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Abstract: Vehicle sideslip angle is a major indicator of dynamics stability for ground vehicles; but it is immeasurable with
commercially-available sensors. Sideslip angle estimation has been the focus of intensive research in past decades, resulting in
a rich library of related literature. This study presents a comprehensive evaluation of state-of-the-art sideslip angle estimation
methods, with the primary goal of quantitatively revealing their strengths and limitations. These include kinematics-, dynamics-
and neural network-based estimators. A hardware-in-loop system is purposely established to examine their performance under
four typical manoeuvres. The results show that the dynamics-based estimators are suitable at low vehicle velocities when tires
operate in the linear region. In contrast, the kinematics-based methods yield superior estimation performance at high vehicle
velocities, and the inclusion of the dual GPS receivers is beneficial even when there is large disturbance to the steering angle.
Of utmost importance, it is experimentally manifested that the neural network-based estimator can perform well in all
manoeuvres once the training datasets are properly selected.

1 Introduction
In order to improve vehicle safety and reduce road accident
casualties, active control systems (ACSs) have been rapidly
developed and increasingly adopted in mass production vehicles [1,
2]. These ACSs mainly include the active steering system (ASS)
[3, 4], electronic stability controller (ESC) [5], direct yaw moment
control [6], acceleration slip regulation [7] and the like. They can
be utilised independently or in combination to enhance handling
performance and stability of vehicles. Large-scale applications of
ACSs are foreseeable with the development of automotive
electrification and autonomous driving technology [8–10]. A
prerequisite for efficient functionalities of these ACSs is accurate
and real-time acquisition of vehicle sideslip angle that is indicative
of vehicle dynamics stability [11, 12]. It can also be used as a
control variable [13, 14]. However, it is commercially prohibitive
to obtain the sideslip angle via direct measurements such as using
high-precision optical sensors and combined inertial navigators.
This necessitates the development of enabling estimation schemes
based on conventional sensor suites.

Vehicle sideslip angle is strongly related to kinematic and
dynamic responses of vehicles. It is expressed as the arc-tan
function of the ratio of the lateral over the longitudinal vehicle
velocity [11]. Longitudinal vehicle velocity can be obtained from
global position system (GPS) signal or from integrating wheel
rotational speed; but direct acquisition of the lateral velocity from
the GPS signal is unattainable due to low signal-to-noise ratio
(SNR) [15].

A rich library of previous works on sideslip angle estimation
has been presented in the literature, which can be classified into
two categories, i.e. model- and neural network (NN)-based
methods. For the former [16], both kinematics and dynamics
models can be used to describe the relationship between vehicle
sideslip angle and other vehicle parameters and/or states [17]. The
key difference lies in that tire forces are usually accounted for in
dynamics models so that yaw and lateral motions can be linked in
the sideslip angle description [18]. The performance of model-
based the sideslip angle estimators is subject to vehicle modelling
accuracy and sensoring capability. However, the non-linearity of
the used vehicle models and their complex coupling effects with

ever-varying driving conditions render it challenging to obtain
satisfying estimation performance.

NN models can be utilised to delineate vehicle dynamics with
no need of knowing intrinsic vehicle parameters. With an
appropriate model structure and rich and diverse training datasets,
NN-based methods show great potential for sideslip angle
estimation as indicated in some preliminary studies [19]. Apart
from direct sideslip angle estimation, the estimated results can also
serve as a pseudo-estimate that is reckoned as a priori of an
integrated model-based estimator [20]. This is termed as pseudo
multi-sensor fusion. However, the requirements for the quality and
quantity of the training data significantly limit their applicability.
On one hand, oversized training datasets and complicated model
structure mean high computational burden, which makes it
infeasible for real-time implementation in embedded controllers
[16]. On the other hand, the scarcity of competent training datasets
that can inclusively represent comprehensive driving scenarios may
lead to the under-fitting problem. In recent years, with the rapid
development of intelligent transportation systems (ITSs) and
vehicle-to-vehicle and vehicle-to-infrastructure techniques can
provide additional information for enhancing sideslip angle
estimation performance [21–23].

There are already several review papers available in the
literature, covering multi-faceted research on vehicle sideslip angle
estimation [16, 24–27]. However, there is lack of study to
systematically examine the performance of state-of-the-art
estimation methods in a quantitative manner. Besides, a detailed
analysis on the advantages and limitations of each method based on
comprehensive experimentation is also absent.

In order to bridge the mentioned gap, this study presents a
comprehensive evaluation of the exiting vehicle sideslip angle
estimation methods including kinematics-, dynamics- and NN-
based estimators. Their respective characteristics are summarised
and analysed based on comprehensive hardware-in-loop (HIL)
experimentation. In particular, specific application scopes for each
method are provided.

The remainder of the paper is arranged as follows. Section 2
gives an overview of the commonly used sideslip angle estimation
methods. Section 3 elaborates on the detailed formulations of each
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method. Section 4 presents simulation results and gives in-depth
analysis, followed by the key conclusions summarised in Section 5.

2 Overview of sideslip angle estimation methods
Vehicle sideslip angle is calculated based on the accurate
knowledge of the longitudinal and lateral vehicle velocities. It can
be expressed with different formulations such as

β = arctan
vy

vx
(1)

β = ν − ψ (2)

β =
α f + δ f −

aωz

vx

αr +
bωz

vx

(3)

where β is the vehicle sideslip angle, vx and vy are the longitudinal
and the lateral vehicle velocity,  and  are the heading angle and
the yaw angle of the vehicle, αf and αr are the sideslip angles of the
front and rear tires, δf is the steering angle of the front wheels, z is
the yaw rate of the vehicle, and a and b are the distances between
the centre of gravity (CG) to the front and the rear axle,
respectively.

For the expression in (1), the longitudinal vehicle velocity can
be readily inferred based on the rotational speed and effective
radius of wheels [28], which makes it a core to precisely acquire
the lateral velocity. As for (2), the vehicle heading angle is
available in GPS signal, and the yaw angle can be derived by the
yaw rate integration. In (3), the steering angle of the front wheels
and the longitudinal velocity and yaw rate of the vehicle are all
measurable while the sideslip angles of the front and rear wheels
are determined by the lateral tire force and tire properties. Apart
from the above-mentioned expressions, sideslip angle is also
subject to other vehicle states such as lateral accelerations and roll
rate. The complex relationship between sideslip angle and other
vehicle parameters and/or states makes it extremely difficult to
achieve sideslip angle estimation in real time.

2.1 Kinematics-based methods

Kinematics-based methods mainly concern with kinematic vehicle
states including velocities and accelerations. In this aspect, Chen
and Hsieh [17] proposed a 2-DOF kinematic model considering
wheel speeds and measurable signals from an inertial measurement
unit (IMU) such as longitudinal and lateral accelerations and yaw
rate of the vehicle. Kim and Ryu [29] utilised a similar method by
incorporating the longitudinal velocity variation. Farrelly and
Wellstead [30] further improved the convergence performance of
the lateral velocity estimator by combining the state and
observation equations. The high-precision sensors for vehicle
motion measurement can provide additional information to elevate
estimation performance. For instance, Madhusudhanan et al.
extended the vehicle model with pitch and roll motions [31, 32]. In
order to cope with sensor noises, Selmanaj et al. [33, 34] employed
a heuristic scheduling method to improve the robustness of a
kinematics-based estimator.

With the development of the global navigation satellite system,
GPS has been widely used in mass production vehicles [35]. On
top of this, Bevly et al. [36] proposed a lateral velocity estimation
method by combining a GPS with an IMU. They further included
the heading angle from the GPS and the yaw angle from the IMU
for better estimation effect [37]. Guo et al. [38] extended system
state space with the biases from measured lateral and longitudinal
accelerations in order to improve robustness.

Apart from GPS, the magnetometer is another sensor that can
be utilised for sideslip angle estimation. In [39, 40], Yoon et al.
estimated yaw and roll angles by combining angular rates and
magnetic field measurements for longitudinal and lateral velocity
estimations.

However, sideslip angle estimation schemes based on GPS are
usually compromised by the low update rate problem. To solve this
problem, Yoon and Peng employed GPS with dual receivers to
increase the update rate [41]. The receivers are installed so that the
yaw angle rate and longitudinal and lateral velocities can be
directly derived. An extended Kalman filter (EKF) is employed to
modify the derivations with measurements from an IMU.
Benefiting from the wide application of GPS, the combination of
GPS and IMU shows great potential for improving the accuracy of
sideslip angle estimation [42].

2.2 Dynamics-based methods

The major characteristic of dynamics-based methods is the
involvement of the longitudinal and lateral tire forces. There are a
variety of tire models available to describe tire forces, each with
their own strengths and limitations. A plethora of observers can be
used and an appropriate combination of a tire model and an
enabling observer holds the key to accurate sideslip angle
estimation. The commonly used observers include EKF [18, 42–
58], unscented Kalman filter (UKF) [50, 55, 59–64], sliding mode
observer (SMO) [42, 44, 45, 65, 66] and the forth [67–79]. In order
to further improve estimation accuracy, the underlying vehicle
parameters are simultaneously estimated in some studies.

Vehicle dynamic models combined with linear tire models are
widely utilised. For instance, Fukada [80] proposed a transfer
function to describe the relationship between sideslip angle and
other vehicle states using a linear tire model. Stéphant et al. [42,
45, 65] compared the difference between the linear and nonlinear
vehicle models, and the impact of modelling accuracy on sideslip
angle estimation was underscored. Nevertheless, the linear tire
model has limited accuracy especially when tires enter into the
non-linear region. Some studies focused on improving observer
design. For example, Cheli et al. integrated a kinematic-integral
estimator and a dynamics-based observer based on fuzzy logic
[81]. Similarly, Bechtoff et al. used the EKF to estimate sideslip
angle based on conventional ESC sensors without heuristics [53].
Strano et al. testified that the state-dependent-Riccati-equation
filter could be a valid selection as the knowledge of intrinsic
parameters is not required [77]. Chen et al. verified several
observers on an in-wheel-motor-drive electric vehicle (IWMD EV)
since the longitudinal force and velocity at each wheel can be
accurately acquired [56, 74, 75].

The above-mentioned studies invariably considered the lateral
tire force as a linear function of tire slip angle, which is given by

F f y = C f α f

Fry = Crαr

(4)

where Ffy and Fry are the lateral forces of the front and rear tires,
and ωf and ωr are the cornering stiffnesses of the front and rear
tires. However, the linear model is inaccurate when the slip angle
becomes large.

In order to improve the accuracy of vehicle dynamics models,
some adaptive algorithms such as the recursive least square (RLS)
were adopted to online estimate vehicle parameters such as
cornering stiffness [44, 50, 52, 54, 57, 82]. In this aspect, linear tire
models with norm-bounded uncertainty were employed in [72, 73,
83]. The uncertain parameters were validated through experimental
tests, which endows the linear tire model with higher reliability. In
[43, 48, 59, 60, 68, 70, 71], the Dugoff tire model was employed to
explicitly express the lateral and longitudinal tire forces as the
functions of the tire slip angle, slip ratio, vertical load and tire–road
friction coefficient. Like the Dugoff tire model, the Magic formula
was also popularly employed as indicated in [47, 49, 51, 58, 61–63,
76, 84], which derives the lateral and longitudinal tire forces as the
functions of several tire states.

With the development of sensoring technology, tire forces can
be directly measured. For instance, Madhusudhanan et al. and Nam
et al. used a load bearing sensor and the MSHub units to obtain tire
forces, respectively [12, 44, 85, 86]. However, the measured lateral
and longitudinal tire forces are not suitable for sideslip angle
estimation in mass production vehicles since these sensors are
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commercially prohibited and also highly susceptible to road
adhesion coefficient variation.

With respect to observer design, Madhusudhanan et al. utilised
the linear KF based on measured lateral forces [85, 86] for side slip
angle estimation. For non-linear dynamics models, the EKF is the
most widely utilised observer [18, 42–45, 47–54, 56–58].
However, due to the first-order approximation inherent with the
Jacobian matrix calculation, the linearisation error persistently
exists in the EKF. Instead, the UKF can use the UT transform to
avoid linearisation [48, 55, 59–64], and shows higher accuracy.
Apart from the KF-based observers, other non-linear observers are
also applied. For instance, Chen et al. discussed the relationship
between the orders of the employed vehicle model, and proposed a
full-order SMO [66]. Zhang et al. established an energy-to-peak
filter which formulates the relationship between sideslip angle and
measured yaw rate [72]. Ding et al. employed a Luenberger
observer with tuned parameters in specific manoeuvres [68]. Gao
et al. proposed a high gain observer based on input–output
linearisation, which exhibits higher accuracy than the EKF [69].
Chen et al. proposed an online gradient descent algorithm which
can suppress the influence of sensor noises, longitudinal velocity
variation and tire force non-linearity [76].

Sideslip angle can be estimated in combination with numerous
road states through co-estimation schemes. In [57, 70, 82], road
bank angle is estimated in combination with sideslip angle, which
can improve the stability of observers in extreme manoeuvres.
Similarly, road friction coefficient can also be online replenished to
better describe the tire–road interactive forces [47, 67–69, 76, 87].

2.3 NN-based method

The efficacy of the existing model-based estimation methods is
strongly sensitive to model parameters and is only verified under a
limited range of driving conditions. Moderate model parameter
deviations may render them diverge in complex and ever-varying
driving conditions. To meet this challenge, NN-based methods
represent a promising solution. With the development of
decentralised control in vehicle-to-everything and the improvement
of on-board controllers in processing capability [22], the feasibility
of NNs for vehicle state estimation and control becomes possible.
Generally, NNs have the ability to emulate the complex
relationship between the inputs and outputs, and are also robust to
measurement drift and noises [16].

Various NN models have been presented for vehicle sideslip
angle estimation in the literature. For example, Kato et al. first
applied a NN model in combination with a kinematics-based
estimator for sideslip angle estimation [88]. In order to improve
estimation accuracy, Hideaki et al. further considered the input data
in past time steps, and proposed a time-delay NN [89].
Analogously, Du et al. used a back-propagation NN to predict
sideslip angle [90]. The results show that the NN-based estimation
algorithm can yield good performance at high vehicle velocities.
Similarly, Chindamo et al. put forward a succinct approach to
obtain the training datasets for NN model training in specific
manoeuvres [91]. Torben Gräber et al. [92] presented a supervised
machine learning scheme that consists of a recurrent NN with
gated recurrent units, an additional input projection and a
regression head. The results show that the presented method
exhibits excellent estimation performance with good generalisation
over different tires, road surfaces and driving conditions. Miao et
al. presented a novel sideslip angle soft-sensor using the NN left
inversion to estimate sideslip angle for an IWMD EV [93].
Besides, different variants of modified NNs are also used to
improve the performance of sideslip angle estimation. For
example, Melzi et al. employed the feedback NN with time-delay
modules [19, 94].

The NN-based method is based on the signals measured by
onboard sensors. To improve estimation robustness, data
preprocessing or vehicle state identification is considered. In this
regard, Martino et al. employed the principle component analysis
(PCA) to reduce the number of dimensions of raw training data
[95]. Bonfitto et al. [96] presented a NN-based algorithm in
tandem with road condition identification.

Except for the above-mentioned methods, the post-processing
of the estimation results can also contribute to estimation
performance improvement. Boada et al. used an integrated method
consisting of the adaptive neuro-fuzzy inference system (ANFIS)
and the UKF to estimate sideslip angle [97, 98]. The output of the
ANFIS is regarded as a pseudo-estimate, and the UKF-based
dynamic model is employed as a noise filter to minimise the mean
square error of the estimate. Novi et al. [99] proposed a similar
method, which combines a NN with an UKF observer.

3 Sideslip angle estimation methods
In this section, several sideslip angle estimation methods are
presented in greater details.

3.1 Kinematics-based methods

Two kinematics-based methods are introduced and compared, and
they are the GPS-IMU fusion and the DPGS-IMU fusion.

3.1.1 GPS-IMU fusion: The heading angle of the vehicle is
available in the GPS signal, and the yaw angle can be derived by
integrating the measured yaw rate from the IMU as shown in (5).
The sideslip angle can thus be calculated as shown in (6).
However, the direct integration can be biased by the measurement
noises, which necessitates the preprocessing of the GPS and IMU
signals. A kinematic model is illustrated in Fig. 1, in which N
means the direction of the North in the earth coordinate and vG is
the vehicle velocity provided by the GPS signal.

ψ = ∫ ωz (5)

βint = ν + ψ (6)

Based on the sideslip angle obtained based on direct integration,
the lateral and longitudinal velocities vx and vy in the vehicle
coordinate can be obtained by

vx = vGcos βint

vy = vGsin βint
(7)

where βint is the sideslip angle calculated by the integration
method. 

The lateral velocity can be derived by

v̇y(t)

ȧb

=
0 −1

0 0

vy(t − 1)

ab

+
1

0
(ay − ωzvx)

vy(t) =
1 0

vy(t)

ab

if GPS is updated

vy(t − 1) if GPS is not updated

(8)

where ab is the measurement bias of the lateral acceleration.
A Kalman filter presented from [31] is applied to integrate the

measurements of GPS and IMU, which would reduce the
measurement error and avoid the drift of the estimate. The filter is
formulated by

LKF(k) = PKF(k)CT(CPKF(k)CT + RKF)−1

xKF(k) = xKF(k) + LKF(k)(yKF(k) − CxKF(k − m))

PKF(k) = (I − LKF(k)C)

(9)

where C = [1, 0]T is the output matrix, xKF is the state vector, PKF
is the covariance matrix, RKF is the measurement noise, LKF is the
Kalman gain, yKF is the output signal which is the lateral velocity
and m means the last time step when GPS is updated.
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The GPS update rate for mass production vehicles is no more
than 20 Hz while the control period of a typical vehicle control unit
(VCU) is 20 or 10 ms. There is clearly a mismatch here.

3.1.2 DGPS-IMU fusion: Differential global positioning system
(DGPS) is a special GPS with two independent antennas, which
has a higher update rate. The two independent antennas are
installed on the front and rear parts of the vehicle as shown in
Fig. 2, where N and E are the North and the East in the earth
coordinate [41, 100]. 

Based on [41, 100], the DGPS-IMU fusion method is
established. Using the signals from the two antennas, the
relationship between the velocity and yaw rate at CG and the
installation positions can be given by

v f e = vxcos ψ − (vy + aωz)sin ψ

v f n = vxsin ψ + (vy + aωz)cos ψ

vre = vxcos ψ − (vy − bωz)sin ψ

vrn = vxsin ψ + (vy − bωz)cos ψ

(10)

where vfe is the eastbound velocity measured by the front receiver,
vfn is the northbound velocity measured by the front receiver, vre is
the eastbound velocity measured by the rear receiver and vrn is the
northbound velocity measured by the rear receiver.

The sideslip angle can be further derived by

vx = v f ecos ψ + v f nsin ψ

vy = vresin ψ + vrncos ψ
(11)

ψ = arctan
v f e − vre

vrn − v f n
(12)

With the two independent GPS antennas, the yaw angle can be
directly calculated. The yaw angle is directly derived instead of
finding the singular points of (10), which is more computationally
efficient.

The eastbound and northbound velocities ve and vn can be
derived by

ve =
b

a + b
v f e +

a

a + b
vre

vn =
b

a + b
v f n +

a

a + b
vrn

(13)

The heading angle of the vehicle can be calculated based on the
eastbound and northbound velocities by

ν = arctan
vn

ve
(14)

Then, the sideslip angle can be derived based on (2).
The first two equations in (10) are used when the front GPS

receiver has measurement updates, and the latter two equations are
used when the rear GPS receiver has measurement updates. As the
two GPS receivers update themselves independently, an
asynchronisation problem exists. Thus, it is necessary to update the
output signal when either receiver has refreshed. In this way, the
DGPS update rate may become twice of the update rate of the
conventional GPS.

3.2 Dynamics-based methods

EKF- and UKF-based observers combined with optimised tire
models are introduced here for vehicle sideslip angle estimation as
the representatives of the dynamics-based method. It is worth
mentioning that the dynamics-based methods presented in this
study are selected from [74, 82, 100].

The observers are established based on a five degrees of
freedom (5-DOF) vehicle model as illustrated in Fig. 3, which
includes the longitudinal, lateral and yaw motions of the vehicle
and the rotations of the front and rear wheels, where Ffx and Frx are
the longitudinal forces of the front and rear wheels. 

Based on the D'Alembert principle, the equations of motion are
given as

may = 2F f ycos δ + 2Fry (15)

Izω̇z = 2aF f ycos δ − 2bFry (16)

ay = v̇y + ωzvx (17)

Fig. 1  Kinematics vehicle model
 

Fig. 2  DGPS kinematics vehicle model
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ax = v̇x − ωzvy (18)

where Iz is the rotational inertia of the vehicle, and ax and ay are the
longitudinal and lateral accelerations at CG.

The sideslip angles of the front and rear tires can be derived by

α f = β +
aωz

vx
− δ (19)

αr = β −
bωz

vx
(20)

Based on (1) and (15)–(20), the equations of motion of the vehicle
can be derived as [82]

v̇y =
β1

vx
vy +

β2

vx
− vx ωz + β3δ (21)

ω̇z =
β4

vx
vy +

β5

vx
ωz + β6δ (22)

v̇x = ax + ωzvy (23)

where β1 = −2(ωfcosδ + ωr)/m, β2 = 2(−ωfacosδ + ωrb)/m, β3 = 
2ωfcosδ/m, β4 = 2(ωfacosδ + ωrb)/Iz, β5 = −2(ωfa2cosδ + ωrb2)/Iz,
β6 = 2ωfacosδ/Iz.

Tire model selection has significant impact on overall accuracy
of the vehicle model. To promote the accuracy, an adaptive method
for tire cornering stiffness identification is introduced as

mbay + Izω̇z = m(a + b)ay

C f

C f + Cr

+2(a + b) δ −
(a + b)ωz

vx

C f Cr

C f + Cr

(24)

The cornering stiffness of the rear tires is proportional to that of the
front tires, which is given by

Cr = kcC f (25)

where kc is the proportion factor.
The RLS is employed to calculate the cornering stiffness, which

is given by

θ(k) = C
^

f (k) (26)

φT(k) = 2
kC(a + b)

1 + kC
δ(k) −

(a + b)ωz(k)
vx(k) (27)

yRLS(k) = may(k)
kCb − a

1 + kC
+ Izω̇z(k) (28)

where θ(k) is the variable to be observed, φT(k) is the recursive
factor, yRLS(k) is the output vector and ω̇z is the yaw acceleration,
which can be measured by IMU.

The iteration process is as follows:

KRLS(k) =
PRLS(k − 1)φ(k)

λ f I + φT(k)PRLS(k − 1)φ(k)
(29)

PRLS(k) =
1
λ f

(I − KRLS(k)φT(k))PRLS(k − 1) (30)

θ(k) = θ(k − 1) + KRLS(k)(yRLS(k) − φT(k)θ(k − 1)) (31)

where KRLS is the Kalman gain, PRLS is the covariance matrix, I is
the unit matrix, and f is the forgetting factor.

Based on the adaptive cornering stiffness factor, βi (i = 1, 2, 3,
4, 5, 6) become time-varying parameters.

Then, the state and observe equations of the sideslip angle
observer can be derived as

xk = f (xk − 1, uk − 1) + wk − 1 (32)

zk = h(xk) + vk (33)

where f is a non-linear state equation based on (21)–(23), h is the
observation equation, xk = [vy(k), z(k), vx(k)]T is the state vector,
zk = [ω^

z k , v^x k ]T is the observation vector, uk = [δ(k), ax(k),
ay(k)]T is the input vector, wk is the process noise with the
covariance of Qk and vk is the measurement noise with the
covariance of Rk.

Due to the existence of sensor noises, an EKF filter is used to
improve the stability of the observer.

The equations of state update are given by

x^k k − 1 = f (xk − 1, uk − 1) + wk − 1 (34)

Pk k − 1 = Fk k − 1Pk k − 1Pk k − 1
T + Qk − 1 (35)

where Fk|k−1 is the Jacobian matrix of the state equation with
respect to state xk|k−1, and P is the covariance matrix.

The equations of measurement update are given by

Kk = Pk k − 1Hk
T(HkPk k − 1Hk

T + Rk)
−1 (36)

x^k = x^k k − 1 + Kk(yk − zk k − 1) (37)

Pk = (I − KkHk)Pk k − 1 (38)

where Hk is the Jacobian matrix of the observation equation with
respect to state xk−1, Kk is the Kalman gain, yk = [ z(k), vx(k)]T is
the measurement in which the yaw rate is measured by IMU and
the longitudinal velocity by the wheel speed sensor.

Fig. 3  5-DOF dynamic vehicle model
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The UKF is also widely employed for sideslip angle estimation.
In the UKF, the probability density distribution of the non-linear
function and the posterior probability density of the state are
approximated by a series of samples, which maintains high-order
terms. The sigma points are generated by

χk − 1 k − 1 =

x̄k − 1 k − 1
i , i = 0

x̄k − 1 k − 1
i + (n + λ)P¯ k − 1 k − 1

i , i = 1, …, n

x̄k − 1 k − 1
i − (n + λ)P¯ k − 1 k − 1

i , i = n + 1, …, 2n

(39)

The states are predicted by

χk k − 1
i = f i( χk − 1 k − 1, uk − 1) (40)

x^k k − 1
i = ∑

i = 0

2n

Wi
m

χk k − 1
i (41)

γk k − 1
i = hi( χk k − 1

i ) (42)

y^k k − 1
i = ∑

i = 0

2n

Wi
m

γk k − 1
i (43)

The covariance is updated by

P
^

k k − 1

i
= ∑

i = 0

2n

Wi
c( χk k − 1

i − x^k k − 1)( χk k − 1
i − x^k k − 1)

T + Qk (44)

The measurement update is given by

Pz, k = ∑
i = 0

2n

Wi
c(γk k − 1

i − z^k k − 1
i )(γk k − 1

i − z^k k − 1
i )T + Rk (45)

Pxz, k = ∑
i = 0

2n

Wi
c( χk k − 1

i − x^k k − 1
i )(γk k − 1

i − z^k k − 1
i )T (46)

Kk = Pxz, kPz, k
−1 (47)

x^k = x^k k − 1 + Kk(yk − y^k k − 1) (48)

where χk−1|k−1 and γk|k−1 are the sigma points constructed from the
unscented transformation, and Wi

m and Wi
c are the weights, which

are given by

W0
m =

κ

κ + n

W0
c =

κ

κ + n
+ (1 − αw

2 + βw)

Wi
m = Wi

c =
κ

2(κ + n)
, i = 1, . . . , 2n

(49)

where κ = αw
2

n + λ − n, αw,  and βw are the factors that influence
the performance of the UKF.

3.3 NN-based method

The NN-based method is based on our previous publication [101].
The relationship between sideslip angle and other vehicle
parameters is difficult to be fully and accurately represented. The
longitudinal vehicle velocity can be acquired via the accurate
knowledge of rotational speed and effective radius of wheels. The
longitudinal velocity, longitudinal acceleration, lateral acceleration,
roll rate and yaw rate of the vehicle, the steering angle of the front
wheels and the rotational speeds of wheels may have influence on
vehicle sideslip angle. Among these motion states, the wheel
speeds can be obtained from the wheel speed sensors, the
longitudinal speed can be obtained from the VCU based on the
wheel speeds, the longitudinal acceleration, lateral acceleration,
yaw rate and roll rate of the vehicle can be measured by IMU and
the steering angle can be measured by the steering angle encoder.

The CarSim software is used to acquire the raw data to train the
NN. As shown in Table 1, extreme manoeuvres are executed in
order to obtain sufficient data for model training under critical
conditions [102]. 

Various sensor signals that are implicitly correlated with vehicle
sideslip angle are available from CarSim. In order to reduce the
number of model input features and improve computational
efficiency, a selection of signals with high correlation is necessary.
The PCA method is used to verify whether the parameters have
high relevance with sideslip angle [95]. In this work, since the PCA
is not suitable for online estimation in the VCU, the covariance
matrix is used to analyse the correlation between different
parameters and vehicle sideslip angle, in which high eigenvalue
indicates high correlation and vice versa.

Table 2 shows that the first row of the covariance matrix
between the selected input features and the outputs. It is obvious
that the eigenvalue of the longitudinal velocity is obviously smaller
than the others, so the longitudinal velocity is removed from the
input features.

A non-linear autoregressive exogenous NN (NARX-NN) is
proposed for vehicle sideslip angle estimation, and its structure is
illustrated in Fig. 4. The vehicle sideslip angle indicates the lateral
stability state of the vehicle, which can be influenced by the inputs

Table 1 Training manoeuvre
steering angle 90° 0.25 Hz sinusoidal input
speed 20–130 km/h
friction coefficient 0.4, 0.7, 1.0

 

Table 2 First row of covariance matrix
Covariance Sideslip angle
sideslip angle 1
longitudinal velocity −3.080*10−4

left front wheel speed −0.0040
left rear wheel speed −0.0111
right front wheel speed 0.0042
right rear wheel speed 0.0115
longitudinal acceleration −0.0070
lateral acceleration −0.5241
yaw rate −0.2320
roll rate −0.0565
steering angle −0.2001
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at several previous time steps. Therefore, a time delay module is
also included.

Then, the NARX-NN can be described as a function of the
estimated sideslip angle with respect to other input features by

β
^
(k) = f NARX(ω f r(k), ωrr(k), ω f l(k), ω f l(k),

ax(k), ay(k), ωz(k), ωx(k), δ(k), . . .

ω f r(k − nd), ωrr(k − nd), ω f l(k − nd), ω f l(k − nd),

ax(k − nd), ay(k − nd), ωz(k − nd), ωx(k − nd), δ(k − nd))

(50)

where i,j are the rotational wheel speeds with i = f, r and j = l, r,
x is the roll rate and nd represents the number of delayed time

steps. A larger nd can contribute to better robustness, but the
instantaneity may be compromised if it is too large.

4 Comparison studies
To compare the performance of the above-mentioned sideslip angle
estimators, a HIL system is set up as shown in Fig. 5. The CarSim
software is utilised to simulate vehicle response with high fidelity.
The ETAS Labcar is employed as a real-time PC in which the
established vehicle models are run. A rapid prototyping controller
PI OpenECU M670 is used as the VCU, in which the estimators
are implemented. The vector VN1630 is used for data logging.

Five commonly used estimators are systematically examined
and compared. They are the GPS-IMU, DGPS-IMU, EKF-, UKF-
and NN-based estimators, among which the GPS-IMU and DGPS-
IMU represent the kinematics-based methods and the EKF- and
UKF-based estimators exemplify the dynamics-based approaches.
Four typical manoeuvres including the double lane change (DLC),
Slalom, Fishhook and roundabout network are used to
comprehensively represent the driving situations under which
sideslip angle estimators are necessarily executed. The selected
manoeuvres can cover typical driving conditions in which the
ACSs could be triggered once the sideslip angle is well estimated.
Various road adhesion coefficients ranging from 0.4 to 0.9 are used
in the simulation to examine the performance of each estimator
under snow-covered, wet and dry road conditions. The vehicle
velocities range from 30 to 130 km/h and are set constant
throughout each test process. Combined with different vehicle
velocities and road adhesion coefficients, the test scenarios are

sufficient under each driving manoeuvre. In addition, it is worth
mentioning that the road slope is set zero and the road surface is set
to be asphalt.

The root-mean-square error (RMS) is employed to delineate the
estimation accuracy, which is given by

RMS j =
∑i = 1

Nc (βreal, i − β j, i)
2

Nc

(51)

where Nc is the sampled points, βreal is the real sideslip angle and βj
is the estimated sideslip angle with j = 1, 2, ..., 5.

To further evaluate the estimation performance, the mean
absolute error (MAE) is also employed, which is given by

MAE j = ∑
i = 1

Nc βreal, i − β j, i

βreal, i

1
Nc

(52)

The simulation results are illustrated in figures in order to
intuitively illustrate the comparison results. The quantitative results
are given in Table 3. 

The performance of each estimator is quantitatively compared
regarding accuracy, robustness and generalisation capability with
the detailed results depicted in Table 4. The generalisation
capability refers to the applicability of an estimator when used for
other vehicle models and/or under different test conditions. The
accuracy is evaluated by the MAE under all test manoeuvres, and
the robustness is assessed by the variance of the MAE, which is
given by

D(β) =
∑(β − β̄)

Nm
(53)

where Nm is the number of test manoeuvres and β̄ is the mean
value of the estimated sideslip angle.

4.1 Double lane change manoeuvre

A DLC maneuverer is constructed according to the Standard ISO
3888-1 as shown in Fig. 6. A set of vehicle velocities ranging from
30 to 90 km/h and two road friction coefficients are used to
evaluate the estimation performance of each estimator.

Fig. 4  Structure of NARX NN
 

Fig. 5  HIL test system for vehicle sideslip angle estimation evaluation
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Table 3 MAE of each estimator under different manoeuvres
Velocity, km/h GPS/IMU DGPS/IMU EKF UKF NN
DLC μ = 0.8
30 0.049321 0.042416 0.03418 0.019618 0.002113
40 0.054098 0.379924 0.058228 0.037732 0.00406
50 0.072036 0.320413 0.124998 0.111195 0.009414
60 0.139108 0.516144 0.560052 0.529595 0.031091
70 0.064926 0.493098 0.360492 0.354245 0.022603
80 0.03039 0.17454 0.214679 0.215412 0.015415
90 0.018509 0.054894 0.1339 0.137134 0.013145
100 0.017174 0.047932 0.173957 0.171724 0.01647
110 0.013952 0.036077 0.213866 0.207099 0.017347
120 0.011309 0.039288 0.218193 0.205826 0.017817
130 0.009234 0.056576 0.200477 0.19815 0.018419
DLC μ = 0.4
30 0.049434 0.042601 0.03315 0.01858 0.002118
40 0.055223 0.377564 0.068979 0.047462 0.004143
50 0.080687 0.354872 0.141243 0.130651 0.010541
60 0.181556 1.530162 0.646778 0.616943 0.040555
70 0.274547 3.177536 1.813273 1.762195 0.095825
80 0.069847 0.499086 0.640781 0.631784 0.035643
90 0.03435 0.08255 0.410646 0.408886 0.024908
100 0.020232 0.045072 0.284928 0.291391 0.019581
110 0.013477 0.032494 0.208336 0.206422 0.016786
120 0.010156 0.029087 0.165358 0.164405 0.016069
130 0.008394 0.026981 0.141057 0.126367 0.017127
slalom μ = 0.8
30 0.041371 0.078264 0.03936 0.032639 0.00193
40 0.051545 0.085238 0.099328 0.097499 0.003515
50 0.098761 0.116205 0.560216 0.603349 0.010245
60 0.081991 0.091533 1.10461 1.091249 0.014279
70 0.036959 0.047446 1.098476 0.966862 0.010359
80 0.023481 0.037748 0.892711 0.706615 0.009676
90 0.016909 0.036532 0.767371 0.766771 0.009408
100 0.013412 0.032832 0.412708 0.3866 0.009329
110 0.011462 0.031286 0.383302 0.173209 0.009494
120 0.010287 0.029643 0.358744 0.351531 0.009853
130 0.009449 0.028441 0.339238 0.125981 0.010415
slalom μ = 0.4
30 0.040952 0.080293 0.045223 0.036528 0.001918
40 0.044801 0.08007 0.107913 0.073515 0.003114
50 0.063518 0.084623 0.208011 0.201381 0.006557
60 0.163779 0.164713 1.019424 0.884979 0.023939
70 0.042387 0.061588 0.354966 0.325933 0.008608
80 0.023595 0.066823 0.254087 0.223668 0.006773
90 0.01815 0.059842 0.245216 0.211265 0.007111
100 0.01535 0.055851 0.242591 0.220523 0.007824
110 0.013448 0.060041 0.236715 0.194368 0.008616
120 0.012311 0.05617 0.23381 0.194344 0.009653
130 0.01145 0.053568 0.22865 0.228285 0.010925
fishhook μ = 0.7
30 0.023982 0.055685 0.073404 0.05383 0.007956
40 0.062771 0.09176 2.556534 2.411454 0.025931
fishhook μ = 0.9
30 0.023442 0.054654 0.065543 0.046463 0.008264
40 0.061823 0.067794 0.144647 0.118781 0.00764
roundabout network μ = 0.6
40 0.046894 0.035911 0.042204 0.04464 0.002716
50 0.182895 0.053224 0.216158 0.195106 0.00578
roundabout network μ = 0.9
40 0.046913 0.035955 0.106318 0.070566 0.00512
50 0.182895 0.053224 0.221151 0.168461 0.009505
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The estimation results under the high-adhesion road condition
and different vehicle velocities are shown in Fig. 7. It can be seen
that the vehicle velocity has significant impact on the performance
of all estimators. All the estimators can yield satisfying results at
the low velocity of 30 km/h as the MSE of each estimator is well
below 5%, which is superior than the estimation results reported in
[31, 57]. More detailed results can be found in the Table 3. At the
velocity of 30 km/h, the tires still work in the linear region and the
dynamics model is accurate. That can explain why the dynamics-
based estimators are of high accuracy. For the kinematics-based
methods, the estimation accuracy is also within an acceptable range
despite low SNR may to a limited extent curtail the performance.
The dynamics-based estimators exhibit an obvious estimation lag
when the velocity reaches 50 km/h. At the velocity of 70 km/h, the
dynamics-based estimators completely fail while the kinematics-

based estimators still have high estimation accuracy and the
measurement noise has diminishing influence with the increasing
vehicle velocity. In particular, the DGPS-IMU method outperforms
the GPS-IMU method due to its higher update frequency. The NN-
based estimator yields the best estimation performance at all
velocities.

In order to further evaluate the estimation performance under
the low road adhesion conditions, the DLC maneuverer is also
performed with the road friction coefficient of 0.4 at the velocities
of 70 and 90 km/h. The results are shown in Fig. 8. It can be seen
that the dynamics-based estimators cannot achieve effective
estimation at both velocities while the kinematics- and NN-based
estimators stage good estimation performance.

The RMSs of the presented estimators during the DLC
manoeuvre at different vehicle velocities and road adhesion

Table 4 Quantitative evaluations of the estimators
Estimators Accuracy Robustness Generalisation
GPS-IMU 0.000358 0.000358 high
DGPS-IMU 0.029240 0.029240 high
EKF -based 0.045002 0.045002 high
UKF-based 0.040688 0.040688 high
NN-based 0.000014 0.000014 low

 

Fig. 6  DLω manoeuvre
 

Fig. 7  Estimation results under the double lance change manoeuvre with the road friction coefficient of 0.8 at
(a) 30 km/h, (b) 50 km/h, (c) 70 km/h, (d) 90 km/h
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conditions are depicted in Fig. 9. It can be seen that the EKF- and
UKF-based estimators are effective only when the vehicle velocity
is well below 50 km/h, and the UKF has higher accuracy than the
EKF. The main reason lies in that the tire enters into the non-linear
region as the vehicle velocity surpasses 50 km/h during the
cornering. As well, the dynamics-based estimators are highly
dependent on the accuracy of the employed tire model. In contrast,
the NN-based estimator has the best estimation performance under
all the selected velocities, but its estimation error tends to increase
with the incrementing vehicle velocity. Besides, both the GPS-IMU
and DGPS-IMU can realise sideslip angle estimation under
different velocities while the estimation accuracy of the GPS-IMU
exhibits a continuous improvement along with the increasing
vehicle velocity. This can be ascribed to the enlarged SNR of GPS
signal.

4.2 Slalom manoeuvre

The slalom manoeuvre serves to assess the performance of the
estimators under continuous cornering situations. A sinusoidal
excitation with an amplitude of 90° and a frequency of 0.25 Hz are
imposed on the steering wheel. Again, the vehicle velocities are set
from 30 to 90 km/h, and the road friction coefficients of 0.4 and 0.8
are utilised.

The estimation results under the high road adhesion condition
are shown in Fig. 10. It can be seen that their estimation
performance is similar to that under the double lance change
manoeuvre. The dynamics-based estimators only avail at the
velocity of 30 km/h, while the kinematics- and NN-based are valid
under all the selected velocities.

Under the low road adhesion condition, the kinematics- and
NN-based estimators perform well in parallel with that under the
high road adhesion condition. The dynamics-based estimators
excel under the low road adhesion condition in comparison with
that under the high road adhesion condition. The non-linear

characteristics of tires become more profound with the increasing
lateral tire force. Under low road adhesion conditions, the
maximum lateral tire force is smaller than that under high road
adhesion conditions. Thus, the tire can exhibit more non-linear
characteristics under high road adhesion conditions than that under
low road adhesion conditions. This may account for the
performance gap illustrated by Figs. 10 and 11. 

The RMSs during the Slalom manoeuvre under different vehicle
velocities and road adhesion conditions are illustrated in Fig. 12. It
can be seen that all the estimators exhibit similar performance with
that under the DLC manoeuvre. However, the DGP-IMU estimator
performs much better in the Slalom manoeuvre than in the DLC
manoeuvre. This may result from a smaller proportion of the
straight driving.

4.3 Fishhook manoeuvre

A fishhook manoeuvre is constructed as shown in Fig. 13. The
employment of the fishhook manoeuvre is to assess the
performance of the estimators in sharp steering situations. The
vehicle velocities are set 40 and 50 km/h, and the road friction
coefficients of 0.7 and 0.9 are utilised.

The estimation results are shown in Fig. 14. It can be seen that
the NN-based estimator yields the best accuracy. Both the
kinematics- and dynamics-based estimators can overall realise
sideslip angle estimation; but there are obvious deviations on the
straight driving parts. Upon a close observation, the GPS-IMU
estimator outperforms the DGPS-IMU estimator on the straight
driving parts while vice versa on the cornering parts. The
dynamics-based estimators are only effective at the vehicle velocity
of 30 km/h, and the UKF has higher accuracy than the EKF. When
the velocity is above 40 km/h, both dynamics-based estimators fail
to converge.

The RMSs during the Fishhook manoeuvre under different
vehicle velocities and road adhesion conditions are illustrated in

Fig. 8  Estimation results under the double lance change manoeuvre with the road friction coefficient of 0.4 at
(a) 70 km/h, (b) 90 km/h

 

Fig. 9  Estimation RMSs during the DLω manoeuvre under the road friction coefficient of
(a)  = 0.4, (b)  = 0.8
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Fig. 10  Estimation results under the Slalom manoeuvre with the road friction coefficient of 0.8 at
(a) 30 km/h, (b) 50 km/h, (c) 70 km/h, (d) 90 km/h

 

Fig. 11  Estimation results under the Slalom manoeuvre with the road friction coefficient of 0.4 at
(a) 70 km/h, (b) 90 km/h

 

Fig. 12  Estimation RMSs during the Slalom manoeuvre under the road friction coefficient of
(a)  = 0.4, (b)  = 0.8
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Fig. 15. When the vehicle velocity is at 30 km/h, each method has
acceptable estimation performance. However, when the velocity is
well above 40 km/h, the dynamics-based estimators fail especially
when the drifting appears on low adhesion roads. The NN-based
estimator has better estimation accuracy than the other estimators.

4.4 Roundabout network manoeuvre

A roundabout network is constructed as shown in Fig. 16. It is to
simulate the continuous and large cornering radius scenarios. The
velocities are set 40 and 50 km/h, and the friction coefficients of
0.6 and 0.9 are utilised.

Fig. 13  Fishhook manoeuvre
 

Fig. 14  Estimation results under the Fishhook manoeuvre with
(a) 30 km/h,  = 0.7, (b) 30 km/h,  = 0.9, (c) 40 km/h,  = 0.7, (d) 40 km/h,  = 0.9

 

Fig. 15  Estimation RMSs during the Fishhook manoeuvre under the road friction coefficient of
(a)  = 0.7, (b)  = 0.9
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The results during the roundabout network manoeuvre are
shown in Fig. 17. It can be seen that the EKF, UKF and GPS-IMU
estimators are sensitive to the increasing vehicle velocity. At the
velocity of 40 km/h, all the estimators can yield satisfying
estimation results as the RMS error of each estimator is under
0.132. However, the dynamics-based estimators at the velocity of
50 km/h have larger biases than that at the velocity of 40 km/h. The
DGPS-IMU estimator shows good robustness to the variations of
velocity and road adhesion. Still, the NN-based estimator yields the
best estimation performance.

The RMSs during the Roundabout network manoeuvre under
different vehicle velocities and road adhesion conditions are
illustrated in Fig. 18. Also, the NN-based estimator exhibits the
best performance under all the selected velocities and road
adhesion coefficients. The dynamics-based estimators have similar
performance with that under the Fishhook manoeuvre. The DGPS-
IMU estimator illustrates robust results with varied velocities. In
contrast, the GPS-IMU estimator has a continuous performance
degradation along with the increasing vehicle velocity.

A further quantitative evaluation is given in Table 4. The
accuracy is evaluated by the MAE and the robustness is assessed
by the variance of the MAE under each manoeuvre. In general, the
accuracy and robustness of each estimator exhibit a similar pattern.

That is, the NN estimator stages the best performance regarding
accuracy and robustness relative to the other estimators while the
GPS-IMU estimator comes secondary. The DGPS-IMU and
dynamics-based estimators perform at the same level. The straight-
line driving part notably compromises the overall accuracy of the
DGPS-IMU estimator due to small yaw rate as explained in
Section 3.1.2. The poor performance of the dynamics-based
estimators can be ascribed to their incompetence at high velocities
where the UKF-based estimator has relatively better accuracy.
However, the generalisation capability is important as it indicates
the applicability in other vehicle models and/or under different test
conditions. The dynamics- and kinematics-based estimators are
based on physical models, which is convenient for online
calibration. Thus, a well-tuned model-based estimator can be easily
used in other vehicle models. In contrast, the performance of the
NN-based estimator is specific to a certain vehicle model and the
test manoeuvres used for model training. Thereby, its
generalisation capability is inferior to that of the other estimators
(Table 5). 

Fig. 16  Roundabout network manoeuvre
 

Fig. 17  Estimation results under the Roundabout network manoeuvre with
(a) 40 km/h,  = 0.6, (b) 40 km/h,  = 0.9, (c) 50 km/h,  = 0.6, (d) 50 km/h,  = 0.9
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5 Conclusions
This study presents a comparative study to comprehensively
evaluate the performance of the state-of-the-art methods for vehicle
sideslip angle estimation under varied velocities and road adhesion
conditions. These include kinemics-, dynamics- and NN-based
methods. The UKF- and EKF-based estimators are exemplified as
the dynamics-based estimators. The advantages and disadvantages
of the two dynamics-based estimators are summarised. The results
show that they avail only at low vehicle velocities and the UKF has
better estimation accuracy to some extent. This may be because the
used tire model restricts the applicability of the dynamic-based
estimators even the cornering stiffness can be online obtained.
Conventional vehicle models may fail to describe vehicle states as
encountered during the fishhook manoeuvre. Thus, the dynamics-
based estimators are only effective at the velocity range below 50 
km/h and with no dramatic steering manoeuvres.

Kinematics-based estimators demonstrate good accuracy
especially under large lateral accelerations as shown in the
fishhook manoeuvre. Generally, the kinematics-based estimator
can still realise sideslip angle estimation at high vehicle velocities
and the DGPS-IMU estimator outperforms the GPS-IMU.
However, there is significant accumulation error with the
increasing implementation time, which makes it suitable for being
used in combination of ASSs in short-term employment. In
addition, the DGPS-IMU is inapplicable when the vehicle yaw rate
is small.

The NN-based estimator yields the best performance in tests.
Nevertheless, constructing a complete dataset that can cover all
driving conditions is extremely difficult if not impossible. Besides,
its applicability in a realistic vehicle controller can be challenging
due to intensive computing requirement.

With the development of communication technologies and
ITSs, time-consuming computational tasks can be appropriated to a
cloud server and the outcomes be sent to vehicle controllers for
implementation purpose. This shows the application prospect of
NN-based estimators.
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