While providing more

accurate results, the current implementation of IN2LAAMA does not allow real-time op-

erations.

86 Chapter 4. IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping

Many applications (such as 3D mapping as a service) can leverage such computational

intensive framework as it is. However, the proposed framework has the potential to be

the baseline to develop more efficient LiDAR-inertial estimation frameworks for real-time

operations. To this end, one can easily think about mechanisms such as local maps [118],

sliding window optimisation [119], graph sparsification with marginalisation, parallel com-

putation on GPU, etc.

While this application only leverages one supplementary sensor (a LiDAR in addition to

an IMU), the asynchronous and continuous nature of the GPMs associated with the factor-

graph formulation of IN2LAAMA allows for the fusion of any number of sensors that can

provide information (directly or indirectly) about the systems pose or dynamics.

The related future work includes:

• The exploration of different strategies and simplifications to make the method com-

putationally efficient.

• The integration of a more robust and efficient loop closure detection mechanism.

• The addition of other modalities in this localisation and mapping framework.

Alternative map representations such as using surfels could also be investigated to integrate

frame-to-model constraints in the optimisation and to improve the front-end robustness

in weakly structured environments.

Chapter 5

IDOL: IMU-DVS Odometry using

Lines

5.1 Introduction

This chapter presents a framework for event-based visual-inertial odometry based on the

use of the GPMs presented in Chapter 3. This work corresponds to the contributions

presented in [120].

Event-cameras (also called DVS’s) and traditional cameras differ in the nature of the data

produced despite looking alike from the outside (Fig. 5.1). Traditional frame-cameras

output images at a fixed frequency. Each image consists of an array of pixels containing

the intensity information about the light coming from the observed scene. Event-cameras

are bio-inspired sensors that generate asynchronous streams of events instead of regular

images (Fig. 5.2. Individually, the pixels of a DVS trigger events upon changes of intensity

according to a given threshold. Consequently, in a static environment, events are generated

only when the camera is moving. Note that additionally to the position in the image and a

timestamp, each event is characterised by a polarity which is a boolean value that encode

the direction of the intensity change.

While this novel type of sensor has great advantages (high dynamic range, low latency,

high bandwidth data, etc., cf. Fig. 5.3), it comes with new challenges for the vision-based

87

88 Chapter 5. IDOL: IMU-DVS Odometry using Lines

Figure 5.1: Pictures of DVS sensors. On the right is the DAVIS240 (image source:
inivation.com). On the right is a propototype as shown in [66].

(a) Greyscale image of environment
[121] (not used in IDOL)

(b) Spatio-temporal view of raw
stream of events

Figure 5.2: Example of data obtained with an event camera (from shapes of [121]).

state estimation community. Particularly, traditional estimation frameworks are generally

not designed for asynchronous and high-bandwidth sensory information. The proposed

method aims at estimating the ego-motion of an event-based visual-inertial system. To

this end, as shown in Fig. 5.4, line segments are detected in the event data provided

by the camera, and both the system’s trajectory and the position of the 3D lines are

simultaneously estimated. Addressing the asynchronicity of the event stream, GPMs are

used to associate each event with inertial measurements. The state is then estimated

by means of a discrete-state batch on-manifold optimisation that accounts for the events

individually.

Chapter 5. IDOL: IMU-DVS Odometry using Lines 89

Image
reconstruction from

event data [122]

Frame-based image

(a)

High-frame-rate
video reconstruction

from event data
[123]

(b)

Figure 5.3: Illustration of applications that leverage the advantages of event cameras
(image sourced from the corresponding papers). In (a) we can see the image reconstruc-
tion performed with [122]. This method uses convolutional gated recurrent unit [124] in
a neural network named FireNet. Thanks to the HDR abilities of event-cameras, the
reconstructed images contain details invisible in the corresponding frame-based images
(e.g., the areas under the desks in the two lest-most images). (b) shows different frames
from high-frame-rate videos of bullets shot through various objects reconstructed from
event data with [123]. This approach is essentially a U-shaped neural network [125] that
leverages long short-term memory convolutional layers [126]. The reconstructed videos

display details that cannot be acquired with standard frame-based cameras.

Line-cluster detection

in temporal windows

GPMs computation

+

Factor graph optimisation

Event

data

IMU

data

Line

events Event factors

GPMs

S∗

IMU factors (GPMs)

Figure 5.4: Overview of IDOL with S∗ the estimated state. The “event factors” corre-
spond to diverse residuals detailed in this chapter: event-to-line, attraction force, repulsion

force.

90 Chapter 5. IDOL: IMU-DVS Odometry using Lines

5.2 Method overview

Let us consider a rigidly mounted event-camera and a 6-DoF IMU. The camera and IMU

reference frames at time ti are respectively noted FtiC and FtiI . The rotation matrix RC
I and

the translation vector pCI characterise the pose of FtiC in FtiI . Homogeneous transformations,

as introduced in Subsection 4.2.1, will be used in this chapter.

As for IN2LAAMA (Chapter 4), the 6-DoF IMU acquires proper acceleration f̃tq and

angular velocity ω̃tq measurements at time tq (q = 1, · · · , Q). These readings are combined

together into GPMs according to Chapter 3. The event-camera data is collected as an

asynchronous stream of events ei =
[
eix eiy

]
at time ti, with eix and eiy being the pixel

coordinates in the image space. Note that in this work, we do not consider the polarity

of the events. This stream is arbitrarily organised in M windows of N events. A 3D

point is projected into the image space with the function π(•) according to a pinhole

camera-model:

u
v

 = π(
[
x y z

]>
) =

 u′

w′

v′

w′

 with


u′

v′

w′

 = K


x

y

z

1

 , (5.1)

and K being the 3× 4 camera matrix.

The system’s IMU orientation Rm
W , position pmW , and velocity vmW are estimated at the

timestamp τm of the first event of each window (m = 1, · · · ,M) with respect to the fixed

world frame FW . The proposed method also estimates corrections, b̂mf and b̂mω , to the

bias priors used during the preintegration.

Along the sensor’s trajectory, events are clustered into segments that correspond to 3D

lines in the environment LlW (front-end). The accumulation of these event-line associations

αi = {ei, ti,LlW } form the set A. The positions of the lines are estimated simultaneously to

the IMU pose and velocities mentioned above. Each line is parameterised by its extremities

Chapter 5. IDOL: IMU-DVS Odometry using Lines 91

in the world frame FW with two 3D points la
l
W and lb

l
W as

LlW = {lalW , lb
l
W }, (5.2)

with l = 1, · · · , L. While this representation over-parameterises 3D lines, it allows the pro-

posed method to fit the lines’ extremities to the actual line segments through a mechanism

of attraction/repulsion detailed in Section 5.3.2.

The proposed method estimates the state S = (Rτ1
W , · · · ,R

τM
W , pτ2W , · · · ,p

τM
W , vτ2W , · · · ,v

τM
W ,

b̂τ1f , · · · , b̂
τM
f , b̂τ1ω , · · · , b̂τMω , L1

W , · · · ,LLW) using maximum likelihood estimation that cor-

responds to the minimisation of the cost function C:

S∗ = argmin
S

C(S),

C(S) =
∑
αi∈A

(
‖rαil ‖2Σ

rα
i
l

+‖rαis ‖2Σ
rα
i
s

)
+

L∑
l=1

‖rla‖2Σ
rla

+

M−1∑
m=1

(
‖rmf ‖2Σrm

f

+‖rmω ‖2Σrmω
+‖rmI ‖2ΣrmI

)
, (5.3)

with rl being event-to-line distances for each event-line association in A, rs and ra being

repulsion and attraction forces between each of the lines’ extremities, respectively, rf and

rω constraints on the IMU biases random-walk, and rI being direct pose and velocity

constraints between two consecutive timestamps of the estimated trajectory based on the

IMU readings. These factors (back-end) are detailed in Section 5.3. Note that Σ• is the

covariance matrix of the variable •.

5.3 Back-end

This section describes the event-related and line-related elements of the cost function C(S)

presented in (5.3). The IMU and biases factors are common with IN2LAAMA (Chapter 4).

These are detailed in Subsections 4.3.1 and 4.3.2. The Jacobians associated to the different

residuals of this section are present in Appendix D.

92 Chapter 5. IDOL: IMU-DVS Odometry using Lines

5.3.1 Event-to-line factors

The event-to-line factors correspond to the point-to-line distances between events in the

image space and the image projection of the associated 3D lines. Let us consider an event-

line association αi = {ei, ti,LlW }. The projections dtial and dtibl of the line extremities la
l
W

and lb
l
W into the camera image at ti are obtained using the extrinsic calibration TC

I , and

the GPMs (3.19) and (3.21):

dtial = π(TC
I
>

Tti
W

>
la
l
W) and dtibl = π(TC

I
>

Tti
W

>
lb
l
W). (5.4)

The point-to-line distance residual rα
i

l is then equal to

rα
i

l =
‖(ei − dtial)× (dtibl − dtial)‖

‖dtibl − dtial‖
. (5.5)

5.3.2 Line attraction and repulsion factors

The two-3D-point representation (5.2) is an over-parameterisation of an infinite 3D line

and the event-to-line factors do not fully define the position of the line points. In other

words, without additional constraints, there is ambiguity on the estimated state as an

infinite amount of point pairs can characterise the same line. To address this issue, we

introduce an attraction/repulsion strategy that fits the line extremities to the cluster

of events, therefore constraining the extra DoFs of the two-point line parameterisation.

Intuitively, the two components of this mechanism can be thought of as, on the one side,

an inherent attraction force between the line extremities, and on the other, a set of forces

generated by the events pushing the extremities apart as illustrated in Fig. 5.5.

Formally, the attraction component is implemented as a residual equal to the square-root

of the pixel-distance between the line extremities after projection into the image space at

τm (the timestamp of the window in which the line has first been observed):

rla =
√
‖dτmbl − dτmal ‖. (5.6)

Chapter 5. IDOL: IMU-DVS Odometry using Lines 93

After optimisationBefore optimisation

Attraction force
Repulsion force

Event
Event involved in repulsion force

Line extremity

Figure 5.5: Illustration of the attraction/repulsion mechanism used to fit the line ex-
tremities to the observed segment, as well as to constrain the over-parameterised two-point
line representation. The estimated 3D lines extremities are projected into the image space.
The extremities are subject to a constant attraction force toward one another. The events
that are “outside” the line projection induce a repulsion force that push the extremities

apart. After optimisation, the estimated line fits the actual segments.

The repulsion component is generated by the points around the extremities of the line.

Given an event-line association αi, the position di of ei along the line dti
al
/dti

bl
is computed

as

di =
(ei − dti

al
)�(dti

bl
− dti

al
)

‖dti
bl
− dti

al‖
. (5.7)

The events that are “outside” the line lead to residuals equal to the distance along the

line to the closest extremity:

ris =




di if di < 0

‖dti
bl
− dti

al
‖−di if di > ‖dti

bl
− dti

al
‖

0 otherwise.

(5.8)

Note that this approach does not require the front-end to extract line extremities among

the event data. The events that are projected outside the estimated line segments auto-

matically generate repulsion forces. Therefore, the positions of the line extremities are best

estimated when solely a small number of events generate repulsion forces. As repulsion

forces are invariant to the lines’ length but correlated to the number of events involved,

the attraction forces also need to be somewhat length-invariant to prevent the need for any

additional balancing mechanism between the forces. Intuitively, in least-square optimisa-

tion problems, the Jacobians of the cost function represent forces that constrain the state

estimate. Consequently, the attraction forces are made length-invariant by the use of the

94 Chapter 5. IDOL: IMU-DVS Odometry using Lines

square root in rma , making the magnitude of the attraction force “constant” (preventing

long line estimates to be “squashed” if Euclidean norms were directly used).

5.4 Front-end

Similarly to [86], the proposed method considers the stream of events as 3D information,

where the first two components are the events’ coordinates in the image space, and the

third coordinate is the events’ timestamps arbitrarily normalised: xiE =
[
eix eiy ti/c

]
>.

The value of c is chosen according to the average level of texture in the scene. The

front-end consists of clustering events that are triggered by the same physical line in the

environment according to the premise that 3D lines translate to locally planar patches in

the 3D spatio-temporal representation of the event stream. At the moment, the presented

approach does not aim for real-time operation and thus it uses windows of N events to

perform the event clustering. The event data in each window can be seen as a point cloud

with the 3D-points’ coordinates defined as xiE . Normal vectors are estimated for each of

the points based on the eigenvectors of the covariance matrix built with the neighbouring

points. Points are considered neighbours if their Euclidean distance in the 3D spatio-

temporal space is under a certain given threshold. Note that the proposed method does

not fit planes throughout the windows. The x and y components of the x-y normals are

normalised to unit vectors ni.

The actual clustering is applied in a region growing fashion inspired by the connected

component segmentation implemented in [127]. Colinearity of the normal vectors (ni>nj >

nthr) and the point-to-line distance in the image space (|ni>(ej − ei)|< ethr) are used as

the similarity criteria to assert that two neighbouring points belong to the same cluster.

Fig. 5.4 and 5.6 show examples of event clusters in the three types of datasets used in

Section 5.5. By considering only the x-y normal components over local patches with a

region growing algorithm, the proposed method allows for line clustering in a large variety

of scenarios that are not restricted by the nature of the system’s motion (e.g. constant

velocity).

Chapter 5. IDOL: IMU-DVS Odometry using Lines 95

Figure 5.6: Examples of line clusters extracted from different dataset. The first two
rows (raw event data, line clusters viewpoint A, and B, corresponding greyscale image)
correspond to windows of 200k events (value used in our experiments). The bottom row

is the cluster extraction on a very large window in shapes 6dof.

The segment association between two consecutive windows is conducted by appending

the last events of a window to the beginning of the following one, and using the same

similarity criteria as described for the in-window clustering. Each connected segment is

attached to a line Ll
W and the event-line associations αi = {ei, ti,Ll

W } are pushed to

the set A. Note that, in the current implementation, the event-to-line association is only

performed at the front-end level. There is no additional strategy to associate new segments

to existing line estimates. This would greatly improve the accuracy and robustness of the

proposed method in scenarios where the same line results in multiple clusters that cannot

be matched via the aforementioned procedures, or when lines reappear in the field of view

after having left it.

96 Chapter 5. IDOL: IMU-DVS Odometry using Lines

5.5 Experiments

Our implementation uses Ceres1 for the non-linear least-square optimisation (5.3) as in

the case of IN2LAAMA (Chapter 4). At the current stage of development, IDOL is

computationally expensive as the full batch optimisation is conducted every time a new

event-window is processed. The rapidly growing number of residuals leads to prohibiting

estimation time of the system’s Hessian. We arbitrarily chose to compute the full batch

optimisation until t = 24 s. Intuitively, the longer the full-batch duration, the more

robustness to front-end failures. Then we switch to a sliding window optimisation over

the last 30 event-windows with the last marginalized pose estimate fixed.

Due to the lack of publicly available event-based VIO algorithms, ROVIO [128] was chosen

as a comparison. ROVIO is a light-weight VIO algorithm that operates on traditional

intensity images and is built upon an EKF back-end. The front-end of ROVIO extracts

patch-based features that are matched based on a photometric error resulting in a semi-

dense approach. The system has been shown to be very robust even under very aggressive

motions [128].

Since IDOL, in contrast to ROVIO, performs batch optimisation, for a fair comparison

we also include results obtained with maplab [129]. It builds a Visual-Inertial (VI) pose-

graph using ROVIO and jointly optimises the trajectory and sparse BRISK landmarks

[130] using the maplab toolbox.

5.5.1 Datasets and Evaluations

In order to test IDOL in challenging conditions and evaluate the performance compared to

state-of-the-art in robust traditional VO, tests on multiple real-world datasets including

aggressive motions of the Event Dataset and Simulator [121] were performed (Fig. 5.7).

The Event Dataset contains sensor data from a DAVIS240 [66] including the event data,

traditional grey-scale images and IMU measurements. In particular, the indoors scenarios

shapes, poster and dynamic were chosen as they include 6-DoF ground-truth from an

indoor positioning system. Both translation-only and full 6-DoF versions of these datasets

1http://ceres-solver.org/

Chapter 5. IDOL: IMU-DVS Odometry using Lines 97

(a) shapes (b) poster

(c) boxes (d) dynamic

Figure 5.7: Subset of the different environments present in the Event Dataset and
Simulator [121].

have been used. Rotation-only datasets were omitted since translation is necessary for a

good observability of the scene depth [71]. In its current state, our front-end does not offer

enough robustness to address the boxes scenarios of [121] because of their very high level

of texture in the scene. In addition to reporting qualitative results of the state progression

and RMSEs of aligned trajectories, the evaluation is also performed using a trajectory-

segment based approach [131] with segment lengths corresponding to {10, 20, 30, 40, 50}%

of the trajectory length. Fig. 5.8 shows an example of the line segmentation and estimated

line projection in the image space.

5.5.2 Results

Fig. 5.9-5.11 depict the state progression of the ground-truth and estimations of ROVIO,

ROVIO+maplab on shapes 6dof, poster translation and dynamic translation, and

98 Chapter 5. IDOL: IMU-DVS Odometry using Lines

(a) Event clustering of line segments
(b) Estimated lines, in red, projected

in the image space

Figure 5.8: Example projection of estimated lines in the image space (shapes dataset
of [121], same as Fig. 5.2).

IDOL. As shown in these figures, even though there is visible drift in the translation

estimation, IDOL is able to estimate the camera pose and velocity, and especially the

camera rotation, with a high accuracy. After the initial stages of each of the experiments,

we observe that the proposed VO pipeline’s translation estimate tends to diverge, which

can be explained as a combination of different factors. One can see that the state variables

are generally well estimated during the full-batch optimisation that takes places at the

initial instants of each experiment and only start drifting seconds after switching to the

sliding-window mode. Our implementation could benefit from leveraging the uncertainty

of the estimated pose across consecutive windows of optimisation, properly marginalising

previous states. We must also consider that, in its current form, the front-end described

in Section 5.4 produces rather short line-tracks. Fig. 5.12 depicts the average track length

along the datasets. One can observe the correlation between the drop of the track length

around t = 27 s and t = 24 s in shapes 6dof and poster translation, respectively, and

the sudden increase of the translation errors. Short track lengths and the absence of a

strategy to re-detect previously observed lines do not account for a good depth estimation

due to the low parallax. Consequently, the translation estimates are notably affected

whereas the rotation estimates, not as dependent on the depth estimate of the scene, still

perform in a competitive range for small increments. Note that despite a growing drift of

the translation estimates likely due to our front-end’s weaknesses, IDOL performs accurate

velocity estimation all along the trajectory, validating its effectiveness for VIO. Fig. 5.12

also shows that our front-end does not perform equally well across the different datasets

Chapter 5. IDOL: IMU-DVS Odometry using Lines 99

-1

0

1
x

[m
]

shapes_6dof

-1

0

1

y
[m

]

-0.5

0

0.5

z
[m

]

-2

0

2

v x [m
/s

]

-2

0

2

v y [m
/s

]

-2

0

2

v z [m
/s

]

-3

-2

-1

ro
ll

[r
ad

]

-1

0

1

pi
tc

h
[r

ad
]

0 10 20 30 40 50 60
Time [s]

-1

0

1

ya
w

 [r
ad

]

GT
IDOL
ROVIO
maplab

Figure 5.9: Pose and velocity estimates’ progression of the different algorithms on the
shapes 6dof dataset.

due to the different levels of noise in event data (due to high texture scenes, cf. Fig. 5.7)

and the absence of noise filtering strategy.

Table 5.1 reports RMSE of translation and rotation estimation of all algorithms on

each of the datasets. The metric is highly dependent on the translation estimate, as

100 Chapter 5. IDOL: IMU-DVS Odometry using Lines

-1

0

1

x
[m

]

poster_translation

-1

0

1

y
[m

]

-0.5

0

0.5

z
[m

]

-2

0

2

v x [m
/s

]

-2

0

2

v y [m
/s

]

-2

0

2

v z [m
/s

]

-3

-2

-1

ro
ll

[r
ad

]

-1

0

1

pi
tc

h
[r

ad
]

0 10 20 30 40 50 60
Time [s]

-1

0

1

ya
w

 [r
ad

]

GT
IDOL
ROVIO
maplab

Figure 5.10: Pose and velocity estimates’ progression of the different algorithms on the
poster translation dataset.

Chapter 5. IDOL: IMU-DVS Odometry using Lines 101

-1

0

1

x
[m

]

dynamic_translation

-1

0

1

y
[m

]

-0.5

0

0.5

z
[m

]

-2

0

2

v x [m
/s

]

-2

0

2

v y [m
/s

]

-2

0

2

v z [m
/s

]

-3

-2

-1

ro
ll

[r
ad

]

-1

0

1

pi
tc

h
[r

ad
]

0 10 20 30 40 50 60
Time [s]

-1

0

1

ya
w

 [r
ad

]

GT
IDOL
ROVIO
maplab

Figure 5.11: Pose and velocity estimates’ progression of the different algorithms on the
dynamic translation dataset.

102 Chapter 5. IDOL: IMU-DVS Odometry using Lines

0 5 10 15 20 25 30 35 40 45 50 55
Time [s]

0

0.5

1

Tr
ac

k
le

ng
th

 [s
] shapes_6dof

dynamic_translation
poster_translation

Figure 5.12: Average line-track lengths (moving average) across different datasets.

the alignment method used for VIO minimizes the translation error to find a position

and yaw offset for the whole trajectory. Accordingly, even if only one component of

the translation estimate diverges, the orientation RMSE is highly influenced by the poor

trajectory alignment. Consequently, the results depicted in Table 5.1 are obtained by

aligning only the 50 first poses of the estimation and only taking the first 40 s into account.

Typically, IDOL performs worse than ROVIO and ROVIO+maplab in terms of translation

estimation, but still on the same order of magnitude, especially on shapes 6dof and

dynamic translation. Moreover, competitive results in orientation estimation can be

achieved for most datasets. Only shapes translation and poster translation show

a worse rotation estimation compared to ROVIO, mainly due to diverged translation

estimation (see Fig. 5.9-5.11). More insights into the alignment issue can be found in

the segment based evaluation shown in Fig. 5.13. It becomes clear that, in its current

state, IDOL can outperform both ROVIO and ROVIO+maplab in incremental rotation

estimation, but mainly lacks in translation estimation.

The results displayed above demonstrate the ability of IDOL to perform VO in various real-

world scenarios. Overall, the proposed method performs in the same order of magnitude

as the compared frame-based methods according to the presented results. However, note

that, at the time of writing this thesis, we are using a unrefined implementation of the

event-based front-end, in which no noise filtering or re-detection scheme is applied. For

instance, the knowledge of the line extremities’ position could help the data association

in scenarios in which the camera re-observes previously mapped areas. Additionally, no

mechanism against outliers have been placed in either the front-end or in the back-end. In

this regard, substantial improvements in performance are to be expected from the adoption

Chapter 5. IDOL: IMU-DVS Odometry using Lines 103

2.0 5.0 7.0 10.0 12.0

Distance traveled [m]

0

20

T
ra
n
sl
a
ti
o
n
er
ro
r
[%

]

2.0 5.0 7.0 10.0 12.0

Distance traveled [m]

0

2

R
ot
at
io
n
er
ro
r
[d
eg
/
m
]

IDOL

maplab

ROVIO

(a) shapes 6dof

2.0 5.0 7.0 10.0 12.0

Distance traveled [m]

0

20

T
ra
n
sl
at
io
n
er
ro
r
[%

]

2.0 5.0 7.0 10.0 12.0

Distance traveled [m]

0.0

0.5

1.0

R
ot
at
io
n
er
ro
r
[d
eg
/m

]

IDOL

maplab

ROVIO

(b) poster translation

1.0 3.0 4.0 6.0 7.0

Distance traveled [m]

0

20

T
ra
n
sl
a
ti
on

er
ro
r
[%

]

1.0 3.0 4.0 6.0 7.0

Distance traveled [m]

0

2

R
ot
at
io
n
er
ro
r
[d
eg
/m

]

IDOL

maplab

ROVIO

(c) dynamic translation

Figure 5.13: Translation and orientation error of the first 40 s using the different algo-
rithms upon different segment lengths.

104 Chapter 5. IDOL: IMU-DVS Odometry using Lines

Method
Dataset shapes

6dof translation

et er et er

IDOL 0.52 8.35 0.51 18.62

ROVIO 0.34 10.24 0.05 1.56

ROVIO + maplab 0.25 12.91 0.05 2.25

Method
Dataset poster

6dof translation

et er et er

IDOL 0.62 6.15 0.70 10.82

ROVIO 0.15 8.21 0.13 2.09

ROVIO + maplab 0.12 3.53 0.09 1.92

Method
Dataset dynamic

6dof translation

et er et er

IDOL 0.54 6.08 0.25 4.92

ROVIO 0.16 10.27 0.12 6.19

ROVIO + maplab 0.08 6.09 0.09 3.15

Table 5.1: Overall RMSE of translation estimation et [m] and orientation estimation
er [deg] for IDOL, ROVIO and ROVIO+maplab on different datasets (0 − 40 s, aligning

first 50 poses).

of more robust strategies from the event-based and frame-based VIO literature with, for

example, the adoption of a robust loss function.

5.6 Conclusions

This Chapter introduced IDOL, a novel pipeline for event-based VIO using lines as fea-

tures. Unlike most of the event-based methods in the literature, the proposed method

does not aggregate events into frames that are later used in a traditional frame-based VO

pipeline. Here, the events are considered individually as part of a batch optimisation that

Chapter 5. IDOL: IMU-DVS Odometry using Lines 105

estimates the position of 3D lines alongside the system’s pose and velocity. This frame-

work leverages the GPMs to characterise the system’s trajectory based on a continuous

representation of the inertial data.

We demonstrated the feasibility of event-based VIO with lines in different real-world

scenarios. While the presented system does not have real-time capabilities at the time

of writing, IDOL results show the potential to become an efficient, robust, and accu-

rate event-based VIO method. Across quantitative benchmarking against state-of-the-art

frame-based VIO algorithms, IDOL demonstrated accuracy in the same order of magnitude

for translation, and competitive results for orientation.

Future work includes the exploration of different optimisation strategies and the imple-

mentation of a probabilistic marginalisation of the past state variables to substitute for

the current growing full-batch optimisation. The computational cost of IDOL can be ad-

dressed at different levels. For example, one could optimise the implementation by using

GPU computation as most of the operations are highly parallelizable (normal estimations

for each of the events in their spatio-temporal representation, computation of the resid-

uals and Jacobians, inference of the per-event GPMs, etc.). At a higher level, reducing

the size of the optimisation problem would greatly benefit the method’s efficiency. We

will investigate different strategies to reduce the number of residuals while not sacrificing

the amount of information used in the state estimation. Finally, combining our line-based

features with corner-based features is likely to improve both robustness and accuracy.

Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we presented a novel preintegration method that generates probabilistic

and continuous pseudo-measurements denoted GPMs. This technique furthers the classic

preintegration method introduced in [1]. It leverages GPs regression and the application of

linear operators to the kernel covariance functions to preform analytical integration of an

IMU’s inertial data. Additionally, the seamless integration of the GPMs into any inertial-

aided navigation system is made possible by the derivation of postintegration mechanisms

for IMU biases and time-shift corrections. This last feature, associated with the continuous

nature of the method, addresses the issue of general inter-sensor asynchronism in multi-

modal platforms.

In Chapter 4, we presented a first application of the GPMs as part of a LiDAR-inertial

framework for localisation, mapping, and extrinsic calibration. The resulting framework

is called IN2LAAMA and addresses thoroughly the issue of motion-distortion in LiDAR

scans. The probabilistic formulation relies on the use of GPMs to characterise the system’s

trajectory between two estimated poses, hence providing inertial information for each of

the LiDAR points. In the front-end, feature points that belong to planar patches or

edges are extracted and matched across consecutive frames. The back-end’s cost function

aims at minimising point-to-plane and point-to-line distances (that correspond to the

107

108 Chapter 6. Conclusions and future work

features registration), and inertial constraints between frames. The projection of the

feature points from a frame to another leverages the GPMs. In this way, the motion

distortion is considered all along the estimation process via a full batch optimisation. As

the extraction of good features needs a good correction of the motion distortion, and

good motion distortion correction needs good features, the proposed method implements

a tight integration between front-end and back-end. We compared IN2LAAMA with the

current state-of-the-art LiDAR odometry framework that relies on a constant velocity

motion model. In fast motion scenarios, this assumption reaches its limits, while our

motion-model-less method can produce dense and accurate maps.

A second GPM application is introduced in Chapter 5. The proposed method is called

IDOL and performs event-based visual-inertial odometry using 3D lines to represent the

environment. Event-cameras brought new challenges to the robotics community as they

output a new type of data characterised by their high bandwidth and asynchronism. While

most of the methods in the literature rely on the accumulation of events into temporal

windows before making use of traditional image-based techniques, the proposed method

accounts individually for the events in the optimisation cost function. This novel paradigm

is enabled by the use of GPMs to asynchronously characterise the system’s pose at each of

the events’ time-stamps. The front-end extracts clusters of events that correspond physical

lines leveraging the fact that lines appear as locally-planar patches in the spatio-temporal

representation of the event stream. The extracted clusters do not convey any explicit

information about where the line extremities are in the camera frame. Nonetheless, atop

point-to-line and inertial constraints, new attraction/repulsion factors are introduced to

estimate the 3D lines’ end-points in the environment alongside the system’s pose. In

its present state, our method does not benefit from any robustness mechanisms that are

present in every mature visual-inertial odometry pipeline. Yet, it still performs in the

same order of magnitude as the current frame-based state-of-the-art methods. We believe

that our approach can be the baseline for further developments toward assumption-less

event-based visual odometry frameworks.

Throughout this thesis, Gaussian preintegration performances are demonstrated across a

wide range of experiments whether it is on its own in Chapter 3, or as part of inertial-

aided systems in Chapters 4 and 5. While the different methods presented in this thesis

Chapter 6. Conclusions and future work 109

can be computationally intensive, they are rigorous formulations of inertial-aided state

estimation without motion models. Certain applications (e.g., mapping as a service) can

leverage them as they are. However, the current implementations can greatly benefit from

common engineering techniques such as parallelisation on GPUs. And we believe that

our work can serve as a baseline for developments of real-time localisation and mapping

methods. Details about the potential improvements are given in the respective conclusion

sections of each chapter.

6.2 Future work and associated developments

6.2.1 Semantic understanding of the scene

The localisation frameworks presented in this thesis only consider static environments

and are based on purely geometric approaches. Over the last few years, the fields of

computer vision and machine learning have seen unprecedented advancements. It is now

possible for a system to access high-level information about a scene. For example, semantic

segmentation algorithms can give class labels to every pixel in an image to determine which

type of object they belong (e.g. road, car, pedestrian, tree, etc.). The authors in [60],

for instance, use semantic information over clusters of LiDAR points to perform mapping

with high-level features.

In the context of IN2LAAMA, semantic information can seamlessly be used to segregate

LiDAR points that belong to dynamic objects in order to allow operations in non-static

environments. As illustrated in Fig. 6.1, the object detection method we presented in [132]

upsamples sparse LiDAR data into Red-Green-Blue (RGB)-like images before performing

transfer learning leveraging a pre-trained deep neural network [133]. Other works like [134]

directly use 3D convolutions on geometric data to infer 3D bounding boxes around the

objects of interest.

Looking further than the task of mapping, combining semantic and geometric information

is a key element to enable high-level path planning of autonomous systems. To “fetch

a glass from the kitchen’s table” a robot needs to know where the table is in space as

110 Chapter 6. Conclusions and future work

Figure 6.1: Overview of the laser-based object detection pipeline presented in [132].

well as any other obstacle on the way. Embedding semantic information in the construc-

tion of IN2LAAMA’s maps could allow autonomous systems to update their semantic

understanding of the environment automatically without further guidance from the user.

6.2.2 Loop closure detection

The loop-closure detection mechanism presented in Chapter 4 is probably the part of

IN2LAAMA that would benefit the most from further developments. Loop closure detec-

tions help to correct the drift accumulated along any open-loop pose estimation. While

semantic information can provide crucial information for high-level loop-closure detec-

tion, most of the frameworks rely on geometry or appearance-based methods. For visual

data, a conventional approach is to use a bag-of-words over extracted features. This tech-

nique is presented in [135] and improved in [136]. Most LiDARs provide sparser data

than visual images. Therefore, the extraction of spatial features, and associating them

together, is more challenging. In [137], the authors summarise the information contained

in 3D-LiDAR scans with surface-descriptors (Normal Distribution Transform (NDT)) his-

tograms. The loop closures are detected if a similarity metric between two scans is above

a certain threshold. A similar approach is presented in [138]. The authors of [139] claim

to significantly outperform [137] by training an AdaBoost classifier [140] over rotation-

invariant engineered features. In [141], denser laser data are used. Representing the 3D

point clouds as range images, the method computes features and uses pre-trained bags of

words to calculate the possible transformations (and their associated confidence scores)

between scan pairs. In [58], a learnt random-forest classifier is used to determine if seg-

ments extracted in the scene have already been observed. While also particularly adapted

to urban ground navigation, the method [142] introduces a different approach built on a

novel global descriptor and a cosine similarity metric to find loop-closures in point cloud

maps.

Chapter 6. Conclusions and future work 111

Figure 6.2: Example of Gaussian gradient map for loop-closure detection in unstruc-
tured planetary-exploration scenarios

Most of the aforementioned methods can seamlessly be integrated into IN2LAAMA, but

loop-closure detection in 3D point clouds is still an open research topic as each of these

methods have different strengths and weaknesses. As part of a collaboration with the

German Aerospace Centre (DLR), we addressed the issue of loop-closure detection and

robot re-localisation based on 3D data in unstructured planetary-exploration scenarios

[143]. The high similarity of the terrain makes place recognition extremely challenging

in such environments. Using GP regression and linear operator on covariance kernels,

our method transforms 3D-point cloud maps into Gaussian gradient maps that represent

the terrain change of elevation (Fig. 6.2). The method assumes overhanging structures

are non-existent in the robot vicinity. The novel maps can be sampled into image-like

data and process with traditional computer vision tools for image-based place recognition

and registration. Through different real-world experiments using a stereo-visual-inertial

system on Mount Etna and in the Moroccan desert, we demonstrate that the proposed

method outperforms the current vision-based state-of-the-art.

6.2.3 Calibration trajectories

In the LiDAR-IMU framework presented in Chapter 4, we also perform extrinsic calibration

of the sensors. Intuitively, given the nature of the IMU readings, a good calibration

necessitates the systems to “move in every direction”. In [117], a formal observability

112 Chapter 6. Conclusions and future work

analysis is conducted to determine the effectiveness of different trajectory types for inertial-

aided system extrinsic calibration. Previous works [144, 145] have explored the issue

of informative path planning for self-calibration. Nonetheless, no method has yet been

proposed to address the issue of online path-planning for simultaneous self-calibration and

mapping.

In [146], we explore the use of a Rapidly Exploring Random Belief Trees (RRBT) planner

in association with IN2LAAMA to determine the optimal calibration trajectory (Fig. 6.3).

One of the challenges originates from the fact that IN2LAAMA’s computations are cur-

rently executed offline through a full batch optimisation. The proposed pipeline uses the

iterative uncertainty propagation step of a standard EKF (based on the Jacobians asso-

ciated to the marginal additions of simulated poses into IN2LAAMA’s factor graph) to

evaluate and compare the amount of “calibration-information” present in each RRBT can-

didate. Our preliminary results demonstrate that the EKF-style covariance propagation

provides a good proxy for the true calibration covariance estimated with the full batch

optimisation.

6.2.4 Event-based visual-lidar-inertial localisation and mapping

Chapters 4 and 5 of this thesis presented localisation and mapping frameworks based

on LiDAR-IMU and event-camera-IMU systems, respectively. While both methods are

promising on their own, they have some drawbacks that are inherent to the different

modalities. For example, the position of a LiDAR in a tunnel-like environment is not

observable due to the lack of geometric constraints along the tunnel axis. Equally, a

camera (frame-based or event-based) becomes ineffective in texture-less environments. In

such scenarios, the system’s pose estimate is subject to the unconstrained and ineluctable

drift of the IMU data integration.

Traditional vision and LiDAR data are complementary, as demonstrated in [52, 54–56].

However, despite publicly available datasets and simulators [147, 148], no event-based

visual-lidar-inertial localisation and mapping framework has yet been proposed in the

literature to our knowledge at the time of writing. We believe that IDOL and IN2LAAMA

constitute straightforward building blocks to create such a framework. The use of GPMs as

Chapter 6. Conclusions and future work 113

Prior path (RRBT

planned, manual

operation, trajectory

template, etc.)

Path execution

IN2LAAMA,

calibration and

trajectory estimation

RRBT planner

(feasible conection)

Data simulator

IN2LAAMA

marginal Jaco-

bian evaluation

Posterior covari-

ance estimation

Get

optimal

path

Path

Lidar/IMU

measurements

Simulated

measurements

Info

n belief

nodes

RL
I , pLI

Path

Trajectory

estimate

RL
I , pLI ,

map estimate

RL
I , pLI

Pk

Figure 6.3: Overview of the proposed informative path planing method for optimal
LiDAR-IMU extrinsic calibration.

the system’s backbone for pose estimation enables multi-sensor asynchronism and accurate

continuous motion characterisation.

Appendix A

Overview of the Upsampled

Preintegration method

This appendix provide an overview of the algorithm used in [19] and [15] to generate

the UPMs from 6-DoF IMU data. Conceptually, this method performs the standard

preintegration [17] over “virtual” IMU measurements.

As shown in Fig. A.1, the method first upsamples the IMU signals using GP regression

(equations present in Subsection 3.3.1). More than sampling the signal at higher frequency,

the use of a non-parametric interpolation method allows us to obtain measurements at the

time-stamps of interest as displayed in Fig. A.2. The upsampled IMU measurements also

benefit from the probabilistic nature of the GPs. From the high-frequency signals, the

UPMs ∆Rt2
t1

, ∆vt2t1 , and ∆pt2t1 from Subsection 3.2.2 are computed as per Algorithm 3.

Gaussian
Process

upsampling

Standard
preintegration

6-DoF IMU readings
Upsampled

inertial data

UPMs
(∆Rt2

t1
, ∆vt2t1 , ∆pt2t1)

Figure A.1: High-level block diagram of the UPM method

115

116 Appendix A. Overview of the Upsampled Preintegration method

Time

Inertial data value (1 DoF only)

IMU measurements

IMU data timestamps

Camera keyframe timestamps

Gaussian process regression - mean

Gaussian process regression - 2-sigma bounds

Upsampled IMU measurements

Upsampled IMU measurements corresponding to keyframe timestamps

Figure A.2: Illustration of the GP upsampling for one of the six IMU DoF in the context
of visual-inertial fusion.

Appendix A. Overview of the Upsampled Preintegration method 117

Algorithm 3 Algorithm to perform standard preintegration of upsampled IMU signals.

Input:
ω̃∗(tvi): Upsampled measurements from a 3D gyroscope
f̃∗(tvi) : Upsampled measurements from a 3D accelerometer
b̄ω(tvi): Prior knowledge of the gyroscope biases
b̄f (tvi): Prior knowledge of the accelerometer biases

Output:
∆Rt2

t1 , ∆vt2t1 , ∆pt2t1 : Upsampled Preintegrated Measurements (UPMs)

1: ∆R ← 03×3
2: ∆v ← 03×1
3: ∆p ← 03×1
4: for i such that tvi ∈ [t1, t2[do

5: ∆p ← ∆p + ∆v(tvi+1 − tvi) + ∆R
(
f̃∗(tvi)− b̄f (tvi)

) (tvi+1
−tvi)

2

2

6: ∆v ← ∆v + ∆R
(
f̃∗(tvi)− b̄f (tvi)

)
(tvi+1

− tvi)

7: ∆R ← ∆R exp
(((

ω̃∗(tvi)− b̄ω(tvi)
)
(tvi+1 − tvi)

)∧)
8: end for
9: ∆Rt2

t1 ← ∆R

10: ∆vt2t1 ← ∆v

11: ∆pt2t1 ← ∆p

12: return

Appendix B

Derivation of the bias jacobians for

GPM postintegration correction

This appendix exposes the derivation to obtain
∂fj
∂bf

and
∂fj
∂bω

used in (3.61). To do so,

additional notion is employed:

• [M](:)T the operator that transforms a r-by-c matrix M into a rc-by-1 vector.

• [M](j,:) the operator that isolates the jth row of M.

Examples:

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](:)T =
[
m1 m2 m3 m4 m5 m6 m7 m8 m9

]
,

(B.1)

and

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](1,:) =
[
m1 m4 m7

]
(B.2)

119

120 Appendix B. Derivation of the bias jacobians for GPM postintegration correction

B.1 Accelerometer bias

As presented in (3.1), the accelerometer readings are modelled with an additive bias bf .

Consequently, ∂ f̃(t)
∂bf (t) = I. The stack of rotated acceleration training values fj corresponds

to

fj =


(
∆Rt1

t1
(t1)(f̃(t1)− b̄f (t1))

)
j

· · ·(
∆R

tQ
t1

(tQ)(f̃(tQ)− b̄f (tQ))
)
j

 . (B.3)

Therefore

∂fj
∂bf

=


[∆Rt1

t1
(t1)]

(j,:)

· · ·

[∆R
tQ
t1

(tQ)]
(j,:)

.

 (B.4)

B.2 Gyroscope bias

The Jacobian of the rotated acceleration training values in (3.61) is defined as

∂fj
∂bω

=


∂
(

∆R
t1
t1

(bω ,δt)(f̃(t1)−b̄f (t1))
)
j

∂bω

· · ·
∂
(

∆R
tQ
t1

(bω ,δt)(f̃(tQ)−b̄f (tQ))
)
j

∂bω

 (B.5)

=



∂

(
∆R

t1
t1

(b̄ω ,δ̄t) exp

((
∂∆R

t1
t1

(t)

∂bω
b̂ω

)∧)
(f̃(t1)−b̄f (t1))

)
j

∂bω

· · ·

∂

(
∆R

tQ
t1

(b̄ω ,δ̄t) exp

((
∂∆R

tQ
t1

(t)

∂bω
b̂ω

)∧)
(f̃(tQ)−b̄f (tQ))

)
j

∂bω


. (B.6)

The first-order Taylor expansion (3.54) is used to go from (B.5) to (B.6).

Appendix B. Derivation of the bias jacobians for GPM postintegration correction 121

Let us define q1 =
[
1 0 0

]
>, q2 =

[
0 1 0

]
>, and q3 =

[
0 0 1

]
>:

∂

(
∆Rti

t1
(b̄ω, δ̄t) exp

((
∂∆R

ti
t1

(t)

∂bω
b̂ω

)∧)
f̃(ti)− b̄f (ti))

)
j

∂bω
(B.7)

=

∂q>j ∆Rti
t1

(b̄ω, δ̄t) exp

((
∂∆R

ti
t1

(t)

∂bω
b̂ω

)∧)
(f̃(ti)− b̄f (ti))

∂bω
(B.8)

= [
(
∆Rti

t1
(b̄ω, δ̄t)

)>
qj
(
f̃(ti)− b̄f (ti)

)>
]
(:)T

∂[exp
(
(a)∧

)
]
(:)T

∂a

∣∣∣∣
a=0

∂∆Rti
t1

(t)

∂bω
(B.9)

To go from (B.8) to (B.9), we use the chain rule, the fact that ∂a>Xb
∂X = ab>, b̂ω is close

to zero, and ∂Xa
∂a = X. The Jacobian of the exponential mapping around zero is defined

as

∂[exp
(
(a)∧

)
]
(:)T

∂a

∣∣∣∣
a=0

=



0 0 0

0 0 1

0 −1 0

0 0 −1

0 0 0

1 0 0

0 1 0

−1 0 0

0 0 0



. (B.10)

Appendix C

IN2LAAMA Jacobians

This appendix provides the reader with the different Jacobians involved in IN2LAAMA’s

optimisation. Our implementation uses Ceres and its local parameterisation feature. Con-

sequently, the Jacobians in this section are derived with respect to the over-parameterised

SO(3) variables. Note that many computations could be further optimised as many ma-

trices are quite sparse.

The following notation is employed:

• [M](:)T the operator that transforms a r-by-c matrix M into a rc-by-1 vector.

• [M](j,:) the operator that isolates the jth row of M.

• [M](:,j) the operator that isolates the jth column of M.

Examples:

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](:)T =
[
m1 m2 m3 m4 m5 m6 m7 m8 m9

]
,

(C.1)

123

124 Appendix C. IN2LAAMA Jacobians

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](1,:) =
[
m1 m4 m7

]
, (C.2)

and

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](:,1) =


m1

m2

m3

 (C.3)

Additionally, we define ∆tim = ti − τm, = τm − τm-1, Log(•) = log(•∨), Exp(•) = exp(•∧),

q1 =
[
1 0 0

]
>, q2 =

[
0 1 0

]
>, and q3 =

[
0 0 1

]
>.

C.1 IMU factors

∂rmIv
∂vτmW

=
∂rmIp
∂pτmW

= Rτm-1
W

> (C.4)

∂rmIv
∂vτm-1

W

=
∂rmIp
∂pτm-1

W

= −Rτm-1
W

> (C.5)

∂rmIp
∂vτm-1

W

= −∆τmm-1R
τm-1
W

> (C.6)

∂rmIp
∂[Rτm-1

W](:)T
=


a> 01×3 01×3

01×3 a> 01×3

01×3 01×3 a>

 (C.7)

Appendix C. IN2LAAMA Jacobians 125

with a = pτmW − pτm-1
W −∆τmm-1v

τm-1
W − 1

2∆τmm-1
2g

∂rmIv
∂[Rτm-1

W](:)T
=


a> 01×3 01×3

01×3 a> 01×3

01×3 01×3 a>

 (C.8)

with a = vτmW − vτm-1
W −∆τmm-1g

∂rmIr
∂[Rτm

W](:)T
=
∂Log(∆Rτm

τm-1

>Rτm-1
W

>Rτm
W)

∂[∆Rτm
τm-1

>Rτm-1
W

>Rτm
W](:)T

∂[∆Rτm
τm-1

>Rτm-1
W

>Rτm
W]

(:)T

∂[Rτm
W](:)T

(C.9)

with

∂[∆Rτm
τm-1

>Rτm-1
W

>Rτm
W]

(:)T

∂[Rτm
W](:)T

=
(Rτm-1

W ∆Rτm
τm-1

)> 03×3 03×3

03×3 (Rτm-1
W ∆Rτm

τm-1
)> 03×3

03×3 03×3 (Rτm-1
W ∆Rτm

τm-1
)>


(C.10)

∂rmIr
∂[Rτm-1

W](:)T
=
∂Log(∆Rτm

τm-1

>Rτm-1
W

>Rτm
W)

∂[∆Rτm
τm-1

>Rτm-1
W

>Rτm
W](:)T

∂[∆Rτm
τm-1

>Rτm-1
W

>Rτm
W]

(:)T

∂[Rτm-1
W](:)T

(C.11)

126 Appendix C. IN2LAAMA Jacobians

with

∂[∆Rτm
τm-1

>Rτm-1
W

>Rτm
W]

(:)T

∂[Rτm-1
W](:)T

=



[
[Rτm

W](:,1)

(
[∆Rτm

τm-1
]
(:,1)

)>]
(:)T[

[Rτm
W](:,1)

(
[∆Rτm

τm-1
]
(:,2)

)>]
(:)T[

[Rτm
W](:,1)

(
[∆Rτm

τm-1
]
(:,3)

)>]
(:)T[

[Rτm
W](:,2)

(
[∆Rτm

τm-1
]
(:,1)

)>]
(:)T[

[Rτm
W](:,2)

(
[∆Rτm

τm-1
]
(:,2)

)>]
(:)T[

[Rτm
W](:,2)

(
[∆Rτm

τm-1
]
(:,3)

)>]
(:)T[

[Rτm
W](:,3)

(
[∆Rτm

τm-1
]
(:,1)

)>]
(:)T[

[Rτm
W](:,3)

(
[∆Rτm

τm-1
]
(:,2)

)>]
(:)T[

[Rτm
W](:,3)

(
[∆Rτm

τm-1
]
(:,3)

)>]
(:)T



. (C.12)

The analytic expressions of ∂Log(X)
∂X and ∂Exp(X)

∂X are elaborated with Matlab’s symbolic

toolbox.

∂rmIp

∂b̂m-1
f

= −
∂∆pτmτm-1

∂bm-1
f

(C.13)

∂rmIp

∂b̂m-1
ω

= −
∂∆pτmτm-1

∂bm-1
ω

(C.14)

∂rmIv
∂b̂m-1

f

= −
∂∆vτmτm-1

∂bm-1
f

(C.15)

∂rmIv
∂b̂m-1

ω

= −
∂∆vτmτm-1

∂bm-1
ω

(C.16)

Appendix C. IN2LAAMA Jacobians 127

∂rmIr
∂b̂m-1

ω

=

∂Log(Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)

Rτm-1
W

>Rτm
W)

∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)R

τm-1
W

>Rτm
W

· · ·
∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)

Rτm-1
W

>Rτm
W

∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)

· · ·
∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)
∂

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)

· · ·
∂

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)
∂b̂m-1

ω

(C.17)

with

∂

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)
∂b̂m-1

ω

=
∂∆Rτm

τm-1

∂bm-1
ω

(C.18)

and

∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)

Rτm-1
W

>Rτm
W

∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

) =



[K](1,:) 01×3 01×3

01×3 [K](1,:) 01×3

01×3 01×3 [K](1,:)

[K](2,:) 01×3 01×3

01×3 [K](2,:) 01×3

01×3 01×3 [K](2,:)

[K](3,:) 01×3 01×3

01×3 [K](3,:) 01×3

01×3 01×3 [K](3,:)



,

(C.19)

with

K =

(
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)

Rτm-1
W

>Rτm
W

)>
(C.20)

128 Appendix C. IN2LAAMA Jacobians

∂rmIr
∂b̂m-1

ω

=

∂Log(Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)

Rτm-1
W

>Rτm
W)

∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)R

τm-1
W

>Rτm
W

· · ·
∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)>
∆Rτm

τm-1

>
(b̄m-1
ω ,δ̄tm-1)

Rτm-1
W

>Rτm
W

∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)

· · ·
∂Exp

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)
∂

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)

· · ·
∂

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)
∂δ̂tm-1

(C.21)

with

∂

(
∂∆Rτm

τm-1
∂bm-1

ω
b̂m-1
ω +

∂∆Rτm
τm-1

∂δtm-1
δ̂tm-1

)
∂δ̂tm-1

=
∂∆Rτm

τm-1

∂δtm-1

(C.22)

∂rmIp

∂δ̂tm-1

= −
∂∆pτmτm-1

∂δtm-1

(C.23)

∂rmIv
∂δ̂tm-1

= −
∂∆vτmτm-1

∂δtm-1

(C.24)

C.2 Biases factors

∂rmf

∂b̂m-1
ω

= I3×3 (C.25)

Appendix C. IN2LAAMA Jacobians 129

∂rmf

∂b̂mω
= −I3×3 (C.26)

∂rmω

∂b̂m-1
f

= I3×3 (C.27)

∂rmω

∂b̂mf
= −I3×3 (C.28)

C.3 LiDAR factors

C.3.1 Point reprojection

Given RL
I and pLI representing the transformation from the IMU frame to the lidar frame

(calibration), the reprojection of a point xiL in the corresponding frame is

xiW = Rτm
W

(
∆Rti

τm

(
RL
I xiL + pLI

)
+ ∆ptiτm

)
+ pτmW + ∆timvτmW +

1

2
∆tim

2
g. (C.29)

Taking into account the IMU bias and the time-shift between the two sensors, ∆Rti
τm

becomes ¯∆Rti
τmExp

(
∂∆R

ti
τm

∂bmω
b̂mω +

∂∆R
ti
τm

∂t δ̂tm

)
and ∆ptiτm becomes ¯∆ptiτm +

∂∆p
ti
τm

∂bmf
b̂mf +

∂∆p
ti
τm

∂bmω
b̂mω +

∂∆p
ti
τm

∂t δ̂tm .

xiW =Rτm
W

(
¯∆Rti
τmExp

(
∂∆Rti

τm

∂bmω
b̂mω +

∂∆Rti
τm

∂t
δ̂tm

)(
RL
I xiL + pLI

)
+

¯∆ptiτm +
∂∆ptiτm
∂bmf

b̂mf +
∂∆ptiτm
∂bmω

b̂mω +
∂∆ptiτm
∂t

δ̂tm

)
+ pτmW + ∆timvτmW +

1

2
∆tim

2
g.

(C.30)

130 Appendix C. IN2LAAMA Jacobians

∂xiW
∂[Rτm

W](:)T
=



[
q1

(
∆Rti

τm

(
RL
I xiL + pLI

)
+ ∆ptiτm

)>]
(:)T[

q2

(
∆Rti

τm

(
RL
I xiL + pLI

)
+ ∆ptiτm

)>]
(:)T[

q3

(
∆Rti

τm

(
RL
I xiL + pLI

)
+ ∆ptiτm

)>]
(:)T


(C.31)

∂xiW
∂vτmW

=∆timI3×3 (C.32)

∂xiW
∂pτmW

=I3×3 (C.33)

∂xiW
∂b̂mf

=Rτm
W

∂∆ptiτm
∂bmf

(C.34)

∂xiW
∂b̂mω

=


[(

q1
>Rti

W
¯∆Rti
τm

)>(
RL
I xiL + pLI

)>]
(:)T[(

q2
>Rti

W
¯∆Rti
τm

)>(
RL
I xiL + pLI

)>]
(:)T[(

q3
>Rti

W
¯∆Rti
τm

)>(
RL
I xiL + pLI

)>]
(:)T

JExp
∂∆Rti

τm

∂bmω
+ Rτm

W

∂∆ptiτm
∂bmω

(C.35)

∂xiW
∂δ̂tm

=


[(

q1
>Rti

W
¯∆Rti
τm

)>(
RL
I xiL + pLI

)>]
(:)T[(

q2
>Rti

W
¯∆Rti
τm

)>(
RL
I xiL + pLI

)>]
(:)T[(

q3
>Rti

W
¯∆Rti
τm

)>(
RL
I xiL + pLI

)>]
(:)T

JExp
∂∆Rti

τm

∂δt
+ Rτm

W

∂∆ptiτm
∂δt

(C.36)

with JExp the jacobian of the exponential mapping (matrix 9x3).

Appendix C. IN2LAAMA Jacobians 131

C.3.2 Point-to-plane

∂dp

∂xi,j,,lW

=
1

‖
(
xjW − xW

)
×
(
xjW − xlW

)
‖22(

∂
(
xiW − xjW

)>((
xjW − xW

)
×
(
xjW − xlW

))
∂xi,j,,lW

‖
(
xjW − xW

)
×
(
xjW − xlW

)
‖2

−
∂‖
(
xjW − xW

)
×
(
xjW − xlW

)
‖2

∂xi,j,,lW

(
xiW − xjW

)>((
xjW − xW

)
×
(
xjW − xlW

)))
(C.37)

with

∂
(
xiW − xjW

)>((
xjW − xW

)
×
(
xjW − xlW

))
∂xi,j,,lW

=

((
xjW − xW

)
×
(
xjW − xlW

))>
,((

xjW − xlW
)
×
(
xjW − xW

)
+
(
xjW − xiW

)
×
(
xW − xlW

))>
,((

xiW − xjW
)
×
(
xjW − xlW

))>
,((

xjW − xW
)
×
(
xiW − xjW

))>


(C.38)

∂‖
(
xjW − xW

)
×
(
xjW − xlW

)
‖2

∂xi,j,,lW

=((
xjW − xW

)
×
(
xjW − xlW

))>
‖
(
xjW − xW

)
×
(
xjW − xlW

)
‖2

∂
(
xjW − xW

)
×
(
xjW − xlW

)
∂xi,j,W

(C.39)

132 Appendix C. IN2LAAMA Jacobians

∂
(
xjW − xW

)
×
(
xjW − xlW

)
∂xi,j,,lW

=[
03×3 , (xlW − xW)∧ , (xjW − xlW)∧ , (xW − xjW)∧

]
(C.40)

C.3.3 Point-to-line

∂dl

∂xi,j,W

=

∂‖
(
xiW−x

j
W

)
×
(
xiW−xW

)
‖2

∂xi,j,W

‖
(
xjW − xW

)
‖2−

∂‖
(
xjW−xW

)
‖2

∂xi,j,W

‖
(
xiW − xjW

)
×
(
xiW − xW

)
‖2

‖
(
xjW − xW

)
‖22

(C.41)

with

∂‖
(
xiW − xjW

)
×
(
xiW − xW

)
‖2

∂xi,j,W

=((
xiW − xjW

)
×
(
xiW − xW

))>
‖
(
xiW − xjW

)
×
(
xiW − xW

)
‖2

∂
(
xiW − xjW

)
×
(
xiW − xW

)
∂xi,j,W

,

(C.42)

∂‖
(
xjW − xW

)
‖2

∂xi,j,W

=

(
xjW − xW

)>
‖
(
xjW − xW

)
‖2

∂
(
xjW − xW

)
∂xi,j,W

(C.43)

and

∂
(
xiW − xjW

)
×
(
xiW − xW

)
∂xi,j,W

=
[
(xW − xjW)∧ , (xiW − xW)∧ , (xjW − xiW)∧

]
(C.44)

Appendix C. IN2LAAMA Jacobians 133

∂
(
xjW − xW

)
∂xi,j,W

=
[
03×3 , I3×3 , −I3×3

]
(C.45)

∂xiW
∂[RL

I](:)T
=


[(

Rτm
W ∆Rti

τm

)>
q1x

i
L
>
]

(:)T[(
Rτm
W ∆Rti

τm

)>
q2x

i
L
>
]

(:)T[(
Rτm
W ∆Rti

τm

)>
q3x

i
L
>
]

(:)T

 (C.46)

∂xiW
∂pLI

= Rτm
W ∆Rti

τm . (C.47)

C.3.4 Noise propagation

∂xiW
∂(∆φim,∆ptiτm)

=




[(

q1
>Rti

W

)>(
RL
I xiL + pLI)>

]
(:)T[(

q2
>Rti

W

)>(
RL
I xiL + pLI)>

]
(:)T[(

q3
>Rti

W

)>(
RL
I xiL + pLI)>

]
(:)T

JExp; Rti
W

 (C.48)

∂xiW
∂xiL

=Rti
W∆Rti

τmRL
I (C.49)

Appendix D

IDOL Jacobians

This appendix provides the reader with the different Jacobians involved in IDOL’s opti-

misation. Our implementation uses Ceres and its local parameterisation feature. Conse-

quently, the Jacobians in this section are derived with respect to the over-parameterised

SO(3) variables. Note that many computations could be further optimised as many ma-

trices are quite sparse.

The following notation is employed:

• [M](:)T the operator that transforms a r-by-c matrix M into a rc-by-1 vector.

• [M](j,:) the operator that isolates the jth row of M.

• [M](:,j) the operator that isolates the jth column of M.

Examples:

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](:)T =
[
m1 m2 m3 m4 m5 m6 m7 m8 m9

]
,

(D.1)

135

136 Appendix D. IDOL Jacobians

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](1,:) =
[
m1 m4 m7

]
, (D.2)

and

M =


m1 m4 m7

m2 m5 m8

m3 m6 m9

 then [M](:,1) =


m1

m2

m3

 (D.3)

Additionally, we define ∆tim = ti − τm, Log(•) = log(•∨), Exp(•) = exp(•∧), q1 =[
1 0 0

]
>, q2 =

[
0 1 0

]
>, and q3 =

[
0 0 1

]
>.

D.1 Event-to-line

The Jacobian of the event-to-line distance is

∂rie
∂dtial ,d

ti
bl

=

∂
(
eim−dtial

)
×
(
d
ti
bl
−dtial

)
∂d

ti
al
,d
ti
bl

‖
(
dtibl − dtial

)
‖2−

∂‖
(
d
ti
bl
−dtial

)
‖2

∂d
ti
al
,d
ti
bl

((
eim− dtial

)
×
(
dtibl − dtial

))
‖
(
dtibl − dtial

)
‖22

(D.4)

with

∂‖
(
dtibl − dtial

)
‖2

∂dtial ,d
ti
bl

=

(
dtibl − dtial

)>
‖
(
dtibl − dtial

)
‖
∂
(
dtibl − dtial

)
∂dtibld

ti
al

(D.5)

∂
(
dtibl − dtial

)
∂dtial ,d

ti
bl

=
[
−I2×2, I2×2

]
(D.6)

and

Appendix D. IDOL Jacobians 137

∂
(
eim− dtial

)
×
(
dtibl − dtial

)
∂dtial ,d

ti
bl

=[
eim[1] − dtibl [1]

, dtibl [0]
− eim[0], dtial [1]

− eim[1], eim[0] − dtial [0]

]
.

(D.7)

The “symbol” •[n] represents the nth component of the vector •.

D.2 Projection from 3D to 2D

Given the camera matrix K:

∂dti•l
∂l•

l
ti

=
∂dti•l
∂Kl•

l
ti

K> =

Kl•
l
ti [2]

0 −Kl•
l
ti [0]

0 Kl•
l
ti [2]

−Kl•
l
ti [1]


Kl•

l
ti [2]

2 K>. (D.8)

D.2.1 3D transformation

The reprojection

l•
l
ti = RC

W
>

l•
l
W −RC

W
>

pCW (D.9)

TC
W (t) = Tti

WTC
I (D.10)

Consequently,

RC
W (t) = Rti

WRC
I (D.11)

and

pCW (t) = ptiW + Rti
WpCI (D.12)

138 Appendix D. IDOL Jacobians

Rti
W = Rτm

W ∆Rti
τm (D.13)

ptiW = pτmW + vτmW ∆tim +
1

2
g∆tim

2
+ Rτm

W ∆ptiτm (D.14)

Combining the previous equations we get

l•
l
ti = RC

I
>

∆Rti
τm
>

Rτm
W
>(l•lW −pτmW −vτmW ∆tim−

1

2
g∆tim

2)−RC
I
>

∆Rti
τm
>

∆ptiτm−RC
I
>

pCI

(D.15)

∂l•
l
ti

∂[Rτm
W](:)T

=


[(

l•
l
W − pτmW − vτmW ∆tim − 1

2g∆tim
2)

q>1 RC
I
>

∆Rti
τm
>
]

(:)T[(
l•
l
W − pτmW − vτmW ∆tim − 1

2g∆tim
2)

q>2 RC
I
>

∆Rti
τm
>
]

(:)T[(
l•
l
W − pτmW − vτmW ∆tim − 1

2g∆tim
2)

q>3 RC
I
>

∆Rti
τm
>
]

(:)T

 (D.16)

∂l•
l
ti

∂l•
l
W

= RC
I
>

∆Rti
τm
>

Rτm
W
> (D.17)

∂l•
l
ti

∂pτmW
= −RC

I
>

∆Rti
τm
>

Rτm
W
> (D.18)

∂l•
l
ti

∂vτmW
= −RC

I
>

∆Rti
τm
>

Rτm
W
>∆tim (D.19)

∂l•
l
ti

∂bmf
= −RC

I
>

∆Rti
τm
>∂∆ptiτm

∂bf
(D.20)

∂l•
l
ti

∂bmω
=
∂RC

I
>

∆Rti
τm
>

Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

∂bmω
−
∂RC

I
>

∆Rti
τm
>

∆ptiτm
bmω

(D.21)

Appendix D. IDOL Jacobians 139

with

∂RC
I
>

∆Rti
τm
>

Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

∂bmω
=

∂RC
I
>

∆Rti
τm
>

Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

∂[∆Rti
τm](:)T

∂[∆Rti
τm]

(:)T

∂bmω
(D.22)

∂RC
I
>

∆Rti
τm
>

Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

∂[∆Rti
τm](:)T

=
[
Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

q>1 RC
I
>
]

(:)T[
Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

q>2 RC
I
>
]

(:)T[
Rτm
W
>(l•lW − pτmW − vτmW ∆tim − 1

2g∆tim
2)

q>3 RC
I
>
]

(:)T

 (D.23)

∂[∆Rti
τm]

(:)T

∂bmω
=

∂
[

¯∆Rti
τmExp

(
∂∆R

ti
τm

∂bω
bmω

)]
(:)T

∂bmω

=

∂
[

¯∆Rti
τmExp

(
∂∆R

ti
τm

∂bω
bmω

)]
(:)T

∂[Exp
(
∂∆R

ti
τm

∂bω
bmω

)
]
(:)T

[∂Exp
(
∂∆R

ti
τm

∂bω
bmω

)
]
(:)T

∂
(
∂∆R

ti
τm

∂bω
bmω

) ∂
(
∂∆R

ti
τm

∂bω
bmω

)
∂bmω

=


¯∆Rti
τm 03×3 03×3

03×3
¯∆Rti
τm 03×3

03×3 03×3
¯∆Rti
τm

JExp(
∂∆Rti

τm

∂bω
bmω)

∂∆Rti
τm

∂bω

(D.24)

and

∂RC
I
>

∆Rti
τm
>

∆ptiτm
∂bmω

=


∂q>1 RC

I
>

∆R
ti
τm

>
∆p

ti
τm

∂bmω

∂q>2 RC
I
>

∆R
ti
τm

>
∆p

ti
τm

∂bmω

∂q>3 RC
I
>

∆R
ti
τm

>
∆p

ti
τm

∂bmω

 (D.25)

∂q>• RC
I
>

∆Rti
τm
>

∆ptiτm
∂bmω

=

q>• RC
I
>

∆Rti
τm
>∂∆ptiτm

∂bmω
+ ∆ptiτm

>∂q>• RC
I
>

∆Rti
τm
>

∂bmω

(D.26)

140 Appendix D. IDOL Jacobians

with
∂∆ptiτm
∂bmω

=
∂∆pim
∂bω

(D.27)

and
∂q>• RC

I
>

∆Rti
τm
>

∂bmω
=
∂q>• RC

I
>

∆Rti
τm
>

∂[∆Rti
τm](:)T

∂[∆Rti
τm]

(:)T

∂bmω
(D.28)

∂q>• RC
I
>

∆Rti
τm
>

∂∆Rti
τm

=


∂q>• R

C
I
>

∆R
ti
τm

>
q1

∂∆R
ti
τm

∂q>• R
C
I
>

∆R
ti
τm

>
q2

∂∆R
ti
τm

∂q>• R
C
I
>

∆R
ti
τm

>
q3

∂∆R
ti
τm



=




[q1q
>
• RC

I
>

](:)T

[q2q
>
• RC

I
>

](:)T

[q3q
>
• RC

I
>

](:)T

 (D.29)

D.3 Splitting force

If li < 0

∂rα
i

s

∂dtial ,d
ti
bl

=

∂
(
eim−dtial

)>(
d
ti
bl
−dtial

)
∂d

ti
al
,d
ti
bl

‖
(
dtibl − dtial

)
‖2−

∂‖
(
d
ti
bl
−dtial

)
‖2

∂d
ti
al
,d
ti
bl

((
eim− dtial

)>(
dtibl − dtial

))
‖
(
dtibl − dtial

)
‖22

(D.30)

∂
(
eim− dtial

)>(
dtibl − dtial

)
∂dtial ,d

ti
bl

=
[
(2dtial − dtibl − eim)>, (eim− dtibl)

>
]

(D.31)

If li > ‖dtibl − dtial‖

∂rα
i

s

∂dtial ,d
ti
bl

=
∂‖
(
dtibl − dtial

)
‖2

∂dtial ,d
ti
bl

− ∂rα
i

s

∂dtial ,d
ti
bl

∣∣∣∣
li<0

(D.32)

If 0 < li < ‖dtibl − dtial‖
∂rα

i

s

∂dtial ,d
ti
bl

= 01×4 (D.33)

Appendix D. IDOL Jacobians 141

D.4 Attraction force

∂rma
∂dtial ,d

ti
bl

=

∂‖dtibl−d
ti
al
‖2

∂d
ti
al
,d
ti
bl

2
√
‖dtibl − dtial‖2

(D.34)

with
∂‖dtibl − dtial‖2
∂dtial ,d

ti
bl

=

(
dtibl − dtial

)>
‖
(
dtibl − dtial

)
‖
∂
(
dtibl − dtial

)
∂dtibl ,d

ti
al

(D.35)

∂
(
dtibl − dtial

)
∂dtial ,d

ti
bl

=
[
−I2×2, I2×2

]
(D.36)

Bibliography

[1] Todd Lupton and Salah Sukkarieh. Visual-inertial-aided navigation for high-dynamic

motion in built environments without initial conditions. IEEE Transactions on

Robotics, 28(1):61–76, 2012.

[2] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. IMU

preintegration on manifold for efficient visual-inertial maximum-a-posteriori estima-

tion. Robotics: Science and Systems, pages 6–15, 2015.

[3] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i.

IEEE Robotics Automation Magazine, 13(2):99–110, 2006.

[4] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose

Neira, Ian Reid, and John J. Leonard. Past, present, and future of simultaneous

localization and mapping: Toward the robust-perception age. IEEE Transactions

on Robotics, 32(6):1309–1332, 2016.

[5] Hugh F. Durrant-Whyte. An autonomous guided vehicle for cargo handling appli-

cations. International Journal of Robotics Research, 15(5):407–440, 1996.

[6] Anastasios I. Mourikis and Stergios I. Roumeliotis. A multi-state constraint Kalman

filter for vision-aided inertial navigation. Proceedings - IEEE International Confer-

ence on Robotics and Automation, pages 3565–3572, 2007.

[7] Raul Mur-Artal and Juan D. Tardos. Visual-Inertial Monocular SLAM with Map

Reuse. IEEE Robotics and Automation Letters, 2(2):796–803, 2017.

143

144 Bibliography

[8] Tong Qin, Peiliang Li, and Shaojie Shen. VINS-Mono: A Robust and Versatile

Monocular Visual-Inertial State Estimator. IEEE Transactions on Robotics, 34(4):

1–17, 2018.

[9] Michael Bosse, Robert Zlot, and Paul Flick. Zebedee : Design of a spring-mounted 3-

D range sensor with application to mobile mapping. IEEE Transactions on Robotics,

28(October):1–15, 2012.

[10] Ji Zhang and Sanjiv Singh. LOAM : Lidar odometry and mapping in real-time.

Robotics: Science and Systems, pages 7–15, 2014.

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the KITTI vision benchmark suite. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 3354–3361,

2012.

[12] Mitch Bryson, Matthew Johnson-Roberson, and Salah Sukkarieh. Airborne smooth-

ing and mapping using vision and inertial sensors. Proceedings - IEEE International

Conference on Robotics and Automation, pages 2037–2042, 2009.

[13] Ji Zhang and Sanjiv Singh. Enabling aggressive motion estimation at low-drift and

accurate mapping in real-time. Proceedings - IEEE International Conference on

Robotics and Automation, pages 5051–5058, 2017.

[14] Patrick Geneva and Kevin Eckenhoff. LIPS: LiDAR-Inertial 3D Plane SLAM. IEEE

International Conference on Intelligent Robots and Systems, 2018.

[15] Cedric Le Gentil, Teresa Vidal-Calleja, and Shoudong Huang. IN2LAMA : INertial

Lidar Localisation And MApping. IEEE International Conference on Robotics and

Automation, 2019.

[16] Jeffrey Delmerico and Davide Scaramuzza. A Benchmark Comparison of Monoc-

ular Visual-Inertial Odometry Algorithms for Flying Robots. IEEE International

Conference on Robotics and Automation, pages 2502–2509, 2018.

Bibliography 145

[17] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-

Manifold Preintegration for Real-Time Visual-Inertial Odometry. IEEE Transac-

tions on Robotics, 33(1):1–21, 2017.

[18] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. Closed-form preintegration

methods for graph-based visualinertial navigation. International Journal of Robotics

Research, 38(5):563–586, 2019.

[19] Cedric Le Gentil, Teresa Vidal-Calleja, and Shoudong Huang. 3D Lidar-IMU Cal-

ibration based on Upsampled Preintegrated Measurements for Motion Distortion

Correction. IEEE International Conference on Robotics and Automation, 2018.

[20] Simo Särkkä. Linear operators and stochastic partial differential equations in Gaus-

sian process regression. Artificial Neural Networks and Machine Learning–ICANN

2011, pages 151–158, 2011.

[21] Paul Furgale, Timothy D Barfoot, and Gabe Sibley. Continuous-Time Batch Esti-

mation using Temporal Basis Functions. IEEE International Conference on Robotics

and Automation, pages 2088–2095, 2012.

[22] Seungpyo Hong, Heedong Ko, and Jinwook Kim. VICP: Velocity updating iterative

closest point algorithm. Proceedings - IEEE International Conference on Robotics

and Automation, (Section 3):1893–1898, 2010.

[23] Michael Bosse and Robert Zlot. Continuous 3D Scan-Matching with a Spinning 2D

Laser. IEEE International Conference on Robotics and Automation, 2009.

[24] Chanoh Park, Peyman Moghadam, Soohwan Kim, Alberto Elfes, Clinton Fookes,

and Sridha Sridharan. Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time

SLAM. IEEE International Conference on Robotics and Automation, 2018.

[25] Sean Anderson and Timothy D Barfoot. Towards Relative Continuous-Time SLAM.

IEEE International Conference on Robotics and Automation, (Ccd):1033–1040,

2013.

[26] Steven Lovegrove, Alonso Patron-Perez, and Gabe Sibley. Spline fusion: A

continuous-time representation for visual-inertial fusion with application to rolling

146 Bibliography

shutter cameras. BMVC 2013 - Electronic Proceedings of the British Machine Vision

Conference 2013, pages 1–12, 2013.

[27] Olivier A. Bauchau and Jou Young Choi. The vectorial parameterization of motion.

Proceedings of the ASME Design Engineering Technical Conference, 5 A:11–20, 2003.

[28] Alonso Patron-Perez, Steven Lovegrove, and Gabe Sibley. A Spline-Based Trajec-

tory Representation for Sensor Fusion and Rolling Shutter Cameras. International

Journal of Computer Vision, 113(3):208–219, 2015.

[29] C E Rasmussen and C K I Williams. Gaussian Processes for Machine Learning. The

MIT Press, 2006.

[30] Timothy D. Barfoot, Chi Hay Tong, and Simo Särkkä. Batch nonlinear continuous-

time trajectory estimation as exactly sparse Gaussian process regression. Robotics:

Science and Systems, 2014.

[31] Sean Anderson and Timothy D. Barfoot. Full STEAM ahead: Exactly sparse Gaus-

sian process regression for batch continuous-time trajectory estimation on SE(3).

IEEE International Conference on Intelligent Robots and Systems, 2015-Decem(3):

157–164, 2015.

[32] Timothy D. Barfoot. State Estimation for Robotics. 2017.

[33] Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D Shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1992.

[34] A Segal, D Haehnel, and S Thrun. Generalized-ICP. Robotics: Science and Systems,

5:168–176, 2009.

[35] Ellon Mendes, Pierrick Koch, and Simon Lacroix. ICP-based pose-graph SLAM.

IEEE International Symposium on Safety, Security and Rescue Robotics, pages 195–

200, 2016.

[36] David Droeschel and Sven Behnke. Efficient Continuous-time SLAM for 3D Lidar-

based Online Mapping. IEEE International Conference on Robotics and Automation

(ICRA), (May):5000–5007, 2018.

Bibliography 147

[37] Haoyang Ye, Yuying Chen, and Ming Liu. Tightly coupled 3D Lidar inertial odom-

etry and mapping. Proceedings - IEEE International Conference on Robotics and

Automation, 2019-May:3144–3150, 2019.

[38] Milad Ramezani, Georgi Tinchev, Egor Iuganov, and Maurice Fallon. Online LiDAR-

SLAM for Legged Robots with Robust Registration and Deep-Learned Loop Closure.

In IEEE International Conference on Robotics and Automation, pages 4158–4164,

2020.

[39] Simona Nobili, Raluca Scona, Marco Caravagna, and Maurice Fallon. Overlap-

based ICP tuning for robust localization of a humanoid robot. Proceedings - IEEE

International Conference on Robotics and Automation, pages 4721–4728, 2017.

[40] Hanspeter Pfister, Jeroen Van Baar, Matthias Zwicker, and Markus Gross. Surfels

: Surface Elements as Rendering. SIGGRAPH ’00: Proceedings of the 27th annual

conference on Computer graphics and interactive techniques, 2000.

[41] Chanoh Park, Soohwan Kim, Peyman Moghadam, Clinton Fookes, and Sridha Srid-

haran. Probabilistic Surfel Fusion for Dense LiDAR Mapping. Proceedings - 2017

IEEE International Conference on Computer Vision Workshops, ICCVW 2017,

2018-Janua:2418–2426, 2017.

[42] Jens Behley and Cyrill Stachniss. Efficient Surfel-Based SLAM using 3D Laser Range

Data in Urban Environments. Robotics: Science and Systems XIV, 2018.

[43] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and Ste-

fan Leutenegger. ElasticFusion: Real-time dense SLAM and light source estimation.

The International Journal of Robotics Research, 35(14):1697–1716, 2015.

[44] John Novatnack and Ko Nishino. Scale-dependent/invariant local 3D shape descrip-

tors for fully automatic registration of multiple sets of range images. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 5304 LNCS(PART 3):440–453, 2008.

[45] Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3D object recognition.

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV

Workshops 2009, pages 689–696, 2009.

148 Bibliography

[46] Federico Tombari, Samuele Salti, and Luigi DiStefano. Performance evaluation of

3D keypoint detectors. International Journal of Computer Vision, 102(1-3):198–220,

2013.

[47] Samuele Salti, Federico Tombari, and Luigi Di Stefano. SHOT: Unique signatures

of histograms for surface and texture description. Computer Vision and Image Un-

derstanding, 125:251–264, 2014.

[48] Tixiao Shan and Brendan Englot. LeGO-LOAM: Lightweight and Ground-

Optimized Lidar Odometry and Mapping on Variable Terrain. IEEE International

Conference on Intelligent Robots and Systems, pages 4758–4765, 2018.

[49] Jean-Emmanuel Deschaud. IMLS-SLAM: scan-to-model matching based on 3D data.

IEEE International Conference on Robotics and Automation (ICRA), pages 2480–

2485, 2018.

[50] Frank Neuhaus, Tilman Koß, Robert Kohnen, and Dietrich Paulus. MC2SLAM:

Real-Time Inertial Lidar Odometry Using Two-Scan Motion Compensation. German

Conference on Pattern Recognition, 2018.

[51] Jacopo Serafin, Edwin Olson, and Giorgio Grisetti. Fast and robust 3D feature

extraction from sparse point clouds. IEEE International Conference on Intelligent

Robots and Systems, 2016-Novem:4105–4112, 2016.

[52] Ji Zhang and Sanjiv Singh. Visual-lidar Odometry and Mapping: Low-drift, Robust,

and Fast. IEEE International Conference on Robotics and Automation, pages 2174–

2181, 2015.

[53] Ji Zhang, Michael Kaess, and Sanjiv Singh. Real-time depth enhanced monocular

odometry. IEEE International Conference on Intelligent Robots and Systems, (Iros):

4973–4980, 2014.

[54] Ji Zhang and Sanjiv Singh. Laservisualinertial odometry and mapping with high

robustness and low drift. Journal of Field Robotics, 35(8):1242–1264, 2018.

Bibliography 149

[55] Yashar Balazadegan Sarvrood, Siavash Hosseinyalamdary, and Yang Gao. Visual-

LiDAR Odometry Aided by Reduced IMU. ISPRS International Journal of Geo-

Information, 5(1):3, 2016.

[56] Johannes Graeter, Alexander Wilczynski, and Martin Lauer. LIMO: Lidar-

Monocular Visual Odometry. IEEE International Conference on Intelligent Robots

and Systems, pages 7872–7879, 2018.

[57] Yuxing Xie, Jiaojiao Tian, and Xiao Xiang Zhu. Linking Points With Labels in 3D.

IEEE Geoscience and Remote Sensing Magazine, (March), 2020.

[58] Renaud Dubé, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart, and Cesar

Cadena. SegMatch: Segment based loop-closure for 3D point clouds. In IEEE

International Conference on Robotics and Automation, 2017.

[59] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[60] Renaud Dubé, Andrei Cramariuc, Daniel Dugas, Juan Nieto, Roland Siegwart, and

Cesar Cadena. SegMap: 3D Segment Mapping using Data-Driven Descriptors. In

Robotics: Science and Systems, 2018.

[61] Sebastian Ratz, Marcin Dymczyk, Roland Siegwart, and Renaud Dubé. OneShot

Global Localization: Instant LiDAR-Visual Pose Estimation. IEEE International

Conference on Robotics and Automation (ICRA), 2020.

[62] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 40(6):1437–1451, 2018.

[63] Xieyuanli Chen, Andres Milioto, Emanuele Palazzolo, Philippe Giguere, Jens Behley,

and Cyrill Stachniss. SuMa++: Efficient LiDAR-based Semantic SLAM. IEEE

International Conference on Intelligent Robots and Systems, pages 4530–4537, 2019.

[64] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. RangeNet ++:

Fast and Accurate LiDAR Semantic Segmentation. IEEE International Conference

on Intelligent Robots and Systems, (i):4213–4220, 2019.

150 Bibliography

[65] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128 x 128 120 dB 15

µs Latency Asynchronous Temporal Temporal Contrast Vision Sensor. Solid State

Circuit, 43(2):566–576, 2008.

[66] Christian Brandli, Raphael Berner, Minhao Yang, Shih Chii Liu, and Tobi Delbruck.

A 240 180 130 dB 3 µs latency global shutter spatiotemporal vision sensor. IEEE

Journal of Solid-State Circuits, 49(10):2333–2341, 2014.

[67] David Weikersdorfer, Raoul Hoffmann, and Jörg Conradt. Simultaneous localization

and mapping for event-based vision systems. Computer Vision Systems, pages 133–

142, 2013.

[68] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison. Real-Time 3D Recon-

struction and 6-DoF Tracking with an Event Camera. Proceedings of the European

Conference on Computer Vision (ECCV), pages 349–364, 2016.

[69] Jakob Engel, Thomas Sch, and Daniel Cremers. LSD-SLAM: Large-Scale Direct

Monocular SLAM. European Conference on Computer Vision, pages 834–849, 2014.

[70] Henri Rebecq, Timo Horstschaefer, Guillermo Gallego, and Davide Scaramuzza.

EVO: A Geometric Approach to Event-Based 6-DOF Parallel Tracking and Mapping

in Real Time. IEEE Robotics and Automation Letters, 2(2):593–600, 2017.

[71] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis. Event-based feature track-

ing with probabilistic data association. Proceedings - IEEE International Conference

on Robotics and Automation, pages 4465–4470, 2017.

[72] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. Real-time Visual-

Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimiza-

tion. British Machince Vision Conference, 2017.

[73] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza.

Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM

in HDR and High-Speed Scenarios. IEEE Robotics and Automation Letters, 3(2):

994–1001, 2018.

Bibliography 151

[74] Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza. Continuous-time tra-

jectory estimation for event-based vision sensors. Robotics: Science and Systems,

11, 2015.

[75] Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza.

Continuous-Time Visual-Inertial Odometry for Event Cameras. IEEE Transactions

on Robotics, 34(6):1425–1440, 2018.

[76] Valentina Vasco, Arren Glover, and Chiara Bartolozzi. Fast event-based Harris cor-

ner detection exploiting the advantages of event-driven cameras. IEEE International

Conference on Intelligent Robots and Systems, 2016-Novem:4144–4149, 2016.

[77] C. Harris and M. Stephens. A Combined Corner and Edge Detector. In Proc. of

Fourth Alvey Vision Conference, pages 147–152, 1988.

[78] Ignacio Alzugaray and Margarita Chli. Asynchronous Corner Detection and Tracking

for Event Cameras in Real Time. IEEE Robotics and Automation Letters, 3(4):3177–

3184, 2018.

[79] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza. Fast Event-based Corner

Detection. British Machince Vision Conference, 1:1–11, 2017.

[80] Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio Hoi Ieng, and Chiara Bar-

tolozzi. Event-based visual flow. IEEE Transactions on Neural Networks and Learn-

ing Systems, 25(2):407–417, 2014.

[81] Xavier Lagorce, Garrick Orchard, Francesco Galluppi, Bertram E. Shi, and Ryad B.

Benosman. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recog-

nition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(7):

1346–1359, 2017.

[82] Ignacio Alzugaray and Margarita Chli. ACE: An efficient asynchronous corner

tracker for event cameras. Proceedings - 2018 International Conference on 3D Vi-

sion, 3DV 2018, pages 653–661, 2018.

152 Bibliography

[83] Jacques Manderscheid, Amos Sironi, Nicolas Bourdis, Davide Migliore, and Vincent

Lepetit. Speed invariant time surface for learning to detect corner points with event-

based cameras. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2019-June:10237–10246, 2019.

[84] Guillermo Gallego, Tobi Delbrruck, Garrick Orchard, Chiara Bartolozzi, Brian Taba,

Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Dani-

ilidis, and Davide Scaramuzza. Event-based Vision : A Survey. pages 1–30, 2019.

[85] Christian Brandli, Jonas Strubel, Susanne Keller, Davide Scaramuzza, and Tobi

Delbruck. ELiSeD-An event-based line segment detector. International Conference

on Event-Based Control, Communication, and Signal Processing, EBCCSP 2016,

2016.

[86] Lukas Everding and Jörg Conradt. Low-latency line tracking using event-based

dynamic vision sensors. Frontiers in Neurorobotics, 12(FEB):1–13, 2018.

[87] Craig Glennie. Calibration and Kinematic Analysis of the Velodyne HDL-64E S2

Lidar Sensor. Photogrammetric Engineering & Remote Sensing, 78(4):339–347, 2012.

[88] Jesse Levinson and Sebastian Thrun. Unsupervised calibration for multi-beam lasers.

Springer Tracts in Advanced Robotics, 79:179–193, 2014.

[89] Zachary Taylor and Juan Nieto. Motion-based calibration of multimodal sensor

arrays. IEEE International Conference on Robotics and Automation, pages 4843–

4850, 2015.

[90] João Alves, Jorge Lobo, and Jorge Dias. Camera-inertial sensor modelling and

alignment for visual navigation. International Conference on Advanced Robotics, 5

(3):103–111, 2003.

[91] J. Lobo and J. Dias. Relative pose calibration between visual and inertial sensors.

The International Journal of Robotics Research, 26:561–575, 2007.

[92] Jonathan Kelly and Gaurav S. Sukhatme. Fast Relative Pose Calibration for Visual

and Inertial Sensors. Springer Tracts in Advanced Robotics, 54:515–524, 2009.

Bibliography 153

[93] Paul Furgale, Joern Rehder, and Roland Siegwart. Unified temporal and spatial

calibration for multi-sensor systems. IEEE International Conference on Intelligent

Robots and Systems, pages 1280–1286, 2013.

[94] Joern Rehder and Roland Siegwart. Camera IMU calibration. IEEE Sensors Journal,

17(11):1–2, 2017.

[95] Qilong Zhang and Robert Pless. Extrinsic Calibration of a Camera and Laser Range

Finder (improves camera calibration). IEEE International Conference on Intelligent

Robots and Systems, 3:2301–2306, 2004.

[96] Abdallah Kassir and Thierry Peynot. Reliable Automatic Camera-Laser Calibration.

Australasian Conference on Robotics and Automation, 2010.

[97] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda,

and Tsuyoshi Hamada. An Open Approach to Autonomous Vehicles. IEEE Micro,

35(6):60–69, 2015.

[98] Sungdae Sim, Juil Sock, and Kiho Kwak. Indirect correspondence-based robust

extrinsic calibration of LiDAR and camera. Sensors (Switzerland), 16(6), 2016.

[99] Yoonsu Park, Seokmin Yun, Chee Sun Won, Kyungeun Cho, Kyhyun Um, and

Sungdae Sim. Calibration between color camera and 3D LIDAR instruments with a

polygonal planar board. Sensors (Switzerland), 14(3):5333–5353, 2014.

[100] Martin Velas, Michal Spanel, Zdeněk Materna, and Adam Herout. Calibration of

RGB camera with velodyne LiDAR. WSCG 2014 Communication Papers Proceed-

ings, pages 135–144, 2014.

[101] Zachary Taylor and Juan Nieto. Parameterless automatic extrinsic calibration of

vehicle mounted lidar-camera systems. International Conference on Robotics and

Automation: Long Term Autonomy Workshop, (October):3–6, 2014.

[102] Juan Castorena, Ulugbek S Kamilov, and Petros T Boufounos. Autocalibration of

LIDAR and optical cameras via edge alignement. IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 2862–2866, 2016.

154 Bibliography

[103] Gaurav Pandey, James R Mcbride, Silvio Savarese, and Ryan M Eustice. Automatic

targetless extrinsic calibration of a 3D lidar and camera by maximizing mutual infor-

mation. Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,

pages 2053–2059, 2012.

[104] Joern Rehder, Paul Beardsley, Roland Siegwart, and Paul Furgale. Spatio-temporal

laser to visual/inertial calibration with applications to hand-held, large scale scan-

ning. IEEE International Conference on Intelligent Robots and Systems, (Iros):

459–465, 2014.

[105] Jonathan Brookshire and Seth Teller. Automatic calibration of multiple coplanar

sensors. Proceedings of Robotics: Science and Systems, pages 33–40, 2011.

[106] Zachary Taylor and Juan Nieto. Automatic Markerless Calibration of Multi-Modal

Sensor Arrays. PhD thesis, University of Sydney, 2015.

[107] Cedric Le Gentil, Teresa Vidal-Calleja, and Shoudong Huang. Gaussian Process

Preintegration for Inertial-Aided State Estimation. IEEE Robotics and Automation

Letters, 5(2):2108–2114, 2020.

[108] Michael Boyle. The Integration of Angular Velocity. Advances in Applied Clifford

Algebras, 27(3):2345–2374, 2017.

[109] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Supple-

mentary Material to : IMU Preintegration on Manifold for E cient Visual-Inertial

Maximum-a-Posteriori Estimation IMU Preintegration : Noise Propagation and Bias

Updates. Technical Report GT-IRIM-CP&R-2015-001, 2015.

[110] Vasiliy M. Tereshkov. A Simple Observer for Gyro and Accelerometer Biases in Land

Navigation Systems. Journal of Navigation, 68(04):635–645, 2015.

[111] Cedric Le Gentil, Teresa Vidal-Calleja, and Shoudong Huang. IN2LAAMA: INertial

Lidar Localisation Autocalibration And MApping. IEEE Transactions on Robotics,

2021.

[112] Jon Louis Bentley. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18(9):509–517, sep 1975.

Bibliography 155

[113] Karen Kafadar. Efficiency of the Biweight As a Robust Estimator of Location.

Journal of Research of the National Bureau of Standards (United States), 88(2):

105–116, 1983.

[114] Vasiliy M. Tereshkov. An Intuitive Approach to Inertial Sensor Bias Estimation.

International Journal of Navigation and Observation, 2013:1–6, 2013.

[115] Zhengshi Yu and John L. Crassidis. Accelerometer Bias Calibration Using Attitude

and Angular Velocity Information. Journal of Guidance, Control, and Dynamics, 39

(4):741–753, 2016.

[116] Shuang Du, Wei Sun, and Yang Gao. Improving observability of an inertial system

by rotary motions of an IMU. Sensors (Switzerland), 17(4):1–20, 2017.

[117] Yulin Yang, Patrick Geneva, Kevin Eckenhoff, and Guoquan Huang. Degenerate

Motion Analysis for Aided INS with Online Spatial and Temporal Sensor Calibration.

IEEE Robotics and Automation Letters, 4(2):2070–2077, 2019.

[118] Michael Bosse, Paul Newman, John Leonard, Martin Soika, Wendelin Feiten, and

Seth Teller. An Atlas framework for scalable mapping. Proceedings - IEEE Interna-

tional Conference on Robotics and Automation, 2:1899–1906, 2003.

[119] Zhenfei Yang and Shaojie Shen. Monocular visual-inertial state estimation with

online initialization and camera-IMU extrinsic calibration. IEEE Transactions on

Automation Science and Engineering, 14(1):39–51, 2017.

[120] Cedric Le Gentil, Florian Tschopp, Ignacio Alzugaray, Teresa Vidal-calleja, Roland

Siegwart, and Juan Nieto. IDOL : A Framework for IMU-DVS Odometry using

Lines. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 5863–5870, 2020.

[121] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Delbruck, and Davide Scara-

muzza. The event-camera dataset and simulator: Event-based data for pose estima-

tion, visual odometry, and SLAM. International Journal of Robotics Research, 36

(2):142–149, 2017.

156 Bibliography

[122] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick Barnes, Robert E. Mahony,

and Davide Scaramuzza. Fast image reconstruction with an event camera. Proceed-

ings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV

2020, pages 156–163, 2020.

[123] Henri Rebecq, Rene Ranftl, Vladlen Koltun, and Davide Scaramuzza. High Speed

and High Dynamic Range Video with an Event Camera. IEEE Transactions on

Pattern Analysis and Machine Intelligence, XX(XX):1–1, 2019.

[124] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.

On the Properties of Neural Machine Translation: EncoderDecoder Approaches.

In Proceedings ofSSST-8, Eighth Workshop on Syntax, Semantics and Structure in

Statistical Translation, pages 103–111, 2014.

[125] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-

works for Biomedical Image Segmentation. In International Conference on Medi-

cal Image Computing and Computer-Assisted Intervention MICCAI, volume 9351,

pages 234–241. 2015.

[126] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-

chun Woo. Convolutional LSTM Network: A Machine Learning Approach for Pre-

cipitation Nowcasting. In Advances in Neural Information Processing Systems 28,

pages 802–810, 2015.

[127] Konstantinos Zampogiannis, Cornelia Fermüller, and Yiannis Aloimonos. Cilantro:

A lean, versatile, and efficient library for point cloud data processing. MM 2018 -

Proceedings of the 2018 ACM Multimedia Conference, pages 1364–1367, 2018.

[128] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. Robust visual

inertial odometry using a direct EKF-based approach. IEEE International Confer-

ence on Intelligent Robots and Systems, 2015-Decem:298–304, 2015.

[129] Thomas Schneider, Marcin Dymczyk, Marius Fehr, Kevin Egger, Simon Lynen, Igor

Gilitschenski, and Roland Siegwart. Maplab: An Open Framework for Research in

Visual-Inertial Mapping and Localization. IEEE Robotics and Automation Letters,

3(3):1418–1425, 2018.

Bibliography 157

[130] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. BRISK: Binary Robust

invariant scalable keypoints. Proceedings of the IEEE International Conference on

Computer Vision, pages 2548–2555, 2011.

[131] Zichao Zhang and Davide Scaramuzza. A Tutorial on Quantitative Trajectory Eval-

uation for Visual(-Inertial) Odometry. IEEE International Conference on Intelligent

Robots and Systems, pages 7244–7251, 2018.

[132] Benny Dai, Cedric Le Gentil, and Teresa Vidal-Calleja. Connecting the dots for

real-time LiDAR-based object detection with YOLO. Australasian Conference on

Robotics and Automation, ACRA, 2018-Decem, 2018.

[133] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look

Once : Unified , Real-Time Object Detection. Conference on Computer Vision and

Pattern Recognition, 2016.

[134] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud Based

3D Object Detection. Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 4490–4499, 2018.

[135] Dorian Galvez-Lopez and Juan D. Tardos. Bags of Binary Words for Fast Place

Recognition in Image Sequences. IEEE Transactions on Robotics, 28(5):1188–1197,

2012.

[136] Raul Mur-Artal, J. M.M. Montiel, and Juan D. Tardos. ORB-SLAM: A Versatile

and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5):

1147–1163, 2015.

[137] Martin Magnusson, Henrik Andreasson, a. Nuchter, and a.J. Lilienthal. Appearance-

based loop detection from 3D laser data using the normal distributions transform.

Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, (2):

23–28, 2009.

[138] Naveed Muhammad and Simon Lacroix. Loop closure detection using small-sized

signatures from 3D LIDAR data. 9th IEEE International Symposium on Safety,

Security, and Rescue Robotics, SSRR 2011, pages 333–338, 2011.

158 Bibliography

[139] Karl Granström, Thomas Schön, Karl Granstr, and Thomas B Sch. Linköping

University Post Print Learning to Close the Loop from 3D Point Clouds Learning

to Close the Loop from 3D Point Clouds. Intelligent Robots and Systems (IROS),

2010 IEEE/RSJ International Conference on, pages 2089–2095, 2010.

[140] Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

55:119–139, 1997.

[141] Bastian Steder, Michael Ruhnke, Slawomir Grzonda, and Wolfram Burgard. Place

recognition in 3D scans using a combination of bag of words and point feature based

relative pose estimation. IEEE International Conference on Intelligent Robots and

Systems, 2011.

[142] Giseop Kim and Ayoung Kim. Scan Context: Egocentric Spatial Descriptor for

Place Recognition Within 3D Point Cloud Map. IEEE International Conference on

Intelligent Robots and Systems, pages 4802–4809, 2018.

[143] Cedric Le Gentil, Mallikarjuna Vayugundla, Riccardo Giubilato, Wolfgang St, Teresa

Vidal-calleja, and Rudolph Triebel. Gaussian Process Gradient Maps for Loop-

Closure Detection in Unstructured Planetary Environments. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pages 1895–1902,

2020.

[144] Rik Bahnemann, Michael Burri, Enric Galceran, Roland Siegwart, and Juan Ni-

eto. Sampling-based motion planning for active multirotor system identification.

Proceedings - IEEE International Conference on Robotics and Automation, pages

3931–3938, 2017.

[145] Thomas Schneider, Mingyang Li, Cesar Cadena, Juan Nieto, and Roland Siegwart.

Observability-Aware Self-Calibration of Visual and Inertial Sensors for Ego-Motion

Estimation. IEEE Sensors Journal, 19(10):3846–3860, 2019.

Bibliography 159

[146] Mitchell Usayiwevu, Cedric Le Gentil, Jasprabhjit Mehami, Chanyeol Yoo, Robert

Fitch, and Teresa Vidal-calleja. Information Driven Self-Calibration for Lidar-

Inertial Systems. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 9961–9967, 2020.

[147] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen

Koltun. CARLA: An Open Urban Driving Simulator. (CoRL):1–16, 2017.

[148] Alex Zihao Zhu, Dinesh Thakur, Tolga Özaslan, Bernd Pfrommer, Vijay Kumar,

and Kostas Daniilidis. The Multivehicle Stereo Event Camera Dataset: An Event

Camera Dataset for 3D Perception. IEEE Robotics and Automation Letters, 3(3):

2032–2039, 2018.

	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	Acronyms & Abbreviations
	1 Introduction
	1.1 Research topic
	1.2 Scope
	1.2.1 State estimation
	1.2.2 Localisation and mapping
	1.2.3 Extrinsic calibration
	1.2.4 Lidars and motion distortion
	1.2.5 Event-cameras
	1.2.6 Motivation

	1.3 Objectives and contributions
	1.4 Thesis outline
	1.5 List of publications
	1.5.1 Core contributions
	1.5.2 Side contributions

	2 Review of Related Work
	2.1 Preintegration
	2.2 Continuous time state representation
	2.3 Lidar localisation and mapping
	2.4 Event-based odometry
	2.5 Extrinsic calibration

	3 Gaussian Preintegration
	3.1 Introduction
	3.2 Problem statement
	3.2.1 System description
	3.2.2 IMU preintegration

	3.3 Definitions and background
	3.3.1 Gaussian Process regression
	3.3.2 Gaussian Process inference with linear operators

	3.4 Gaussian Preintegrated Measurements
	3.4.1 GPM - Rotation
	3.4.2 GPM - Velocity and position

	3.5 Postintegration bias and inter-sensor time-shift corrections
	3.5.1 Rotation GPM Jacobians
	3.5.1.1 Gyroscope biases
	3.5.1.2 Inter-sensor time-shift

	3.5.2 Velocity and position GPM Jacobians
	3.5.2.1 Accelerometer and gyroscope biases
	3.5.2.2 Inter-sensor time-shift

	3.6 Experiments and results
	3.6.1 Low-frequency benchmarks (0.2 - 20Hz)
	3.6.1.1 Accuracy
	3.6.1.2 Robustness to noise
	3.6.1.3 Computation time

	3.6.2 High-frequency benchmarks (>100kHz)
	3.6.2.1 Accuracy
	3.6.2.2 Computation time

	3.7 Conclusion

	4 IN2LAAMA: INertial Lidar Localisation Autocalibration And MApping
	4.1 Introduction
	4.2 Method overview
	4.2.1 Notation and definitions
	4.2.2 Cost function

	4.3 Back-end
	4.3.1 IMU factors
	4.3.2 IMU biases and inter-sensor time-shift
	4.3.3 Lidar factors

	4.4 Front-end
	4.4.1 Feature extraction
	4.4.2 Feature recomputation
	4.4.3 Data association
	4.4.3.1 Feature matching
	4.4.3.2 Outliers rejection

	4.4.4 Loop-closure detection

	4.5 On the factor graph and implementation
	4.5.1 Factor graph for localisation and mapping
	4.5.2 Factor graph for autocalibration, localisation, and mapping
	4.5.3 Robustness of state estimation
	4.5.4 Bias observability
	4.5.5 GPMs and memory

	4.6 Experiments and results
	4.6.1 Simulation - localisation and mapping
	4.6.1.1 Odometry
	4.6.1.2 Loop-closure
	4.6.1.3 Robustness to inaccurate sensor model
	4.6.1.4 No motion model

	4.6.2 Simulation - front-end
	4.6.3 Simulation - calibration
	4.6.4 Real-data - Localisation and mapping
	4.6.4.1 Indoors
	4.6.4.2 Outdoors

	4.6.5 Real-data - Calibration

	4.7 Conclusion

	5 IDOL: IMU-DVS Odometry using Lines
	5.1 Introduction
	5.2 Method overview
	5.3 Back-end
	5.3.1 Event-to-line factors
	5.3.2 Line attraction and repulsion factors

	5.4 Front-end
	5.5 Experiments
	5.5.1 Datasets and Evaluations
	5.5.2 Results

	5.6 Conclusions

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work and associated developments
	6.2.1 Semantic understanding of the scene
	6.2.2 Loop closure detection
	6.2.3 Calibration trajectories
	6.2.4 Event-based visual-lidar-inertial localisation and mapping

	Appendices
	A Overview of the Upsampled Preintegration method
	B Derivation of the bias jacobians for GPM postintegration correction
	B.1 Accelerometer bias
	B.2 Gyroscope bias

	C IN2LAAMA Jacobians
	C.1 IMU factors
	C.2 Biases factors
	C.3 LiDAR factors
	C.3.1 Point reprojection
	C.3.2 Point-to-plane
	C.3.3 Point-to-line
	C.3.4 Noise propagation

	D IDOL Jacobians
	D.1 Event-to-line
	D.2 Projection from 3D to 2D
	D.2.1 3D transformation

	D.3 Splitting force
	D.4 Attraction force

	Bibliography

