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Abstract: In this paper, the impacts of uncoordinated energy management systems (EMS), with a rebound effect, on a
renewable energy-dependent microgrid are discussed and feasible solutions are presented. Two different approaches, i.e. load-
based and price-based EMS are modelled which consider PV units, battery energy storage systems (BESS), and electric
vehicles (EVs). Taking account of each component's boundary conditions, the load-based approach intelligently charges the EV
and BESS from the grid/PV during off-peak hours, and provides a combined discharge response during peak load hours. In the
price-based approach, the charging-discharging of BESSs and EVs from/to grid and PV depends on the time-of-use tariff signal.
The primary objective of both models is to minimise the customers' peak electricity consumption and the saturation issues of
distribution transformers. It is observed that the simultaneous response of the EMS due to the identical behaviour of load or
price curves, and the rebound effect after mode switching transition create large power demand spikes. To mitigate its negative
consequence, an improved locking and randomisation technique is designed and implemented. Additionally, the impact of the
PV power fluctuations on the load-support systems due to fast-moving clouds and their consequences to the behaviour of the
EMS response are investigated.

௑Nomenclature
tB

j , tP
j off-peak and peak load periods, respectively

DD
t customer's desired (reference) power demand

Sℙ
t electricity cost curve

λev
l , λb

l minimum discharging limit of EV and battery,
respectively

λev
i , λb

i current SOC of EV and battery, respectively

βev
c , βb

c capacity of EV battery and BESS, respectively

λpv
i instantaneous PV power generation

1௑Introduction
The conventional power system has undergone a substantial change
in last decades which has led to a fundamental shift in the
traditional generation and management of electrical energy [1–3].
In recent years, small-scale renewable energy generators supersede
the bulky large-scale generators. The electricity is now generated
close to the customer premises from distributed generators
including rooftop photovoltaics (PVs), or aggregated PVs and wind
generators. Various centralised and decentralised control
approaches are used to manage these distributed and non-
dispatchable renewable generators. As renewable energy sources
are intermittent, the uninterrupted power supply by regulating
voltage and frequency remains a major challenge [1–3].

Energy storage deployment either at home or grid side is a
standard solution to mitigate intermittency issues. It stores excess
energy from the renewables during off-peak hours in the middle of
a day, and discharges during peak hours or in the absence of
renewable energy generation. Another form of battery storage is
the electric vehicle (EV) that is becoming popular due to its
bidirectional vehicle-to-grid (V2G) energy transfer mechanism [1,
2]. The charging–discharging mechanisms of the battery in an EV
are similar to that of a stationary battery; however, the mobility
makes these significantly complex. Therefore, to mitigate
intermittency through intermittent storage (i.e. EVs, due to its
mobility), an extra level of management and their charge

scheduling is necessary. The battery-to-grid and V2G facilitate
prosumers to participate in both local and global energy markets, or
the wholesale energy market through aggregated EVs [1, 3].
Additionally, various embedded devices and energy management
systems (EMS) are used at the domestic level to enhance energy
efficiency and utilise it to participate in the energy transactions.

Along with EVs, roof-top PV units are also common modes for
small-scale local energy generation. However, to a certain extent
both resources are intermittent. Therefore, the use of automatic
domestic EMS is quite common at a domestic level. Various
strategies are adopted in the EMS whose primary objective is to
minimise the electricity cost [4]. There are two common strategies
adopted in these EMS. One approach is to check the load
conditions and schedule the loads or energy resources [5]. Another
way is to check the electricity prices and schedule the loads and
energy resources [6]. Usually, once the main parameter (load or
price signal) is met considering other constraints, all the resources
are scheduled accordingly. In this case, any uncoordinated EMS
may lead to an unwanted variation in the system parameters.

Numerous studies in the field of microgrid and domestic energy
management have focused on the control techniques and
components (storages, EVs, PV units). Mahmud et al. [7] propose
a decision-tree-based algorithm to reduce the domestic peak load
using EVs, PV units, and battery storage. The EVs are used in [8]
to flatten the fluctuating load profile of a building. It uses roof-top
PV units to charge EV battery and any negative consequences by
fast charging of EVs are managed. EVs are also utilised to manage
the power demand in a medium scale, e.g. university, commercial
buildings [4, 9]. In this case, EVs in a parking lot are aggregated
and their charging–discharging are scheduled based on the load
demand of the consumers. Domestic peak load demand
management is studied by authors in [10–12], where an
individualised electricity pricing policy [12] and utility-defined
prices [10, 11] are proposed to optimally manage the customers’
power demand and minimise the peaks in load curves. Other
studies [6, 13] investigate the use of V2G to minimise the impact
of PVs due to its power generation fluctuations. In most of these
PV-related studies, the data acquisition to controller is done in a
minute timeframe. However, the impact of sub-second time-scale
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fluctuation and the performance of the system remains unclear, as
the data granularity in a minute scale may miss the system response
that is happening in sub-second scale.

The grid-level placement of storages (aggregated EVs, battery
storage) are investigated in [14]. In this case, the impact of
intermittent power generators on individual domestic systems
under a substation are not well addressed. Therefore, some
researchers [15, 16] focused on analysing the voltage and
frequency deviation by intermittent renewable energy sources at a
domestic level. A study in [17] investigates the rebound effect of
the energy storages under an EMS. Another study [18] analysed the
behaviour of rebound effect of demand response during frequency
restoration and systems efficiency [19]. However, the rebound
effect of the storage devices during PV-power-generation
fluctuating condition and their overall impact on the microgrid
substation needs to be further analysed. In some analysis, a
combination of battery energy storage systems (BESSs) and
intermittent EVs are proposed to minimise the uncertainty of
weather-dependent loads and sources [20, 21]. Most of the energy
management approaches that deals with the integration of
renewable energy sources and energy storages consider a single
control layer, i.e. either primary, secondary, or tertiary layer. Thus,
the performance of the EMS considering the holistic impact
remains unclear.

A comprehensive study in [22] analyses the strategic
deployment of EVs in a microgrid to provide load and power
quality support. However, a holistic impact by different types of
load patterns and their behaviours to the EMS are needed to be
further investigated. Another common method to tackle the load
demand of a grid-connected or islanded microgrid is to shift the
controllable loads [23] and minimise the peaks [24] either in real-
time [25] or day-ahead operation [26]. In some investigations [27],
AC/DC hybrid microgrid considering various intermittent
renewable energy sources are discussed. These hybrid microgrid-
related studies present voltage and frequency control strategies
[27], power transfer operation [28], and dynamic power
management [29].

Although extensive research has been carried out on various
type of EMS in a microgrid, very little attention was paid to
investigate the impact of uncoordinated EMS with rebound effect
on the performance of a microgrid. Considering previous studies,
the importance and originality of this study are to analyse and
explore:

• the two different types of EMS, i.e. load-based and price-based
EMS, and their rebound effect on the heavily renewable energy-
dependent distribution systems,

• the effect of PV power fluctuations by fast-moving clouds on the
individual EMS and in the substation,

• the rebound effect of an individual EMS due to PV power
fluctuations and their impact at the substation,

• the characteristics of the uncoordinated EMS and their identical
behavioural effects to the grid, and a solution to minimise the
negative consequences.

The rest of the paper is organised as follows. Section 2 provided an
overview of the problem and the system architecture. The problem
is formulated along with EMS algorithm in Section 3. Various case
studies are conducted in Section 4 with the following conclusion in
Section 5.

2௑Problem overview and motivation
A domestic EMS is modelled to investigate its impact on
uncoordinated states. It considers two different approaches, e.g.
load-based and price-based. The main objective in these two
approaches is to minimise the cost and avoid the over-saturation of
distribution transformer. The system consists of a BESS, a EV, and
PV units. In the load-based approach, the charge management of
the BESS and EV is performed during the off-peak hours and
discharge during the peak hours to minimise the electricity cost.
Moreover, these storages utilise the excess energy from the PV unit
to charge during off-peak hours. In this EMS, battery's and EV's

state-of-charge (SOC), EV availability, EV trip plan, PV power
generation, load conditions, and so on are the constraints. Although
renewable energy generation curves, in particular, weather zone
and geographical location follow similar pattern, the power
demand for every household at a particular time might not be the
same. It is because every household does not have the same
appliances and same operation times. However, the PV power
generation is dependent on weather, and thus it changes its output
at the same time for a particular region. For example, if there is any
cloud passing through quickly, the output of PVs will fluctuate
quickly. Any houses highly dependent on the roof-top PV units will
experience this fluctuation which will trigger all the load-based
EMS to execute a certain function at the same time. In this case,
rebound effects can create unwanted oscillations in the system.

On the other hand, in price-based approach the electricity cost is
considered as a main factor to manage the charging–discharging of
the battery storage and EVs. Usually, battery storages and EVs are
charged when energy cost is lower and discharge when energy
price is higher. In this approach, the common constraints such as
SOC of the battery and EV, EV availability, EV trip plan, PV
power generation and load conditions are considered. In some
energy market (e.g. Australia), wholesale energy price changes
every 5 min, and 30 min, sometimes with a high fluctuation [30].
Similar to the load-based approach, this fluctuation in price may
trigger all the price-based EMS to execute a specific function at
particular time. Thus, any rebounding effect can create oscillations
in the system.

In case of the load-based energy management approach, the
EMS trigger its charging and discharging switch considering the
off-peak and peak load conditions. For example, if the load demand
suddenly drops (i.e. becomes off-peak), the EMS triggers the
battery storage and EV charging. If all the EMS functions under the
same approach, in a small network, the load demand immediately
after becoming off-peak may experience extra load demand or
spikes due to the charging of battery storage and EVs. The same
scenario may happen for the price-based EMS as well. In this
paper, this effect is considered as rebound effect. The effect
motivates to investigate its impact on a small network under
various EMS approaches.

A detailed architecture of the proposed model and their
uncoordinated deployment among customers is shown in Fig. 1. 
All the domestic loads, EV, and energy resources are connected to
a common AC bus. The battery storage and PV are connected to an
intermediate DC bus. A PV unit is connected to the DC bus
through a DC–DC converter. A battery is connected to the DC bus
through a bidirectional DC–DC converter. This DC bus is
connected to the AC bus through a bidirectional DC–AC/AC–DC
converter. The EV is connected to the AC bus through a
bidirectional DC–AC/AC–DC converter. A controller collects load-
demand data, battery and EV SOC, EV availability, and PV power-
generation data. Based on this data and the predefined algorithm,
the controller controls the inverters, i.e. the power flow from/to the
AC/DC buses and storages.

3௑EMS algorithms and problem formulation
The domestic load demand [4, 7, 13, 31] can be expressed as a
function of power and time as follows:

Sℙ
t = f P, tℓ

j (1)

The time (tℓ
j) in the load demand function is the summation of both

off-peak tB
j  and peak load periods tP

j  as follows:

tℓ
j = tp

j ∪ tb
j (2)

tP
j = OP

f ∗ ∑
j = 0

n

tP
j (3)
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tB
j = OB

f ∗ ∑
j = 0

n

tB
j (4)

where tP
0  and tP

n  are the initial and final time of the peak load
occurrence periods, respectively. Similarly, tB0  and tBn  are the initial
and final times of the off-peak load (base load) periods,
respectively. OP

f  and OB
f  are the peak and off-peak load occurrence

frequency for a particular time duration, respectively. The load data
acquisition rate to the controller is as follows:

data rate
tP

1 − tP
0

tB
1 − tB

0
(5)

For a load-based EMS, the customer's desired power demand curve
is assumed as

DD
t = f P∂, tℓ

j (6)

For price-based EMS, the electricity cost curve Sℙ
t  is a function

of electricity price and time as follows:

Sℙ
t = f Ce, tℓ

j (7)

Sd
t = f Cr, tℓ

j
d (8)

where Ce is the electricity price, Cr is the reference electricity
price, and SD

t  is the reference electricity cost curve to define peak
and off-peak load periods. The peak and off-peak load is identified
by the following relation:

peak load Sℙ
t > DD

t , Sℙ
t > Sd

t

off − peak load Sℙ
t < DD

t , Sℙ
t < Sd

t
(9)

For the houses with the roof-top PV units, the desired reference
curve DD

t  in (6) can be set above the maximum power generation
capacity of those PVs.

The currents from the EV and battery are denoted as
iev
t1 , iev

t2 , iev
t3 , …, iev

tn  and ib
t1, ib

t2, ib
t3, …, ib

tn, respectively. The sign of this
current will identify the charging and discharging modes of the
battery and EV, i.e.

ib
t , iev

t < 0 → battery and EV charging

ib
t , iev

t > 0 → battery and EV discharging
(10)

If the instantaneous power demand at a particular time is Sℙ
t1 and

Sℙ
t1 > DD

t , then, the amount of power required to shave the peak
load is

Sℙ
s = Sℙ

t1 − DD
t , for Sℙ

t > DD
t , Sℙ

t > Sd
t (11)

This power will be provided by the battery, PV, and EV depending
on their availability and discharging constraints.

If the instantaneous power demand at a particular time is
Sℙ

t1 < DD
t , the available power to charge the EV and battery is

Sℙ
c = DD

t − Sℙ
t1, for Sℙ

t < DD
t , Sℙ

t < Sd
t (12)

If the minimum limit for the EV and battery SOC (for discharging)
is λev

l  and λb
l , respectively, and the current SOC of the EV and

battery is λev
i  and λb

i , respectively, the maximum available power
that the EV and battery can provide to the required load support
Sℙ

s  is

λb
av = βb

c
λb

i − λb
l (13)

λev
av = βev

c
λev

i − λev
l (14)

Here, βev
c  is the battery capacity of EV and βb

c is the capacity of the
stationary battery. So, the power provided by the PV, EV, and
battery to shave Sℙ

s  is as follows:

Sℙ
s = λev

av 1 − e−λev
i = t1, t1 + 1, …, t2

+ λb
av 1 − e−λb

i = t1, t1 + 1, …t2

+ λpv
i

(15)

where λpv
i  represents the instantaneous PV power generation. If the

current charge of the battery and EV is λb
i = t1, t1 + 1, …t2, and

λev
i = t1, t1 + 1, …, t2, respectively, and the maximum charging limit of the

battery and EV is λb
m and λev

m , respectively, the available grid power
Sℙ

c  to charge the battery and EV is

Sℙ
c = λev

r e(1/( − λev
i = t1, t1 + 1, …, t2)) + λb

r e(1/( − λb
i = t1, t1 + 1, …t2

))

for Sℙ
t < DD

t , Sℙ
t < Sd

t
(16)

Fig. 1௒ EMS architecture and their deployment across the power
distribution systems
(a) Basic schematic of the proposed EMS and their uncoordinated deployment across
the power distribution systems, (b) Detailed layout of the EMS
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λev
r = βev

c
λev

m − λev
i (17)

λb
r = βb

c
λb

m − λb
i (18)

The PV power is utilised to provide the peak load support and a
portion is used to charge the battery. The PV power supply to the
DC bus through converter 1 is

λpv
i = n ⋅ γpv

g ⋅ η1 for Sℙ
t = λpv

i (19)

where γpv
g  represents the PV power generation from a single cell, n

represents the number of cells, η1 represents the efficiency of the
converter 2. For Sℙ

t > λpv
i , the excess energy is supplied by the EV

and battery.
In case of Sℙ

t < λpv
i , PV has excess energy after supplying the

load demand. So, this excess energy is bypassed to the battery
through converter 2, and is given as

ξex
pv =

0 when Sℙ
t ≥ λpv

i , i ∈ tℓ
j

λpv
i − Sℙ

t when Sℙ
t < λpv

i , i ∈ tℓ
j

(20)

For Sℙ
t > λpv

i , the excess energy to support the load is supplied by
the EV and battery. The cost of electricity in this charging and
discharging process is

Δe
b ∗ f P, tb

j + Δe
p ∗ f P, tℙ

j (21)

where Δe
p and Δe

b are the electricity cost during peak and off-peak
load hours, respectively. In case of excess power generation by the
renewables and battery storage, and the house does not have a
provision to penetrate power back to grid, the system constraints
will be

Sℙ
t − DD

t ≥ 0 for tℓ
j (22)

λb
l < λb

i < λb
m (23)

λev
l < λev

i < λev
m (24)

Both the load-based and price-based algorithms are described in
Algorithms 1 and 2 (see Figs. 2 and 3), respectively. The battery
and EV charging–discharging algorithm, and boundary conditions
are shown in Figs. 4a and b. 

As the trip of EVs are highly uncertain, the battery SOC of the
EV is segmented into five parts: S0, S1, S2, S3, S4. The segment S0

is utilised to provide the emergency trip support and the battery
capacity must not drop below this limit. EV battery will charge
rapidly in this stage of SOC. For the S1 SOC stage, EV will also
charge rapidly if the owner has a long trip plan. The battery will
charge flexibly based on the load conditions in the S2 stage. The
battery will discharge based on the load conditions in S3 stage. S4

is the maximum battery charging limit. To maximise the battery
life, the battery constraints are

S0 ≥ emergency reserve (25)

S4 ≤ 100%SOC (26)

The value of the segments can be set based on the SOC and
mileage process. The following scenario may occur in the charge
scheduling process.

Scenario 1
λev

i < S1 for Sℙ
t > DD

t , Sℙ
t < DD

t and Sℙ
t > SD

t , Sℙ
t < Sd

t  In this
case, EV SOC is at S0, and therefore the charging rate α t  is

α t = α t max for λev
i < S1 (27)

For SD
t < DD

t or SD
t < Sd

t , the power α t max will be supplied by
the grid from Sℙ

c . However, for Sℙ
t > DD

t or Sℙ
t > Sd

t , the battery
and grid will supply the required power (α(t)max).

Scenario 2
S0 < λev

i < S2 for Sℙ
t > DD

t , Sℙ
t < DD

t and Sℙ
t > Sd

t , Sℙ
t < Sd

t

Although λev
i > S0, rapid charging is preferable if the owner has a

long trip plan. The charging rate is

α t = α t max for S0 < λev
i < S2,

Sℙ
t > DD

t , Sℙ
t > Sd

t and Sℙ
t < DD

t , Sℙ
t < Sd

t
(28)

The flexible EV charging rate based on the load conditions is

Sℙ
c = λev

r e(1/( − λev
i = t1, t1 + 1, …, t2))

α t

+ λb
r e(1/( − λb

i = t1, t1 + 1, …t2
))

battery charge rate

for S0 < λev
i < S2, Sℙ

t < DD
t , Sℙ

t < Sd
t

(29)

Scenario 3
S1 < λev

i < S3 for Sℙ
t > DD

t , Sℙ
t < DD

t and Sℙ
t > Sd

t , Sℙ
t < Sd

t

The flexible charging rate is (see (30)) .
Scenario 4

S2 < λev
i < S4 for Sℙ

t > DD
t , Sℙ

t < DD
t and Sℙ

t > Sd
t , Sℙ

t < Sd
t

For Sℙ
t > DD

t or Sℙ
t > Sd

t , the EV will discharge, and the
discharge rate ϑ t  is

ϑ t = λev
av 1 − e−λev

i = t1, t1 + 1, …, t2

= Sℙ
s − λb

av 1 − e−λb
i = t1, t1 + 1, …t2

− λpv
i

for Sℙ
t > DD

t , Sℙ
t > Sd

t

(31)

For Sℙ
t < DD

t or Sℙ
t < Sd

t , the EV will charge up to S4, and
constraints as follows:

λev
i = S4 and S4 ≤ 100% of SOC (32)

3.1 Modified operation state

The power provided by the storages to minimise the peak load is
given as

Sℙ
s = λev

av 1 − e−λev
i = t1, t1 + 1, …, t2

+ λb
av 1 − e−λb

i = t1, t1 + 1, …t2
+ λpv

i ∗ ∑
t = tr

1

tr
t

∪
(33)

where ∪ is a discrete random number with a function of time
constant t , and tr

1 ≤ t ≤ tr
t . This ∪ holds the discharging

operation for a random time. The available grid power Sℙ
c  to

charge the battery and EV is

Sℙ
c = λev

r e(1/( − λev
i = t1, t1 + 1, …, t2))

+ λb
r e(1/( − λb

i = t1, t1 + 1, …t2
)) ∗ ∑

t = tr
1

tr
t

∪

for Sℙ
t < DD

t , Sℙ
t < Sd

t

(34)

4௑Case studies
Several case studies are carried out based on a real Australian
household data [30]. Real weather data are also fed to the PV unit
and weather-dependent household loads to get a real power
generation and consumption, and also to investigate the
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performance of the EMS during uncertainty. The parameters
considered in the case studies are listed in Table 1. 

The considered microgrid consists of 16 houses, out of them 8
houses comprise of a roof-top PV unit (with a capacity of 1.5–2 
kW), EVs, and BESSs. The capacity of the EV is considered 24 
kWh, similar to that of a Nissan Leaf EV. It is assumed that the EV
leaves home at 8 am and comes back at 4 pm, with no charging
facility at work. The driving range is in between 15 and 25 km.

4.1 Load behaviour with and without PV

Domestic load curve in a particular weather and geographical
location follows a similar pattern; however, the power demand for
every household at that particular time might not be the same. The
main aim of this case study is to analyse the impact of integrating
PV units in the domestic system on its load behaviours. For
example, Fig. 5a shows the load curve for nine different houses in
a particular location for five days. The PV output with fluctuations
is shown in Fig. 5b. Although the simulation output is shown in

minute scale, the controller read the signal in a sub-second time
scale. The hour-scale PV power fluctuation in Fig. 5b is shown as
the second scale in Fig. 5c.

Fig. 5d shows the load curve of the houses with and without
PVs and impact of the fluctuating PV power generation due to a
fast-moving cloud. It is clear from the figure that PV power
fluctuations impel different load curves (highly dependent on roof-
top PVs) to behave in the same way.

4.2 Load-based EMS and their identical behaviour

In this case study, the impact of load-based uncoordinated EMS is
investigated. The constraints for load-based EMS are SOC
charging–discharging limits of the battery, and EV, EV availability,
EV trip plans, PV power generation and load demand. Based on
these constraints, EV and battery charge management are
scheduled between peak and off-peak hours to minimise the cost.
Additionally, the excess power generation from the PV unit is
utilised to charge the battery and EV. As load conditions (peak and

Fig. 2௒ Algorithm 1: load-based EMS
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off-peak load) are key parameters to determine the discharge and
charge management, PV power fluctuations may lead the houses
highly dependent on roof-top PV units to switch between peak and
off-peak states rapidly. Therefore, storages (EVs and stationary
battery) are also switched between charging and discharging modes
rapidly. The rebound effect by this storage may create big spikes of
power demand in the substation. As the load curves of every
household under a substation are not identical, normal load
fluctuation with PV penetration has less impact to the grid, as
shown in Fig. 6. It is because household load does not fluctuate
drastically like PV fluctuations due to shading by trees or fast-
moving clouds. Moreover, the rebound effect occurs randomly by
various EMS which has less significance at the substation.

In this investigation, for some houses 40–85% day-time off-
peak power demand is met by the roof-top PVs. Therefore, any

fluctuations in PV output power has a significant impact on load
curve as shown in Fig. 7. Moreover, these load-curve fluctuations
are also experienced by all the houses comprising of roof-top PV
units. In this case, load-based EMS of these houses also
experiences operational state fluctuations at the same time. In this
case study, eight houses use the same load-based EMS (eight
houses do not have an EMS) and experiences operation mode
fluctuations due to PV power fluctuations at the same time. Since
the rebound effect occurs at the same time due to load-curve

Fig. 3௒ Algorithm 2: price-based EMS
 

Fig. 4௒ Charging-discharging management of EV and battery storage [5,
25]
(a) EV and battery charging–discharging constraints, (b) EV battery SOC
segmentation and management

 

α t = λev
r e(1/( − λev

i = t1, t1 + 1, …, t2)) = Sℙ
c − λb

r e(1/( − λb
i = t1, t1 + 1, …t2

))

for S1 < λev
i < S3, Sℙ

t < DD
t , Sℙ

t < Sd
t

(30)

Table 1 Component specification used in the simulation
Component Value
no. of houses 16
no. of houses that uses a EMS 8
PV capacity 1.5–2 kW
battery capacity 2.5–5 kWh
EV capacity 24 kWh
battery charge–discharge constraints
λb

l , λb
m

40%, 98%

EV charge–discharge constraints
S0, S1, S2, S3, S4

10, 25, 50, 85, 95% SOC

EV trip plan 8 am to 4 pm, random 15–25 
km distance
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similarity, the summation of rebound effect by individual EMS
creates big spikes of power demand at the substation.

4.3 Price-based EMS and their identical behaviour

In this case study, price-based EMS are tested and their impacts on
the grid in an uncoordinated state are investigated. The price-based
EMS also has similar constraints like load-based EMS. However,
unlike load-based EMS, price-based EMS follows electricity price
to manage charging–discharging of the EVs and battery storages, to
minimise cost. In this case, price-based EMS are deployed in eight
houses, and their impacts on an individual house and at substation
are investigated, as shown in Figs. 8a–c. The EMS responses based
on the electricity price are shown in Fig. 8b. Any fluctuations in

Fig. 5௒ Domestic load curve and the impact of controlled and uncontrolled
PV power on it
(a) Load curve of the houses, ‘H1 = Home-1, …, H9 = Home-9’, (b) PV power output
(fluctuation case), (c) PV output considered to the controller decision making in the
second scale, (d) Load curve with and without PV integration

 

Fig. 6௒ EMS at a single home and its impact at substation when PVs are
not connected

 

Fig. 7௒ EMS performance considering PV power generation charateristics
(a) Load conditions with and without EMS at a single home when PV is connected,
(b) Load conditions with and without EMS at the substation when PV is connected
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the electricity prices result in a fluctuation of the operation state of
the EMS. Since all the EMS are working based on the same
algorithm and same price signal, any rebound effect due to price
fluctuation may create EMS fluctuation at the same time. As a
result, substation faces big power demand spikes in their load
curves.

4.4 Impact minimisation: locking and randomisation

Proper coordination among uncoordinated EMS could be a solution
to minimise the rebound and oscillation impact. However, it
requires communication arrangements and advanced coordinated
control devices. In this study, a simple solution that does not
require coordination among EMS and control devices is proposed.
A novel locking and randomisation method is introduced. In this
approach, a time constant is added with the charging–discharging
scheduling of the battery and EVs, as shown in (33) and (34). This
time constant will lock the operation for both price-based and load-
based EMS. Thus, the operation mode fluctuation will not occur
based on the PV-power generation fluctuations. Additionally, the
value of this time constant (locking-time) is randomly assigned
among EMS. As a result, every EMS have their own time constant

and get a different reference value to operate and respond to the
changes in load and electricity price. For example, after
introducing this technique, the combined response from PV, EV,
and battery to shave the peak Sℙ

s  for every house now get a
different reference point to operate, e.g.

Sℙ
s ∗ ∪tr

1 , Sℙ
s ∗ ∪tr

2 , …, Sℙ
s ∗ ∪tr

t . Likewise, different
houses and their charging reference points also become different,
i.e. Sℙ

c ∗ ∪tr
1 , Sℙ

c ∗ ∪tr
2 , …, Sℙ

c ∗ ∪tr
t . So, the overall

impact of the rebound effects by the EMS decreases at the
substation.

The eight houses that were using EMS are now operating under
the proposed random time constant and locking systems, as shown
in Fig. 9. Fig. 9a shows the impact of the proposed approach to a
single house, and Fig. 9b shows their impact at the substation.
Fig. 9a shows that the use of uncoordinated EMS minimises the
peak load; however, during renewable energy fluctuation cases, the
rebound effect creates oscillation and peak spikes immediately
after the peak conditions. It is because, after the peak conditions
when off-peak hours occur, all the storages and EVs start charging.
As the proposed locking and randomisation process delays the
EMS activation randomly, the load profile does not give any peak
spikes and oscillations. As the renewable energy output in a
specific geographical location shows similar pattern due to the
same weather conditions, any power generation fluctuations at the
customers’ points provide impact at the substation. Fig. 9b shows
the impact of uncoordinated EMS having rebound behaviour at the
substation and the improvement of oscillations after using the
proposed system.

A summary of the goal and findings of the paper is summarised
in the paper and compared with the previous studies in Table 2. 

5௑Conclusion
The main goal of the research was to investigate the impact of
uncoordinated EMS having rebound effect in a microgrid and

Fig. 8௒ Perofrmance analysis of price-based EMS
(a) Load conditions with and without price-based EMS at a single home, (b)
Electricity costs, (c) Load conditions with and without price-based EMS at the
substation

 

Fig. 9௒ Load conditions with and without price-based EMS, and locking
and randomisation are enabled
(a) Load conditions at home, (b) Load conditions at substation
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provide a feasible solution to mitigate their unwanted effects. Two
different types of EMS are modelled and tested to observe their
behaviours under load variations. This study has shown that for a
highly PV-penetrated small grid, fluctuations due to fast-moving
clouds result in a similar pattern of fluctuations in various load
curves. The rebound effect by EMS due to this fluctuation creates
large peaks to the grid. Likewise, if all the EMS work based on the
same algorithm and same price signal, any rebound effect due to
price fluctuation may create fluctuations in EMS response at the
same time resulting in a high peak at the substation. The study has
found that the addition of a time lock and its randomisation,
minimises this effect. This rebound effect maybe trivial in case of
the grid-connected systems or in large networks, or if the load,
price and PV power generation fluctuations occur slowly. The
future research could also be conducted to investigate the
effectiveness of the proposed technique to a grid-connected system,
with a wind power generation fluctuation case.
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Table 2 Summary of the goals and findings of the paper
compared to the previous studies
Previous studies This study
[17] • It investigates the

scenarios under which the
rebound effect can lead to
instability in terms of the
area control error (ACE)

[17]. • The findings of this
study show that under

normal circumstances the
rebound effect has positive

impact on the ACE.
However, in some worst-

case scenario, the rebound
effect may create

oscillations in the ACE,
which may lead to an
unstable system [17].

• It investigates the impact of
uncoordinated EMS having

rebound effect in a small-microgrid
and provide a feasible solution to
mitigate their unwanted effects •
The rebound effect in islanded

small-microgrid under price and
load-based EMS due to quick

fluctuations in prices and PV power
generation may create spikes in the

load demand curve. • For a large
network or grid-connected systems

or slow change of prices and PV
power generation, the rebound

effect may be trivial.

[18] • The study investigates the
rebound effects of demand
response and its behaviour

during frequency
restoration. • It shows that

in some extreme cases, the
rebound effects can lead to

oscillations in the power
systems [18].

[19] • The study analyses the
performance of a demand

response (DR) system,
installed in the Hartley Bay,
British Columbia, to reduce
the fuel consumption during
peak load periods [19]. • It
finds that the DR systems

reduces peak demand
significantly, however, a
significant rebound peak

occurs following each event
[19].
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