

Fanning the Flame: Investigating Guided Inquiry-Based Learning in the Secondary Science Classroom by Christopher Sandoval

Thesis submitted in fulfilment of the requirements for the degree of

Master of Education (Research)

under the supervision of Associate Professor Dr Matthew Kearney and Dr Tracey-Ann Palmer

University of Technology Sydney Faculty of Arts and Social Sciences

March 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Christopher Sandoval declare that this thesis, is submitted in fulfilment of the requirements for the award of Master of Education, Research, in the Faculty of Arts and Social Sciences at the University of Technology Sydney. This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 20/03/2021

Acknowledgment

Thank you to my supervisor Associate Professor Dr Matthew Kearney for his clear guidance and thoughtfulness, this thesis would not have been completed without his support. To Professor Peter Aubusson for starting this journey with me, his deep insights and wise words. My thanks to Associate Professor Wan Ng for working with me on the transition from ideas to actions. Thank you to Dr Tracey-Ann Palmer for helping this thesis get through its final stages. A big thank you to Associate Professor Dr Nick Hopwood for his perpetual grace and infectious positivity. As well as a thank you to the word wizard George Harb for helping my thoughts become more coherent.

Contents

Chapter 1 Introduction
1.1 Fanning the Flame1
1.2 The Innovation Nation
1.3 International Science Enrolment Trends
1.4 Australian Science Enrolment Trends5
1.5 Increasing Student Participation and Engagement in Science
1.6 Introduction to this Study9
1.7 Structure of this Thesis11
1.8 Summary11
Chapter 2 Literature Review
2.1 Introduction12
2.2 Inquiry-Based Learning (IBL) in Science Education12
2.3 IBL Models in Science Education14
2.4 The Effect of IBL Implementation in Science Education19
2.5 Factors Influencing the Implementation of IBL in Science Education
2.6 Factors Influencing the Implementation of Guided IBL
2.7 Frequency of Guided IBL Use
2.8 Gaps in Literature
2.9 Summary
Chapter 3 Methodology
3.1 Introduction
3.2 Study Design
3.3 Design of Survey Instrument
3.4 Study Participants
3.4.1 Sampling Procedure
3.4.2 Participant Demographics
3.5 Procedure
3.6 Analysis of Data
3.7 Summary
Chapter 4 Findings
i

4.1 Introduction	53
4.2 Frequency of Use of Guided IBL	55
4.3 Teacher Developmental Factors	56
4.3.1 Participant Perceptions in Regard to Teacher Developmental Factors	56
4.3.2 Professional Development in Guided IBL	60
4.3.3 Definition, Models and Examples of Guided IBL	61
4.3.4 Teachers' Past Experiences in Using Guided IBL	63
4.3.5 Preservice Training in Guided IBL and Industry or Science Research Expe	rience66
4.4 Teacher Attribute Factors	69
4.4.1 Participant perceptions in regard to teacher attribute factors	70
4.4.2 Teachers' Personal Beliefs Toward IBL	72
4.4.3 Teachers' Knowledge of IBL	75
4.4.4 Teacher Confidence in Using Guided IBL	77
4.5 Student Factors	
4.5.1 Participant Perceptions in Regard to Student Factors	79
4.5.2 Student and Parent Expectations	
4.5.3 Student Behaviour and Motivation	
4.5.4 Student Prior Knowledge and Skills	
4.6 Other Educational Factors	
4.6.1 Participant Perceptions in Regard to Other Educational Factors	
4.6.2 Textbooks and Teaching Resources	
4.6.3 Laboratory Resources and Equipment	
4.6.4 Classroom and Instructional Time	
4.6.5 NESA Syllabi and Requirements	
4.6.6 External State Wide Assessments	
4.6.7 Programming and Planning Time	
4.6.8 Internal School Assessments	
4.6.9 Whole School Programs and Curriculum	
4.6.10 Science Teaching Colleagues, Supervisors and Senior Executive	
4.7 What are the Most Important Factors for Guided IBL Implementation?	110
4.8 Summary	116
Chapter 5 Discussion and Conclusion	
5.1 Introduction	
5.2 Summary of Research Findings	
5.2.1 Enablers of Guided IBL Implementation	
	ii

5.2.2 Barriers to Guided IBL Implementation	120
5.3 Factors that Fan the Flame	121
5.4 Significance	124
5.5 Implications of the study	131
5.6 Limitations of the Study	135
5.7 Further Research	136
5.8 Conclusion	138
References	141
Appendix: Survey used in this study	153

List of Figures

Figure 4.18 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include a teacher's negative personal beliefs toward guided IBL." (n=36)73
Figure 4.19 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by a
teacher's knowledge of guided IBL" (n=37)
Figure 4.20 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include a teacher's knowledge of guided IBL" (n=36)
Figure 4.21 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by the
confidence of a teacher toward using guided IBL" $(n = 37)$
Figure 4.22 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include a lack of confidence in a teacher toward using guided IBL" $(n = 36)$
Figure 4.23 Mean Value of Responses (and Standard Deviations) for Item 5 "guided IBL is
enabled by"
Figure 4.24 Mean Value (and Standard Deviation) of Responses for Item 8 "In my experience
barriers to guided IBL include"
Figure 4.25 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by student
and parent expectations" $(n = 37)$
Figure 4.26 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include student and parent expectations" (n=37)
Figure 4.27 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by student
motivation and behaviour" (n=37)
Figure 4.28 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include student motivation and behaviour" (n=37)
Figure 4.29 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by a
student's prior knowledge and skills" (n=37)
Figure 4.30 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include a deficit in student prior knowledge and skills" (n=36)
Figure 4.31 Mean Value of Responses (and Standard Deviations) for Item 5 "guided IBL is
enabled by"
Figure 4.32 Mean Value (and Standard Deviation) of Responses for Item 8 "in my experience
barriers to guided IBL include"
Figure 4.33 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by
textbooks and teaching resources" (n = 37)
Figure 4.34 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include available textbooks and teaching resources" $(n = 36)$
Figure 4.35 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by
available laboratories and equipment" (n=37)93
Figure 4.36 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include available laboratories and equipment" (n = 36)93
Figure 4.37 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by
available instructional and classroom time" (n=37)95
Figure 4.38 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include available instructional and classroom time" (n=36)95
Figure 4.39 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by NESA
syllabi and requirements" (n=37)97
Figure 4.40 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include NESA syllabi and requirements" (n=36)

Figure 4.41 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by external
state wide assessments (HSC, NAPLAN)" (n=37)100
Figure 4.42 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include external state wide assessments (HSC, NAPLAN)" (n=36)100
Figure 4.43 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by
available programming and planning time" (n=37)102
Figure 4.44 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include available programming and planning time" (n=36)103
Figure 4.45 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by internal
school assessments" (n=37)105
Figure 4.46 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include internal school assessments" (n=36)105
Figure 4.47 Percentage Distribution of Responses to Item 5 "guided IBL is enabled by the
whole school curriculum, programs and expectations" (n=37)106
Figure 4.48 Percentage Distribution of Responses to Item 8 "in my experience barriers to
guided IBL include the whole school curriculum, programs and expectations" (n=36)107
Figure 4.49 Average Percentage Distribution of Responses to Item 5 in Relation to Science
Teaching Colleagues, Supervisors and School Senior Executive (n=37)108
Figure 4.50 Average Percentage Distribution of Responses to Item 8 in Relation to Science
Teaching Colleagues, Supervisors and School Senior Executive (n=36)109
Figure 4.51 Mean Values of Responses to Survey Item 5 "guided IBL is enabled by"112
Figure 4.52 Mean Values of Responses to Survey Item 8 "In my experience barriers to guided
IBL include"
Figure 5.1 Framework Emerging from this Study Showing Teacher Perceptions of Factors that
Affect Implementation of Guided IBL in Secondary School Science
Figure 5.2 Example of a Guided IBL Implementation Cycle, Informed by this Study134

List of Tables

Table 2.1	Modified Version of the Four-Level Model of Inquiry (Bell et al., 2005)1	.7
Table 2.2	Alternative Version of Levels of Inquiry (Blanchard et al., 2010)1	8
Table 2.3	Levels of Openness in Inquiry Teaching (Jiang & McComas, 2015)1	8
Table 2.4	Factors from the Literature Linked to a Positive Effect on IBL Implementation2	28
Table 2.5	Factors from the Literature Linked to a Negative Effect on IBL Implementation2	29
Table 4.1	Item Eleven Response Themes and Count11	.4
Table 4.2	Summary of Participant Perceptions in Regard to Enablers and Barriers of Guided	
IBL Imple	mentation11	7
Table 5.1	Factors Affecting (Generic) IBL and Guided IBL Implementation12	26
Table 5.2	Guiding Questions for Consideration when Embarking on and Evaluating Guided	
IBL Imple	mentation13	33

Abstract

There is growing concern regarding school students developing increasingly negative attitudes to science during their secondary school experiences and disengaging with senior secondary and tertiary science subjects. The implementation of guided inquirybased learning (IBL) to deliver science curriculum is believed to be an effective method to increase attitude, engagement and participation in science. In this study, guided IBL is defined as a level of science inquiry in which students investigate scientific questions given to them by teachers, using a procedure of their own design to collect data that they analyse to create their own answers. This study investigated the frequency of use of guided IBL in science classrooms and teacher perceptions about factors that affect the implementation of guided IBL pedagogy in the delivery of the NSW science curriculum. Thirty nine participants volunteered to complete an online survey. The survey consisted of both open and closed questions and data was analysed using descriptive analysis. Findings indicate that guided IBL may currently be used more often than expected with more than half of the participants reporting that they utilise guided IBL at least once per topic per class. Participants indicate that many factors enable guided IBL including teacher professional development, teachers' positive personal beliefs toward guided IBL and available laboratory resources and equipment. And surprisingly, despite the language of inquiry permeating the new NSW science syllabuses for the Australian curriculum, these new syllabuses as well as preparation for external exams are perceived as barriers to guided IBL implementation.