
Code for Success
Software Development
for Robotics Competitions

by Sammy Pfeiffer

Thesis submitted in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in

Software Engineering

under the supervision of

Mary-Anne Williams
and

Benjamin Johnston

University of Technology Sydney
Faculty of Engineering
and Information Technology

September 2020



© 2020 by Sammy Pfeiffer
All Rights Reserved

https://sammypfeiffer.com/


AUTHOR’S DECLARATION

I , Sammy Pfeiffer declare that this thesis, submitted in fulfilment of
the requirements for the award of Doctor of Philosophy, in the School
of Software, Faculty of Engineering & Information Technology at the

University of Technology Sydney. This thesis is wholly my own work unless
otherwise referenced or acknowledged. In addition, I certify that all infor-
mation sources and literature used are indicated in the thesis. In addition,
I certify that all information sources and literature used are indicated in
the thesis. This document has not been submitted for qualifications at any
other academic institution. This research is supported by the Australian
Government Research Training Program.

SIGNATURE:

[Sammy Pfeiffer]

DATE: 7th September, 2020

PLACE: Sydney, Australia

i

Production Note:

Signature removed prior to publication.





ABSTRACT

Robotics technologies have the potential to change the way we live for the better by
reducing the difficulty of, helping with, or completely automating tasks. Robotics
competitions such as RoboCup aim to push the field forward while providing an en-

vironment for participants to acquire important skills and knowledge. Most participants
in these competitions are university teams with members from different backgrounds
and levels of expertise, using different types of robots. These diverse teams must develop
large and complex software stacks to accomplish their respective competitions’ objectives.

This thesis aims to improve the software development process for these teams in
regards to the development experience and competition outcomes. This will help push
forward the robotics field and, consequently, our quality of life.

The available literature about software development methodologies for non-professional
teams in robotics competitions is currently limited. The objectives of this thesis include
enlarging the available knowledge in this domain and creating a practical set of guide-
lines that improve the software development experience and outcomes for robotics compe-
titions. In order to do this, the software development methodology of the UTS Unleashed!
team was analyzed over three consecutive years of participation in the RoboCup@Home
Social Standard Platform League from the point of view of the development lead. Ad-
ditionally, expert feedback was gathered to analyze, discuss, and compare the software
development methodology of other teams and experts in the RoboCup League.

The research methodologies used in this thesis are Action Research, to explore UTS
Unleashed!’s case study, and Grounded Theory, to analyze expert feedback gathered from
a workshop and survey of members of the RoboCup community.

To the author’s knowledge, this thesis presents the first longitudinal case study on a
competitive team participating over multiple years in a robotics competition. Moreover,
with the team under study achieving victory in their third year of participation. Fur-
thermore, it is the first work showcasing expert feedback on a RoboCup teams’ software
development process from the RoboCup community.

This thesis concludes with a set of guidelines for software development practices for
teams participating in robotic competitions. These guidelines offer insights and advice to
improve competition team software development experiences and outcomes.

iii





DEDICATION

To myself and my mental health. I never thought I would ever get this far.

To all the people that have supported me in one way or another up to getting here.

At this point, I sweetly remember the teachers in Sa Colomina who pushed me to go to

university and helped me get my first scholarship.

To all the people that believed in me, especially when I did not know any better.

To my friends who have always shown me that they are my family. I cannot express

this in the same way in English, so here it is in Spanish:

Aunque la lista de nombres de todos los que me habéis inspirado y habéis estado

ahí en los buenos y malos momentos, antes y durante este doctorado, es probablemente

demasiado larga, he de dar las gracias a algunos de vosotros directamente y dedicaros

esta tesis doctoral.

Irene, has sido mi constante desde siempre. Gracias.

Mi gente de Barcelona y de Ibiza. Jordi, Javi, Sebas, Toni, Jonathan, Hilario, Bence,

Quique, Pol, la gente de AESS... Gracias.

Mi gente de Sídney, mis compañeros de casa, mis compañeros de escalada, mis amigos.

Jenifer, Pedro, Rohan, Carlos, Gosia, Henry, Fiona, Callum, Mauricio, Vass, Clara, Jorge,

Anton, Dani, Iris... Gracias.

Joan Aranda, Ricardo Tellez, Cecilio Angulo, gracias por creer en mí.

La gente de PAL que me ayudó a crecer, Luca, Jordi, Victor, Francesco... Gracias.

v





ACKNOWLEDGMENTS

I acknowledge my supervisor Mary-Anne Williams for making me an offer I could

not refuse, followed by a great trust in me and my work. And, obviously, for all your

support and help during this PhD adventure.

I acknowledge my co-supervisor Benjamin Johnston, for all the support during these

years. Your ways of thinking always opened my mind even though I may have seemed

resistant. Moreover, I believe you made the completion of this thesis possible.

I acknowledge Jonathan Vitale and Meg Tonkin for their support and sportsmanship.

Without you in the lab, I doubt I would have gotten this far.

I acknowledge Neil McLaren for his help during the RoboCup preparation and

competition and his dedication in proofreading my thesis.

Finally, I acknowledge every member of The Magic Lab that was part of this journey.

At different points in time each one of you did or said something or just were there when

it was most needed.

vii





PERSONAL MOTIVATION

Understanding my story with regards to robotics competitions helps frame the

context of this work. Here I will describe it in first person.

I have been taking part in robotic competitions and challenges since my early univer-

sity days in Spain in 2007. I attended a robotics course where we built a sumo fighting

two-wheeled robot, which also could do line following, and at the end of it, there was a

competition between the participants.

I joined the robotics club1 that offered the course. The club organized the largest

robot sumo fighting competition nationally, I became part of the organization and helped

members develop platforms to participate. I participated with other team members in

competitions such as the Lunabotics NASA robot design competition and a variety of

local hackathons in Barcelona.

In 2012 the robotics company PAL Robotics came to our club to look for talented

students interested in robotics to create a team to participate in RoboCup@Home with

one of their new robots REEM, a real-size humanoid robot as can be seen in Figure 1.

1The club was called AESS Estudiants, from Aerospace & Electronics Systems Society Students, and
welcomed anyone with interest in robotics and new technologies.

ix



Figure 1: The robot REEM at RoboCup@Home in Eindhoven in 2013. I’m on the left with
another former member of the club, Jonathan Gonzalez. Great times.

I joined the project, and it changed my life. We did not make it for the 2012 edition of

RoboCup@Home, but we tried again in 2013. We successfully qualified and participated.

We put tremendous effort in, the team was talented and motivated (Figure 2), but it

was not enough. The bar was set extremely high, and we did not manage to focus on the

correct directions to maximize the output of our efforts.

Figure 2: The 2013 team for RoboCup@Home, called REEM@IRI.

x



Thanks to this project, I joined PAL Robotics as an intern and afterward as an

employee. I got motivated to get robots to actually become a reality, and to be part of

a team that effectively, and in an enjoyable journey, enables robots to work in the real

world.

In the following years, I have participated in RoboCup@Rescue, NASA Space Robotics

Challenge, Move-it/Moving self-driving car hackathons, among others. I have learned

and performed better individually but also as a team. My results have been positive,

achieving podiums and awards in these competitions.

There is something victorious teams do that makes them successful. In this work, I

want to take the unique opportunity to use the participation in Robocup@Home Social

Standard Platform League (SSPL) over three consecutive years to uncover insights and

strategies that help teams achieve exceptional outcomes.

xi





LIST OF PUBLICATIONS

1. PFEIFFER S., EBRAHIMIAN D., HERSE S., LE T. N., LEONG S., LU B., POWELL

K., RAZA S. A., SANG T., SAWANT I., TONKIN M., VINAVILES C., VU T. D., YANG

Q., BILLINGSLEY R., CLARK J., JOHNSTON B., MADHISETTY S., MCLAREN N.,

PEPPAS P., VITALE J., WILLIAMS M.A. (2019, July). UTS Unleashed! RoboCup@
Home SSPL Champions 2019. In Robot World Cup (pp. 603-615). Springer, Cham.

2. MAGYAR B., TSIOGKAS N., DERAY J., PFEIFFER S., LANE D. (2019). Timed-Elastic
Bands for Manipulation Motion Planning. In IEEE Robotics and Automation

Letters, 4(4) (pp. 3513-3520).

3. TONKIN M., VITALE J., OJHA S., CLARK J., PFEIFFER S., JUDGE W., WANG X.,

WILLIAMS M.A. (2017, November). Embodiment, privacy and social robots: May
I remember you?. In International Conference on Social Robotics (pp. 506-515).

Springer, Cham.

xiii

https://doi.org/10.1007/978-3-030-35699-6_49
https://doi.org/10.1007/978-3-030-35699-6_49
https://doi.org/10.1109/LRA.2019.2927956
https://doi.org/10.1109/LRA.2019.2927956
http://dx.doi.org/10.1007/978-3-319-70022-9_50
http://dx.doi.org/10.1007/978-3-319-70022-9_50




IMPACT

This thesis presents further contributions to society alongside the scientific publications

directly related to it. Namely:

• Under the development of this thesis the UTS Unleashed! RoboCup@Home SSPL

team achieved second place and best Human Robot Interface award in 2017 in

Nagoya, Japan, second place in 2018 in Montreal, Canada, and won in 2019 in

Sydney, Australia (the team’s hometown).

• The outcomes of the UTS Unleashed! team were communicated in the media

multiple times 2.

• The software stack developed for the RoboCup@Home SSPL participation powered

social robotics experiments in hospitality and hospital scenarios3.

• Parts of the software stack4 were made open source for the benefit of the robotics

community and beyond. Other parts of the system will be open sourced in the near

future.

• The rulebook for the RoboCup@Home competition was improved as part of this

work.

2For example, in Gizmodo: https://www.gizmodo.com.au/2017/07/meet-australias-newest-robocup-
team/, IoTHub: https://www.iothub.com.au/news/uts-researchers-to-develop-ai-for-robot-waiter-466625,
InsideRobotics: https://www.insiderobotics.com.au/robotics/personal-robots/Pepper-scores-a-world-class-
goal-for-Sydney-team-in-RoboCup/, UTS media: https://www.uts.edu.au/about/faculty-engineering-and-
information-technology/news/uts-brings-home-gold-home-robocup2019.

3The publications related to this work are pending at the time of writing this thesis.
4Pepper robot simulation: https://github.com/awesomebytes/pepper_virtual, Continuous Integra-

tion for the Gentoo Prefix Operating System: https://github.com/awesomebytes/gentoo_prefix_ci,
pre-compiled Robotics Operating System (ROS) for unsupported platforms:
https://github.com/awesomebytes/ros_overlay_on_gentoo_prefix, pre-compiled Operating Sys-
tem, libraries and applications for the Pepper robot to participate in RoboCup@Home SSPL:
https://github.com/awesomebytes/pepper_os.

xv

https://www.gizmodo.com.au/2017/07/meet-australias-newest-robocup-team/
https://www.gizmodo.com.au/2017/07/meet-australias-newest-robocup-team/
https://www.iothub.com.au/news/uts-researchers-to-develop-ai-for-robot-waiter-466625
https://www.insiderobotics.com.au/robotics/personal-robots/Pepper-scores-a-world-class-goal-for-Sydney-team-in-RoboCup/
https://www.insiderobotics.com.au/robotics/personal-robots/Pepper-scores-a-world-class-goal-for-Sydney-team-in-RoboCup/
https://www.uts.edu.au/about/faculty-engineering-and-information-technology/news/uts-brings-home-gold-home-robocup2019
https://www.uts.edu.au/about/faculty-engineering-and-information-technology/news/uts-brings-home-gold-home-robocup2019
https://github.com/awesomebytes/pepper_virtual
https://github.com/awesomebytes/gentoo_prefix_ci
https://github.com/awesomebytes/ros_overlay_on_gentoo_prefix
https://github.com/awesomebytes/pepper_os


• Improvements in the popular open source robotics framework ROS were submitted

during the work of this thesis.

• This work presents the first detailed description and evolution of the software

development methodology and technical approaches of a competitive team for the

RoboCup@Home SSPL competition during three consecutive years.

• This work presents a set of guidelines to help new and existing teams to improve

their experience and outcomes when participating in robotics competitions.

xvi



TABLE OF CONTENTS

Author’s Declaration i

Abstract iii

Dedication v

Acknowledgements vii

Personal Motivation ix

List of Publications xiii

Impact xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Epistemology / Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5
2.1 RoboCup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 RoboCup@Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 RoboCup@Home Social Standard Platform League . . . . . . . . . . 16

2.1.3 UTS Unleashed! RoboCup Project . . . . . . . . . . . . . . . . . . . . 17

2.2 Action Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Action Research in Software Engineering . . . . . . . . . . . . . . . 21

2.3 Grounded Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xvii



TABLE OF CONTENTS

2.3.1 Action Research and Grounded Theory Together . . . . . . . . . . . 24

2.4 Software Development Methodologies . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 History of Software Development Methodologies . . . . . . . . . . . 25

2.4.2 Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Extreme Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Software Development Methodologies in Robotics Competitions . . . . . . 30

2.5.1 Team Description Papers: What is Missing . . . . . . . . . . . . . . 32

2.6 Proactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Context 35
3.1 Common Technical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Asana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Trello . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3 Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.4 Python: Programming language of choice . . . . . . . . . . . . . . . 38

3.1.5 C/C++: Backup programming languages . . . . . . . . . . . . . . . . 39

3.1.6 ROS: Robotics framework/middleware . . . . . . . . . . . . . . . . . 39

3.1.7 NaoQi: Programming framework for the Pepper robot . . . . . . . . 40

3.1.8 Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Common Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Commonalities of the RoboCup@Home SSPL rulebooks . . . . . . . 41

3.2.2 Pepper robot as platform . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Rental of robots at RoboCup event . . . . . . . . . . . . . . . . . . . . 50

3.2.4 Deadline for the RoboCup event . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 Poor WIFI connection at RoboCup event . . . . . . . . . . . . . . . . 50

3.2.6 Poor audio quality at RoboCup event . . . . . . . . . . . . . . . . . . 51

4 Research Methods 53
4.1 Action Research over the RoboCup@Home SSPL project . . . . . . . . . . . 53

4.1.1 Action Research Cycles Structure . . . . . . . . . . . . . . . . . . . . 54

4.1.2 Common Topics of the RoboCup AR cycles . . . . . . . . . . . . . . . 55

4.1.3 Scope of Action Research . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Grounded Theory: Experts’ Feedback Analysis . . . . . . . . . . . . . . . . . 57

4.2.1 Action Research and Grounded Theory Together . . . . . . . . . . . 59

4.3 Statistical Data on Trello and Git . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Trello Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xviii



TABLE OF CONTENTS

4.3.2 Git Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 The Author’s Role In This Project . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 RoboCup@Home SSPL: Year 2017, 2nd place 63
5.1 Action Research Cycle Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Rule and Competition Changes . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Team Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Software Development Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 71

5.3.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Software Development Implementation . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 77

5.4.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Competition Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 84

5.5.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.4 Results: Competition Outcomes . . . . . . . . . . . . . . . . . . . . . 86

5.6 Post-Competition Data Collection and Retrospectives . . . . . . . . . . . . . 89

5.6.1 Statistical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.2 Team Retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.2 Answers to AR Cycle Questions . . . . . . . . . . . . . . . . . . . . . 102

5.7.3 New Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.4 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Possible Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 RoboCup@Home SSPL: Year 2018, 2nd place 109
6.1 Action Research Cycle Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Rule and Competition Changes . . . . . . . . . . . . . . . . . . . . . 112

6.2.2 Team Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xix



TABLE OF CONTENTS

6.3 Software Development Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 117

6.3.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Software Development Implementation . . . . . . . . . . . . . . . . . . . . . 121

6.4.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 127

6.4.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Competition Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 131

6.5.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 132

6.5.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.4 Results: Competition Outcomes . . . . . . . . . . . . . . . . . . . . . 134

6.6 Post-Competition Data Collection and Retrospectives . . . . . . . . . . . . . 137

6.6.1 Statistical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6.2 Team Retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.7 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.7.2 Answers to AR Cycle Questions . . . . . . . . . . . . . . . . . . . . . 153

6.7.3 New Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.7.4 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.8 Possible Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 RoboCup@Home SSPL: Year 2019, 1st place 161
7.1 Action Research Cycle Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2.1 Rule and Competition Changes . . . . . . . . . . . . . . . . . . . . . 163

7.2.2 Team Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Software Development Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 165

7.3.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 168

7.3.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4 Software Development Implementation . . . . . . . . . . . . . . . . . . . . . 172

7.4.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 172

7.4.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 174

xx



TABLE OF CONTENTS

7.4.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 Competition Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.5.1 Team Management Processes . . . . . . . . . . . . . . . . . . . . . . . 178

7.5.2 Team Software Development Processes . . . . . . . . . . . . . . . . . 179

7.5.3 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.5.4 Results: Competition Outcomes . . . . . . . . . . . . . . . . . . . . . 181

7.6 Post-Competition Data Collection and Retrospectives . . . . . . . . . . . . . 186

7.6.1 Statistical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.6.2 Team Retrospective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.7 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.7.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.7.2 Answers to AR Cycle Questions . . . . . . . . . . . . . . . . . . . . . 200

7.7.3 New Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.7.4 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.8 Possible Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8 Experts Insights and Validation 205
8.1 Grounded Theory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Expert Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.2.3 Workshop Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.3.1 Survey Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.3.2 Survey Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.3.4 Top 9 Teams Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8.4.1 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.4.2 Proposed Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

9 Conclusions and Future Work 285
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.1.1 Team Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

9.1.2 Technical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

xxi



TABLE OF CONTENTS

A Acronyms 301

B Team retrospectives 303
B.1 Retrospective 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

B.1.1 What worked well? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

B.1.2 What did not work well? . . . . . . . . . . . . . . . . . . . . . . . . . . 304

B.1.3 What should we do next? . . . . . . . . . . . . . . . . . . . . . . . . . 305

B.2 Retrospective 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

B.2.1 What worked well? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

B.2.2 What did not work well? . . . . . . . . . . . . . . . . . . . . . . . . . . 308

B.2.3 What should we do next? . . . . . . . . . . . . . . . . . . . . . . . . . 309

B.3 Retrospective 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

B.3.1 What worked well? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

B.3.2 What did not work well? . . . . . . . . . . . . . . . . . . . . . . . . . . 312

B.3.3 What should we do next? . . . . . . . . . . . . . . . . . . . . . . . . . 314

C Data Analysis Example 315
C.1 Question Q6.2-6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

C.1.1 Question’s Background . . . . . . . . . . . . . . . . . . . . . . . . . . 315

C.1.2 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

C.1.3 Analyzing Q6.2 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . 318

C.1.4 Analyzing Q6.3 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . 320

C.1.5 Final Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Bibliography 323

List of Figures 331

List of Tables 337

xxii



C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Motivation

Challenge projects help to drive human understanding and push the frontiers

of science, engineering, and technology. They focus the attention of researchers

on a specific hard problem, build resources, fuel innovation, and help to direct

critical mass and momentum; and, importantly, provide benchmarks for completely new

advances.

For many decades NASA, DARPA, and other organizations have used challenge

projects to advance their knowledge of science, engineering, and technology [1]. Well

known examples include the Apollo Missions, Moon Landing, Self-Driving Cars in desert

[2] and urban terrains [3], and more recently, robotics in disaster scenarios [4]. For

example, Thrun [5] described how in a year, from the first edition of the DARPA Grand

Challenge to the second in 2005, the participants went from having all their autonomous

cars stuck at the start of the race to five of them finishing the race driving autonomously

for 131 miles for 7 hours.

The RoboCup initiative, commencing in 1997, was inspired by the earlier challenge

projects to dramatically advance the field of robotics [6]. Over the ensuing 21 years

RoboCup has grown and the first challenge of robot soccer extended to include robot

rescue [7], robots in the home [8], and in the workplace [9].

RoboCup has had a dramatic impact on the field of robotics by providing bench-

mark challenges for roboticists used to measure scientific and engineering progress

1



CHAPTER 1. INTRODUCTION

[10]. RoboCup’s success and fast technological advancements show that the concept of

competition and science is effective and relevant [11].

One of the key problems in a field like robotics, that is constantly pushing the

boundaries, is the difficulty in demonstrating and evaluating advancements. The use

of benchmarks to measure progress is also found in many other areas, such as the use

of specific datasets, like ImageNet [12], in Computer Vision and Machine Learning

in particular. Benchmarking advancements in robotics is one of the most challenging

because it requires the development of fully operational robotic systems, as benchmarks

and advancements.

This dissertation develops and evaluates a set of guidelines for developing innovative

robotics systems able to perform well on robotics benchmark challenges, i.e. robotics

competitions. The case study is about the RoboCup@Home SSPL and includes feedback

from experts. This league has been designed to advance the emerging field of social

robotics.

The SSPL uses SoftBank’s ‘Pepper’ robot. All teams competing in this league are

restricted to using this platform, which is the current state-of-the-art social robot. The

SSPL is a robotics contest focused on deploying social robots in a home-like environment

and benchmarking their performance using a number of complex challenges. Hence,

preparing the Pepper robot for participating in the RoboCup@Home SSPL implies having

a robot ready for real life social robotics applications.

This dissertation analyzes the design, evolution, and performance of a RoboCup@Home

SSPL team over three years of competition (2017, 2018, and 2019), from the decision

making perspective of the software development process and its natural surrounding

factors. Furthermore, discussion and analysis with other experts in the field through

conversations, a workshop, and a survey ground this work.

1.2 Research Questions

This dissertation aims to answer the following research questions:

• How does a new RoboCup team successfully develop an effective software system

for the RoboCup@Home Social Standard Platform League?

• How does the approach of a single team relate to other teams?

• What are common insights to improve the development process and its outcomes?

2



1.3. RESEARCH OBJECTIVES

1.3 Research Objectives

The following objectives, which stem from the research questions, structure the disserta-

tion:

• To identify the available practices from software development methodologies to

improve robotics competitions’ software development processes.

• To design, evaluate, and iterate the software development methodology for the

three years of competition for our RoboCup@Home SSPL team.

• To gather insights from experts about the software development process for

RoboCup.

• To analyze, discuss, and compare the software development methodology followed

by UTS Unleashed! to the approach from other experts.

• To create a practical set of guidelines that improve the software development

experience and outcomes for robotics competitions.

1.4 Significance

This work will showcase a real example of the evolution of practices in regards to software

development in a distinctive context, a robotics competition case study over three years.

Furthermore, this work develops a set of novel guidelines to provide advice to teams

working in related situations, such as small teams working on technological challenges

or competitions that have team-based software development in their requirements.

The literature review in chapter 2 revealed that the application of software devel-

opment methodologies, such as Scrum or Extreme Programming, over different sized

teams of employees in business organizations, is well understood. However, case studies

on competitive teams lack representation. The few relevant publications are discussed in

chapter 2, but they neither follow a project with a span of multiple years nor engage in

obtaining the input of other experts in the same domain.

To the author’s knowledge, this work is the first longitudinal case study on a competi-

tive team participating during multiple years. Comprehensive advice or instructions for

competitors in robotics competitions is considered by the author as urgently needed to

advance the field, particularly social robotics. These competitors may use this guidance

to improve their processes and outcomes, hence, improving the profile and outcomes of

3



CHAPTER 1. INTRODUCTION

future researchers and professionals. Furthermore, this work may increase focus and

attention on the improvement of these processes for the benefit of all involved parties.

1.5 Scope and Limitations

This dissertation will focus on developing a successful software development methodology

and software stack for the UTS Unleashed! team during the three years of participation

in the RoboCup@Home SSPL competition with a qualitative scope. Further aims are:

to achieve the best possible outcomes, including winning the competition; the well-

being, experience, and learning of the team members; and the research outputs from

participation in the competition.

A workshop and survey on software development methodologies for RoboCup were

held to improve the methodology and give back to the robotics community. The results

from these will be discussed within the results of UTS Unleashed! team’s three-year

journey. The author will create a set of guidelines, meaningful immediately for the

RoboCup community, based on both.

This dissertation will not delve into the management of individuals or specific micro-

management practices unless it is noted as an essential part of the analysis of the

trajectory of the team. This dissertation will attempt to look from a higher-level per-

spective that focuses on the critical aspects that most influence team learning and

performance.

While the author developed formal contributions during his PhD, as noted in the

publication list, such theory is beyond the scope of this work.

1.6 Epistemology / Theoretical basis

Action Research will be used as the research methodology for exploring the three years

of leading the software development for the UTS Unleashed! team. Grounded Theory

will be used to analyze the information and feedback from experts in the field.

The characteristics of these methods are explained briefly in the Literature Review

(chapter 2) and then discussed further throughout this dissertation in the Research

Methods chapter (chapter 4).

4



C
H

A
P

T
E

R

2
LITERATURE REVIEW

This chapter provides a literature review to establish the background behind the con-

text and methodology of this dissertation. Furthermore, it reviews software development

methodologies to showcase the research gap in relation to methodologies for robotics

competitions.

This chapter begins by explaining the RoboCup event and, more closely, RoboCup@Home

Social Standard Platform League (SSPL) as it is the focus of this work. The chapter

continues with a review of Action Research (AR) and Grounded Theory (GT), the two

methodologies used in this dissertation. The history of Software Development Methodolo-

gies (SDMs) and a note on the concept of proactivity in regards to software development

follows. Subsequently, related works are discussed. Moreover, a review of the closest

works to this research is presented and discussed. Finally, the background context for

the rest of the dissertation is explained.

2.1 RoboCup

RoboCup, a contraction of ‘Robot Soccer World Cup’, is an annual international robotics

competition founded in 1996. It was launched as “an attempt to foster AI and intelligent

robotics research by providing a standard problem where a wide range of technologies

can be integrated and examined” [13].

RoboCup was born differentiating itself from the previous AAAI Mobile Robot Com-

petition and Exhibition, “the oldest AI-centric robotics competition in the world” [14],

5



CHAPTER 2. LITERATURE REVIEW

by focusing on a task for a team of fast-moving robots under a dynamic environment

instead of a single slow-moving robot. The RoboCup federation states the ultimate goal

of this event to be that “by the middle of the 21st century, a team of fully autonomous

humanoid robot soccer players shall win a soccer game, complying with the official rules

of FIFA, against the winner of the most recent World Cup” [15].

Visser and Burkhard [11] explained how RoboCup, combining competition and science,

is a successful, effective, and relevant platform for researchers. Furthermore, Maurice

Pagnucco, Head of the School of Computer Science and Engineering at the University of

New South Wales suggests that “Competition pushes advances in technologies. What we

learn from robots playing soccer or navigating a maze can be applied to industry and help

us solve difficult real-world problems” [16]. Additionally, Ferrein and Steinbauer [10]

argue that besides technical skills, such as programming robots, students participating in

RoboCup acquire other important skills like: interdisciplinary work to run and maintain

a team, organizational skills, deadline-driven work, team-driven development, and

community building.

Prior to RoboCup, the AAAI Mobile Robot Competition and Exhibition, had similar

comments on the relevance of AI-centric robotics competitions. For example, Sebastian

Thrun said “our tour-guide work was clearly strongly motivated by similar tasks in the

mobile robot competition –in fact, without the competition, we would never have had the

resources to do the museum tour-guide work” [14]. RoboCup not only helps to directly

advance science in itself but also creates unforeseen opportunities for innovation.

RoboCup has been driving research results since its creation. One can find about

39,900 results on Google Scholar with the keyword ‘RoboCup’ on diverse topics, including:

reinforcement learning, autonomous agents research, Simultaneous Localization And

Mapping (SLAM), physical simulation, reasoning, and computer vision.

The event has grown significantly, with additional competitions having been added

to the RoboCup event over the years. The contest currently has six major leagues, each

with their own sub-leagues:

1. RoboCup Soccer, where teams of robots play soccer.

• Standard Platform League, formerly known as Four Legged League when

the robot dog Aibo was used, now using the 58cm tall Nao humanoid robot.

• Small Size League, wheeled robots are used of up to 18cm of diameter and

15cm of height.

6



2.1. ROBOCUP

• Middle Size League, wheeled robots are used of up to 52cm * 52cm * 80cm

of size and up to 40kg.

• Simulation League: 2D Soccer Simulation, 3D Soccer Simulation based on

simulated environments.

• Humanoid League, non standard humanoid robots of three sizes: KidSize

(40-90cm height), TeenSize (80-140cm) and AdultSize (130-180cm) are used

to play soccer.

2. RoboCup Rescue League, which debuted in 2001, where participants face chal-

lenges involved in search and rescue applications.

• Rescue Robot League, using real robots.

• Rescue Simulation League, on a simulated environment.

• Rapidly Manufactured Robot Challenge, where low cost, rapidly man-

ufacturable small robots and robotic components that enable responders to

more safely and effectively perform hazardous mission tasks are developed.

3. RoboCup@Home, which debuted in 2006, aims to develop service and assistive

robot technology with high relevance for future personal domestic applications.

• RoboCup@Home Open Platform League, formerly just RoboCup@Home,

which accepts any robot that follows the rulebook specifications.

• Robocup@Home Domestic Standard Platform League, using the Toy-

ota HSR robot as standard platform.

• RoboCup@Home Social Standard Platform League, using SoftBank’s

Pepper robot as standard platform.

4. RoboCup Logistics League, which debuted in 2012, is an application-driven

league inspired by the industrial scenario of a smart factory.

5. RoboCup@Work which debuted in 2016, which targets the use of robots in work-

related scenarios.

6. RoboCupJunior, which debuted as a league in 2000, contains leagues for students

up to 19 years old to participate in.

• Soccer League, similar to Small Size League.

7



CHAPTER 2. LITERATURE REVIEW

• OnStage League, formerly Dance League, where teams of students are

challenged to design, build and program a robot or robots to perform in

musical and theatrical presentations.

• Rescue League, similar to the Rescue Robot League.

2.1.1 RoboCup@Home

The founders and active members of the competition define RoboCup@Home as:

“RoboCup@Home is a competition where domestic and service robots perform

several tasks in a home environment, interacting with people and with the

environment in a natural way. Natural interaction means that a robot is

expected to interact with the environment and with other people, as any

person would do. So natural forms of human-robot interaction include speech

and gestures, but not joysticks or keyboards.

During the competition, the teams are required to perform several tests.

Since their total score is the sum of the scores obtained in each test. Each

test requires a combination of different functionalities (including navigation,

object perception and manipulation, person detection, and tracking, etc.) and

the score is related to the accomplishment of the task.

RoboCup@Home started in 2006, and its main characteristic is that it changes

tests every year while maintaining the same basic functionalities. ” [17]

RoboCup@Home is a great background initiative for research, as can be observed by

the over 10,000 results on academic search engines searching for the keywords similar to

“RoboCup@Home”, highlighting the amount of research done in reference to it. Further

reasons to be interested in this competition will be discussed in chapter 8.

The RoboCup@Home competition runs over a 6 days period, with 1.5 days of setup,

in a test arena similar to a home environment. Some tests are also executed in real

environments like restaurants or shopping malls. The exact distribution of the arena is

not announced beforehand so teams need to use the setup days to prepare. Furthermore,

the real environments to be used are only announced hours before the competition.

Holz, Iocchi and Van der Zant [18] state that good results are obtained only when a

complete system, implementing all the desired abilities, is successfully demonstrated

during the competition. Furthermore, they state that by requiring teams to participate

in many different tests, the development of general solutions is forced as hacking specific

8



2.1. ROBOCUP

solutions for many different problems would be ineffective. The competition tries to

enforce general solutions and reward them. The goals of competing teams may or may

not align with this vision as the balance between achieving research outputs and a good

competition score is hard to maintain as we will see throughout this work.

The rulebook spans over 100 pages, including descriptions of the philosophy of the

competition, scenarios, tests, and scoring systems. To avoid reading the whole rulebook

and still provide a reasonable understanding of how the competition works, an exam-

ple of a RoboCup@Home Social Standard Platform League (SSPL) test is shown and

commented here.

2.1.1.1 Rulebook Test Example: Cocktail Party

The description and scoring for the test “Cocktail Party” from the rulebook of 2018

[19], used in Montreal, Canada is shown in the following pages. Afterwards, a detailed

description of how the test looks and what it involves is provided. 1

1For an even better understanding the reader can watch a video hosted on YouTube. A run of the
cocktail party test of UTS Unleashed! team in RoboCup 2017 in Nagoya, Japan, with partial subtitles is
showcased.

9

https://youtube.com/video/0bvCyXi7c1Q


52 5.1 Cocktail Party [SSPL only]

5.1. Cocktail Party [SSPL only]

The robot has to learn and recognize previously unknown people, and fetch orders.

5.1.1. Focus

This test focuses on human detection and recognition, safe navigation and human-robot inter-
action with unknown people.

5.1.2. Setup

• Party room: any (large) room inside the apartment when normally a party would be
held.

• Guests: At least five people are distributed in a predefined party room either sitting or
standing. Three of the guests have drink orders.

• Bar: The bar is any flat surface where objects can be placed, in a room other than the
party room. All available beverages are on top of the bar.

• Bartender: The Bartender may be standing either behind the bar or next to it, depending
on the arena setup.

5.1.3. Task

1. Entering: The robot enters the arena and navigates to the party room.
2. Getting called: The standing guests with an order call the robot simultaneously, either

rising an arm, waving, or shouting. The robot has to approach one of them. Optionally,
the robot can skip the call detection and ask for a person to step in front of it (the referees
determine who approaches to the robot).
The calling person introduces themself by name before giving the order of a drink. The
robot asks for the person’s name and obtains their drink order.

3. Taking the order: After the robot has taken the order of the first guest, it can either
take more orders or proceed to place the order.

4. Placing the orders: The robot has to navigate to the Bar. The robot must repeat each
order to the Bartender, clearly stating:

4.1. The person’s name
4.2. The person’s chosen drink
4.3. A description of unique characteristics of that person that allow the Bartender to

find them (e.g. gender, hair colour, how they are dressed, etc)

While the robot places the orders, the people in the party room change their places within
the party room (on request of the referees).

5. Missing beverage: One of the ordered drinks is not available and therefore missing from
the bar. The robot should realize this inconvenience and tell the Bartender, providing
a list of 3 viable alternatives. If the robot cannot detect which drink is missing, the
Bartender can be asked to state which of the beverages is not available and provide a list
of 3 alternatives.

RoboCup@Home Rulebook / Final version for RoboCup 2018 (Revision 2018-06-04 811)

CHAPTER 2. LITERATURE REVIEW

10



Chapter 5. Tests in Stage I 53

6. Correcting an order: The robot should navigate back to the party room, find the person
whose drink is missing and provide the alternatives for them to choose from.

If the robot returns to find a person and the person is not there, it should call that person
loudly and the person should respond (either through sound or by waving their hand).
The robot should go to the person who is speaking and waving their hand to check their
identity.

7. Placing the corrected order: The robot should navigate to the bar and inform the
bartender of the change to the guest’s order.

5.1.4. Additional rules and remarks

1. Repeating names: The robot may ask to repeat the name if it has not understood it.
2. Misunderstood names: If the robot misunderstands the name, the understood (wrong)

name is used in the remainder of this test.
3. Misunderstood order: If the robot does not understand the order, it can continue with

an own assignment of drinks to people or with a wrong, misunderstood assignment.
4. Approaching non-people: If the robot approaches a person that is not calling and asks

for an order, the person indicates that they does not want to order anything. No points can
be scored for understanding names or orders, or for grasping or delivery for a non-calling
person.

5. Guest description: The guest’s description must be unique inside the scenario. For
instance, it make no sense to state that a person is wearing a red T-shirt if two people
are wearing them. In the same sense, stating that the ordering guest is tall can lead to
confusion, but stating that is the tallest does not.

6. Changing places: After giving the order (when the robot is not in the party room), the
referees may re-arrange the people including their body posture. That is, a sitting person
may change to a standing posture and vice versa.

7. Positions and orientations: All test participants roughly stay where they are (if not
asked to move by the referees), but they are allowed to move in certain limits (e.g. turn
around, make a step aside). They do not need to look at the robot, but are requested to
do so, when instructed by the robot.

8. Empty arena: During the test, only the robot, the guest, and the Bartender are in the
arena. The door opener, the referees and other personnel that is not assigned as test
people will be outside the scenario.

9. Calling instruction: The team needs to specify before the test which ways of getting
the attention of the robot are allowed for standing persons. This can be waving, calling,
or both of them. The robot can also decide to skip this part, by asking for people to get
close to it.

10. Sitting persons: Sitting persons might have an order but are not actively calling the
robot.

5.1.5. Referee instructions

The referees need to

RoboCup@Home Rulebook / Final version for RoboCup 2018 (Revision 2018-06-04 811)

2.1. ROBOCUP

11



54 5.1 Cocktail Party [SSPL only]

• Select at least 5 volunteers and assign names from the list of person names (see Sec-
tion 3.3.8)

• Arrange (and re-arrange) people in the textitparty room. At least one is sitting
• Assign orders to two standing persons
• Assign an order to a sitting person
• Select the person (bartender) who will serve the drinks
• Place drinks at the bar while one drink is missing
• In case the robot skips the calling detection, select the ordering person to approach the

robot
• Write down the understood names and drinks during an order and update the order ac-

cordingly

5.1.6. OC instructions

2h before test:

• Specify and announce the rooms where the test takes place
• Specify and announce the location where the drinks are served (i.e. bar location)

RoboCup@Home Rulebook / Final version for RoboCup 2018 (Revision 2018-06-04 811)

CHAPTER 2. LITERATURE REVIEW

12



Chapter 5. Tests in Stage I 55

5.1.7. Score sheet

The maximum time for this test is 5 minutes.

Action Score

Taking the orders
Detecting calling person 2 × 15
Finding sitting & distracted person 30
Understanding and repeating the correct person’s name 3 × 5
Understanding and repeating the correct drink’s name 3 × 5

Placing orders
Repeat the correct name & drink to the Barman 3 × 5
Provide an accurate description of the guest to the Barman 3 × 30

Missing beverage
Realize the missing drink 20
Provide 3 available alternatives to the Barman 20
Understanding and repeating the alternatives to the Barman 5

Correcting the order
Find the guest without calling them 20
Find the guest by calling them 10
Repeat the correct list of alternate drinks to the guest 5
Understanding and repeating the corrected order 5
Place the corrected order 5

Penalties
Talk to something that is not a human -1 × 20

Special penalties & standard bonuses
Not attending (see sec. 3.10.1) -50
Outstanding performance (see sec. 3.10.3) 27

Total score (excluding penalties and bonuses) 270

RoboCup@Home Rulebook / Final version for RoboCup 2018 (Revision 2018-06-04 811)

2.1. ROBOCUP

13



CHAPTER 2. LITERATURE REVIEW

The test is described first by the typical flow of the challenge, then additional infor-

mation about how it is scored is provided, and finally, how strategic decisions may be

made by teams in order to achieve the best results are showcased.

The test is about the robot taking care of drink orders of attendees of a party in the

living room. The test starts with the robot outside of the arena, which is shaped as an

apartment, in front of the main door. The robot must wait for the door to open which is

the signal that starts the five minute timer for the test. When a referee opens the door,

the robot must navigate autonomously and safely to the living room. The robot has a

previously built map of the arena in its system, usually constructed by the team during

the setup days, with rooms and key elements tagged in it in order to navigate to them.

Once the robot reaches the living room, the people in the party, distributed randomly

around the room and with some of them sitting and others standing, start grabbing the

attention of the robot by calling it using their voice and with waving gestures. By this

point any team would be at the one minute mark into the test. Then the robot detects a

calling person (either via sound source localization or visual recognition of gestures, or a

combination of both) and approaches them, making it clear who they detected calling.

Here, the robot is navigating towards the calling person in a crowded area with

the possibility of the furniture having moved as guests are using it, especially in the

case of chairs, so safe navigation is important. Once the robot arrives and confirms the

person did call it, it asks for the person’s name, making it clear it understood correctly by

repeating the name and then asks for the drink this person wants, and it confirms in the

same way. The robot will memorize how the person looks, as it is expected to provide an

accurate description of the guest to the barman, and to bring the drink back to the same

person, noting that this person may not be in the same place when the robot returns

with the order.

At this point, the robot could either go to the barman in another room to get the

order, or try to get another attendant of the party to provide the order. Both approaches

are valid but have different implications in scoring, timing, and risks associated with

something going wrong.

In the competition in 2018, no team got to the point of getting to the barman, let

alone returning to the guests within the five minutes of the total time available for this

test. This showcases the spirit of the competition where the tests are complex to master

and a variety of approaches are possible.

Analyzing the test with the focus on scoring, we note that navigating to the living

room as fast as possible implies having more time later on to perform the rest of the

14



2.1. ROBOCUP

tasks that actually score points, as this is just a requirement to get started and it does

not score. If the robot was to collide with something while navigating to the living room,

the test would be aborted and the team would score 0 for this run of the test.

Furthermore, when the robot detects a calling person, the team will be awarded 15

points if it is clear it detected the correct person calling. If the robot talks to something

that is not human, for example, by navigating to the wrong place, facing the wrong

direction, or having a false detection, a penalty of −20 points is applied. Moreover, when

the robot arrives in front of the calling person, it must confirm that this person did

indeed call it, because otherwise the robot would be losing time by interacting with the

wrong guest.

Additionally, when asking for the person’s name and drink, both need to be confirmed

to make clear they were correctly understood by the robot so the referee can award 5

points for each of them.

The teams can engage in different strategies in order to ensure robust scoring, e.g.

make sure the team scores over 0, or aiming for higher scoring with riskier strategies.

These strategies depend on the robot skills that the team perceive as being more robust.

For example, time is passing as the robot scans the room for a calling guest so UTS

Unleashed! took care in choosing an optimal placement in the living room to navigate to

and commence scanning for calling guests. This placement would minimize the need of

the robot to navigate again to find guests and maximize the amount of guests it could

potentially see without moving.

Furthermore, once a guest has been found and their name and drink has been taken,

the robot must ensure they can recognize them again and describe them to the barman.

An example approach for this is to use face recognition technologies to ensure who the

person is while also memorizing how this person is clothed. This would help finding them

from far away, as face recognition may not perform satisfactorily if the faces found in the

image are too little. In the case of UTS Unleashed!, this strategy is used. This strategy,

however, takes some time as it implies asking the person to stand in front of the robot to

robustly learn the color of its clothing by looking at them closely. This can take up to two

and a half minutes of the total five minutes allowed for this test.

Subsequently, after having taken the order from one guest, the team must decide

what the robot should do next. If the team decides to program the robot to go to the

barman, autonomous navigation to another room must be performed, potentially taking

longer than approaching a new guest in the same room. Telling the barman the order of

one guest would provide 5 points with additional 30 points for an accurate description

15



CHAPTER 2. LITERATURE REVIEW

of the guest. However, if the robot was to detect a new guest first instead, providing 15

points, and understand its name, 5 points, and a drink, another 5 points, then it would

score a further 25 points. Additionally, it would be able to provide the barman two orders

potentially doubling the score at that point. Which strategy to use could be based on the

time remaining for the test, which the robot could keep track of and decide dynamically

what to do based on that. Or, the team could hardcode it based on the belief of which

robot skills are more likely to perform satisfactorily.

2.1.2 RoboCup@Home Social Standard Platform League

The author of this dissertation and its team participated in one of the three leagues

found in RoboCup@Home, namely the Social Standard Platform League. As the name

suggests, this league uses a standard platform and tries to emphasize the social aspects

of domestic robots. The league was established in 2017 with its first edition in Nagoya,

Japan, and has been running since then. This thesis follows the editions of the years

2017, 2018, and 2019.

In the editions 2017 and 2018, this league had specific tests adapted to be solved by

a social platform, the Pepper robot, i.e., making use of Human Robot Interaction (HRI)

for some tasks. An example would be manipulation, as robots are expected to pick up

objects, but this is challenging for this league’s standard platform as the robot was not

designed for this practice.

2.1.2.1 Pepper robot

All competitors in the RoboCup@Home SSPL league are mandated to use the ‘Pepper’

robot manufactured by Softbank robotics. This provides an even playing field and poten-

tial for collaboration, where teams must differentiate based on software rather than the

hardware that they can buy or assemble. Softbank robotics describes their ‘Pepper’ robot

[20] as follows [21]:

“Pepper is the world’s first social humanoid robot able to recognize faces and

basic human emotions. Pepper was optimized for human interaction and is

able to engage with people through conversation and his touch screen. ”

16



2.1. ROBOCUP

Figure 2.1: Brochure of the Pepper robot by SoftBank Robotics.

2.1.3 UTS Unleashed! RoboCup Project

The University of Technology Sydney (UTS) created the UTS Unleashed! RoboCup@Home

SSPL team to engage in making safe and intelligent artificial intelligence for social robots

a reality, to make significant scientific contributions in artificial intelligence and social

robotics, to build national capability in these fields, and to provide transformational

leadership opportunities and transdisciplinary learning experiences for UTS students in

a practical manner [22].

The project was set to last three years, including the editions of 2017, 2018, and 2019

of the RoboCup event. The team was part of the Innovation and Enterprise Research

Laboratory (The Magic Lab), established in 2002. Its laboratory members focused its

interests on disruptive technologies (including social robotics), data science, explainable

artificial intelligence, artificial intelligence policy, strategic innovation, entrepreneurship,

and design thinking, in between other fields [23]. Researchers in the lab have competed

at RoboCup since 2002.

17



CHAPTER 2. LITERATURE REVIEW

2.2 Action Research

The research methodology known as Action Research (AR) is used in this thesis to

investigate the process of software development for a robotics competition. Checkland and

Holwell [24] offer a careful definition and discussion of AR, which is briefly summarized

below.

Figure 2.2: Model of Action Research from from Margaret Riel [25]

On a high-level view, cycles of Action Research can be understood as seen in Figure 2.2.

The process starts with a specific theme of interest where we research and plan a strategy.

Then we take action on it while collecting and analyzing evidence. At the end of the cycle,

we reflect on the knowledge found. From this knowledge, we start another cycle where

we repeat the steps for as many iterations as possible, depending on our resources.

18



2.2. ACTION RESEARCH

Figure 2.3: The hypothesis-testing research process of natural science, from [24].

To understand a specific action research cycle, we start with Figure 2.3. This fig-

ure represents the usual hypothesis-testing research process of natural science. The

researcher starts with a hypothesis about an area of concern. The researcher designs a

test so to obtain repeatable results to confirm its hypothesis and, from there, produces

new knowledge or new hypothesis.

As Figure 2.4 shows (and paraphrasing Checkland and Holwell [24]), particular

linked ideas F2 are used in a methodology M to investigate an area of interest A, we

define:

• F: Framework of ideas: The specific ideas used in every cycle related to the method-

ology to follow.

• M: Methodology to follow: The practices used to work on the framework of ideas.

• A: Area of concern: The topic that surrounds our framework of ideas and the

methodology we follow.

It is important to note that using the methodology will teach us about our area of

concern A and also about the suitableness of our ideas F and the methodology itself M.

Also it is relevant that F, M and A are susceptible to change during the research.
2Not marked in the original image in Figure 2.4 as F.

19



CHAPTER 2. LITERATURE REVIEW

Figure 2.4: Elements relevant to any piece of research, from Checkland and Holwell [24].

Figure 2.5: The cycle of action research in human situations, from [24].

Having defined F, M, and A we can explore what a cycle of AR looks like. As shown

20



2.3. GROUNDED THEORY

in Figure 2.5, the researcher interested in particular themes (declaring F and M) enters

the “social practice” of a relevant real-world situation and becomes involved both as a

researcher and a participant. During and at the end of the cycle the researcher reflects

on F and M leading to findings that will evolve the research themes and improve F and

M.

2.2.1 Action Research in Software Engineering

This thesis was not the first case of using Action Research in software engineering,

Staron [26] presents in detail the usage of Action Research in this scenario with multiple

examples. Furthermore, Dos Santos and Travassos [27] also use Action Research and

comment on its applicability for software engineering.

2.3 Grounded Theory

Charmaz [28] states that Grounded Theory (GT) methods are a logically consistent set

of data collection and analytic procedures aimed to develop theory. Grounded Theory

methods provide systematic procedures for shaping and handling rich qualitative mate-

rials, although they may also be applied to quantitative data. Charmaz states that the

distinguishing characteristics of Grounded Theory methods include the following:

1. Simultaneous involvement in data collection and analysis phases of research.

2. Creation of analytic codes and categories developed from data, not from precon-

ceived hypotheses.

3. The development of middle-range theories to explain behavior and processes.

4. Memo-making, as writing analytic notes to explicate and fill out categories, the

crucial intermediate step between coding data and writing first drafts of papers.

5. Theoretical sampling, as sampling for theory construction, not for representative-

ness of a given population, to check and refine the analyst’s emerging conceptual

categories.

6. Delay of the literature review.

According to Kathy Charmaz [29], Grounded Theory is defined as a general methodol-

ogy with systematic guidelines for gathering and analyzing data to generate intermediate

21



CHAPTER 2. LITERATURE REVIEW

theory. The name grounded theory refers to the premise that researchers can and should

develop theory from a rigorous analysis of empirical data. The analytic process consists

of coding data, developing, checking, and integrating theoretical categories; and writ-

ing analytic narratives throughout inquiry. Glaser and Strauss [30], the originators of

grounded theory, first proposed that researchers should engage in simultaneous data

collection and analysis, which has become a routine practice in qualitative research.

From the beginning of the research process, the researcher codes the data, compares

data and codes, and identifies analytic leads and tentative categories to develop through

further data collection. A grounded theory of a studied topic starts with concrete data

and ends with rendering them in an explanatory theory.

Figure 2.6: Research design framework summary from “Grounded theory research: A
design framework for novice researchers” [31]. Shows the interplay between the essential
grounded theory methods and processes.

22



2.3. GROUNDED THEORY

Chun Tie, Birks, and Francis [31] state that a Grounded Theory (GT) research study

is not linear; it is iterative and recursive, and that it follows the summarized steps below.

The reader may use Figure 2.6 to follow up the explanations.

Purposive sampling: initial purposive sampling directs the collection and/or gener-

ation of data. Researchers purposively select participants and/or data sources that can

answer the research question [30] [32] [33] [34]. Concurrent data generation and/or data

collection and analysis is fundamental to GT research design. The researcher collects,

codes, and analyzes this initial data before further data collection and generation is

undertaken. Purposeful sampling provides the initial data that the researcher analyzes

[31].

Constant comparative analysis: Constant comparative analysis is an analytical

process used in GT for coding and category development. This process commences with

the first data generated or collected and pervades the research process. Incidents are

identified in the data and coded [35].

Memoing: Memo writing is an analytic process considered essential in ensuring

quality in grounded theory [35]. Memos are the storehouse of ideas generated and

documented through interacting with data [36]. Thus, memos are reflective interpretive

pieces that build a historical audit trail to document ideas, events, and the thought

processes inherent in the research process and developing thinking of the analyst [35].

Generating/Collecting data: A hallmark of GT is concurrent data generation/col-

lection and analysis [31]. While interviews are a common method of generating data,

data sources can include focus groups, questionnaires, surveys, transcripts, letters, gov-

ernment reports, documents, grey literature, music, artifacts, videos, blogs, and memos

[37].

Coding: Coding is an analytical process used to identify concepts, similarities, and

conceptual reoccurrences in data. Coding is the pivotal link between collecting or generat-

ing data and developing a theory that explains the data. In GT, coding can be categorized

into iterative phases. For example, constructivist grounded theorists refer to initial,

focused, and theoretical coding [37].

Initial coding: Initial coding of data is the preliminary step in GT data analysis

[35] [37]. The purpose of initial coding is to start the process of fracturing the data to

compare incident to incident and to look for similarities and differences in beginning

patterns in the data. Important words or groups of words are identified and labeled. In

GT, codes identify social and psychological processes and actions as opposed to themes

[31]. Charmaz [33] emphasizes keeping codes as similar to the data as possible and

23



CHAPTER 2. LITERATURE REVIEW

advocates embedding actions in the codes in an iterative coding process. During initial

coding, it is important to ask ‘what is this data a study of ’ [38]. ‘What does the data

assume, suggest or pronounce’ and ‘from whose point of view’ does this data come, ‘whom

does it represent or whose thoughts are they?’. ‘What collectively might it represent?’ [33].

The process of documenting reactions, emotions, and related actions enables researchers

to explore, challenge, and intensify their sensitivity to the data [39].

Theoretical sampling: The purpose of theoretical sampling is to allow the re-

searcher to follow leads in the data by sampling new participants or material that

provides relevant information [31]. As depicted in Figure 2.6, theoretical sampling is cen-

tral to GT design, aids the evolving theory [30] [32] [33] and ensures the final developed

theory is grounded in the data [37]. Birks and Mills [35] define theoretical sampling as

the process of identifying and pursuing clues that arise during analysis in a grounded

theory study.

Intermediate coding: Intermediate coding, identifying a core category, theoretical

data saturation, constant comparative analysis, theoretical sensitivity and memoing

occur in the next phase of the GT process [35]. Intermediate coding builds on the initial

coding phase. Where initial coding fractures the data, intermediate coding begins to

transform basic data into more abstract concepts allowing the theory to emerge from the

data [31].

Advanced coding: Birks and Mills [35] described advanced coding as the techniques

used to facilitate the integration of the final grounded theory. These authors promote

storyline technique and theoretical coding as strategies for advancing analysis and

theoretical integration [31]. Storyline is a tool that can be used for theoretical integration.

Birks and Mills [35] define storyline as a strategy for facilitating integration, construction,

formulation, and presentation of research findings through the production of a coherent

grounded theory. This procedure builds a story that connects the categories and produces

a discursive set of theoretical propositions [36].

Theoretical sensitivity: is the ability to know when you identify a data segment

that is important to your theory [30]. Conducting GT research requires a balance between

keeping an open mind and the ability to identify elements of theoretical significance

during data generation and/or collection and data analysis [35].

2.3.1 Action Research and Grounded Theory Together

Relevant for our methodology explained in chapter 4, there are similarities and differ-

ences between the Action Research (AR) and GT methodologies. However, they can be

24



2.4. SOFTWARE DEVELOPMENT METHODOLOGIES

used together. Dick [40] comments on some of the differences and similarities. For exam-

ple, GT tends not to be participative; the action tends to be someone else’s responsibility,

while AR tends to be participative. Furthermore, Dick points to some similarities, as both

AR and GT are emergent, and the understanding and the research process are shaped

incrementally through an iterative process. Moreover, data analysis, interpretation, and

theory-building occur simultaneously as data collection.

Moreover, Dick [40] proposes using them together, showing that elements of action

research can be embedded in a grounded theory study, with Lingard, Albert, and Levinson

[41] and Abdel-Fattah [42] sharing this concept.

Finally, Staron [26] agrees explaining that other research methodologies can be

combined with Action Research.

2.4 Software Development Methodologies

A Software Development Methodology (SDM) in software engineering is a framework

that is used to structure, plan, and control the process of developing an information

system. We can find similar definitions on the web with the term being used in about

17,000 publications, as found in academic search engines like Google Scholar.

2.4.1 History of Software Development Methodologies

Based on Larman and Basili’s work [43], a brief history of SDMs is presented here.

By the late 1950s, structured programming appeared with ALGOL 58 and ALGOL

60 programming languages, improving development time, clarity, and quality by making

extensive use of block structures, subroutines, and loops [44]. Subsequently, around the

decades of 1960 to 1970, depending on the source, the Waterfall model [45] arose charac-

terized by a sequential (non-iterative) process which flows downwards through its phases,

moving from phase to phase only when the previous phase is reviewed and verified. In

the 1970s, “Top-Down Programming in Large Systems” [46] appeared promoting iterative

and incremental development. Following, in the early 1980s, the concept of evolutionary

prototyping was discussed and applied [47], consisting of creating prototypes of software

applications for users to evaluate the design and revise to enhance the prototype. In

the late 1980s, the Spiral model [48], a risk-driven process model generator for software

projects, was described. Then, the V model appeared as an extension of the waterfall

model where the process phases are repeated upwards to form a V shape [49].

25



CHAPTER 2. LITERATURE REVIEW

At this point, an end of an era of predictive approaches is reached, and a new era of

adaptive approaches starts. By the 1990s, Rapid Application Development (RAD) was

defined, showcasing less emphasis on planning and more on process, adaptability, and

the necessity to adjust requirements [50]. During the 1990s and 2000s, Agile methods

rise implementing adaptive planning, evolutionary development, early delivery, and

continuous improvement while encouraging rapid and flexible response to change [51].

In 1995 the Dynamic Systems Development Method appeared, stemming from RAD, with

core techniques like time boxing, MoSCoW prioritization3, prototyping, testing, work-

shops, modeling, configuration management, and characteristics like being iterative and

incremental, being architecture-centric, and risk-focused [52]. Scrum appears in 1995,

enabling teams to self-organize by encouraging physical face-to-face communication and

collaboration of all team members [53]. Further Agile methodologies appear in 1996 like

Crystal [54], a lightweight and adaptable approach with a specific custom set of policies,

practices, and processes based on unique characteristics of the team and the project; and

Extreme Programming (XP), which advocates for frequent releases in short development

cycles, introducing checkpoints for requirements adoption [55]. In 1999 Feature-Driven

Development appears to deliver tangible and working software repeatedly in a time

[56]. Moreover, in 2001 the Agile manifesto [57] was published as seventeen software

developers met to discuss lightweight development methods and wrote it. From there,

in the 2000s Agile Unified Process appeared applying agile techniques, including test-

driven development (TDD), agile modeling, agile change management, and database

refactoring to improve productivity [58]. Moreover, Disciplined Agile Delivery was born

in the late 2000s and first described in 2012, a process decision framework that enables

simplified process decisions around incremental and iterative solution delivery [59]. Fur-

thermore, in the 2010s, Large-Scale Scrum (LeSS) is described as to deal with the usage

of Scrum in multi-team large-scale development [60]. Following the same trend, Scaled

Agile Framework (SAFe) appears consisting of a framework with a knowledge-base of

integrated patterns intended for enterprise-scale Lean-Agile development [61].

Additionally, the Agile umbrella of methodologies covers lightweight approaches

like: Lean software development [62], Kanban [63], Continuous Integration (CI) [64],

Continuous Delivery (CD) [65], Test Driven Development (TDD) [66], and Crystal Clear

[67]. Moreover, on multi-team approaches it covers approaches like: Scrum-of-Scrums

[68], and Scrum at Scale (Scrum@Scale) [69].

In summary, SDMs have been evolving into a more agile style to deal with constantly

3MoSCow stands for prioritization by Must have, Should have, Could have, and Won’t have (this time).

26



2.4. SOFTWARE DEVELOPMENT METHODOLOGIES

changing requirements. Decades of experience in software development brought to the

so-called Agile manifesto [57], which we reproduce here as to understand it further:

“We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more.”

Furthermore, from the manifesto, its 12 principles:

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity–the art of maximizing the amount of work not done–is essential.

27



CHAPTER 2. LITERATURE REVIEW

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

The spirit of these principles is important for this dissertation. They will be discussed

further in the context of the project, however, applying them requires some adaptation

or reinterpretation.

Understanding what Scrum and Extreme Programming are about helps in under-

standing this dissertation; hence, they are described below.

2.4.2 Scrum

Scrum is a framework used in software development for project management, emphasiz-

ing teamwork, accountability, and iterative progress towards defined goals. Variations of

Scrum exist, and every team adapts the framework for their needs. Schwaber and Beedle

[70] describe Scrum as follows.

A Scrum team is usually composed of five to nine people. There are two key figures:

the product owner, which represents users, customers or other stakeholders, and the

Scrum master, which takes care of managing the Scrum process to make the team

as productive as possible. These can be members of the team or external. There is a

product backlog, which is a prioritized list of features to develop and a sprint backlog that

contains the list of tasks to be completed in a sprint. During sprint planning meetings,

which happen at the start of every sprint cycle, the product owner proposes the next

items to work from the product backlog, and the team selects the items they can complete

in that sprint. Then, these items are moved to the sprint backlog to be worked on. Every

day during the sprint cycle, a daily Scrum meeting is held; this is a brief meeting where

every member sets the context for that day. All teams are expected to attend, and it is

usual to hold these as stand-up meetings as it helps to keep the meetings short. At the

end of each sprint, a review meeting is held where the team demonstrates the completed

functionality and what was accomplished during the sprint. A sprint retrospective is also

held at the end of the cycle, and it is used to reflect on how well Scrum is working for the

team and what changes may be done to improve further the process.

28



2.4. SOFTWARE DEVELOPMENT METHODOLOGIES

2.4.2.1 Sprints

The concept of sprints from the Scrum SDM is used in this manuscript; familiarity with

its structure is useful to follow discussion where it is mentioned. We describe further

sprints, based on Schwaber and Beedle [70], as follows.

The iteration cycle in Scrum is called a sprint. At the start of the cycle, a planning

meeting is held where the team creates tasks, time, and resource estimates for these

tasks and volunteers for these. Then, a cycle of a pre-defined length, usually one to four

weeks, starts, where analysis, design, code, and testing is done. Every day of the sprint,

a daily stand-up meeting is held where the team members keep up to date and help

each other resolve problems. The sprint backlog is updated accordingly as goals are

met. At the end of the cycle, a sprint review is held where a demonstration of complete,

thoroughly tested, and potentially shippable features is done. Further discussion about

the completed work is encouraged. Finally, a sprint retrospective meeting is held to

inspect and adapt the processes and tools used during the sprint cycle.

2.4.3 Extreme Programming

Extreme programming (XP) takes the best practices of software development to an

extreme level. Created in 1996 by Beck [71], the principles of Extreme Programming

were initially described in his 1999 book, Extreme Programming Explained [72]. Based

on the current description of the official Agile Alliance website of Extreme Program-

ming [73] which itself is written based on Kent Beck’s and Don Wells’s4 descriptions,

Extreme Programming focuses on customer satisfaction by developing features when

the customer needs them. The team is self-organized, and it deals with new requests as

part of their daily routine. The methodology is considered applicable in projects with

dynamically changing software requirements, risks caused by fixed time projects using

new technologies, small and co-located extended development team, and the technology

to be used, allowing for automated unit and functional testing.

Extreme Programming has five core values: communication, simplicity, feedback,

courage, and respect. Furthermore, it has a core set of interconnected practices: the

planning game5, small releases, metaphors6, simple design, testing, refactoring, pair
4Don Wells published the first version of Extreme Programming on his website about XP while working

with Kent Beck.
5The game is a meeting that occurs typically once per week intending to guide the product into delivery,

it is divided into release planning and iteration planning.
6Metaphors are human-friendly stories that anyone can use to understand how a system works. They

consist in naming schemes for classes and methods that make it easy for team members to follow the

29



CHAPTER 2. LITERATURE REVIEW

programming, collective ownership7, continuous integration8, 40-hour week, on-site

customer, and coding standards.

This technique has two leading roles: the customer and the developers. However, it

describes a couple of secondary roles: the tracker, keeping track of relevant metrics, and

the coach, an outside consultant, to help getting started in XP.

XP’s life cycle consists of first describing the desired results of the project by having

customers define a set of stories. As these stories are being created, the team estimates

the size of each story. This size estimate, along with relative benefit, as estimated by the

customer, can indicate the relative value that the customer can use to determine the

priorities of the stories. If the team identifies stories that they are unable to estimate

because they do not understand all of the technical considerations involved, they can

introduce a spike to do some focused research on that particular story or a common

aspect of multiple stories. Spikes are short, time-boxed time frames set aside for the

purposes of researching a particular aspect of the project. Spikes can occur before regular

iterations start or alongside ongoing iterations. Next, the entire team gets together

to create a release plan that everyone feels is reasonable. This release plan is a first

pass at what stories will be delivered in a particular quarter or release. The stories

delivered should be based on what value they provide and considerations about how

various stories support each other. Then the team launches into a series of weekly cycles.

At the beginning of each weekly cycle, the team (including the customer) gets together

to decide which stories will be realized during that week. The team then breaks those

stories into tasks to be completed within that week. At the end of the week, the team

and customer review progress to date, and the customer can decide whether the project

should continue, or if sufficient value has been delivered.

2.5 Software Development Methodologies in
Robotics Competitions

The literature on similar works as this dissertation, embracing the software develop-

ment process for a robotics competition, is limited. We can find works on implementing

well known SDMs for companies in different situations like Scrum [74] [75], Extreme

functionality of a certain element of the codebase by its name only.
7Everyone is responsible for all the code; everyone is allowed to change any part of the code.
8A practice to avoid integration problems where the team is always working with the latest version of

the software.

30



2.5. SOFTWARE DEVELOPMENT METHODOLOGIES IN ROBOTICS COMPETITIONS

Programming [76], or generalizing about Agile [77], and even systematic reviews of

empirical studies on Agile software development [78]. These studies follow AR models

but work with a group of participants with a different profile and a different goal than

the one presented in this dissertation.

On the other hand, Van der Zant, co-founder of RoboCup@Home, and Plöger [79]

present the application of Extreme Programming (XP) for RoboCup development. They

indicate promising results applying practices from the methodology in RoboCup Mid-Size

and Aibo league9. The paper focuses on the problem of continuously changing rules

and team members and how to tackle it via the usage of XP. They mention the usage

of test case driven design, simple design, collective code ownership, refactoring, pair

programming, short releases, continuous integration, round-trip engineering, and active

project management. Additionally, they advocate for standardized hardware and software

with tools to ease complex or tiresome tasks like installing software in the robots and

their development software. Furthermore, adding to the simple design concept, they use

extreme modularity with rigidly defined interfaces and strong typing (via C++). They

also report experts doing project steering, not project management, to keep the project

in track. Moreover, they estimate that it took them three times less time to achieve the

same results compared with previous projects.

Van der Zant and Plöger’s work is closely related to our work as we also aim to

experiment with practices from Agile SDMs, and it is one of the few publications directly

related with RoboCup, even though for different leagues.

Furthermore, Gerndt, Schiering, and Lüssem [80] present the application of Scrum

for RoboCup development. They apply practices from this methodology for a RoboCup kid-

size humanoid competition team and a RoboCup@Work team. They showcase a teaching

philosophy where they allow students to solve problems by themselves, including letting

them self-organize and explain how the students analyze and propose the usage of SDMs

as Waterfall, V-model, Spiral, and Scrum, finally deciding to try Scrum. The authors

conclude that a project management methodology for self-organized teams of students in

robotics projects should address easy estimation of work packages, innovation-oriented

flexible project planning, quality checks and testing, team building, and transparency.

They note that the values of the agile manifesto are well suited for this goal. Moreover,

they indicate the usage of two weeks long Sprint cycles with the students creating their

own user stories. Fruitful discussions are reported in the Sprint planning meetings,

although they add that user stories were often not finished in one cycle. However,

9RoboCup Standard Platform League for playing soccer was done with Aibo dog robots at the time.

31



CHAPTER 2. LITERATURE REVIEW

they describe moving to weekly meetings when the competition was close, not being

able to fulfill the product owner role, as per the Scrum methodology, and that Scrum’s

rigorousness is problematic. Furthermore, they describe using continuous integration,

coding standards, using robot simulations, and using the Redmine10 ticketing tool as a

work-tracking board, with a dedicated monitor in the lab showing the state of the project.

Finally, the students’ feedback about this practice was positive, including an appreciation

for transparency and communication and reporting that regular meetings created team

spirit.

Finally, other authors that mention the usage of SDMs for RoboCup related projects

are Tomatis, Philippsen, Jensen, Arras, Terrien, Piguet, & Siegwart, [81] mention shortly

the usage of Extreme Programming, Gerndt, Paetzel, Baltes, & Ly [82] reference the

agile manifesto as an inspiration, Paraschos, Spanoudakis, & Lagoudakis [83] explain

their approach using Agent-Oriented Software Engineering, and Eaton [84] mentions

the need of using some Agile SDM. However, these works do not explore these concepts

in great detail.

2.5.1 Team Description Papers: What is Missing

While Agile software methodologies are widely used in business settings, there does not

appear to be a significant amount of reports of Agile methodologies in RoboCup.

To examine the use of software development methodologies in RoboCup, we con-

ducted a systematic survey of published Team Description Papers (TDPs) from the

RoboCup@Home leagues. Participating teams are required to submit and publish TDPs

when they apply to participate in the competition. The survey began by downloading the

47 available TDPs covering from the year 2011 to 2019. A manual review of the TDPs

revealed no discussion of methodologies. This was followed by an automated search for

keywords related to this topic, which found ten results, but an examination of each result

found no matching documents except UTS Unleashed! (i.e., the team represented in

this manuscript). The keywords used for the automated search were, in between others:

software development methodology, scrum, extreme programming, agile, waterfall, spi-

ral, project manager, meeting, proactive, organization, test driven, testing, simulation,

training, workshop.

10Redmine is a free and open-source, web-based project management and issue tracking tool.

32



2.6. PROACTIVITY

2.6 Proactivity

In this manuscript, the concept of proactivity appears concerning team members’ attitude

in regards to software development. It is meaningful to convey a definition of proactivity

before using this concept. The Oxford English Dictionary defines proactive as:

“(of a person or policy) controlling a situation by making things happen rather

than waiting for things to happen and then reacting to them.”

Bindl and Parker ” [85] further add:

“Proactive behavior at work is about making things happen. It involves self-

initiated, anticipatory action aimed at changing either the situation or oneself.

Examples include taking charge to improve work methods, proactive problem

solving, using personal initiative, making ideals, and proactive feedback

seeking.”

Subsequently, proactivity is, arguably, a behavior that is advantageous to have in a

team, in particular, in teams working with projects with changing requirements, as is

the case in this work.

33





C
H

A
P

T
E

R

3
CONTEXT

In the following chapters, decisions will be shown around the common tools and common

experiences to be found in the project. In retrospect, after the project was done, it is easy

to discern these commonalities and explain them beforehand so the reader finds them

for themselves in the proper context.

These facts shaped the planning and development decisions made during the three

years of the project and are useful to keep in mind. Some of these elements have the

reasoning behind their choice specified here.

3.1 Common Technical Tools

The following tools were used during the three years of RoboCup@Home Social Standard

Platform League (SSPL). Their extended use in the communities related to the competi-

tion makes one believe that there is value in these tools. Also, its extensive usage in the

relevant industries gives the team members familiar with them a useful skillset.

Version control systems are an essential part of software development. The 2018

Stack Overflow Developer Survey reports that only 3.7% of professional developers do

not use some version control system. Git is the most popular system: used by 88.4% of

professional developers[86].

From the official git website1 git is described as:

1https://git-scm.com/

35

https://git-scm.com/
https://git-scm.com/


CHAPTER 3. CONTEXT

“Git is a free and open-source distributed version control system2 designed to

handle everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning-fast performance.

It outclasses SCM3 tools like Subversion, CVS, Perforce, and ClearCase with

features like cheap local branching, convenient staging areas, and multiple

workflows.”

GitLab is a web-based DevOps4 lifecycle tool. It provides git repository management,

including wiki, issue-tracking, and Continuous Integration/Continuous Deployment

pipeline features. One of the most widely used platforms of its kind (alternatives being

GitHub and Bitbucket) GitLab5 it provides an open-source DevOps platform as a website

application offering a solution for teams to collaborate in software development in a

user-friendly manner.

3.1.1 Asana

Asana is a web application that features Task management (with List and Board views),

a Timeline, Calendar, a Progress tracker as well as other tools. A screenshot can be seen

in Figure 3.1.

2Version control is also known as source code control, source code management system, or revision
control system. It is responsible for tracking and managing changes to files, documents, computer programs,
and other stored information.

3Software Configuration Management.
4DevOps is a set of practices that combines software development and information-technology opera-

tions which aims to shorten the systems development life cycle and provide continuous delivery with high
software quality. [87]

5https://gitlab.com

36

https://gitlab.com
https://gitlab.com


3.1. COMMON TECHNICAL TOOLS

Figure 3.1: Asana screenshot of the 2017 RoboCup project.

3.1.2 Trello

Trello is a collaboration tool to organize projects into boards, representing a whiteboard

filled with lists of sticky notes, each one representing a task to be done. It is a web-based

application. It advertises itself as a “Kanban-style” list-making application. A screenshot

can be seen in Figure 3.2. It provides a calendar view for deadlines, and many extensions

are available to add functionalities to the platform.

Figure 3.2: Trello screenshot of the 2017 RoboCup project.

37



CHAPTER 3. CONTEXT

3.1.3 Slack

Slack is a chat platform designed to replace email as a primary method of communication.

It features workspaces, different rooms for group discussions, and private messages to

be sent in between members. It allows sharing different kind of files easily. It is widely

used in industry.

3.1.4 Python: Programming language of choice

The team considered the choice of the main programming language important. Python

was chosen.

At the start of the project, the lead developer did an informal research that summa-

rizes Python’s advantages for this project:

• Accessible, easy to read, and write, which makes it easy to learn.

• Great libraries, standard library, and third-party.

• Healthy, active, and supportive community.

• Used by lots of people in science, industry & academia.

• Fast (optimized and using C/C++ based libraries).

All these characteristics of the language fit well with a team with many members that

want to collaborate but do not have a strong coding background. Furthermore, the experts

in the team had experience in the language. Also, the Pepper platform had Python as

its most supported language and the Robotics Operating System (ROS) framework too.

Plenty of state of the art deep learning frameworks also use Python, and it was foreseen

that the team might end up using some of them.

Additionally, answers to the question On what do people use Python? in our context

were found:

• On prototyping.

• When the speed of development matters more than the speed of execution.

• On problems where you can find libraries readily available for them.

While using a language that eases prototyping and speed of development fits well

with RoboCup development, the option to use other languages remains open.

38



3.1. COMMON TECHNICAL TOOLS

3.1.5 C/C++: Backup programming languages

People working in robotics tend to often use C++ and Python [88]. One of the reasons

for this is because both are supported in the ROS framework. C++ is used for low-level

control and image processing, for example. Python is used for more high-level behaviors

or testing and prototyping.

During the years of development, some parts were C++, and some parts were sped

up by using C or C++ exposing interfaces for Python.

C++ was not considered the main language because the learning curve is steeper,

and there were complications in deploying the code on the robots (as the robots used a

different CPU architecture which involved cross-compiling).

3.1.6 ROS: Robotics framework/middleware

Robotics Operating System (ROS) [89]: Developed since 2007, it is the most famous and

possibly the most used robotics framework (some people consider it rather a middleware;

however, both definitions can fit ROS’ goals). Their authors define ROS and its reasons

to exist as follows:

“The Robot Operating System ROS is a flexible framework for writing robot

software. It is a collection of tools, libraries, and conventions that aim to

simplify the task of creating complex and robust robot behavior across a wide

variety of robotic platforms.

Why? Because creating truly robust, general-purpose robot software is hard.

From the robot’s perspective, problems that seem trivial to humans often

vary wildly between instances of tasks and environments. Dealing with these

variations is so hard that no single individual, laboratory, or institution can

hope to do it on their own.

As a result, ROS was built from the ground up to encourage collaborative

robotics software development. For example, one laboratory might have

experts in mapping indoor environments, and could contribute a world-class

system for producing maps. Another group might have experts at using maps

to navigate, and yet another group might have discovered a computer vision

approach that works well for recognizing small objects in clutter. ROS was

designed specifically for groups like these to collaborate and build upon each

other’s work, as is described throughout this site.”

39



CHAPTER 3. CONTEXT

Figure 3.3: The ROS equation as advertised in the official website.

ROS presents the following features that appeal to the goals of this project:

• A distributed, modular design.

• A vibrant community.

• Permissive licensing.

• A collaborative environment.

• Ready to use tools, libraries, drivers, and algorithms.

• Widely used in academia and industry.

Also, as mentioned in the previous sections, programming in the ROS framework can

be done from a variety of languages. Python and C++ are first-class citizens.

Other Robotics frameworks were considered, some of them used by other RoboCup

teams like Fawkes [90], or used in industry like Orocos [91]. However, given the famil-

iarity with ROS of the author of this dissertation, and the many users of ROS in the

RoboCup competition, ROS was chosen.

3.1.7 NaoQi: Programming framework for the Pepper robot

The manufacturers of the Pepper robot created the NaoQi framework. It is officially

described as:

“The NAOqi Framework is the programming framework used to program

Aldebaran robots.

It answers to common robotics needs including: parallelism, resources, syn-

chronization, events.

This framework allows homogeneous communication between different mod-

ules (motion, audio, video), homogeneous programming and homogeneous

information sharing.

40



3.2. COMMON EXPERIENCES

NAOqi framework is Cross platform and Cross language that allows you to

create Distributed applications.” [92]

Given that the Pepper robot uses this framework and APIs, any user of the robot is

forced to use it in some way.

3.1.8 Operating System

It was decided to use Ubuntu 16.04 as the development platform (in the year 2017,

this was a mature and current platform). Ubuntu is a free and open-source Linux

distribution based on Debian. Other RoboCup@Home teams tend to use it6 as it is a

Linux variant friendly for beginners, as some of the team members were. A lot of software

and frameworks are usually aiming to deploy in this system so we can hope for a smooth

experience using the bug-free state of the art software. One of these frameworks is ROS.

The Pepper robot uses a custom Gentoo Linux. The lead developer thought that

Gentoo Linux was too complicated to introduce people to, and to support different laptop

hardware. Using Ubuntu, being another Linux system, would allow team members to

more easily familiarise themselves with the available tools.

3.2 Common Experiences

The following facts were mostly discovered in the first year of participation, while some of

them were known beforehand due to the previous participation in RoboCup@Home by the

author of this manuscript. This section starts by presenting the RoboCup@Home SSPL

rulebook, then its standard platform: Pepper. It continues with important facts related

to the development of the competition: rental of robots for the competition, deadlines for

the event, WIFI quality at the venue, and audio quality at the venue.

3.2.1 Commonalities of the RoboCup@Home SSPL rulebooks

The rulebook follows the same structure year by year. The rulebook in itself explains in

detail the philosophy of the competition, the qualification process, a description of the

venue, what is expected from the teams that participate (and their robots), and the rules

and regulations. Also, detailed descriptions of the tests that the robots must perform

6Some references to Ubuntu were found in RoboCup@Home Team Description Papers.

41



CHAPTER 3. CONTEXT

autonomously are found. The scoring system of these tests is appended to the description

of each test.

In the year 2017, the SSPL was introduced. It was unknown at the time by the

RoboCup@Home organizers how this league and its standard platform would perform.

To approach this situation, the rulebook contained tests to be performed exclusively in

SSPL. This was due to the perceived lack of ability of the standard platform to perform

manipulation actions, which most other tests in the competition contain at least as a

partial task to accomplish.

A summary of the structure and contents of the common parts of the rulebook follows.

The rulebook starts with an Introduction section explaining RoboCup, RoboCup@Home,

its organization, infrastructure, the leagues of the competition (new this year), a brief

explanation of the competition itself and the available awards.

A section titled Concepts behind the competition, which, among other things, high-

lights the importance of concepts like Autonomy and mobility for the robots and Scientific
value of the competition.

General Rules & Regulations covers the team registration and qualification process.

The scenario or arena where the competition will happen follows. It describes a household-

like setup, as seen in Figure 3.4, with low height walls as separators of rooms but allowing

visibility of what is happening in the arena. See Figure 3.5 for an example. The scenario

hosts furniture found in an average household of the country that hosts the competition.

42



3.2. COMMON EXPERIENCES

Figure 3.4: The scenario map for Nagoya, Japan, in 2017 as provided by the organizers.
The numbered items are designated places that may be referenced in the competition
tests. For example, the bed, the kitchen table, or the TV. The organizers provide this
map, but it is not precise. It roughly marks where the different items should be. During
the competition, things move around; for example, people may sit in chairs and leave the
chair in a different position. Furniture may be gently pushed inadvertently. The robots
must be able to deal with such changes in the environment.

43



CHAPTER 3. CONTEXT

Figure 3.5: The arena in Nagoya, Japan, in 2017 with the Pepper robot. Taken from the
bedroom and seeing through thanks to the low height walls into the kitchen and living
room. There is a functional door on the right. Standard furniture as cabinets, a sink, a
fridge, a table, and chairs can be seen. Other small objects can be appreciated like a jar
of tea, some pasta in a container, an orange, and children’s books. As a curiosity, it can
be appreciated how the Pepper robot height and arm’s length can make manipulation
tasks challenging as most table-like surfaces stand quite high for it.

The next section is Robots and describes what is expected of the robots participating.

From here, the rulebook may change every year. For example, topics that may change

every year are: External Computing (whether a team can use a computing device that’s

not part of the robot), the organization of the competition, its schedule, tests for the

robots or the scoring system.

These changes were minor from 2017 to 2018 but major from 2018 to 2019. These

changes are discussed in chapter 5 on the analysis of every year. A big part of the

rulebook is still common in nature; these commonalities have been extracted from an

analysis of the rulebook and are explained here:

• The necessary skills that a robot must be able to perform autonomously. A non-

44



3.2. COMMON EXPERIENCES

exhaustive list:

– Text To Speech (TTS), e.g., that the robot must be able to speak.

– Automatic Speech Recognition (ASR), sometimes just referred to as Speech

To Text (STT), e.g., that the robot must understand spoken commands.

– Sound Source Localization (SSL), e.g., the robot must know where a sound or

speech came from.

– Natural Language Processing (NLP), e.g., understanding open speech of a

user.

– Autonomous Navigation, e.g., that the robot must be able to navigate au-

tonomously from point A to point B. To do so, it, most probably, needs to know

where it is (Localization).

* This navigation must be performed safely, collision with the environment

may not happen.

* Navigation may happen in a previously known environment (having a

’map’ constructed previously).

* Or in an unknown environment, where usually Simultaneous Localization

And Mapping (SLAM) is used.

* Some tests may ask to follow a person.

* Some tests may ask to guide a person to a place.

* There may be obstacles on the way.

* The robot may need to pass through narrow paths like doorways.

– Perception, e.g., that the robot must be able to detect or recognize things as:

* People detection, e.g., finding faces that may indicate there is a person

there.

* Face recognition, e.g., learn and recognize the same person by their face.

* Gesture detection, e.g., realizing a person is waving to the robot.

* People characteristics detection, e.g., guess the age, gender, color of cloth-

ing, height, or other features of a person.

* Object detection and recognition, e.g., finding where a specific object is

and what it is. For example, a can of coke on top of a table.

* Where the robot and its surroundings are, e.g., in which room is the robot

or where is the fridge in relation to the robot.

45



CHAPTER 3. CONTEXT

– Human Robot Interaction, e.g., the robot must understand what a user wants

and get more information from a user if needed. This can be done via:

* Via TTS and ASR.

* Via gestures.

* Via a Tablet interface (on the chest of the Pepper robot).

* A combination of the previous, or others.

– Manipulation, e.g., the robot must be able to pick, grasp, drop, place, or

transport some items.

• Goals of the RoboCup@Home SSPL tests. The common topics that the robot must

solve in a test are:

– Finding objects in the house and move them.

– Taking and fulfilling spoken orders from people.

– Be a waiter in a restaurant/cafe where it has never been before.

• Specific tests that repeat every year. They are not tests per se but are part of the

competition.

– Robot Inspection. The robot is tested for its most basic capabilities: If it can

move from the entrance of the simulated home to a room while avoiding

a person standing in its way and present itself. Also, testing the robot’s

emergency stop button should shut the robot down successfully. This test is

not scored, but it must be passed to be able to participate.

– Poster Session. Where a team member will present in a poster in 2 minutes

the research of the team. Open to questions from the team leaders. Teams are

encouraged to ask questions and bond. This test is scored. Every team leader

scores every other team presentation.

• Competition Schedule7. The competition is divided into six days. The first day and

a half are setup days, where the teams arrive with their robots, and they set up

their working space and their robots. The arenas and networks are built during

these days. They are often done by the end of the first day, but it is not guaranteed.

Robot Inspection and Poster Session happen at the end of the second setup day.

The following three days are competition days. They are divided as follows:
7The schedule was briefly introduced at the start of the chapter, here we expand on it.

46



3.2. COMMON EXPERIENCES

– Stage I: a set of RoboCup@Home SSPL tests that test basic skills, expected

to be easier than the ones in Stage II, are run in the first 1.5 days. There is

usually a block of tests in the morning and a block of tests in the afternoon.

– Stage II: The 50% highest scoring teams from Stage I qualify to participate in

Stage II. These run during the following 1.5 days. A set of RoboCup@Home

SSPL Stage II tests are run. There are blocks of tests in the morning and in

the afternoon.

– Finals: The last day of the competition, the two highest-scoring teams go into

the Finals. The topic and specific rules every year are subject to change, but in

general, it is about an open presentation of the best skills of the team’s robot.

3.2.2 Pepper robot as platform

The Pepper platform uses a set of APIs to access its capabilities within a framework

called NAOQi. These APIs can be accessed from Python, C++, JavaScript. NAOQi also

provides some support for Java and ROS8.

A graphical programming suite called Choregraphe is also offered to program the

robot. Choregraphe internally builds Python apps that are programmed by placing

blocks in a canvas and connecting them, in a similar way of popular visual programming

languages like Blockly [93] or Scratch [94].

The robot’s main processor is an Intel Atom E3845 with four cores and four threads

at 1.91GHz with 4GB RAM. The drive capacity, being a micro SDHC card, is 16GB. The

integrated graphics card is limited. The characteristics are similar to smartphones of

the time9. Standard laptops of the time feature greater computing capabilities10, which,

other teams of other RoboCup@Home leagues embrace as they can integrate into their

robot such computing platforms. In comparison, Pepper presents an extra challenge as

state-of-the-art robotics software is expected to be run on relatively powerful platforms,

the latest available computers.

Other hardware aspects of the platform to consider as they affect the development

for the competition are the laser sensors of the robot.

8ROS will be further discussed shortly.
9Google Pixel with the Snapdragon 821 features four cores at 2.4GHz, and 4GB RAM or the iPhone

SE with the Apple A9 features two cores at 1.85 GHz and 2GB RAM. Both were phones released in 2016.
10The Alienware R3 series with the Intel Core i7-6700HQ with four cores and eight threads at 2.6GHz

to 3.5GHz and 16GB RAM. The MacBook Pro of 2016 with the Intel I7-6920HQ with four cores and eight
threads at 2.9GHz to 3.8GHz and 16GB RAM. Both were laptops released in 2016. Both would also include
GPUs that would allow additional computing capabilities.

47



CHAPTER 3. CONTEXT

The laser is composed of six laser line generators with a refresh rate of 6.25Hz. But

from those, only three report actual data. As seen in Figure 3.6, each one of them has a

field of view of 60°. Each one provides fifteen distance readings in the range of 0.3 to 3.0

meters. The further the reading, the noisier it is. That makes a total of forty-five laser

data points around the robot with two gaps of 90° in the front diagonals and a gap of

120° on the back with no laser data.

This fact is meaningful as standard approaches for SLAM rely on dense and/or precise

laser readings to perform well.

Figure 3.6: The Pepper laser sensors configuration and field of view from the manufac-
turer official documentation.

The Pepper robot documentation states that the robot can perform Autonomous

Navigation with its default NaoQi Application Programming Interface (API)s, but its

performance was not satisfactory. This is a crucial fact to keep in mind as Autonomous

Navigation is a highly necessary skill for the RoboCup@Home competitions.

Furthermore the cameras presented by the robot have the characteristics shown in

tables Table 3.1 and Table 3.2.

48



3.2. COMMON EXPERIENCES

2D Cameras specifications

Camera
Model OV5640
Type CMOS image sensor SoC

Imaging
Array

Resolution 5Mp
Optical format 1/4 inch

Active Pixels (HxV) 2592x1944

Sensitivity

Pixel size 1.4 µm * 1.4 µm
Dynamic range 68db@8x gain

Signal/Noise ratio (max) 36dB
Responsivity 600 mV/Lux-sec

Output
Camera output 640*480@30fps or 2560*1920@1fps
Data Format YUV and RGB
Shutter type Rolling shutter

View
Field of view 67.4°DFOV (56.3°HFOV,43.7 °VFOV)
Focus type Auto focus

Table 3.1: Pepper 2D Cameras specification.

3D Camera specifications

Camera
Model ASUS XTION
Type SOC Image Sensor

Imaging
Array

Optical format 1/2 inch (5:4)
Active Pixels (HxV) 1280x1024

Sensitivity

Pixel size 5.2 µm * 5.2 µm
Dynamic range 68.2db

Signal/Noise ratio (max) 45dB
Responsivity 2.1 V/Lux-sec

Output
Camera output 320*240@20fps
Data Format Depth color space (mm)
Shutter type Electronic Rolling shutter (ERS)

View
Field of view 70.0°DFOV (58.0°HFOV,45.0 °VFOV)
Focus range 40cm - 8m
Focus type Fixed focus

Table 3.2: Pepper 3D Camera specification.

49



CHAPTER 3. CONTEXT

3.2.3 Rental of robots at RoboCup event

Teams of the RoboCup@Home Social Standard Platform League had the option to rent a

Pepper robot at the venue instead of shipping their robots. This option presented teams

with several advantages:

• It avoids the chance of issues with shipping robots.

– Delays in receiving the robots.

– Damage of the robots on the shipping to or from the competition.

– Logistic issues in a foreign country.

• Maximum availability of the robots as they never leave the lab.

• It is cheaper to rent than to ship in most cases.

• If the manufacturer has issues with their shipping, all teams renting will face the

same problem.

• Possibility to quickly swap a faulty robot in the competition with the manufacturer.

Given these advantages, during the two first years of competition, two Pepper robots

were rented for the competition. For the last year, the competition was hosted in the

team’s city, Sydney, in a venue very close to the lab, so the team was able to use its own

robots without renting or shipping.

The only disadvantage found on renting robots was the necessity of deploying and

testing the rented robots when received.

3.2.4 Deadline for the RoboCup event

Every year the competition took place between June and July. The rulebook is developed

during the year, and it was ready about two months before the competition. This makes

it so that the team has a similar schedule every year to participate.

3.2.5 Poor WIFI connection at RoboCup event

An official networking team from the RoboCup organization controls the available WIFI

networks for the participating teams. The arenas for RoboCup@Home offer WIFI net-

works to be used by the competitors. However, even with these efforts, WIFI connections

50



3.2. COMMON EXPERIENCES

are unreliable. The fact that visitors to the competition, and even some participants,

broadcast WIFI networks, or use similar frequencies with their devices makes the WIFI

networks unreliable, both in bandwidth as in connectivity.

In chapters 5, 6, and 7 further detail about these issues will be explained.

3.2.6 Poor audio quality at RoboCup event

The RoboCup events are hosted in large convention centers. Multiple leagues share the

same conference hall, and there are many sources of noise. Members of the public are

welcome to walk around designated paths to watch the competition and are, alongside

other participants, free to talk and cheer. Robots and maintenance equipment may be

heard. Testing and competition happen during the day, so there can be loud unexpected

noises; for example, RoboCup@Soccer tends to result in loud cheers when a goal is scored.

These facts make it so that microphones as the ones found in the robots capture

a lot of background noise. On standard platforms like Pepper, where one cannot use

specialized microphones, it is hard to differentiate noise from an actual user trying to

speak to a robot. This provides an extremely challenging environment for Speech To Text

or Automated Speech Recognition systems.

51





C
H

A
P

T
E

R

4
RESEARCH METHODS

The methods of this research project included both Action Research and Grounded

Theory. While both methods were introduced in chapter 2 of this thesis, chapter 4 will

focus on their rationale and applicability. Moreover, Action Research will further be used

in chapters 5, 6 and 7 to interpret the three year RoboCup project. Then, Grounded

Theory will be used in chapter 8 to interpret the expert survey’s data.

4.1 Action Research over the RoboCup@Home SSPL
project

Action Research (AR) was chosen as the backbone research methodology for the three

years of RoboCup@Home Social Standard Platform League (SSPL) development, as this

project would lack replicability. This project involves a high degree of uniqueness, e.g. the

same people in the same context will not take part in the same version of the competitions

ever again. Action research provided a widely used1, structured and comprehensive way

to validate this type of qualitative research. Importantly, the Action Research cycles

fitted smoothly in this project, as depicted in Figure 4.1.

1About 2,890,000 publications found with keyword "Action Research" on Google Scholar. Many of those
with thousands of citations.

53



CHAPTER 4. RESEARCH METHODS

4.1.1 Action Research Cycles Structure

Figure 4.1: Action research cycles diagram for the RoboCup@Home SSPL three years
project.

RoboCup@Home SSPL happens once a year. The team participated during three consec-

utive years. In Figure 4.1 the Action Research cycles for the project are shown. There

was an initial research phase each year. Then the researcher and his team iterated over

taking action and analyzing the project’s progress during the year. After the competition

took place, a reflection phase followed. The insights from the year’s work were then

shared and discussed between experts. Finally, the team members filled a retrospective

evaluation document within one month of returning from the competition. This document

enabled the collection of their insights, which were further discussed in a meeting.

Another advantage of the nature of Action Research was that given an initial frame-

work of ideas (F), methodology (M) and area of concern (A), these are developed further

in the direction that leads to findings. This feature was especially important for us,

since it was not clear at the start of the project which factors would play a bigger role

in satisfying the process of software development and team management. Additionally,

as the team would develop over time, it was therefore predictable that the focus of the

54



4.1. ACTION RESEARCH OVER THE ROBOCUP@HOME SSPL PROJECT

research may be shifted during the Action Research cycles.

4.1.2 Common Topics of the RoboCup AR cycles

Figure 4.2: One single year of RoboCup Action Research cycle. Repeating topics that
include team management processes, team software development processes and technical
approaches are detailed.

The same Action Research structure was followed every year, as depicted in Figure 4.1

which made the design of chapter 5, chapter 6 and chapter 7 identical. Moreover, Fig-

ure 4.2 illustrates the phases that shared the same substructure: software development

plan, software development implementation and competition participation. The substruc-

ture contained the following parts or topics:

55



CHAPTER 4. RESEARCH METHODS

• Team Management Processes: included topics regarding the team’s organiza-

tion. For example, how often the team would meet.

• Team Software Development Processes: included topics such as the team’s

code management and development experience. For example, how the team shared

code.

• Technical Approaches: comprised topics dealing with implementation details.

For example, how the team decided what was more important to be implemented.

This substructure was developed after analyzing the data from the three years of

participation. Importantly, these fields were found to be the ones that built up an easy to

follow structure to reason about the project. The reader can acquire a full image of the

competition by following the three parts. Thus, the substructure represents a valuable

tool for any RoboCup@Home participant. Moreover, not only may this work be of use

for participants, but also for non-participants, given that the team processes may be

insightful for them.

Finally, based on the cycle reflections, a set of guidelines was created at every cycle

end. Interestingly, these guidelines provide new and existing teams with recommenda-

tions on how to improve the development process for RoboCup competitions.

4.1.3 Scope of Action Research

The context of each Action Research cycle is discussed with each of the three cycles

presented in chapters 5, 6, and 7. Together these contexts establish the overall scope

of this Action Research project. In particular, the Action Research and its conclusions

are limited by the scope of the project: a team of 10-15 participants, competing over

a period of three years in the context of a university-driven robotics competition. The

generalizability of the Action Research findings to other situations is dependent on the

similarity of other situations to this particular project.

As per the roles involved in this research, the members of the team UTS Unleashed!
were Action Research participants. The author of this thesis and his supervisors acted

on both roles of participant and researchers. At different points in time they needed

to perform either role. The author was the development lead of the project with the

supervisors assisting when necessary. Team members were encouraged to take part in

the discussion on how to improve the management of the development and the team

56



4.2. GROUNDED THEORY: EXPERTS’ FEEDBACK ANALYSIS

itself. While this created a grey area in between researcher and participant at that

particular event, generally team members were participants.

The project had a set timeline of three years. Each year was centered around com-

peting in the RoboCup event and it concluded with the competition itself and a team

debrief within a few weeks of the final day of the competition. The nature of software

development and team management made it unlikely to find a holy grail methodology

that would provide an universal process to manage such a situation and it was unlikely

we would find reasons to stop the research process earlier than after the three years of

competition.

Conclusions were discussed with experts so as to make the insights found transfer-

able in similar situations. For example, one could find similarities between a startup

environment with a small team trying to solve a specific problem via the development

of a niche product with the case study presented here. The author believes that specific

implementation details of the methodologies found to work for the UTS Unleashed! team

may not work on other teams, but the process and philosophy of how the team iterated

on finding the combination of implementation details is valuable as an inspiration to

create a fitting set of practices for other teams.

4.2 Grounded Theory: Experts’ Feedback Analysis

Grounded Theory (GT) is used in chapter 8 to develop theories from the data collected. It

is also used in chapter 5, chapter 6 and chapter 7 to interpret data from Trello and Git.

An example of its usage can be found in Appendix C.

GT offers excellent instrumentation for data interpretation and theory development.

Hence their distinct characteristics were broadly applied in this work. Further remarks

on these characteristics and how they were applied are listed below:

• Simultaneous involvement in data collection and analysis phases of re-
search.

Collected data from experts are compiled in chapter 8 of this thesis. Importantly,

their analyses refined the data collection phase itself as a workshop was held which

provided questions for the survey distributed afterwards. Furthermore, the chance

of gathering even more data from key participants remained.

• Creation of analytic codes and categories developed from data, not from
preconceived hypotheses.

57



CHAPTER 4. RESEARCH METHODS

Data guided which codes, and with them, which categories were insightful to

further work on. For example, during the survey analysis, in many questions with

answers in open text format, codes were created to identify ideas repeated in

multiple answers, and categories were created from grouping these. The researcher

started with a clean slate and an open mind.

• The development of middle-range theories to explain behavior and pro-
cesses.

As codes and categories arose, middle-range theories were developed to explain the

relationship between the participants and their answers. For example, a number

of questions in the survey asked to sort by importance, concepts in a specific topic.

These were encoded and further categorized, which then made possible the creation

of middle-range theories to interpret these responses. Specific ways to manage

these theories and their data were developed where needed.

• Memo-making, that is, writing analytic notes to explicate and fill out cat-
egories, the crucial intermediate step between coding data and writing
first drafts of papers.

Memos were used as a means to path the way into conclusions. For example, looking

again into the questions of the survey that allowed open-ended text answers, as the

ideas were extracted into codes representing ideas or concepts, these were grouped

into categories, and memos were written next to them with possible middle-range

theories that aimed to interpret the answers and join them with higher level

theories.

• Theoretical sampling, that is, sampling for theory construction, not for
representativeness of a given population, to check and refine the ana-
lyst’s emerging conceptual categories.

Having the memos, the codes and their categories, with the open possibility of

interviewing key participants, theoretical sampling was put into practice. Previous

data was revisited and key team members were interviewed further about theories

that arose.

• Delay of the literature review.

Literature review was done when it became necessary, especially when new con-

cepts to the researcher came up. In addition, the final conclusions were revised

based on literature review.

58



4.3. STATISTICAL DATA ON TRELLO AND GIT

Noteworthy, important artifacts are included in the appendices of this dissertation.

Some intermediate artifacts (e.g., codes, categories, memos, intermediate ideas) have not

been included, as they do not add value to this dissertation.

4.2.1 Action Research and Grounded Theory Together

Initially, Action Research (AR) was used for the study and development of the three

years of the RoboCup@Home SSPL project. Meanwhile, informal chats and interviews

with experts took place that not only fed the AR process but also helped on the creation

of materials for the Grounded Theory work.

Furthermore the facts, concepts and theories that emerged from our AR study became

founding elements of the GT study. As discussed previously in the literature review, the

nature of AR enables its embedding into GT. Moreover, both AR and GT imply iterative

processes which exploit the continuous development of concepts and theories.

4.3 Statistical Data on Trello and Git

The analysis/study of quantitative data is an unobtrusive alternative to surveys and

interviews with team members, that provides an objective insight into activity, produc-

tivity and behavior. Therefore, the available data on the Trello platform and the Git

repositories in GitLab was analyzed in every AR cycle. Based on these data, hypotheses

on the team’s working performance during the year were developed/formulated. These

hypotheses were then used to discover, confirm or deny theories about the team’s conduct.

For example, observing which day of the week had more activity in these platforms could

be compared to the day of the week where team meetings happened, to create a theory

about if these facts were related, i.e. if the team did more work to prepare for a meeting,

or after being in a meeting, or a different theory altogether.

Trello and Git are tools of a different nature, with different goals. Thus data in each

platform is treated differently, as explained below.

4.3.1 Trello Data

The Trello platform offers boards in which one can create cards and write tasks in them.

These cards can be commented and updated, they can have attachments and checklists.

These actions can be meaningful to study the team’s engagement in organization and

progress-sharing behaviors.

59



CHAPTER 4. RESEARCH METHODS

Trello offers the data for these boards in JavaScript Object Notation (JSON) format,

which in order to be analyzed is converted to Comma Separated Values (CSV) format

and loaded into a spreadsheet. The data is treated as anonymous and can be used to

create meaningful plots and to extract insights from it. Moreover, the specific contents of

the cards or their authors are not reported. The data was analyzed by creating charts for

the following scenarios:

• Trello activity during the cycle: Trello action count per day during all the

development year, providing a sense of how the organizational and tracking of

work via Trello was done during the year.

• Trello actions per month: Trello action count per month during all the develop-

ment year, providing a sense of when the most planning and progress tracking was

happening in the platform in a more granular shape.

• Trello actions per weekday: Trello action count per weekdays. This could show

if team members tended to engage in planning and progress-tracking work on any

specific days. With this count, we can theorize about the reason for the engagement

time.

• Trello actions per hour: Trello action count per hour of the day. This allowed ob-

servation of at what times of the day this planning and tracking activity happened.

• Trello board names and their action count: Trello action count per board

name. This could show what needed more focus on that year.

• Trello board authors and their action count: Trello action count per team

member (anonymized). It may provide a sense of distribution of the planning and

progress-tracking work.

4.3.2 Git Data

The team kept its code projects in Git repositories in the GitLab platform. Every Git

repository has a history of commits. Every commit is a set of changes with a message

identifying what this commit is doing. Therefore, the authors and file changes can be

tracked. These commits can be meaningful to represent the team engagement in software

development practices.

Obtaining statistics from these repositories either for a single repository or for the full

amount of repositories of the team needed custom work. The applied strategy consisted

60



4.3. STATISTICAL DATA ON TRELLO AND GIT

in downloading all repositories and, for every repository, the commit history was followed,

commit by commit, to populate an Structured Query Language (SQL) database on which

to run queries to obtain manageable data to be analyzed and plotted.

The concept of “days of commit activity” was considered to provide the most meaning-

ful data, while the raw commit count presented problems with different team members

working in different ways. For example, a team member used to commit on every few

changes or tests he was making. This added up to a lot of commits, as compared to

someone doing a commit only after finishing something, in spite of both doing a similar

amount of work in one day. We can presume that if the task was divided in more than

one day, even the team member that used to commit only when things are finished, may

have done a commit to save the current state of their work and keep working the next

day, effectively showing two “days of commit activity” in both cases.

Noteworthy, other approaches were explored, for example, analyzing the amount

of lines of code that were changed in the commits. However, this did not provide any

meaningful results, as it was complex to find robust data to reason about. Indeed, the

case of moving files between folders exemplifies this problem: in the commit data we

would find all the lines of the file shown as deleted, and all the lines written again in

a different file in the new location. Furthermore, some files such as images were not

code and they had to be ignored as well. Another example of these issues is presented by

some files being machine generated code. Too many edge cases are found to be able to

use changes in lines of code to extract meaningful insight.

Finally this data is analyzed by creating charts for the following setups:

• Git activity during the cycle: Git commit count per day during all the develop-

ment year, providing a sense of how much the GitLab platform was used during

the year.

• Git commits per month: Git commit count per month during all the development

year, providing a sense of when the most coding happened in the platform in a

more granular shape.

• Git commits per weekday: Git commit count per weekdays. This could show if

team members tended to code or submit code on specific days of the week, which

could be related to other aspects of the development.

• Git commits per hour: Git commit count per hour of the day. This allowed

observation of at what times of the day did the coding happen more often.

61



CHAPTER 4. RESEARCH METHODS

• Git commit author count and days with commit activity per repository
with more than one author and 1 activity day: In this chart we showed the

repositories where teamwork happened. Repositories with 1 activity day were

excluded as it was thought they do not contain enough meaningful information.

• Git commit author count and days with commit activity per repository
with exactly one author and more than one activity day: In this chart we

showed repositories where individual work happened. Repositories with one activity

day were also excluded.

4.4 The Author’s Role In This Project

During the three years duration of the RoboCup@Home SSPL project, the author of this

manuscript, Sammy Pfeiffer, had the role of software development lead.

Sammy lead the software development process for the competition and additionally

acted as team leader in some contexts.

Sammy was entrusted to take the architectural decisions over UTS Unleashed!’s

systems, usually discussing with the team in order to reach consensus.

He provided the backend software for the robots to run the latest available software.

For example, making the Robotics Operating System (ROS) framework available for

Pepper. Sammy also took care of the safety and correct functionality of the robots.

In addition, he led the autonomous navigation system, including the mapping, local-

ization and obstacle avoidance enabled navigation.

Sammy mentored and supervised some team members that worked on parts of

the system for which he was responsible. Other team members with a lesser level of

autonomy were also supervised by him to some extent.

In the years 2018 and 2019, the author was a member of the Technical Committee

of the RoboCup@Home organization, participating in the evolution of the competition’s

rulebook.

Finally, his decisions and actions were influenced by his past participation in robotics

competitions, especially in the RoboCup@Home league, and his background working in

the company PAL Robotics developing humanoid research robots. In both scenarios the

ROS framework was widely used.

62



C
H

A
P

T
E

R

5
ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

2017 was the first year of the existence of RoboCup@Home Social Standard Platform

League (SSPL). It was also the first year to participate for the team UTS Unleashed!.
The rulebook for this year1 will be briefly explained.

This chapter follows the structure of the diagram in Figure 4.1 which itself follows the

structure of action research cycles in Figure 2.2. Every action research cycle is composed

of a year of preparation for the competition, participation in it and reflection on the

process itself.

In each section the action research cycle setup is explained: the framework of ideas,

the methodology and the area of concern for that cycle are first discussed as per the

structure explained in chapter 2 and chapter 4. The context for the year follows with its

main themes being the rule and competition changes and the team composition of that

year.

Following, the software development plan is presented. It is analyzed in three

subtopics that will be repeated over every next subsection: team management processes,

team software development processes and technical approaches.

Afterwards, the software development implementation presents the same subsections

but in the context of the plans put in practice and their iterations.

Then the competition participation is showcased, again with the same subsections, in

conjunction with the results, as competition outcomes, for this edition.

1The rulebook is 115 pages long. Even though the reader could benefit from reading it once, in this
work we will explain briefly specific rules when necessary.

63



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

Near the end of the chapter we find the post-competition data collection and retro-

spectives. Here the available data about the year is collected.

At the end of the chapter the reflection section summarizes and discusses the findings

(following again, the same three subsections structure), the new questions that came up

from this and the next steps to follow for the next action research cycle. This leads to the

end with a proposal of guidelines.

5.1 Action Research Cycle Setup

This is the first cycle of action research, documenting the first year UTS Unleashed!

participated in RoboCup@Home SSPL, and the first time its members worked together in

such an activity. The research questions here were relatively fuzzy. The area of concern

was the development of a team and their codebase for RoboCup@Home SSPL.

The questions behind this action research cycle, which shape the framework of ideas,

were:

• What are the processes to set up a new team to compete in RoboCup@Home SSPL?

– What to extract from the rulebook?

– What is important about the robot platform?

– What to look for in the team composition?

– How to choose the Software Stack?

* What programming language(s) to use?

* What frameworks to use?

* What coding standards to enforce?

– How to manage the team?

* How to divide the work?

* How to track the work?

* How to gather feedback?

– How do these questions relate to each other?

The methodology to answer these questions consisted of doing a short research and

discussion on them and then form a short-lived plan to re-evaluate as it was being

implemented. Further questions arose during the cycle and could have made previous

ones irrelevant or requiring a new point of view.

64



5.2. CONTEXT

5.2 Context

As presented previously in the scope section of chapter 4, the context of this cycle/year is

explained in this section. The context includes the specific rules of the competition for

this year and the characteristics of the team.

5.2.1 Rule and Competition Changes

The competition was scheduled for the 25-30 July, in Nagoya, Japan. Providing, from the

reception of the robots at the start of May to the competition, approximately 3 months to

prepare.

Previously, in chapter 3 the set of common elements of the rulebooks are described.

Here the features of the 2017 edition are described. Every action research cycle explains

its context in reference to the previous one.

All teams want to perform well. To do so they must follow the rules and score as high

as possible while avoiding any kind of penalty. Hence, decisions about development and

implementation arise from these rules. Subsequently, it is important to keep these rules

in mind. These are explained below.

5.2.1.1 Competition Organization

Extracted from the 2017 rulebook[95] itself, the competition is organized in the following

manner:

“It is organized in two stages each consisting of a number of specific tests. It

ends with the Finals.

1. Stage I: The first days of the competition will be called Stage I . All qualified

teams can participate in Stage I . Stage I comprehends a set of Ability Tests,

an Integration Test, and an audience demonstration called Following &

Guiding. Those Proficiency Tests (Ability Tests, and Integration Test) are

performed multiple times (See Section 3.7.4).

2. Stage II: The best 50% of teams with full integrated capabilities (after

Stage I) advance to Stage II . Here, more complex abilities or combinations of

abilities are tested. In order to advance to Stage II a team must successfully

solve 3 out of Proficiency Tests in Stage I. The Open Challenge is the open

demonstration in Stage II.

65



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

3. Final demonstration: The best two teams of each league, the ones with

the highest score after Stage II, advance to the final round. The final round

features only a single open demonstration.”

5.2.1.2 Scoring and Penalties

For Stage I “Each proficiency test is attempted three times. The maximum total score is
calculated as the average of the best two attempts for that test”. All tests, except for the

open demonstrations, the tests called Open Challenge and Finals, are rewarded on a

partial scoring basis following the guidelines:

1. Tests are split into designated parts.

2. Each part is assigned a certain number of points.

3. A team that successfully passes a designated part of the test receives points for

that part.

4. In case of partial success, referees (and TC members) may decide to only award a

percentage instead of the full partial score.

5. The total score for a test is the sum of partial scores.

6. Partial scores can be negative (e.g. to penalize failures).

A set of penalties that can be applied to teams exists. Rephrasing from the rulebook,

disregard of the following rules can lead to penalties in the form of negative scores,

disqualification from a test or even from the entire competition:

1. No touching: During a test, the participants are not allowed to make contact with

the robot(s), unless it is in a “natural” way and/or required by the test specification.

Robots are allowed to gently touch objects, items and humans. They are not allowed

to crash into something.

2. Natural interaction: The only allowed means to interact with the robot(s) are

gestures and speech.

3. Natural commands: Only general instructions are allowed. Anything that resem-

bles direct control is prohibited. For example, “Go to the livingroom by turning 180

degrees and moving 2 meters forward” would be forbidden.

66



5.2. CONTEXT

4. Remote Control: Remotely controlling the robot(s) is strictly prohibited. This also

includes pressing buttons, or influencing sensors on purpose.

5. Penalty for inoperative robots: If a team starts a test, but it does not solve any of

the partial tasks (and is obviously not trying to do so), a penalty of 50 points is

handed out. The decision is made by the referees and the monitoring TC member.

6. Extra penalty for collision: In case of major, (grossly) negligent collisions the

Technical Committee (TC) may disqualify the team for a test (the team receives 0

points), or for the entire competition.

7. Not showing up as referee or jury member: If a team does not provide a referee

or jury member (being at the arena on time), the team receives a penalty of 150

points, and will be remembered for qualification decisions in future competitions.

Jury members missing a performance to evaluate are excluded from the jury, and

the team is disqualified from the test (receives 0 points).

8. Modifying or altering standard platform robots: If any unauthorized modification

is found on a Standard Platform League robot, the responsible team will be im-

mediately disqualified for the entire competition while also receiving a penalty of

150 points in the overall score. This behavior will be remembered for qualification

decisions in future competitions.

When a test needs an operator2, the team may request a custom operator (probably a

team member of the robot’s team) but “A penalty may be involved when using a custom
operator”. Elaborating further:

“Automatic Speech Recognition is preferred and any command given to the

robot will given by voice first.

1. Default Operator: The command for the robot is spoken out loud and

clear by the human operator. This grants 100% of the available points for

understanding the command. The default operator may repeat the command

up to three times.

2. Custom Operator: When the robot renders unable to understand the default

operator, the team leader can choose a custom operator can give the command
2An operator is a person that will interact with the robot. This operator could be related to the

competition, e.g. a referee or a team member of another team, or what is sometimes referred as a naïve
user, e.g. a member of the audience.

67



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

exactly as instructed by the referee. Unless stated otherwise, only 75% of the

points are granted. A custom operator may repeat the command up to three

times.

3. Alternative Input Method: When the robot renders unable to understand

the command given by a custom operator , it is allowed to use any alterna-

tive method or interface previously approved by the TC during the Robot

Inspection. No points are scored this way.”

Furthermore, the rulebook adds about manipulation tasks:

“When a human assists a robot in a manipulation task, no points are scored

for manipulating them. However, the referee may grant proportional points

in those cases when the task involves manipulation partially.”

The tests have a time limit, usually 5 minutes in Stage I and 10 minutes in Stage

II but each test can define its own. If a robot performs anything out of time, it will not

be scored, although it may be allowed to continue so the audience, including the other

competing teams, enjoy a full performance of a robot in a test.

5.2.2 Team Composition

The team was composed of 14 people. Team members are kept anonymous throughout

this document. The roles, time dedication, and background of the team members are to

be taken into account. These are presented in Table 5.1.

Two people were dedicated to project management tasks. They were the bridge

between the team and the university and provided their expertise in a variety of topics

but were not engaged in coding.

One person was assisting with media: photography and videos. This person had no

coding experience, however, came to help when the team needed a ‘naïve’ (no previous

experience with the robot) user.

Then, eleven people were in the project with coding roles. Some interviews and

coding exercises were set up to roughly assess their coding skills. Of those, four had over

five years of professional coding experience (including the author, the Lead Developer),

one had around two years of coding experience, two developers had over a year of

coding experience, and two developers had completed introductory programming subjects.

Finally two team members had basically no coding skills.

68



5.2. CONTEXT

# Team Role SW Expertise Background Time Dedication

1 Project Leader – Lab Director, CS & AI On demand

2 Senior Project Manager – IT Project Manager 14h/w

3 Assistant – Media Specialist On demand

4 Lead Developer Expert Robotics & CS 32h/w

5 Developer Expert Computer Science Variable (<20h/w)

6 Developer Expert Lab Co-Director, CS & AI Variable (<20h/w)

7 Developer Expert Web Developer & IT 20h/w

8 Developer Advanced Computer Science 24h/w

9 Developer Moderate UX & Multimedia 14h/w

10 Developer Moderate CS & AI 15h/w

11 Developer Beginner Mathematician Variable (<10h/w)

12 Developer Beginner IT & CS 10h/w

13 Developer None Computer Science 14h/w

14 Developer None IT & Electronics 30h/w

Table 5.1: Members of the UTS Unleashed! team in 2017.3

Most developers were PhD students. Additionally, there were a couple of staff mem-

bers. Their profiles, interests and backgrounds differed. However, a shared characteristic

of most team members was strong inter-personal skills.

On the robotics front, four people had robotics experience: one being an expert with

professional experience (the author), another one was acting uniquely as a project

manager, and another one had mainly experience in simulation.

On RoboCup experience, four people also had experience: one having multiple years

of experience in RoboCup@Home and RoboCup@Rescue, two had several years of expe-

rience in RoboCup Standard Platform League, and one had experience in RoboCup 3D

Simulation League.

The plan taken from this data was to gather the team availability in hours/week and

in which days of the week they could come work to the lab. The time commitment of the

3CS stands for Computer Science, IT stands for Information Technology, UX stands for User Experience,
AI stands for Artificial Intelligence.

69



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

team members was found to be neither equal nor constant, but it was a useful guide.

With the prior information, the division of work was done and training sessions were

organized to help team members get up to speed for the development.

5.3 Software Development Plan

This section explains the software development plan for this edition of the competition.

It includes the team management processes, the team software development processes

and the technical approaches planned.

Particularly in this first year of competition, there was only a short time to prepare

for the competition, uncertainty about the team composition, the competition itself, and

the robot. Plans were mostly exploratory and subject to change.

5.3.1 Team Management Processes

Choices about the team management related topics were based on the experience of team

members in an ad-hoc fashion. They were expected to evolve as required.

5.3.1.1 Team Management tool

For team management, given some previous expertise by the project managers with

the platform for another project, Asana was initially used as a tool to organize tasks

to be done. The tasks were divided in the following set of topics: project management,

development, RoboCup tests, and training. An initial set of tasks was created by the lead

developer and the viability of the platform was evaluated as we used it.

5.3.1.2 Team Meetings

Weekly team meetings were setup where each team member would showcase their

progress, problems would be raised and general training sessions would be performed.

Everyone was encouraged to stay working in the lab the day of the meetings to increase

team work and aid in becoming familiar with each other.

The day and time for the meetings was chosen to be Tuesdays at 11AM as it was

found, after a short survey, to be the slot where everyone could attend.

70



5.3. SOFTWARE DEVELOPMENT PLAN

5.3.1.3 Task Assignment

Topics to work on were proposed, and from them, tasks to work on were created. Team

members were encouraged to pick the tasks that they were most interested in, either

because of previous experience or because they wanted to learn more about them. Most

team members did not express interest in doing any specific kind of task. In those cases

tasks were proposed to members. The lead developer perceived this as a manifestation of

a lack of proactivity.

5.3.2 Team Software Development Processes

This section presents the practices and tools regarding how the team was to develop

software.

5.3.2.1 Coding Standards

An optional tutorial on Python, its coding style, and naming standards was held shortly

after the development started to introduce the team to the language. The lead developer

believed that due to the short time until the competition, it was not advisable to put

much pressure on obeying coding style and coding standards. It was better to have some

code that accomplished something than non-functional beautiful code.

5.3.2.2 Coding Tools

Some coding practices were adopted as they became necessary, such as a centralized code

repository. GitLab was chosen for this job as explained in chapter 3. Using continuous

integration and continuous deployment (CI/CD) was also discussed as nice to have but

not enforced.

As for code editors/Integrated Development Environment (IDE) Sublime Text 3 with

Python support4 was proposed.

4Automated code formatting, syntax highlighting, and code completion were features required by any
editor.

71



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

5.3.2.3 Social Coding Practices

Expert developers would supervise or practice pair programming5 from time to time

with less expert team members to share knowledge, increase effectiveness, and improve

code quality.

5.3.3 Technical Approaches

The technical approaches, or specific decisions made during the competition itself, are

discussed in this section. These are related to the RoboCup@Home SSPL itself and

describe the competition requirements, the robot’s capabilities, and the software stack.

5.3.3.1 Competition Requirements

The development lead read the rulebook carefully for this first year (2017) as software

development started, and invited the team to do the same as all team members needed to

be familiar with it. From this initial reading, a set of tests that seemed the most likely to

be able to be implemented in time, and that would provide the highest chance of scoring,

was chosen. These were chosen by the lead developer in consultation with the team. The

set was not final, but was tightly related to the skills that the robot could perform with

minimal development.

Only tests from Stage I were chosen initially, because if insufficient points were scored

in Stage I, any effort invested in developing Stage II tests would be wasted. Additionally,

it was believed that if the robot skills developed for the tests in Stage I were general

and robust enough, implementing Stage II tests based on those Stage I skills should be

possible in a shorter timeframe. The chosen tests in Stage I were:

• Robot Inspection: Not exactly a test, but a pre-requisite to participate in the

competition. The robot has to navigate safely some distance, stop when encounter-

ing a referee blocking its path, then present itself to the referee. Finally, the robot’s

Emergency Stop buttoni, which effectively shuts down the electrical current on

the Pepper robot, is pressed to confirm it is active and working. A team member

also explains any meaningful detail about the robot’s tablet interfaces or External

Computing devices used by the team.

5Different interpretations of what does pair programming consist of exist. The lead developer under-
stood it as two programmers working together in one computer. One of them writes the code and explains
it, meanwhile the other reviews every line and asks questions.

72



5.3. SOFTWARE DEVELOPMENT PLAN

• Cocktail Party: The robot has to learn and recognize previously unknown people,

and fetch drink orders. This test focuses on human detection and recognition, safe

navigation and human-robot interaction with unknown people. There is a party

room with guests, the robot must navigate there and identify guests wishing to

order a drink. It will take the guests’ orders and go to the bar and ask the barman

for those drinks, then return to the guests with those drinks.

• Speech and Person Recognition: The robot has to identify unknown people

and answer questions about them and the environment. This test focuses on

human detection, sound localization, speech recognition, and robot interaction with

unknown people. After stating that it wants to play a riddle game, the robot turns

around and waits for 10 seconds while a crowd is assembled behind it’s back. When

the time elapses, the robot must turn around and find the crowd. After turning

around, the robot must state the size of the crowd (including male and female

count) and request for an operator (e.g. “Who wants to play riddles with me?”). The

crowd will move and surround the robot, with the operator standing directly in

front of the robot. The operator will ask 5 questions. The robot must answer the

questions without asking for them to be repeated. Afterwards the Blind Man’s

Bluff / Circling Crowd game will start. The crowd will reposition, making a circle

around the robot. A random person from the crowd surrounding the robot will ask

a question. The robot may turn towards the person who asked the question and

answer the question. Or directly answer the question without turning. Or turn

towards the person and ask them to repeat the question. This process is repeated

with 5 (possibly) different people. Each option is scored differently.

• Help me Carry: The robot’s owner went shopping for groceries and needs help

carrying the groceries from the car into the home. The robot starts in a room in

the arena. An operator steps in front of the robot and tells it to follow them to the

car. The robot has to memorize the operator, then follow them. The operator will

walk naturally to the car (leaving the house). Upon arrival at the car, the operator

will indicate to the robot that they have arrived. At this point the robot is asked

to look for help to carry the groceries (e.g. “Look for Louise in the Kitchen and ask
her to help us”.). On the way back to the house a person will cross the path of the

robot and another person will step in front of the robot, stop and ask for the time.

The robot then must find the person in the room, memorize this new operator and

guide this new operator to the car. This new operator will get distracted on the way

73



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

and the robot must re-gain the operator’s attention.

• General Purpose Service Robot (GPSR): This test evaluates the abilities of

the robot that are required throughout the set of tests in Stage I of this and previous

years’ rulebooks. In this test the robot has to solve multiple tasks upon request.

That is, the test is not incorporated into a (predefined) story and there is neither a

predefined order of tasks nor a predefined set of actions. The actions that are to be

carried out by the robot are chosen randomly by the referees from a larger set of

actions. These actions are organized in three categories with different complexity.

For example, valid commands are “Tell the time to Ana in the bedroom”, “Tell me
how many beverages on the shelf are red” or “Follow John (John’s location is not
specified)”.

• Poster Session: Each team presents a poster with their research. This is not

exactly a test, but it is mandatory and it is scored.

Furthermore, from analyzing this set of tests, a set of skills that the robot needed to

be able to perform was developed. These are listed in the next section.

Finally, the team delayed allocating development tasks to team members until suffi-

cient knowledge of the robot’s in-built skills and the development tools to be used, had

been acquired.

5.3.3.2 Software Stack

The lead developer, taking into account the profile of the team, the goals to be accom-

plished, the previous experience of the team, advice from other experts, and the fact

that there would not be enough time to change, decided the operating system and the

programming language to use as well as other basic software. The chosen software

stack is summarized in Table 5.2. Further description of the elements was explained in

chapter 2 in chapter 3.

There were a large amount of unknowns to explore. Any time a new robot is used,

both the hardware and the software necessary to access that hardware, must be analyzed

to understand the capabilities of the platform.

A set of tasks tightly tied to the competition requirements were created:

• Evaluate native audio processing capabilities: Automatic Speech Recognition (ASR),

Text To Speech (TTS), Sound Source Localization (SSL) and Natural Language

Processing (NLP).

74



5.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

Category Name Comments

Operating System Ubuntu 16.04 Latest stable Ubuntu

Programming Language Python Easy to learn, thriving ecosystem

Middleware/Framework ROS Widely used in robotics

Pepper Framework NaoQi Necessary to use the platform

Table 5.2: Software stack chosen to work for the year 2017. It became the base for the
next years of development too as discussed in chapter 3.

• Evaluate Computer Vision capabilities: Face Detection, Face Recognition, Gender

Detection, People Detection, Tracking, Waving Recognition, Age Detection, Object

Recognition.

• Evaluate Human Robot Interaction / Human Computer Interaction: Face Enrol-

ment, Tablet Interface, Gesture to Speech coordination, Dialog Design.

• Evaluate Navigation and Planning: Mapping, Obstacle Avoidance Navigation,

Cross the Door Navigation6, Following a person Navigation7.

• Evaluate the Choregraphe suite.

• Evaluate the Robotics Operating System (ROS) support for Pepper.

These tasks were distributed to the team members by the development lead with

help of the project manager by discussing with them the scope and feasibility of these

tasks. These tasks required weekly progress reports in the team meetings.

5.4 Software Development Implementation

This section discusses how the software development plan went in practice.

5.4.1 Team Management Processes

The team had a short preparation time of around three months, hence, many changes

happened at the start of the development as a consequence of discovering how the team
6Related to the rulebook, some tests require the robot to start the test by crossing a door.
7Related to the rulebook, some tests require the robot to follow a person somewhere.

75



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

worked best. From then on, the team stuck with those practices, as no further need to

change was felt necessary.

5.4.1.1 Team Management Tool

As previously explained in chapter 3 the team switched to Trello after roughly a month

of Asana usage. It was used in a similar fashion as Asana but perceived as more user-

friendly by some team members and the lead developer.

A set of boards were opened with the topics being: Pepper Robots, Robot Skill Devel-

opment, RoboCup Tests, Team and Research. This illustrates the intention to work out

on the one hand how the robots worked, how to code skills for them, how to integrate

these into actual RoboCup tests, and on the other hand topics about the team itself and

research that is related to all these elements.

In practice, only the boards RoboCup Tests, Robot Skill Development and Team were

used. This will be analyzed further in a later section.

A whiteboard with post-its also was used just before going to the competition when

all the team was working together in the lab every day.

5.4.1.2 Team Meetings

Team meetings stayed weekly on Tuesdays. Sub-teams appeared for different tests, they

made their own weekly schedule.

The agenda for every meeting was filled by every sub-team leader before the meeting,

everyone was expected to read it before attending the meeting. This allowed the meetings

to be kept short and focused, as they were meant to be used to raise problems and ask

for help, instead of just explaining what everyone had done.

By the last weeks before the competition, the team was mostly working together in

the lab everyday. So meetings happened naturally as needed.

Team meetings were held with one person leading the conversation. Initially, every

person was asked about the progress of their tasks and there was open discussion to

learn about everyone and their work. Later on, the conversation was focused on specific

RoboCup test development, and as the team was divided into small sub-teams working

on each test, a spokesperson outlined progress, findings and issues. When people were

developing skills or features aside of a test, they would speak separately. Quick tutorials

with examples were given when a piece of code to be used by everyone was ready (or at

least ready to be tested by others). Some meetings were reported to be too long.

76



5.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

These meetings evolved into RoboCup@Home fake tests sessions. Initially people

that had a prototype of a test would just run it, then more tests joined. Additionally,

more structure, as if it was the competition, was added. For example, a schedule with

time for setup and an exact time for each test to start, with little time to prepare, was

added. Finally, the concept of Operational Readiness Tests (ORTs) emerged. In these, the

team would practice, as close as possible, the scenario of arriving at RoboCup, doing the

setup, and running all the tests in a tight schedule. A team member acted as a referee by

scoring and following the rules strictly.

In order to make these ORTs as realistic as possible a set of low height walls and

doors were manufactured to create a realistic arena in the lab.

One ORT happened out of the lab in a different venue which included transporting

the robots there, setting them up, setting up a new arena that was never seen before,

dealing with networking issues, dealing with only having 2 robots for all the team to

prepare and test. In general it simulated the stressful conditions of the competition. This

showed where the team was overconfident and what needed to be addressed clearly and

in practical fashion.

This first off-site ORT is an important moment of the project. It became the best

tool to identify the real state of the development of the project. It is further used in the

following years of development.

5.4.1.3 Task Assignment

During the development the lead developer noticed that some members were struggling

to get up to speed on coding their tasks, even after training sessions and one-on-one

sessions. Tasks involving less coding were assigned, but as the deadline to the competi-

tion approached, it became increasingly difficult to keep an appropriate ratio between

management and coding for some team members. In the final weeks leading up to the

competition, these people were not assigned tasks.

5.4.2 Team Software Development Processes

While it turned out that team members found and used their own ways to work, there

were partial adoptions to the proposed processes and tools.

77



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

5.4.2.1 Coding Standards

Most team members did not follow Python coding standards. This became an issue when

team members wanted to share code, as they had a hard time understanding each others

code. Differentiating between functions and classes was one major issue.

The members with more expertise tried to fix these issues and give examples when

possible, but everyone was busy “just making things work”.

5.4.2.2 Coding Tools

Team members embraced command-line git and GitLab to save their work. Their usage

of git was mainly to push their latest changes when they had finished a feature. Commit

comments were of low quality. Multiple occurrences of “previous version” files committed,

instead of using git features to be able to go back to previous versions.

As code editors most team members adhered to the usage of Sublime Text with Python

plugins, however, some could not make autocompletion work. Similar issues arose during

the year showing that installation issues were common.

Furthermore, as deployment strategy in the robots, some people used rsync8, others

just copied the files by hand via scp9 and others used some File Transfer Protocol

(FTP) graphical client. All the methods had their positive and negative points. Everyone

deployed in their own folder with their experiments. Only expert team members deployed

code that was common to all team members, like system dependencies.

The robot itself behaved in unreliable ways. Errors appeared sporadically without

seemingly reproducible reasons. Internal modules of the robot would stop working

without reporting an error. Some modules even would start by what team members

jokingly referred to as “magic”, and an “aliveness” mode of the robot, which would fight

for control of the robot body with any code a team member was running.

State machines within the library State MACHine library (SMACH)10 were used to

orchestrate RoboCup tests. Some boiler-plate code was provided and was mostly well

embraced by the teams. Other team members used plain Python scripts, which also

8Rsync (remote synchronization) is a fast and versatile command line utility that synchronizes files
and folders between two locations over a remote shell, or from/to a remote Rsync daemon. It provides fast
incremental file transfer by transferring only the differences between the source and the destination. [96]

9SCP (secure copy) is a command-line utility that allows you to securely copy files and directories
between two locations. [97]

10SMACH is a Python library to create hierarchical state machine commonly used for rapidly imple-
menting complex robot behaviours.

78



5.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

worked, but were harder to integrate into other people’s work. Mixed approaches were

also used.

5.4.2.3 Social Coding Practices

Team members shared code by using git submodules11. In their RoboCup tests, team

members would include a submodule folder pointing to the version of a library that

was developed in a different repository with the exact version that they tested that

had worked for them. This practice was used as a workaround for other team members

breaking APIs or functionality when they needed to update these common libraries.

These issues and workarounds showcase the issues that the team faced when they

needed to integrate code between them.

Working in branches12 and creating Pull Requests13 was proposed, but some team

members said it was too complicated, so it was not pursued further.

README files were promoted as a way to document and give examples of usage in

the repositories.

Team members worked in pairs and practiced pair programming occasionally. Most

of the time two people were needed to test the robot. This was because of safety concerns

(both for the robot and the users to some extent: the robot could knock into things or fall

over) and because of the capabilities needed to be tested, for example, following a person.

Testing was mostly done on the robots. No working simulation was available. Most

team members were not trained to use tools that saved sensory data from the robot and

to code using this test data. If they had been trained, it would have avoided wasting too

much time dealing with issues with the robot unrelated to the problem they were trying

to solve.

Soon the importance of testing full RoboCup tests arose. When only testing individual

abilities of the robot, it used to perform well enough. But when mixing all the skills

together in a RoboCup test, unexpected problems arose. These problems were different

in nature. Not only coding mistakes or bugs, but also expectations and assumptions that

were wrong once tested. Also, lots of mistakes were made because of team members doing

a lot of manual steps in order to be able to run a RoboCup test. For example, launching

11Submodules allow you to keep a Git repository as a subdirectory of another Git repository. This lets
you clone another repository into your project and keep your commits separate. [98]

12A branch is a pointer to a snapshot of your changes, multiple branches can coexist and be merged
together when desired.

13A Pull Request is a mechanism to notify a team or collaborator that some changes to a codebase are
complete and they are ready to be merged definitely into the codebase.

79



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

the services that provide navigation or speech recognition capabilities were sometimes

forgotten to be run at the start of the test.

The focus shifted into trying full RoboCup tests from Stage I, and fix problems as

they came up. Subteams working on a test tried to have all the parts of a RoboCup test

ready so that it was possible to perform all of it. But, as the different parts that were

developed were not robust enough, it was decided to put all the team’s efforts into having

the elements that brought it to the first scoring part of the test completed first. Only

when that worked most of the time, would they move forward.

Some testing sessions in the lab were done with a person acting as the referee and

being strict with the rules. While this provided good feedback, the team left many aspects,

that in the competition were variable, as static. As mentioned previously, these testing

sessions evolved into something similar to the RoboCup competition, getting the name

of Operational Readiness Tests (ORTs). The team would do a complete new setup (as

if the team was in the setup day of the competition), with a new home environment to

map, new names for people, new objects, a new WIFI network to work with, a person

acting as a referee, having slots of time for setup, and strict slots of time for testing.

These sessions were found to provide the most realistic feedback as to how the team was

going to perform in the competition, and they helped prioritize critical elements to be

developed and to make robust.

5.4.3 Technical Approaches

The capabilities of the available tools were discovered, providing mixed results.

5.4.3.1 Software Stack

The tasks distributed to the team members to evaluate the capabilities of the robot had

made good progress. The findings were discussed in team meetings, and actions were

taken to take advantage of the useful components and further research was identified

for action in others.

It was discovered that the Pepper robot lacked some default capabilities that were

showstopping. The main missing capability was autonomous navigation, composed of

mapping and navigation. In order to fill this gap, and benefit from all the extra libraries

and tools that this would provide, Robotics Operating System (ROS) was made available

for the platform. Because the default ROS support for the platform was so poor, a full

80



5.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

compilation of ROS and its dependencies was needed14. A project called pepper_ros_setup
was created with a set of bash scripts which manually downloaded and compiled all

dependencies and packages. The process was complex to manage, with long compilation

times (due to large packages such as GCC15 itself, and the need to compile it in a Virtual

Machine) and a long list of dependencies making it regrettable not having a package

manager that would deal with most of this work.

The Python Application Programming Interface (API) of the robot was found to

lack in-place documentation, so a package called QiMate was created to fill this role

and also provide a layer of customization between our code and actual API calls to the

robot. Additionally, it aimed to make the usage of the API easier when possible. The

framework itself provided some tools that were found useful, such as a global shared

memory where to read and write. Text to speech and speech recognition were found to

perform adequately.

The different sensors of the robot performed worse than expected in the short tests

that were performed. This made it necessary to keep trying new techniques to achieve

acceptable performance of the robot in different test elements, like people tracking or

robot navigation.

The graphical programming suite Chroregraphe was found to not fulfill the team’s

needs. It was found to perform what were regarded as undocumented actions that left

the robot in a state where tests could not be repeated until the robot was rebooted. Also,

one single instance of Chroregraphe connected to the robot blocked the WIFI network

bandwidth. Thus, and as a solution, a Python-centric approach was taken.

Further tests with the platform confirmed that the Central Processing Unit (CPU) of

the robot had low computing power, implying that extra work was needed to be done to

make different parts of the system work together without starving the CPU.

Taking advantage of having team members with an interest in Human Robot Interac-

tion (HRI) and user experience design, a sub-team was established to develop a tablet

interface to enable interaction with users, test robot features, and debug and launch code

without the need of an external computer.

Moving the robot, by pushing it, was problematic as the robot had safety checks in

place for sudden movements and it would stop, often. Also, pushing the robot was found

to make the base slide on the floor and it would lose track of its odometry, which made

14Usually installing pre-packaged and pre-compiled binaries is done in operating systems like Debian
or Ubuntu.

15GCC is the GNU Compiler Collection, a well known, and large, compiler system that supports various
languages like C, C++, Fortran, ADA or Go.

81



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

anything related to mapping and navigation perform worse. Given that, an innovative

and original way to drive the robot called ‘MotorBike’ mode was developed. This mode

allowed it to be driven and steered by positioning its arms to resemble motorbike

handlebars and twisting its hands like a motorcycle throttle.

To collaborate on the development of the RoboCup tests themselves, the team decided

together to use a single repository containing the tests implementation, with git submod-

ules storing their dependencies. This was because team members manifested that dealing

with common dependencies that broke often as they were in constant development was

problematic. They initially dealt with it by copy-pasting the code that they needed which

brought many more issues. Git submodules allowed developers to add a subfolder with a

specific version of a library to be used just by one specific RoboCup test. When needed,

one could just try to update the submodule version and check if everything was working.

If it did, the submodule would be updated to point to that new version. This was an

improvement, but it came with its own problems as it was frequently forgotten to update

the submodules. Other issues arose from this approach, as some tools needed to be able

to perform many different behaviors depending on the requirements of each developer.

When that became an issue, tools were duplicated and the team ended up with many

versions of the same tool. There was a clear lack of structure, but this was to be expected

as there were just too many unknowns at the start of the project. Working with branches

was found hard, it involved learning more about git than the team was comfortable with.

82



5.5. COMPETITION PARTICIPATION

5.5 Competition Participation

The development lead felt confident about being able to perform adequately in the tests

the team had prepared for, but expected other teams to also be well prepared.

5.5.1 Team Management Processes

The focus of the processes during the competition was interpersonal interaction and

feedback.

5.5.1.1 Team Management Tool

A whiteboard with post-its was used over Trello, avoiding any network requirement for

task management. The whiteboard had three sections: To Do, Doing, and Done. Once

someone took a task, this person would add their name to the post-it. The whiteboard

provided easy and quick task management.

Every test was recorded in video by at least one team member, if not more, to be able

to review how it went. It was also a useful tool to show the referees any detail that they

may have missed which may affect the scoring.

5.5.1.2 Team Meetings

A morning meeting to plan what to do during the day was held. A checkup before lunch

to see how things were going followed. Another meeting before leaving the venue to plan

the next day finished the day.

Short meetings to be on the same page when meaningful events happened were also

held. For example, when some capability of the robot was seen as working well or when

it was to be assumed a capability would not work, or when the team competed in one

test to share the results and experience.

A project manager was dedicated to support only. This person took care of duties like

having drinks and snacks for the team members. Organizing lunch and dinner. Making

sure people had enough rest. In general, the project manager dealt with situations that

were not about the competition in itself.

All team members made an effort to make best use of the available work time at the

venue. In practice this was from 9AM to 11PM every day, which made the team members

become increasingly tired as the days advanced.

83



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

5.5.1.3 Task Assignment

Task assignment happened by taking post-it notes from the whiteboard from the To Do

column to Doing while adding the name of who was working on it. Once done it was

moved to Done and the person would pick another task to do.

Tasks that would block the work of others would be prioritized. For example, the

robot needed to have a map of the arena for the tests that made use of it, so this was the

first thing to do once the arena was ready to be used.

There were time slots available for each team to have exclusive access to the arena.

These were planned to be used to their full extent. These time slots presented the best

opportunity to build maps with a clean arena so no obstacles would be seen by the sensors

of the robot, for example, the legs of other teams members.

The project manager took care of checking that the robots were charging when they

weren’t being moved. Having a robot run out of battery when the robot was to compete

was to be avoided.

Team members did their best to use all their available time and energy communicat-

ing to each other when they were ready for a new task.

5.5.2 Team Software Development Processes

The major philosophy here was to avoid developing new code, but instead to configure

and adapt existing code. Furthermore, “hack” whatever was needed.

5.5.2.1 Coding Standards

Coding standards were pretty much ignored. Committing often was favoured over any

other concern.

As the team aimed to avoid developing new code, fixing bugs and workarounds was

the most common kind of coding performed during the competition.

The team only had enough code for Stage I, so in reality, a lot of fast prototyping or

“hacking” happened to achieve components that performed adequately.

5.5.2.2 Coding Tools

The team prepared scripts to setup the rented robots automatically.

A local GitLab server was also ready to be used in the case of the internet not working

or being too slow.

84



5.5. COMPETITION PARTICIPATION

To deploy each teammate’s work, each team member would create a folder in the

robot and work in it to avoid breaking other team member’s setups.

Everyone had their own laptop that was preconfigured before coming to the competi-

tion.

5.5.2.3 Social Coding Practices

The team aimed to maximize the usage of the robots and the usage of the arena while not

letting people be idle without reason. However, at the same time, allowing people to have

a break by organizing the schedule was important. This was achieved by communicating

between the team members as events and milestones happened, such as a system being

ready for testing or a RoboCup test being finished. Whenever possible, testing with the

robot was done in pairs so one person could be actively working on their laptop and the

other one would help to operate the robot. When a team member needed to focus deeply

in a task they would warn the team about it and they would then not be interrupted.

5.5.3 Technical Approaches

The reality of the competition pushed all the prepared software to its limits, and encour-

aged the development of smart tricks to get components up and running quickly.

5.5.3.1 Software Stack

The team arrived at the competition with the tests for Stage I prepared. Only one

test was partially prepared for Stage II, Enhanced Extended General Purpose Service

Robot (GPSR) (EEGPSR), as it was an extension of GPSR. Finally, nothing was prepared

for the Finals.

The competition network went down a few times, but most of the time it performed

correctly. The lead developer expected it to not operate satisfactorily from the experience

in other years participating in the competition, so efforts to support external computing

were not done during the development time. The short time to prepare for the competition

also implied that investing in this front would take time off from other necessary tasks.

The software systems were believed to be ready for the competition thanks to the

ORTs held. But they didn’t perform accordingly. Summarized comments from the team

members are found in the retrospective section.

Localization didn’t work at all in the venue, which made the rest of the navigation sys-

tem unstable. The navigation system performed extremely poorly. During the ORTs the

85



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

robot could successfully navigate around the map. But in the competition, workarounds

were coded for it to at least reach the critical parts of the tests, in order to score.

Moreover, speech recognition performed poorly. The noise levels were high, even

higher than expected. There was a discussion between some team members about how it

was felt that participating in the first test of the day, being the first team to participate,

helped to have a lower level of noise. Certainly, in comparison to tests in the evening

where more public would visit the venue and other competitions were happening.

Furthermore, perception performed worse than expected. The illumination varied

during the day and night given a set of big windows were present. Also the lighting was

different to the conditions found in the lab. This was a known problem, but only limited

time could be invested in it.

Other aspects of the system were insufficient. There was a lack of monitoring capa-

bilities for the onboard computer resources. The team didn’t have a system capable of

storing sensor data from real tests in order to debug what happened after a run, the

WIFI and internet connectivity were not taken advantage of, and there was a lack of test

scripts to test separate parts of the system with ease.

However, some aspects did perform satisfactorily. The HRI experience and the robot

tablet interface was useful and regarded positively, not only by our team members by also

by other teams. The team’s ability to code, test and integrate features quickly provided

good results too, as the in-situ development for the Open Challenge and the Finals tests

showcased. This capability was based on the libraries, tools and the teamwork built

during development phase.

5.5.4 Results: Competition Outcomes

The results for UTS Unleashed! in Stage I can be seen in the scoring sheet in Figure 5.1.

The team was second at that point. The team only scored 0 in the Help Me Carry test,

but its difficulty can be perceived by only two other teams scoring on it, and they scored

low (5 and 10 points out of a maximum of 200).

86



5.5. COMPETITION PARTICIPATION

Figure 5.1: 2017 scoring sheet of RoboCup@Home SSPL Stage I. The team was second at
that point.

UTS Unleashed! went into Stage II unexpectedly. The team decided to prepare the

Open Challenge and the EEGPSR test, as it was an extension of the GPSR test that

was prepared for Stage I. The team didn’t have the appropriate base skills to be able to

implement the other tests in time. For the Open Challenge there were projects that were

not used during the competition for other tests but were developed during the year as

tools. These were unified in a presentation and made into a demo for the Open Challenge.

Figure 5.2: 2017 scoring sheet of RoboCup@Home SSPL Stage II. The team was second
at that point.

From this point the team qualified for the Finals. This was also unexpected. The

team quickly hacked up a demo with some other projects that were also unused during

the competition.

There is no scoring available for the Finals (it was not released), but the final

classification, and awards can be found in Figure 5.3.

87



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

Figure 5.3: 2017 final classification scoring sheet of RoboCup@Home SSPL Stage II. UTS
Unleashed! was second and won the Human-Robot Interface award.

UTS Unleashed! earned 2nd place after team AuPair. The team also won the best

Human-Robot Interface award as a result of the tablet interface and well-curated dia-

logues.

The team gained considerable experience about the competition, Pepper’s capabilities

and themselves as a team. From the winners, team AuPair, the possibilities of taking ad-

vantage of the latest machine learning advances in combination with external computing

via WIFI was learnt.

88



5.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

5.6 Post-Competition Data Collection and
Retrospectives

Statistical data was collected from the Trello boards and from the Git repositories. A

retrospective document was also collected from the feedback of the team members, these

are discussed in this section.

5.6.1 Statistical Data

Every year the available data from Trello and Git was analyzed as explained in chapter 4.

5.6.1.1 Trello Cards Data

Overall, the Trello data for this year showcases continuous work during the development

months, May to July. Activity in Trello relates to the team’s meeting day of the week. As

the competition approaches, Trello is used less with most activity shown to happen in

developing RoboCup Tests.

Steady work can be observed week by week and month by month in Figure 5.4.

Figure 5.4: Activity (Trello actions) on the year 2017.

89



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

Analyzing what kind of actions were triggered the most in Trello in Figure 5.5, the

most common usage was to update cards with content and commenting on them. Creating

them, adding team members to cards, and adding attachments were the following most

used actions. Additionally, cards have a long life presenting updates and comments.

Figure 5.5: Distribution of Trello actions types on the year 2017.

In Figure 5.6 we can observe that the closer the competition was, the less Trello

activity happens. This matches with what could be observed during development, as by

the end, team members would just work together and a physical post-its board would

be used by the last month to quickly work on tasks. Also in May, the first month, where

more planning and discoveries were made, the largest amount of activity was observed.

90



5.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 5.6: Distribution of Trello actions by months on the year 2017.

In Figure 5.7 we can observe how Tuesday’s were the days with most Trello activity.

This matches with Tuesday’s being the day where the team would have meetings, thereby

Trello was updated accordingly.

Figure 5.7: Distribution of Trello actions by weekdays on the year 2017.

Moreover, by checking the hours with most activity in Figure 5.8, activity tended to

start at 10AM and ending by 6PM. Peak activity was shown in between 4PM to 6PM

91



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

which could have to do with team meetings finishing around that time. Additionally, the

Trello activity did not stop until past midnight.

Figure 5.8: Distribution of Trello actions by hours on the year 2017.

Furthermore, by checking which Trello boards had more activity, the most worked

topics could be investigated (with the supposition that there is a direct correlation

between those aspects, which we can presume but not be sure about without deeper

analysis, e.g. reading each Trello card). We observed that the RoboCup Tests board

had the most activity which made sense as the priority was to have tests working for

the competition. The boards Team and Robot Skill Development followed in activity.

The Pepper Robots board had the least activity, probably caused by not having time to

analyze the platform deeply enough, or, by the tasks in that board being mixed up with

development for RoboCup tests or specific skills of the robot.

92



5.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 5.9: Distribution of Trello actions by Trello board on the year 2017.

Finally, checking the distribution of authorship of the actions in Figure 5.10 (anonymized)

there was one author having most activity (most probably creating and updating most

cards in the team meetings) but the rest of the team followed a smooth decline in

contributions.

Figure 5.10: Distribution of Trello actions by anonymized authors on the year 2017.

93



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

5.6.1.2 Git Commit data

The Git data showed steady activity, increasing as the competition got closer, with even

more activity in the competition. Significant teamwork was shown. There were some

tasks that needed a lot of work with only one expert able to take care of those jobs.

From the Git repositories point of view we observed steady activity (measured by

number of commits per day) since the start, as can be seen in Figure 5.11. As a curiosity, it

was easy to observe a decline in commits on the days previous to travel to the competition

(the competition started on 25th of July up to the 31st of July) and a large increase in

the amount of commits during the competition.

Figure 5.11: Activity (commits per day) on the year 2017.

Moreover, looking at the commits divided by months on Figure 5.12 it became appar-

ent that there was a similar amount of activity in May and June, and a peak in July. The

team did a considerable push in the last weeks and during the competition.

94



5.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 5.12: Commits per month on the year 2017.

In contrast with the Trello data where most activity happened on Tuesdays, the team

meeting day, checking the commits by weekday in Figure 5.13, shows a steady amount of

commits every day of the working week, with some activity also on the weekends.

Figure 5.13: Commits per week day on the year 2017.

The commit activity per hour of the day was similar to the Trello data as can be seen

in Figure 5.14. Activity started around 9AM until peaking at 6PM. Then it continued

95



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

until midnight. We observed two peaks: at 1PM and 6PM. These match with the team

members going for lunch or leaving for the day. Some activity happened even during late

hours in the night, showing a rather unhealthy but probably necessary push to finish

work.

Figure 5.14: Commits per hour on the year 2017.

Moreover, to analyze teamwork the plot in Figure 5.15 showcases the name of the

repositories with, in blue, the number of authors for a given repository and, in red, the

number of days with commit activity for that repository. The chart is sorted by days

of commit activity and it is filtered by only showing repositories that have more than

one author and more than one day of activity. This way, we avoid taking into account

repositories that were not meaningful. We can observe in this chart that there was

a smooth decline in activity in the repositories which followed closely the number of

authors. Additionally, by checking the name of the repository and analyzing its context,

insights were extracted:

• Most of the team participated in updating the wiki that hosted documentation for

the team. Moreover, it had the most activity days, showing that documentation

was important.

• The next item with a similar amount of participation and activity was the project

96



5.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

called robocup_tests which contained the implementation of most Stage I tests.

Hence, implementing the tests was important, and it was done as a team effort.

• UTSUnleashedTools and gpsr contained code that was used in multiple places

in the codebase. They show a lot of activity (to appeal to people’s needs and bug

resolution) or many authors (everyone added the parts they had expertise on).

• Both pepper_move_base and people_tracking_stuff were related to the robot naviga-

tion, a important skill needed for the competition. Less authors were present here

(probably related to the expertise needed to work on this field) but a considerable

amount of activity was shown.

• It is meaningful to also mention the pepper-monitor repository. It showed 9 days of

activity by two authors. The team considered it important to have a satisfying user

experience and the tablet interface was a key element of this, as shown in these

statistics.

• The rest of the repositories did not present meaningful data. qimate provided a

common interface building up on the robots qi API and stuffed_pepper built on

top of that to provide easier-to-use versions of the robot API. naoqi_driver was the

ROS driver from the manufacturer of the robot which needed some patching for

our use-case.

97



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

Figure 5.15: Number of authors and days with commit activity per repository, sorted by
days with commit activity and filtered by more than 1 author and more than 1 activity
day.

On the other hand, we analyzed the work that was done individually instead of by

teamwork. This can be seen in Figure 5.16. The following insights were extracted:

• The first three repositories: pepper_docker, on_boot_goodies and pepper_ros_setup
(and also pepper_bringup_magiclab) were about setting up the robot for RoboCup

development. pepper_docker dealt with building all the dependencies necessary for

ROS and also ROS itself with pepper_ros_setup being the initial implementation of

this system. on_boot_goodies dealt with the software to be launched on the boot of

the robot with pepper_bringup_magiclab containing specific configurations related

to ROS bringup. These projects were done by the lead developer as it needed

profound expertise in Linux operating systems and ROS. There were no other team

members with such expertise available or time to teach anyone. Furthermore, it

was a time-consuming task as compilation of some modules would take hours.

• The rest of the repositories were projects used by a single author for some RoboCup

test or experimental approaches.

98



5.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 5.16: Number of authors and days with commit activity per repository, sorted by
days with commit activity and filtered by exactly 1 author and more than 1 activity day.

The average number of authors in repositories with more than one author and more

than one day of commit activity came up to 2.3 authors per repository. Taking also into

account that there weren’t many solo projects, it can be interpreted as an indication of

teamwork. On average, more than two people worked on the common repositories.

5.6.2 Team Retrospective

In this section the team’s retrospective was summarized. The original retrospective

document for the year 2017 can be found in the section B.1 from the Appendix B.

The first question of the retrospective was “What worked well?” about the positive

facts from the preparation process and the competition itself. Roughly half of the answers

were about the competition event, highlighting the successful team collaboration, well

prepared on-site technology resources, and positive feedback on giving presentations in

the poster session, open challenge and finals. The other half of the answers were about

the preparation for the event. The team regarded as positive the ORTs and general

practice runs with focus on scoring for Stage I, using GitLab as a collaborative coding

platform, the planner system created for the GPSR test, the tablet interface providing

99



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

feedback and tooling for the team, a shim layer to ease the usage of the robot APIs, and

the human clothing analysis skill.

The next question was “What did not work well?” about the negative facts in the same

context. The team documented issues related to the preparation for the competition: a

lack of preparation for Stage II, and the presentations in the open challenge and the finals.

Furthermore, the team reported dysfunctional coding practices, with git submodules not

providing satisfactory dependency management, a lack of templates and best practices

for code, general low code quality, and abuse of complex software frameworks. Finally, it

was noted that the team lacked focus on the social aspect of the robot and the competition.

In regard to the competition event, concerns were raised about the team wellness due to

the long hours in the venue and stress from rushed work. Issues were documented about

difficulties in the management of the robot’s running software, and specific problems

were written down with regard to the speech recognition, navigation, object recognition,

and "aliveness systems" of the robot.

The last question was “What should we do next?” about proposals on how to improve

the next year of development and competition performance. A software development

plan was proposed where the team will prioritize robot skill development, increase

the amount of ORTs, and aim to have something prepared for every competition test

including presentation material. A list of coding practices to be improved was reported

in relation to the topics of coordination of packages and dependencies, standardization of

the team’s development environment, code repeatability and code analytics. Furthermore,

approaches on how to manage existing code were listed, keeping working components

and extracting value from the rest. Finally, items addressing missed opportunities were

added.

5.7 Reflection

The reflection is composed of the findings, which include the same substructure of three

sections as explained in chapter 4, answers to the action research questions stated in

this cycle, new questions to start the next cycle, and next steps to be implemented.

5.7.1 Findings

The findings stem from a review of the action research cycle and the team’s retrospective,

they aim to describe facts learned in this cycle.

100



5.7. REFLECTION

5.7.1.1 Team Management Processes

The backlog boards in Trello were widely used as the place to share approaches and

progress during the first month. Their usage fell as the competition approached. In

the competition a physical whiteboard with post-its replaced it effectively. It allowed to

quickly identify what was going on, what needed focus afterwards and who was doing

what. It also had the advantage of being offline.

ORTs were a key element to the successful development of the RoboCup tests. These

events forced the team to prepare for a realistic scenario so they tested their code focusing

only on situations that were likely to happen. The team also had additional pressure to

deliver. The Trello and Git data show that in the days surrounding the team meetings,

Monday to Wednesday, there was an increased amount of activity. The ORTs had the

same effect but, as perceived by the lead developer, in a more focused fashion. These

events often showcased failures in the systems, which highlighted what needed further

work.

Lack of preparation for Stage II could be perceived as a mistake. This is so because

scoring on Stage II could potentially have given us the victory. But the state of the tests

of Stage I were not robust enough. Dedicating time to Stage II had a high chance of

making the team unable to even get to Stage II. The development time was short and

trade-offs were necessary.

5.7.1.2 Team Software Development Processes

Collaboration between team members and within the team as a whole started this

year. Teamwork acquired an important role. New knowledge was discovered at the

same time by multiple teammates working together. Also, knowledge transfer from the

experts in software development towards the junior developers began. The competition

itself showcased how the team learned to work together efficiently and in a enjoyable

environment.

Pair programming was used by some team members. The team members that prac-

ticed this technique with the lead developer said that they found this to be an enjoyable

practice. Their knowledge of how the parts of the system that were worked on together

using pair programming became additional evidence of knowledge transfer within the

team.

It was discovered that a balance between the team members preferences on how to

work and what will be better for the team in the long run, needed to be found. Sometimes

101



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

the team was more comfortable with an approach different from one believed to be more

beneficial by the lead developer, and it needed to be accepted. In this year of development

there was not enough time to prepare, teach, and encourage better approaches.

5.7.1.3 Technical Approaches

The robot’s tablet interface proved beneficial, not only enabling debugging, but develop-

ment and testing also benefitted from it

Teaching inexperienced programmers in a short time: a new programming language,

how to use libraries, how to use a complex framework like ROS; all at the same time

proved too difficult and was ultimately unsuccessful. More preparation time is needed.

Other teams used WIFI and cloud services which provided an advantage. It must be

explored for the following year when it isn’t a trade-off with efforts in more critical parts

of the system.

Using the robot’s laser as a means of localization didn’t perform at all, and needs

further research or an alternative.

Developing without the physical robot was complicated. A better setup, maybe with a

simulator, is to be worked on.

During the last weeks of development, within the ORTs, focusing in scoring over

other topics like reusability of code did provide better scores. It also allowed a shift in

the mentality from trying to build complex systems to only focusing on the performance

in a single RoboCup test.

5.7.2 Answers to AR Cycle Questions

After a review of the cycle and the team’s retrospective, the proposed action research

questions were revisited. This cycle made the researcher learn about the processes

necessary to set up a new team to compete in RoboCup@Home SSPL, and these are

reproduced next.

The rulebook was read to extract the most achievable tests and prioritize their

development. Team meetings were setup to discuss all the necessary matters, the team

members were asked about their expertise and their interests to find roles that align

with both them and with the team’s needs. At the same time, the team explored the

capabilities available in the robot and what was possible to be developed from those

capabilities.

102



5.7. REFLECTION

The software stack was chosen based on discussion with the team members about

their roles with regard to the predicted RoboCup tests to be implemented and the

exploration of the robot capabilities. The software stack included the programming

language that fitted best with the profile of the team, was aligned to the frameworks

and libraries found to be widely used to solve problems in similar domains, and with

special regard for those domains in which team members had expertise. It is noteworthy

to mention that this software stack was a starting point and was subject to change.

Afterwards, coding standards were chosen by how likely they were to improve the team’s

progress while not detracting from their development experience.

With regard to team management, the team kept communication open while appeal-

ing to the leader’s management style, aiming to make the process comfortable for all

members. As previously mentioned, pleasing the preferences of team members on what

tasks to work on was a priority, and feedback about their satisfaction in working on those

tasks was gathered by asking occasionally during work hours and with open discussions

in team meetings when necessary. The tool to track the backlog of tasks was changed

as a response to the dissatisfaction expressed by some team members, including the

lead developer. Having the tools align to the management style was important, but the

lead developer realized that having a mental model of the team’s progress was more

important. Following this realization, as the competition approached and team members

worked in a larger number of tasks in parallel, the usage of Trello fell down. This had

consequences in team members having a harder time understanding the progress of

other team members.

Finally, it is important to note that it was found that all the questions raised during

this action research cycle were tightly tied together, decisions or opinions in one topic

affected others, as team members acted on these. Seeking balance was an ongoing effort.

5.7.3 New Questions

This cycle raised the following research questions, based on the following observations:

• Team management:

– How to find new team members?

We struggled to get enough team members and we anticipated the need for
more team members for the next year.

– How to match people with the best tasks for them?

103



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

We tried to discuss with each team member what they would like to work on
but the lead developer believed this process could be improved.

– Which software development methodology fits RoboCup@Home development

better? Is there one?

The development this year was done mostly ad-hoc and the lead developer
believed the team could benefit from practicing some kind of software develop-
ment methodology.

– How to transfer knowledge effectively?

As team members developed their parts of the system and learned the different
topics and tools, it was not clear how to share this knowledge so efforts would
not be duplicated or hard to join together.

– How early on should ORTs run?

Testing was performed during the development but it took several weeks before
the testing was similar to the competition situation. For the next year, with
the rulebook possibly being modified and more time to develop, it is to be
researched when to start doing ORTs.

– How to improve the usage of the backlogs?

The team used backlogs to store tasks first in Asana, then in Trello, and finally
using a whiteboard with post-its. This provides evidence that further work in
this regard must be done.

• Coding practices:

– How to make the development easier?

Unexperienced developers struggled to perform tasks related to networking and
software management, which delayed their contributions. We aim to improve
this situation for the next cycle.

– Which coding standards must be followed?

Coding standards present advantages for sharing code but they add an
overhead to coding. The lead developer believed there was not enough time this
year to put pressure on this topic, so for the next year it must be investigated
further.

– How to best unify the coding efforts?

104



5.7. REFLECTION

Some parts of the system were built in parallel, doubling efforts instead of
unifying them in a better code base. Practices to improve this will be researched.

– How to create the best APIs for the team to use?

As different team members had different expertise and preferences in how to
code, creating APIs for everyone to use was challenging.

• Technical approaches

– What should be developed first? How to prioritize?

This year the lead developer took many decisions for the team based on his
experience. For the next year a more open and data-based approach should be
taken.

– What should be kept from the robot APIs? What should be re-developed?

A significant amount of work on developing and testing APIs was done this
year, but the code quality was low.

– What architecture fits best our problem?

The architecture for this year was ad-hoc, for the next year it will be prepared
further.

– How to increase ROS adoption?

As ROS presents a wide variety of tools, libraries, and concepts useful for
developing robotics capabilities and applications, it is desirable for the team to
embrace it.

5.7.4 Next Steps

This section describes the aims for the next action research cycle, based on the review of

this cycle and the team’s retrospective, using the same structure from chapter 4.

5.7.4.1 Team Management Processes

For the next cycle, new team members needed to be recruited. To do this, some kind of

recruiting event must be held. The criteria to choose these new team members and the

number were to be defined with the project managers.

Improved usage of backlogs, both for long term tasks and current tasks must be done.

Research on the tools available in Trello for this goal must be performed. A fine grained

105



CHAPTER 5. ROBOCUP@HOME SSPL: YEAR 2017, 2ND PLACE

description of necessary robot skills must be developed. Tasks must be generated and

followed from those. The whiteboard approach during the competition worked well too,

using it alongside Trello was to be explored.

ORTs would be held sooner and their structure would be formalized.

Careful planning as to when to work on Stage II tests would be taken into account.

Further training and resource preparation would be prepared, including code tem-

plates and coding best practices.

5.7.4.2 Team Software Development Processes

For the next cycle the development tools available for the team were to be improved.

Finding common issues and addressing them with documentation and tutorials or

workshops would be done.

The practice of pair programming would be kept and further explored. The same

would be done with dividing into subgroups parts of the development or the RoboCup

tests. When and how to divide the team in subgroups would be researched taking

advantage of having a full year of development ahead.

Finally, as the repository containing all RoboCup tests with submodules approach

had reported problems, a distributed approach, with every test being in a different

repository and avoiding the usage of submodules, would be taken for the next cycle. This

would affect the structure of the code and the methods to share and reuse it, hopefully

improving the development experience.

5.7.4.3 Technical Approaches

For the next cycle an analysis of the necessary skills for every test would be done. This

way a table would be created to guide the prioritization of the development of these skills

and their features.

Programming by configuration and also programming via graphical interfaces (block

dragging) would be researched. Having robust prepared skills that can be tested sepa-

rately increases the trust in these skills. Programming by configuration could enable

less technical team members to help on the project.

Infrastructure using the ROS middleware would be further built and the team would

be trained on it.

106



5.8. POSSIBLE GUIDELINES

5.8 Possible Guidelines

The most important findings and reflections from the year of development will be sum-

marized in a set of guidelines. These can be refined and extended every year. These

guidelines follow:

• Perform end-to-end testing. Simulation of the full competition including setup on

a previously unknown place, strict schedule and timing, strict scoring, by a strict

referee, naïve users and other elements that otherwise may be overlooked. Exam-

ples of other elements can be: networking issues, environmental noise, unavailable

team members or unusual lighting.

• Find a balance between what the team wants and what is believed to be the best

for the team regarding development processes. This is something to be re-evaluated

during the development year. Topics such as coding standards, testing standards,

documentation, deployment strategies and code sharing approaches fall into this

category.

• Provide the best tools available for the job. Development tools, frameworks, simula-

tions and hardware are topics that fall into this category. References for these can

be taken from other teams or industry.

• Ensure teamwork is possible and encouraged. Set up a backlog of tasks and dis-

tribute them. Promote grouping team members to work more effectively. Examples

can be working on a competition test in groups or engaging in pair programming.

107





C
H

A
P

T
E

R

6
ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

As in the previous chapter, this chapter follows the structure of the diagram in Figure 4.1

which itself follows the structure of Action Research (AR) cycles in Figure 2.2. Every AR

cycle is composed of a year of preparation for the competition, participation in it, and

reflection on the process itself.

In each section, the AR cycle setup is explained: the framework of ideas, the method-

ology, and the area of concern for that cycle are first discussed as per the structure

explained in chapter 2 and chapter 4. The context for the year follows. Its main themes

are the rule and competition changes of that year and the team composition of that year.

Following, the software development plan is presented. It is analyzed in three

subtopics that will be repeated in each new subsection: team management processes,

team software development processes, and technical approaches.

Afterward, the software development implementation presents the same subsections

but in the context of plans put in practice and their iterations.

Then the competition participation is showcased, again with the same subsections,

presenting the results as competition outcomes for that edition.

In the next sections, we find the post-competition data collection and retrospectives.

Here the available data about the year is detailed.

At the end of the chapter the reflection section summarizes and discusses the findings

(following again, the same three subsections structure), the new questions that came up

from these, and the next steps to follow for the next action research cycle. This leads to

the end with a proposal of guidelines.

109



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

6.1 Action Research Cycle Setup

The research questions for this action research cycle stem from what was learned in the

previous cycle and the new questions found. Here they are repeated along with their

accompanying observations.

• Team management:

– How to find new team members?

We struggled to get enough team members, and we anticipated the need for
more team members for the next year.

– How to match people with the best tasks for them?

We tried to discuss with each team member what they would like to work on,
but the lead developer believed this process could be improved.

– Which software development methodology fits best RoboCup@Home develop-

ment? Is there one?

The development this year was mostly ad-hoc, and the lead developer believed
the team could benefit from practicing some kind of software development
methodology.

– How to transfer knowledge effectively?

As team members developed their parts of the system and learned the different
topics and tools, it was not clear how to share this knowledge so efforts would
not be duplicated or hard to join together.

– How early on should be Operational Readiness Tests (ORTs) run?

Testing was performed during the development, but it took several weeks before
the testing was similar to the competition situation. The next year, with the
rulebook possibly being modified and more time to develop, it is to be researched
when to start doing ORTs.

– How to improve the usage of the backlogs?

The team used backlogs to store tasks first in Asana, then in Trello, and finally
using a whiteboard with post-its. This evidences that further work in this
regard must be done.

• Coding practices:

110



6.1. ACTION RESEARCH CYCLE SETUP

– How to make the development easier?

Unexperienced developers struggled to perform tasks related to networking and
software management, which delayed their contributions. We aim to improve
this situation for the next cycle.

– Which coding standards must be followed?

Coding standards present advantages for sharing code, but they add overhead
to coding. The lead developer believed there was not enough time this year to
put pressure on this topic, so it must be investigated further for the next year.

– How to best unify the coding efforts?

Some parts of the system were built in parallel, doubling efforts instead of
unifying them in a better codebase. Practices to improve this will be researched.

– How to create the best APIs for the team to use?

As different team members had different expertise and preferences in how to
code creating APIs for everyone to use was challenging.

• Technical approaches:

– What should be developed first? How to prioritize?

This year, the lead developer took many decisions for the team based on his
experience. For the next year a more open and based on data approach should
be taken.

– What should be kept from the robot APIs? What should be re-developed?

A significant amount of work on developing and testing APIs was done this
year, but the code quality was low.

– What architecture fits best our problem?

The architecture for this year was ad-hoc, for the next year it will be prepared
further.

– How to increase Robotics Operating System (ROS) adoption?

As ROS presents a wide variety of tools, libraries, and concepts useful for
developing robotics capabilities and applications it is desirable for the team to
embrace it.

111



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

6.2 Context

The context of this cycle/year will be explained in this section. This includes the specific

rules of the competition and the characteristics of the team.

6.2.1 Rule and Competition Changes

This year the competition is scheduled for the 16-22 of June of 2018 in Montreal, Canada.

There are roughly nine months to prepare for the competition. Compared to the previous

year that had only three months, it allows the team to prepare better.

The rules did not present significant changes from the previous year, with only mi-

nor corrections appearing in the 2018 rulebook [19]. The Enhanced Extended General

Purpose Service Robot (GPSR) (EEGPSR)1 test was simplified, both in categories and

in scoring. Additionally, a bronze (3rd) place was added for leagues with enough partici-

pants.

6.2.2 Team Composition

The team was composed of 18 people, as seen in Table 6.1. Team members are kept

anonymous. Recruiting was performed during the months of October and November by

creating a workshop with activities and topics similar to be found in RoboCup tests. This

was based on the belief that students would join based on their motivation to work on

such a project. Three interns joined the team with scholarships offered. Another intern

joined later to perform a project for a subject they were enrolled in.

The team was larger than the previous year. More than half of the team was partici-

pating for the second year in a row. This year, 12 members were in the role of developing

software. The team also included two team members working on marketing for the team

as part of their degrees. A psychologist, being part of the lab, also gave their input to the

project.

1EEGPSR is a test where the robot can be asked to do anything that has ever appeared in previous
rulebooks. An open-ended and hard test.

112



6.2. CONTEXT

# Team Role SW Expertise Background Time Dedication

1* Project Manager – Lab Director On demand

2* Project Manager – Project Manager 14h/w

3* Assistant – Media Specialist On demand

4* Lead Developer Expert Robotics & CS 32h/w

5* Developer Expert Computer Science 20-40h/w

6* Developer Expert Lab Co-Director & CS 20-40h/w

7* Developer Expert Web Developer & IT 20-40h/w

8* Developer Advanced Computer Science 20-40h/w

9 Developer Advanced IT & CS (Intern) 20-40h/w

10 Developer Advanced IT & CS (Intern) 20-40h/w

11 Developer Advanced IT & CS (Intern) 20-40h/w

12* Developer Moderate UX & Multimedia On demand

13* Developer Moderate CS & AI 20-30h/w

14 Developer Beginner IT & CS (Intern) 10-20h/w

15* Developer Beginner Mathematician On demand

16 HRI & Assistant – Psychologist On demand

17 Marketing – Marketing & Biz On demand

18 Marketing – Marketing & Biz On demand

Table 6.1: Team composition table for the UTS Unleashed! team in 2018. Team members
marked with an asterisk (*) are on their second year of participation in the team.2

The interns were bachelor students in Computer Science and/or Information Tech-

nology. The team expected their background to be useful even though their exposure to

actual software development was limited. They were also new to the field of robotics and

to RoboCup itself.

The rest of the developers fit the description of the previous year being mostly PhD

students and staff from the lab.

2CS stands for Computer Science, IT stands for Information Technology, UX stands for User Experience,
AI stands for Artificial Intelligence, Biz stands for Business.

113



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

A year-long plan based on our previous reflection was created. The lead developer

divided the development in an early phase where the team would research new and

better ways of solving challenges, a middle phase where the team would develop and

implement base skills while the rulebook came out, and a late phase where the priority

was implementing the tests and scoring points.

6.3 Software Development Plan

As in the previous cycle, this section explains the software development plan for this

edition of the competition. It includes the team management processes, the team software

development processes and the planned technical approaches.

6.3.1 Team Management Processes

This year the spirit of the team management processes was influenced by standard

software development methodologies. The lead developer and project managers aimed to

have more structure while monitoring the team’s satisfaction.

6.3.1.1 Team Management Tool

Trello was kept as the online tool to track work. This year six boards were created with

the topics:

• General: thought to be for general topics not fitting into other board topics.

• RoboCup 2018 Preparations: acting as a kind of roadmap for our Project Managers.

• Software Engineering: It was identified from the last year that our (non-existent)

architecture and technical approach could benefit from taking inspiration from

classical software engineering practices, so a board for these tasks was created.

• Skills: as the previous year, for Robot Skills.

• Challenges: as the previous year, for RoboCup Tests.

• Finals: for proposal and tracking of what to do for the Finals RoboCup test.

The lead developer discussed with key team members what boards were needed,

taking into account the boards that got actual usage the previous year (RoboCup Tests,

114



6.3. SOFTWARE DEVELOPMENT PLAN

Robot Skill Development, and Team) and in which topics we wanted to focus on and keep

track of.

It was proposed to use checklists in the Trello cards to keep track of tasks, and to set

deadlines where they applied.

The lead developer, with further discussion with one key team member, created for

the first time a spreadsheet with the set of skills to be developed in order to prioritize the

development. It was created by reading the rulebook and extracting the necessary skills

for every test. It was divided into topics such as navigation or speech recognition, and

specified abstract definitions of the skills, including concise implementation descriptions

of these. Additionally, these contained which RoboCup tests would use these skills. This

allowed the team to prioritize the work by quantifying the number of tests that needed a

skill. An example of the spreadsheet can be seen in Figure 6.1.

Figure 6.1: Excerpt from the robot skills spreadsheet to prioritize skill development.

Slack was proposed as a new chat solution for collaboration. It aimed to have people

connected so that remote collaboration would be easy.

6.3.1.2 Team Meetings

Mondays were chosen to be the day where team members were expected to come to

work together in the lab to encourage teamwork and knowledge sharing, there was no

proposed day previously.

115



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Design thinking workshops3 were introduced and organised for mid-January for the

Open Challenge and the Poster presentation.

Monthly ORTs were also scheduled for the end of February given the success of these

in the previous year.

Team meetings stayed in the same format from the previous year. The lead developer

would lead the meeting, and the team members would share their progress.

6.3.1.3 Task Assignment

As outlined earlier, a detailed spreadsheet with the required set of skills needed for the

competition was created. It was initially inspired by the GPSR test as it contained all

of the possible skills needed. It was detailed to the level of function call definitions and,

where possible, the description of the skill’s usage.

From the spreadsheet, a high-level plan was created for the year. This plan was ini-

tially created by the lead developer and refined by discussing it with key team members.

Trello tasks were created for the different elements of the plan. Every topic had a mentor

to guide that part. New team members were assigned tasks that would build up their

skills and expose them to the different areas of robot programming, so they could find

what interested them most.

The initial tasks were related to creating a better low-level understanding of the

robot sensors and capabilities. For example, for the navigation topic, the initial tasks

were to: get data from the laser of the robot and understand its behavior (minimum

range, maximum range, noise in the data, etc); write our own driver; and then compare

it to the one used in the previous year. This allowed the new team members to explore

the topic by themselves, familiarize themselves with the tools, and ask for help when

needed.

These tasks also aimed to encourage proactivity on the part of the new team members,

as the goals were purposely, only described vaguely. For example, the goal of testing

the laser data was initially just described as "Test the quality of the laser data" with

a set of links with documentation about it and some encouragement to ask for help

whenever needed. When contacted for help, more descriptive tasks would be created in

collaboration with that team member. For example, "Get a flat wall in front of the robot

3Design thinking workshops are hands-on sessions focused on collaboration and problem-solving. They
aim to teach people how to problem solve and to foster innovation and teamwork. These sessions were
commonly used as a tool in the laboratory to create approaches for challenges.

116



6.3. SOFTWARE DEVELOPMENT PLAN

and record the laser values at different distances". From there, new opportunities to

propose tests and insights by the team member would arise.

6.3.2 Team Software Development Processes

This section presents the practices and tools regarding how the team was to develop

software.

6.3.2.1 Coding Standards

Team members would update the spreadsheet with the different skills to have a central-

ized documentation point for these robot abilities.

This year the team was to adhere more closely to two standards: Python coding

standards and ROS naming standards. However, no naming scheme for package names

was pushed. The lead developer believed that by doing so, the team would avoid the

problems that arose the previous year, where it was hard to share code between team

members.

6.3.2.2 Coding Tools

Powerful Alienware4 laptops with Nvidia Graphical Processing Unit (GPU)s were ac-

quired to make the team able to take advantage of state of the art deep learning tech-

nologies.

Due to team members’ previous experience and the quality of available documenta-

tion, the Theano [99] library with TensorFlow [100] backend was chosen as the deep

learning framework to be used.

6.3.2.3 Social Coding Practices

Mentoring and pair programming were used, especially at the start of the year, to guide

new team members. Workshops were held to introduce topics like ROS and team-made

packages to improve code sharing and knowledge transfer. These practices were new

considering the previous year similar efforts were made but in an ad-hoc manner.

4Alienware is a brand used by the Dell computer company for its range of high-end gaming computers.

117



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

6.3.3 Technical Approaches

As in the previous cycle, the technical approaches, or specific decisions made for the

competition itself, are discussed in this section. These are related specifically to the

RoboCup@Home Social Standard Platform League (SSPL) and describe the competition

requirements, the robot’s capabilities, and the software stack.

6.3.3.1 Competition Requirements

The team wished to involve itself in the evolution of the rules for the competition. To

this end, team meetings started with a request to develop a “view of the Social Standard

Platform League” for the laboratory. This would answer the question “What is our general

view of social robotics?”.

The tests chosen to participate in 2018 for Stage I were the same as in 2017. Their

rules did not change from 2017, their description is available in chapter 5. Additionally,

for Stage II the following tests were chosen:

• Open Challenge: In the Open Challenge, teams are encouraged to demonstrate

recent research results and the best of their robots’ abilities. This is an open

demonstration with a presentation. The team decided to create a real application

for the Pepper platform where the robot would detect an infant crying, and it would

offer help when that was detected.

• Tour Guide: The robot guides spectators to the audience area and answers their

questions after explaining what the @Home league is about. This test focuses

on safe outdoor navigation, people detection, gesture recognition, unconstrained

natural language processing, and Human-Robot Interaction

• Restaurant: This test focuses on online mapping, safe navigation in previously

unknown environments, gesture detection, human-robot interaction, and manipu-

lation in a real environment. The robot will need to create its own map from the

environment and then move within it to handle human requests, such as delivering

drinks or snacks, while people are walking around. As this test is performed with

two robots (two teams, each with their own robot) in parallel, the robots will also

have to avoid each other. The test starts with a client waving and calling the robot

for its attention. The robot must approach the person and take their order. Then it

must go back to the starting location and fulfill the order, and then navigate back

to provide the order to the customer.

118



6.3. SOFTWARE DEVELOPMENT PLAN

• EEGPSR: This test evaluates the abilities of the robot that are required through-

out the set of tests in Stage I and stage II of this and previous years’ RuleBooks.

In this test, the robot has to solve multiple tasks upon request over an extended

period of time (30-45 minutes). That is, the test is not incorporated into a (prede-

fined) story, and there is neither a predefined order of tasks nor a predefined set of

actions. The actions that are to be carried out by the robot are chosen randomly

by the referees from a larger set of actions. These actions are organized in several

categories targeting a special ability. Scoring depends on the abilities shown.

Some ideas were proposed for the Finals, but the development was left to be done in

the competition itself.

6.3.3.2 Software Stack

The lead developer and the key team members involved in this decision had a new vision

for this year’s software stack. They believed GPSR was to be prioritized as developing for

this test would provide the skills for most other tests. Furthermore, any test should be

possible to be implemented as a GPSR variant. Navigation was the second-highest prior-

ity, as almost every test had a navigation component. Generic skills were to be developed

into what was called SkillStates. A SkillState was defined as a class with an execution

method that achieved one specific task, and that could be executed independently.

A SkillState was agreed to have multiple interfaces. It shall be able to be used in

SMACH State Machines as used in the previous year, and also in plain Python code as

a function call, and, finally, taking advantage of a planner interface so a set of skills

could be orchestrated to create a test. The planner interface would allow the creation of

plans in a human-readable specification (JavaScript Object Notation (JSON)/Yet Another

Markup Language (YAML)) with a web-based graphical interface to be able to create,

edit, store, run and monitor these plans. This kind of approach was seen to be used

successfully by other teams in projects like PetriNetPlans [101] and ROSPlan [102].

The lead developer felt there was too much duplication of effort in the previous year,

so this was thought to be a viable way to improve that situation. Additionally, having

a graphical interface to create these plans would enable non-technical team members

(as user experience designers) to be able to contribute more than before. The planner

software stack diagram can be seen in Figure 6.25.

5Note that this diagram reflects the final implementation.

119



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Figure 6.2: Diagram for the planner software stack.

An improved version of the base software building and deployment was planned. The

previous setup was not well documented and could only run on a single machine. This

was proposed to at least be converted to a virtual machine approach, but was considered

even better if automated building and testing could be introduced.

Deep learning was to be used to take advantage of the latest state of the art network-

ing giving capabilities like robust face recognition or people skeleton detection. Custom

compilation of dlib [103]6 and TensorFlow [100]7 libraries for the Pepper platform would

be needed.

6dlib is a C++ library focused on machine learning algorithms.
7TensorFlow is a library used for machine learning applications such as neural networks.

120



6.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

6.4 Software Development Implementation

The plans evolved during the year in more or less the direction expected until around

March. Problems started to arise as there were discrepancies between the vision and

implementation of the task planner software system. Features were requested but were

not implemented or were approached in a different way that would not align with the

users’ expectations, the users being the rest of the team.

6.4.1 Team Management Processes

The team management processes for this year included the development of the team’s

vision and improvement over the processes discovered in the previous year.

6.4.1.1 Team Management Tool

Some Trello boards were successful in their usage, especially in the first half of the

development time. Others were not.

• General: not used at all.

• RoboCup 2018 Preparations: Project Managers captured what was decided at

meetings here, so it was used.

• Software Engineering: It was heavily used, especially by a pair of teammates.

• Skills: heavily used, especially at the start, as a lot of tasks created to introduce

new members were followed here.

• Challenges: only used at the start, then ignored.

• Finals: same as the challenges board, only used at the start, and only briefly.

Lists with checkboxes for subtasks in Trello cards were added. They were used during

the first few months of the development year; then they stopped being used.

This year the practice of adding specific deadlines for Trello cards was added. It was

mostly used with people that could not come to work in the lab at the same time, or

people that were lacking productivity, i.e., it was believed that their outcomes could be of

a higher number or quality.

The spreadsheet described previously containing the complete set of skills required

to be developed was not updated later on. Work simply moved to Trello. Most knowledge

was shared in days working together in the lab.

121



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Slack did not get any traction at all. It was not used.

6.4.1.2 Team Meetings

The work towards setting a common view of social robotics for the team, and the com-

petition, stagnated. However, the team did participate in the creation of that year’s

rulebook via the lead developer being part of the technical committee of the competition,

and therefore acting as a bridge in between the team and the competition organizers.

One test proposed by UTS Unleashed! was incorporated into the rulebook for the 2018

competition.

There were meetings set every two weeks for most of the year to ascertain progress.

There were monthly ORTs executed as planned.

ORTs started early on as planned. The first one was held at the end of February, then

they were held monthly, also as planned. From April, they were held every two weeks.

The last ORTs were focused on the robustness of scoring. ORTs included gathering

together for free lunch for the attendees.

Table 6.2 summarizes the results of the ORTs of 2018. Tests in Stage I more or less

improve during the year. Scores were lower towards the end after a high score in ORT

number 5. Being able to consistently score (avoiding 0 scores) was more important than

having a one-time high score. As we got closer to the competition, the team leader became

a more strict referee and the environment was changed more often. This influenced

the scores to drop. For example, a subteam may have their test tuned for a specific

distribution of the arena. In the last ORTs, the arena would be changed (almost) every

time.

The Help Me Carry test barely improved its scoring during the year.

Tests in Stage II also improved during the year. There is also a high score on ORT 5.

It can be observed that the EEGPSR test did not improve during the year. This test was

tightly coupled with GPSR, and on Stage I, it increased its score less than other tests in

comparison.

The Open Challenge stayed at a 0 score all year, but this was because it was not

actually scored. The scoring notes were taken in this format, so they have been left as

they are. To score Open Challenge the team needed a set of judges that would evaluate

the presentation, and it was deemed hard to find objective judges for this task. The

practice runs were still given feedback within the team.

It is worth noting that the last ORT was held in a new environment out of the

lab, which included a complete simulation of the competition with a new arena. This

122



6.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

may negatively affect the scoring of that session, but the team was prepared and still

performed close to their expectations, providing them with confidence.

A landscape page containing Table 6.2 follows.

123



C
H

A
P

T
E

R
6.

R
O

B
O

C
U

P
@

H
O

M
E

S
S

P
L

:Y
E

A
R

2018,2N
D

P
L

A
C

E

Max Score Bonus TOTAL ORT 1 ORT 2 ORT 3 ORT 4 ORT 5 ORT 6 ORT 7

Robot Inspection Pass Fail Pass Pass Pass Pass Pass Pass

Stage I

Cocktail Party 270 37 307 0 50 60 165 65 75 25

GPSR 250 35 285 20 1 10 0 10 31 10

Help Me Carry 200 30 230 0 0 0 0 0 10 0

SPR 200 30 230 80 80 135 65 185 130

Stage 1 Total 1052 100 131 205 230 260 116 165

% 9.5% 12.4% 19.4% 21.8% 24.7% 11.0% 15.6%

Stage II

EEGPSR 500 60 560 30 0 10 0 0 0

Open Challenge 250 250 0 0 0 0 0 0

Restaurant 285 38 323 0 0 0 40 100 45 55

Tour Guide 390 49 439 60 0 110 80 300 40 110

Stage 2 Total 1572 90 0 120 120 400 85 165

% 3.8% 0.0% 7.0% 5.0% 19.0% 2.5% 7.0%

Total Points 2345 279 2624 190 131 325 350 660 201 330

Total % 7.2% 5.0% 12.4% 13.3% 25.2% 7.7% 12.6%

Table 6.2: ORT results of the year 2018. Note that some entries have either 0 or are empty. The table has been reproduced
from the notes taken during the time. Having an empty score means the test was not tried, meanwhile having a 0 means it
was run and it scored 0.

124



6.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

ORTs were set up to mimic a real competition as close as possible, but during a single

day, instead of a week of competition. Practicality did not allow these to be performed

out of the laboratory often. However, when possible, the team was advised to prepare

their laptops and the robots to move to a new location. The ORT was announced at least

two weeks prior.

A schedule was created by discussing it with key team members to ensure its viability.

The schedule was shared with the team days before the event. In Figure 6.3 an example

from a ORT session can be seen. It consisted of a tight schedule. Every item had a strict

time slot, although it was expected that problems might arise, which could delay some

slots. This ORT was expected to end by 4 PM, but team members were advised to stay

available for another hour or two in case delays happened.

Figure 6.3: Example schedule for an ORT from UTS Unleashed! in the year 2018.

125



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

The ORT started with one hour to set up. In this setup time, the network was

configured; the robots were loaded with the necessary software; and mapping of the

environment (arena) was performed. Some team members arrived earlier to unload the

robots and to create a new arena configuration, taking care of making it different from

previous designs.

From this point, tests were run in their defined time slots. A leader acted as a strict

referee. This person was required to have recently reread the rulebook with particular

focus on the tests to be run that day and their scoring. While keeping track of the timing

and scoring, notes about errors and improvements were taken, both by the referee and

the team members responsible for the test. Test runs were also recorded in video for

further analysis. Other team members also needed to be attentive to be able to provide

feedback and, potentially, gather ideas for their own tests.

After a test was run, a short review by the team was held. Scoring, problems, and

improvements were discussed. Compliments were also given, even cheering was encour-

aged on success. Afterward, the people responsible for the next test prepared to run their

test in their defined time slot.

Lunch was provided to the participants on a short break, which was reported as a

beneficial activity in the retrospective documents. Then the testing continued until all

tests were done. The day finished with a debrief session, acting as a kind of retrospective,

with actions to be performed by the team recorded. The team was also required to pack

up the robots and their belongings. A social activity was offered after the long day of

ORT.

6.4.1.3 Task Assignment

Subteams for topics like navigation, perception, or task planning were created. Later on,

subteams for RoboCup tests were created. The leader of every subteam would take care

of distributing work while listening to the interests of the rest of the members. The lead

developer would be updated weekly on the status of the different parts of the system.

Tasks built to increase the proactivity of interns were not successful. These tasks

were mostly acted on, but the lead developer felt they were not applying themselves

enough. They lacked diligence. For example, a task would include a set of checkboxes

of concise things to try, test, or code. These were expected (as was the case in previous

examples working together with the interns) to be used as starting points to gather

useful information. Instead, these checkboxes were ticked as done by doing just exactly

what the checkbox said. Further conversations with the aim to clearly communicate

126



6.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

what was expected from the interns when performing these tasks with checkboxes were

not successful. These conversations confirmed that it was not a misunderstanding by the

interns, but that they were not behaving as expected for unexpressed reasons. Possible

explanations by the lead developer were: a lack of technical self-confidence, external

factors in their lives affecting their work, or personality traits not aligned with this type

of workflow.

6.4.2 Team Software Development Processes

The team embraced further teamwork in regards to team software development pro-

cesses.

6.4.2.1 Coding Standards

This year, code quality was improved by roughly half of the team having successfully

adopted Python coding standards. However, the closer to the competition, the less they

were followed. Team members that did not adopt these coding standards expressed that

they were focused on solving problems instead of in the shape of the code itself.

Team members used their own naming convention for packages, coming up with

creative names. While these were found to be not easy to remember, they added fun to

the development process.

6.4.2.2 Coding Tools

Team members supervised closely by the lead developer embraced Sublime Text with

Python plugins as an IDE, as he was using it himself.

Most team members used GitLab to browse the source code of the libraries (made in

house) they were using. They did not use the editors’ capabilities to open the implemen-

tation of files or automatically generated documentation. The README of the packages

was their first documentation resource.

6.4.2.3 Social Coding Practices

Mentoring happened often. The lead developer put attention in introducing team mem-

bers to technologies and tools that may help their workflow. Some team members did the

same based on the experience from the previous year of competition or because that was

natural for them.

127



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Pair programming was mostly used for bug fixing. The lead developer encouraged

team members to dig as far as they could into a problem before calling him. Then, he

would sit with them and explain what he did to find and fix a bug, so they learned as

much as possible during the process.

Subteams formed for the RoboCup tests and the development of some parts of the

system. While the subteams for parts of the system formed more or less organically,

as team members asked questions about how parts of the system worked or should

work. For the RoboCup tests themselves, they were set up by the lead developer, while

discussing it openly with the team, taking into account the experience that the team

members acquired during the year.

6.4.3 Technical Approaches

Technical approaches were marked by a conflict in regards to the architecture vision.

6.4.3.1 Software Stack

Given there was the possibility of running tests of Stage I three times and the score of the

two best runs were averaged, some tests were prepared with parallel implementations

that allowed for a riskier approach that could earn more points.

The team approach to prioritize GPSR and the work on the planner did not work

out. Theoretically, the approach seemed promising, but in practice difference of opinion

on how to approach some problems made unforeseen circumstances arise. Much effort

was put into mitigating problems and satisfying the team members that would use

the prepared tools. However, when changes were requested, they were initially fought

against by the main implementer. An agreement would then be reached, but it would

not be followed thoroughly, ending in dissatisfaction from both sides. Also, when this

system was tested in ORT, it was not ready to be used. Much effort was put into doing

automated testing via unit tests, but not much effort was put into executing it in the

robot. Additionally, the graphical interface, which can be seen in Figure 6.4, further

suffered from different opinions on its desired workflow.

128



6.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

Figure 6.4: Example screenshot of the planner web interface.

This situation caused much tension. It was finally agreed, just two weeks before the

competition, to give a fair test to this system to accomplish the GPSR test in an ORT.

The system did not perform, and it became a crisis for the team. At this point, the team

united and put together a simple version of the skills, a planner, and a task executor

that did perform well just before flying to the competition.

The base system for the robot was reimplemented as a Virtual Machine that repro-

duced with fidelity the operating system image of the robot 8. This virtual machine would

have deployed a version of Gentoo Prefix, and over it, build via the package manager

of this distribution, the necessary dependencies. Another project was brought in and

collaborated online, called ros-overlay, to enable the build and deployment of the ROS

framework. Now the system could be reproduced in any machine by deploying the Virtual

Machine.

8The virtual machine provided by the manufacturer was a generic image for their robots and was
found not to match the libraries and binaries found in our robots. This caused issues when building and
deploying software.

129



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

In the first few months of development, much care was put into analyzing the behavior

of the depth sensor, laser sensor, and the odometry of the robot. A special effort was

made to try to improve the quality of the data of the laser sensor, but it was not fruitful.

However, all this effort allowed a better understanding of the capabilities of the robot.

Some work into trying to calibrate the cameras of the robot was also undertaken, but in

the end, manual calibrations were used especially for the extrinsic calibration of the Red

Green Blue (RGB) camera in reference to the depth camera.

A professional-grade laser rangefinder (from the brand Hokuyo) was used for experi-

ments to initially provide ground-truth data. Later on, the possibility of creating maps

with this laser for later use by the robot were also raised. This was discarded though

after testing showed that it did not provide better results and decreased the performance

of localization.

The ROS navigation stack was configured and tested during the year. Just prior

to the competition, a final push was given to optimize its configuration. Mapping and

localization used the robot laser, giving more weight to the robot odometry. The local

planner was changed from the default one in ROS to the Timed Elastic Bands [104] local

planner.

Different approaches were tried during the year to achieve robot localization, namely,

using vision for this task. None worked more effectively than the laser version, addition-

ally, they were computationally too expensive.

From the perception part, two significant efforts were made. These were developed in

parallel and did not share infrastructure, even though they had in mind the same kind

of behavior on how to access the systems.

First, people perception was done via the popular OpenPose package, which provides

human skeletons from a picture. This package would run fast in a machine with a

powerful GPU, and it would run slowly on the robot, which lacks a GPU. For example,

the processing time of a normal detection on the external computing machine with a

GPU would take around 0.2 seconds. On the robot, it could take eight seconds (while

making the system unstable as it was using all available CPU). To enable usage of this

package and take advantage of the WIFI in the competition arena, an architecture was

built where the clients would try to use a server that was running externally if it was

available. If it was not, or it failed to return something in time, it would be run internally

in the robot. A set of fallback strategies were implemented for well-known cases.

Secondly, object recognition was done via a ROS package that used a TensorFlow pre-

trained neural network and finetuned for the teams’ needs. Pre-processing was done via

130



6.5. COMPETITION PARTICIPATION

Red Green Blue + Depth (RGBD) detecting objects over planes, and only the bounding

boxes of thought-to-be objects would be fed to the neural network. Extra processing

was done for hard cases like differentiating between cans. This approach had the same

issue as the OpenPose approach, but implemented the remote usage in a different way.

However, this too raised issues regarding how well it would work.

The team made good use of the provided Alienware laptops with their powerful

Central Processing Unit (CPU)s & GPUs. Docker was used to enable the deployment of

deep learning setups.

6.5 Competition Participation

The development lead felt confident that they would achieve top-three ranking given the

outcomes of the last ORTs but also knew that other teams could be as well prepared.

6.5.1 Team Management Processes

The processes were similar to 2017 but optimized and streamlined. The team practiced

in the ORTs in a similar setup, so even the new team members had a better idea of what

to expect.

6.5.1.1 Team Management Tool

Like in 2017, the team used a whiteboard with post-its to keep track of tasks, ignoring

Trello. A set of columns titled To Do, Doing, and Done were used.

Every RoboCup test was recorded in video by at least one team member, if not more,

to be able to review how it went, just as had been done in 2017. It was also an excellent

tool to show the referees any detail that they may have missed.

6.5.1.2 Team Meetings

Meetings were held every morning at the start of the day; they were used to distribute

work and responsibilities. Lunch and dinner together were encouraged, when possible,

to keep track of everyone’s progress, requirements, and to keep their spirits up. Every

night before going home, a meeting was held to have a clear idea of what should be done

the next day.

As in 2017, the team aimed to maximize the usage of the time in the venue and the

arenas.

131



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

6.5.1.3 Task Assignment

Post-its were taken from the board, adding who was working on that task and updating

from To Do, to Doing, and then to Done when appropriate.

The Project Managers took the role of ensuring that the robots were charging when-

ever they were not being used.

The team kept their setup of subteams for different tests while working in pairs

whenever it would benefit the situation - which was most of the time when testing on the

robots.

This year tasks that would block future tasks were prioritized and scheduled in that

order, notably, mapping the arena and getting the data related to the tests (people names

for the tests, object names, names of places in the arena, and others).

6.5.2 Team Software Development Processes

The goals were to minimize development and maximize testing to ensure robust and

high scoring runs.

6.5.2.1 Coding Standards

A strong emphasis on not creating new work but only configuring, testing, and patching

the hard work done during the year was encouraged. The team avoided last-minute

changes and running code that was not completely tested.

Changes that may be considered hacks instead of fixes were committed into a different

branch (usually named robocup2018) so as not to wreck the work done during the year.

These branches would be re-implemented properly after the competition.

6.5.2.2 Coding Tools

A tool was developed, magic_launcher, allowing team members to launch RoboCup tests

directly from the robot’s touch-screen tablet. It consisted of a simple configuration9 file

that contained the command needed to launch it, with an automatic button generated to

stop what was launched.

magic_sync was developed as a tool to ensure that the basic libraries developed by

the team were in their latest version. This was to overcome issues found where team

9The YAML markup language was used to ensure it was simple for team members.

132



6.5. COMPETITION PARTICIPATION

members tested their code against an outdated version of these basic libraries and

thereby reporting already fixed bugs.

Everyone had their own sub-folder in the robot, where they would make a workspace

to deploy their RoboCup tests and experiments. This ensured no one could break the

workspace of anyone else.

As in 2017, a local GitLab server was ready to be used in case of a network outage.

During the year, the team members were encouraged to have prepared scripts to test

elements of the system or the whole tests separately. Some tests of this type existed and

were used.

6.5.2.3 Social Coding Practices

The aim was to work as a team as efficiently as possible. If anyone needed to test on a

robot while also taking care of the robot placement or the environment, a second person

would always be there to help. However, if someone needed to focus intensely on a task,

it would be announced, and this person would not be disturbed.

If any task required an expert, the expert would be asked to do it or help whoever

needed it, so as to advance work as fast as possible. Moreover, the team leader, having

knowledge of all systems, was left free to help everyone and unblock teammates.

6.5.3 Technical Approaches

Technical approaches were characterized by a general satisfactory performance and a

successful offline approach.

6.5.3.1 Software Stack

The tests for Stage I and Stage II were considered well developed, but a lot more time

was invested in the Stage I tests as they were necessary to qualify for Stage II.

The network in this edition had huge problems. The network was slow and dropped

out frequently. At some point, the network went completely down for hours, making

two tests, Help Me Carry and GPSR, unable to be performed with WIFI connectivity.

The team was prepared for such an event, and somehow this may have helped UTS

Unleashed! to qualify for Stage II. It was stated in the rulebook that the quality or

availability of the network was not guaranteed, and only two other teams were also

prepared to compete in the absence of a network.

133



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Whenever there was network connectivity, the team tried to make use of it to improve

the execution time of OpenPose. OpenPose was used for object recognition and speech

recognition via Google in the cloud. However, the development of this capability was left

until too late and, even though it worked, it did not deliver the best results.

Our systems did not perform as well as we would have liked, but still worked well

enough to get us to second position in the competition. Namely, the navigation system

improved from the previous year, but using the robot laser as the primary means of

localization kept being problematic. New approaches were to be explored after the

competition.

Speech Recognition performed differently in different tests and times of the day. It

provided us with a high score in the Tour Guide test and a good score on Speech and

Person Recognition, but other tests had issues. Possible improvements became apparent

after competing.

Perception did not perform satisfactorily, especially object recognition. People per-

ception did not have the opportunity to show its capabilities as much as the developers

would have liked. The team’s OpenPose network, running locally, performed well and

provided the robot with vital information for the robot’s decision-making process.

Other systems worked well, for example, deployment of the robot software, starting

the RoboCup tests from the tablet, and the robot being totally offline. Also, our capability

to quickly hack something together was even better than the previous year.

Some tests were engaged in a trade-off between robustness and the possibility of

scoring higher. These tests had multiple implementations ready to be used with the

one to be used decided just before the tests (after evaluating how they performed in the

event).

Some tests were ready to record rosbags of meaningful data for analysis later on.

However, it was not generalized.

6.5.4 Results: Competition Outcomes

UTS Unleashed! performed satisfactorily in Stage I, as can be seen in the scoring sheet

in Figure 6.5. The team was in second place at that point. The team did not score 0 in any

test, which observing there were twelve 0 scores, and comparing with the previous year

where UTS Unleashed! did score 0 in one test (Help Me Carry), the team had obviously

improved. Only ToBI@Pepper performed better in all tests (with one matching score).

The test where most teams scored was Speech & Person Recognition. This test did not

feature any navigation and was fully based on perception and speech recognition. Once

134



6.5. COMPETITION PARTICIPATION

navigation is introduced in the tests, the scores start dropping. Our lowest scores aligned

with being the lowest scores for everyone.

Even though our GPSR implementations were only improvised in the last weeks

before the competition, it earned us the second-highest score by accomplishing partial

scoring in one command in two runs. This test is of high complexity, and only three teams

scored. The team was happy with the results.

Some teams were totally dependent on the network and were not able to participate

in the Help Me Carry and GPSR tests due to the network interruptions. UTS Unleashed!

was prepared to run 100% offline as it was known that network difficulties are not

unusual (and the experience in 2017 where the network performed exceptionally well

was an outlier). The Restaurant test also had no connectivity, but in this case, it was by

design as the test happened in a real restaurant out of the RoboCup venue.

Figure 6.5: 2018 scoring sheet of RoboCup@Home SSPL Stage I. The team was second at
that point.

UTS Unleashed! made it into Stage II as expected. In Figure 6.6 we can see that our

Open Challenge test-presentation was regarded as the second-best one after ToBI@Pepper.

The scoring is based on judges giving a score to the presentation instead of actual tasks

with partial scoring. Our Tour Guide test performed well, achieving the highest score

in Stage II and being close to the test’s maximum score. Both Restaurant and EEGPSR

tests did not go that well, but the team did not score 0, which other teams did. This

performance got us to second place at this point, far ahead of the team coming third, and

not that far behind the team coming first (ToBI@Pepper).

135



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Figure 6.6: 2018 scoring sheet of RoboCup@Home SSPL Stage II. The team was second
at that point.

UTS Unleashed! qualified for the finals. The finals were not prepared before the

competition, so a demo unifying the best skills was created at the competition itself.

Scoring of the finals is similar to the Open Challenge but with a different set of judges.

The scoring itself was not made public in this edition of the competition.

Objectively, UTS Unleashed! and ToBI@Pepper were not far apart on scoring. The

team did very well, and maybe luck played a role in having the judges score both the

Open Challenge and the Finals in favor of ToBI@Pepper. It must be noted that the ToBI

team has been participating in RoboCup@Home since 2009, making them one of the

most experienced teams. Getting a score that was similar to theirs can be considered a

great outcome.

Figure 6.7: 2018 final classification sheet of RoboCup@Home SSPL.

As can be seen in Figure 6.7 UTS Unleashed! finished in second place again this year.

136



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

6.6 Post-Competition Data Collection and
Retrospectives

Statistical data was collected from the Trello boards and the Git repositories as in the

previous year. A retrospective document was also collected from the feedback provided

by the team members; these are discussed in this section.

6.6.1 Statistical Data

Every year the available data from Trello and Git was analyzed as explained in chapter 4.

6.6.1.1 Trello Cards Data

This year Trello was used heavily at the start for the initial planning and research for

approximately a month. Then its usage decreased as the competition got closer just like

the previous year. The work during the weekdays was more steady than the previous

year, where the team meeting day dictated the most activity in Trello. Most activity was

shown to be in the development of robot skills.

The Trello activity over the year of development is shown in Figure 6.8. Mid-November

the activity kickstarts with a peak at the start of December, where the planning for the

year and the architecture view was created. We observe continuous activity until May,

when Trello was not used that much until a spike, which coincides with the RoboCup

event dates on 16-22 of June. Task management during the period between May and the

competition start was handled via a whiteboard with post-its instead of Trello.

137



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Figure 6.8: Activity (Trello actions) on the year 2018.

Figure 6.9: Distribution of Trello actions types on the year 2018.

This year the actions we find in Trello contain the usage of new features. In Figure 6.9

we observe how, like in 2017, updating cards was the most used action. However, this

138



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

year adding attachments to cards followed, with as much activity as commenting cards.

Additionally, the team members attached many screenshots and plots of their work.

Furthermore, checklists appear to be used this year to track subtasks in a card.

Looking at the month with most actions in Figure 6.10 December stands out on top of

any other month. This coincides with the planning for the year and the initial research

done in different fields. From January, Trello usage lowers steadily, similar to what

happened in 2017.

Figure 6.10: Distribution of Trello actions by months on the year 2018.

Checking which day of the week had more Trello activity Figure 6.11, we observe that

both Tuesday and Wednesday had the same amount of actions. Team meetings happened

on Tuesdays as in 2017, but it cannot be observed in this chart. A similar amount of

activity was observed during the rest of the working days of the week. Sundays had some

activity too!

139



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Figure 6.11: Distribution of Trello actions by weekdays on the year 2018.

Figure 6.12: Distribution of Trello actions by hours on the year 2018.

The distribution of activity during the day was similar to 2017, as seen in Figure 6.12.

The activity started at 9 AM up until 8 PM (instead of 10 AM to 6 PM in 2017). The most

140



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

prominent peak of activity was seen at 3 PM and 5 PM, which could be related to the

team meetings ending around those times. An isolated peak of activity at 11 PM showed

some late work, as in 2017, but less.

This year’s Trello boards had a different distribution of activity than 2017. In Fig-

ure 6.13 we observed that the Skills board had the most activity. This board contained

the development of the robot’s abilities. It was decided from experience in 2017 to put

much effort into having robust robot skills, and the Trello data supported that. The

Software Engineering board followed, which was tightly related to the development

of the skills. Subsequently, a board called Challenges contained the RoboCup Tests as

“challenges”. When the team started to work on them, other means of task tracking were

used, namely, the post-its whiteboard.

Figure 6.13: Distribution of Trello actions by Trello board on the year 2018.

Finally, from the anonymized data from authors and their action count in Figure 6.14,

one team member had almost double the activity of anyone else. After carefully checking

the original data, the conclusion was that this team member seemed to make a lot more

use of the platform than anyone else. The following four team members had a similar

amount of activity. Then the rest had a low amount of activity, participating in Trello

only when requested.

141



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Figure 6.14: Distribution of Trello actions by anonymized authors on the year 2018.

6.6.1.2 Git Commit Data

The Git data showed, as in 2017, steady activity increasing as the competition got closer,

with as much activity during the competition, as in the previous weeks leading up to it.

We interpreted this to infer that teamwork increased from 2017.

The 2018 commit activity per day chart found in Figure 6.15 showed that work

started or continued early on from September. The activity started increasing from the

end of January until the competition at the end of June. We observed an increase in the

number of commits in the last weeks before the RoboCup event.

142



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 6.15: Activity (commits per day) on the year 2018.

Figure 6.16: Commits per month on the year 2018.

Moreover, looking month by month in Figure 6.16, May contains the most activity

followed by June. As in 2017, there was a trend of increased workload as the competition

143



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

approaches.

When checking which days of the week had more commits in Figure 6.17, Tuesdays

were identified as the ones with the most activity. This could have been related to team

meetings happening on Tuesdays; however, all the working weekdays have a similar

amount of commits. Furthermore, some activity is shown on the weekend, as in Trello,

and as in 2017.

Figure 6.17: Commits per week day on the year 2018.

In the case of commits per hour of the day, as seen in Figure 6.18, work started at

around 10 AM and peaked at 5 PM to fall by 10 PM. The plot looked similar to 2017 but

with an increased number of commits.

144



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 6.18: Commits per hour on the year 2018.

Analyzing this year’s teamwork based on git activity by looking at Figure 6.19, we

first saw a much larger amount of repositories with two or more authors and with more

than one day of commit activity. This year 41 repositories made it into the plot against

11 from the previous year. This aligns with the fact that this year multiple repositories

were used instead of a centralized repository using submodules (as it presented problems

the previous year). The data presented brought up the following insights:

• The repository with most activity (by far) and most authors (mostly every team

member developing code) was pepper_skills. As the name states, this repository

contained the skills the robot could perform, and it was planned to have an impor-

tant focus on those in this year’s development. stuffed_pepper and qimate contained

easier-to-use APIs to access the robot APIs frequently used in pepper_skills and

also showed a high number of collaborators. Other repositories contained imple-

mentations for skills like pose-detector, pepper_object_recognizer, magic_speech,
pepper_tabletop, ros_object_recognition_docker, pepperception.

• The following three repositories with the most authors were: docs.wiki which, as in

2017, contained the wiki with the team’s documentation; pepper_navigation which

contained most code for the robot to navigate. Almost every test needed this skill;

145



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

and finals2018, where most of the team worked together to implement a test for

the finals during the RoboCup event, also showed great teamwork.

• The set of repositories: uts_planning, gpsr, planner, and task_manager were part

of the effort of making every test into a GPSR test variant by using the planner

interface that could be configured with a graphical web interface. Much work could

be observed in them; however, this work was not finally used in the competition

itself.

• Most other projects showing collaboration and activity were implementations

of RoboCup tests (help_me_carry, cocktail_party_skillsbased, tour_guide, restau-
rant_test, open_challenge, robot_inspection) or experiments.

• The magic_tablet repository showcased how the team gave much importance to the

Human Robot Interaction (HRI) experience as in 2017.

• The repositories pepper_docker, on_boot_goodies and magic_launcher contained

code to build and run the dependencies of the team’s system. A second author

appeared in these repositories, but it was still, like in 2017, mostly a one expert

person job.

146



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 6.19: Number of authors and days with commit activity per repository, sorted by
days with commit activity and filtered by more than 1 author and more than 1 activity
day.

When checking repositories with only one author, found in Figure 6.20, a similar

amount of repositories (20 in 2017, 18 in 2018) as in 2017 was found. The insights found

from this plot were:

• A similar amount of single-author repositories could be a good sign of teamwork as

many more repositories represented collaboration.

• Many experimental repositories were found in this plot (localisation-with-machine-
learning, rosduct, robocup_tests, cocktail_party_2018, tour_guide_experiment).

• Projects with a high level of expertise needed to engage in their development were

also seen (plan-blocks, magic_sync, magic_c_helpers).

• ros_pepperfix contained a re-implementation of the base system, coming from

pepper_docker. Hence, this was mostly a one-person job.

147



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

• The rest could be considered side-projects parallel to the RoboCup development,

which while not directly related to the competition, built up experience using the

team’s codebase.

Figure 6.20: Number of authors and days with commit activity per repository, sorted by
days with commit activity and filtered by exactly 1 author and more than 1 activity day.

The average of authors in repositories with more than one author and more than one

day of commit activity came up to 2.55 authors per collaborative repository. This was

higher than in 2017, which had an average of 2.3 authors per collaborative repository.

Considering that the number of solo projects stayed roughly the same as in 2017, we

interpret this as an increase in teamwork this year.

6.6.2 Team Retrospective

In this section the team’s retrospective will be summarized. The original retrospective

document for the year 2018 can be found in the section B.2 from the Appendix B.

The first question of the retrospective was “What worked well?” about the positive

facts from the preparation process and the competition itself. Regarding the competition

148



6.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

event, it was reported that the on-site technology resources were well prepared with

an emphasis on the offline-first capability of the team and the robot. The HRI, speech

recognition, and question and answer system were regarded as well-performing skills.

Also considered positive, were effective teamwork, hospitality, and sportsmanship. Con-

cerning the development process, the team described positively: the coding practices

of source code control, package management, and continuous integration; engaging in

real-world testing and holding well structured, frequent and complete ORTs where

“rigorous testing paid off”; and building up from modular and simple proof of concepts

and iterating into refined versions, and having access to powerful computers as also

contributing positively to the outcome. Furthermore, as positive notes in relation to

teamwork and team management, the team praised itself on having all day and everyday

activity in the lab; having a larger team; well distributed work using Trello during

the first months of development, practicing sprints and feature delegation. By the last

month, a particular focus on keeping close track of progress with a whiteboard including

scoring progression highlighted efficient teamwork. Moreover, the team reported shared

responsibility, team cohesion, collaborative decision making, the successful pairing of

teammates, and enthusiastic and talented interns.

The next question was “What did not work well?” about the adverse facts in the same

context. Many reports were conflicting with the previous question. Regarding issues in

the competition event, the team reported problems with the HRI implementation, the

navigation system having problems stemming from the localization system failing, and

the development of the finals being done in a rush during the competition. Moreover, the

majority of negative feedback was related to the development process, including a too

rigid software design with unit testing preventing quick coding; lacking a streamlined

setup for virtualized environments; and problems with testing of RoboCup tests as the

components lacked isolation and only one person had the knowledge to evaluate the

performance of the components separately. Interestingly, a conflict with the planner

language and the planner system itself appears as it is both reported as not working

as expected and as not used. Furthermore, during the development process, the team

management had issues regarding communication. Specifically, it was reported that some

team members needed help and reported it too late. Meanwhile, other team members did

not know how to help or be involved, and, additionally, there was a lack of understanding

and agreement between some team members regarding some technical decisions. Possibly

stemming from the last point, a lack of visibility and clarity about the task backlog was

reported. Finally, insufficient training was described which created a lack of shared

149



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

knowledge. This made the team’s strategy to share code to be considered too complicated.

It also raised issues with development being slowed down by team members not being

able to use ROS effectively for tasks involving sensory data and 2D and 3D information.

The last question was “What should we do next?” about proposals on how to improve

the next year of development and competition performance. The team identified specific

improvements that needed to be researched and implemented for the following robot

skills: navigation (detailed as localization, mapping, person following navigation, and

safe navigation), object recognition, speech recognition and generation, manipulation,

human perception, and HRI via the tablet interface. These improvements were expressed

with the spirit of researching new approaches and making the best use of HRI approaches

to overcome challenging scenarios and errors. Moreover, the team reported approaches to-

wards optimizing code, creating simpler Application Programming Interfaces (APIs) with

minimal dependencies, and wrapping ROS features to reduce its perceived complexity.

6.7 Reflection

The reflection is composed of the findings, which include the same substructure of three

sections as explained in chapter 4, answers to the action research questions stated in

this cycle, new questions to start the next cycle, and next steps to be implemented.

6.7.1 Findings

The findings stem from a review of the action research cycle and the team’s retrospective.

They aim to describe facts learned in this cycle.

6.7.1.1 Team Management Processes

In the retrospective document, the team showcased that teamwork was successfully built

as they reported shared responsibility, team cohesion, collaborative decision making, the

successful pairing of teammates, and enthusiastic and talented interns. These optimistic

revelations were interpreted as caused, or at least influenced, by a set of facts: having

a larger team compared to the previous year, as each member could tackle a more

manageable amount of tasks; to the team working together “every day and all day” in the

laboratory boosting interpersonal relations and knowledge sharing; widespread Trello

usage from December to February providing visibility on what and how tasks were

150



6.7. REFLECTION

worked on; structured, frequent and complete ORTs allowing the team to work together

and understand it’s progress; and close mentoring and supervision of the interns.

On the other hand, conflicts in the team regarding architectural decisions and their

implementation arose. These problems and the difficulties associated with handling the

situation damaged the team’s morale, decreased the team’s confidence in the proposed

system architecture, and soured interpersonal relations between specific individuals. The

project managers and the lead developer did act on multiple occasions using multiple

strategies aiming to improve the situation, but the issue dragged on until just weeks

before the competition. At that point, the team decided to abandon the previous approach

and implement a simpler and more ad-hoc solution. This resolution showcased that the

team could quickly work together to find a solution for a complex situation. Thus, strate-

gies to prevent and alleviate these kinds of situations must be researched. Furthermore,

it is meaningful to keep in mind the power making team-wide decisions.

Additionally, practices like sprints from Scrum10, or feature delegation from Water-

fall11, and having product owners12 which stem from taking reference from Software

Development Methodologies (SDMs) had mixed results. The lead developer interpreted

these mixed results as a consequence of some team members having a more compatible

profile with those practices, and/or a lack of experience on how to effectively implement

these techniques.

Finally, it could be interpreted that the team practiced a lightweight version of sprint

cycles as tasks would be created as required, then prioritized taking into account time

estimates. Team meetings would provide updates to the team as a whole on the state of

these tasks, casual meetings in between team members would happen during working

days providing closer communication, testing and integration of components would

happen continuously, and, finally, team meetings would also have demonstrations and a

retrospective element, as the team was open to talk about the processes that were used

at any time. In conclusion, the process was less rigidly structured than Scrum’s sprints,

but the agile philosophy behind it existed.

10As described in subsubsection 2.4.2.1.
11Feature delegation was discussed in the team as a process where each task would have a clear

description including the requirements, purpose, necessary resources, potential challenges, and a deadline
and then a leader would assign this task to whomever they think is the aptest based on the context.

12Understanding a product owner as someone that represents a specific feature to be developed and
takes the responsibility of its vision.

151



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

6.7.1.2 Team Software Development Processes

A clear direction on how to create APIs for the robot was not found. Different team

members had different preferences on how to manage their code. This year’s architectural

approach tried to be flexible and allow the usage of common robot skills from different

interfaces, but conflicts with the implementation hindered progress and adoption.

On the other hand, building modular and simple proof of concept or minimum viable

products and iterating them, increasing their usefulness and robustness, was a successful

approach.

6.7.1.3 Technical Approaches

Programming by configuration, and doing that via graphical interfaces, seemed like

an auspicious way to ensure that the team had well-tested skills to orchestrate for the

competition. However, this did not manifest in a successful implementation this year

due to conflicts that arose during development. The underlying abstraction aimed to

allow multiple interfaces and styles of usage of the same robot skills; however, it became

the main topic of controversy. Finally, as a technical approach, it may still be valid,

as demonstrated by other teams that used this strategy, but for UTS Unleashed! this

approach lost support.

On the other hand, the offline-first approach used, where all the system could run

without internet access, or even WIFI, by running all software in the robot’s onboard com-

puter was successful. It provided the team the opportunity to compete in all tests, even at

times when there were network failures. Moreover, some resources took advantage of an

external computing device running a GPU allowing the usage of deep neural networks

for perception tasks. These resources did not perform as well as expected though, making

this a pending topic for RoboCup’s next edition.

Moreover, the work done in regards to HRI in the RoboCup tests, especially the tablet

interface, provided excellent results by allowing operators and developers to understand

better what the robot was doing by having immediate, visible and straightforward

feedback. Dialogues were carefully crafted with simple feedback on the tablet, showing

what the dialogue was about and simple animations allowed users to understand what

task the robot was performing. A style guide was created to encourage best practices for

social robots and to maintain a personality for the team’s robot. However, it was often

violated, as every test reimplemented the HRI.

Furthermore, the speech recognition system performed satisfactorily, with the ques-

152



6.7. REFLECTION

tion and answering system, highlighted in the Tour Guide test, performing exceptionally

well. The team identified that multiple sessions of real-world testing of the system

allowed the gathering of considerable amounts of data and experience, to improve its

performance.

6.7.2 Answers to AR Cycle Questions

After a review of the cycle and the team’s retrospective, the proposed action research

questions were revisited and answered following the same structure like in the previous

chapter.

6.7.2.1 Team Management

The cycle started with the team focused on recruiting new team members by creating a

workshop presenting activities similar to RoboCup tests. This approach was successful

for UTS Unleashed! and it would be worth further researching as a university subject

instead of a one time workshop.

Subsequently, a spreadsheet, as seen in Figure 6.1, to prioritize task implementation

was created by the lead developer in collaboration with some key team members. It

contained the skills thought to be needed for all RoboCup tests. These were gathered

by carefully reading the rulebook and asking the team members from the last year for

their input. Every skill had a proposed signature for the function calls and minimal

documentation on its expected behavior. This allowed the team to prioritize these skills

by how common and critical they were for the competition as a whole, which allowed

for better planning for the year. The aim of this document was to be revised during the

year as an additional tool for task prioritization. However, it was only used at the initial

planning stage as a brainstorming tool.

Once the team was completed, and tasks were created, these were distributed to the

team members. Each person was asked about their interests, experience, and goals for

their participation in the project and initial tasks were provided. In most cases these

were proposed by the lead developer as, especially in the case of new team members,

they did not have a strong inclination towards any topic in particular. As team members

manifested ease or hardship working on their assigned tasks, the tasks were adapted

to fit their context. During this process, a clear distinction between team members that

had a proactive attitude and others that did not arose. The management style that came

out for each of those profiles was different. Non-proactive team members needed closer

153



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

guidance and tracking, increasing the management workload. In the future, research

about proactivity will be done to understand better how to increase proactivity.

As the team grew and there was a considerable amount of time to prepare for

the competition, popular SDMs were researched to improve the development process.

However, in the opinion of the lead developer, no SDM seemed to align with the team’s

preferences, as standard SDMs are designed with a business model in mind, with

professional paid employees under a contract, a customer, and other factors that differ

from the setup and goals of the RoboCup@Home SSPL project. Nevertheless, the Agile

manifesto13 presents ideas that line up with the project’s needs and the lead developer’s

vision, so these ideas and practices from SDMs were trialed and adapted for the team’s

context.

As the retrospective document and the git statistics showcased, this year’s teamwork

was effective. Knowledge transfer was achieved due to the team working together in the

lab, often doing pair programming, or just working in pairs. Furthermore, tutorials and

workshops were held to introduce major developments or tools. Finally, team meetings

included demonstrations and brief explanations of how systems worked, while they also

provided opportunities for team members to ask questions and ask for help.

This year ORTs were run as soon as possible when the team was able to work

together and have a minimal software stack to run RoboCup tests from the rulebook of

the previous year. These ORTs were adapted to the current context, and if systems were

not mature enough to allow for direct scoring, other means of evaluation were created.

For example, it was acceptable for tests to bypass the elements that were not available

yet. New team members acquired a better understanding of what the competition looked

like by participating in these events. This allowed them to better understand the team’s

strategy and decisions designed to improve their focus when developing.

Trello was used extensively during December to February as most task creation

and research tasks were to be done in those months. The backlog of tasks was more

effective at showcasing the progress of tasks, as the team added images to cards and

used checklists with specific goals to achieve in a task. These simple additions provided

more visibility and structure than previously, where only text descriptions were used.

During the last six weeks of development, when the workload became more intense, a

whiteboard with post-its was used to keep track of tasks, providing an easily accessible

and understandable view of the status of the project.

13As introduced in chapter 2

154



6.7. REFLECTION

6.7.2.2 Coding Practices and Technical Approaches

Regarding coding practices, the lead developer wanted to make the development of

RoboCup tests easier and more robust, by following coding standards to improve code

quality, while conforming to the team’s coding preferences. Using a graphical interface

to configure tests instead of coding them by traditional means was attempted, unsuc-

cessfully. As the backbone of this work, tools that increased accessibility to complex

robot behaviors in a unified abstraction layer were developed, but they were not widely

adopted. Factors that affected this outcome were: issues regarding the APIs not adapting

to everyone’s preferences; a lack of agreement in how to implement additional interfaces;

and perceived excessive rigorousness on documentation and automated testing. In hind-

sight, as a lesson for future implementations, the system could have been introduced in a

more mature state with carefully crafted examples, templates, and simple processes that

showcased how to solve complex problems that the team could relate to, thus, improving

adoption and preventing conflicts.

Most code was developed from scratch this year as previous code was considered

messy and lacking an architectural vision; however, successful concepts were kept,

reimplemented, and improved. The lead developer encouraged ROS usage by running

a workshop and working in pairs with some team members, showcasing its usefulness

and ease of use for specific tasks. Subsequently, some tools as Rviz, a 3D visualization

tool for ROS applications, were used while others were ignored and even reimplemented,

for example, rosbags, a tool to record and playback ROS data. A few team members

perceived ROS as being too complex. Further investigation on this reasoning revealed

that a lack of experience working with libraries and general networking knowledge was

the cause. Additional documentation was written to improve the situation, including a

ten-step debugging guide for common issues related to the user’s shell environment. The

idea of exploring easing the learning curve for the next year was noted.

6.7.3 New Questions

This cycle raised the following research questions, based on the following observations:

• How to architect the system?

An architecture was proposed and attempted, but it failed for diverse reasons. As
seen during the cycle, further efforts were needed for the next cycle.

• How to transfer knowledge?

155



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

Knowledge transfer improved compared to the previous cycle, but the lead developer
believed that there was room for improvement. The failed architecture aimed to help
on this approach, and as part of a new architecture the concept must be revisited.

• What is the best shape for a robot API?

The architecture for this year aimed to allow for a variety of styles of usage and
implementation of robot APIs. These were not as successful as the lead developer
wished, and this this question remains open.

• Can we improve further ORTs?

This year the ORTs were perceived as preparing the team successfully for the
experience at the competition, however, as ORTs were identified as a key element for
the team success, it is worth iterating on them further.

• How to structure code for improved sharing and reusability?

Given this year’s architecture did not provide a clear improvement in this topic, it is
worth further exploring in the next cycle.

• How can we distribute the work during the year so we do not have much more

workload close to the competition dates?

It was believed that as this year had a more extended period for development,
compared to the previous cycle, the workload could be spread evenly during the
year, but it turned out to not be like that. To allow for a lower workload in the last
weeks before the competition, it is worth further thinking about it in the next cycle
to improve the team members’ experience.

• Can we further increase and/or improve teamwork?

Teamwork increased this year as seen in the Git data and the retrospective document,
and the lead developer believed that it was a key factor for the team’s success. Given
that, it is worth investing effort in the next cycle to further improve.

• How to find new team members that are proactive?

The lead developer believed that proactive team members could be beneficial for the
team and aimed to encourage this behavior with the interns but failed to do so. As it
could be a personal trait looking to recruit team members that are already proactive,
it was to be taken into account for the next cycle.

156



6.7. REFLECTION

• How to increase proactivity in the team members?

An attempt was made to increase proactivity in the interns, but it was not successful.
Further research in this direction may benefit the team.

6.7.4 Next Steps

This section describes the aims for the next action research cycle, based on the review of

this cycle and the team’s retrospective, using the same structure from chapter 4.

6.7.4.1 Team Management Processes

For the next cycle, new team members needed to be recruited and a subject related to

social robotics would be conducted by some laboratory members; this subject would act

as an improved version of the workshop held in this cycle.

As previously reported, the concept of proactivity would be researched, aiming to get

team members to be more autonomous and productive while lowering, or distributing,

the management workload.

To distribute the managerial workload and also to allow for subteams to direct

their work as preferred, experienced key team members would take care of setting up

roadmaps for their areas of interest; these could be considered as product owners in a

simile with the Scrum methodology. Regarding the backlog management, the practices

of attaching images and using checklists for goals of tasks would be encouraged and,

additionally, proposed deadlines for those tasks.

The current ORTs were successful, so these events would stay, however, opportunities

to improve them further would be researched. Stricter focus on scoring earlier on, while

maintaining trade-offs when systems are not yet ready, would be explored as previous

experience showed that it did provide more robust and higher scoring.

As a new architecture would be developed, requirements, and desired features would

be gathered. Care would be taken to keep the team involved in implementation and

interface decisions. Once implemented, the framework must be introduced with a well-

prepared presentation with meaningful demonstrations and documentation to avoid

problems like those found in this cycle. Furthermore, training would be provided. This

training to be held by other team members, ideally interns, not the lead developer, to

ensure knowledge transfer and avoid depending on a single person’s knowledge and

opinion.

157



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

6.7.4.2 Team Software Development Processes

Given the issues raised in this cycle, for the next cycle, automated testing and continuous

integration would only be enforced on the projects that definitely need it. Team members

familiar with such an approach would help others to work in this way. Coding standards

regarding naming and formatting would stay as they were not raised as an issue and

provided higher quality in the code.

This year’s teamwork showed that knowledge sharing was successful, but software

reuse could be improved. Further effort would be made in encouraging documentation

practices that were regarded as low additional workloads, such as having a README file

on every package with a description of the package and examples of usage. Additionally,

pairing team members for the development of RoboCup tests would continue, and pair

programming would also be encouraged for those team members that enjoy it.

6.7.4.3 Technical Approaches

A new architectural vision was to be developed for the next cycle embracing further ROS

elements. The implementation would provide finer control of the processing pipeline

from sensor information to high-level behaviors and applications. Care would be taken to

simplify APIs that were reported as complex. Finally, providing efficient network usage

and transparent remote nodes would be one of the main features of the architecture

while not blocking anyone from using plain ROS code.

The navigation system would be overhauled by separating its state machine in easier

to test individual pieces by means of the move_base_flex [105] ROS package. Moreover,

the localization system would explore using RGB and RGBD approaches.

Further effort into efficiently using state of the art deep learning approaches for

perception would be undertaken, particularly, for object recognition.

Additionally, a new HRI system that would allow a centralized approach to social

behaviors would be developed, allowing the team to convey a style or personality for

the robot without changing the code of every RoboCup test. This system would extend

further from what RoboCup needs but was aligned to the lab’s interests.

Finally, the speech recognition and generation system would be reimplemented to

allow for improvements that were difficult to implement this year.

158



6.8. POSSIBLE GUIDELINES

6.8 Possible Guidelines

Based on the previous guidelines, the most important findings and reflections from the

year of development will be summarized; these will be refined and extended every year.

• Perform end-to-end testing. Simulation of the full competition including setup on a

previously unknown place, strict schedule, and timing, strict scoring, by a strict

referee, naïve users and other elements that otherwise may be overseen. Examples

of other elements can be networking issues, environmental noise, unavailable team

members, or unusual lighting. Start performing these as early as possible, team

members new to the competition will grasp a better idea of how the competition

looks like. Allow flexibility when necessary, e.g., if some part of the system is

absolutely not ready, allow to bypass it.

• Find a balance between what the team wants and what is believed to be the best

for the team regarding development processes. This is something to be re-evaluated

during the development year. Topics such as coding standards, testing standards,

documentation, deployment strategies, and code sharing approaches fall into this

category. Invest in understanding what is considered hard, and work on improving

the situation. Example improvements can be finding alternatives or providing

further documentation or tooling.

• Provide the best tools available for the job. Development tools, frameworks, simu-

lations, and hardware are topics that fall into this category. References for these

can be taken from other teams or industry. Provide documentation and training for

these too. The example here is the ROS middleware, widely used in the community

of the competition and industry for robotics applications.

• Ensure teamwork is possible and encouraged. Set up a backlog of tasks and

distribute them, taking into account every team member’s interests. Promote

grouping team members to work more effectively and share responsibility. Promote

pair programming for knowledge transfer and to fix difficult bugs. Consider using

a physical backlog, additionally to online means, in your working environment as a

clear and quick way to visualize progress.

• Test as often as possible, on the real robots and in a realistic environment. Having

unit testing is a great tool; testing with real stored data is also helpful, but the

only thing that will matter in the end is that the competition tests run robustly.

159



CHAPTER 6. ROBOCUP@HOME SSPL: YEAR 2018, 2ND PLACE

• Focus on scoring. Implement and test with that in mind. Over-engineering a robot

skill for cases that will never happen implies that time could have been invested

somewhere else of higher priority.

• Start with simple approaches and iterate improving them. This can be applied

to the development of capabilities for the robot and the design of approaches for

competition tests.

• Architect your system with software integration in mind. Integrating a lot of

software from different sources with different mindsets can be hard, and it should

not be left as a final exercise.

160



C
H

A
P

T
E

R

7
ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

2019 was the third year of the existence of RoboCup@Home Social Standard Platform

League (SSPL) competition, the third year for the UTS Unleashed! team to participate in

it, and the last year of participation for the team (at least in regards to this dissertation).

The 2019 rulebook [106] presented meaningful changes.

As in the previous 2 chapters, this chapter follows the structure of the diagram in

Figure 4.1 which itself follows the structure of Action Research (AR) cycles in Figure 2.2.

Every AR cycle is composed of a year of preparation for the competition, participation in

it and reflection on the process itself.

In each section the AR cycle setup is explained: the framework of ideas, the method-

ology, and the area of concern for that cycle are first discussed as per the structure

explained in chapter 2 and chapter 4. The context for the year follows. Its main themes

are the rule and competition changes of that year and the team composition of that year.

Following, the software development plan is presented. It is analyzed in three

subtopics that will be repeated over every next subsection: team management processes,

team software development processes and technical approaches.

Afterwards the software development implementation presents the same subsections

but in the context of the plans put in practice and their iterations.

Then the competition participation is showcased, again with the same subsections.

Also with the results, as competition outcomes, for that edition.

Near the end of the chapter we find the post-competition data collection and retro-

spectives. Here the available data about the year is collected.

161



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

Finally the reflection section summarizes and discusses the findings (following again,

the same three subsections structure), and briefly describes the next steps. The very end

of the chapter consists in the proposal of guidelines based on the reflections on the cycle.

7.1 Action Research Cycle Setup

Our research questions for this cycle come again from the previous reflection accompanied

by their observations:

• How to architect the system?

An architecture was proposed and attempted but it failed for diverse reasons, as
seen during the cycle, further efforts were needed for the next cycle.

• How to transfer knowledge?

Knowledge transfer improved compared to the previous cycle but the lead developer
believed that there was room for improvements. The failed architecture aimed to help
on this approach and as part of a new architecture the concept must be revisited.

• What’s the best shape for a robot API?

The architecture for this year aimed to allow for a variety of styles of usage and
implementation of robot APIs. These were not as successful as the lead developer
wished keeping this question open.

• Can we improve further ORTs?

This year the Operational Readiness Tests (ORTs) were perceived as preparing
the team successfully for the experience at the competition, however, as ORTs were
identified as a key element for the team success, it is worth iterating on them further.

• How to structure code for improved sharing and reusability?

Given this years architecture did not provide a clear improvement in this topic, it is
worht further exploring in the next cycle.

• How can we distribute the work during the year so we do not have much more

work load close to the competition dates?

It was believed that as this year had a longer period of time for development,
compared to the previous cycle, the workload could be spread evenly during the year

162



7.2. CONTEXT

but it turned out to not be like that. To allow for a lower workload in the last weeks
before the competition, to improve the team members experience, it is worth further
thinking about it in then next cycle.

• Can we further increase and/or improve teamwork?

Teamwork increased this year as seen in the Git data and in the retrospective
document and it was believed by the lead developer that it was a key factor for the
success of the team. Given that, it is worth investing effort in the next cycle to further
improve.

• How to find new team members that are proactive?

The lead developer believed that proactive team members can be beneficial for the
team and aimed to encourage this behaviour with the interns but failed to do so.
As it could be a personal trait looking to recruit team members which are already
proactive was to be taken into account for the next cycle.

• How to increase proactivity in the team members?

An attempt was made to increase proactivity in the interns but it was not successful.
Further research in this direction may benefit the team.

7.2 Context

This year was the last year the team had plans to participate in RoboCup@Home

SSPL. As a three year plan, with the previous two years achieving second place in the

competition, further pressure to win built up which could have affected morale.

With seven team members on their third year of competition (albeit only three of

them doing software development) and three team members on their second year, there

was a lot of expertise and knowledge that could aid the team. The lead developer and

project managers had an optimistic view for the year.

7.2.1 Rule and Competition Changes

This year the competition was scheduled for the 2nd to 8th of July of 2019 in Sydney,

Australia. There were roughly 9 months to prepare for the competition (after a break

from the previous year), similar to the 2017 year.

163



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

This year a major rework of the rulebook [106] was done. The schedule changed

to adopt the concept of thematic scenario blocks. The themes were called Housekeeper,

where tasks revolving around finding and moving objects around the home took place,

and Party Host where emphasis was put into social tasks as in helping guests in a party.

Every day two time blocks were scheduled lasting from two to three hours. All teams

were allocated at least 2 testing slots per block in which they could test any task of their

choice from the block’s assigned scenario. All teams got the same amount of slots, with

a minimum of 2 per block. If there was extra time, another extra slot could be added.

Teams must inform the organizers in advance which tests they were going to perform in

each of these slots.

The Open Challenge was a test where each team would present their own research

in an appealing way to an audience of team leaders and referees who would score it. The

robots must perform some kind of autonomous task but the teams were free to use any

technology they wanted. The Open Challenge test was made optional and non-scoring,

even though the Finals kept the same format.

The biggest change was the scoring system. Each test now had a task with a main

objective and a set of scoring bonuses. To score in a test a team must successfully

accomplish the main objective of the task, otherwise bonuses were not scored. Previously,

every test had some subtasks to accomplish that would provide partial scoring. This

made it so a team could, for example, not accomplish a full task where the robot must

get an order and fulfill it, but get partial scoring for understanding the order. Now the

team would only score if the robot fulfilled the complete order.

A rule called Deus ex Machina was created to be able to bypass features with human

help. This rule enabled teams to score even when a robot was not able to fulfill a partial

task although it accomplished the main goal of the task. An example of this rule was

presented as the robot asking for help from a human to point to the direction of whatever

the robot was looking for. Making use of the Deus ex Machina rules reduced scoring of a

successful task, and also made the team unable to score any possible bonus score in that

task.

The new scoring, and the Deus ex Machina rule attached to it, made the approach for

robustness to score even more important than ever.

In Stage I, five tests for each category of Housekeeper and Party Host were created.

All tests but one (General Purpose Service Robot, as it stayed mostly the same) had

familiar elements from previous rulebooks but were new.

In Stage II, four tests of each category were created. An additional test, assigned to

164



7.3. SOFTWARE DEVELOPMENT PLAN

the Party Host scenario but treated as a major test for everyone to compete, was added,

the Restaurant test. This test was not included in the slots count, but everyone was able

to participate if they wanted to.

7.2.2 Team Composition

The team was composed of 17 people. Recruiting was performed during the months of

October and November. The interns from the previous year stayed, funding was secured

for them. Additionally, more team members joined the team partially fulfilling work for

subjects of their degrees.

The team was bigger than the previous year. More than half of the team were part

of it for the second or third year in a row. This year 14 members were on the role of

developing software.

The interns were the same undergrad students in Computer Science and/or Infor-

mation Technology from the previous years. They improved their software development

skills during the previous year but were still not considered experts as they needed

monitoring and guidance on their work.

The new team members were mostly undergrad students looking to fulfill subject

projects with the work done in this project. The rest of the developers fit the description

of the previous year being mostly PhD students and staff from the lab.

7.3 Software Development Plan

As in the previous cycles, this section explains the software development plan for this

edition of the competition. It includes the team management processes, the team software

development processes and the technical approaches planned.

7.3.1 Team Management Processes

This year contained a new and unforeseen situation: the lead developer had to take some

time off due to mental health issues. In December and January his time commitment

with the team was lower than usual. In February and March he was completely gone. He

came back in April, progressively, to come back full time by the end of the month.

A new summer studio organized by some lab members that would allow the team to

find new team members and to evaluate and improve the available software was held.

165



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

# Team Role SW Expertise Background Time Dedication

1** Project Manager – Lab Director On demand

2** Project Manager – Project Manager 14h/w

3** Assistant – Media Specialist On demand

4** Lead Developer Expert Robotics & CS 32h/w

5** Developer Expert Computer Science 10-20h/w

6** Developer Expert Lab Co-Director & CS 20-40h/w

7 Developer Expert IT & CS 20-40h/w

8** Developer Advanced Computer Science 20-40h/w

9* Developer Advanced IT & CS (Intern) 20-40h/w

10* Developer Advanced IT & CS (Intern) 20-40h/w

11* Developer Advanced IT & CS (Intern) 20-40h/w

12 Developer Advanced IT & CS 4h/w

13 Developer Moderate CS & AI On demand

14 Developer Moderate IT & CS 20-40h/w

15 Developer Beginner IT & CS 20-40h/w

16 Developer Beginner IT & CS 8-16h/w

17 Developer Beginner IT & CS 8-16h/w

Table 7.1: Team composition table for UTS Unleashed! in 2019. Team members marked
with one asterisk (*) are on their second year of participation in the team, members
marked with two asterisks are on their third year with the team. 1

This summer studio created an activity similar to a RoboCup test to be solved by the

students.

7.3.1.1 Team Management Tool

Trello was used again as the online tool to keep track of work to be done. This year it

contained the following 5 boards:

1CS stands for Computer Science, IT stands for Information Technology, AI stands for Artificial
Intelligence.

166



7.3. SOFTWARE DEVELOPMENT PLAN

• Marketing: interns took over the marketing job from the previous year.

• Software Engineering: the previous year’s board was very successful so it was

replicated, with some tasks being taken over from the previous board. Checklists

for tasks in cards were widely used.

• RoboCup Tests: as the board was succesful the previous year, it stayed. Deadlines

for cards were widely used in this board. Check boxes for tasks in cards were widely

used.

• Robot Task Planning: this board was expected to be used to continue the work on

the planner done the previous year by its author.

• Troubleshooting: board to share fixes and workarounds for different issues.

Creating lists with checkboxes and setting goal dates on some Trello cards seemed

to help at the initial stage of the development year, so this year that practice was

encouraged further as a refinement of our methodology.

Introduced this year, roadmaps were created for every major technical topic for the

competition: navigation, HRI (tablet interface and user experience), speech recognition

and text to speech, and perception. These roadmaps consisted of a description of the

vision for the topic and a prioritized list of approaches to research.

7.3.1.2 Team Meetings

The plan was to hold team meetings every 2 weeks and as the competition got closer,

every week. Additionally, ORTs were to be held monthly, fortnightly as the competition

approached, and weekly by the end. This practice followed up the trend from the previous

year refining it by planning them in a shared calendar.

7.3.1.3 Task Assignment

From the roadmaps, tasks were extracted and distributed via Trello cards. There was a

leader for every roadmap and by meeting with this person work was distributed to the

most interested or capable people. This organizational approach was decided while there

was no final rulebook for this year. Once the rules were finalised, reorganization was

necessary and subteams were created for every test to be implemented.

167



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

7.3.2 Team Software Development Processes

This section presents the practices and tools regarding how the team was to develop

software.

7.3.2.1 Coding Standards

This year a new analytics system was to be implemented to keep automatic, or as

automatic as possible, track of different insightful data.

Software packages were to be written so they could be packaged either as Python pip

packages or Debian packages to ease distribution and installation refining the practice

from doing it casually the previous year.

7.3.2.2 Coding Tools

A new framework called magic_ros was developed to ease the usage of Robotics Operating

System (ROS) for the team. On top of that, tools to ease other areas of interest were to

be created.

7.3.2.3 Social Coding Practices

The interns from the previous year were proposed to take the role of presenting new

tools/libraries in workshops to the team to help them improve their transferable skills.

They were to be developed alongside expert team members. This was an extension from

the previous year were workshops were provided but these were presented by the authors

of the tools themselves.

7.3.3 Technical Approaches

As in the previous cycles, the technical approaches, or specific decisions made for the

competition itself, are discussed in this section. These are related specifically to the

RoboCup@Home SSPL and describe the competition requirements, the robot’s capabili-

ties, and the software stack.

7.3.3.1 Competition Requirements

The new rules made it necessary that the robot would perform whole tasks robustly.

However, as the Deux ex Machina rules could be used to overcome problematic steps,

the tests were to be prepared by first programming the backup behaviors, and then, add

168



7.3. SOFTWARE DEVELOPMENT PLAN

the totally autonomous behaviors. This was to ensure there were well tested backup

behaviors and also to ensure there was always a way to, at least partially, score.

To choose the tests to be implemented, the available skills and capabilities expected

to be developed for the year were taken into account. The tests were chosen by consensus

during team meetings, this was a extension from the previous year. The chosen tests for

Stage I follow:

• Housekeeper scenario:

– Clean Up: Some misplaced objects are inside one room in the arena. The

robot has to tidy up that room by throwing those misplaced objects in the

garbage. The main goal of this task is to find all misplaced objects in a room

and bring them to their predefined locations.

– Take Out The Garbage: All garbage bins in the apartment are to be emptied

and the garbage moved to a specified collection zone. The main goal of this task

is for the robot take out the trash bags from the two bins in the apartment.

• Party Host scenario:

– Find My Mates: The robot fetches the information of the party guests for

the operator who knows only the names of the guests. The main goal in this

task is to report to the operator the description and location of at least two

party guests.

– Receptionist: The robot has to take two arriving guests to the living room,

introducing them to each other, and offering the just-arrived guest an unoccu-

pied place to sit. The main goal of this task is to introduce and allocate two

newcomers in a party.

It is noteworthy that even though the General Purpose Service Robot (GPSR) test

still existed, the issues with its development the previous year (including the fact that

it needed to have all possible skills for the robot ready) discouraged the team to invest

their efforts in preparing this test.

As part of the effort to improve the rulebook in the interests of the RoboCup@Home

SSPL, given the team perceived that some tests could be improved regarding the social

aspects of the tests, the lead developer joined the technical committee. Within this role

the Find My Mates test was proposed by the UTS Unleashed! team and accepted into the

rulebook.

169



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

Additionally, for Stage II the following tests were chosen:

• Housekeeper scenario:

– Find My Disk: The robot helps a blind person to locate an LP, compact disk,

or audio-cassette in a shelf. The operator will ask the robot to describe what

it sees in either the shelf or the media cover, but will not allow the robot to

touch these treasures. The main goal of the task is for the robot to provide a

description of an object that matches the operator’s requirements.

– Hand Me That: A guest at the party speaks English, but with only a limited

vocabulary. The robot will assist them in obtaining things that they gesture

for. The main goal of this task is for the robot to identify (touching or naming)

each object at which the operator is pointing.

• Party Host scenario:

– Restaurant: The robot retrieves and serves orders to several customers in a

real restaurant previously unknown to the robot. The main goal of this task

is to take and serve an order to a customer.

– Where is this?: The robot has to explain and show people where they can

find places in the arena (e.g. Where is the TV?). The robot has to tell the

operator how to get there (in a summarized fashion) and then physically take

the operator there in the mode of a tour guide. The main goal of this task is to

give accurate directions and guide at least 3 people.

The finals were, once again, left to be developed in the competition itself. The devel-

opment lead had a strong belief in their ability to prototype and test quickly.

Furthermore, even though the chosen tests are reported here, some tests, especially

for Stage II, were only decided later on during the development year. A list of pros and

cons for every test that team members proposed, was created. Then, a week was allocated

for doing some research and development to explore how viable it was to implement

these tests. Finally, the team voted for which tests to implement.

7.3.3.2 Software Stack

The software architecture was designed with strong inspiration from the lessons learned

the previous year. The architecture aimed to have a basic framework from which to base

170



7.3. SOFTWARE DEVELOPMENT PLAN

the software stack. This basic framework was called magic_ros in reference to the name

of the lab: The Magic Lab and to the ROS framework.

The magic_ros framework is designed to implement elements that ease the usage

of ROS (via autodiscovery and helpful error messages) and also provide tools to make

transparent, easy and robust usage of external servers from the robot, i.e. via unreliable

WIFI, when these are available. It also aims to provide automatic logging, real time state

feedback, analytics, live reconfigurable variables and new data acquisition modes.

Over this framework a set of friendly-named packages2 were created:

• magic_navigation: To contain a re-implementation of the navigation stack by

using move_base_flex3. This change also allowed for easy experimentation with

the different pieces of the navigation stack, with special mention to the local

planner4. Different mapping and localization strategies will also be evaluated and

implemented here.

• magic_apps: To contain applications and drivers that fulfill necessary roles. Aims

to create new drivers for some key elements of the system, for example, a new laser

driver or providers of images that can be queried for images instead of subscribed

to a stream of images.

• magic_vision: To contain computer-vision related utilities. With an interest on well

known working deep learning elements.

• magic_listen and magic_speak: To contain the code related to speech recognition

and speech generation. Aiming to more efficiently and aggressively use Google

services for speech recognition with a local fallback, thought to be PocketSphinx

[107]5 at this point.

• magic_tablet: Mostly the same project from the previous year but with some

updates.
2The packages were friendly-named compared to the previous year where many packages had creative

and fun names. Those names made finding packages and reasoning over them more complicated.
3move_base_flex allowed custom state machines to be implemented for the navigation interface. Tradi-

tionally the state machine is fixed and implemented in C++. This package allowed it to be implemented in
Python with total freedom.

4A navigation local planner has the job of creating and following short local trajectories that follow
a global trajectory, i.e., given a global trajectory that goes from the living room to the kitchen, the local
planner will be in charge of creating and following shorter trajectories that avoid obstacles and try to
follow this global trajectory.

5PocketSphinx is a lightweight speech recognition engine, specifically tuned for low power devices as
mobile devices.

171



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

• magic_hri: To implement a unified human robot interaction approach for the robot.

However, a topic that did not have a roadmap but had its necessary actions in Trello

was the base dependencies of the robot build. Previously called ros_pepperfix, the project

compiled all the necessary dependencies for the rest of the code of the team. For this

year the aim was to automate the building in Docker and with nightly builds on free

continuous integration resources in the cloud. This work was to be done open source so

the community could get engaged and help. The final custom image for the team’s robot

ended up being called pepper_os.

Finally, a simulation for the Pepper robot via Gazebo was also to be developed (more

precisely, fix the one available that was not working for navigation purposes).

7.4 Software Development Implementation

This year’s software development was marked by a prolonged period of absence of the

lead developer, however, teamwork kept improving.

7.4.1 Team Management Processes

As the lead developer had to take some time off, the team management went through

a few hard to delimit phases. Generally, the processes learnt during the previous year

were to be kept with even more emphasis on the ORTs.

7.4.1.1 Team Management Tool

The Trello boards were updated from the previous edition. The final boards were:

• Software Engineering: widely used, task oriented cards using checklists.

• RoboCup Tests: widely used, task oriented cards using checklists and also due

dates.

• Marketing: quite well used by the interns working on it. Lots of checklists used.

• Robot Task Planning: this initiative was shutdown by group vote as the previous

year this work created a lot of conflicts in how it was handled.

172



7.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

• Troubleshooting: only one team member used it as a kind of resource to review

bugs that that person had fixed. Others used snippets or gists6, some local files,

the wiki or other means.

Both checklists and due date deadlines were widely used at the start of the activities

on each board, but lowered in usage as time went. These seemed like a good tool to get

started, but once people were comfortable working, they skipped it and kept their own

personal work-tracking means.

7.4.1.2 Team Meetings

Sub teams would meet weekly meanwhile ORTs were held fortnightly. Every month

there was a more rigorous ORT that involved more setup than the fortnightly ones.

Focus was set on scoring as this year scoring was very hard given the requirement of

performing whole tasks to be able to score.

The days when ORTs were held included lunch provided by the university to the

team members. Eight ORTs were held from the month of April. They were held mostly

fortnightly but as the situation made it necessary (and as the competition approached)

they were held weekly. Unfortunately the scoring for these sessions was not preserved

and can not be presented here as in 2018. But the team leader recalled that most sessions

had the tests score 0. This was due to the model of scoring in this year’s rulebook, which

made it very hard to score. By the last ORT the team did score on every Stage I test and

in some Stage II tests.

Thursdays were designed as work-in-the-lab days. Setting an “official” day to work

together encouraged teamwork. This was a reaction to the period where the team leader

was absent which made team members attend the lab less frequently.

7.4.1.3 Task Assignment

The development lead was unavailable for some time. This introduced various imped-

iments. To start, it was not clear the level of involvement (or lack) of the team leader.

Emails were still being replied to but he was not attending the lab. However, at some

point the development lead was not available at all, and the team had no backup for this

role.

6A Gist is a hosted snippet of code that has all of the benefits of an online hosted Git repository but is
presented in a more lightweight fashion. Gists are the name given by GitHub, other platforms call them
just snippets.

173



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

A new team leader was looked for. The role was offered to promising team members

that would benefit from the experience. No one was found willing or able to perform this

role. Another experienced team member kickstarted the project by creating subteams for

RoboCup tests and setting clear and attainable goals. Each subteam had a team leader.

Focus was put on having ORTs and rotating who would be the chair of meetings and

ORTs. The shared leading effort was unsuccessful but at that point the lead developer

came back into the project regaining that role.

7.4.2 Team Software Development Processes

This year’s software development processes were characterized by a generalized improve-

ment in teamwork.

7.4.2.1 Coding Standards

The magic_ros framework was implemented providing some useful tools and helpful

error or warning messages. Using magic_ros was not widespread, neither was it enforced,

but more encouraged in the places where it made sense.

Mindful usage of standard coding practices were done. Base libraries had unit tests

and automated testing developed. Continuous integration and deployment was set up

in the necessary repositories. The strictness to adhere to these practices was evaluated

separately for every project and person to allow for a smooth development experience for

all the team.

7.4.2.2 Coding Tools

Following the architecture planned at the start of the year, tools written on top of

magic_ros were created for tasks like computer vision or testing remote servers.

Most team members started using Microsoft Visual Studio Code, some substituting it

over the previously used Sublime Text, as their main code editor. This introduced some

unification on the development environments.

Some team members made use of Jupyter Notebooks to conduct their research and to

share their discoveries.

The team made extensive use of the powerful computers that were available from the

previous year. Deep learning based approaches for a broad set of topics were tested.

174



7.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

7.4.2.3 Social Coding Practices

The interns led workshops over the libraries and packages created for this year. These

were perceived positively by the attendees and the interns themselves. The interns

from the previous year did some mentoring over the new team members as a means of

improving their leadership skills.

Code reviews were done from time to time. Pull Requests were used as a learning

tool in some instances.

Team members used to work in pairs in the different RoboCup Stage I tests. Once

they were finished they were free to swap into working in a Stage II test of their liking

or support other subteams.

7.4.3 Technical Approaches

This year’s technical approaches were characterized by the introduction of the team’s

framework to base their system on.

7.4.3.1 Software Stack

As in the previous year, given some tests could be run at least 2 times, tests that may be

implemented in a more riskier approach but could provide a higher scoring had parallel

implementations.

As planned, the work on the base OS was improved (magiclab_pepper_os), stream-

lined and automated with nightly builds via Docker to ensure its usability at all times.

The team froze a version a month before the competition.

The architecture was implemented as planned via magic_ros 7. Base skills were

either re-written or added as a wrapper on top of magic_ros.

The team started doing some analysis and benchmarking of different approaches

for the different systems. Drivers and robot skills were written from scratch using the

magic_ros framework to gain further control of some sensors of the robot and optimize

network usage. Namely:

• magic_ros features:

– Reduced complexity in ROS usage

– Resource providers
7Details of the software stack also appear in the publication UTS Unleashed! RoboCup@Home SSPL

Champions 2019, [108] published in the RoboCup 2019 Symposium Proceedings.

175



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

* Subscription and query interfaces

* Queryable buffers (get data at timestamp, get all buffer, etc)

* Online reconfigure capability via ROS’ dynamic_reconfigure

* Efficient data transport

* Easy and automated logging

– Automatic logging and diagnostics

• Drivers based on magic_ros (inheriting provider capabilities):

– Laser: more precise driver running at 10Hz

– Cameras:

* RGB: calibration, low resolution

* Depth: linear filter to improve image, calibration, lower resolution

* Unified Calibrated RGB + Calibrated and filtered Depth provider + robot

transforms provider

– Sonars: custom driver at low rate (10Hz)

– Transforms (TF): minimal TF tree (no arms, no fingers), low rate (20Hz)

– Odometry: custom driver at low rate (20Hz)

– Robot base speed driver: (ROS cmd_vel Twist driver) with on the fly recon-

figurable speed limits. It also supported timeout of commands, if no new

command received in 0.5s the robot will safely stop. It overrides all stock

Pepper safeties

– Safety node: touching the head of the robot or the bumpers stops the movement

of the robot

• Navigation:

– Mapping: 2D via RTAB-Map using RGB+Depth

– Localization: via RTAB-Map using RGB+Depth

– SLAM: via RTAB-Map using RGB+Depth, running onboard at 10Hz

– Custom navigation State Machine via move_base_flex with optimizations for

special cases

– Local planner: Time Elastic Bands planner using Laser + Depth sensor for

obstacle avoidance

176



7.4. SOFTWARE DEVELOPMENT IMPLEMENTATION

– NaoQi wrapped APIs: native APIs available but monitored by the navigation

system

– Pausable computing: save CPU by only running navigation nodes when the

robot needs to move

• Speech:

– Text to Speech

* Save CPU by caching audio generation

* Logging

– Speech to Text:

* With and without grammar

* Offline and Online: Sphinx / Google

* Logging

* Optimized network audio traffic via Opus codec

• Perception:

– People perception:

* Face detection

* Face recognition

* Facial features detection: hair color, facial hair, age, gender, glasses.

* Shirt color detection: color or multiple colours and with support for text

recognition.

* Human skeleton detector: 2D and 3D pose of joints.

* Pose detector: sitting, standing.

* Gesture detector: waving, pointing.

– Object recognition

– Optical Character Recognition

• Human Robot Interaction:

– Unified HRI by templates

– Tablet interface

177



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

Analysis of the odometry and the behavior of the robot when sending velocity com-

mands to the base allowed the team to experiment with the navigation stack for Pepper

in simulation. It is worth noting that the available simulation at the time of writing

didn’t work, so a forked version was created8. A custom plugin for Gazebo was developed

and a configuration closer to what was observed in real life with the team’s robot was

created.

Before finding RTAB-Map to perform correctly other options were explored, including

the approach from the UChile team where they used ORB-SLAM [109]. During the

development year there was a crisis where the navigation system had a bug that made

the robot behave in uncontrolled ways. During this time another team member started a

parallel approach in case this bug could not be resolved. This team member also took

care of supporting the lead developer in this difficult time. After a huge investment of

time the bug was overcome and the navigation system behaved satisfactorily.

For Object Recognition a few deep learning approaches were researched until YOLOv3

[110] was found to perform robustly enough with an affordable training time. Other

RoboCup teams seemed to also use it which was interpreted by the team members

involved in this topic as positive.

7.5 Competition Participation

The development lead felt more confident than any other year on being able to have a

great performance given the outcomes of the last ORTs and the general team spirit.

7.5.1 Team Management Processes

This year followed a similar approach to 2018. As the team had more experience, the

lead developer thought that stricter following of known-to-be-working elements could be

beneficial.

7.5.1.1 Team Management Tool

The usual whiteboard with To Do, Doing and Done columns with post-its was used again.

Disregarding Trello as in previous years.

All RoboCup tests were recorded in video by one or more team members for review as

usual.
8Which can be found at https://github.com/awesomebytes/pepper_virtual.

178

https://github.com/awesomebytes/pepper_virtual


7.5. COMPETITION PARTICIPATION

7.5.1.2 Team Meetings

A team meeting in the morning just before entering the venue and another team meeting

every night just before leaving the venue were held. Other meetings were scheduled as

needed, for example, after test runs or major incidents.

This year most people had meals in their own way, with the project manager assisting

organizing them.

As usual, meetings took care of optimizing the usage of the time in the venue and the

usage of the arenas.

7.5.1.3 Task Assignment

Tasks were assigned by using the whiteboard. Everyone would take tasks and ask for

help if they needed collaboration in a task. The team meetings made sure that everyone’s

time was used as well as possible.

Most team members worked in pairs for testing anything on the robot or for delicate

practices (for example, labelling pictures of objects for object recognition) where two

pairs of eyes are better than one.

As in other years tasks that would block others from working would be prioritized.

The usual suspects appear in this practice: mapping the arena, getting the data for the

different elements of the tests etc.

Multiple people were on the task of keeping the robots and the laptops charged.

7.5.2 Team Software Development Processes

As in the previous year, the goals were to minimize development and maximize testing

to ensure robust and high scoring runs.

7.5.2.1 Coding Standards

This year, more than any other, only configuring, testing and fixing minor bugs was

encouraged in the competition. And even more than any other year, code that was not

tested beforehand was forbidden to be run in an official run of a RoboCup test. No last

minute changes were allowed.

As in 2018, if any base tool needed some hack to keep going, this was done in a

different branch (namely “robocup2019”) to be improved later on, if there was interest in

doing so.

179



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

7.5.2.2 Coding Tools

The setup of the robot was the same as 2018, as it worked as intended without issues -

that is, a single compressed (.tar.gz) file contained the full robot state. As this year the

robots were not rented but they were the actual robots from the lab, this setup was done

before the competition. That provided some extra time for the team during the setup

days.

Almost every system and RoboCup test had simple scripts to test isolated functionali-

ties. These were usually documented in the README of every project. This accelerated

development in situ.

A set of automated tests were created in some repositories that were considered

critical, like the base framework magic_ros.

Moreover, a local GitLab server was available this year as in previous years.

Furthermore, the team had a 4G router ready to be used in case connectivity com-

pletely dropped. In previous years some team members had local data on their phones

and they used them when needed, but this year the team addressed the topic directly.

7.5.2.3 Social Coding Practices

This year most activities consisted of configuring and testing the work done during the

year. Working in pairs, with one person taking care of the robot, the arena, and the

interactions with the robot, and the other on their laptop, was determined to be the

optimal approach.

Experts in every field would be ready to help on the setup of the RoboCup tests that

used their part of work. Moreover, a responsible team member for every subsystem and

for every RoboCup test, with a backup person in case of need, was scheduled. Finally, the

lead developer stayed free of work as much as possible to assist all team members.

7.5.3 Technical Approaches

This year’s technical approaches were characterized by satisfactory performance with

excellent network usage.

7.5.3.1 Software Stack

The tests in Stage I were well developed and tested. Minor fixes were needed.

180



7.5. COMPETITION PARTICIPATION

Stage II tests were developed but needed further testing in the real environment. The

Find My Disk test had a lot of new development done during the competition including a

full night of work by some members.

The network was felt to perform well by our team. This was not the same feeling

in other teams, but we had optimal usage of the network. Only the minimum amount

of traffic was sent, even for monitoring what the robot was doing in development and

debugging times.

Our main systems performed satisfactorily. Navigation had some glitches with an

impossible to detect table in the livingroom. This table was low and black, with metallic

shiny legs. Neither the lasers nor the depth camera could detect it. Only the sonars

could detect it sometimes. Other than that the new localization approach based on RGB

+ Depth data using RTABMAP performed well.

Speech recognition worked well this year. There were moments where it was hard

for it to work due to the high noise levels, but all in all, it went well. The Find My Disk

test had open questions asked to it and it worked well, and that was one of the hardest

things to accomplish. A optimal usage of Google speech recognition was used, with an

on-board backup.

People perception worked well too with a lot of usage of the OpenPose package. Due

to the availability of the external server to compute it quickly and a backup running on

the robot that was highly optimized, the robot could easily find people and perform logic

on their poses. Other deep learning networks were used in the same fashion and worked

well.

Other systems in the robot worked well too. For example, there was a service to stop

the computation of the full navigation system when the robot was not moving to save

CPU for other tasks.

Some tests were prepared with different approaches - in other words, with multiple

implementations. Taking advantage of the fact that the team had a minimum 2, and

usually 3 runs for every test in Stage I, the best one for the situation was used.

Many tests had automated logging in rosbags or other systems, of the data that went

through. This was especially useful in the Find My Disk test that had a 500 point bonus

for delivering to the referees a report about the test.

7.5.4 Results: Competition Outcomes

The team did well in Stage I as can be seen in the scoring sheet in Figure 7.1. The team

was in first place at that point. The only 0 score was in the Clean Up test. This was

181



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

a very hard test for the Pepper robot given it involved a lot of manipulation. It was

intended that this manipulation be bypassed with the Deus ex Machina rule, but even

so, the robot needed to perform a long set of actions to at most score just 40 points per

object cleaned up. In general the Housekeeper themed tests were ill designed for the

Pepper platform, only the UTS Unleashed! and LyonTech teams scored in one test in

this theme in Stage I: Take Out The Garbage. Anecdotally most teams copied the UTS

Unleashed! strategy to pickup the garbage bags which the team took as a compliment -

the teammates working on it put great effort in finding the best possible strategy.

UTS Unleashed! scored the highest in Find My Mates (a test proposed by them) and

second highest in Receptionist. Receptionist had the most participation of the Stage I

tests (as every team could choose which tests they wanted to take part in). The rest of

the tests all scored 0. That could prove that the tests, on one hand, were hard but, also,

that some teams were not prepared well enough.

Figure 7.1: 2019 scoring sheet of RoboCup@Home SSPL Stage I. The team was first at
that point.

Some teams complained that the WIFI connectivity was slow. As UTS Unleashed!

optimized their network usage in their architecture and made minimal use of it, they

were not affected. Investing efforts in this direction seemed fruitful just as in 2018.

UTS Unleashed! moved into Stage II as the team expected. In Figure 7.2 it can be

seen that the only 0 score was in the Hand Me That test. This was sad for the team,

and especially for the team member dedicated to the object recognition pipeline, as both

Clean Up and Hand Me That were the tests that would showcase this skill.

On the other hand, Find My Disk and Restaurant performed exceptionally well. They

both scored highly in difficult tasks. The team also scored on Where is This? which also

involved a lot of steps to be able to score, so the team was proud about this too.

182



7.5. COMPETITION PARTICIPATION

Figure 7.2: 2019 scoring sheet of RoboCup@Home SSPL Stage II. The team was first at
that point.

It must be noted that the Stage 2 final scoring was modified to Figure 7.3 after a a

difference of opinion in the interpretation of the rules. This decreases the scoring by 900

points from the Restaurant test.

Figure 7.3: 2019 scoring sheet of RoboCup@Home SSPL Stage II, modified. The team
was first at that point.

From there UTS Unleashed! qualified for the finals. The team composed a demo

including the best prepared skills for the competition, showing them working all together.

Given how far the second team was from UTS Unleashed! in scoring, there was confidence

that the team would win. The finals were taken also as a opportunity to show some of

the work that didn’t perform as well in earlier competition tests.

183



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

Figure 7.4: 2019 final classification sheet of RoboCup@Home SSPL. UTS Unleashed!
achieved first place.

UTS Unleashed! won the 2019 RoboCup@Home SSPL competition celebrated in their

own city: Sydney, Australia. The team demonstrated a strong growth during the previous

2 years to finally achieve gold.

Comparing the UTS Unleashed! 2470 points, and maybe the 900 deducted from

Restaurant too, with the other leagues in Figure 7.5 it can be observed that the team was

on-par with teams in the podium in both Domestic Standard Platform League (DSPL)

and Open Platform League (OPL). This is a very interesting outcome for not only the

team, but the SSPL itself, as the Pepper platform has some perceived challenges to

perform as well as robots in the OPL. Perhaps, some day Pepper robots will win in the

OPL competition?

184



7.5. COMPETITION PARTICIPATION

Figure 7.5: 2019 final classification sheet of RoboCup@Home DSPL and OPL.

On a personal note, the team was understandably very happy to win after this

three year journey. Being able to get gold and achieve the same level of scoring as very

experienced teams in such a short time proved a great effort and great teamwork. It

could also imply that the software development related practices the team practiced

could be the reasons for this performance.

185



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

7.6 Post-Competition Data Collection and
Retrospectives

Statistical data was collected from the Trello boards and from the Git repositories as in

the previous years. A retrospective document was also collected from the feedback of the

team members, these are discussed in this section.

7.6.1 Statistical Data

Every year the available data from Trello and Git was analyzed as explained in chapter 4.

7.6.1.1 Trello Cards Data

Trello usage this year was not constant, there were periods of usage and periods with

lack of usage, with spikes in between. This was due the lead developer needing to take

some time off, making the team look for new directions. The usage did decrease as the

competition got closer, with a bigger amount of activity in December, the month where

most planning and architecture design happened, just as in the previous year. The boards

with most activity aligned with the expected activity during the year, similar to other

years.

The Trello activity over the year of development is shown in Figure 7.6. This year

Trello was used from the start of the development year, which was in November until

a drop in usage happened in December. Afterwards, it took off again until the end of

January. Then there was another drop in usage by early March, a spike of usage by the

end of March, and some activity around May, with usage dropping again as it got closer

to the competition date. This could be correlated to the lead developer needing to take

some time off and the team adjusting to it.

186



7.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 7.6: Activity (Trello actions) on the year 2019.

Figure 7.7: Distribution of Trello actions types on the year 2019.

Action types and their count in Trello for 2019 can be found in Figure 7.7. We observe

187



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

that updating and commenting cards keeps being the most common action as in previous

years, but this year the usage of checklists increased compared to the previous year.

Adding attachments, usually screenshots, kept being common.

Checking the distribution of actions month by month in Figure 7.8, December ap-

peared as the busiest month correlating with the fact that planning and architecture

decisions were made in that time. Then the usage of Trello seemed to decrease month

after month as every year.

Figure 7.8: Distribution of Trello actions by months on the year 2019.

The Figure 7.9 showed that Monday and Tuesday had the most activity with the rest

of the weekdays staying similar. Team meetings happened mostly on Tuesdays, so it

could be interpreted that people prepared the day before, and updated the day of the

meeting.

188



7.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 7.9: Distribution of Trello actions by weekdays on the year 2019.

Figure 7.10: Distribution of Trello actions by hours on the year 2019.

The distribution of actions during the hours of the day shown in Figure 7.10 seemed

very similar to previous years, with an earlier start with activity from 8AM but also a

189



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

decline by 9PM, as in 2018. Some activity was also shown up until midnight like other

years. This year the peaks of activity happened at 2PM and 4PM, similar to 3PM and

5PM from the previous year.

Looking at the board names and their action count in Figure 7.11, we found that

the Software Engineering board and the RoboCup Tests board presented the most work.

In the previous year there was a board for the robot skill development itself. This year

everything was stored in the Software Engineering board (and the board was actually

copied from the previous year to keep the pending work and knowledge available).

Moreover, this year the focus was put in having a robust architecture and robust scoring

in RoboCup tests. Subsequently, there was a Marketing board with a significant amount

of activity. Finally, the previous year’s interns found fun in creating videos with Pepper to

advertise the team and worked on that significantly in times where they lacked guidance.

Figure 7.11: Distribution of Trello actions by Trello board on the year 2019.

Finally, checking the distribution of actions by anonymized authors with Figure 7.12,

we saw a continuously decreasing amount of actions. This was different from 2018 where

one author had most actions and there was a gap to 4 authors with a similar amount,

and then another gap to the rest of the authors with lower contributions. The usage of

Trello had a different activity profile from other years in this context. No explanation

was found in that regard.

190



7.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

Figure 7.12: Distribution of Trello actions by anonymized authors on the year 2019.

7.6.1.2 Git Commit Data

The commit activity per day during the year 2019 as seen in Figure 7.13 showed that

work started early in October and continued happening all year long with spikes in late

December to early January and surrounding February. Moreover, from the start of June

to the competition in the 2nd to 8th of July, work increased significantly. This was similar

to previous years where the team pushed hard when the competition was near.

191



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

Figure 7.13: Activity (commits per day) on the year 2019.

Figure 7.14: Commits per month on the year 2019.

Taking a look at the commits per month in Figure 7.14, it was noticeable how around

January there was a steady amount of work, a big drop in March (when the lead developer

192



7.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

was absent) to come back to usual levels of work from April. Moreover, in June and July

a lot of activity happened as in other years.

Checking the commits per weekday in Figure 7.15, a very similar amount of commits

happened every work day of the week this year. No significant difference was to be seen

by the team meetings happening mostly on Tuesdays, and the day encouraged to work in

the lab being Thursday. A considerable amount of commits happened on the weekend

but in a similar proportion to the previous years.

Figure 7.15: Commits per week day on the year 2019.

In the distribution of commits per hour of the day in Figure 7.16, a similar shape

to 2018 was indicated with a slightly more evenly distributed amount of commits. The

days started by 8AM. A peak of commits was found by 1PM (at lunch time) and around

4-6PM at leaving time, but extending until 9PM as other years, with some additional

activity up until midnight. It could be interpreted that there was a flatter distribution of

commits during all day.

193



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

Figure 7.16: Commits per hour on the year 2019.

On checking the repositories for collaboration using Figure 7.17 it was found, as in

2018, 41 collaborative repositories. From this chart the following insights were obtained:

• The focus for the year was to improve substantially the navigation system and to

create a strong base architecture for the codebase. The team demonstrated team-

work, with the repositories magic_navigation and magic_ros having most of the

activity and a fair number of authors, with 4 and 6 respectively. Other repositories

were also related to the architectural work by providing drivers and skills based

on magic_ros: magic_ros_apps, analytics_tracking, dark_magic, pepper_diagnostics,
magic_pepper_bringup, magic_transformer, diagnostics_web_interface, magic_msgs,
magic_dashboard, magic_stylesheets_pepper, magic_metrics, magic_launcher, lin-
ear_depth_scaler.

• Significant activity by many authors could be observed in repositories related to de-

veloping skills for the robot: magic_listen, magic_poses, magic_faces, magic_vision,
pepper_skills, magic_speak.

• Further significant activity showcasing collaboration on RoboCup test implementa-

tions: find_my_mate, clean_up, receptionist, take_out_the_garbage, hand_me_that,
find_my_disk, where_is_this, restaurant_2019, robot_inspection, finals_2019.

194



7.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

• magic_hri and magic_tablet kept showing the compromise of the team to invest in

good user experience.

• The team kept improving the documentation wiki docs.wiki as in previous years.

Figure 7.17: Number of authors and days with commit activity per repository, sorted by
days with commit activity and filtered by more than 1 author and more than 1 activity
day.

In regards of the repositories that did not show collaboration, as can be seen in

Figure 7.18, their quantity stayed roughly the same as the previous year. The insights

from the solo work projects were:

• Work on the building and deploying of the base system kept being the work of a sin-

gle expert in the team. The repositories gentoo_prefix_ci, gentoo_prefix_ci_32b,
ros_overlay_on_gentoo_prefix, ros_overlay_on_gentoo_prefix_32b and pepper_os
were developed opensource to get help from experts from the Gentoo, ROS and

RoboCup community with different degrees of success. A private repository magi-
clab_pepper_os contained the specific implementation and optimizations for the

robots of the team. Taking into account that six repositories in this plot belonged

to the same project by the same person, it was interpreted that this year, overall,

there was less solo work.

195



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

• Experiments, as in other years, had single author repositories.

• Highly specialized projects also had single authors, as in other years.

• Some repositories from abandoned work from the previous year had some work.

Figure 7.18: Number of authors and days with commit activity per repository, sorted by
days with commit activity and filtered by exactly 1 author and more than 1 activity day.

2019’s average of authors in repositories with more than 1 author and more than

1 day of commit activity came up to 2.68 authors per collaborative repository. This

improved even more than in 2018 which had an average of 2.55 authors per collaborative

repository. Taking also into account that the amount of solo projects decreased, we saw an

even larger increase in team work in this year compared to the previous year’s increase.

7.6.2 Team Retrospective

In this section the team’s retrospective will be summarized. The original retrospective

document for the year 2019 can be found in the section B.3 from the Appendix B.

The first question of the retrospective was “What worked well?” about the positive

facts from the preparation process and the competition itself. Regarding the competition

event itself, the team reported “amazing” teamwork and successful “last-minute hacking”,

196



7.6. POST-COMPETITION DATA COLLECTION AND RETROSPECTIVES

they also noted that having a nearby hotel to allow team members that lived far from

the venue9 to sleep nearby helped them. Additionally, having the laboratory nearby

allowed the team to have a place where they could code and test in times when there was

no access to the competition venue. Furthermore, the team reported great robustness

in tests, highlighting the Stage I performance, with special mentions to the following

systems: the usage of OpenPose [111], magic_ros providing seamless and efficient exter-

nal computing, the unmodified tablet interface from the previous year, the Red Green

Blue + Depth (RGBD) approach to mapping and localization with the RTAB-Map [112]

framework, the speech recognition system with exceptional performance working with

open grammars, the face recognition approach using face vectors, and the object recogni-

tion implementation using YOLO [110]. Concerning the development process, multiple

comments about the ORTs were provided: the provided free lunch in these events “helped

bring people together”, having regular ORTs with realistic scoring was beneficial, and

ORTs as the backbone of development was a successful approach. Additionally, the lab

setup was as hard or harder than the real arena in the competition, including items

like metallic shiny chairs and tables hard for the robot to sense were also regarded as

positive. Moreover, the team mentioned as beneficial the reuse of the tablet interface

from the previous year. They complemented the “right level of granularity” of the team’s

packages in regard to the distribution and isolation of the functionality of navigation,

speech recognition and generation, and tablet interface. Finally, working in pairs and

pair programming to work on RoboCup tests and to share knowledge about specific

functionalities were regarded as positive practices.

The next question was “What did not work well?” about the negative facts in the same

context. Some reports were conflicting with the previous question. In regard to issues

in the competition event, the team reported that robot navigation around a black table

with metallic legs was problematic as it was invisible to Pepper’s sensors. Also, trade-offs

between navigating safely and at speed, and between the speed and precision to arrive

at navigation goals were criticized. Additionally, the Human Robot Interaction (HRI)

approaches for every RoboCup test were different, particularly the robot’s awareness

with regard to people approaching it. With regard to the object recognition system, the

training was reported as very time consuming and stressful as it was ready only very

closely to when it was needed in the competition, and it was sensitive to context changes

such as backgrounds and illumination. Moreover, Stage II tests were less robust due

9In 2019 the competition happened in Sydney, Australia, close by to University of Technology Sydney
(UTS) where UTS Unleashed! was based.

197



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

to their late development. Additionally, setting up external computing devices to run

remote nodes was perceived as stressful and risky - tooling could have improved the

situation. Finally, a team member reported that they believe that the team should not

leave early from the venue, or go to sleep the day before a RoboCup test is to be run if

it is not ready. Related to this topic, sleep management was reported as an interesting

topic. The trade-off between the team members wanting to show commitment to the

team, and needing personal sleep to be sufficiently well rested for upcoming challenges,

manifested in new team members, unfamiliar with the fatigue of the event, struggling to

manage their energy well, to the detriment of their performance in the later RoboCup

tests. On the other hand, regarding the development process, the navigation system

was reported as left to be solved too late in the development process. This affected the

implementation logic of RoboCup tests, triggering late changes which increased the

testing workload. The object recognition system had the image processing work for

training datasets implemented late, and was also missing tools to evaluate the trained

models. Additionally, regret regarding not exploring other object recognition approaches

besides YOLO was reported. Moreover, feedback about ROS adding complexity and

increasing the entry barrier to contribute to the team was reported. In regards to team

management, it was reported that a period lacking leadership almost froze development.

This had an effect on some team members wanting to build up skills in different areas

but, as development time was lost, they fell back into working in areas they were already

comfortable with. Different working styles made collaboration sometimes challenging.

Knowledge transfer from experienced team members towards new team members could

be improved, and sharing in-depth knowledge about specific systems was not achieved.

Language barriers slowed down communication in some cases, and some team members

needed more guidance and their time was perceived as wasted when guidance was not

available. Furthermore, Stage II tests involved elements of research combined with

elements of implementation. The research aspects were not challenged and tested early

or regularly enough, showcasing the need for a different approach for such topics. Also,

ORTs not being adequate, was suggested. Finally, it was reported that the architecture

evolved from a bottom-up process with a lack of a top-down vision; there was wasted

time in subsystems that did not have direct relationship with scoring; there were few

unit tests, and having more could have saved time in regards of bugs and regressions,

but no setup was available to make this practice easy.

Previous retrospectives included the question “What should we do next?” and, unfor-

tunately, because this was the last year of participation the team members did not fill

198



7.7. REFLECTION

this section even though it was part of the retrospective document.

7.7 Reflection

The reflection is composed of the findings, which include the same substructure of three

sections as explained in chapter 4, answers to the action research questions stated in

this cycle, new questions to start the next cycle, and next steps to be implemented.

7.7.1 Findings

The findings stem from a review of the action research cycle and the team’s retrospective.

They aim to describe facts learned in this cycle.

7.7.1.1 Team Management Processes

By this point, being the last year of this project, the processes that the team used that

stayed in some way were believed by the lead developer to be successful. But these

processes were tailored to the needs of the team and the lead developer, specifically.

For UTS Unleashed!, being flexible with the preferences of its team members was a

key element for good performance. Noteworthy, this was the view of the lead developer

with this specific team. In order to generalize this view, further testing with different

teams would be needed.

The topic of leadership and its importance came up this year. The lead developer was

unavailable for almost 3 months and the leader role was missing. The team tried to find

a student to take this role but this was unsuccessful. The lab co-director assumed this

role temporarily since no student volunteered. However, the lead developer came back

with enough time to move the project forward until the competition started. If this had

not been the case, it would be hard to assess how this situation could have been better

managed. The lead developer was of the opinion that it was managed as best as possible

given the circumstances.

7.7.1.2 Team Software Development Processes

For the UTS Unleashed! specific case, it was more important to appeal to the profile of

the different team members than enforcing software development methodologies and

practices. These methodologies contain processes and tools that are believed, and in

199



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

some cases proven10, to provide benefits in the industry. However, this project followed a

different trajectory as it adapted to the feedback of the team. The motivation of each team

member was different and not related to any kind of payment (even though some interns

were actually paid), which context, standard software development methodologies tend

to have. The agile philosophy was maintained as in the previous cycle, with emphasis on

the well being of the team while still delivering working software.

7.7.1.3 Technical Approaches

This year’s technical approaches seemed to be fruitful. The parts where the lead developer

was involved (the base OS, the magic_ros base framework and the navigation system) saw

huge improvements. Other subsystems also improved dramatically, like the Automatic

Speech Recognition (ASR) system.

The opinion of the lead developer was that having a clear architecture view, and

having it well implemented helped in this direction. This opinion was based not only on

the technical benefits that these things provided, but also on the morale of the team by

having an easy to understand architecture which approached the gaps seen in previous

years.

7.7.2 Answers to AR Cycle Questions

This year the system was architected using a base framework called magic_ros to enable

transparent remote nodes running at the same time as local nodes in parallel with many

other features. This approach was successful. This framework offered many elements

to make development easier for teammates and minimize code duplication, especially

around ROS related components. Having their own drivers for the navigation part, and

their own navigation state machine, gave the team a lot of flexibility. Moving to visual

based localization also performed well. This framework helped reusability, at least in the

parts where the lead developer was involved, in his opinion. However, the same feeling

may be shared from other teammates that developed their own frameworks for their

RoboCup tests. Different opinions on the setup of other subteams existed, but every

subteam worked well in their own setup. Embracing the ROS distributed approach but

taking care of the user’s experience when using these distributed services, provided

fast integration of capabilities. Capabilities that were designed to be used by all the
10There is a large body of literature about software development methodologies, practices and processes

in different industries. Different keywords in academic search engines related to these topics bring up
million of results.

200



7.7. REFLECTION

team were aimed to be easy to install with minimal or no dependencies, usually just

magic_ros. They were also designed with minimal setup as they were already running in

the robot as a service, offering a simple interface for mainstream use. Additionally, these

capabilities offered a complete interface for advanced usage, returning structured and

complete information, and with descriptive error messages. A lengthy manual analysis

of the available git data could be done as future work to better understand which specific

parts of the code were reused the most in this project and may provide further insights.

Allowing team members to develop their systems in the way they thought best

was positive too, especially while keeping attention on making them available via the

magic_ros framework when appropriate. This year further dividing in subteams was

embraced, especially in pairs for RoboCup tests. It worked very well given the team’s

feedback, the git statistics, and the competition results, showcasing that teamwork

increased, making it a model to keep for the future. The lead developer believed that it

was related to the team composition, as possibly with people with more independent and

proactive profiles this would be either not necessary or not beneficial. Every subteam

worked comfortably in their own way which allowed them to focus on scoring in their

tests. They had their own interpretation of what worked “best”. From the lead developer

perspective, learning from each approach was beneficial. Not a very conclusive answer

as to how to implement these, but engaging in conversation with each subteam to

understand their needs and why they used such an approach was done. Sometimes an

approach could be wrapped in multiple interfaces. Examples of these were:

• Embody the robot in a class and access its capabilities by topics. For example

“robot.navigation.move(x, y, theta)”.

• Create capabilities as simple functions to import. E.g. “show_in_tablet(something)”.

• Create centralized services which are called by clients to do work.

E.g. “object_detection_client.find_objects()”.

• Programming by configuration by using graphical clients.

This year there was a stronger focus on scoring. This was because the rulebook made

it harder than ever to score, and more team members believed in the importance of

scoring more than 0 to advance in the competition. The interns were in their second year

with the team, so they saw first-hand how important this was. The new team members

were introduced into the team via a summer course where they were implementing

201



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

RoboCup-like tests where the scoring was very important which also helped the team to

be in the same mindset.

By the end of the development year the workload increased significantly as in previous

years. Perhaps this project has to take into account that the workload becomes higher

in the time close to the competition. A set of factors played into this phenomenon, as

not having a final rulebook until a few months before the competition, in the case of

RoboCup@Home, and new team members being required to learn the team’s technologies

and workflow, with different amounts of time required for every individual.

Finally, for this year the concept of proactivity was to be researched. The lead de-

veloper experimented with measuring proactivity trialing psychological profile tests.

However, these showed that team members that had the potential to have high proactiv-

ity, just were not being proactive. Given this initial testing was not fruitful, no further

work was done in this direction. Future work in the workshop and/or survey was planned

at this point.

7.7.3 New Questions

Given there wouldn’t be any further action research cycles in this project, new questions

could only be explored via other means. After the participation in the 2019 RoboCup, a

workshop with experts was held. From this, a survey for RoboCup experts was developed

to further gather insights.

The ORTs this year were strict on scoring. A lot of 0 scoring happened and this

affected morale, for two months progress was perceived as stalled. There could have been

approaches to improve this situation. New approaches from other teams could help and

should be researched further.

It was mentioned in different parts of the previous and this action research cycle the

fact that, regarding team management and coding practices, adapting to the profile and

preferences of team members was important. The lead developer was of the opinion that

this led to success. However, other experts could have a different opinion and believe

that adhering to standard software development practices and procedures could be a

better approach.

Proactivity was a topic that arose this year. The lead developer believed that it was a

positive behavior to have in team members, or at least in some of them, specially if they

were to lead some development. Not enough research was done this year, so it became a

topic to explore further. Furthermore, some team members this year were disengaged

202



7.8. POSSIBLE GUIDELINES

from the project. A question about how to keep them engaged arose. It is unclear if this

situation was related to the topics of proactivity and motivation.

7.7.4 Next Steps

Given this was the last year of the project, this section is discussed in future work in

chapter 9. As a brief introduction, further work on increasing the research output of the

team should be done. Improving the understanding on what creates teamwork and if it

is related to the concepts of motivation and proactivity would be of interest. Enrolling

another team, or multiple teams, in to following action research cycles as the ones shown

in this work would add new points of view.

7.8 Possible Guidelines

Based on the previous guidelines, the most important findings and reflections from this

year will modify or add to the guidelines. These guidelines will be discussed further in

chapter 9 as they will be compared with the outcome guidelines from chapter 8.

• Perform end-to-end testing. Simulation of the full competition including: setup on

a previously unknown place, strict schedule and timing, strict scoring, by a strict

referee, naïve users and other elements that otherwise may be overseen. Examples

of other elements can be: networking issues, environmental noise, unavailable team

members or unusual lighting. Start performing these as early as possible, team

members new to the competition will grasp a better idea of what the competition

looks like. Allow flexibility when necessary, e.g. if some part of the system is

absolutely not ready, allow it to be bypassed.

• Find a balance between what the team wants and what is believed to be the best

for the team regarding development processes. This is something to be re-evaluated

during the development year. Topics such as coding standards, testing standards,

documentation, deployment strategies and code sharing approaches fall into this

category. Invest in understanding what is considered hard and work on improving

the situation. Example improvements can be finding alternatives or providing

further documentation or tooling.

• Provide the best tools available for the job. Development tools, frameworks, simu-

lations and hardware are topics that fall into this category. References for these

203



CHAPTER 7. ROBOCUP@HOME SSPL: YEAR 2019, 1ST PLACE

can be taken from other teams or industry. Provide documentation and training for

these too. The example here is the ROS middleware, widely used in the community

of the competition and in industry for robotics applications.

• Ensure teamwork is possible and encouraged. Set up a backlog of tasks and dis-

tribute them taking into account every team member’s interests. Promote grouping

team members to work more effectively and share responsibility. Promote pair

programming for knowledge transfer and to fix difficult bugs. Consider using a

physical backlog, additionally to online means, in your working environment as a

clear and quick way to visualize progress.

• Test as often as possible, on the real robots and in a realistic environment. Having

unit testing is a great tool, testing with stored real data is also helpful but the only

thing that will matter in the end is that the competition tests run robustly.

• Focus on scoring. Implement and test with that in mind. Over-engineering a robot

skill for cases that will never happen implies that time could have been invested

somewhere else of higher priority.

• Start with simple approaches and iterate improving them. This can be applied for

both the development of capabilities for the robot and for the design of approaches

for competition tests.

• Architect your system with software integration in mind. Integrating a lot of

software from different sources with different mindsets can be hard and it should

not be left as a final exercise.

• As processes become stricter (testing, coding practices, task progress tracking, etc)

and the competition approaches, attention must be kept on the morale of the team

members. E.g. stressful meetings may include snacks, free meals or a follow-up

leisure activity. Having a designated day of the week agreed to work together in the

lab can improve morale by being present on the progress of other team members

and it opens more opportunities to collaborate.

204



C
H

A
P

T
E

R

8
EXPERTS INSIGHTS AND VALIDATION

The previous chapters tell the story of the author’s team in the RoboCup@Home Social

Standard Platform League (SSPL) competition. Conclusions have been drawn from this

project within its own context. These conclusions can’t be generalized by themselves. To

validate insights, find new ones and potentially find conflicting topics, the feedback from

others is needed.

The most relevant feedback can be obtained from experts in the same field or com-

munity, in this case, participants of RoboCup competitions. After a set of informal chats

during the competitions with other RoboCup teams, a workshop was held to further

gather topics of interest and share approaches. From the information acquired in this

workshop, a survey was created and distributed to members of the RoboCup community.

In this chapter the workshop will be presented first, followed by the analysis of the

survey.

8.1 Grounded Theory Remarks

The concepts from Grounded Theory will be applied in the following manner.

• Simultaneous involvement in data collection and analysis phases of re-
search.

The workshop implies the usage of this characteristic of Grounded Theory. Given

the nature of the workshop where the participants will be openly discussing topics

205



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

as they appear, their opinions become data and the discussion in itself is part of

the analysis.

• Creation of analytic codes and categories developed from data, not from
preconceived hypotheses.

The survey presents this practice often. On questions where the response is an

open text field, the methodology to analyze the answers implies a process where

keywords need to be extracted. These keywords form codes which are organized

in categories. These categories are developed into theories that become the sum-

mary of the responses. Furthermore, from the summary of the responses further

abstractions into theories will be created.

Other questions follow a different process to create these features - for example,

questions where a respondent needs to sort concepts by importance. However, even

these questions still result in the creation of codes, categories and theories.

• The development of middle-range theories to explain behaviour and pro-
cesses.

In the previous point it is mentioned that summaries from responses are created.

These act as short lived middle-range theories. When thinking about the final

conclusions of the survey, all the summaries and theories from the questions in the

survey act as middle-range theories.

• Memo-making, that is, writing analytic notes to explicate and fill out cat-
egories, the crucial intermediate step between coding data and writing
first drafts of papers.

Memo-making is used throughout both the workshop and the survey. In the work-

shop, notes are taken from the different points participants raise. These contain

opinions, facts and theories to be analyzed and discussed further on.

During the analysis of the survey, the process where keywords, codes and categories

are developed, fits the description of memo-making.

• Theoretical sampling, that is, sampling for theory construction, not for
representativeness of a given population, to check and refine the ana-
lyst’s emerging conceptual categories.

Both during the workshop and the survey, the aim is to find theories first. Analysis

of the population is done when the profile of the participants is requested via

206



8.2. EXPERT WORKSHOP

different questions, but this doesn’t guide the research. This data is used later on

to check the quality, validity and applicability of theories.

• Delay of the literature review.

As theories appear from the analysis of the workshop and the survey, literature

review is performed to find and take into account previous relevant work.

Furthermore, an example of how the question Q6.2-Q6.3 from the survey in section 8.3

was analyzed can be found in Appendix C.

8.2 Expert Workshop

A full day workshop titled Software Development Methodologies for Robotics Competitions
and Challenges Workshop was organized for the 9th of July of 2019, the day after the

RoboCup Symposium, as part of an effort to gather insights from other experts in robotics

competitions.

The idea to hold this workshop came from informal conversations during the previous

years within the UTS Unleashed! team and other teams during the competitions. The

workshop was held to build up evidence from multiple sources about the process of

preparing for a RoboCup competition and competing in it as a team.

The topics the workshop covers stem from the ideas from the Action Research (AR)

cycles held previously.

8.2.1 Overview

10-20 experts in robotics competitions gathered at University of Technology Sydney (UTS)

to explore and discuss research issues related to Software Development Methodologies

for Robotics Competitions and Challenges. This one day workshop aimed to discuss topics

around the software development process for robotics competitions like:

• Meetings and communication

• Planning and decision making

• Team structure and management

• Coding practices

• Challenges

207



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

The goals of the workshop were:

• Gather new insights to improve Software Development Methodologies for Robotics

Competitions based on experience engaging in robotics competitions and challenges.

• Create a new research agenda for Software Development Methodologies for Robotics

Competitions.

Participants were invited via the following means:

• Contact via email explaining what the workshop was about months before the

event.

• Contact in person at the RoboCup event explaining what the workshop was about.

The participants were selected to be mostly very seasoned members of the RoboCup

community.

Initially, twelve participants were expected, including 3 members of the UTS Un-

leashed! team. Three participants ended up cancelling, but three additional participants

were found and also two more team members from UTS Unleashed! joined. The final

number of participants was fourteen, representing ten different teams.

8.2.2 Structure

The workshop was designed to be an open environment for the participants to discuss

the matters proposed in the overview. The program for the day can be seen in Table 8.1.

Time Activity

8:45 Welcome

9:00 Introduction to each other

10:00 UTS Unleashed! Approach and Discussion

12:30 Lunch

14:00 Group Questions & Answers

17:00 Workshop closing

Table 8.1: Program schedule for the Software Development Methodologies for Robotics
Competitions and Challenges Workshop.

208



8.2. EXPERT WORKSHOP

A simple presentation to guide the workshop was prepared. The points to discuss

came from the previous work during the action research cycles in 2017, 2018 and,

partially, 2019. The presentation had the following structure:

• Motivation

– Performing well in a Robotics Challenge is hard

– Extract consensus on good and bad practices

– Obtain feedback from experts

• Plan for the day

– Introduction to each other

– UTS Unleashed! approach with discussion

* Project Timeline

* Recruiting

* Planning & Decision making

* Meetings & Communication

* Team expertise

* Coding

· Practices

· Tools

* Training & Learning

* Competition testing

– Group questions & answers

8.2.3 Workshop Outcomes

The workshop outcomes are divided between understanding the profile of the participants

and gathering insights from them. These insights are presented as ideas or questions

that were answered in consensus, and questions or concepts that didn’t have a decisive

answer. These last ones are to be further researched by the survey found in the following

section.

209



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

8.2.3.1 Participants profile

A set of questions were asked to the participants to gather some information about their

profile. Their name and affiliation has been kept anonymous. Multiple team members

from UTS Unleashed! attended the workshop but only one answer pertains to the UTS

Unleashed! team in the data presented. This way all answers are about one participant

in reference to one team unless noted otherwise.

Figure 8.1: Minimum years of experience in Robotics Challenges reported by the work-
shop participants was 1 year. Maximum was 17 years. With an average of 6.7 years and
a median of 5.5 years of experience. 67 years of accumulated experience.

Participants were asked how many years of experience they had competing in Robotics

Challenges (not only RoboCup). Their answers are summarized in Figure 8.1. We can

observe a wide range of years of experience with two participants having 17 and 13 years

of experience and one participant having only one year of experience. 80% of participants

had three years or more of experience. This should be a positive factor to get meaningful

insights from the workshop.

Participants reported competing in the following RoboCup leagues: @Home, @Rescue,

Soccer mid-size, 2D Simulation, Standard Platform League and Logistics. Participants

also reported taking part in the following non-RoboCup challenges: DARPA challenge

2005, NASA Space Robotics Challenge, RockIN and “other”.

210



8.2. EXPERT WORKSHOP

It can be generalized that the participants have a lot of experience in the domain of

Robotics Challenges or competitions, specially on RoboCup.

It is worth mentioning that only 1 participant never participated in the RoboCup@Home

league meanwhile all the rest had participated in it.

Another topic discussed was how did the participants approach the project of com-

peting in Robotics Challenges. Everyone approached RoboCup as a continuous project.

Comments over this question included: “The project is planned every year but with the

aim of continuity.”, “It’s approached as a continuous project using university subjects.”,

“It’s approached as a continuous project within a research program.” and “You need to

approach it as a continuous project to get good results.”.

Figure 8.2: All workshop participants reported that Student Experience was one of their
main motivations to participate in RoboCup. 40% reported Research Outcomes to be
another main motivation.

All participants were RoboCup participants. When asked what their main motivations

to participate in RoboCup were, their answers have been summarized in the chart in

Figure 8.2.

Other reported motivations were: being part of a robotics club (with RoboCup being

an activity of the club), being able to create robot applications, having access to robotic

platforms, having fun, and learning practical skills.

211



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Participants were asked about their approach to the competition in regards to being

more pragmatic, i.e. aiming to get good results in the competition, or using RoboCup as a

research platform, i.e. aiming to get publications. The summary of their responses can be

found in the pie chart in Figure 8.3. 40% answered pragmatic approach, 40% answered

research approach, and 20% answered both. Thus not having a majority indicating

different points of view. Further comments about the research approach will be found

later on in this section.

Figure 8.3: When asked about their approach on competing on RoboCup being more in
the pragmatic or research line the workshop participants didn’t have a clear leaning.

Moreover, the participants were asked about how many team members did their team

have that year, but only seven gave an exact answer (the nature of an open discussion

made it so this could happen). The answers can be found in Figure 8.4. The team sizes

ranged from 14 team members to 5 team members with an average team size of 8.5 and

a median team size of 7 team members.

212



8.2. EXPERT WORKSHOP

Figure 8.4: Workshop participants team size reported for the last RoboCup event. Three
participants didn’t answer this question. The largest team reported had 14 members and
the minimum team size was 5. Average team size was 8.5 and median team size was 7
team members.

Figure 8.5: The team composition for the last RoboCup participation of the workshop
participants. Every row represents the answer of a participant and each color represents
the type of team members, divided by students of undergrad, masters or PhD, and
another category where university staff was reported. There does not seem to be a
consensus even though we see a majority of undergrad students overall.

213



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Another question was “What was your team composition like for the last RoboCup

participation?” with the answers being composed of undergrad students, masters stu-

dents, PhD students, and others. Others were mostly considered as university staff. From

the answers the chart in Figure 8.5 was created. No consensus on the team composition

is to be observed. A majority of undergrad students can be appreciated but also one team

had just PhD students and university staff.

When the participants were asked about what their optimal team size would be, the

answers were both given in specific numbers and ranges. This is shown in the chart

in Figure 8.6. The largest optimal team size was reported to be in between 15 and 20

people meanwhile the smallest was a specific answer of 5 team members. A wide variety

of opinions were held.

Figure 8.6: Optimal team size reported by the workshop participants. Some participants
answered in specific numbers while others answered in ranges.

Further comments about the team composition, team size, and team goals were

expressed. These are summarized here:

• Depending on the composition of the team, team size will differ. Having more PhDs

over masters, and more masters over undergrads, was perceived as a reason to

require less team members.

214



8.2. EXPERT WORKSHOP

• Depending on the goals of the team, i.e. research or competition outcomes, the

team size may differ. One participant reported that having a large team benefits

research value.

• Optimal team size was reported similar to the team size of each workshop partici-

pant. This may point to the fact that every team adapts to their own context.

• One participant reported being unhappy with undergrad students as team mem-

bers, because they may lack base knowledge. This participant recommended to

first allow them to learn, and then join a team.

• How much effort is needed and how it is measured (person-hours, person-days,

person-months?) remained unknown. Having a measure may be meaningful. One

participant said that their belief was around 6 months for 1 person full time to

master one skill. Other participants agreed that it depends on the field of expertise

and where a team member starts from.

• One participant expressed that you need team members you can rely on. Another

participant added that the members need to have accountability, they need to

follow through people doing work, and they need to have work to do.

• Some team members agreed with the idea that “usually RoboCup team members

are top quality students”.

Most participants agreed (others didn’t explicitly participate in the conversation, but

no one denied such an argument) that “doing research is hard with RoboCup”.

Most participants also agreed that “getting funding for RoboCup is hard”. One

participant noted that their argument to fund RoboCup was “RoboCup participation is

research”.

Other comments at this point of the workshop included:

• Some teams take part in RoboCup inside of a university environment but as part

of a single laboratory project, not as part of a university founded initiative.

• Two teams participated in RoboCup as part of a robotics club.

• Multiple participants agreed that every student that got into RoboCup “got nice

jobs in companies. RoboCup experience is valuable employable experience“.

• Burnout came up as a common topic. Participants reported that it happened in

every team at some point.

215



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• Teams participate in the creation of the rulebooks, sometimes joining the technical

committee to fix specific problems.

• RoboCup team members were reported to get access (via keys or passses) to the

labs to work freely, and to a certain degree, use it as space for their daily life.

Everyone agreed that having access to the robots was important. Two participants

reported that even having a bed in the lab is beneficial.

The conversation went off-topic about the @Home league needing a fine balance in

between pragmatism and research and how hard it is to unite both goals.

8.2.3.2 General Answered Questions

During the general discussion, just a few topics reached some kind of consensus. These

are described here.

To the question “How important is experience in participating in RoboCup competi-

tions?” there was a unanimous answer: very important, both in the specific competition

itself and in the necessary fields of expertise. Fields of expertise were exemplified as

robot navigation and manipulation.

Discussion about collaboration in between teams and sharing experience arose. A

participant mentioned that some teams just copy other team’s approaches and code

without contacting them. Another participant mentioned that some teams do ask about

collaborating or using other team’s work.

There was a consensus in the fact that “there is a lack of standard software engineer-

ing practices”. The consensus went further stating that “software engineering practices

were key but it is hard for everyone to learn all the important bits and tools”.

Another point of consensus was that “good communication is fundamental” with

regard to a team’s internal communication.

Most participants also verbally agreed that practicing RoboCup tests in conditions as

close to the real competition is a very important practice to achieve good results. One

participant said that a professor acted as a “very harsh referee”. Another participant

manifested that they “recreate real RoboCup competition days”.

8.2.3.3 Unanswered Questions

An activity was held where the workshop participants were proposed to write on a set of

post-its, concepts, topics, or questions that they found hard or without a consensus. These

are reproduced here from the image in Figure 8.7 for the interest of the reader. They

216



8.2. EXPERT WORKSHOP

are sorted trying to keep similar themes next to each other. Comments by the author in

parenthesis to make the context more clear have been added. From the discussions in

the workshop and this set of concepts, a follow-up survey was created. The next section

is a detailed report of that effort.

The list of concepts considered as unanswered questions follows:

217



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.7: Picture of the post-its on a whiteboard from the Software Development
Methodologies for Robotics Challenges about unanswered or hard topics related to
Robotics Challenges and RoboCup.

218



8.2. EXPERT WORKSHOP

• Support and encourage diversity and inclusiveness in the teams.

• Automated testing and metrics are hard to implement and share.

• Stability (of the software systems).

• (How to implement, importance of) Fault tolerant systems

• Benchmarking (in the general sense of the word, benchmarking the competitions,

the robot skills, the applications).

• (How to) Fair benchmarks to test skills in isolation but still aiming for the big

picture

• Unit testing in Continuous Integration (CI) (How important is it)

• Testing (what kind of tests to do)

• Comparability (of team approaches and robot performances)

• Poor code-sharing (in between teammates)

• Allow students to graduate (as competitions work takes a lot of time and seems

hard to get research output)

• Distraction from studies

• Large team to restart from one year to the next (how to avoid it, how to deal with

it)

• How do we motivate students to work?

• How do you create accountability?

• (How to, is it beneficial) Create a sense of panic early in the process

• (How to, reported to be hard) Understanding everything as an undergrad team

• Making integration tests without proper simulation

• Getting everyone to use the same tooling

• Enforce standards for software design e.g. style, naming conventions, functional

design

219



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• Actually enforcing good coding practices (code style, testing, CI...)

• (How to get people with those skills or develop them in time) Solid programming

and software engineering

• Recruiting and keeping experienced people

• Taking responsibility, no code ownership

• Simulating everything

• Debugging

• Software development practices are not taught across traditional engineering

• Fun, travel

• Real action planning

• Proper system architecture (multi-purpose)

• Burnout

• Mindset of "competition" vs "research"

• To not solve tests by just hacking

• Staying pragmatic and focused on outcomes

• Rewarding research

• Meeting RoboCup desired outputs (points) with research oriented outputs (papers)

• Recruiting researchers

• How do you distribute the work?

• How do you approach working with different levels in the spectrum of proactivity?

• Integration of different systems

• How to deal with conflicts?

• Knowledge transfer

• Data availability for training models for Social Robots

220



8.3. SURVEY

8.3 Survey

A survey composed of 60 questions was created from the feedback obtained from the

workshop held on 9 of July 2019, the day after the RoboCup Symposium, as found in the

previous section. This survey was distributed as an online survey using the Qualtrics1

platform. An example of how the survey looked can be found in Figure 8.8.

The survey stayed open for six weeks. During this time possible participants were

contacted. The survey was still accessible (and some partial answers were requested to

be completed) during a further four weeks.

Figure 8.8: Preview of the survey in the Qualtrics platform.

A set of participants was found from the workshop. The survey was also sent to the

official RoboCup@Home communication channel (Telegram group) and to the RoboCup

mailing list. Participants were encouraged to forward it to other experts to also complete.

This research was conducted in accordance with procedures required by the UTS

Human Research Ethics Committee (HREC), application ID ETH19-4405.

1Qualtrics is web based software that allows the user to create surveys and generate reports without
having any previous programming knowledge.

221

https://www.qualtrics.com/


CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

8.3.1 Survey Aims

The survey aims were:

• Find consensus on specific topics of the software development process.

• Find mixed views in specific topics of the software development process.

• Correlate the software development style with its outcomes.

• Gather insights on this process.

• Find new questions about this process.

These topics, insights, and questions were based on the work done up until that point:

the action research cycles and the workshop.

8.3.2 Survey Structure

The survey went through a series of iterations before achieving its final form. It was sim-

plified and shortened as much as possible while taking care to gather enough interesting

data.

The survey is divided into 9 sections of questions, containing 60 questions. These

sections are:

1. Participant Profile. 11 items relating to the participant profile, e.g. years of experi-

ence in RoboCup, team composition.

2. General Questions. 12 items that do not precisely fit other sections like how many

person-hours are estimated to be needed to prepare for a RoboCup competition.

3. Recruiting. 5 items about the recruiting process.

4. Meetings. 10 items about the meetings style of the participant’s team.

5. Practices from Software Development Methodologies. 13 items about well-known

software development methodologies, e.g. if using Agile.

6. Coding Practices. 8 items about coding practices.

7. Outcomes: In research and in the competition podium position. 4 items about the

team’s outcomes.

222



8.3. SURVEY

8. Experiences in specific situations. 5 items about specific situations that arose in

different teams during the development as discussed in the workshop section.

9. Receiving results. 1 question about whether they wished to receive the anonymized

results of the survey.

8.3.3 Data Analysis

The survey received 28 answers, 2 of them not fully completed.

In two cases multiple answers were found to be from the same team but from different

leaders of different years. Wherever this affected the analysis, it will be pointed out.

This section analyzes the results of the questions in an isolated fashion, one question

at a time. By the end of the section a correlation between the 9 top performing teams

and their answers is provided.

The questions presented in the survey went through a series of iterations to max-

imize the interesting insights that could be extracted. Some questions were complex,

designed in a manner that would allow different points of view provided by experts

who participated in these iterations (including participants of the workshop). Given this

conflict, some questions contain a wide range of responses. To extract meaning from

those, different approaches are taken and these approaches are explained.

Furthermore, an example of how the question Q6.2-Q6.3 was analyzed can be found

in Appendix C.

223



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

8.3.3.1 Participant Profile

Figure 8.9: Minimum years of experience in RoboCup was 1 year. Maximum 21 years.
With an average of 6.75 years and a median of 5 years of experience. The accumulated
amount of years of participation is 189 years of experience.

As per question Q1.4 in Figure 8.9 we can find that most of the participants have 3

years or more of experience in RoboCup major leagues. 24 expert participants create a

representative body of the niche field of software development for RoboCup. There are 4

additional answers with 1 and 2 years of experience which also provide useful feedback,

even though their view of the competitions may not be as deep.

224



8.3. SURVEY

Figure 8.10: The majority of the participants have participated in RoboCup@Home (with
its subleagues participation shown too). This is to be expected as the author of the survey
was a participant in this league so it was easier to reach out to them. The survey was
distributed to experts of all leagues.

As per question Q1.5 in Figure 8.10 it is to be observed that most participants come

from the RoboCup@Home league. Given the author participated in this league and their

community has an easy to approach communication channel, this seems natural. There

is representation of the Soccer, Rescue, Work, and Logistics leagues too.

Question 1.6 stated: Please add any other Robotics Competition/Challenge with a
similar spirit to the RoboCup major league competitions that you have participated in
(E.g.: RoCKIn, World Robot Challenge, NASA competitions...). 14 participants reported

having participated in other competitions, these were: World Robotics Summit, Darpa

DRC, Toyota Research Institute Pick and Place Challenge, RockIn, Mexican Robotics

Competition, European Robotics League, Darpa Grand Challenge, Eurobot, NASA Space

Robotics Challenge and local opens like Iran Open, German Open and US Open. This

strengthens further the belief of the quality of their answers in the survey.

225



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.11: The reported main motivations to participate in these competitions are
research outcomes, student experience, and fun. These motivations are followed by
networking and renown.

From Q1.7 with a chart in Figure 8.11 we see that participants are likely to join

RoboCup hoping for research outcomes, provide student experience, and have fun. Fur-

thermore, networking and renown have an implication.

Participants that chose ‘other’ as an answer reported the topics:

• Development of robotics.

• Capabilities development.

• Using RoboCup-systems as a research platform.

• Stay up to date with the state of the art.

• Credibility.

• Validation in the real world.

• Working with particular people involved in the team.

226



8.3. SURVEY

Figure 8.12: Team composition shown as percentages of the total team size. There is
diversity on team compositions as per the participants reporting from the 2019 edition.

Figure 8.13: The average team composition for 2019 was dominated by Undergrad
students, followed by Master students. Then PhD students and those reported as Other.

227



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Question Q1.9, with a chart illustrating it in Figure 8.12, asked about the team

composition for the last year (2019) for the survey participant teams. Diversity can

be found in team compositions. From mostly undergrad students up to no undergrad

students, for example.

Moreover, to gather further insight the average team composition in 2019 was com-

puted in Figure 8.13. Here we observe a dominance of undergrad and master students at

similar percentages, followed by PhD’s, and, finally, other.

Figure 8.14: Team composition shown as percentages of the total team size. From the
point of view of their ideal team composition there is a variety of answers too.

The question was asked again in Q1.10 but in terms of what would be their idea team

composition. In Figure 8.14 we find again a variety of answers.

228



8.3. SURVEY

Figure 8.15: The average ideal team composition is similar to the reported one for 2019
in 8.13 but with less Undergrad students and with more PhDs filling that gap.

The average on this data is computed and shown in Figure 8.15. Here we observe

a similar distribution of undergrad and masters students, but both reducing their

percentages to increase the amount of PhD students. It can be interpreted as a more

balanced average team composition.

From Q1.9 we see that the average team composition for 2019 was of about 3.7

undergrad students, 2.4 master students, 1.4 PhD students, and 0.8 other. This averages

to about 8 team members in each team. Other roles have been reported as employee,

graduate continuing with team, engineer, professor, and research engineers/staff.

In the case of Q1.10 where we asked about the ideal team composition, we obtained

an average of 3.4 undergrad, 3.4 master, 2.7 PhD, and 1 other. This averages to about 11

team members. Other was reported as research assistant, professor, and postdocs.

We can interpret that, on average, an ideal team composition has more higher

education tier members in comparison to the actual team composition for 2019 as

determined in Q1.9..

On Q1.11 participants were asked about the rationale behind their ideal team com-

position. Summarising the common points of the answers here, sorted by frequency,

as:

• Almost all answers say that people with experience are needed. Both RoboCup ex-

229



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

perience and engineering experience. Mostly reported as PhDs but some professors

too.

• Most answers mention somehow a chain of teaching, PhD guide/teach masters,

masters teach/guide undergrad.

• Undergrads to do mechanical work including testing, labeling, writing down exper-

imental data.

• Small teams are easier to manage (small seeming to be around 5 people).

• Commitment for multiple years of the team members is desired and looked for.

• Making team members join early on (from Undergrad) to maximize their commit-

ment.

• Take whoever that comes to the project that commits to it.

Looking at these rationales, it seems experience is a very important factor to have in

the RoboCup competitions. Teams aim to maximize the time their members stay with

them and want guidance and teaching to happen from these experienced team members.

Nonetheless, small teams are mentioned for their supposed ease of management, while

there was one mention of having larger teams to maximize outcomes (both in research

and in winning).

230



8.3. SURVEY

Figure 8.16: The most used programming languages reported were C++ and Python.
Other languages had some usage, either by teams who were the only ones reporting
using it as their main language, or as languages to solve specific tasks.

Figure 8.17: Most teams use the ROS middleware. But it is worth noting that the league
in which teams participate influences this question.

231



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Q1.12 asked about the programming languages used for the competitions. In Fig-

ure 8.16 we see a predominance of C++ and Python. This follows the trends shown in

surveys of recent years like StackOverflow’s [86]. Robotics software tends to need high

performance components, which tend to be programmed in C++, with more higher level

code done in Python. Additionally, the mainstream usage of deep learning, with widely

well known libraries in Python, inclines the balance towards Python. Most teams report

usage of the Robotics Operating System (ROS) framework as stated in question Q1.13

(Figure 8.17). This has many tutorials in C++ and Python, which may also influence this

distribution.

In Q.13 participants were asked about their usage of the ROS middleware. As shown

in Figure 8.17 most teams (74.2%) answered that they use it. Teams that answered

negatively reported that it did not make sense in their league, or that they used their

own custom framework instead, or in parallel, of ROS.

8.3.3.2 General Questions

For the question Q2.2 “How many person-hours do you estimate are needed to successfully
participate in a RoboCup competition?” the answers were to be provided in terms of:

Number of team members * Weekly hour dedication * Duration of the project in weeks

This format was chosen taking into account feedback provided from the workshop

from section 8.2. A number of people agreed that a simple count of person-hours was not

a good enough metric, however, it would be meaningful to take into account different

project and team setups to reach such a number.

232



8.3. SURVEY

Figure 8.18: Total person-hours responses for the question “How many person-hours do
you estimate are needed to successfully participate in a RoboCup competition?”. Average
of 4596 person-hours and median of 3840 person-hours represented with a red and a
green line, respectively. There is a wide range of responses from just 600 person-hours to
98000 person-hours.

Figure 8.19: Distribution of responses on the amount of team members for participating
in a RoboCup competition with regard to the total person-hours needed for the project.
Average and median values fall on 8 team members.

233



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Looking at the distribution of responses in total person-hours in Figure 8.18, there

is a wide range of responses. A meaningful way to use this information is to form a

consensus. Here the averages, medians and distributions of the responses are taken into

consideration.

Item Amount Rationale

Number of team
members

8 Both the average and median fall around 8 team
members.

Weekly hour dedica-
tion

20h/week
(part-time)

The average and mean fall in between 17 and
20h/week. In real life part-time on 20h/week is a
common measure.

Duration of the
project in weeks

28 weeks
(7 months)

The average and mean fall in between 24 and
31 weeks. It is usual to plan in months, hence,
rounding to a middle value.

Total person-hours 4480

Table 8.2: Creating a meaningful guidance value on how much effort in person-hours an
average RoboCup team needs.

The distribution of responses to the amount of team members is in Figure 8.19, the

distribution of responses to the amount of weekly dedication hours is in Figure 8.20,

and the distribution of responses to the amount of weeks to prepare for RoboCup is in

Figure 8.21. Then, the real-life practicality of the different measures is taken into account.

This process is shown in Table 8.2. The result of this process is a set of guidance values.

A team of 8 members working part-time (20h/week) on the project during 7 months

(28 weeks) would be considered to have a setup able to be successful in a RoboCup

competition.

234



8.3. SURVEY

Figure 8.20: Distribution of responses to the amount of hours weekly per team member
to dedicate to participating in a RoboCup competition with regard to the total person-
hours needed for the project. Average value is 17.5 hours/week and median value is 20
hours/week.

Figure 8.21: Distribution of responses to the number of weeks of dedication to prepare
for participating in a RoboCup competition with regard to the total person-hours needed
for the project. Average value is 31 weeks and median value is 24 weeks.

235



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

It is worth noting that for the number of team members, the average and median falls

at 8, but the most frequent answer was 10 team members. Moreover, a more significant

value may be the range in between 5 to 10 team members as 92% of the answers fall into

that range.

The next question stated “Do you have/create a practice environment where to simu-
late the competition? (E.g.: A home-like room for RoboCup@Home or a disaster scenario
for RoboCup@Rescue. Shortly describe your setup if so, please.” and all responses but one

answered affirmatively. On the descriptions of their setups the consensus was that they

had an environment as similar as possible to the competition, as their resources would

allow.

Figure 8.22: Responses on which skills were found to be more important for the success of
the team when recruiting new team members. The skills ordered by importance became:
proactivity, coding skills, interpersonal skills, robotics knowledge, and competition-
specific experience.

The following question Q2.4 stated “When recruiting new team members which skills
do you find more important for the success of the team? Please sort by importance the
following items.” and showed a list of 5 skills to sort: interpersonal skills, coding skills,

robotics knowledge, competition-specific experience, and proactivity.

236



8.3. SURVEY

During the workshop it was impossible to reach an agreement on what was more

valued but those skills arose as important. The question was shaped in this manner from

a previous iteration, where a participant would just rate how important were these skills

in a 5-scale from "Not important" to "Very important". This trial questionnaire was not

effective and this approach, where participants needed to engage in a trade-off, was used

instead. A follow up free-text question allows for additional notes.

In Figure 8.22 we can see the outcome of this question. Proactivity is the most wanted

skill, followed by coding skills, then interpersonal skills, then robotics knowledge, and

finally, competition-specific experience. Additionally, the data showed that half of the

respondents chose proactivity as the most important skill, and 70% of respondents chose

competition-specific experience as the least important skill.

The result that competition-specific experience was rated the least important skill

might be surprising taking into consideration that previous responses indicated that

it was important to have team members with competition experience. However, it may

be that the question was in the context of recruiting new team members and therefore

was assumed by the respondents that the team already had sufficient experienced team

members.

A text field followed stating “Please add any comment you may have on your answer
of the previous question.” for additional notes. 42% of participants added some further

comment. These comments are summarized as:

• Motivation is reported as related to proactivity and is considered very important

by three participants. Autonomy is also reported as related to proactivity by one

participant.

• “Cannot be too selective on recruiting new team members” is expressed by two

participants.

• “Some team members must have experience” is reported by two participants.

• Discipline and following the team leader decisions is also reported as important by

one participant.

• The shape of the question is criticized as simplistic by one participant, but no

improvements are proposed.

Question Q2.6 was “How many team members do you fly to the competition?” with

an additional field stating “What is the decision on how many team members to fly to

237



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

the competition based on? Please explain.”. As can be seen in Figure 8.23, the average

number of team members flown is 7, the median is 8, and the most frequent response

being 10. The range of responses went from 3 to 10.

Figure 8.23: Responses on “How many team members do you fly to the competition?”.
Average is 7, median 8 and the most repeated response 10.

The arguments about why the reported amount (and implicitly, whom) of team

members to fly are summarized as:

• First and foremost: Funding. It is mentioned by almost all responses.

• Availability.

• Prioritize by most important skills or responsibility on the project. Also prioritize

by the most capable people and their merits.

• With the previous factors taken into account, try to have everyone in the team.

• But also keep the size of the onsite group manageable.

• And one answer added that for the Middle Size League you need two persons per

robot.

238



8.3. SURVEY

We find in Q2.8 “How important is it to have an always fully working version of the
software of your robot at any time?” and its results in Figure 8.24. Most respondents

answered it’s in between extremely important and very important.

Figure 8.24: Most respondents to “How important is it to have an always fully working
version of the software of your robot at any time?” answered that it was in between
extremely important and very important. This shows less emphasis than the previous
question.

Q2.9 follows with “How important is it to have automated hardware checks? (E.g.:
Having some software automatically tell the user a sensor is not working correctly)” and

the plot with the results can be found in Figure 8.25.

239



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.25: “How important is it to have automated hardware checks?” has most replies
in the range of very important and moderately important.

Figure 8.26: The responses to “How important is it to have automated software checks?”
are found almost equally distributed in the range in between extremely important and
moderately important.

240



8.3. SURVEY

In Q2.10 “How important is it to have automated software checks? (E.g.: Having some
software automatically tell the user a piece of software has crashed or is not working
correctly)” with its chart in Figure 8.26, the answers are evenly distributed in the range

in between extremely important and moderately important.

Q2.11 contains the question “How important is to have a simulation of your robot
available for development?”, which has a follow up text field to give further explanation.

The responses are plotted in Figure 8.27 having a mix of answers. Taking into account

that different leagues take part in this competition with different levels of available

simulations, this may not be surprising.

Figure 8.27: A wide range of answers for “How important is to have a simulation of
your robot available for development?” is found. Most answers fall around being very
important, but there is no consensus.

On the section for comments of this question, summarized, responses said:

• Robots are a limited resource, so simulation is needed.

• Simulation is necessary to minimize breaking robots.

• Using a simulator allows for development and testing in variable scenarios without

a robot.

241



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• Testing first in simulation before testing in the robots.

• Simulators may not be realistic enough.

• Some responses say that they want to use more simulation.

• Some responses say that they will only use a simulator if it’s already available.

• Testing in some leagues is necessary to be done in simulation.

8.3.3.3 Recruiting

As in other parts of the survey, the choices available for these questions were based on

discussions in the workshop from section 8.2.

The first question of the recruiting section is coded as Q3.2 and states “How do
you recruit new team members?”, the responses can be found in Figure 8.28. ‘Other’

included the answers: internships, word of mouth, flyers, the initiative is presented

during orientation and “they come to us”.

Figure 8.28: “How do you recruit new team members?” responses. The most popular
answers were Courses and Informative meetings. Other follows. Then hackathons and
workshops.

242



8.3. SURVEY

On Q3.3 “What incentives do you offer to your team members to participate in the
team?” the incentives with more responses were publications (they get the opportunity

to do scientific publications) and future job (future job prospects, they ease their way

into a job) with an equal number of respondents. Coursework (coursework, credits, they

advance their studies), and ‘other’ follows. Comments for the ‘other’ response were: paid

travel, build robots and work with new robots as motivation, learning experience, fun,

and fame. Lastly, free goodies (as in food/drinks in social events) and money (they are

paid).

Focus on their personal growth goals seem to be the most important reasons. Hence,

publications, future job, and coursework were the most frequent answers, compared to:

other, free goodies, and money.

Figure 8.29: Distribution of responses for “What incentives do you offer to your team
members to participate in the team?”. Most responses went into publications and future
job. Coursework and other follows. Finally free goodies and money. Comments for the
other response were: paid travel, build robots and work with new robots as motivation,
learning experience, fun, and fame.

Question Q3.4 “How do you teach the basics needed to participate in the project
(or make sure the new team members have the necessary knowledge)?” with the plot

with the responses in Figure 8.30, had the following responses ordered by number

243



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

of responses: personal work and supervised personal work had the highest number

of responses. Course (as in, being part of a university subject) follows. With a lower

number of responses workshop and others finish the possible amount of options. For

other, answers were: thesis work as part of their enrolment, could be improved, pair

programming, focused experiments, and instructions by seniors.

Figure 8.30: Distribution of responses for “How do you teach the basics needed to partici-
pate in the project (or make sure the new team members have the necessary knowledge)?”.
Most responses found in personal work and supervised personal work. Course got roughly
half the responses than the previous two, but still roughly double the two last options:
workshop and other. Comments for the other field were: thesis work as part of their
enrolment, this process could be improved, pair programming, focused experiments, and
instructions by seniors.

The last question of this section, Q3.5, is specified as “How long does it take to a
new team member to make a non-trivial contribution to the team’s repository? (Please
add the unit, hours, days, weeks, months...)”. The reasoning behind this format is that,

during the workshop, it was hard to come to a consensus about this question. There

were participants with setups where contributions were not allowed until team members

were very familiar with the codebase, and others with an opposite mindset where

they encouraged contributions from as early as possible. The concept of a non-trivial

244



8.3. SURVEY

contribution is also conflicting. Moreover, a wide range of responses was found even when

trying to setup the same assumptions. This question was left open to gather further

insight.

The responses were, unsurprisingly to the author, very varied. Responses included

“it varies too much from person to person”. It can be implied from the responses that

also what is being considered "contributing" may be interpreted very differently, as there

were responses ranging from twenty hours to one year. Some answers also considered

just learning ROS as the necessary requisite to contribute.

Noteworthy, was that most answers were provided in months, with some in a range

of months. Moreover, with the goal of aiding the extraction of meaning from this data, a

histogram was created. This plot can be found in Figure 8.31, and it shows two schools

of thought: teams that expected new team members to make a non-trivial contribution

in between 1 and 3 months, and teams that expected it to happen in between 5 and 8

months.

Figure 8.31: For “How long does it take to a new team member to make a non-trivial
contribution to the team’s repository? (Please add the unit, hours, days, weeks, months...)”
the distribution of responses interpreting results in the worst case in months in a
histogram is used. Using whole month figures, most answers fall into the 1 to 3 months
range. The next most answered range is in between 5 and 8 months.

245



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

8.3.3.4 Meetings

The first question of the meetings section has the code Q4.2 and states “What kind of
periodic meetings does your team hold?” with the (multiple options allowed) options

of: daily, weekly, fortnightly, monthly, and other. The responses are summarized in

Figure 8.32.

Figure 8.32: Responses for “What kind of periodic meetings does your team hold?”.
Most responses indicate Weekly meetings. 8 responses also indicated Other: changing
frequency (to more often) as the competition approaches, irregular meetings.

From the people that chose weekly as their meeting type, Q4.3 asked “How many
meetings do you have a week?” and the summarized responses, as can be seen in Fig-

ure 8.33.

The questions Q4.4 to Q4.7 were about the duration of the meetings and were shown

based on the previous answers about the periodicity of meetings. E.g., if a respondent

marked they met weekly, they would have responded to the question about how long their

weekly meetings were. The summary of the responses can be observed in Figure 8.34.

There is a wide distribution of answers on the most common type of meetings (weekly)

ranging from 4 hours to just 10 minutes.The average weekly duration was 75 minutes

with the median being 60 minutes.

246



8.3. SURVEY

Figure 8.33: Distribution of responses to “How many meetings do you have a week?” from
respondents that indicated that they meet weekly. 80% of respondents meet once a week
and 20% meet twice a week.

Figure 8.34: Summary of responses to duration of meetings. Average weekly duration
was 75 minutes and median was 60 minutes.

247



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.35: “Does every member of the team attend every meeting?”.

Question Q4.8 stated “Does every member of the team attend every meeting?” and

the responses were roughly divided in thirds. The three options yes, no, and depends

were distributed as seen in Figure 8.35. On the options no and depends, an optional

explanation was offered. The explanations provided were mostly that the spirit of the

meetings was to have everyone in the meeting but availability of the team members

made it hard. A few answers manifested that there was a subdivision in groups and it

was not needed for all to attend. Also another answer indicated that it depended on the

type of meeting.

In question Q4.9 participants of the survey were asked “Do you modify the frequency
or duration of the meetings during the length of the project?”. As seen in Figure 8.36, 71%

replied yes. Participants could add an explanation in a following open text field. They

stated that as the competition gets closer the meetings become more frequent. It is also

mentioned that depending on the progress (good or bad progress) and the topic to be

discussed, the meeting duration may change.

248



8.3. SURVEY

Figure 8.36: Participants were asked if they modify the frequency or duration of the
meetings.

Finalizing this section about meetings, the question Q4.10 “Add here any other
comment you may have about your meetings style that may not have been reflected in your
previous answers.” had 16 responses. These are summarized in the following points:

• Meetings include testing reported in 6 responses.

• Meetings include code review or programming support in 6 responses.

• Different types of meetings reported, including informative meetings, programming

meetings, testing meetings, loosely structured meetings, well structured meetings,

meetings one to one.

• Instead of meetings 4 responses indicate “team evenings” or “team days” to work

on topics related to the team: planning, coding, testing, etc.

8.3.3.5 Practices from Software Development Methodologies

The first question on this section is Q5.2 stating “Do you follow any of the following
Software Development Methodologies?” and allowing the choices of: Waterfall, Scrum,

Kanban, Rapid Application Development, Lean, eXtreme Programming, Agile (Other),

DevOps and other. The answers are distributed as shown in Figure 8.37.

249



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.37: Most participants responded Other and Scrum. The next most frequent
responses were Kanban, Waterfall and Agile (Other).

For the ‘other’ option, the related text field included the following summarized

comments:

• Standard software development practices as seen in DevOps reported in 2 answers

while also referencing resemblance to Agile. DevOps practices reported as: branch-

based development, auto-formatted code, issue tracker, reviewed Pull Requests,

automatic builds, linters and end to end tests.

• Three responses saying no methodology at all.

• Mix between Agile and DevOps with an initial Waterfall-like phase in one response.

• Spiral development mentioned in one answer.

• Alternate focus between theoretical (theory, reading, planning, etc) and real-world

activity (implementation, testing concretely) in one response.

When asked on Q5.3 if “Do you follow this methodology strictly?” the responses,

as shown in Figure 8.38, the majority (84%) answered that they did not follow their

methodology strictly.

250



8.3. SURVEY

Figure 8.38: 84% of respondents said that they did not follow their methodology strictly.

On the text field to explain why they answered no, the summary is:

• 7 responses mentioned that they cannot be too strict with following the methodol-

ogy.

• 6 responses mentioned that they needed to adapt to the needs of the team and to

the available resources.

• 4 responses mentioned that they did not use some elements of their methodology.

• 2 responses mentioned that they tried to use it but after some time the use fell off.

The following question Q5.4 stated “Do you use some kind of backlog for the tasks that
need to be done during all the project length?” and the answers can be seen in Figure 8.39.

Most responses stated that they used some backlog for this purpose.

The next question Q5.5 stated “Do you use some kind of backlog for the tasks that are
currently being worked on?” and the answers can be seen in Figure 8.40. Most responses

stated that they used some backlog for this purpose.

251



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.39: Most responses for “Do you use some kind of backlog for the tasks that need
to be done during all the project length?” state that they used some kind of backlog.

When asked on Q5.6 “Where do you store these backlogs, if any. (For example, Trello,
or post-its on a whiteboard)” most participants reported some kind of online means of

storing them. Online resources that were reported:

• Github/Gitlab issues.

• Trello.

• Google Drive.

• Notion.

• Yammer.

From these online resources, GitHub and GitLab with their integrated issue trackers,

were mentioned by 10 responses. Trello was mentioned by 8 responses too. Additionally,

10 answers mentioned some physical form of backlog, including: a whiteboard, post-its

on a board, and notebooks. Respondents used these tools in combination.

252



8.3. SURVEY

Figure 8.40: Most responses for “Do you use some kind of backlog for the tasks that are
currently being worked on?” stated that they used some kind of backlog.

The following questions were Q5.7 and Q5.8 and stated:

• “Do you work in ’sprints’ as in the Scrum methodology? (A ’sprint’ can be defined as
a defined time period for developing features for a product).”.

• And as follow up question for positive answers: “How long are these sprints? -
Length of sprint in Weeks”.

The answers are summarized in Figure 8.41. Only 35% of the responses indicated they

worked in sprints with the distribution of these indicating most sprint lengths were

between 1 and 2 weeks.

253



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.41: 35% of respondents to “Do you work in ’sprints’ as in the Scrum methodology?
(A ’sprint’ can be defined as a defined time period for developing features for a product).”
indicated that they worked in sprints. From those most had a sprint duration of between
1 and 2 weeks.

Figure 8.42: Responses to question Q5.9.

Question Q5.9 “Some previous works (Lightweight Management - Taming the RoboCup
Development Process & Elements of Scrum in a Students Robotics Project - A Case Study)

254



8.3. SURVEY

on managing a RoboCup team talk about the difference between having someone acting
as a project manager or having someone steering the project. Which figure do you think
fits your team strategy better:”, with its responses in Figure 8.42, just over half of the

responses (57.7%) indicated the project manager figure.

However, when asked in Q5.10 if “Do you have a project manager figure in your team?”
we find that that most (82.1%) participants do have a project manager figure as can be

seen in Figure 8.43.

Figure 8.43: Responses to question Q5.10.

Question Q5.11 stated “Do you hold specific planning meetings? How do they look
like?”. The responses, as seen in Figure 8.44, have a slight majority (59.3%) stating that

they do not. Further explanation (11 responses) on what those meetings look like were

(summarised):

• The planning meetings are used to discuss milestones and timeline was mentioned

in different ways in 4 responses.

• The planning meetings are used to generate issues and tasks to work on.

• One answer mentioned only done when needed and with only the key members

• Two answers mentioned to hold planning meetings only at the beginning to review

rules and motivations of team members.

255



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.44: Responses to Q5.11.

Figure 8.45: Most respondents (85.2%) stated that they did hold retrospective meetings.

The following question Q5.12 is “Do you hold retrospective meetings? (As in, you
analyze the last batch of work together with the team to see what went well and what
went wrong)”. The answers are summarized in Figure 8.45.

The last question of the section is Q5.13 “How important do you think is it to hold
retrospective meetings?”. Participants responses were distributed as shown in Figure 8.46.

256



8.3. SURVEY

Most answers were between moderately important and extremely important, with a

peak on Very important.

Figure 8.46: Answers to Q5.13.

8.3.3.6 Coding Practices

The first question about coding practices is coded as Q6.2. The question states “Please
order these concepts by importance to address them for the success of your team in the
competition.” with the options: “Naming conventions, Commenting code, Code simplicity,
Code portability, Unit testing, Continuous integration, Pair programming, Shared code
ownership”. The question is shaped in this manner to force respondents to make trade-

offs between these concepts. Previous iterations of this question just asked about the

individual level of importance of these concepts as a trial survey showed that the concepts

were mostly just considered very important. During the workshop it was also discussed

that while every one of these concepts is desirable, there is a trade-off between investing

time and energy in some of them rather that in another.

257



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

The following question was a text field for participants to optionally provide further

explanations.

Every response ordered the concepts from 1st to 8th. For every concept, the average of

the responses was found and it was converted to a 0 to 10 score scale. Other approaches

were tested and they provided the same order of importance between the concepts. The

scores can be seen in Figure 8.47.

Code simplicity, commenting code, and naming conventions head the importance

of these concepts. Code portability fits in between in the third position. It seems like

having easy to read code is considered very important as these three related concepts

head the importance ranking. It is noteworthy that code simplicity had the most amount

of responses, making it the most important concept (10 over 28 responses).

Shared code ownership is an interesting concept as its the only one to present a

conflicting distribution of responses with 4 responses classifying it as the most important

and 11 classifying as the least important (the concept with the highest number of least

important responses). Differences in the way to manage the codebase may have to do

with this.

Continuous integration falls in the middle of this importance scale, with unit testing

even lower. It appears that, compared to having easy to read code they are less important,

even though in the workshop it was generally considered that they were very important

practices. Maybe teams take the quality of the code for granted.

The last concept was pair programming. Having easy to read code and an automated

environment in which to build code and catch bugs, seems to overshadow this concept.

258



8.3. SURVEY

Figure 8.47: Concepts ordered by importance, on a score from 0 to 10. Code simplicity
was considered the most important. It’s also marked in green to denote that it’s the
concept with the most responses, marking it as the most important (10 responses over
28). Commenting code follows as the next most important. Code portability and naming
conventions follow closely. Then continuous integration. The next concept is shared code
ownership, marked in orange to note that there is some conflict in this item. This is
because 4 responses classify it as the most important and 11 classify it as the least
important, becoming the item with the highest number of least important votes. Unit
testing follows closely behind shared code ownership. And finally pair programming has
the least importance.

A set of 9 comments were left in the following question in Q6.3, these have been

summarized here:

• 2 responses added that good and complete documentation is important.

• 2 responses added that clear interfaces and well understood architectures are

important.

• Human factors are more important than specific technical practices was said by

one respondent.

259



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• One response added that they have not been disciplined with any coding standard

other than some unit tests.

• One response added that code reviews to increase the quality of the code is impor-

tant.

• One response criticized the question itself considering the concepts incommensu-

rable. While this is fair criticism, the question arose from looking for a way to

compare the trade-offs between these concepts.

• One response was “Something is missing for us. We follow a rule very strictly using
event based programming only and exclusively with many independant projects.”.
Which is hard to generalize with the provided concepts.

Question Q6.4 “How important is the concept of dependency hell in your team?” had

the distribution of responses as seen in Figure 8.48. Most responses classified dependency

hell2 in between moderately important and extremely important.

Dealing with a sane system configuration avoiding dependency hell seems important

for most respondents.

Question Q6.5 states “Which types of testing do you perform in your team? Note that
if you aren’t familiar with some of them, just leave them unchecked.”. The set of possible

options was taken from an informal chat with a few experts in RoboCup taking a large

list of types of testing and selecting the ones that were familiar at least for some of us.

An option of ‘other’ was left in case any were missed.

2Dependency hell is a concept that can take several shapes. A software package could have many
dependencies, long chains of dependencies, conflicting dependencies, circular dependencies or diamond
dependencies. These problems can cause a lot of trouble to address. Namely, for a full ROS installation up
to a thousand software packages may be needed. Many leagues in RoboCup make use of ROS.

260



8.3. SURVEY

Figure 8.48: Most answers to “How important is the concept of dependency hell in your
team?” fall in the range of moderately important to extremely important.

The distribution of answers can be seen in Figure 8.49. The most performed testing

types were integration testing and ad-hoc testing. This is unsurprising given the large

amount of software that needs to be integrated in most RoboCup competitions.

Unit testing follows closely, with one less respondent. It is a widely used technique,

and this seems unsurprising to the author too.

System testing and functional testing are next with 12 respondents marking them.

This seems aligned to the need for doing a lot of integration testing.

Performance testing follows showing the need for tuning the systems for specific

platforms in many RoboCup leagues with limited computing capabilities.

For the two ‘other’ types of tests the responses were:

• “Sadly we do not test much at all. Starting with unit- and install testing for some
software modules at the moment.”.

• “Demos and Integrated test in real world.”

The question Q6.6 stated “How important is the usage of end to end testing in your
team? (Consider end-to-end testing as in running a full test/mission of your competition)”.

261



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

The answers are summarized in Figure 8.50.

Figure 8.49: The most performed types of testing were integration and ad-hoc testing,
followed closely by unit testing, system testing, and functional testing. From there the
quantity of responses decrease.

Q6.7 follows with “Do you use Pair programming in your team?”. There is a match in

between yes and no as shown in Figure 8.51.

From the people that answered yes, everyone added an extra comment in the following

text field. These comments are summarized here as:

• Pair programming used to share knowledge, added by 8 responses.

• Pair programming used sometimes, depending on the people themselves, added by

4 responses.

• Pair programming used to have more than one responsible person for some item,

added by 2 responses.

• Pair programming used for teaming up to prepare specific tests, added by 2 re-

sponses.

• Pair programming used to introduce people to the project, added by 2 responses

262



8.3. SURVEY

Figure 8.50: Responses for “How important is the usage of end to end testing in your
team? (Consider end-to-end testing as in running a full test/mission of your competition)”.
Most answers considered it extremely important.

Figure 8.51: Exactly half of the respondents to “Do you use Pair programming in your
team?” answered yes.

263



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

For the last question of the section Q6.8 “How important is the choice of programming
language?” the distribution of answers can be found in Figure 8.52. Most answers were

in the range in between very important and moderately important.

Figure 8.52: Most responses to “How important is the choice of programming language?”
were in the range in between very important and moderately important.

8.3.3.7 Outcomes: Research and Competition

Noteworthy, this section starts with the question Q7.2 “Please summarize your team
outcomes from your participation in the RoboCup major league competitions. (As in,
which place did you achieve and which awards).”. An analysis of the top performing

teams and their answers on the rest of the survey is to be found further in the chapter in

subsection 8.3.4.

For this question the count of respondents that attained first place in some year of

participation in a world RoboCup competition instance was 25. For second place, 16, for

third place 10, and for fourth place 6. Many other first, second and third placed results

were also provided for regional RoboCup opens (German Open, Iran Open) and some

other competitions. This number of first to fourth places reported is more than enough to

consider that this survey has a set of strong participants with a long story in RoboCup.

264



8.3. SURVEY

Q7.3 states “Which were your research outcomes from your participation in these
Robotics Competitions? Please describe them. (As in, did you publish papers from it? How
many? Did they have a big impact?)”. A summary has been made based on the provided

comments. The comments included lists of publications, specific amounts of publications,

generalizations as "some publications" or "many publications" as well as others. The

summary of comments follows:

• 11 responses were considered to express "some publications".

• 5 responses were considered to express "many publications".

• 2 responses were considered to express "very few publications".

• 3 responses reported to have indirect publications, e.g. by using the software

created for RoboCup to create experiments unrelated to RoboCup.

• 2 responses reported that publishing in "serious" or "big impact" venues is hard

from RoboCup related work.

• 2 responses indicated that RoboCup provided content (including publications) for

PhD and Masters thesis.

• 1 response indicated that they do not aim to publish research from RoboCup

participation.

The following question Q7.4 stated “Was there any other outcome from participating
in these Robotics Competitions? Please describe them. (As in, was there a product created?
A company or spin-off? Did team members improve their employability?)”. The responses

have been summarized in the following list:

• 12 responses considered that future job prospects improved (giving examples of

students going to work into companies like Google, Toyota, Honda, Uber, Microsoft,

Amazon...).

• 5 responses reported that team members created spin offs or startups from the

experience in RoboCup.

• 5 responses reported that RoboCup provided the students with valuable hands-on

experience.

• 3 responses reported that RoboCup created the opportunity and interest for stu-

dents to start a PhD.

265



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• 2 responses reported RoboCup provided media attention.

• 1 response reported that the software developed in RoboCup powered other re-

search.

8.3.3.8 Experiences in Specific Situations

The first question Q8.1 stated “Have you found yourself in a situation where a team
member was not doing their part of the work? How did you deal with the situation? Was
it resolved? Please describe it”. The summary of the responses follows:

• 11 responses reported that talking about the issue with the team member was the

first step. Some responses reported to also talk about the issue openly with the rest

of the team.

• 11 responses reported that the team member was either actively dropped out of

the team or the team member dropped out themselves. This may happen after a

different number of approaches to improve the situation depending on the team.

• 5 responses reported to provide this team member with non critical tasks if the

situations didn’t improve.

• 1 response reported to add precise goals and deadlines to try to improve the

situation.

• 1 response reported to pair the team member with some more experienced member

doing pair programming to improve the situation.

• 1 response reported using a custom “karma system” and having a minimum amount

of hours to invest in the project. Appraisal is given to the team member contributing

the most and other team members can measure their amount of work against others.

It is reported that such a team member will either get motivated to keep up or

realize they do not have enough time.

• 1 response reported that the criterion to apply is different, quoted: “It is not did
he/she contribute as much as others? but did he/she contribute positively to the
project?. Experience shows that the criterion is always met, often with surprising

circumstances”.

266



8.3. SURVEY

It seems like this issue appeared often in the teams, and that it is approached in

steps to try to improve the situation. When the situation did not improve as much as the

teams would like, different paths seem to have been taken. Either the teammate was

dropped out of the team or assigned non critical tasks that were "good to have". Some

teams had a stronger focus on keeping the work output high and others to have the

students have a positive experience.3

The following question, Q8.2, states “Have you found yourself in the situation where
a single team member had the knowledge on how a vital part of your system worked?
How did you ensure this was not a problem? Was it resolved? Please describe it.”. The

summary of the responses follows:

• The most repeated approach was to dedicate more time to sharing knowledge in

the team with 7 responses explicitly stating that.

• Also 7 responses reported addressing it by improving their documentation.

• 1 response added that they held events a couple of times a year as documentation

days where the team gets together to add or improve documentation.

• 4 responses reported taking advantage of GitHub/GitLab features to address this

by making use of the commit history and Pull Requests and Code reviews.

• 2 responses reported that they needed a self motivated team member to take over

the system.

• 2 responses indicated the use of pair programming to address this issue.

• 2 responses reported the use of coding style and coding conventions, and with them,

automated checks of those to increase readability.

• 1 response mentioned to have a team leader take over the system to transfer

knowledge.

• 1 response mentioned to make the system very modular.

• 1 response mentioned to rotate every team member through every task.

• 1 response mentioned to try to make the team bigger.
3I must make clear that I’m not saying that these are contrary views here. From the responses it can

be interpreted the overall spirit is to provide positive experiences to the team members, but some teams
may provide more effort in keeping a team mate even though they provide less output than expected.

267



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• 1 response mentioned to have a redundancy of solutions for the different parts of

the system.

• 1 response mentioned to rewrite the system.

• 1 response mentioned to ensure to have at least 3 team members with knowledge

of every system part.

• 1 response mentioned that it is addressed by having a good architecture.

The next question states “Have you found you had a new team member that lacked
a lot of necessary basic skills to contribute to the project? How did you ensure he learnt
what was needed? How did you make the best use of this person efforts? Did this person
come up to speed? Please describe the situation”. The answers have been summarized in

the following list:

• To provide simpler tasks, by 11 respondents.

• To team up with more experienced team members, either in pair programming or

in a subteam to work on a part of the system, by 7 respondents.

• Tutorials or coursework provides the basic skills needed, by 5 respondents.

• Create tasks that focus on the interests of the team member, by 4 respondents.

• Create tasks that are not critical work, by 4 respondents.

• By not letting students join the team if they do not have enough knowledge, by 3

responses.

• By providing alternative tasks to coding, by 2 respondents.

• By talking through the issue with the team member. This is explicit in one answer

but could be understood implicitly in more answers.

It is worth noting that a few responses argued that ROS was the only requirement.

The reasoning is reported to be related to the advantage of the system being modular

when using this middleware. Additionally, another team reports the same advantage

with their custom middleware. A few answers either explicitly or implicitly stated that

education is the first goal for them.

268



8.3. SURVEY

For Q8.4 which stated “Please explain how do you approach succeeding both in
the competition and also getting research outcomes. Do you think there is room for
improvements in your approach, which?” the summarized answers are:

• To approach RoboCup competition challenges research first. Create systems that

tackle those challenges in a principled way, not with hacky solutions. The spirit of

this answer was shared by 5 respondents.

• To have more Professor or PhD team members to have a stronger research orienta-

tion was shared by 5 respondent.

• A few perspectives about time management were provided. Reducing time for

practical RoboCup solutions and moving it into research, investing more time into

research, or just investing more time in general were shared by 4 respondents. It

is worthy of note that one respondent added that just investing more time was not

healthy.

• 3 respondents shared that they can’t do both competition outcomes and research.

They either focus on one or the other.

• 2 respondents added that the rulebook of the competition should be improved to

approach this question.

• 1 respondent replied that they identify what is publishable after the competition.

• 1 respondent replied to have one team member focused on research and writing.

• 1 respondent added that having the work done by team members be their goal for

a Bachelor or Master thesis.

The last question, Q8.5, states “Which do you think is the biggest challenge regard-
ing the software development process for a RoboCup competition?”. The responses are

summarized here:

• The most repeated challenge reported is to create software robust in all situations,

resisting variability and uncertainty of the real world. 7 responses included it.

• Grouping together concerns about teamwork, team management, ever-changing

team members and new team members integration, the concept of team manage-

ment is repeated in 5 responses.

269



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• The concept of integration of the different software parts is mentioned in 5 re-

sponses.

• Knowledge transfer, between team members and from previous teams or code bases

is mentioned in 4 responses.

• The complexity of the competition is mentioned also in 4 responses.

• Having a huge software stack is mentioned in 3 responses.

• Testing all the software is mentioned in 3 responses.

• Having a good software architecture is mentioned in 2 responses.

• Keeping the software architecture conventions is mentioned in 1 response.

• Automating workflows as Continuous Integration, Deployment and Testing is

mentioned in 1 response.

• Time being the biggest challenge is mentioned in 1 answer.

• Bad robot hardware from a standard platform is mentioned in 1 answer.

8.3.4 Top 9 Teams Review

In this section we will review the answers of the top 9 teams that answered the survey to

find insights. These may be insights on when they all seem to answer in similar way or

in a conflicting way. Not every question will be discussed as some questions simply didn’t

provide any further insight from what was found from analyzing the full set of answers.

To choose the top teams a ranking was performed based on their reported achieve-

ments in RoboCup. A simple heuristic of giving a higher amount of points for 1st place to

6th place (the lowest position reported) taking into account the last 5 years. Care was

taken to not exclude any high performing team because of this heuristic. The top list

ended up having 9 teams. It may be an unusual number, but it is so based on two facts:

on one hand, two high performing teams had 2 answers for the survey each, the most

complete answer was taken from those while checking that they were aligned in their

responses. On the other hand, the following team (10th) in this heuristic had one single

podium position (while the upper 9 had 2 or more) with just 2 years of participation in

RoboCup (the average being 8 years).

Other heuristics were tested and they either ended up with the same list or were

harder to reason about.

270



8.3. SURVEY

8.3.4.1 Participants Profile

These 9 teams have a span of years of experience from 3 to 21 years. The average amount

of years of experience is 8 years.

The teams achieved multiple top three positions in, at least, the last five years of

RoboCup participation. The leagues they participated in were: seven teams in RoboCup@Home

variants, one team in RoboCup Standard Platform League, and one team in RoboCup

Logistics League.

When observing their last year team composition in regards of distribution of PhD,

master, undergrad, and other, comparing it to their optimal team composition, a wide set

of approaches is observed as can be seen in Figure 8.53.

The amount of team members of each answer stays similar between ideal and last

year team composition for every answer. Team composition consistency between ideal

and last year is up for debate.

When observing the answers to the rationale behind their team composition, the

answers stay in line with the ones found when the full survey is taken into account. The

team composition should take into account:

• Having experienced team members, which implies keeping team members for as

many years as possible.

• Chain the knowledge transfer from more experienced up to the newcomers, usually

from PhD to Master to Undergrad students.

When asking what programming languages do these teams use, everyone answered

that they used C++. All but one also said Python. It is noticed that two teams also added

CLIPS for their rule based systems.

Most possibly being influenced by the previous question, all teams reported the usage

of ROS with two teams stating it was used in parallel with their own middleware.

271



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

Figure 8.53: Comparison of team compositions for the top 9 teams: ideal team composition
and last years team composition. The same row pertains on both plots pertains to the
same survey response.

8.3.4.2 General Questions

When asking how many person-hours are estimated as needed to successfully participate

in a RoboCup competition the answer of the top 9 teams have been summarized in

Figure 8.54.

272



8.3. SURVEY

Figure 8.54: Top 9 teams answers to “How many person-hours do you estimate are needed
to successfully participate in a RoboCup competition?” with the parts of the answers:
number of people, duration of the project in weeks, and weekly hour dedication.

Different approaches can be observed. From full-time for a relatively short duration

of weeks to a low amount of hours a week for a long time with a big team. This may be a

topic dependent on the profile of the team.

273



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

If we make an approximation in the same spirit as done with all the available answers,

we get a team of 9 people, working part-time (20h/week) for 9 months. Using all the

previous data, we got 8 people, working part-time for 7 months. This suggests some

additional work is needed.

When checking if these teams had a practice environment like their competition, all

of them reported having an environment as close as possible to the real competition

environment.

In Figure 8.55 the summary of answers to “When recruiting new team members which
skills do you find more important for the success of the team?” can be found. While the

general results are similar, there is a peak on proactivity and a bigger drop of importance

towards competition-specific experience and robotics knowledge compared to the results

of this question with all data.

Figure 8.55: Answers by the top 9 teams to “When recruiting new team members which
skills do you find more important for the success of the team?” are similar the previous
results.

When analyzing “How important is to have an always fully working version of the
software of your robot at any time?” the conclusion is that it’s between very important

(two answers) and extremely important (7 answers).

Following with how important automated software and hardware checks are, there

isn’t a consensus on any of them. All answers are over slightly important, so it could be

274



8.3. SURVEY

interpreted as just "good to have".

Finally, for this section, the teams responses on how important having a simulation

for their robots is had a wide range of answers indicating this is very team dependent.

8.3.4.3 Recruiting

Responses for methods on how to recruit new team members, informative meetings was

the most repeated method. Others varied in usage.

When looking at the incentives provided to participate in the team, all top teams had

Future job prospects as an incentive. Most (6 of 9) also stated that having coursework

done by participating in the team was also an incentive.

To teach the basics needed to participate in the project, all coincide in the use of

Personal work and Supervised personal work. This may relate well with the wish of

having proactive team members.

Where these teams do not agree, as responses were very varied, is on how long it

takes for a new team member to make a contribution to the code base of the team. Very

dependent on the student is the only repeated answer.

8.3.4.4 Meetings

Most of these teams (8) report meeting once a week for an average of 60 to 90 minutes.

One team reports fortnightly. But most teams (7) report that they modify the frequency

and duration of meetings as the competition gets closer. Seven teams aim to have

everyone that can make it attend the meetings. Two specify that not everyone is expected

to attend all meetings.

8.3.4.5 Practices from Software Development Methodologies

Exploring the Software Development Methodologies reported by the teams we have seven

teams reporting using some kind of Agile methodology. Within those, three report Scrum

and two report Kanban. The other two report using a mix of what they feel works for

them from Agile methodologies. Only one team reports following a methodology strictly,

and they report to use Kanban strictly.

Two teams report no methodology or no explanation given.

When asked about using a backlog for the project (long term goals) and a backlog for

current tasks, all top participants in the survey report using them both. Six teams report

275



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

storing these backlogs in GitHub or GitLab issues, three report using Trello. Four also

report using a physical means to store these, reporting whiteboards and notebooks.

Most teams report not using the concept of sprints, only two answered that they do

and with 3 or 4 week cycles.

When asked if they prefer a project manager or a project steering figure in the team to

lead, responses are mixed. Four prefer the project manager and five the project steering

figure. But when asked if they have a project manager, seven report having one.

Six out of nine do not hold planning meetings.

However, almost everyone agrees that retrospective meetings are very important,

and they all hold them.

8.3.4.6 Coding Practices

When taking into account only the subset of 9 top performing teams, the question that

asked to order by importance a set of concepts got different results. In Figure 8.56 we

observe that code simplicity stays as the most important concept. But then, continuous

integration becomes the second most important. The following items (naming conventions,

commenting code and code portability) switch their positions, but overall stay similar in

importance.

Figure 8.56: Top 9 teams order on the importance of these concepts related to coding
practices.

276



8.3. SURVEY

The question about how important is the concept of dependency hell had different

responses depending on the league of the team. For RoboCup@Home teams it was con-

sidered between moderately and extremely important. Meanwhile for RoboCup Logistics

League the answer was not at all important.

For the types of testing that the teams practice, the summary of responses can be

found in Figure 8.57. The six most responded types of testing stayed the same but with a

slight variation in their order. Integration testing stays as the most important type of

testing.

Figure 8.57: Types of testing used by the top 9 teams.

When asking specifically for the importance of end-to-end testing (as in, practicing

full RoboCup competition tests) the consensus is that it’s extremely important.

As for the practice of pair programming, eight teams responded that they use it and

the three most repeated reasons to use it were: to pair members on a competition test, to

guide new members and to fix hard problems.

This section also asked about how important the choice of programming language is.

There is no consensus here as five teams report Very important, three just moderately

important and one slightly important. The fact that all teams use ROS, C++ and almost

all use Python may make this question not very meaningful as there seems to be less

choice anyways.

277



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

8.3.4.7 Outcomes: Research and Competition

In this section we find repeated comments about publishing research based on RoboCup

is done, but it’s hard.

There were three other responses that were common to all Top 9 respondents (besides

podium positions in the competitions and research outputs): team members are easily

employed by big companies (like Google, Amazon, Microsoft, etc); many team members

embark and finish PhDs; and a few team members create startups related to robotics.

8.3.4.8 Experiences on Specific Situations

A common issue between the teams was to have a part of their system that only one

person had knowledge of or was an expert about. Solutions proposed included to pair

the expert with someone to teach. To create a simple code and documentation. But these

were reported as only helping. Ultimately someone motivated must make the effort to

take over. This last point related to the wish of having proactive team members.

When these teams were presented the question on how to get a team member up to

speed with their work, when they seem to be falling behind, the following comments

were given and shared between different answers:

• Give them tinier tasks.

• Team them up with someone more experienced.

• Some teams report that education comes first even when contribution to the team

is low. Other teams let the students that do not catch up drop out from the team.

When asked what the biggest challenge in RoboCup competitions was, the concept

repeated by most answers was integration of software.

8.4 Conclusions

The conclusions of this chapter are formed by the most significant insights from the

survey while taking into account the feedback from the workshop that shaped the

questions in the survey.

278



8.4. CONCLUSIONS

8.4.1 Significance

To quantify the significance of the insights of the survey the profile of the participants

is analyzed. 28 answers, 26 of those having completed every question in the survey,

may not be interpreted as a number that can represent the whole large community in

RoboCup. However, these participants of the survey have an average of 6.75 years of

experience, with up to 21 years of experience and an accumulated 189 years of experience

in RoboCup major leagues participation. Such an amount of experience makes their

opinions relevant.

Most of the participants come from the RoboCup@Home leagues, which does skew

some answers related to the technologies used, but there are participants also from

different Soccer leagues, Rescue leagues, Logistics and Work. This provides a wider

range of answers to better represent the community.

Furthermore, these participants represent teams that have succeeded in their respec-

tive competitions. The participants have reported 25 victories, 16 second place, 10 third

place and 6 fourth place in their competitions, in total. They also reported success in

other competitions.

As an extension of that last point, a specific analysis on the top 9 performing teams

by their reported success in their leagues was also done in subsection 8.3.4 with the aim

of extracting further insights from highly performing teams.

8.4.2 Proposed Guidelines

From the answers of the survey we create a set of guidelines with the aim to help new

teams that wish to participate in these RoboCup competitions. Alternatively, already

existing teams may use this information to find new approaches and hopefully improve

their participation.

Note that in the following chapter 9 guidelines from the action research cycles and

the guidelines that follow will be discussed together.

As the answers to some questions have shown previously, definitive answers are

hard (if not impossible) to find. Every team has a different background, exists in a

different context, and may have different goals. These goals may arise from individual

idiosyncrasies or the team, the laboratory or the university having different goals. Taking

this into account the following guidelines are to be taken as a piece of advice.

The following guidelines are written with a new team in mind. There is a constant

evolution in a team, so approaching all of them at the same time may not be possible,

279



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

neither may they be appropriate. Good judgement and trial and error are recommended

to find the best fit for each case.

• Find team members or advisors with experience in the RoboCup competition you

aim to participate in. Contacting successful teams and finding someone willing to

collaborate may be a good approach.

• The amount of team members and its composition depends on factors like the

availability of these and the goals of the team. But, to provide a guideline, the

average team had 8 team members with as little as 5 and as many as 20. Having a

distribution of students from PhD, Master and Undergrad, with sometimes some

Staff member is common. The average team composition had an almost even

distribution of student types, with a possible Staff member. On a continuing team,

knowledge tends to be passed on from PhD to Master to Undergrad, in that order.

Recruiting team members as early as from Undergrad allows the possibility of

having long lasting team members which benefits the team by their experience

and knowledge transfer.

• Be prepared to spend a considerable amount of time preparing for a RoboCup

competition. The results from this survey show that a team of 8 members in

average dedicate 20h/week (part-time) each for 7 months. Furthermore, the top 9

performing teams average 9 team members, part-time for 9 months.

• When recruiting team members the most valued reported skill is to find people

that are proactive. Their coding skills and interpersonal skills are also considered

very valuable. Many respondents also related motivation to proactivity. You may

want to keep that in mind when creating activities to gather interest in joining the

team.

• To recruit new team members the two most used approaches are via informative

meetings and via courses. Coursework may introduce skills and technologies that

are necessary for the competition and, from there, students may find interest in

joining a RoboCup team. When mentioning what incentives does participating in

RoboCup have, the most reported ones were improved future job prospects and the

ability to publish work done for RoboCup. Future job prospects improve by learning

useful knowledge and skills and well known companies appreciating the fact a

person has been involved in RoboCup. Futhermore, you may include coursework

projects as part of the participation in the team.

280



8.4. CONCLUSIONS

• For new team members to learn the basics needed, personal work and supervised

personal work are reported to be necessary. This may connect with the opinion of

preferring proactive people. Some teams report having courses in their university

that prepare them for this, even though they mainly report to teach ROS as they

consider it the only necessary requisite.

• Most teams report to meet once weekly for an average of 75 minutes. They also

report that, based on the current context, and, especially as the competition ap-

proaches, the meeting frequency and duration is altered towards more frequent

and longer meetings. Most teams report to aim to have all team members in every

meeting if they are available. These meetings are reported to include testing time,

code review or programming support, or, have these activities happen after the

meeting.

• If you happen to want to take reference of a standard Software Development

Methodology (SDM) for your development process, the top performing teams report

to take inspiration in the Agile family of SDMs, but not follow them strictly.

• It is a very common practice to keep a backlog of long term tasks and another

backlog of currently being worked on tasks. These tend to be stored in online

services like GitHub/GitLab issues or Trello while also keeping a physical one

(whiteboard or notebook).

• Holding retrospective meetings is considered very important.

• When thinking about what coding practices are more important, the preferences

and goals of the team must be taken into account first. After that, this survey

shows that code simplicity is very important. Afterwards, and in the order set by

the answer of the top 9 teams, continuous integration, naming conventions and

commenting code are considered important too. Add to that good documentation

and it’s clear that writing code to be read later on is important.

• When you decide what kind of testing to perform, the most important one is end-

to-end testing, understood as running full RoboCup competition tests. Performing

integration testing is considered the following most important kind of testing.

Afterwards, consider doing system testing, unit testing, ad-hoc testing, functional

testing and performance testing for your codebase.

281



CHAPTER 8. EXPERTS INSIGHTS AND VALIDATION

• Consider using pair programming in your team. It may be useful to help new team

members hop on board, to improve the work on specific RoboCup competition tests

and to fix hard problems.

• Create an architecture that takes into account the difficulties of software integra-

tion. This is considered the biggest challenge by the top performing teams.

• You may also want to take into account that creating software robust to real life

situations (with a lot of variability and uncertainty), and team management, are

considered other big challenges in RoboCup competitions.

• Participants report that funding is the main limiting factor when deciding how

many participants are able to be sent to the competition. Aim to find funding early

on and think over criteria to determine which team members will be preferred over

others in the case the situation arises.

• Aim to have a fully working version of your software at all times. You may want

to embrace automated approaches for this such as Continuous Integration and

Automated Testing.

• Research if there is a simulation available for your robot or competition and if it

fits your way of working. The survey showed that using a simulation helps because

robots are a limited resource and it may minimize their breakage.

• From a technological point of view, this survey reports most teams to be using the

ROS middleware to some extent. All top 9 teams used it too. This may relate to the

reported usage of the C++ and Python programming languages to develop their

codebase.

• Create an environment that fuels your motivations. Student experience, fun and

research outcomes have been mentioned as main motivations for other teams.

Furthermore, most teams reported finding themselves in the following situations and

acting on them in the following ways to improve the situation. Many approaches can be

taken at the same time, they are non exclusive, practice common sense.

• If you find yourself in the situation where a team member is not doing their part of

the work or they lack skills or knowledge to perform it, consider:

282



8.4. CONCLUSIONS

– First, talk about it. Face to face first, understand the situation. Depending

on your team, maybe talk about it openly with the team with a constructive

mindset. Aim to appeal to the team members interests.

– Provide simpler tasks to this team member.

– Team them up with a more experienced team member.

– If it comes to it, provide non-critical tasks. Work that is good to have.

• You want to avoid the situation where one single team member is the only one to

have the expertise of an important part of your system. However, if you do find

yourself in this situation, consider:

– Retrospectively, try to encourage and promote simple code, sharing knowledge

(presentations, workshops, tutorials) and documenting code (“documentation

day” events are practiced by some teams) during the development year.

– Pairing this team member with some other team member to learn is proposed.

– Find someone motivated with taking over and improving the system. This

has been reported to be effective by some teams.

283





C
H

A
P

T
E

R

9
CONCLUSIONS AND FUTURE WORK

In this chapter, we will unify the insights from chapters 5, 6 and 7 about UTS Un-

leashed!’s approach to RoboCup@Home Social Standard Platform League (SSPL) and

the insights from the experts’ feedback from chapter 8 into guidelines. Afterward, we

will discuss future work.

9.1 Conclusions

At this point, it becomes clear that the workshop and survey with experts were an

essential evidence-gathering tool to validate the insights from the previously presented

action research cycles.

The nature of success is beyond achieving a podium position in the competition.

Every team presumably aims to win. However, while the team works towards this goal,

other factors come into play. For example, the team members’ experience, which usually

consists of university students of different degrees, is an important factor during the

development of the competition. Most important, the competing students learn both

soft and hard skills, which will potentially become building blocks in their future life.

Furthermore, as reported in chapter 8, academic outcomes are also important in this

setting.

The previous chapters’ insights resulted in separate guidelines. Here we unify them

into a single set of guidelines structured in two sections: guidelines about team manage-

ment and guidelines about technical approaches.

285



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

These guidelines are to be read as friendly advice to improve a team and take

inspiration from. They represent the close experience of one team, UTS Unleashed!, and

the communal experience of a significant set of experts in the RoboCup domain.

These guidelines become answers to the research questions from chapter 1 in the

following manner:

• How does a new RoboCup team successfully develop an effective software system for
the RoboCup@Home Social Standard Platform League?

Before these guidelines were published, a new RoboCup team would be on their

own to successfully develop a software system of this kind. They could rely on

asking other teams, experts, or doing their own research and experiments.

Now, a new RoboCup team can consider the following guidelines and iterate over

applying the ones found relevant, increasing their chances of success in multiple

aspects, including an effective software system for RoboCup@Home SSPL, and

saving time.

• How does the approach of a single team relate to other teams?

The approach of a single team is tailored to its context. In this work, several

teams’ approach has been gathered and analyzed, alongside a close look into the

author’s team, showcasing a variety of approaches with similarities and differences

in between them. A set of guidelines decomposes these approaches into useful

elements to analyze and apply to improve a team or relate a team’s approach to

their context or other teams.

• What are common insights to improve the development process and its outcomes?

The common insights to improve the development process and its outcomes are not

universal. To overcome this fact, the insights from this work have been merged into

the following guidelines allowing the reader to use them as a starting point. From

there, the reader is encouraged to iterate over them to discover what is optimal in

their context.

In regards to the research objectives from chapter 1, these have been met in the

following manner:

• To identify the available practices from software development methodologies to
improve robotics competitions’ software development processes.

286



9.1. CONCLUSIONS

It is important to review what practices are available to not start from scratch

and to learn from them. By summarizing them here, readers can understand what

influenced this work.

The available methodologies and their practices were discussed in chapter 2, and

different elements of these were introduced during the three years of competition

as found in chapters 5, 6 and 7. Moreover, in chapter 8 the practices from other

teams were also identified.

• To design, evaluate, and iterate the software development methodology for the three
years of competition for our RoboCup@Home SSPL team.

Action Research was chosen as the research methodology in order to design, evalu-

ate and iterate over the team’s software development methodology. This was done

over the three years of participation in RoboCup@Home SSPL as can be seen in

chapters 5, 6 and 7.

• To gather insights from experts about the software development process for RoboCup.

The experience and knowledge from experts allowed to learn from them and to

compare their approaches in between them and our own. In order to do so, insights

from experts were gathered as seen in chapter 8.

• To analyze, discuss, and compare the software development methodology followed
by UTS Unleashed! to the approach from other experts.

To create guidelines that apply to multiple teams it is necessary to analyze in-

sights from numerous teams. Other experts’ software development methodologies

were compared to UTS Unleashed!’s in chapter 8, and is further discussed in the

following guidelines.

• To create a practical set of guidelines that improve the software development experi-
ence and outcomes for robotics competitions.

It is unlikely to find a solution that would fit every person and every team, e.g., to

create the perfect software development methodology. However, a set of guidelines

that highlight elements to analyze and experiment with can provide a common tool

for almost every reader. This practical set of guidelines to improve the software

development experience for robotics competitions, and its outcomes, is described in

the following sections.

The guidelines follow divided in sections as previously mentioned.

287



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1.1 Team Management

In chapters 5, 6 and 7 are the sections: team management processes; and team software

development processes. These sections are united here, as the line that separated them

becomes less clear when working on these guidelines.

9.1.1.1 Team Recruitment

Guidelines regarding team recruitment stem, for the most part, from the expert’s feed-

back, despite UTS Unleashed! having showcased engagement in some of the advice.

The most valued reported skill when recruiting team members is finding proactive

people. Their coding skills and interpersonal skills are also considered very valuable.

Many survey respondents also related motivation to proactivity. Therefore, these facts

may be taken into account when creating activities to awaken an interest in joining the

team.

The two most reported approaches to recruiting new team members are via infor-

mative meetings and via courses. Coursework may introduce skills and technologies

necessary for the competition and, from there, set the basis of interest for students to join

a RoboCup team. The incentives to participate in RoboCup reported by the survey partic-

ipants were: improved future job prospects, and the ability to publish the work done for

RoboCup. Moreover, future job prospects were reported to be improved by learning useful

knowledge and skills, and well-known companies appreciating the fact that a person was

involved in RoboCup. Furthermore, it may be beneficial to include coursework projects

as part of the participation in the team. In that way, team members could directly benefit

from involvement during their studies.

9.1.1.2 Expert Team Members

Remarkably, both the workshop and survey pointed out the importance of having at

least some team members with experience in the RoboCup competition they were taking

part in, particularly the team leader. The experience from the UTS Unleashed! team is

in agreement, since the lead developer had previously participated in RoboCup@Home

events.

Based on these results, new teams are advised to find team members or advisors with

experience in the RoboCup competition they aim to participate in. Alternatively, if no

one can directly be recruited, the right approach may be contacting successful teams and

establishing collaborations.

288



9.1. CONCLUSIONS

9.1.1.3 New Team Members Basic Skills

Personal work and supervised personal work are reported to be necessary for new

team members to learn the needed basics. This may be related to the proactive people

preference. Indeed, some teams report having courses in their university that prepare

them for this. Nevertheless, they mainly report teaching Robotics Operating System

(ROS), considering it the only necessary requisite.

9.1.1.4 Team Size and Composition

The number of team members and their composition depended on factors such as the

availability and the goals of the team.

Based on the survey’s data, the average team consisted of 8 members, while the

range spread from as few as five and as many as 20 members. The team’s academic

level distribution ranged almost evenly, including undergraduate, masters, and PhD.

Moreover, staff members were also common. In teams that continuously participate in

their competitions, knowledge was reported to be passed on between team members, in

PhD to masters to undergrad order. Finally, the recruitment of team members as early

as undergrad allows for long-lasting team members, which benefits the team with their

experience and knowledge transfer.

9.1.1.5 Standard Software Development Methodologies

Van Der Zant, Schomaker, Wiering, and Brink [79] explore the usage of Extreme Pro-

gramming and Gerndt, Schiering, and Lüssem [80] showcase Scrum in RoboCup settings,

both approaches showing promising results with their practice of popular standard

Software Development Methodologies (SDMs) stemming from the Agile manifesto [57].

The survey revealed that the top-performing teams take inspiration in the Agile

family of SDMs, but do not follow them strictly.

The lead developer of UTS Unleashed! investigated in 2018 which methodology, or

partial practices, would be a good fit for the team. Some practices were not possible to be

applied, such as daily stand-up meetings, as the team could not meet daily at the same

time. On the other hand, cycles of three weeks of sprints from the Scrum methodology

were tested with some team members, but they were unfruitful. Thus, we cannot provide

a definitive conclusion on which SDM to use. Every team may need to evaluate their

needs and preferences with regard to the application of these techniques. However, it

could be interpreted that the team practiced a lightweight version of sprint cycles, as

289



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

tasks were created as required, then prioritized taking into account time estimates. Team

meetings would then provide updates to the team as a whole on the state of these tasks.

Casual meetings between team members would happen continuously during working

days providing closer communication, testing and integration of components. Finally,

team meetings would also have demonstrations and a retrospective element, as the team

was open to talking about the processes that were used at any time. In conclusion, the

process was less rigidly structured than Scrum’s sprints, but the Agile philosophy behind

it existed.

Finally, it would be recommended that the reader analyze how the Agile manifesto

may apply to their team and software development structure, and experiment with their

own implementations of this philosophy to improve their processes and team building.

Furthermore, using UTS Unleashed!’s experience, the twelve principles behind the agile

manifesto can be reinterpreted as shown in Table 9.1 and Table 9.2.

290



9.1. CONCLUSIONS

Agile principle Application to the team

Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

The team itself acts as a customer and fre-
quent end-to-end testing is practiced.

Welcome changing requirements, even
late in development. Agile processes
harness change for the customer’s com-
petitive advantage.

As new insights and systems appear, the
team embraces them as soon as possible.

Deliver working software frequently,
from a couple of weeks to a couple
of months, with a preference to the
shorter timescale.

Demonstrate the state of the software fre-
quently, for example, via ORTs or demon-
strations in meetings.

Business people and developers must
work together daily throughout the
project.

Every team member acts with the role of
requesting features and developing them.

Build projects around motivated indi-
viduals. Give them the environment
and support they need, and trust them
to get the job done.

Encourage and trust motivated team mem-
bers, support them while giving them free-
dom.

The most efficient and effective method
of conveying information to and within
a development team is face-to-face con-
versation.

Encourage teamwork, propose a day to work
in the lab, create events that engage the
team to work together.

Table 9.1: Interpretation of the Agile Manifesto by UTS Unleashed!’s lead developer, part
one.

291



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Agile principle Application to the team

Working software is the primary mea-
sure of progress.

The robot’s software must always work. En-
sure it by any means, e.g., snapshots of the
robot’s system or tagged versions.

Agile processes promote sustainable de-
velopment. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

Allow team members to work at their own
pace, however, the last weeks of develop-
ment before the competition are known to
carry an additional workload, prepare for it.

Continuous attention to technical excel-
lence and good design enhances agility.

Embrace coding best practices as much as
possible while keeping the team comfortable
in their own way of working.

Simplicity -the art of maximizing the
amount of work not done- is essential.

Keep your systems and code as simple as
possible.

The best architectures, require-
ments, and designs emerge from
self-organizing teams.

Teamwork and experience provides the best
results.

At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior accord-
ingly.

Reflect often on how the team is working
and aim to improve the processes, tools, and
ideas continuously.

Table 9.2: Interpretation of the Agile Manifesto by UTS Unleashed!’s lead developer, part
two.

9.1.1.6 Meetings

Most teams report meeting once weekly for an average of 75 minutes. They also say

that, based on the current context, and, especially as the competition approaches, the

meeting frequency and duration is altered towards more frequent and more prolonged

meetings. Most teams report to aim to have all team members in every meeting if

they are available. These meetings are reported to include testing time, code review, or

programming support, or having these activities happen after the meeting.

292



9.1. CONCLUSIONS

UTS Unleashed! did not follow this structure as it followed a fortnightly meeting

structure for the first months of the project every year, but by the end, it would also meet

weekly. These meetings tended to be longer, but they also included testing time.

The survey brought up the fact that holding retrospective meetings is considered

very important. UTS Unleashed! held them after the participation in the competition

and, from them, created retrospective documents to aid future work.

9.1.1.7 Keeping Track of Work

Keep a backlog of long term tasks and another backlog of currently being worked on

tasks. Teams tend to store them in online services like GitHub/GitLab issues or Trello,

while also keeping a physical one (whiteboard or notebook).

UTS Unleashed! used Trello during the first months of the project every year, and

used a physical backlog on a whiteboard as the competition drew closer. UTS Unleashed!

also used a whiteboard on the competition days.

9.1.1.8 Teamwork

Larson and LaFasto [113] discuss a set of 8 characteristics of highly effective teams:

• A clear, elevating goal

• A results-driven structure

• Competent team members

• Unified commitment

• A collaborative climate

• Standards of excellence

• External support and recognition

• Principled leadership

A relevant quote from that work, “From this list is evident that effective teamwork

has a strong relationship with motivation” matches responses found in the survey in

chapter 8 and the experience of the lead developer in the UTS Unleashed! team. This

makes the concepts of motivation and proactivity stand as candidates for further research.

293



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Furthermore, Asproni [114] explains how, in the context of software development teams,

the Agile SDMs showcase these characteristics that make effective teamwork possible.

When thinking retrospectively over the three-year journey of UTS Unleashed!, these

characteristics can be interpreted to be present at different points in time. Setting aside

the clear and common goal of winning in a competition that can be considered shared by

all teams, UTS Unleashed! showed in the action research cycles multiple occurrences of

a collaborative climate and unified commitment when the team had some kind of crisis.

Furthermore, responses from the survey from other expert teams manifested some of

these characteristics explicitly with varying degrees of implication. For example, some

teams explicitly reported investment in testing, coding standards, documentation, and

other techniques that map to excellence standards.

A higher-level look can be taken over the first-hand experience of UTS Unleashed!

where the processes and practices were continually adapting to the changing context

that the team was in, and in the results from the survey where no agreement on a single

way of approaching the software development process was found.

Finally, we argue that these characteristics become a set of concepts to use as guide-

lines to improve teamwork.

9.1.1.9 Workload

All teams must be ready to spend a considerable amount of time preparing for a RoboCup

competition. This survey’s results show that a team of eight members, on average, dedi-

cate 20h/week (part-time) each for seven months. Furthermore, the top nine performing

teams averaged nine team members, part-time for nine months.

9.1.2 Technical Approaches

The technical approaches are presented here. They do not engage in particular imple-

mentations of robot systems, but aim to provide advice on the software development

process itself.

9.1.2.1 Testing

The survey’s data revealed that the most critical kind of testing is end-to-end, understood

as running full RoboCup competition tests. This fits with UTS Unleashed!’s experience

where ORTs had an integral role in the progress of the project.

294



9.1. CONCLUSIONS

In subsubsection 6.4.1.2 how the UTS Unleashed! ORTs were held was explained in

detail. These became one of the most valuable forms of advice, as they had an integral role

in the progress of the project. Holding ORTs, as detailed in the retrospective documents,

was reported as most influential in pushing progress in the maturity of the team’s

systems, and in the scoring for the competition. Additionally, it mentally prepared team

members for the competition conditions.

The event itself was very intense, and could become very stressful for some team

members. These were considered to be realistic training for the real competition. Care

must be taken to warn team members of this phenomena, and managers must be ready

to address any kind of issues that may arise from this on the team members. If any team

member becomes distressed, it is essential to help this team member and be empathetic

with them, as it is a natural reaction. Taking time to calm them down and talk about

the issue to prevent it in the future is recommended. However, every person may benefit

from a potentially different and personalized approach.

During these events, other external factors arise or are sometimes artificially encour-

aged. Examples follow:

• Team members not being available, so others must be ready to act in their place.

• Network outages, both local network or internet access.

• Artificial noise added to the environment.

• Artificial illumination changes.

• Variety of operators affecting different factors. For example, for Automatic Speech

Recognition (ASR) naïve users and people with different accents and cultural

backgrounds may provide new challenges. For perception, people dressed in the

same way, people wearing items different from the ones usually tested in the lab

(hats, sunglasses, scarfs, jackets) or objects with interesting shapes or colors.

• Unique arena elements. Furniture with different materials (reflective materials

tend to be hard for robots), carpets, chairs with different kinds of leg configurations,

mirrors, etc.

It is to note that strict and full ORTs could not be run until late in the project.

Meanwhile, adjustments were made to benefit as much as possible from the events. For

example, partial scores would be created, bypassing of not yet implemented systems

295



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

would be allowed, instead of a single run of each test, multiple runs would be allowed as

time permitted, etc.

The survey results showed the order in which the other types of testing were ranked.

Integration testing won over the following items by a noticeable difference. UTS Un-

leashed! coincides as they also suffered from integration issues. Examples of integration

problems were: unmatching interfaces between systems, different interface assumptions

between systems, like expecting different coordinate formats, or partially implemented

features.

System testing is considered the following next most important one, although it is of

similar importance to integration testing and probably only one step behind end-to-end

testing. UTS Unleashed! found system testing necessary, especially on the robustness of

booting up the robot reliably with the team’s software.

Unit testing follows in importance. Some teams in the survey reported making heavy

use of unit testing. UTS Unleashed! found lesser adoption of unit testing, and it was

mostly encouraged on a just a few packages that other team members used to build upon,

or in packages that suffered regressions1 often.

The next type of testing was ad-hoc testing. Somehow this kind of testing is inherent

in any kind of development, as while writing code, it is expected that that code is tested

incrementally. It was the most used kind of testing in UTS Unleashed! as team members

would do it without even realizing it.

Functional testing is the next type of testing by the ranking in the survey. UTS

Unleashed! did not engage in this kind of testing.

Finally, performance testing was the last major type of testing from the ranking.

Performance testing is especially crucial on robot platforms with low computational

power. UTS Unleashed! engaged in this kind of testing on systems that needed to run

continuously, like autonomous navigation, or when noticeable delays due to computation

times created issues. For example, people perception tasks taking too long to be able to

finish the test in time.

9.1.2.2 Coding Practices

Students from degrees in computer science or information technology may be familiar

with the wide variety of coding practices considered the current standard in software

engineering. This is not the case for other fields. Both in the workshop and the survey, it

was reported that there were students who were completely unfamiliar with standard
1Software regression can be understood as a bug that breaks a previously working function.

296



9.1. CONCLUSIONS

coding practices. A team entirely composed of mechanical engineers provided themselves

as an example in the workshop discussed in chapter 8.

Following standard coding practices is believed to help improve the quality of software

and facilitate its development and maintenance [115]. But they come at a cost. Time and

effort must be put towards learning and following them.

From the answers of the top nine teams in the survey in chapter 8, a ranked set of

coding practices was developed, which can be used as a guideline on what to promote in

a team.

Code simplicity was the most valued coding practice. UTS Unleashed! experienced

multiple times during the project how code simplicity made a huge difference in avoiding

bugs and embracing others’ code. As an example, when a simple interface to use the

robot’s tablet was created, the team members embraced it and improved their develop-

ment experience by being able to debug on the robot’s tablet. The same interface improved

the user experience for the operators of the robot and provided UTS Unleashed! with the

best Human Robot Interface award in 2017. Code simplicity was encouraged often, and

team members were reminded to comment the code when there was a legitimate reason

for complex code.

Continuous integration, naming conventions, and commenting code were ranked very

closely together as the following most important practices. These three practices share a

fact popularly quoted from Robert C. Martin: “Indeed, the ratio of time spent reading

versus writing is well over 10 to 1. We are constantly reading old code as part of the

effort to write new code. ...[Therefore,] making it easy to read makes it easier to write.”

[116].

UTS Unleashed! did not embrace continuous integration over the whole codebase.

Only selected packages had it set up. They were maintained by team members with a

solid background in software engineering, with interest in unit testing and automatically

building these packages. The more experienced team members would help set it up in

repositories for other team members that they believed would benefit from it. Naming

conventions were followed and felt like an improvement in the last year of preparation,

when the team moved away from creative names for packages to concise and straightfor-

ward names. Commenting code was encouraged from the start of the project in parallel

with keeping the code simple.

297



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1.2.3 State of the Art Software

The RoboCup competitions help push state of the art in many fields. To stay competitive,

a team must be able to reference and use novel advances in a wide range of areas. This

is also a consequence of working in the robotics field where the integration of many

technologies fuels innovation.

There is a rising trend in publishing reference implementations about scientific publi-

cations. This is commonly seen in different areas of robotics. For example, convolutional

neural networks are widely used in works like OpenPose [111], which is at the same time

commonly used in RoboCup@Home to guide human detections and interactions. Refer-

ence implementations allow researchers and engineers to quickly test other’s concepts

for their own use case.

In UTS Unleashed! providing access to the ROS framework was deemed by its lead

developer as a priority. ROS provides access to a vast number of reference implementa-

tions in fields like autonomous navigation, perception, and manipulation. Furthermore,

the Theano [99] library was also made available to allow deep neural network approaches

to be used. To build and run these tools, considerable effort was needed, but it paid off

when looking at the big picture as they were the building blocks for the team’s systems.

A large number of responses from the survey, all top nine performing teams included,

reported using ROS. This middleware presents many features that make it attractive for

some RoboCup competitions.

This is to say that in the time this dissertation is written, ROS is the de facto standard

for using and writing robotics software. And new and existing teams should look at what

is available and the platform’s evolution. But for the future, it is well worth exploring

what frameworks and libraries are widely used in the field and analyzing if they fit the

team’s vision. Some teams develop their own frameworks while also taking inspiration

from existing ones.

9.2 Future Work

The direction of the research performed on the UTS Unleashed! team is unique to

the context of this specific team. Having a researcher join another, or even multiple

teams during their development process, would allow accounting for different cultural

backgrounds and team profiles. By investigating how others work, the various nuances

of this process can be better understood and improved.

298



9.2. FUTURE WORK

From the point of view of just UTS Unleashed!, if they were to participate again in

RoboCup@Home SSPL, further research regarding proactivity and motivation would be

of interest. Working on defining the factors and practices that were the most influential

in building teamwork, is closely related. Also, the recruitment and teaching approaches

by the team could be improved. Every year, new team members reported difficulties in

getting up to speed and able to contribute to the team.

For technical approaches, the last retrospective document showed in the “What did

not work well?” section minor problems compared to the items found in previous years.

Having a robust codebase allowed significant risks to be taken, as a backup would exist.

This would seem to be a feature to take advantage of, especially if a team member wanted

to take responsibility for a completely new approach in any of the systems.

Improving research outcomes would be the most commonly referenced concept in the

survey. A closer look into the approaches of teams that report a more substantial amount

of publications would be beneficial, probably in the shape of private interviews. They

allow a directed conversation that can potentially provide a more in-depth understanding

than a survey to uncover complexity evidence.

In general, a survey officially distributed by and to the RoboCup community, would

probably provide higher engagement, which could allow for more fine-grained results. For

example, results separated by the different RoboCup leagues that identify approaches

that may be more suited to the specific goals of, for example, the @Soccer league rather

than the @Home league. A further step could be taken to gain insights meaningful to

every league, by allowing the community beforehand to collect questions of interest

regarding the development process.

299





A
P

P
E

N
D

I
X

A
ACRONYMS

API Application Programming Interface

AR Action Research

ASR Automatic Speech Recognition

CI Continuous Integration

CPU Central Processing Unit

CSV Comma Separated Values

DHCP Dynamic Host Configuration Protocol

DSPL Domestic Standard Platform League

EEGPSR Enhanced Extended General Purpose
Service Robot (GPSR)

GPSR General Purpose Service Robot

GPU Graphical Processing Unit

GT Grounded Theory

HRI Human Robot Interaction

JSON JavaScript Object Notation

NLP Natural Language Processing

OPL Open Platform League

ORT Operational Readiness Test

RAD Rapid Application Development

RGBD Red Green Blue + Depth

RGB Red Green Blue

ROS Robotics Operating System

SDM Software Development Methodology

SLAM Simultaneous Localization And
Mapping

SMACH State MACHine library

SPR Speech and Person Recognition

SQL Structured Query Language

SSL Sound Source Localization

SSPL Social Standard Platform League

STT Speech To Text

TTS Text To Speech

UTS University of Technology Sydney

YAML Yet Another Markup Language

301





A
P

P
E

N
D

I
X

B
TEAM RETROSPECTIVES

This appendix contains the original retrospective documents created after every edition of the RoboCup@Home
SSPL competition. The team members wrote individually in a collaborative document their opinions on
how the development year and the competition itself went, including the positive facts, negative facts and
what to improve for the next edition. These documents were completed during the month following the
competition participation and they may present conflicting opinions from different team members, which
have been anonymized.

B.1 Retrospective 2017

B.1.1 What worked well?
• Having several dry-runs, practice runs, and Operational Readiness Tests.

– Focusing on the points in the first stage tests.

• Team Collaboration at venue.

– Quote: “We worked pretty well during the competition. Though we had lots of hard coding for
the tests, I think we enjoyed the spirit of hackathon. We learned and shared with each other.”

• GitLab as collaborative coding platform.

• On-site technology.

– Plenty of Australian power ports.

– Renting two robots (rather than just one).

– We used the local GitLab to synchronize source code whenever internet access was unavail-
able.

– We used the backup router to provide DHCP during an emergency. There was no inadvertent
WiFi activation.

• Planner (a planning interface with tablet feedback developed for the GPSR test)

303



APPENDIX B. TEAM RETROSPECTIVES

– Onscreen feedback was very helpful for debugging.

– Adding additional tasks (or new skills) to a program that used the GPSR planner was fast
and reliable.

– Expressing a test step as a discrete task made it easy to test that step only.

• QiMate (a shim layer to ease usage of the Qi APIs).

• Tablet Interface (especially when WiFi was unavailable)

– Starting and stopping tests from the screen worked great.

– Feedback about robot inputs and plans.

– Buttons to skip around within test.

• Human clothing analysis (although we did not get to prove it)

• Social presence and impact on English-speaking audience.

– Quote: “ANONYMOUS was fantastic at giving presentations.”

B.1.2 What did not work well?
• Long hours at venue: Team members were "on duty" even when not working. By the finals, everyone

was too exhausted to be effective at simple tasks.

• Hotel did not have a gym or pool.

• Writing presentations at the last minute.

• Not having a plan for the second stage tests or finals.

– Quote: “We didn’t pay enough attention to things that are fundamental for all tests, such as
localisation, navigation and mapping, which could help us get more points.”

• Too much focus on mechanical tasks over social functions. That is not the ideal use of pepper.

• Starting new projects.

– Dependencies were not coordinated. Git Submodules did not work well.

– No project template or best practices.

– Basic sequencing of actions took repeated effort.

• Developing without the robot.

• Complicated software frameworks.

– Hard to make small changes to cocktail-party or help-me-carry without fully understanding
a large number of single-use abstractions. Hard to test parts without re-running the entire
scene.

– Metaprogramming in SPR and GPSR made it hard to detect type errors at compile time.

– Quote: “Our code quality is not good from the beginning and we didn’t do any code review to
rectify this issue.”

• Feedback for partial speech recognition.

– In noisy arena conditions, speech recognition would fail very often, and we could not trou-
bleshoot or fall back to a partial understanding.

304



B.1. RETROSPECTIVE 2017

• Fully offline operation.

– Speech recognition would sometimes make calls to cloud services, causing timeouts or failures.

– Many startup scripts expected a Dynamic Host Configuration Protocol (DHCP) address from
an external router.

• Hard to tell what is currently running on the robot.

• Hard to stop a task without killing its entire process.

• Reliability of robot hardware.

• Robot Mobility.

– Navigation.

* Localization.

* Mapping.

* Landmark detection.

• Object Detection and Recognition (we did not even try).

• Autonomous life was all-or-nothing. Would like partial or situational capability.

• Confusion regarding privacy of the team internal projects around the competition.

B.1.3 What should we do next?
The retrospective document had a third question about the next steps:

• Coordinate packages and dependencies

– We should be able to install a library on the system and let any program import it without
additional work.

* When a package depends on some service, it should support the user in troubleshooting
that service.

* CI should test libraries automatically and deploy with single button.

* A robot skill developer should be able to easily publish their skill as a package with a
standard start and stop interface.

• Standardize development environment

– Mock interfaces to missing hardware

* VM or container with base OS, able to update libraries automatically - File sync between
VMs and hosts (need to compile kernel extension)

* Document how to start a new project

* Run development training sessions

• Maintain components that work well

– Planner: reliably stop tasks and skip ahead or repeat, use standard formats and dynamic
planning theory

* Launcher: edit menu options without needing to restart

* Topfile patterns: would like to generalize this

• Extract value from components that did not work well

305



APPENDIX B. TEAM RETROSPECTIVES

• Rethink our approach to robot mobility

– Quote: “I’d like to see more ‘reactive’ robots – robots that are always moving rather than
getting stuck trying to navigate around imagined obstacles.”

• Focus on Repeatability and Analytics

– Use CI to ensure we have a record of everything that gets installed

– Store ROS data so that we can test new code in old situations

– Record user interaction events and timing

• Use external processing (with fallback if WiFi fails)

• Work to the purpose of the robot (social not mechanical)

• Make general project plan for entire year

– Prioritize robot skill development early

– Start something for every robocup test before competition begins

– More operational readiness tests

* Don’t need to be offsite.

* Do need to simulate complete network failure.

* Need to include forced absences.

– Prepare presentation material in advance. Use in-lab publicity events as rehearsal for open
challenge.

• Bring Australian presents to give away. (Another team gifted local sweets at the end of the
competition and it was great).

B.2 Retrospective 2018

B.2.1 What worked well?
• Everything ran

• Package management and CI is good

• Magic speech

• Pepper skills

• Time saved by passing robot inspection quickly

• Package management worked well

• Continuous Integration helped

• Sprints and feature delegation

• Final week visualisation of test progress / status

• Real world testing

• Working together to test with the robot for Tour Guide outside the lab

• Source control and package management (and DNS?)

• Everyone shared responsibility (and the coolest T-Shirt Banana)

306



B.2. RETROSPECTIVE 2018

• Having access to multiple powerful computers (Alien laptops)

• Packaging and CI

• Seeing so many in the lab so often at all sorts of times

• Speech recognition worked very well

• Simple HRI interface with simple APIs

• More people in the team and more divided tasks that were easier to manage

• Enthusiastic and talented interns that were well used

• Pairing on work

• Building up from a proof of concept and iterating

• The team worked together pretty well

• Question and answer system

• The tablet animation is good

• In the last few weeks the team was quite efficient, but we can’t leave everything to the last minute

• Working directly with different team members

• Team cohesion and collaborative decision making

• ORTs

– Operation tests

– Well structured ORTs

– Frequent ORTs

• The hospitality and sportsmanship

• Tim Tams and Koalas as gifts at end of competition

• Offline capability

– Programs that were WIFI network independent (entirely onboard)

– Offline-first strategy

• Trello in early weeks / months

• Rigorous testing paid off

• Deployment: Base Gentoo Pepperfix OS + pip installing + simple extracting a .tar.gz

• Start with simple and modular approaches for problems that "do the job" even not very good, and
evolve into refined versions

307



APPENDIX B. TEAM RETROSPECTIVES

B.2.2 What did not work well?
• HRI:

– Need better HRI to guide user in tests

– HRI Style Guide violations

– Focus on HRI - establish early-on instead of post-hoc

• Navigation:

– Navigation gets lost too easily

– Navigation

– Navigation didn’t work well enough

• Strategy and Decision Making:

– Reduce duplication by improving feedback of: what’s needed; what’s working

– We need a global to do list in priority order

– Not enough experimentation with different ideas

– Finals was too last minute

– No overall team vision - disconnected projects and not prioritising well

– Going ahead with too-personal choices in disagreement with the team vision and objective

– Skills repo and state machine did not feel like the right abstraction

– The Planner didn’t work as expected

– Planning language was not used for tests

• Communication:

– Communication of people needing help occurred too late or not at all

– GPSR problems - lack of teamwork; lack of communication; difficult resolution

– Lack of communication and "transparency" about developed code within team

• Software development process:

– Need a process to work through team issues

– Lack of visibility on tests / issues until final week

– Management of team numbers and expertise

– Need to meet to discuss skill / test progress more regularly

– Too much rigidity on software design and unit test preventing fast coding

– Last minute developments

– Multiple Docker images

– Sometimes felt unsure how I could help / be involved

• Testing:

– Lack of iterative design for tests / testing

– Tests could only be run by the person in charge, limiting testing

– Hard to test features independently of each other

308



B.2. RETROSPECTIVE 2018

– Test environment eg lighting, noise affected performance

– Need more testing in different environments

• Training:

– Lack of shared knowledge on tools and available stuff

– Skill re-useability

– Centralised shared code strategy (skills) too difficult?

– Lack of ROS knowledge to improve development loop on tasks involving sensory data and
2d-3d information

• Others that don’t seem to fit an above category:

– Marketing roadmap

– Dynamic skill states

– Network: channel selection; router limiting speed; Jetson pack if needed; stand-by robots

– Loss of Sam’s time

– Mixed package approach ROS/Python, manual work involved, error prone

• Things that puzzled me

– Lack of analytics (eg robot tells the same joke twice etc)

– How to avoid discrimination or bullying

– Preparation for travel and competition

– How to be confident that a feature is reliable

B.2.3 What should we do next?
• Navigation stack:

– Localization:

* "Solve" localization - get it running fast and flawlessly

* Add visual odometry

* Automate parameter tuning

* Create a method to know how lost we are, and if we are, use HRI to relocalize

– Mapping:

* Take advantage of 3D information to map

* Automate parameter tuning

* Add virtual obstacles

– Navigation:

* Migrate to use move_base_flex

* Optimize (or make our own) controller

* Make our own navigation state machine

* Make our own local planner

* Make our own global planner (waypoint based)

* Make our own recovery behaviours

309



APPENDIX B. TEAM RETROSPECTIVES

– Miscellaneous:

* Have a emergency stop, holding the head maybe, also the hatch of the Robot base

* Recover motorbike mode

* On tablet debugging, map, plans, sensors, costmaps... with HRI buttons popping when
things go wrong (I’m lost, can you click where I am in the map image?, I’m stuck, see
what’s I’m seeing, is it a hallucination so I should ignore it?)

• Object recognition stack:

– Implement efficient scanning, hybrid with navigation probably

– Implement a "bounding boxes of interest" approach (to ease exchange of recognition packages)

– Calibrate cameras

– Check if stereo is possible for shorter distances if there is any overlapping in pepper cameras

– Test object recognition approaches

– Use the depth camera as much as possible to ease the task

• Manipulation:

– Just general work on this direction needs to be done if we want to grasp something, push
stuff...

• Speech recognition:

– Test CMU Sphinx

– Reduce the time it takes for speech recognition to begin listening

– Stream compressed audio by WiFi (using UDP for smaller packets?) to our cloud server, and
have that server forward it on to Google and find an optimal parse, etc. This lets us control
the audio-upload more carefully.

• Speech generation:

– Precompute speech synthesis and then just play back the files

• Following stack:

– Better use of head & body pose to keep track of person

– Create a cheap depth based tracker and rgb based tracker to aid tracking

– Add safety (tied to better controller in navigation)

• Human perception:

– Add our own face detection + recognition + tracking (naoqi one is very resource consuming
and has side effects)

– Streamline gender detection

– Add our own age detector

– Add our own "human description" detector (glasses? Clothes? Hat?)

• Tablet interface:

– Discuss an API supporting more flexible showing of stuff from Python (e.g. show a red circle
at x.y moving at speed x.y.theta of size, reducing its size at a rate of 10%... update item id
35784 text to ’bla’, update item is 46864 to jpeg image IMG). Also discuss general API keeping
powerfulness of the interface but also offering simple way of using it.

310



B.3. RETROSPECTIVE 2019

– Streamline buttons to start tasks... or maybe just have an “admin” interface with diagnostics
(Swype right, get all the admin stuff, Swype left have the nice HRI interface)

• General:

– Learn the easiest way of optimizing slow Python code (cython? Boost Python?)

– Move to python 3

– Wrap all "hard" ROS stuff in a nicer way of using it (dealing with images, dynamic parameters,
transform poses, debug 3D stuff on rviz)

– Creating simple APIs for core functionality with no dependencies on Naoqi/ROS, and then
having integration layers

B.3 Retrospective 2019

B.3.1 What worked well?
• Teamwork in the competition was amazing

• Having lunch on the ORT days helped bring people together

• Regular ORTs with realistic point scoring

• The lab set up to be "more difficult" than the real arena (e.g., shiny chairs, difficult tables)

• OpenPose usage for the tests, great results

• magic_ros external computing

• Re-using tablet interface from last year

• Pair programming to work on tests

• Pair programming to share knowledge of specific functionalities

• Last-minute hacking gave amazing results

• RTAB-Map mapping & localization (excellent in Restaurant test)

• Great robustness in tests, especially Stage I

• Operational Readiness Tests as backbone to evaluate and advance our development

• Speech recognition performed amazingly including open grammars

• Booking a hotel nearby seemed to be good

• Having a working space ready for coding (i.e., the magic lab) after the arena closes, to finish
incomplete work

• We had the main packages at what seemed to be the right level of granularity: navigation, listen,
speak, tablet

• Using face vectors to remember people was really effective and surprisingly reliable

• YOLO seemed to work well, especially with the external compute device (though, in future I’d like
to see even more alternatives explored)

311



APPENDIX B. TEAM RETROSPECTIVES

B.3.2 What did not work well?
• HRI:

– Every test had its own code for engaging with the user

– Every test had different behaviours when people approached the robot

• Navigation:

– Navigate with the long and narrow black table around (it was invisible to Pepper sensors)

– This was one of the most crucial aspects of the system yet we left it too late. We should have
devoted lots of our efforts to navigation until it was "solved" before working on the rest of the
system

– Navigate to fixed coordinates inconsistent

– RTAB-Map reduces the navigation speed

– Although navigation is a core module, late changes extremely affected challenges’ logic

– Lack of (graphical) tools to check hard-coded map coordinates

• Perception:

– Training the full object recognition dataset was very narrow in time, too stressful

– Image processing for the training dataset is extremely crucial but it had been left until days
close to the competition

– Didn’t have tools to evaluate network models

– Object recognition was too sensitive to background/context

– We didn’t try anything other than YOLO for object recognition

• Strategy and decision making:

– A period lacking leadership almost froze development

– We didn’t resolve the different working styles: some people preferred larger chunks of work
that they focus on, while others preferred shorter jobs with faster feedback; but we didn’t
find a way to help both kinds of people to collaborate with each other well

– New members lacked knowledge transferral about how RoboCup works from previous years

• Communication:

– Sharing in-depth knowledge of specific systems was not achieved (Navigation & Building SW
for Pepper at least)

– Not much effort to define interfaces/boundaries before projects began: the architecture evolved
from a bottom-up process without much top-down vision for how the system will work

– ORT days were a good way to collaborate and communicate, but it was also very hard to make
progress because there was too much noise from all the communication and collaboration

– Some official releases from core modules were not informed to all team members

– Language barrier with some teammates slowed down communication

• Software development process:

– Some team members needed more guidance to advance their work for various reasons, wasted
potential when they weren’t given that guidance!

– A lot of time spent on subsystems that didn’t have a direct line to scoring points

312



B.3. RETROSPECTIVE 2019

– Didn’t have streamlined tools to synchronise robot external and internal environments
(deployment of code meanwhile developing)

– Lack of documentation and/ or guiding on implementation of tests from previous years made
them hard to re-use

– Stage-2 tests started too late affecting their robustness

• Testing:

– Very few unit tests. Quite some time could have been saved by having them in some modules

– Nothing set up to make unit testing easy

• Training:

– Not everyone was trained & used parts of what we built for re-use

– We wanted to build up skills in different areas, but because we lost time everyone fell back
into the same areas they were comfortable with

– Lack of enough documentation/guidance on pre-existing systems for some team members

• Architecture:

– ROS added a lot of complexity and increased the barriers to entry, setting us back probably 4
months:

* I don’t think it we got much return (in terms of time or productivity) on this added
complexity in any area except for navigation

* Perhaps we could have got the same benefits by just porting RTAB-Map to use Qi
framework

* ROS isn’t really cloud-friendly, so it was probably detrimental to magic_listen (I never
did end up setting up the transcribe node to run in the cloud)

* CI processes and apt install didn’t work well for ROS

– User awareness/engagement was a mess: every test handled making eye-contact or engaging
with the operator in a different way (need to create magic_awareness)

– Image related libraries located in different locations made their usage harder than necessary

• Others that don’t seem to fit an above category:

– Mixed deployment system of Python pip packages and ROS packages was sometimes confus-
ing to know where things came from

– Many Stage II tests involved elements of research combined with elements of implementation.
The research aspects were not challenged/tested early enough or regularly enough (e.g.,
perhaps this didn’t suit the ORT approach and might have benefited more from research
discussions until an implementation strategy could be decided)

– Setting up the external computing device at the competition venue was high-stress and risky
(even though we had practiced it many times, and we didn’t make a mistake, it would have
been really nice to have had a robust system that we know just works - perhaps using liveness
or health check messages that cause systems to start/restart if needed)

– I (anonymised) believe that we should never leave early (or go to bed) the day before a test, if
the test is not ready. We should not have gone home early the night before the finals until we
had tested a first version of the working finals test.

– Testing restaurant in a nearby cafe during robocup before the real test caused a political
issue

313



APPENDIX B. TEAM RETROSPECTIVES

– Some of the packages couldn’t be installed with magic install even when the document
suggested to use it.

– There were interesting things happening in relation to sleep: the decision to stay up late was
a trade-off between wanting to show commitment to the team, versus needing to get personal
sleep, versus being sufficiently well rested for upcoming challenges. For new team members
unfamiliar with the fatigue, they did not manage their energy well... getting too fatigued too
early to be "helpful" in the early days, to the detriment of their performance in their later
test.

B.3.3 What should we do next?
This was the last year of participation so this section was not completed. It would have been interesting,
but unfortunately (even thought the question existed in the document) there is no information available
coming from all the team members.

314



A
P

P
E

N
D

I
X

C
DATA ANALYSIS EXAMPLE

This appendix contains an example of how the data analysis was performed in chapter 8. The same
technique was used in other parts of this thesis like the analysis of the available data from the workshop
and the data from the git and Trello platforms. This example showcases the usage of Grounded Theory.

C.1 Question Q6.2-6.3
Question Q6.2 stated “Please order these concepts by importance to address them for the success of your
team in the competition.” with the options: “Naming conventions, Commenting code, Code simplicity, Code
portability, Unit testing, Continuous integration, Pair programming, Shared code ownership”. The following
question Q6.3 was a text field for participants to optionally provide further explanations.

C.1.1 Question’s Background
First we need to understand where this question came from. During the three years of preparation and
participation in RoboCup@Home SSPL the lead developer had the intention of creating code with high
quality standards while at the same time attending to the needs and preferences of the team members in
regards to their development styles. This situation showed to be challenging because code quality concepts
needed to be learned and that implied effort and time, just like the tasks the team members were working
on already. For example, when requesting to implement unit tests to a team member for a piece of software,
the lead developer was engaging in a trade off between a team member implementing more functionalities
or testing a system (manually) further. At the same time, this team member would need to decide if to
comment pieces of code or write documentation. The question initially asked to score as “Not important”,
“Slightly important”, “Moderately important”, “Very important’’ or “Extremely important” every one of the
options. A trial of this format revealed that it did not provide useful information as respondents simply
marked almost every option as “Extremely important”. Moreover, in this format the trade off between
concepts was not represented.

Furthermore, in the workshop presented in chapter 8, participants manifested they also found trade
offs between concepts that, initially, may not seem comparable. After discussing this topic with key team
members and iterating over how to present the question and what concepts to include, it took the form
seen in the analysis.

315



APPENDIX C. DATA ANALYSIS EXAMPLE

C.1.2 Raw Data
An excerpt from the raw data, blurred to ensure anonymity, from the survey for Q6.2-Q6.3 is shown in the
following landscape page.

316



C
.1.

Q
U

E
S

T
IO

N
Q

6.2-6.3

317



APPENDIX C. DATA ANALYSIS EXAMPLE

C.1.3 Analyzing Q6.2 Raw Data
The following landscape page shows how the raw data was used to find insights by sorting from most
important to least important concepts. Different weightings can be observed with the aim of not missing
possible interpretations.

318



Naming 
conventions

Commenting 
code Code simplicity Code portability Unit testing

Continuous 
integration

Pair 
programming

Shared code 
ownership

Amount of #1: Amount of #1: Amount of #1: Amount of #1: Amount of #1: Amount of #1: Amount of #1: Amount of #1:

2 3 10 3 1 2 1 4

Amount of last: Amount of last: Amount of last: Amount of last: Amount of last: Amount of last: Amount of last: Amount of last:

1 1 0 1 3 2 6 11

Score (lower better): Score (lower better): Score (lower better): Score (lower better): Score (lower better): Score (lower better): Score (lower better): Score (lower better):

108 97 60 104 143 117 155 131

Avg score: Avg score: Avg score: Avg score: Avg score: Avg score: Avg score: Avg score:

4.153846154 3.730769231 2.4 4 5.5 4.5 6.2 5.24

Median score: Median score: Median score: Median score: Median score: Median score: Median score: Median score:

5 3 2 4 6 4 7 5

CODE SIMPLICITY 
MOST IMPORTANT

COMMENTING CODE 
VERY IMPORTANT

CODE PORTABILITY 
VERY IMP CI VERY IMPORTANT

NAMING 
CONVENTIONS

SHARED CODE 
OWNERSHIP 

CONFLICTIVE [1]

UNIT TESTING

PAIR 
PROGRAMMING

[1]
Marked as most important by 4 and least important by 11

May have to do with team type

C
.1.

Q
U

E
S

T
IO

N
Q

6.2-6.3

319



APPENDIX C. DATA ANALYSIS EXAMPLE

C.1.4 Analyzing Q6.3 Raw Data
The following page shows how the raw answers, blurred to ensure anonymity, to Q6.3 were encoded into
codes and then unified into categories. These finally created a summary. Note that more intermediate codes
existed as this part of the analysis happened. For example, “documenting code” and “adding comments
to the code” are answers from the participants that became codes. After reviewing all the answers, and
taking into account the context of the question where it already asked to sort by importance commenting
code, these codes were unified in a more general code or category as “good and complete documentation”.

320



C.1. QUESTION Q6.2-6.3

321



APPENDIX C. DATA ANALYSIS EXAMPLE

C.1.5 Final Interpretation
The outcome from analyzing both parts of the questions is found in subsubsection 8.3.3.6. The trade offs in
between the concepts and theories of why these exist are proposed. Moreover, the data was plotted in a
user-friendly manner.

322



BIBLIOGRAPHY

[1] J. L. Gustetic, J. Crusan, S. Rader, and S. Ortega, “Outcome-driven open innovation at nasa,” Space
Policy, vol. 34, pp. 11–17, 2015.

[2] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA grand challenge: the great robot race,
vol. 36.

Springer, 2007.

[3] M. Buehler, K. Iagnemma, and S. Singh, The DARPA urban challenge: autonomous vehicles in city
traffic, vol. 56.

Springer, 2009.

[4] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and C. Orlowski,
“The darpa robotics challenge finals: Results and perspectives,” Journal of Field Robotics, vol. 34,
no. 2, pp. 229–240, 2017.

[5] S. Thrun, “Why we compete in darpa’s urban challenge autonomous robot race,” Communications of
the ACM, vol. 50, no. 10, pp. 29–31, 2007.

[6] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup: The robot world cup initiative,”
in Proceedings of the first international conference on Autonomous agents, pp. 340–347, 1997.

[7] H. Kitano and S. Tadokoro, “Robocup rescue: A grand challenge for multiagent and intelligent
systems,” AI magazine, vol. 22, no. 1, pp. 39–39, 2001.

[8] T. van der Zant, T. Wisspeintner, and P. Lima, Robocup@ home: Creating and benchmarking
tomorrows service robot applications.

INTECH Open Access Publisher, 2007.

[9] G. K. Kraetzschmar, N. Hochgeschwender, W. Nowak, F. Hegger, S. Schneider, R. Dwiputra,
J. Berghofer, and R. Bischoff, “Robocup@ work: competing for the factory of the future,” in
Robot Soccer World Cup, pp. 171–182, Springer, 2014.

[10] A. Ferrein and G. Steinbauer, “20 years of robocup,” KI-Künstliche Intelligenz, vol. 30, no. 3-4,
pp. 225–232, 2016.

[11] U. Visser and H.-D. Burkhard, “Robocup: 10 years of achievements and future challenges,” AI
magazine, vol. 28, no. 2, pp. 115–115, 2007.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–
255, Ieee, 2009.

[13] E. Osawa, H. Kitano, M. Asada, Y. Kuniyoshi, and I. Noda, “Robocup: The robot world cup initiative,”
in Proceedings of the Second International Conference on Multi-Agent Systems (ICMAS-1996),
Kyoto, Japan, pp. 9–13, 1996.

323



BIBLIOGRAPHY

[14] T. Balch and H. Yanco, “Ten years of the aaai mobile robot competition and exhibition,” AI Magazine,
vol. 23, no. 1, pp. 13–13, 2002.

[15] R. Organization, “Robocup objective web page.” https://www.robocup.org/objective/, 2020.

[16] P. M. Pagnucco, “Robocup 2019, business events sydney.” https://businesseventssydney.com.
au/media/latest-news/australia-faces-robot-invasion-in-2019, 2020.

[17] L. Iocchi, D. Holz, J. Ruiz-del Solar, K. Sugiura, and T. Van Der Zant, “Robocup@ home: Analysis and
results of evolving competitions for domestic and service robots,” Artificial Intelligence, vol. 229,
pp. 258–281, 2015.

[18] D. Holz, L. Iocchi, and T. Van Der Zant, “Benchmarking intelligent service robots through scientific
competitions: The robocup@ home approach,” in 2013 AAAI Spring Symposium Series, 2013.

[19] M. Matamoros, C. Rascon, J. Hart, D. Holz, and L. van Beek, “Robocup@home 2018: Rules and
regulations.” http://www.robocupathome.org/rules/2018_rulebook.pdf, 2018.

[20] A. K. Pandey and R. Gelin, “A mass-produced sociable humanoid robot: pepper: the first machine of
its kind,” IEEE Robotics & Automation Magazine, vol. 25, no. 3, pp. 40–48, 2018.

[21] S. Robotics, “Pepper robot presentation.” https://www.softbankrobotics.com/emea/en/pepper,
(accessed: 15.01.2020).

[22] M.-A. Williams, “Uts unleashed! website.” https://utsunleashed.webnode.com, (accessed:
15.01.2020).

[23] M.-A. Williams, “The magic lab website.” https://www.themagiclab.org, (accessed: 15.01.2020).

[24] P. Checkland and S. Holwell, Action Research, pp. 3–17.
Boston, MA: Springer US, 2007.

[25] M. Riel, “Action research cycles.” http://cadres.pepperdine.edu/ccar/define.html, (accessed:
15.01.2020).

[26] M. Staron, “Action research as research methodology in software engineering,” in Action Research
in Software Engineering, pp. 15–36, Springer, 2020.

[27] P. S. M. Dos Santos and G. H. Travassos, “Action research can swing the balance in experimental
software engineering,” in Advances in computers, vol. 83, pp. 205–276, Elsevier, 2011.

[28] K. Charmaz, J. A. Smith, R. Harre, and L. van Langenhove, “Rethinking methods in psychology,”
Grounded Theory. London, UK: Sage, 1995.

[29] K. Charmaz and L. L. Belgrave, “Grounded theory,” The Blackwell encyclopedia of sociology, 2007.

[30] B. G. Glaser, A. L. Strauss, and E. Strutzel, “The discovery of grounded theory; strategies for
qualitative research,” Nursing research, vol. 17, no. 4, p. 364, 1968.

[31] Y. Chun Tie, M. Birks, and K. Francis, “Grounded theory research: A design framework for novice
researchers,” SAGE open medicine, vol. 7, p. 2050312118822927, 2019.

[32] A. Bryant and K. Charmaz, The Sage handbook of grounded theory.
Sage, 2007.

[33] K. Charmaz, Constructing grounded theory: A practical guide through qualitative analysis.
Sage, 2006.

324

https://www.robocup.org/objective/
https://businesseventssydney.com.au/media/latest-news/australia-faces-robot-invasion-in-2019
https://businesseventssydney.com.au/media/latest-news/australia-faces-robot-invasion-in-2019
http://www.robocupathome.org/rules/2018_rulebook.pdf
https://www.softbankrobotics.com/emea/en/pepper
https://utsunleashed.webnode.com
https://www.themagiclab.org
http://cadres.pepperdine.edu/ccar/define.html


BIBLIOGRAPHY

[34] K. Charmaz and A. Bryant, “Grounded theory and credibility,” Qualitative research, vol. 3, pp. 291–
309, 2011.

[35] M. Birks and J. Mills, Grounded theory: A practical guide.
Sage, 2015.

[36] J. Corbin and A. Strauss, Basics of qualitative research: Techniques and procedures for developing
grounded theory.

Sage, 2014.

[37] J. Mills and M. Birks, Qualitative methodology: A practical guide.
Sage, 2014.

[38] B. Glaser, “Theoretical sensitivity: Advances in the methodology of grounded theory,” 1978.

[39] M. Birks, Y. Chapman, and K. Francis, “Memoing in qualitative research: Probing data and pro-
cesses,” Journal of research in nursing, vol. 13, no. 1, pp. 68–75, 2008.

[40] B. Dick, “Ar and grounded theory,” in Pap Prep Res Symp Aust New Zeal ALARPM/SCIAR Conf
[Internet], pp. 4–5, 2003.

[41] L. Lingard, M. Albert, and W. Levinson, “Grounded theory, mixed methods, and action research,”
Bmj, vol. 337, p. a567, 2008.

[42] M. A. Abdel-Fattah, “Grounded theory and action research as pillars for interpretive information
systems research: A comparative study,” Egyptian Informatics Journal, vol. 16, no. 3, pp. 309–
327, 2015.

[43] C. Larman and V. R. Basili, “Iterative and incremental developments. a brief history,” Computer,
vol. 36, no. 6, pp. 47–56, 2003.

[44] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, et al., “Report on the algorithmic language algol 60,” Numerische
Mathematik, vol. 2, no. 1, pp. 106–136, 1960.

[45] W. W. Royce, “Managing the development of large software systems: concepts and techniques,” in
Proceedings IEEE WESCON 26 (August), pp. 1–9, 1970.

[46] H. D. Mills, “Top down programming in large systems,” Debugging techniques in large systems,
pp. 41–55, 1971.

[47] S. Hekmatpour, “Experience with evolutionary prototyping in a large software project,” ACM
SIGSOFT Software Engineering Notes, vol. 12, no. 1, pp. 38–41, 1987.

[48] B. W. Boehm, “A spiral model of software development and enhancement,” Computer, vol. 21, no. 5,
pp. 61–72, 1988.

[49] P. Rook, “Controlling software projects,” Software Engineering Journal, vol. 1, no. 1, pp. 7–16, 1986.

[50] J. Kerr and R. Hunter, Inside Rad: How to Build Fully Functional Computer Systems in 90 Days or
Less.

McGraw-Hill, 1993.

[51] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, et al., “Manifesto for agile software development,” 2001.

325



BIBLIOGRAPHY

[52] J. Stapleton, “Dsdm: Dynamic systems development method,” in Proceedings Technology of Object-
Oriented Languages and Systems. TOOLS 29 (Cat. No. PR00275), pp. 406–406, IEEE, 1999.

[53] K. Schwaber, “Scrum development process,” in Business object design and implementation, pp. 117–
134, Springer, 1997.

[54] C. Larman, Agile and iterative development: a manager’s guide.
Addison-Wesley Professional, 2004.

[55] K. Beck, “Embracing change with extreme programming,” Computer, vol. 32, no. 10, pp. 70–77,
1999.

[56] P. Coad and S. Palmer, “Feature-driven development,” Java Modeling in Color with UML, pp. 182–
203, 1999.

[57] M. Fowler, J. Highsmith, et al., “The agile manifesto,” Software Development, vol. 9, no. 8, pp. 28–35,
2001.

[58] C. Edeki, “Agile unified process,” International Journal of Computer Science, vol. 1, no. 3, pp. 13–17,
2013.

[59] S. W. Ambler and M. Lines, Disciplined agile delivery: A practitioner’s guide to agile software delivery
in the enterprise.

IBM press, 2012.

[60] C. Larman and B. Vodde, Large-scale scrum: More with LeSS.
Addison-Wesley Professional, 2016.

[61] R. Brenner and S. Wunder, “Scaled agile framework: Presentation and real world example,” in
2015 IEEE Eighth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 1–2, IEEE, 2015.

[62] M. Poppendieck and T. Poppendieck, Lean software development: an agile toolkit.
Addison-Wesley, 2003.

[63] D. J. Anderson, Kanban: successful evolutionary change for your technology business.
Blue Hole Press, 2010.

[64] M. Fowler and M. Foemmel, “Continuous integration,” 2006.

[65] J. Humble and D. Farley, Continuous delivery: reliable software releases through build, test, and
deployment automation.

Pearson Education, 2010.

[66] D. Astels, Test driven development: A practical guide.
Prentice Hall Professional Technical Reference, 2003.

[67] A. Cockburn, Crystal clear: A human-powered methodology for small teams: A human-powered
methodology for small teams.

Pearson Education, 2004.

[68] S. A. Qurashi and M. Qureshi, “Scrum of scrums solution for large size teams using scrum method-
ology,” arXiv preprint arXiv:1408.6142, 2014.

[69] J. Sutherland, “Scrum@ scale guide,” The definitive guide to Scrum@ Scale: scaling that works.
Scrum Inc, 2019.

326



BIBLIOGRAPHY

[70] K. Schwaber and M. Beedle, Agile software development with Scrum, vol. 1.
Prentice Hall Upper Saddle River, 2002.

[71] D. Wells, “Extremeprogramming.org,” 2000.

[72] K. Beck, Extreme programming explained: embrace change.
Addison-Wesley professional, 2000.

[73] A. Alliance, “Definition of extreme programming by the agile alliance.” https://bit.ly/3bkHnRN,
(accessed: 27.05.2020).

[74] F. Oliveira, A. Goldman, and V. Santos, “Managing technical debt in software projects using scrum:
An action research,” in 2015 Agile Conference, pp. 50–59, IEEE, 2015.

[75] T. Dingsøyr, G. K. Hanssen, T. Dybå, G. Anker, and J. O. Nygaard, “Developing software with
scrum in a small cross-organizational project,” in European Conference on Software Process
Improvement, pp. 5–15, Springer, 2006.

[76] P. Abrahamsson, “Extreme programming: First results from a controlled case study,” in Proceedings
29th Euromicro Conference, p. 259, IEEE, 2003.

[77] A. Sandberg, L. Pareto, and T. Arts, “Agile collaborative research: Action principles for industry-
academia collaboration,” IEEE software, vol. 28, no. 4, pp. 74–83, 2011.

[78] T. Dybå and T. Dingsøyr, “Empirical studies of agile software development: A systematic review,”
Information and software technology, vol. 50, no. 9-10, pp. 833–859, 2008.

[79] T. Van der Zant and P. G. Plöger, “Lightweight management–taming the robocup development
process,” in Robot Soccer World Cup, pp. 577–584, Springer, 2005.

[80] R. Gerndt, I. Schiering, and J. Lüssem, “Elements of scrum in a students robotics project: a case
study,” Journal of Automation Mobile Robotics and Intelligent Systems, vol. 8, 2014.

[81] N. Tomatis, R. Philippsen, B. Jensen, K. O. Arras, G. Terrien, R. Piguet, and R. Siegwart, “Building
a fully autonomous tour guide robot: Where academic research meets industry,” in Proceedings
of the 33rd International Symposium on Robotics (ISR), pp. 109–134, ISR, 2002.

[82] R. Gerndt, M. Paetzel, J. Baltes, and O. Ly, “Bridging the gap-on a humanoid robotics rookie league,”
in Robot World Cup, pp. 193–204, Springer, 2018.

[83] A. Paraschos, N. I. Spanoudakis, and M. G. Lagoudakis, “Model-driven behavior specification for
robotic teams.,” in AAMAS, pp. 171–178, 2012.

[84] E. Eaton, “Teaching integrated ai through interdisciplinary project-driven courses,” AI Magazine,
vol. 38, no. 2, pp. 13–21, 2017.

[85] U. K. Bindl and S. K. Parker, “Proactive work behavior: Forward-thinking and change-oriented
action in organizations.,” in APA handbook of industrial and organizational psychology, Vol 2:
Selecting and developing members for the organization., pp. 567–598, American Psychological
Association, 2011.

[86] S. Overflow, “Stack overflow 2018 developers survey.” https://insights.stackoverflow.com/
survey/2018#development-practices, (accessed: 15.01.2020).

[87] M. Loukides, What is DevOps?
" O’Reilly Media, Inc.", 2012.

327

https://bit.ly/3bkHnRN
https://insights.stackoverflow.com/survey/2018#development-practices
https://insights.stackoverflow.com/survey/2018#development-practices


BIBLIOGRAPHY

[88] S. García, D. Strüber, D. Brugali, T. Berger, and P. Pelliccione, “Robotics software engineering: A
perspective from the service robotics domain,” arXiv preprint arXiv:2006.10608, 2020.

[89] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an
open-source robot operating system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, Japan, 2009.

[90] T. Niemueller, A. Ferrein, D. Beck, and G. Lakemeyer, “Design principles of the component-based
robot software framework fawkes,” in International Conference on Simulation, Modeling, and
Programming for Autonomous Robots, pp. 300–311, Springer, 2010.

[91] H. Bruyninckx, “Orocos: design and implementation of a robot control software framework,” in
Proceedings of IEEE International Conference on Robotics and Automation, Citeseer, 2002.

[92] S. Robotics, “Naoqi framework.” http://doc.aldebaran.com/1-14/dev/naoqi/index.html, (ac-
cessed: 15.01.2020).

[93] Google, “Blockly.” https://developers.google.com/blockly, (accessed: 15.01.2020).

[94] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al., “Scratch: programming for all,” Communications
of the ACM, vol. 52, no. 11, pp. 60–67, 2009.

[95] L. van Beek, D. Holz, M. Matamoros, C. Rascon, , and S. Wachsmuth, “Robocup@home 2017: Rules
and regulations.” http://www.robocupathome.org/rules/2017_rulebook.pdf, 2017.

[96] Linuxize.com, “rsync command explanation.” https://linuxize.com/post/
how-to-use-rsync-for-local-and-remote-data-transfer-and-synchronization,
(accessed: 15.01.2020).

[97] Linuxize.com, “scp command explanation.” https://linuxize.com/post/
how-to-use-scp-command-to-securely-transfer-files, (accessed: 15.01.2020).

[98] gitscm.com, “git submodules explanation.” https://git-scm.com/book/en/v2/
Git-Tools-Submodules, (accessed: 15.01.2020).

[99] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-
Farley, and Y. Bengio, “Theano: new features and speed improvements,” arXiv preprint
arXiv:1211.5590, 2012.

[100] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al., “Tensorflow: A system for large-scale machine learning,” in 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283, 2016.

[101] V. A. Ziparo, L. Iocchi, and D. Nardi, “Petri net plans,” in Proceedings of Fourth International
Workshop on Modelling of Objects, Components, and Agents (MOCA), pp. 267–290, 2006.

[102] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N. Palomeras, N. Hurtos, and
M. Carreras, “Rosplan: Planning in the robot operating system,” in Twenty-Fifth International
Conference on Automated Planning and Scheduling, 2015.

[103] D. E. King, “Dlib-ml: A machine learning toolkit,” The Journal of Machine Learning Research, vol. 10,
pp. 1755–1758, 2009.

[104] M. Keller, F. Hoffmann, C. Hass, T. Bertram, and A. Seewald, “Planning of optimal collision avoidance
trajectories with timed elastic bands,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 9822–9827,
2014.

328

http://doc.aldebaran.com/1-14/dev/naoqi/index.html
https://developers.google.com/blockly
http://www.robocupathome.org/rules/2017_rulebook.pdf
https://linuxize.com/post/how-to-use-rsync-for-local-and-remote-data-transfer-and-synchronization
https://linuxize.com/post/how-to-use-rsync-for-local-and-remote-data-transfer-and-synchronization
https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files
https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules


BIBLIOGRAPHY

[105] S. Pütz, J. S. Simón, and J. Hertzberg, “Move base flex,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3416–3421, IEEE, 2018.

[106] M. Matamoros, C. Rascon, S. Wachsmuth, A. W. Moriarty, J. Kummert, J. Hart, S. Pfeiffer,
M. van der Brugh, and M. St-Pierre, “Robocup@home 2019: Rules and regulations.” http:
//www.robocupathome.org/rules/2019_rulebook.pdf, 2019.

[107] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and A. I. Rudnicky, “Pocket-
sphinx: A free, real-time continuous speech recognition system for hand-held devices,” in 2006
IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 1,
pp. I–I, IEEE, 2006.

[108] S. Pfeiffer, D. Ebrahimian, S. Herse, T. N. Le, S. Leong, B. Lu, K. Powell, S. A. Raza, T. Sang,
I. Sawant, et al., “Uts unleashed! robocup@home sspl champions 2019,” in Robot World Cup,
pp. 603–615, Springer, 2019.

[109] J. Ruiz-del Solar, “Visual slam-based localization and navigation for service robots: The pepper case,”
RoboCup 2018: Robot World Cup XXII, vol. 11374, p. 32, 2019.

[110] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7263–7271, 2017.

[111] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: realtime multi-person 2d pose
estimation using part affinity fields,” arXiv preprint arXiv:1812.08008, 2018.

[112] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultaneous localization
and mapping library for large-scale and long-term online operation,” Journal of Field Robotics,
vol. 36, no. 2, pp. 416–446, 2019.

[113] C. E. Larson, C. Larson, and F. M. LaFasto, Teamwork: What must go right/what can go wrong,
vol. 10.

Sage, 1989.

[114] G. Asproni, “Motivation, teamwork, and agile development,” Agile Times, vol. 4, no. 1, pp. 8–15,
2004.

[115] S. McConnell, Code complete.
Pearson Education, 2004.

[116] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

329

http://www.robocupathome.org/rules/2019_rulebook.pdf
http://www.robocupathome.org/rules/2019_rulebook.pdf




LIST OF FIGURES

1 The robot REEM at RoboCup@Home in Eindhoven in 2013. I’m on the left with another former
member of the club, Jonathan Gonzalez. Great times. . . . . . . . . . . . . . . . . . . . . . . . . . x

2 The 2013 team for RoboCup@Home, called REEM@IRI. . . . . . . . . . . . . . . . . . . . . . . . . x

2.1 Brochure of the Pepper robot by SoftBank Robotics. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Model of Action Research from from Margaret Riel [25] . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 The hypothesis-testing research process of natural science, from [24]. . . . . . . . . . . . . . . . 19
2.4 Elements relevant to any piece of research, from Checkland and Holwell [24]. . . . . . . . . . . 20
2.5 The cycle of action research in human situations, from [24]. . . . . . . . . . . . . . . . . . . . . . 20
2.6 Research design framework summary from “Grounded theory research: A design framework for

novice researchers” [31]. Shows the interplay between the essential grounded theory methods
and processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Asana screenshot of the 2017 RoboCup project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Trello screenshot of the 2017 RoboCup project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 The ROS equation as advertised in the official website. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 The scenario map for Nagoya, Japan, in 2017 as provided by the organizers. The numbered

items are designated places that may be referenced in the competition tests. For example,
the bed, the kitchen table, or the TV. The organizers provide this map, but it is not precise.
It roughly marks where the different items should be. During the competition, things move
around; for example, people may sit in chairs and leave the chair in a different position.
Furniture may be gently pushed inadvertently. The robots must be able to deal with such
changes in the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 The arena in Nagoya, Japan, in 2017 with the Pepper robot. Taken from the bedroom and
seeing through thanks to the low height walls into the kitchen and living room. There is a
functional door on the right. Standard furniture as cabinets, a sink, a fridge, a table, and
chairs can be seen. Other small objects can be appreciated like a jar of tea, some pasta in a
container, an orange, and children’s books. As a curiosity, it can be appreciated how the Pepper
robot height and arm’s length can make manipulation tasks challenging as most table-like
surfaces stand quite high for it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 The Pepper laser sensors configuration and field of view from the manufacturer official
documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Action research cycles diagram for the RoboCup@Home SSPL three years project. . . . . . . . 54
4.2 One single year of RoboCup Action Research cycle. Repeating topics that include team man-

agement processes, team software development processes and technical approaches are detailed. 55

5.1 2017 scoring sheet of RoboCup@Home SSPL Stage I. The team was second at that point. . . . 87
5.2 2017 scoring sheet of RoboCup@Home SSPL Stage II. The team was second at that point. . . . 87
5.3 2017 final classification scoring sheet of RoboCup@Home SSPL Stage II. UTS Unleashed! was

second and won the Human-Robot Interface award. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Activity (Trello actions) on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 Distribution of Trello actions types on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . . . 90

331



LIST OF FIGURES

5.6 Distribution of Trello actions by months on the year 2017. . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Distribution of Trello actions by weekdays on the year 2017. . . . . . . . . . . . . . . . . . . . . . 91
5.8 Distribution of Trello actions by hours on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Distribution of Trello actions by Trello board on the year 2017. . . . . . . . . . . . . . . . . . . . 93
5.10 Distribution of Trello actions by anonymized authors on the year 2017. . . . . . . . . . . . . . . 93
5.11 Activity (commits per day) on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.12 Commits per month on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.13 Commits per week day on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.14 Commits per hour on the year 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.15 Number of authors and days with commit activity per repository, sorted by days with commit

activity and filtered by more than 1 author and more than 1 activity day. . . . . . . . . . . . . . 98
5.16 Number of authors and days with commit activity per repository, sorted by days with commit

activity and filtered by exactly 1 author and more than 1 activity day. . . . . . . . . . . . . . . . 99

6.1 Excerpt from the robot skills spreadsheet to prioritize skill development. . . . . . . . . . . . . . 115
6.2 Diagram for the planner software stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3 Example schedule for an ORT from UTS Unleashed! in the year 2018. . . . . . . . . . . . . . . . 125
6.4 Example screenshot of the planner web interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5 2018 scoring sheet of RoboCup@Home SSPL Stage I. The team was second at that point. . . . 135
6.6 2018 scoring sheet of RoboCup@Home SSPL Stage II. The team was second at that point. . . . 136
6.7 2018 final classification sheet of RoboCup@Home SSPL. . . . . . . . . . . . . . . . . . . . . . . . 136
6.8 Activity (Trello actions) on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.9 Distribution of Trello actions types on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.10 Distribution of Trello actions by months on the year 2018. . . . . . . . . . . . . . . . . . . . . . . 139
6.11 Distribution of Trello actions by weekdays on the year 2018. . . . . . . . . . . . . . . . . . . . . . 140
6.12 Distribution of Trello actions by hours on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . 140
6.13 Distribution of Trello actions by Trello board on the year 2018. . . . . . . . . . . . . . . . . . . . 141
6.14 Distribution of Trello actions by anonymized authors on the year 2018. . . . . . . . . . . . . . . 142
6.15 Activity (commits per day) on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.16 Commits per month on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.17 Commits per week day on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.18 Commits per hour on the year 2018. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.19 Number of authors and days with commit activity per repository, sorted by days with commit

activity and filtered by more than 1 author and more than 1 activity day. . . . . . . . . . . . . . 147
6.20 Number of authors and days with commit activity per repository, sorted by days with commit

activity and filtered by exactly 1 author and more than 1 activity day. . . . . . . . . . . . . . . . 148

7.1 2019 scoring sheet of RoboCup@Home SSPL Stage I. The team was first at that point. . . . . . 182
7.2 2019 scoring sheet of RoboCup@Home SSPL Stage II. The team was first at that point. . . . . 183
7.3 2019 scoring sheet of RoboCup@Home SSPL Stage II, modified. The team was first at that point.183
7.4 2019 final classification sheet of RoboCup@Home SSPL. UTS Unleashed! achieved first place. 184
7.5 2019 final classification sheet of RoboCup@Home Domestic Standard Platform League (DSPL)

and Open Platform League (OPL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.6 Activity (Trello actions) on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.7 Distribution of Trello actions types on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.8 Distribution of Trello actions by months on the year 2019. . . . . . . . . . . . . . . . . . . . . . . 188
7.9 Distribution of Trello actions by weekdays on the year 2019. . . . . . . . . . . . . . . . . . . . . . 189
7.10 Distribution of Trello actions by hours on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . 189
7.11 Distribution of Trello actions by Trello board on the year 2019. . . . . . . . . . . . . . . . . . . . 190
7.12 Distribution of Trello actions by anonymized authors on the year 2019. . . . . . . . . . . . . . . 191
7.13 Activity (commits per day) on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.14 Commits per month on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.15 Commits per week day on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

332



LIST OF FIGURES

7.16 Commits per hour on the year 2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.17 Number of authors and days with commit activity per repository, sorted by days with commit

activity and filtered by more than 1 author and more than 1 activity day. . . . . . . . . . . . . . 195
7.18 Number of authors and days with commit activity per repository, sorted by days with commit

activity and filtered by exactly 1 author and more than 1 activity day. . . . . . . . . . . . . . . . 196

8.1 Minimum years of experience in Robotics Challenges reported by the workshop participants
was 1 year. Maximum was 17 years. With an average of 6.7 years and a median of 5.5 years of
experience. 67 years of accumulated experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.2 All workshop participants reported that Student Experience was one of their main motivations
to participate in RoboCup. 40% reported Research Outcomes to be another main motivation. . 211

8.3 When asked about their approach on competing on RoboCup being more in the pragmatic or
research line the workshop participants didn’t have a clear leaning. . . . . . . . . . . . . . . . . 212

8.4 Workshop participants team size reported for the last RoboCup event. Three participants
didn’t answer this question. The largest team reported had 14 members and the minimum
team size was 5. Average team size was 8.5 and median team size was 7 team members. . . . . 213

8.5 The team composition for the last RoboCup participation of the workshop participants. Every
row represents the answer of a participant and each color represents the type of team members,
divided by students of undergrad, masters or PhD, and another category where university
staff was reported. There does not seem to be a consensus even though we see a majority of
undergrad students overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.6 Optimal team size reported by the workshop participants. Some participants answered in
specific numbers while others answered in ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.7 Picture of the post-its on a whiteboard from the Software Development Methodologies for
Robotics Challenges about unanswered or hard topics related to Robotics Challenges and
RoboCup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.8 Preview of the survey in the Qualtrics platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.9 Minimum years of experience in RoboCup was 1 year. Maximum 21 years. With an average

of 6.75 years and a median of 5 years of experience. The accumulated amount of years of
participation is 189 years of experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.10 The majority of the participants have participated in RoboCup@Home (with its subleagues
participation shown too). This is to be expected as the author of the survey was a participant
in this league so it was easier to reach out to them. The survey was distributed to experts of
all leagues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.11 The reported main motivations to participate in these competitions are research outcomes,
student experience, and fun. These motivations are followed by networking and renown. . . . 226

8.12 Team composition shown as percentages of the total team size. There is diversity on team
compositions as per the participants reporting from the 2019 edition. . . . . . . . . . . . . . . . 227

8.13 The average team composition for 2019 was dominated by Undergrad students, followed by
Master students. Then PhD students and those reported as Other. . . . . . . . . . . . . . . . . . 227

8.14 Team composition shown as percentages of the total team size. From the point of view of their
ideal team composition there is a variety of answers too. . . . . . . . . . . . . . . . . . . . . . . . 228

8.15 The average ideal team composition is similar to the reported one for 2019 in 8.13 but with
less Undergrad students and with more PhDs filling that gap. . . . . . . . . . . . . . . . . . . . . 229

8.16 The most used programming languages reported were C++ and Python. Other languages had
some usage, either by teams who were the only ones reporting using it as their main language,
or as languages to solve specific tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.17 Most teams use the ROS middleware. But it is worth noting that the league in which teams
participate influences this question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.18 Total person-hours responses for the question “How many person-hours do you estimate are
needed to successfully participate in a RoboCup competition?”. Average of 4596 person-hours
and median of 3840 person-hours represented with a red and a green line, respectively. There
is a wide range of responses from just 600 person-hours to 98000 person-hours. . . . . . . . . . 233

333



LIST OF FIGURES

8.19 Distribution of responses on the amount of team members for participating in a RoboCup
competition with regard to the total person-hours needed for the project. Average and median
values fall on 8 team members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.20 Distribution of responses to the amount of hours weekly per team member to dedicate to
participating in a RoboCup competition with regard to the total person-hours needed for the
project. Average value is 17.5 hours/week and median value is 20 hours/week. . . . . . . . . . . 235

8.21 Distribution of responses to the number of weeks of dedication to prepare for participating in
a RoboCup competition with regard to the total person-hours needed for the project. Average
value is 31 weeks and median value is 24 weeks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.22 Responses on which skills were found to be more important for the success of the team when
recruiting new team members. The skills ordered by importance became: proactivity, coding
skills, interpersonal skills, robotics knowledge, and competition-specific experience. . . . . . . 236

8.23 Responses on “How many team members do you fly to the competition?”. Average is 7, median
8 and the most repeated response 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.24 Most respondents to “How important is it to have an always fully working version of the
software of your robot at any time?” answered that it was in between extremely important and
very important. This shows less emphasis than the previous question. . . . . . . . . . . . . . . . 239

8.25 “How important is it to have automated hardware checks?” has most replies in the range of
very important and moderately important. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.26 The responses to “How important is it to have automated software checks?” are found almost
equally distributed in the range in between extremely important and moderately important. . 240

8.27 A wide range of answers for “How important is to have a simulation of your robot available
for development?” is found. Most answers fall around being very important, but there is no
consensus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.28 “How do you recruit new team members?” responses. The most popular answers were Courses
and Informative meetings. Other follows. Then hackathons and workshops. . . . . . . . . . . . 242

8.29 Distribution of responses for “What incentives do you offer to your team members to participate
in the team?”. Most responses went into publications and future job. Coursework and other
follows. Finally free goodies and money. Comments for the other response were: paid travel,
build robots and work with new robots as motivation, learning experience, fun, and fame. . . . 243

8.30 Distribution of responses for “How do you teach the basics needed to participate in the project
(or make sure the new team members have the necessary knowledge)?”. Most responses found in
personal work and supervised personal work. Course got roughly half the responses than the
previous two, but still roughly double the two last options: workshop and other. Comments for
the other field were: thesis work as part of their enrolment, this process could be improved,
pair programming, focused experiments, and instructions by seniors. . . . . . . . . . . . . . . . 244

8.31 For “How long does it take to a new team member to make a non-trivial contribution to the
team’s repository? (Please add the unit, hours, days, weeks, months...)” the distribution of
responses interpreting results in the worst case in months in a histogram is used. Using whole
month figures, most answers fall into the 1 to 3 months range. The next most answered range
is in between 5 and 8 months. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8.32 Responses for “What kind of periodic meetings does your team hold?”. Most responses indicate
Weekly meetings. 8 responses also indicated Other: changing frequency (to more often) as the
competition approaches, irregular meetings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.33 Distribution of responses to “How many meetings do you have a week?” from respondents that
indicated that they meet weekly. 80% of respondents meet once a week and 20% meet twice a
week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.34 Summary of responses to duration of meetings. Average weekly duration was 75 minutes and
median was 60 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.35 “Does every member of the team attend every meeting?”. . . . . . . . . . . . . . . . . . . . . . . . . 248
8.36 Participants were asked if they modify the frequency or duration of the meetings. . . . . . . . . 249

334



LIST OF FIGURES

8.37 Most participants responded Other and Scrum. The next most frequent responses were
Kanban, Waterfall and Agile (Other). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.38 84% of respondents said that they did not follow their methodology strictly. . . . . . . . . . . . . 251
8.39 Most responses for “Do you use some kind of backlog for the tasks that need to be done during

all the project length?” state that they used some kind of backlog. . . . . . . . . . . . . . . . . . . 252
8.40 Most responses for “Do you use some kind of backlog for the tasks that are currently being

worked on?” stated that they used some kind of backlog. . . . . . . . . . . . . . . . . . . . . . . . 253
8.41 35% of respondents to “Do you work in ’sprints’ as in the Scrum methodology? (A ’sprint’ can

be defined as a defined time period for developing features for a product).” indicated that they
worked in sprints. From those most had a sprint duration of between 1 and 2 weeks. . . . . . . 254

8.42 Responses to question Q5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.43 Responses to question Q5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.44 Responses to Q5.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.45 Most respondents (85.2%) stated that they did hold retrospective meetings. . . . . . . . . . . . . 256
8.46 Answers to Q5.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.47 Concepts ordered by importance, on a score from 0 to 10. Code simplicity was considered

the most important. It’s also marked in green to denote that it’s the concept with the most
responses, marking it as the most important (10 responses over 28). Commenting code follows
as the next most important. Code portability and naming conventions follow closely. Then
continuous integration. The next concept is shared code ownership, marked in orange to note
that there is some conflict in this item. This is because 4 responses classify it as the most
important and 11 classify it as the least important, becoming the item with the highest number
of least important votes. Unit testing follows closely behind shared code ownership. And finally
pair programming has the least importance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8.48 Most answers to “How important is the concept of dependency hell in your team?” fall in the
range of moderately important to extremely important. . . . . . . . . . . . . . . . . . . . . . . . . 261

8.49 The most performed types of testing were integration and ad-hoc testing, followed closely
by unit testing, system testing, and functional testing. From there the quantity of responses
decrease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.50 Responses for “How important is the usage of end to end testing in your team? (Consider end-
to-end testing as in running a full test/mission of your competition)”. Most answers considered
it extremely important. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

8.51 Exactly half of the respondents to “Do you use Pair programming in your team?” answered yes.263
8.52 Most responses to “How important is the choice of programming language?” were in the range

in between very important and moderately important. . . . . . . . . . . . . . . . . . . . . . . . . 264
8.53 Comparison of team compositions for the top 9 teams: ideal team composition and last years

team composition. The same row pertains on both plots pertains to the same survey response. 272
8.54 Top 9 teams answers to “How many person-hours do you estimate are needed to successfully

participate in a RoboCup competition?” with the parts of the answers: number of people,
duration of the project in weeks, and weekly hour dedication. . . . . . . . . . . . . . . . . . . . . 273

8.55 Answers by the top 9 teams to “When recruiting new team members which skills do you find
more important for the success of the team?” are similar the previous results. . . . . . . . . . . . 274

8.56 Top 9 teams order on the importance of these concepts related to coding practices. . . . . . . . 276
8.57 Types of testing used by the top 9 teams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

FIGURE Page

335





LIST OF TABLES

3.1 Pepper 2D Cameras specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Pepper 3D Camera specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Members of the UTS Unleashed! team in 2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Software stack chosen to work for the year 2017. It became the base for the next years of

development too as discussed in chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Team composition table for the UTS Unleashed! team in 2018. . . . . . . . . . . . . . . . . . . . 113
6.2 ORT results of the year 2018. Note that some entries have either 0 or are empty. The table

has been reproduced from the notes taken during the time. Having an empty score means the
test was not tried, meanwhile having a 0 means it was run and it scored 0. . . . . . . . . . . . . 124

7.1 Team composition table for UTS Unleashed! in 2019. . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.1 Program schedule for the Software Development Methodologies for Robotics Competitions and
Challenges Workshop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.2 Creating a meaningful guidance value on how much effort in person-hours an average RoboCup
team needs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.1 Interpretation of the Agile Manifesto by UTS Unleashed!’s lead developer, part one. . . . . . . 291
9.2 Interpretation of the Agile Manifesto by UTS Unleashed!’s lead developer, part two. . . . . . . 292

TABLE Page

337




	Title Page
	Author's Declaration
	Abstract
	Dedication
	Acknowledgements
	Personal Motivation
	List of Publications
	Impact
	Table of Contents
	1  Introduction
	1.1  Motivation
	1.2  Research Questions
	1.3  Research Objectives
	1.4  Significance
	1.5  Scope and Limitations
	1.6  Epistemology / Theoretical basis

	2  Literature Review
	2.1  RoboCup
	2.1.1  RoboCup@Home
	2.1.1.1  Rulebook Test Example: Cocktail Party

	2.1.2  RoboCup@Home Social Standard Platform League
	2.1.2.1  Pepper robot

	2.1.3  UTS Unleashed! RoboCup Project

	2.2  Action Research
	2.2.1  Action Research in Software Engineering

	2.3  Grounded Theory
	2.3.1  Action Research and Grounded Theory Together

	2.4  Software Development Methodologies
	2.4.1  History of Software Development Methodologies
	2.4.2  Scrum
	2.4.2.1  Sprints

	2.4.3  Extreme Programming

	2.5  Software Development Methodologies in Robotics Competitions
	2.5.1  Team Description Papers: What is Missing

	2.6  Proactivity

	3  Context
	3.1  Common Technical Tools
	3.1.1  Asana
	3.1.2  Trello
	3.1.3  Slack
	3.1.4  Python: Programming language of choice
	3.1.5  C/C++: Backup programming languages
	3.1.6  ROS: Robotics framework/middleware
	3.1.7  NaoQi: Programming framework for the Pepper robot
	3.1.8  Operating System

	3.2  Common Experiences
	3.2.1  Commonalities of the RoboCup@Home SSPL rulebooks
	3.2.2  Pepper robot as platform
	3.2.3  Rental of robots at RoboCup event
	3.2.4  Deadline for the RoboCup event
	3.2.5  Poor WIFI connection at RoboCup event
	3.2.6  Poor audio quality at RoboCup event


	4  Research Methods
	4.1  Action Research over the RoboCup@Home SSPL project
	4.1.1  Action Research Cycles Structure
	4.1.2  Common Topics of the RoboCup AR cycles
	4.1.3  Scope of Action Research

	4.2  Grounded Theory: Experts' Feedback Analysis
	4.2.1  Action Research and Grounded Theory Together

	4.3  Statistical Data on Trello and Git
	4.3.1  Trello Data
	4.3.2  Git Data

	4.4  The Author's Role In This Project

	5  RoboCup@Home SSPL: Year 2017, 2nd place
	5.1  Action Research Cycle Setup
	5.2  Context
	5.2.1  Rule and Competition Changes
	5.2.1.1  Competition Organization
	5.2.1.2  Scoring and Penalties

	5.2.2  Team Composition

	5.3  Software Development Plan
	5.3.1  Team Management Processes
	5.3.1.1  Team Management tool
	5.3.1.2  Team Meetings
	5.3.1.3  Task Assignment

	5.3.2  Team Software Development Processes
	5.3.2.1  Coding Standards
	5.3.2.2  Coding Tools
	5.3.2.3  Social Coding Practices

	5.3.3  Technical Approaches
	5.3.3.1  Competition Requirements
	5.3.3.2  Software Stack


	5.4  Software Development Implementation
	5.4.1  Team Management Processes
	5.4.1.1  Team Management Tool
	5.4.1.2  Team Meetings
	5.4.1.3  Task Assignment

	5.4.2  Team Software Development Processes
	5.4.2.1  Coding Standards
	5.4.2.2  Coding Tools
	5.4.2.3  Social Coding Practices

	5.4.3  Technical Approaches
	5.4.3.1  Software Stack


	5.5  Competition Participation
	5.5.1  Team Management Processes
	5.5.1.1  Team Management Tool
	5.5.1.2  Team Meetings
	5.5.1.3  Task Assignment

	5.5.2  Team Software Development Processes
	5.5.2.1  Coding Standards
	5.5.2.2  Coding Tools
	5.5.2.3  Social Coding Practices

	5.5.3  Technical Approaches
	5.5.3.1  Software Stack

	5.5.4  Results: Competition Outcomes

	5.6  Post-Competition Data Collection and Retrospectives
	5.6.1  Statistical Data
	5.6.1.1  Trello Cards Data
	5.6.1.2  Git Commit data

	5.6.2  Team Retrospective

	5.7  Reflection
	5.7.1  Findings
	5.7.1.1  Team Management Processes
	5.7.1.2  Team Software Development Processes
	5.7.1.3  Technical Approaches

	5.7.2  Answers to AR Cycle Questions
	5.7.3  New Questions
	5.7.4  Next Steps
	5.7.4.1  Team Management Processes
	5.7.4.2  Team Software Development Processes
	5.7.4.3  Technical Approaches


	5.8  Possible Guidelines

	6  RoboCup@Home SSPL: Year 2018, 2nd place
	6.1  Action Research Cycle Setup
	6.2  Context
	6.2.1  Rule and Competition Changes
	6.2.2  Team Composition

	6.3  Software Development Plan
	6.3.1  Team Management Processes
	6.3.1.1  Team Management Tool
	6.3.1.2  Team Meetings
	6.3.1.3  Task Assignment

	6.3.2  Team Software Development Processes
	6.3.2.1  Coding Standards
	6.3.2.2  Coding Tools
	6.3.2.3  Social Coding Practices

	6.3.3  Technical Approaches
	6.3.3.1  Competition Requirements
	6.3.3.2  Software Stack


	6.4  Software Development Implementation
	6.4.1  Team Management Processes
	6.4.1.1  Team Management Tool
	6.4.1.2  Team Meetings
	6.4.1.3  Task Assignment

	6.4.2  Team Software Development Processes
	6.4.2.1  Coding Standards
	6.4.2.2  Coding Tools
	6.4.2.3  Social Coding Practices

	6.4.3  Technical Approaches
	6.4.3.1  Software Stack


	6.5  Competition Participation
	6.5.1  Team Management Processes
	6.5.1.1  Team Management Tool
	6.5.1.2  Team Meetings
	6.5.1.3  Task Assignment

	6.5.2  Team Software Development Processes
	6.5.2.1  Coding Standards
	6.5.2.2  Coding Tools
	6.5.2.3  Social Coding Practices

	6.5.3  Technical Approaches
	6.5.3.1  Software Stack

	6.5.4  Results: Competition Outcomes

	6.6  Post-Competition Data Collection and Retrospectives
	6.6.1  Statistical Data
	6.6.1.1  Trello Cards Data
	6.6.1.2  Git Commit Data

	6.6.2  Team Retrospective

	6.7  Reflection
	6.7.1  Findings
	6.7.1.1  Team Management Processes
	6.7.1.2  Team Software Development Processes
	6.7.1.3  Technical Approaches

	6.7.2  Answers to AR Cycle Questions
	6.7.2.1  Team Management
	6.7.2.2  Coding Practices and Technical Approaches

	6.7.3  New Questions
	6.7.4  Next Steps
	6.7.4.1  Team Management Processes
	6.7.4.2  Team Software Development Processes
	6.7.4.3  Technical Approaches


	6.8  Possible Guidelines

	7  RoboCup@Home SSPL: Year 2019, 1st place
	7.1  Action Research Cycle Setup
	7.2  Context
	7.2.1  Rule and Competition Changes
	7.2.2  Team Composition

	7.3  Software Development Plan
	7.3.1  Team Management Processes
	7.3.1.1  Team Management Tool
	7.3.1.2  Team Meetings
	7.3.1.3  Task Assignment

	7.3.2  Team Software Development Processes
	7.3.2.1  Coding Standards
	7.3.2.2  Coding Tools
	7.3.2.3  Social Coding Practices

	7.3.3  Technical Approaches
	7.3.3.1  Competition Requirements
	7.3.3.2  Software Stack


	7.4  Software Development Implementation
	7.4.1  Team Management Processes
	7.4.1.1  Team Management Tool
	7.4.1.2  Team Meetings
	7.4.1.3  Task Assignment

	7.4.2  Team Software Development Processes
	7.4.2.1  Coding Standards
	7.4.2.2  Coding Tools
	7.4.2.3  Social Coding Practices

	7.4.3  Technical Approaches
	7.4.3.1  Software Stack


	7.5  Competition Participation
	7.5.1  Team Management Processes
	7.5.1.1  Team Management Tool
	7.5.1.2  Team Meetings
	7.5.1.3  Task Assignment

	7.5.2  Team Software Development Processes
	7.5.2.1  Coding Standards
	7.5.2.2  Coding Tools
	7.5.2.3  Social Coding Practices

	7.5.3  Technical Approaches
	7.5.3.1  Software Stack

	7.5.4  Results: Competition Outcomes

	7.6  Post-Competition Data Collection and Retrospectives
	7.6.1  Statistical Data
	7.6.1.1  Trello Cards Data
	7.6.1.2  Git Commit Data

	7.6.2  Team Retrospective

	7.7  Reflection
	7.7.1  Findings
	7.7.1.1  Team Management Processes
	7.7.1.2  Team Software Development Processes
	7.7.1.3  Technical Approaches

	7.7.2  Answers to AR Cycle Questions
	7.7.3  New Questions
	7.7.4  Next Steps

	7.8  Possible Guidelines

	8  Experts Insights and Validation
	8.1  Grounded Theory Remarks
	8.2  Expert Workshop
	8.2.1  Overview
	8.2.2  Structure
	8.2.3  Workshop Outcomes
	8.2.3.1  Participants profile
	8.2.3.2  General Answered Questions
	8.2.3.3  Unanswered Questions


	8.3  Survey
	8.3.1  Survey Aims
	8.3.2  Survey Structure
	8.3.3  Data Analysis
	8.3.3.1  Participant Profile
	8.3.3.2  General Questions
	8.3.3.3  Recruiting
	8.3.3.4  Meetings
	8.3.3.5  Practices from Software Development Methodologies
	8.3.3.6  Coding Practices
	8.3.3.7  Outcomes: Research and Competition
	8.3.3.8  Experiences in Specific Situations

	8.3.4  Top 9 Teams Review
	8.3.4.1  Participants Profile
	8.3.4.2  General Questions
	8.3.4.3  Recruiting
	8.3.4.4  Meetings
	8.3.4.5  Practices from Software Development Methodologies
	8.3.4.6  Coding Practices
	8.3.4.7  Outcomes: Research and Competition
	8.3.4.8  Experiences on Specific Situations


	8.4  Conclusions
	8.4.1  Significance
	8.4.2  Proposed Guidelines


	9  Conclusions and Future Work
	9.1  Conclusions
	9.1.1  Team Management
	9.1.1.1  Team Recruitment
	9.1.1.2  Expert Team Members
	9.1.1.3  New Team Members Basic Skills
	9.1.1.4  Team Size and Composition
	9.1.1.5  Standard Software Development Methodologies
	9.1.1.6  Meetings
	9.1.1.7  Keeping Track of Work
	9.1.1.8  Teamwork
	9.1.1.9  Workload

	9.1.2  Technical Approaches
	9.1.2.1  Testing
	9.1.2.2  Coding Practices
	9.1.2.3  State of the Art Software


	9.2  Future Work

	Appendices
	Appendix A  Acronyms
	Appendix B  Team retrospectives
	B.1  Retrospective 2017
	B.1.1  What worked well?
	B.1.2  What did not work well?
	B.1.3  What should we do next?

	B.2  Retrospective 2018
	B.2.1  What worked well?
	B.2.2  What did not work well?
	B.2.3  What should we do next?

	B.3  Retrospective 2019
	B.3.1  What worked well?
	B.3.2  What did not work well?
	B.3.3  What should we do next?


	Appendix C  Data Analysis Example
	C.1  Question Q6.2-6.3
	C.1.1  Question's Background
	C.1.2  Raw Data
	C.1.3  Analyzing Q6.2 Raw Data
	C.1.4  Analyzing Q6.3 Raw Data
	C.1.5  Final Interpretation



	Bibliography
	List of Figures
	List of Tables



