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Abstract

This paper presents a self-adaptive hybrid variant of differential evolution (DE) algorithm and naked

mole-rat algorithm (NMRA), namely SaDN. The algorithm is altogether a new version, designed to

overcome the local optima stagnation and poor exploration properties of DE and NMRA respectively.

The new algorithm has been designed by incorporating DE into the worker phase of NMRA while

keeping all the major parameters of both the algorithms intact. In order to make the algorithm

self-adaptive, seven different mutation strategies have been explored for different parameters, and

it was found that Lévy based scaling factor and sigmoidal mating factor are the best parameters.

Apart from these parameters, adaptive properties have been introduced to all other parameters so

that no user-based initialization of parameters is required. For performance evaluation, the proposed

SaDN is tested on CEC 2005, CEC 2014 and CEC 2019 benchmark problems and comparison is

performed for variable population size and higher dimension sizes. From the experimental results,

it has been found that the proposed SaDN performs better with respect to other major state-of-the-

art algorithms from the literature. Apart from that, SaDN is subjected to three engineering design

problems and compared with other algorithms. Numerical results demonstrate that SaDN shows

better performance and is statistically significant in terms of Wilcoxon’s rank-sum test, Freidman’s

test and computational complexity. The link for source-code will be added after publishing.
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1. Introduction

Over the past three decades, the nature inspired algorithms have continuously dominated every

sphere of benchmarks to real world problems. The algorithms have become the backbone of opti-

mization research and have been formulated based on the natural behaviour of certain animal species

found in nature. These algorithms have added advantage of better search capabilities, lower number

of switching parameters and less requirement of problem based tuning. Thus have been found to

dominate every sphere, where classical optimization techniques fail to provide significant results.

These algorithms include cuckoo search algorithm (CS) [1], whale optimization algorithm (WOA)

[2], salp swarm algorithm (SSA) [3],[4], grasshopper optimization algorithm (GOA) [5], equilibrium

optimizer (EO) [6], flower pollination algorithm (FPA) [7], bi-directional evolutionary structural

optimization (BESO) [8], discrete artificial fish swarm (DAFS) algorithm [9], drone squadron opti-

mization (DSO) [10], newton metaheuristic algorithm (NMA) [11], subtractive algorithm (SA) [12],

Pity Beetle Algorithm (PBA) [13] and others [14], [15], [16]. These are the most recently introduced

algorithms in optimization research and are being used in almost every domain of research. That

can be better understood from the original domain research that these algorithms have been ap-

plied to business management, mathematics, medical images, robotics, artificial immune systems,

antenna arrays, image segmentation, Stress minimization problem and others. The major reason

for this is that these algorithms have added advantage of faster convergence, fewer chances of local

optima stagnation, are highly challenging and have shown significant contribution with respect of

their counterparts. Also, some hybrid optimization techniques have been studied to improve the per-

formance of an algorithm such as hybrid optimization based on harmony search (HS) and mine blast

algorithm (MBA) namely mine blast harmony search (MBHS) (MBA for exploration and HS for

exploitation enhancement) [17], hybridization of iso-geometrical analysis (GIGA) and an improved

multi-objective particle swarm optimization algorithm (IMOPSO) for shape and size optimization

of variable-thickness bi-directional functionally graded plates (2D-FGPs) with multi-objective opti-

mization [18].

Naked mole-rat algorithm (NMRA) is one such algorithm introduced in the recent past [19]

and is based on swarm intelligence theory. By swarm intelligence, we mean that the species under

consideration lives in large groups of population and perform their routine tasks in collaboration

with each other. The naked-mole rats also live in groups of 50 minimum to 295 maximum number

of members and follow a worker-breeder relationship to perform their tasks efficiently. By worker-

breeder relationship, the total population is divided into two sub-parts that is workers and breeders.
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The workers are meant for performing labour, whereas breeders are found to provide assistance to

the queen for mating and other tasks [19]. These breeders are selected from the whole population

of the worker pool and ultimately the best breeder mates with the queen. If a particular breeder is

not able to cooperate or whose fitness reduces, that breeder is sent back to the worker pool, and in

order to equalize the effect, the best performing worker is pushed towards the breeder part. Thus

there is every chance for a worker to become a breeder and for a breeder to be shifted towards the

worker phase. All this is followed either by interactions or experience. The workers assist each other

to perform various tasks such as maintenance, defence, construction and provisioning. The breeders

also follow this pattern by cooperating with each other, as only a single breeder mates with the

queen [19].

Based on the above discussed patterns of naked mole-rats, the NMRA algorithm was proposed.

This algorithm is a new addition to the field of nature inspired computing and has been found

to provide reliable results. The algorithm uses the concepts of mating patterns of breeders with

respect to the queen to search for a possible solution to the problem under consideration. Here

simple concepts of shifting of the best worker towards breeders phase and best breeder drifting

closer toward the queen are followed to devise new solutions. However, the algorithm does not

use the queen as the potential solution but continuously aims at finding the best breeder who will

mate with the queen. The best breeder is thus found, is considered as the prospective solution of

the problem under consideration. The process of shifting the workers towards the breeder phase is

controlled by breeder probability, which helps the algorithm in switching between the breeder phase

and the worker phase. Let us briefly discuss both of these phases. The worker phase is controlled by

two random mole-rats in the close proximity of each of other, whereas the breeder phase is controlled

by the current best mole-rat and some random breeder in the close proximity of the current best

solution. Here it should be noted that the breeder and workers are governed by simple random

scaling factor commonly referred to as a mating factor. Thus overall, the algorithm aims to achieve

a simpler yet robust implementation to achieve a better optimal solution.

In terms of local and global search, the worker phase of NMRA corresponds to exploration and

breeder phase corresponds to the exploitation operation. The exploration operation is governed by

two random solutions, whereas exploitation operation has one random solution, which is close to

the current best solution. Though NMRA is a significant addition to the field of nature inspired

algorithms, it also suffers from certain problems. The algorithm follows a simpler structure and

is easier to implement, but as the problem complexity increases, the algorithm is prone to certain
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disadvantages. The algorithm has an overall inadequate exploration due to less randomization in the

solution quality. Aforementioned is because in the exploration part, the random solution generated

are very close to each other and hence only certain sections of the search space are explored rather

than the whole of the search space. Overall, the exploration part is very weak and may lead to local

optima stagnation problems. The exploitation operation, on the other hand, is very simple and is

found to provide reliable local search capability.

So, it can be said that the NMRA is prone to local optima stagnation due to poor exploration

and overall poor worker phase. Thus, in order to provide efficient performance in terms of better

exploration, the NMRA needs to be enhanced. In present work, the worker phase is enhanced

by using the concepts of various equations of DE, including DE/rand/1, DE/best/1, DE/current-

to-best/1, DE/best/2 and DE/rand/2 strategies [20]. All of these equations are discussed in the

consecutive sections and are randomly selected based on a certain probability. In a simple DE

algorithm, these equations are referred to as mutation equations and are followed by the crossover

operation. Here also, the crossover operation of the basic DE is followed in the worker phase based

on certain random crossover probability. This helps the algorithm is finding a better solution by

the added advantage of better exploration capabilities of the DE based search equations. The

basic structure of the new proposed algorithm is the same as that of the original NMRA, with

DE algorithm based equations incorporated in the worker phase. Apart from the enhancements

in the exploration and exploitation properties, self-adaptive parameters are added in the proposed

SaDN algorithm. The self-adaptive properties are added in such a way that no user-based tuning of

parameters is required. Here it should be kept in mind that the exploration operation is performed by

DE based worker phase, exploitation by using NMRA breeder phase and self-adaptive characteristic

is implemented by using seven different kinds of mutation inertia weights.

The proposed SaDN mainly consists of three major parameters namely scaling factor of worker

phase, the randomized mating factor (λ) of the breeder phase and the crossover rate (CR) of DE

algorithm. In present work, mutation scaling factors are adapted by using five different mutation op-

erators (Lévy mutation, Cauchy mutation, neighbourhood based mutation, trigonometric mutation

and diversity mutation); seven different mating factors (exponential decreasing, linearly decreasing,

uniform random, sigmoidal decreasing, oscillating, simulated annealing and logarithmic decreasing

randomization); and an adaptive CR is used. The best parameters thus selected from these ran-

domized parameters are Lévy based mutation and sigmoidal decreasing mating factor. The final

parameter which helps in switching between the exploration and exploitation (worker to breeder
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switching) is the breeding probability (bp), and five different variations for this parameter are anal-

ysed. It has been found that lower the value of bp, higher is the working capability of the algorithm.

Thus after careful investigation, in present work, bp = 0.05 has been used. Overall, the proposed

SaDN algorithm has the added advantage of both DE and NMRA algorithms and is expected to

provide reliable results.

Apart from the introduction, the rest of the article is organized into five more sections. Here

section 2 details about the basics of NMRA algorithm and all generalizations regarding the algo-

rithm are presented in this section. In section 3, the various mutation weights and mating factors

have been discussed in detail. This section deals with the overview of all the major parametric

adaptations employed in the proposed SaDN algorithm. In section 4, the new SaDN algorithm is

proposed. This section highlights the major drawbacks of the existing algorithm, the requirement

of the proposal, the motivation behind the proposal and the various steps that have been followed

to implement the algorithm. The section also provides computational complexity of the proposed

algorithm with respect to the basic NMRA. In section 5, numerical results are presented. These

results are extensively performed with respect to some major algorithms such as JADE [21], SHADE

[22], LSHADE-SPACMA [6], CMA-ES [6] and others [23]. The benchmark functions used are CEC

2005 [24], CEC 2014 [25] and CEC 2019 [26]. Both these datasets are highly challenging and consist

of unimodal, multimodal, fixed dimension, hybrid and composite functions. Apart from numerical

benchmarks, the algorithm has been applied for optimization of engineering design problems. The

problems used are highly complex, and a comparison of the proposed algorithm is performed with

respect to other newly introduced models in the literature. More discussion about the same is pre-

sented in the consecutive subsections. Apart from the experimental results, statistical testing based

on Wilcoxon’s rank-sum test and Freidman’s tests [27] have been performed to prove the superior

performance of the proposed SaDN algorithm. A detailed discussion on the proposed algorithm,

a summary of results, some insightful implications and drawbacks are also presented in the same

section. In the final section 6, the concluding remarks and future recommendations are presented.

The outline of the article is given in Figure 1.

2. Naked mole-rat algorithm (NMRA)

The naked mole-rats patterns follow worker breeder relations and their synergy on who will mate

with the queen. The best worker among the worker pool gets the chance to become a breeder, and

similarly, the best breeder becomes the mating partner for the female queen. The NMRA algorithm
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Figure 1: Outline of the article

follows the mating patterns of the naked mole-rats. The algorithm is simple in structure and follows

four basic rules as given by

• NMRs founds in a group of an average 70-80 members, and the maximum number can be up

to 295.

• The whole population is divided into two parts: workers and breeders, which are led by a

single queen.

• The workers have performed all the minor tasks, and the best performing worker has a chance

to become a breeder. These breeders are meant for the mating process.

• The best breeder among all the members of breeder pool mates with the queen.

Here it should be noted that the NMRA algorithm searches for the best breeding mate rather than

the queen and this behaviour is mathematically modelled as

Initialization of NMRs: Like all optimization algorithms, the first step is to initialize the

NMR population randomly. Here n random members of NMR group are initialized within the range
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of [1, 2, ..., n] for a D dimensional problem. Each NMR is initialized as

NMRi,j = NMRmin,j + U(0, 1)× (NMRmax,j −NMRmin,j) (1)

where i varies in the range of [1, 2, 3....n], j in [1, 2, 3....D], NMRi,j is the ith solution for the

jth dimension, NMRmin,j and NMRmax,j are the lower and upper boundary conditions for the

problem under consideration. The U(0, 1) is a uniform random number in the range of [0, 1]. After

initialization, the objective is to find breeders and workers and in turn, find the initial best solution.

The next step is to perform the worker and the breeder phase.

Worker phase: This phase is meant for workers to improve their fitness over consecutive

iterations and move towards the breeder phase. Here the fitness of the new worker NMR is evaluated,

and if the new mating fitness is better than the fitness of the previous iteration, the new solution is

memorized, and the old one is discarded. After all the workers complete the search phase, the new

solution is retained. The general equation of the worker phase is given by

xt+1
i = xti + λ(xtj − xtk) (2)

where, xthi is the solution of ith worker for the tth iteration, xt+1
i is defined as a new solution, λ is

the mating factor, xtj and xtk are random solutions from the worker’s pool. The λ is the uniform

randomized in the range of [0,1]. Note that the new solution xti corresponds to each worker and they

try to improve their fitness to become breeders.

Breeder Phase: The breeders are also updated with respect to iterations and follow a similar

search pattern as done by workers. The breeder NMR’s are updated using a certain mating proba-

bility also called as the breeding probability (bp), in the range of [0, 1]. The new breeder is evaluated

with respect to the overall best solution (ybest) and is updated consecutively. Some of the breeders

are not able to update their positions and are subsequently pushed towards the worker phase. This

theoretical formulation is mathematically given by

yt+1
i = (1− λ)yti + λ(ybest − yti) (3)

where, yti is the ith breeder or solution in tth iteration, yt+1
i corresponds to a new solution or breeder

in the next iteration. λ decides the mating rate of breeder’s with a queen. In this case, bp has an

initial value of 0.5. This bp decides the extent of the overall worker phase and breeder phase. As

the breeding probability increases, the exploration also increases and vice versa. Thus overall, we

can say that bp is another parameter that played a crucial part in the NMRA.
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Algorithm 1 Pseudo-code of NMRA algorithm

Begin

Define: population size (n);

stopping criteria; problem dimension (D)

if i = 1 : tmax then

For j=1:Workers

Worker phase using Eq. 2

Evaluate fitness of workers

Find the best worker

For j=1:Breeders

Breeder phase using Eq. 3

Evaluate fitness of breeders

Find the best breeder

Combine the pool of Workers & Breeders

Find the current best solution

Update final best

End
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3. Parametric adaptations

This section deals with the basic preliminaries of the parametric adaptations for the proposed

algorithm. The section is divided into two subsections where the first subsection deals with the

adaptations followed on the DE based worker phase, and the second subsection is meant for NMRA

based parametric adaptation. The more in-depth analysis of the proposed algorithm is presented in

the next section. The main aim of this section is to highlight various parameters which are playing a

significant role in enhancing the exploration and exploitation properties of the proposed algorithm.

3.1. DE variant analysis:

Here the DE variants are added in SaDN worker phase to enhance the exploitation capability

of basic NMRA. It is analyzed here in terms of five different mutations such as Diversity Mutated

self-adaptive hybridized DE and NMRA Algorithm (SaDNDiv), Cauchy mutated SaDN (SaDNC),

Trigonometric SaDN (SaDNT ), Neighbourhood based SaDN (SaDNNB) and Lévy mutated SaDN

(SaDNL). Some common examples include mutation operators for FPA [28], GA [29] and others.

3.1.1. Diversity Mutated SaDN Algorithm: (SaDNDiv)

The concept of diversity mutation was suggested by [30] for modifying genetic algorithm (GA).

It is a unique kind of mutation strategy and is generally followed where there is a requirement of

only a single mutation per individual. The diversity mutation step size is generated using a certain

type of adaptive exponential probability distribution (p(i) = te−ti) for i ∈ [0, n−1]. The generalized

distribution for a fixed value of n is given by

te−nt − e−t − t+ 1 = 0 (4)

The above equation is generalized for a random u ∈ [0, 1] and is given by

λ(t) =
1

t
log(1− u(1− e−nt)) (5)

This strategy aims to increase the diversity among the search agents and hence improve the explo-

ration properties of NMR algorithm. The diversity mutated strategy based algorithm is named as

(SaDNDiv), and the general equation is inspired by [30].

3.1.2. Cauchy Mutated SaDN Algorithm: (SaDNC)

Most of the domain research algorithms are prone to premature convergence, making the al-

gorithm fall in some local minima. To overcome the effect of small mutations of the conventional
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evolutionary programming (CEP) techniques, a Cauchy based distribution was proposed [29] for

CEP and recently extended to FPA [28] and CS [31]. The Cauchy based randomization is based on

Cauchy distribution and is given by

y =
1

2
+

1

π
arctan(

δ

g
) (6)

The Cauchy density function is given by

fC(0,g)(δ) =
1

π

g

g2 + δ2
(7)

where g = 1 is scale parameter, y ∈ [0, 1] is a random number following a uniform distribution. Now

the Cauchy distributed random number is given by equation 8 and is represented as

δ = tan(π(y − 1

2
)) (8)

For a more in-depth understanding, the Cauchy based mutation operator is meant for providing

larger step sized mutations and ultimately aiming for a better exploration of the search space. The

major reason of larger step size of Cauchy distribution is because of its fatter tailed structure,

which helps to generate larger steps over subsequent iterations and hence overcomes the problem

of premature convergence and enhances the exploration operation. Due to the Cauchy mutation

operation, the algorithm becomes capable of searching more solutions within the whole search space

and makes it possible for the exploration phase to enhance the search process in an efficient way.

3.1.3. Trigonometric SaDN Algorithm: (SaDNT )

This kind of mutation strategy has already been explored on the traditional DE and was found

to provide reliable results [32]. The trigonometric mutation is followed by using three different indi-

viduals from the current population. From the three members, one is a perturbed scaled differential

vector with respect to the other two and is perturbed in order to produce mutation vectors. Three

individuals xtr1, xtr2 and xtr3 are initialized, where Xt
i is the ith individual in the tth generation,

r1, r2, r3 = 1, ...n for r1 6= r2 6= r3 6= i and n being the population size. The three members are

taken from the centre of a hypergeometric triangle, and the perturbation is performed by using the

weighted sum of three differential vectors given by

xt+1
i =

xtr1 + xtr2 + xtr3
3

+ (p2 − p1)(xtr1 − xtr2) + (p3 − p2)(xtr2 − xtr3) + (p1 − p3)(xtr3 − xtr1) (9)

In this case p1, p2, p3 are the random perturbation weights. These individuals are required as p1 = 1

and p2 + p3 = 0 to become better output. Here, the equation (9) is used and adapted to formulate
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the new equation for the proposed trigonometric mutated SaDN (SaDNT ). The general equation

after parameter adaptation is given by

xt+1 =
xtr1 + xtr2 + xtr3

3
+ xtr2 + xtr3 − 2xtr1 (10)

This kind of strategy is also meant for increasing the diversity among the search agents and the

exploration process on the whole. The generalized discussion on how this modification has been

introduced to the proposed SaDN algorithm is presented in the subsequent section.

3.1.4. Neighbourhood based SaDN Algorithm: (SaDNNB)

Neighbourhood based mutation has been inspired by [33] and has been used in the basic DE

algorithm. The new algorithm is named as (SaDNNB) and uses multiple random solutions which

are immediate neighbours of each other. The most important point which is to be kept in mind is

that the vector generated must preserve the diversity of every individual within the search space.

xti = Xt
i +m× (X(nbest) −Xi) + n× (Xp −Xq) (11)

where X(nbest) is the best vector in the Xi and p, q ∈ [i− r, i+ r](p 6= q 6= i) neighborhood, and m,

n are scaling factors of randomized numbers ∈ [0,1]. Assume that in the current NMR population

X = (X1, X2, X3, ....., Xn), Xi(i ∈ [1, n]) is a vector preserve the neighborhood’s diversity and its

dimension is D. Also, the new solution should be generated from the same generalized neighbourhood,

and the size of the neighbourhood population must be less than the total population size. The new

best solution is updated according to equation (11) in the improved version of SaDN, and the updated

solution performs the worker phase. The new modified equation based on neighbourhood search is

given by

xt+1
i = xti + U [0, 1](xtk − xtm) (12)

where k and m are the radius of the total population vector should vary from [0, (n−1)/2] and must

be non-zero vectors. The solutions xtk and xtm are two random solutions with respect to kth and

mth NMRs of the worker phase, which are generated around the new solution xti, where k 6= m and

U[0,1] is a randomized scaling factor. Here, the general equation (2) of the worker phase is modified

as to equation (12) in according to neighbourhood search. The primary aim is to increase diversity

among the search agents to improve the overall global search or exploration of SaDN.

3.1.5. Lévy Flight based SaDN Algorithm: (SaDNL)

Lévy flight mechanism is followed to generate new steps, and because of its fatter tailed, it is

capable of generating larger step sizes and thus helping the algorithm in providing better exploration
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properties [28]. Further in [34], it has been formulated that Lévy flights based global search helps

in exploring the search space in a much better way and helps in maintaining diversity among the

search agents. The generalized equation of a Lévy distribution is given by

L(D) = 0.01× r1 × σ
|r2|1/β

r1, r2 ∈ [0, 1];β = 1.5 (13)

where

σ = (
Γ(1 + β)× sin(πβ2 )

Γ( 1+β
2 )× β × 2(β−1

2 )
)1/β Γ(x) = (x− 1)! (14)

where L(D) is an Lévy distributed random number for a D dimensional vector, α, β and Γ are

other important parameters that are kept as random numbers. The Lévy distributed randomisation

is found to have very positive results, and applying such operators helps the algorithm explore the

search space in a much better way.

3.2. NMRA variant analysis

Here the NMRA variants are analysed in SaDN breeder phase to enhance the exploration ability of

basic NMRA. It is analysed here in terms of seven different inertia weights applied on NMRA mating

factor (λ), which includes simulated annealing (SA), exponential (Exp), logarithmic decreasing (LD),

sigmoidal decreasing (SD), oscillating (Osci), random (Random) and logarithmic decreasing (Log)

inertia weights (IW). These inertia weights are inspired from particle swarm optimization (PSO)

[35],[36] and have been applied extensively in the breeder phase. Here it should be noted that the

parameter λ of the breeder phase is changed with respect to the inertia weights. A detailed overview

of the basics of each of these inertia weights is presented as

3.2.1. Simulated Annealing inertia weight: (λSA)

The simulated annealing based inertia weights has been taken from [37] and is meant for im-

proving the convergence of an algorithm. The inertia weight is found to provide better exploitation

properties and was first exploited from urban planning of block fitting [37]. The generalised mathe-

matical formulation for this inertia weight is given by

λk = αmin + (αmax − αmin)× pk−1 (15)

Here, for present case αmin = 0.5; αmax = 0.9; p = 0.95; k is a random number and is generally

expressed from a uniform distribution of [0, 1]. This inertia weights help provide a balanced breeder

phase and more precisely, make the algorithm more efficient in exploitation operation. The SA is
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a new technique that uses certain parameters same as the NMRA seems to pose the best results.

Moreover, the experimental results show that the SA based inertia weight provides the best solution

compared to other variants.

3.2.2. Exponential randomized inertia weight: (λExp)

This type of inertia weight is found to have better convergence speed and helps the algorithm

in performing exploration during the initial stages and exploitation towards the end [38]. Various

researchers [39] has exploited the exponential inertia weight, and it has been found to provide better

exploitation properties. The mathematical formulation for this inertia weight is given by

λ = λmin + (λmax − λmin)× e(
−t

tmax/10
) (16)

where λmin = 0.95 λmax = 0.4, t is the iteration counter and tmax indicates maximum number of

iterations. The major benefit of using exponential randomization based inertia weight is to improve

the local search capabilities by avoiding a problem of local optima stagnation.

3.2.3. Logarithmic Decreasing inertia weight: (λLog)

It has been already the fact that a larger value of λ means more global search and smaller value

means local search. A decreasing inertia weight helps in reducing the value of λ consecutively over

time and improve the exploration as well as exploitation capabilities of the algorithm. Logarithmic

inertia weight works in a similar fashion and provides more viable solutions in balancing the algorithm

for a proper global and local search operation [40]. The generalized equation for logarithmic inertia

weight is given by

λ = αmax + (αmin − αmax)× log10(k +
10t

tmax
) (17)

Here, αmax = 0.9, αmin = 0.25, k is a constant kept as 1 and is used to adjust the evolutionary

speed.

3.2.4. Sigmoidal Decreasing inertia weight: (λSD)

The sigmoidal inertia weight strategy is a typical randomization strategy where the inertia weight

does not always decrease at each iteration [41], [42]. At the beginning of the search process, the

value of inertia weight is largely due to the global search capabilities, whereas towards the end,

the values start reducing abruptly. There is a minimal change between the large and small inertia

weights, and this method helps to add a proper balance between the exploration and exploitation
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operation. The generalized equation for this phase is given by

λ =
αmin − αmax

1 + e−u×(iter−h×gen) + αmax (18)

u = 10log(gen)−2 (19)

where, αmax = 0.9, αmin = 0.5, gen = 51, h and k are the randomized numbers varies in the range

of [0,1].

3.2.5. Oscillating inertia weight: (λOsci)

The oscillating inertia weight generated periodic waves between exploration and exploitation

operation [43, 44]. This inertia weight is found to be very competitive and also improves the

convergence speed without getting trapped in some local minima. The temporal behavior of this

inertia weight is modelled as

λ =
αmin + αmax

2
+
αmin − αmax

2
+ cos

2πt

T
(20)

T =
2S1

3 + 2k
(21)

Here, αmax = 0.9, αmin = 0.5, S1 and k are the randomized numbers varies in the range of [0,1].

3.2.6. Random inertia weight: (λRandom)

The random inertia weight is a simple yet efficient strategy and is inspired by [45]. It was

formulated that this inertia weight also improves the exploitation properties and helps in searing

potential solutions in a concise search space. The generalized equation for random inertia weight is

given by

λ = 0.5 +
rand()

2
(22)

3.2.7. Linearly Decreasing inertia weight: (λLD)

The linearly decreasing inertia weight is inspired by [46, 31] and is meant for improving the

efficiency and performance of an algorithm. The algorithm can converge to a global optimum

solution instead of falling in some local optima. Overall this inertia weight plays a significant role

in improving the exploitation properties of an algorithm. The generalized equation for this inertia

weight is given by

λ = αmax −
αmax − αmin

tmax
× k (23)
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where αmax = 0.9, αmin = 0.4, and tmax is the maximum number of iterations. Here throughout the

present iterations, the weight of randomization parameters decreases linearly, shifting the algorithm

from exploration to exploitation operation. A further concentrated search is followed using the new

improved λ inertia weight, and hence better-searching capabilities are desired in the breeder phase.

In the next section, a detailed analysis of the proposed algorithm and how these parameters have

been incorporated into the SaDN algorithm is presented.

4. The proposed: SaDN Algorithm

NMRA is a recently introduced algorithm and has the potential to become a global problem

solver. The algorithm is very simple and linear in nature and is found to provide reliable results

in comparison to other recently introduced algorithms such as GWO, WOA, FA, CS and others

in its basic form. The algorithm though is highly efficient but has a poor exploration phase. It

can be estimated from the fact that the random solutions generated in the worker phase are far

away from each other, and hence chances of local optima stagnation are very high. Thus there is

a requirement of providing new prospective equations so that the worker phase can be enhanced

significantly, and hence optimal global solutions are obtained. Apart from that, the parameters of

NMRA also plays a very significant role in the performance of the algorithm. The major parameter

is the scaling factor, and the mating factor is very important in analysing the performance of the

NMRA algorithm. Adaptive properties have been added in present work, to make the algorithm

self-sufficient and hence no user based initialisation of variables is required. The major highlights of

the proposed work are

• The DE algorithm has been hybridized with the recently proposed NMRA and a new algo-

rithm, namely SaDN, has been proposed. The DE algorithm has been incorporated in the

worker phase of NMRA, and no modification has been introduced to the breeder phase of the

algorithm.

• The self-adaptive property has been added to SaDN by making all the parameters adaptive

in nature. Thus no user based initialization is required and hence ensuring that the algorithm

becomes self-resilient.

• The combined parameters of DE and NMRA are added to the basic structure of the proposed

SaDN algorithm. Here CR is adapted by using a general parametric adaptation of marine

predator algorithm (MPA).
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• Five different mutation operators have been added to the scaling factor parameter in the worker

or local search phase and are meant for improving the exploration operation of the proposed

SaDN algorithms.

• The mating factor is also subjected to seven different inertia weight strategies. These mating

factors help in improving the exploitation properties of the proposed algorithms.

• The best among the mutation weights (Lévy mutation) and inertia weights (sigmoidal iner-

tia weight) are combined along with the added hybridization, to formulate the new SaDN

algorithm.

A detailed study of the requirement of the proposal and how the proposed work adds significance

to the ever-expanding literature of nature inspired algorithms is presented in this section.

4.1. Why we need this new proposal

It is already a well known fact from the no free lunch theorem (NFL) that a single optimization

without any adaptations cannot be used for solving all the optimization research problems [47]. It

is because the dimension size of the problem may pose a severe challenge for the algorithm under

consideration. The variation in the number of local optima and the presence of high peaks may

push the algorithm further apart from the optimal global solution. Thus it becomes essential to

adapt and formulate new algorithms that can solve the problem under consideration with minimal

constraints. The basic structure of both the algorithms is kept intact with the added modifications.

DE algorithm is highly efficient in exploration operation, and this is because of the presence of more

than one random solution with in the whole of the search space. Thus, making the algorithm search

for potential solutions in the search space, but the exploitation is of less significance and needs

to be added. The major reason for such a response is that the DE algorithm consists of multiple

different equations, and there is no particular time when one equation will add advantage. So maybe

the equation where the solution is varied with respect to the best solution is added in the initial

phases whereas, for other cases, the algorithms can change to different equations. Overall, these

added equations lead to a better exploration operation, and hence there is a requirement of a better

exploitation operation to be introduced to make the algorithm worthwhile. NMRA, on the other

hand, has two phases, namely worker and breeder phase representing exploration and exploitation

operation, respectively. The exploration operation here is controlled by two random solutions in the

close vicinity of each other. It makes the algorithm search only particular sections of the search space,
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whereas other sections of the search, may contain the potential solution, remain completely out of

search. Thus the algorithm gets trapped in some local minimal, and the final solution may never be

found. Overall we can say that NMRA has a poor exploration operation and needs to be enhanced to

make the algorithm more efficient. On the other hand, it has a very efficient exploitation operation.

This can be estimated from the fact that the global solution of any problem lies somewhere in the

close proximity of the current best solution during the final stages and every new solution generated

is thus compared with the current best to check for the final potential solution. In the breeder phase

of NMRA, the solution is searched with respect to the current best solution and hence provides

better reliable solutions. Thus adding the exploration properties of DE and exploitation capabilities

of NMRA can make the algorithm highly efficient. In the next subsection, the proposed algorithm

has been highlighted. Here it should be noted that only DE based equation modifications have been

presented in this section whereas original equations of NMRA are kept the same as discussed in the

previous sections.

4.2. The proposed SaDN algorithm

It has been already discussed that the proposed SaDN algorithm is a self-adaptive hybrid version

of DE and NMRA algorithms. This section provides a detailed study of the various parts of the

proposed SaDN algorithm. It consists of four major parts including, initialization, worker phase,

breeder phase and the selection operation. Each of these is elaborated in consecutive subsections.

4.2.1. Initialization

This is the first step and is common in almost every other algorithm. Here the algorithm starts

by random initialization of search agents with in a particular range and the general equation is thus

given by

Si,j = Smin,j + U(0, 1)× (Smax,j − Smin,j) (24)

where i lies in the range [1, 2, 3....n], j as [1, 2, 3....D], Si,j is ith solution for the jth dimension, Smin,j

and Smax,j are lower and upper bounds of the problem under test and U(0, 1) is a uniform random

number in the range of [0, 1].

4.2.2. Worker Phase

After initialisation, the second step is the exploration operation, which is governed by the worker

phase of NMRA algorithm. This phase helps the algorithm in searching for potential solutions

within the whole of the search space and is important to analyse the local search capabilities of the
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proposed algorithm [20]. In present work, the DE based equation modifications have been introduced

in the proposed algorithm. At each generation, DE employs two basic operations, namely mutation

and crossover. A scaling factor controls the mutation, whereas crossover is controlled by using the

crossover rate. The target solution is achieved by five different equations and are given by equation

(25)

vti =



xtr1 + F.(xtr1 − x
t
r2); ”DE/rand/1”

xtbest + F.(xtr1 − x
t
r2); ”DE/best/1”

xti + F.(xtbest − xti) + F.(xtr1 − x
t
r2); ”DE/currenttobest/1”

xtbest + F.(xtr1 − x
t
r2) + F.(xtr3 − x

t
r4); ”DE/best/2”

xtr1 + F.(xtr2 − x
t
r3) + F.(xtr4 − x

t
r5); ”DE/rand/2”

(25)

The equation (25) thus formulated is the mutation operation of DE algorithm. The crossover

operation is given by

xti =


vti , if(randj [0, 1] ≤ CR), j = 1, 2, ..., n

xti, otherwise

(26)

where xti is the current solution of the ith member of the population having j dimension, vti is

the velocity of the target solution, r1, r2, r3, r4 and r5 are mutually exclusive random solutions

taken from the pool of whole NMRA population and are different from the current solution i having

j dimension, CR is the crossover rate, F is the scaling factor, xbest is the best solution and t is the

current generation. In the proposed SaDN algorithm, both mutation and crossover operations have

been introduced in the worker phase of the algorithm. Note that only one single equation among the

five equations of equation 26 is selected at a particular iteration based on random probability. Thus

any equation can be selected at any particular generation, providing better searching capabilities

with in the search space.

4.2.3. Breeder Phase

This is the third phase of SaDN algorithm and is governed by the basic equations of the NMRA

algorithm. Since this phase is mainly meant for exploitation operation, the solutions are generated

with respect to the current best solution and are controlled by the mating factor (λ). The major

reason for no change in this phase is that the breeders are limited in number and are meant for

searching within particular sections of the search space. They do not correspond to any exploration
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operation and are found to provide potential searching capabilities in the close proximity of the

current or the previous best solution, thus providing better exploitation properties. The next section

details about the selection operation performed for evaluation of the proposed algorithm.

4.2.4. Selection Operation

The fourth and the final phase is the selection operation. In present case, a greedy selection

operation is followed to find the current best solution. Here the new best solution is identified based

on the current best solution and previous solution. If the previous solution is better than the newly

generated solution, the previous solution is kept where as if the new solution is better, the previous

solution is replaced by the new solution. For a generalized minimization process having f(xti) fitness

for the xti solution, the selection procedure is given by equation (27)

xt+1
new =


xnew iff(xnew) < f(xti)

xti otherwise

(27)

Apart from the basic structure discussed above, the proposed SaDN algorithm also consists of

some major parametric adaptations of both DE and NMRA. The next section details about these

parameters and the procedure followed to adapt these parameters.

4.2.5. Parametric Adaptations

There are two major parameters for both the algorithms, namely CR and F for DE whereas bp

and λ for NRMA. In the basic algorithms, these parameters are simply random numbers and mod-

ification is required to add adaptivity in the algorithm. Here the parameter F of DE is subjected

to five different mutation weight Five different mutation operators have been added to the scaling

factor parameter namely Lévy mutation (L), Cauchy based mutation (C), neighbourhood based

mutation (NB), trigonometric mutation (T ), and diversity mutation (Div). The mating factor for

NMRA is also subjected to seven different inertia weight strategies including uniform random distri-

bution (random), linearly decreasing initialization weights (LD), exponential decreasing distributed

operator (Exp), oscillating inertia weight (Osci) simulated annealing based mutation (SA), the sig-

moidal decreasing operator (SD) and logarithmic mutation (log). Apart from these parameters,

bp has been subjected to five different values such as 0.05, 0.25, 0.50, 0.75 and 0.95. After careful

investigation, it has been found that bp = 0.05 provides the most reliable results. Based on the

experimental analysis, it has been found that Lévy distributed scaling factor and sigmoidal mating

factor presents the best combination for the proposed algorithm. The final parameter is the CR
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which has also been adapted based on the current iteration (t) and maximum number of generation

(tmax), is inspired from MPA [48] and is given by equation (28)

CR = (1− t

tmax
)2

t
tmax (28)

All of the above discussed modifications, adds up to formulate the new algorithm. Note that the

proposed modifications are added independently without compromising the basic properties of both

DE and NMRA algorithm. The pseudo code of SaDN is shown in Algorithm 2.

Algorithm 2 Pseudo-code of the proposed SaDN algorithm

Begin

Define: population size (n); Initial parameters (F, CR and λ);

stopping criteria & problem dimension (D)

if i = 1 : tmax then

Worker Phase:

With respect to best by using Eq. (25)

Breeder Phase:

With respect to best by using Eq. (3)

Greedy Selection:

Evaluate fitness using Eq. (27)

Update F using Lévy mutation operation

Update λ using SD inertia weight

Update CR

update final best

End

4.3. Computational complexity

Computational complexity of any algorithm plays a very significant role in the performance of

an algorithm and is meant for calculating the worst case complexities and generalised operations

of any algorithm. Before analysing the complexities of proposed SaDN algorithm, let us compute

the computational cost of NMRA. Here the computational complexity for NMRA is a function of

n members of the population which are working in a D dimensional search space. The complexity

for the first time is given by O(n.D) and for a total of tmax generations, the complexity becomes

O(n.D.tmax). Similarly, for the proposed SaDN algorithm, each member of the population for
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any particular dimension D, performs a total of O(D) operations to complete that particular task.

Similarly, for n members of the population, the computational burden increases n times and is given

by O(n.D). Also, no algorithm can provide exact output in a single iteration, so some tmax number

of iterations are performed to achieve the final solution. Thus this factor is also multiplied with the

total operational burden, and the total complexity for this is given by O(n.D.tmax). Now, suppose

we compare the computational complexities of both the algorithms. In that case, it can be seen that

added hybridisation and new structure does not add any challenge to the computational complexity

of the proposed algorithm and the overall complexity of SaDN remains same as that of original

NMRA.

5. Result and Discussion

This section describes the performance of the proposed SaDN algorithm. In the first stage, SaDN

has been evaluated on fifteen different single objective CEC 2005 benchmark functions and then for

thirty single objective numerical benchmark functions taken from IEEE CEC 2014 during the second

stage. In the third or last stage, SaDN performance is evaluated on real-world applications pressure

vessel, spring tension and welded beam mechanical design problems. The functions for CEC 2005

analysis for the first phase evaluation are listed in Table 1, different inertia weights for breeder phase

are noted in Table 2 and the parameter settings of different algorithms under comparison in Table

3. These algorithms are JADE [21], SaDE [21], GWO-E [23], OEWOA [39], SCCSA [49], FO-FPA

[50], CMA-ES [51], SHADE [6], LSHADE-SPACMA [6], EO [6] and basic NMRA [19]. The results

on CEC 2005 benchmark functions including the effect of different mutations are presented in Table

4, inertia weights in Table 5, population sizes in Table 6, dimension sizes in Table 7 and among

other state-of-art algorithms in Table 8. In case of CEC 2014 analysis, functions are noted in Table

9 whereas results among latest algorithms in Table 10 and Table 11. All the results are compared

in terms of mean and standard deviation values for each algorithm and function. Moreover, the

statistical tests are also conducted for Wilcoxon rank-sum test [52] and Friedman test [53] with the

values of 51 independent runs for all the algorithms under test. The evaluation for each algorithm

was done using the 64-bit operating system, Intel Core i7 processor, 32 GB RAM, window 10 and

MATLAB version R2016a. In the end, this section provides a detailed summary of the results,

drawbacks of the proposed approach, and some insightful implications. A detailed discussion about

the experimental results is presented in the consecutive subsections.
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Table 1: CEC 2005 Benchmark functions

Function Dim Range Shift position fmin

Unimodal functions

F1(x)=
∑n
i=1 x

2
i 30 [−100, 100] [−30,−30, ..,−30] 0

F2(x)=
∑n
i=1 |xi| + Πni=1|xi| 100 [−10, 10] [−3,−3, ..,−3] 0

F3(x)=
∑n
i=1(

∑i
j−1 xj)2 30 [−100, 100] [−3,−3, ..,−3] 0

F4(x)= maxi{|xi|, 1 ≤ i ≤ n} 100 [−100, 100] [−3,−3, ..,−3] 0

F5(x)=
∑n−1
i=1

100(xi+1 − x
2
i )2 + (x1 − 1)2 100 [−30, 30] [−3,−3, ..,−3] 0

F6(x)=
∑n
i=1([xi + 0.5])2 100 [−100, 100] [−3,−3, ..,−3] 0

F7(x)=
∑n
i=1 ix

4
i = random[0, 1] 100 [−1.28, 1.28] [−3,−3, ..,−3] 0

Multimodal functions

F8(x)=
∑n
i=1[x2

i − 10cos(2πxi) + 10] 30 [−5.12, 5.12] [−30,−30, ..,−30] 0

F9(x)= −20exp(−0.2
√

1
n

∑n
i=1 x

2
i ) − exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e 30 [−32, 32] [−30,−30, ..,−30] 0

F10(x)= 1
4000

∑N
i=1 x

2
i − ΠNi=1cos(

xi√
i
) + 1 30 [−600, 600] [−30,−30, ..,−30] 0

F11(x)= π
n

10sin(πy1) +
∑n
i=1 −1(yi − 1)2[1 + 10sin2(πyi+1)] 100 [−50, 50] [−30,−30, ..,−30] 0

(yn − 1)2 +
∑u
i=1(xi, 10, 100, 4)yi = 1 =

xi+1
4

F12(x)= 0.1(sin2(3πx1) +
∑n
i=1(xi − 1)2(1 + sin2(3πxi + 1))) 100 [−50, 50] [−30,−30, ..,−30] 0

+0.1((xn − 1)2[1 + sin2(2πxn]) +
∑n
i=1 u(x1, 5, 100, 4)

Fixed dimension functions

F13(x)= [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]∗ 2 [−2, 2] 3

[30 + (2x1 − 3x2)2 ∗ (18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

F14(x)= −
∑4
i=1 ci exp(−

∑3
j=1 aij(xj − pij)2) 3 [0, 1] −3.86

F15(x)= −
∑4
i=1 ci exp(−

∑6
j=1 aij(xj − pij)2) 6 [0, 1] −3.86

5.1. Test Suite

The different test functions used to analyze the performance of the proposed SaDN algorithm

have been illustrated in Table 1 consists of three major categories: unimodal, multimodal and fixed

dimension functions. The unimodal functions F1 − F7 are used for evaluating SaDN exploitation

property to calculate one optimal global solution, whereas the multimodal functions F8 − F12 have

a large number of local minima, used to test exploitation as well as exploration properties of SaDN

among proposed mutations. The function F5 (Rosenbrock) is a challenging algorithm to achieve

robust performance. The fixed dimension functions F13−F15 are involved in testing the consistency

and effectiveness of the proposed algorithm to find the best global minimal solution. For functions

F1, F3, F8 − F10, the dimension size is taken as D = 30 and fitness fmin = 0, whereas in case of

F2, F4 − F7, F11, F12, the dimension size is D = 100 and fitness fmin = 0. For functions F13 − F15,

the dimension size is D = 2, 3, 6 and fitness fmin = 3,−3.86,−3.86, respectively.

5.2. Parameter Settings

Firstly, the performance of the proposed SaDN has been evaluated with five different muta-

tion strategies applied on scaling factor (F ) in the worker phase operation. These results have

been compared with the performance to basic NMRA on 15 standard numerical CEC 2005 bench-

mark functions, as shown in Table 4. The performance of the best mutation is again analyzed

and compared with integration to seven different inertia weights applied on a mating factor (λ)
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Table 2: Parameter settings and mathematical expressions for different Inertia Weights

Sr. No. Name of Inertia Weight Mathematical expression

1. Exponential Inertia Weight (Exp) λ= αmin + (αmax − αmin) × e
( −t
tmax/10

)

where αmin = αmax = rand()

2. Random Inertia Weight (Random) λ=0.5+
rand()

2

3. Linearly Decreasing Inertia Weight (LD) λ=αmax −
αmax−αmin
Maxiter

× k

where αmax = αmin = k = rand()

4. Simulated Annealing Inertia Weight (SA) λk= αmin + (αmax − αmin) × pk−1

where αmin = 0.5;αmax = 0.9; p = 0.95; k = rand()

5. Logarithm Decreasing Inertia Weight (Log) λ= αmax + (αmin − αmax) × log10(k + 10t
tmax

)

where αmin = αmax = k = rand()

6. Sigmoid Decreasing Inertia Weight (SD) λ=
αmin−αmax

1+e(−u(iter−h×gen))
+ αmax

where αmin = 0.5;αmax = 0.9; k = h = rand(); gen = 51

u = 10(log(gen)−2)

7. Oscillating Inertia Weight (Osci) λ=
αmin+αmax

2
+
αmax−αmin

2
× cos( 2×pi×iter

T
)

where αmin = 0.5;αmax = 0.9; k = h = rand()

T =
2h

3 + 2k

in the breeder phase, as mentioned in Table 5. Therefore, the algorithm based on the best mu-

tation and inertia weight has been selected for further analysis in terms to compare with eleven

state-of-the-art algorithms. Such as joint approximate diagonalization of eigen matrices algorithm

(JADE), self-adaptive DE (SaDE), extended version of gray wolf optimization (GWO-E), Opposi-

tion and exponential whale optimization algorithm (OEWOA), sine cosine crow search algorithm

(SCCSA), fractional-order flower pollination algorithm (FO-FPA), success history-based adaptation

differential evolution (SHADE), hybridized linear population size reduction SHADE (LSHADE)

and semi-parameter adaptation based CMA-ES (LSHADE-SPACMA), covariance matrix adapta-

tion evolution strategy (CMA-ES), equilibrium optimizer (EO) and basic naked-mole-rat algorithm

(NMRA). The performance of each of the algorithms is evaluated on the above said 15 benchmark

functions. The results are compared in terms of mean and standard deviation, as shown in Table 3.

The best results appeared with bold font.
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Table 3: Parameter Settings

Algorithm Parameters

JADE F = 0.5; CR = 0.9; 1/c = [5, 20]; p = [0.05, 0.20]

SaDE F,CR = self adaptive

GWO-E ~α = Linearly decreasing from 2 to 0

OEWOA ~α = Exponentially decreasing function; b = 1

SCCSA r1, r2, r3 = [0, 1]; r4 determines the sine or cosine movement

FO-FPA Derivative orderα = [0.1, 1]; S = adaptive; number of historical terms r = 2 or 4 or 8

SHADE Pbest = 0.1, Arcrate = 2

LSHADE-SPACMA Learning rate (c) = 0.8; threshold=max-nfes/2; NP = 18D; H = 5; Pbest = 0.11

Arc rate (c) = 1.4; Probability variable (Fcp) = 0.5; where D=dimension size

CMA-ES n = µ = 10; number of off-springs λ = 40

EO α1 = 2; α2 = 1; Generation Probability (GP ) = 0.5

NMRA bp = 0.5; λ = random[0, 1]; number of breeders B = population(n)/5

GWO ~α = Linearly decreasing from 2 to 0

MSSA c1, c2, c3 = adaptive

CS pa=0.25; Tol = 1.0e − 05; β = 1.5

FDO weight factor (Wf ) = 0; r is random [-1 1]

jDE100 maxFEs = 1e12; agelimit=1e9; sNP=25; bNP=1000; CR=[0.5, 1.1]; F=[0.5, 1.1]

EHOI Numclan (nClan)=5; alpha=0.5; beta=0.1; number of elite=2; Jump Rate=0.3; a=2;

r1 is linearly decreased from 2 to 0; r2=(2 × π) × rand(); r3=2 × rand(); r4=rand()

SaDN bp = 0.05; λ = sigmoid decreasing inertia weight; CR=self adaptive; ~r = [0, 1]

In the JADE algorithm, two new parameters: c and p have been added in addition to F and

CR to improve its performance compared to the basic DE algorithm. The c parameter controls the

rate of parameter adaptation, which is taken as in the range of 1/c = [5, 20]. At the same time,

p indicates the greediness of the mutation strategy and is taken p = [0.05 − 0.2] [21]. Similarly,

the SaDE performance also depends upon the crossover rate (CR) and scaling factor (F ). Here,

these parameters are taken as adaptation parameters [21]. In case of GWO-ES, it is found that the

parameter ~α acts as a deciding factor to control the exploration and exploitation ability. The values

are linearly decreasing numbers in the range of 2 to 0, while the rest of the numbers are simply

random numbers [23]. But in OEWOA, the parameter ~α is taken as an exponentially decreasing

number instead of a linearly decreasing number, and the rest of the parameters are the same as the

basic version of WOA [39]. For SCCSA, r1, r2, r3 and r4 are the algorithm controlled parameters

in which r1 determines update direction, r2 indicates updating distance and r3 chooses emphasis or

de-emphasis in the desalination and all these parameters are taken as random numbers [0, 1] whereas

r4 chooses a sine or cosine movement [49]. The FO-FPA performance is in the hands of parameter:

derivative order α = 0.4 is the best rank [50]. Additionally, the parameters of SHADE, LSHADE-

SPACMA are almost similar. The value of Pbest is taken as lower value [0.05− 0.5] and Arcrate as

higher value [1, 5] to achieve better exploration as well as exploitation ability of the algorithm [6].

Controlled agents of the CMA-ES are taken from [51]. For EO, α1, α2 and generation probability

(GP) are the performance controlled parameters. α1 is used to control exploration quantity as taking
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a higher value of α1; the exploration ability increases. α2 is a similar parameter to α1, but it is used

to control EO’s exploitation property and its value is taken as lowest as possible. Here, its value is

α2 = 1. The value of GP = 1 means that no generation rate term participating in the optimization

process, whereas GP = 0 means it is always participating. In both conditions, EO’s performance

has degraded due to local optima stagnation, so that GP = 0.5 is observed as the best value [6].

For basic NMRA, performance can be adjusted by taking different values of breeding probability

(bp). It is used to increase or decrease the number of breeder solutions, which will improve the

NMRA performance in terms of enhancing the convergence rate and the exploitation ability of the

breeder phase. After careful investigation, its value is selected as bp = 0.05. Although, the number

of breeders is taken as 1/5th of population size [19]. Finally, parameter selection aims to improve

the algorithm’s ability to obtain the best optimal solution with fast convergence compared to other

algorithms. Apart from these algorithms, the common parameter values are taken as dimension size

(D) 30, a population size of 60 and 51 NMR runs with 500 maximum iterations.

5.3. Parametric study

This subsection provides a detailed analysis of critical parameters such as the mutation scaling

factor (F ) of the DE algorithm and the mating factor (λ) of NMRA. These parameters effect has

been examined on SaDN under consideration of other settings as bp = 0.05 and CR = adaptive and

explanation is briefly described in the following subsections:

5.3.1. Analysis of parameter dependence on DE

It is the first stage of analysis, the performance of SaDN among five different mutations such as

Lévy mutation (L), Cauchy based mutation (C), neighborhood-based mutation (NB), trigonometric

mutation (T ) and diversity mutation (Div) to examine the effect of DE algorithm scaling factor on

the worker phase of proposed SaDN. For instance, its main focus is on increasing the exploration

ability of the algorithm. The results have been evaluated by taking dimension size of 10, population

size 30, maximum no. of iterations is 500 with 51 independent NMR trails for each of 15 standard

CEC 2005 benchmark functions. The performance is compared with basic NMRA in terms of mean

and standard deviation, clearly illustrated in Table 4.

For functions F1-F3, F5-F7, F11, F14-F15, SaDNL performs better as compared to all other variants

in which it reaches zero standard deviation for F1 and F3 functions. In case of a function F4,

SaDNC provides good results among other algorithms and for functions F12 and F13, results for all

the algorithms were competitive and SaDNNB was found to be the best mutation. In the same way,
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it has been observed that all the mutations have the same performance for F8 and F10 functions

and all were able to reach the final global optimal solution. Finally, SaDNL is found to be better

for nine functions, SaDNC for one function, SaDNNB for two functions, and all have the same

performance for three functions. So overall, SaDNL is found to best among all other proposed

mutations. Moreover, it can also be verified from the Friedman test, which is a non-parametric in

nature. This test is used to evaluate the performance of the algorithm statistically by comparing

the different algorithms. The rank is assigned concerning their performance in descending order,

i.e. any variant with lower f-value is considered the best variant. Here, Lévy mutation-based SaDN

(SaDNL) algorithm is found to the best with a minimum f-value of 24 as the first rank.

5.3.2. Analysis of parameter dependence on NMRA

After findings of Lévy mutation as the best mutation, now in the second stage, the performance of

SaDN has been evaluated among seven different inertia weights (IW) strategy. Such as uniform ran-

dom distribution (Random), linearly decreasing initialization weights (LD), exponential decreasing

distributed operator (Exp), oscillating inertia weight (Osci), simulated annealing based mutation

(SA), a sigmoidal decreasing operator (SD) and logarithmic mutation (log) to examine the effect of

NMRA mating factor (λ) in the breeder phase of the proposed SaDN, are used to explore both the

exploration as well as the exploitation ability of SaDN. The results have been evaluated by taking

a dimension size of 10, population size 30 and 51 NMR runs with 500 maximum iterations on 15

numerical benchmark functions listed in Table 1. The performance is compared with basic NMRA

in terms of mean and standard deviation as noted in Table 5.

For functions F1-F5, F7, F12 and F15, SD inertia weight has better performance among all the other

variants, it was able to reach zero fitness (zero mean and std) for F1-F4 functions. All the variants

have competitive results for F6 function, and there is not an easy to say which one is the best

variant, so overall, LD IW is found to be best based on std. Similarly, for functions F11 and F14,

oscillating IW was able to reach an optimal global solution and have good results along with mean

value. In case of functions F8-F10, all the proposed variants performed equally and were able to

attain zero fitness. For function F13, Logarithmic decreasing (Log) IW has better mean and std

and is considered as a good strategy. Finally, it is concluded that the SD IW is the best variant for

eight functions, LD for one, Osci for two, Logarithmic for one, and the same performance for three

functions. Moreover, SD IW also got first f-rank with a minimum weight of f-value as 28. Overall,

Sigmoidal decreasing (SD) IW strategy is best among all other proposed variants.
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Table 4: Parameter analysis of SaDN based on DE scaling factor subjected to different mutation operators

Simulation results for different mutation operators in Worker phase

Function SaDNL SaDNDiv SaDNC SaDNT SaDNNB

F1

Mean 5.77E-264 9.50E-259 4.14E-257 3.10E-253 5.23E-263

Std 0 0 0 0 0

rank 1 3 4 5 2

F2

Mean 6.23E-131 4.26E-130 2.32E-130 5.07E-130 3.19E-130

Std 3.60E-130 3.01E-129 1.15E-129 2.88E-129 2.10E-129

rank 1 2 5 3 4

F3

Mean 2.51E-265 1.64E-260 5.58E-252 9.16E-262 1.11E-259

Std 0 0 0 0 0

rank 1 3 5 2 4

F4

Mean 8.51E-128 1.34E-130 2.36E-131 6.44E-131 2.54E-130

Std 6.04E-127 7.13E-130 7.68E-131 3.36E-130 1.20E-129

rank 5 2 1 3 4

F5

Mean 9.89E+01 9.89E+01 9.89E+01 9.89E+01 9.89E+01

Std 1.82E-03 1.89E-02 1.96E-02 1.87E-02 2.89E-02

rank 1 4 3 5 2

F6

Mean 2.42E+01 2.42E+01 2.43E+01 2.43E+01 2.41E+01

Std 9.64E-01 7.25E-01 5.02E-01 5.33E-01 6.23E-01

rank 1 2 5 4 3

F7

Mean 2.81E-04 3.05E-04 3.04E-04 3.20E-04 1.33E-04

Std 3.34E-04 2.72E-04 2.50E-04 2.46E-04 1.60E-04

rank 1 2 3 4 5

F8

Mean 0 0 0 0 0

Std 0 0 0 0 0

rank 1 1 1 1 1

F9

Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Std 0 0 0 0 0

rank 1 1 1 1 1

F10

Mean 0 0 0 0 0

Std 0 0 0 0 0

rank 1 1 1 1 1

F11

Mean 1.20E+00 1.22E+00 1.21E+00 1.22E+00 1.20E+00

Std 8.94E-02 7.97E-02 8.85E-02 7.44E-02 8.19E-02

rank 1 4 2 5 3

F12

Mean 9.99E+00 9.99E+00 9.99E+00 9.99E+00 9.99E+00

Std 2.20E-03 2.00E-03 2.40E-03 2.60E-03 3.00E-03

rank 4 5 3 2 1

F13

Mean 1.69E+01 1.64E+01 1.47E+01 1.65E+01 1.15E+01

Std 1.20E+01 1.30E+01 1.07E+01 1.20E+01 8.86E+00

rank 3 4 2 3 1

F14

Mean -3.44E+00 -3.42E+00 -3.47E+00 -3.50E+00 -3.57E+00

Std 5.95E-01 3.03E-01 3.02E-01 2.43E-01 2.36E-01

rank 1 2 3 4 5

F15

Mean -1.97E+00 -1.92E+00 -1.90E+00 -1.84E+00 -2.14E+00

Std 4.66E-01 4.03E-01 3.99E-01 4.12E-01 3.95E-01

rank 1 3 4 2 5

Overall f-value 24 39 43 45 42

Overall f-rank 1 2 4 5 3
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Table 5: Parameter analysis of SaDN based on NMRA mating factor subjected to different inertia weights

Simulation results for different cases of parameter (λ) in Breeder phase

Function λSA λExp λLD λSD λOsci λRandom λLog

F1

Mean 6.57E-286 3.16E-178 4.07E-178 0 2.44E-247 5.16E-261 4.49E-182

Std 0 0 0 0 0 0 0

rank 2 6 7 1 4 3 5

F2

Mean 2.67E-143 9.25E-90 5.52E-90 0 1.71E-126 5.68E-130 1.54E-90

Std 1.89E-142 3.62E-89 2.13E-89 0 8.63E-126 2.66E-129 7.11E-90

rank 2 6 7 1 4 3 5

F3

Mean 2.89E-287 3.19E-177 9.76E-172 0 7.40E-248 3.32E-258 1.63E-183

Std 0 0 0 0 0 0 0

rank 2 6 7 1 4 3 5

F4

Mean 7.50E+01 1.56E-90 1.45E-87 0 7.61E-125 2.97E-129 4.07E-90

Std 3.97E+01 4.94E-90 1.03E-86 0 5.02E-124 2.19E-128 2.64E-89

rank 7 4 6 1 3 2 5

F5

Mean 8.91E+08 9.89E+01 9.89E+01 9.89E+01 9.89E+01 9.89E+01 9.89E+01

Std 4.79E+08 2.05E-02 1.70E-02 3.08E-02 1.28E-02 2.11E-02 2.52E-02

rank 7 5 6 1 3 4 2

F6

Mean 1.46E+05 2.41E+01 2.40E+01 2.45E+01 2.43E+01 2.42E+01 2.43E+01

Std 1.34E+05 5.99E-01 7.76E-01 3.49E-01 5.22E-01 5.68E-01 6.26E-01

rank 7 3 1 6 5 4 2

F7

Mean 1.55E+03 2.48E-04 3.37E-04 2.86E-04 3.93E-04 2.79E-04 2.87E-04

Std 6.94E+02 2.58E-04 3.06E-04 5.38E-04 3.84E-04 2.24E-04 2.49E-04

rank 7 4 3 1 2 6 5

F8

Mean 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0

rank 1 1 1 1 1 1 1

F9

Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

Std 0 0 0 0 0 0 0

rank 1 1 1 1 1 1 1

F10

Mean 0 0 0 0 0 0 0

Std 0 0 0 0 0 0 0

rank 1 1 1 1 1 1 1

F11

Mean 2.29E+09 1.19E+00 1.18E+00 1.23E+00 1.18E+00 1.22E+00 1.20E+00

Std 1.02E+09 6.83E-02 7.33E-02 7.15E-02 8.92E-02 8.00E-02 6.48E-02

rank 7 5 3 4 1 2 6

F12

Mean 3.74E+09 9.99E+00 9.99E+00 9.99E+00 9.99E+00 9.99E+00 9.99E+00

Std 2.35E+09 2.00E-03 2.90E-03 3.40E-03 2.80E-03 2.40E-03 2.70E-03

rank 6 7 2 1 3 5 4

F13

Mean 2.44E+01 1.47E+01 1.03+01 1.87E+01 1.82E+01 1.81E+01 1.07E+01

Std 1.97E+01 1.16E+01 1.17+01 1.43E+01 1.46E+01 1.62E+01 9.12E+00

rank 7 2 3 4 5 6 1

F14

Mean -3.48E+00 -3.50E+00 -3.50E+00 -3.45E+00 -3.46E+00 -3.43E+00 -3.43E+00

Std 2.18E-01 2.19E-01 2.63E-01 2.79E-01 3.12E-01 3.09E-01 2.17E-01

rank 6 5 4 3 1 2 7

F15

Mean -1.73E+00 -2.09E+00 -2.00E+00 -1.95E+00 -1.89E+00 -1.90E+00 -2.14E+00

Std 4.16E-01 4.89E-01 4.54E-01 5.10E-01 4.89E-01 4.29E-01 4.90E-01

rank 6 3 4 1 3 5 2

Overall f-value 69 59 56 28 41 48 52

Overall f-rank 7 6 5 1 2 3 4
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5.4. Effect of population Size

After careful investigation of parameters effect, Lévy mutated scaling and sigmoidal decreasing

mating factors are observed as the best variants. In the third stage, the impact of population size

for the proposed SaDN is compared to DE and basic NMRA has been investigated. For this, four

different sets of population sizes (25, 50, 75 and 100) have been used. The total number of iterations

has taken as 500, whereas all other parameters are same as discussed in the above subsections. The

results for all the population sizes are listed in Table 6 and are presented in terms of mean and

standard deviation values over 51 NMR runs for all the algorithms under consideration. The results

discussion is as follows:

Population size 25: For this case, it has been found that for functions F1-F7, F9-F12 and F15,

SaDN was able to reach a near-global optimal solution out of which for F1-F4 and F9, it reaches to

a final solution of zero value with zero mean and std. For functions F13 and F14, all the algorithms

have comparative results, but overall, DE is found to be the best. For the function, F8, both of

the SaDN and NMRA algorithms were able to obtain a near-optimum solution, which means both

algorithms perform equally well for this function. Finally, SaDN has been observed as a better

variant for 12 functions, DE for 2 and the same performance for one function. Hence, SaDN is found

to be the best among compared algorithms for a population size of 20.

Population size 50: The simulation results for a population size of 50 are given in Table 6 and it

can be observed that for functions F1-F7, F9-F12 and F15, SaDN provided best results both in terms

of mean and standard deviation and is the best algorithm. For functions F13 and F14, DE performs

better among other variants and has better results, whereas in case of a function F8, SaDN and

NMRA both of the algorithms have the same performance in which mean and standard deviation

reaches to zero value. The overall conclusion is that SaDN is better for 13 functions and DE for 2

functions, among other algorithms for a population size of 50.

Population size 75: It can be seen that for functions F1-F12, the results of SaDN are better as

compared to other variants, whereas for functions F13 and F14, SaDN failed to reach the optimal

global solution and overall DE is found to be the best. In case of function F15, the results of all

the algorithms are comparable in terms of standard deviation where basic NMRA provides the best

results. Overall, it is concluded that for a population size of 60, SaDN is best for most of the

functions.

Population size 100: From simulated results with a population size of 100, it can be seen that for

functions F1-F11, SaDN has performed better than other variants.For functions F13 and F14, SaDN
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failed to reach an optimal global solution and overall, DE is found to be the best algorithm. In

case of functions F12 and F15, the results of all the algorithms are comparable in terms of standard

deviation, from which basic NMRA is observed as the best algorithm. Overall, it is concluded that

SaDN has better results for 11 functions, DE for 2 and NMRA for 2 functions. Hence, SaDN is

found to be best for a population size of 100.

Inferences from effect of population size: From the results, it has been observed that for variable

population size, with an increase in the population size, the results are getting better. For the

population sizes of 25 and 50, there is less variation in the results. But as the population size

increases to 75 or 100, the overall performance degrades. Beyond the population size of 50, there is

not much improvement in the simulation results. Here it should be noted that with an increase in

population sizes, the total number of function evaluations increases many folds. So overall, we can

say that SaDN performs best for a population size of 50.

5.5. Effect of dimension Size

This section describes the effect of dimension sizes for the proposed SaDN among DE and basic

NMRA algorithms. In this case, five different set of dimension sizes (30, 50, 100, 500 and 1000) have

been evaluated over 12 different CEC 2005 functions. The parameters for simulation are taken as

the population size of 50, maximum no. of iterations as 500 with 51 NMR runs. Results for all the

dimension sizes based on mean and standard deviation values are described in Table 7 and their

description is given as below:

Dimension size 30: The simulation results for a dimension size of 30 are illustrated in Table

7. It has been observed that for functions F1-F4, F7-F10 and F12, SaDN was capable of attaining

near-optimal global solution in which SaDN approaches to zero fitness for functions F5, F6 and F11,

basic NMRA is found to be best among all other variants. Overall, SaDN performs better for 9

functions and NMRA for 3. Hence, SaDN is found to be the best among all diverse variants for a

dimension size of 30.

Dimension size 50: The simulation results with 50 dimension size are described in this subsection.

For functions F1-F11, all the algorithms have comparative results. But overall, SaDN is found to

be best among other algorithms. In contrast, for function F12, NMRA was able to reach the global

optimum solution and gives the best performance in terms of standard deviation only. Finally,

SaDN has good results for 11 functions and NMRA for 1 function. Hence, all the algorithms failed

to compete with SaDN, which is found to be best compared to other algorithms.
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Table 6: Experimental results for population size of 25, 50, 75, 100

Function Algorithm
Pop Size 25 Pop Size 50 Pop Size 75 Pop Size 100

Mean Std Mean Std Mean Std Mean Std

F1

DE 6.69E+04 1.15E+04 6.25E+04 1.02E+04 6.17E+04 7.40E+03 6.00E+04 6.85E+03

NMRA 6.89E-31 4.91E-30 7.72E-29 5.51E-28 2.17E-21 1.54E-20 3.09E-05 2.21E-04

SaDN 0 0 0 0 0 0 0 0

F2

DE 1.97E+51 1.12E+52 1.97E+48 1.06E+49 3.63E+47 2.18E+48 3.30E+47 1.55E+48

NMRA 1.76E-17 1.20E-16 5.17E-16 2.76E-15 2.20E-03 1.10E-02 1.10E-03 6.30E-03

SaDN 0 0 0 0 0 0 0 0

F3

DE 7.54E+04 3.92E+04 9.19E+04 3.35E+04 1.01E+05 2.84E+04 8.93E+04 2.11E+04

NMRA 2.32E-25 1.62E-24 5.40E-26 3.85E-25 7.71E-05 5.50E-04 1.19E-04 8.53E-04

SaDN 0 0 0 0 0 0 0 0

F4

DE 9.60E+01 1.19E+00 9.57E+01 1.18E+00 9.49E+01 1.32E+00 9.51E+01 1.08E+00

NMRA 1.69E-13 1.20E-12 1.44E-16 7.24E-16 4.10E-17 2.35E-16 2.90E-04 2.10E-03

SaDN 0 0 0 0 0 0 0 0

F5

DE 1.18E+09 9.83E+07 1.16E+09 7.97E+07 1.12E+09 7.55E+07 1.09E+09 8.49E+07

NMRA 9.89E+01 1.27E-02 9.89E+01 1.38E-02 9.89E+01 1.64E-02 9.89E+01 1.85E-02

SaDN 9.89E+01 1.49E-02 9.89E+01 3.01E-02 9.89E+01 1.85E-02 9.89E+01 2.59E-02

F6

DE 2.79E+05 1.46E+04 2.66E+05 1.26E+04 2.65E+05 1.19E+04 2.63E+05 1.17E+04

NMRA 2.46E+01 5.10E-01 2.46E+01 5.43E-01 2.40E+01 5.12E-01 2.38E+01 5.31E-01

SaDN 2.45E+01 5.15E-01 2.45E+01 6.18E-01 2.44E+01 4.31E-01 2.42E+01 5.35E-01

F7

DE 1.89E+03 1.87E+02 1.84E+03 1.74E+02 1.77E+03 1.62E+02 1.75E+03 1.36E+02

NMRA 5.40E-03 6.00E-03 3.40E-03 3.50E-03 2.80E-03 2.50E-03 2.90E-03 2.70E-03

SaDN 8.61E-04 6.98E-04 2.62E-04 2.30E-04 1.66E-04 1.69E-04 1.14E-04 1.58E-04

F8

DE 4.18E+02 6.46E+01 4.23E+02 3.86E+01 4.22E+02 2.85E+01 4.14E+02 2.46E+01

NMRA 0 0 0 0 1.37E-04 9.83E-04 3.23E-05 2.31E-04

SaDN 0 0 0 0 0 0 0 0

F9

DE 2.03E+01 5.84E-01 2.04E+01 2.78E-01 2.04E+01 3.28E-01 2.04E+01 2.41E-01

NMRA 1.16E-15 1.56E-15 8.88E-16 0 2.53E-14 1.40E-13 8.01E-05 5.72E-04

SaDN 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0

F10

DE 1.15E-01 1.53E-01 1.86E-02 4.78E-02 9.74E-10 6.95E-09 0 0

NMRA 4.77E-05 3.40E-05 0 0 4.61E-06 1.95E-05 9.60E-06 3.69E-05

SaDN 0 0 0 0 0 0 3.00E-03 2.13E-02

F11

DE 2.86E+09 3.32E+08 2.75E+09 2.76E+08 2.64E+09 2.46E+08 2.52E+09 2.80E+08

NMRA 1.21E+00 1.32E-01 1.26E+00 7.22E-02 9.10E-01 7.42E-02 8.88E-01 7.87E-02

SaDN 1.25E+00 6.09E-02 1.22E+00 9.25E-02 1.22E+00 7.73E-02 1.19E+00 8.77E-02

F12

DE 5.31E+09 4.47E+08 5.05E+09 4.42E+08 4.97E+09 4.24E+08 4.80E+09 3.64E+08

NMRA 9.99E+00 1.60E-03 9.99E+00 1.20E-03 9.99E+00 1.62E-02 9.99E+00 2.10E-03

SaDN 9.99E+00 1.70E-03 9.99E+00 2.30E-03 9.99E+00 2.30E-03 1.01E+01 8.17E-01

F13

DE 3.00E+00 5.68E-05 3.00E+00 2.65E-15 3.00E+00 3.26E-15 3.00E+00 3.22E-15

NMRA 3.37E+00 2.34E+00 3.00E+00 2.19E-02 3.00E+00 3.96E-04 3.00E+00 8.78E-05

SaDN 1.86E+01 2.35E+01 2.37E+01 1.48E+01 1.60E+01 1.53E+01 1.56E+01 1.63E+01

F14

DE -3.86E+00 1.27E-04 -3.86E+00 3.03E-15 -3.86E+00 3.06E-15 -3.86E+00 3.10E-15

NMRA -3.85E+00 2.04E-02 -3.86E+00 6.80E-03 -3.86E+00 1.40E-03 -3.86E+00 1.10E-03

SaDN -3.28E+00 4.79E-01 -3.46E+00 2.38E-01 -3.54E+00 1.96E-01 -3.60E+00 1.69E-01

F15

DE -3.19E+00 1.64E-01 -3.21E+00 3.88E-02 -3.21E+00 3.83E-02 -3.21E+00 3.22E-02

NMRA -3.21E+00 1.20E-01 -3.25E+00 4.82E-02 -3.28E+00 4.14E-02 -3.29E+00 4.15E-02

SaDN -1.46E+00 4.79E-01 -1.93E+00 6.69E-02 -2.02E+00 3.75E-01 -2.24E+00 3.78E-01
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Dimension size 100: For functions, F1-F4, F6-F10 and F12, all the algorithms have comparative

results, but overall, SaDN is found to be best among other algorithms. For functions F5, F11, NMRA

was able to reach global optimum solution and gives the best performance. In conclusion, SaDN

works efficiently for 10 functions and NMRA for 2 functions. Hence SaDN is found to be best as

along with other variants.

Dimension size 500: In functions F1, F5, F6 and F10, all the algorithms have competitive results.

It is tough to say which one is the best variant. However, based on standard deviation, SaDN is

found to be the best. In case of functions F1-F12, the results of all the algorithms were poor, not up

to a satisfactory level. Only SaDN performs better as compared to other variants. Finally, SaDN

has proved its capability and is identified as the best algorithm.

Dimension size 1000: This subsection discusses the results of dimension size of 1000. For func-

tions F1-F4, SaDN was able to obtain the optimal global solution and provides better results among

other variants. Similarly, for functions F8-F12, the performance of basic NMRA and SaDN is better

than the DE algorithm. SaDN performed better than basic NMRA except for the function F10

because, in F10, SaDN approaches to final zero fitness value. For the rest of the functions F5-F7,

SaDN was able to reach an optimal global solution. Finally, it is observed that SaDN performs

better for all the 12 functions; no other algorithm is capable enough for a population size of 1000.

Hence SaDN has again proved itself as the best variant.

Inferences from the effect of dimension size: Any algorithm’s performance is said to be better

when it provides excellent results for higher dimension sizes. Here, SaDN provided better results

for dimension size larger than 200 as compared to DE and basic NMRA. But, as we move to higher

dimension sizes,the performance of all algorithms degrade due to increase in computational com-

plexity.Therefore, SaDN performance also degrades for dimension size of 500 and 1000 as compared

to 30, 50 and 100 as can be seen from Table 7. Overall, SaDN is best for a maximum number of

functions in all sets of dimension sizes.

5.6. Comparison with respect to other algorithms

5.6.1. Experimental Testing

Here the results are compared in terms of mean and standard deviation values for 7 uni-modal

functions, 5 multi-modal functions and 3 fixed dimension functions. The parameters of SaDN are

taken as bp = 0.05, CR = adaptive, population size 50, dimension size of 30, 500 iterations with 51

independent NMR trails. For functions F1-F5, F8-F10, SaDN results reach zero fitness in terms of
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Table 7: Experimental results for dimension size of 30, 50, 100, 500, 1000

Function Algorithm
Dim Size 30 Dim Size 50 Dim Size 100 Dim Size 500 Dim Size 1000

Mean Std Mean Std Mean Std Mean Std Mean Std

F1

DE 6.54E+04 7.43E+03 1.21E+05 8.69E+03 2.67E+05 1.44E+04 1.51E+06 3.46E+04 3.11E+06 4.22E+04

NMRA 1.01E-33 7.19E-33 3.66E-34 1.86E-33 3.02E-31 2.16E-30 1.86E+03 4.49E+03 1.40E+03 2.22E+03

SaDN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.89E+01 2.77E+02 4.30E-17 3.07E-16

F2

DE 3.37E+07 2.40E+08 2.56E+18 1.80E+19 6.65E+48 3.24E+49 1.35E+266 Inf Inf NaN

NMRA 2.41E-18 1.49E-17 2.45E-18 1.19E-17 2.40E-18 1.03E-17 5.30E+01 4.48E+01 3.98E+01 3.83E+01

SaDN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.53E-24 1.07E-23 3.59E-16 2.56E-15

F3

DE 8.55E+04 3.05E+04 2.55E+05 7.18E+04 1.05E+06 3.35E+05 2.64E+07 9.56E+06 1.02E+08 3.03E+07

NMRA 8.51E-32 6.04E-31 1.41E-30 9.02E-30 7.99E-30 5.70E-29 3.08E+05 1.00E+06 1.41E+06 2.90E+06

SaDN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.80E-56 2.71E-55 1.15E+03 8.27E+03

F4

DE 8.61E+01 3.24E+00 9.18E+01 1.97E+00 9.57E+01 1.27E+00 9.90E+01 2.79E-01 9.95E+01 1.38E-01

NMRA 4.96E-17 2.45E-16 1.70E-16 1.15E-15 2.02E-17 1.25E-16 2.02E+00 1.87E+00 2.16E+00 2.71E+00

SaDN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.37E-37 2.40E-36 1.81E-17 1.29E-16

F5

DE 2.35E+08 3.82E+07 4.74E+08 6.24E+07 1.14E+09 8.83E+07 7.00E+09 2.37E+08 1.46E+10 2.79E+08

NMRA 2.89E+01 2.07E-02 4.89E+01 1.73E-02 9.89E+01 7.20E-03 1.93E+04 6.09E+04 5.01E+04 1.83E+05

SaDN 2.89E+01 1.94E-02 4.89E+01 1.82E-02 9.89E+01 1.43E-02 2.39E+03 1.35E+04 9.98E+02 1.63E+00

F6

DE 6.46E+04 8.43E+03 1.21E+05 9.00E+03 2.65E+05 1.14E+04 1.51E+06 2.74E+04 3.12E+06 5.46E+04

NMRA 7.14E+00 4.27E-01 1.21E+01 3.62E-01 2.46E+01 4.75E-01 1.24E+03 2.00E+03 1.49E+03 2.42E+03

SaDN 6.89E+00 4.02E-01 1.20E+01 3.99E-01 2.43E+01 5.81E-01 1.11E+02 3.93E+00 2.34E+02 6.18E+00

F7

DE 1.11E+02 2.25E+01 3.83E+02 5.36E+01 1.83E+03 1.54E+02 5.69E+04 1.73E+03 2.40E+05 4.80E+03

NMRA 3.50E-03 3.00E-03 3.70E-03 3.40E-03 3.60E-03 3.60E-03 5.56E-01 1.17E+00 1.96E+00 6.07E+00

SaDN 2.82E-04 2.08E-04 2.95E-04 4.08E-04 2.76E-04 2.63E-04 4.30E-04 4.54E-04 7.20E-03 4.77E-02

F8

DE 4.24E+02 4.05E+01 7.70E+02 3.47E+01 1.63E+03 4.77E+01 8.76E+03 1.00E+02 1.78E+04 1.95E+02

NMRA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.32E+02 3.88E+02 7.90E+02 1.44E+03

SaDN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.08E-08 7.74E-08 5.51E+00 3.90E+01

F9

DE 2.03E+01 4.02E-01 2.07E+01 1.36E-01 2.09E+01 5.35E-02 2.11E+01 2.24E-02 2.11E+01 1.84E-02

NMRA 8.88E-16 0.00E+00 1.35E-14 9.05E-14 8.88E-16 0.00E+00 2.18E+00 1.90E+00 2.68E+00 1.63E+00

SaDN 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 1.50E-02 9.78E-02 8.88E-16 0.00E+00

F10

DE 1.20E-02 4.10E-02 2.04E-02 5.34E-02 8.90E-03 3.58E-02 1.12E-02 4.11E-02 1.30E-02 4.37E-02

NMRA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.99E-02 5.59E-02 4.56E-02 5.63E-02

SaDN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.60E-03 5.42E-02 3.80E-03 2.74E-02

F11

DE 5.07E+08 1.06E+08 1.12E+09 1.75E+08 2.73E+09 2.77E+08 1.72E+10 5.83E+08 3.63E+10 7.75E+08

NMRA 1.24E+00 2.84E-01 1.33E+00 1.58E-01 1.25E+00 8.15E-02 1.71E+00 9.48E-01 1.71E+00 8.04E-01

SaDN 1.17E+00 2.45E-01 1.22E+00 1.65E-01 1.22E+00 6.89E-02 9.19E-01 7.99E-02 1.01E+00 5.09E-02

F12

DE 1.05E+08 1.78E+08 2.08E+09 2.26E+08 5.10E+09 4.22E+08 3.14E+10 1.06E+09 6.65E+10 1.57E+09

NMRA 2.99E+00 1.70E-03 4.99E+00 1.40E-03 9.99E+00 2.20E-03 1.19E+02 1.05E+02 2.51E+02 1.97E+02

SaDN 2.99E+00 2.00E-03 4.99E+00 1.30E-03 9.99E+00 2.60E-03 4.99E+01 3.56E-02 1.02E+02 1.78E+01

33



mean and standard deviation. For functions F6 and F11, all the algorithms have competitive results,

but CMA-ES is found to be best in terms of standard deviation. In the case of function F7, the

GWO-E algorithm results were better as compared to other variants. For functions F12 and F14,

JADE is the only algorithm that attains a value of global optima whereas, for a function F13, SaDE

is found to be best based on standard deviation. Similarly, for function F15, all the algorithms have

comparable results,hence, it is difficult to say which one is the best algorithm. Overall, the proposed

SaDN is best for 8 functions, CMA-ES for 2, JADE for 2, SaDE for 1 and OEWOA for 1 function.

Hence it can be seen that the proposed SaDN is best for the maximum number of functions.

5.6.2. Statistical Testing

This section examines the statistical performance of the proposed SaDN algorithm using two sta-

tistical tests such as Wilcoxon Rank-sum test and Friedman F − rank test. For the Rank-Sum test,

two different algorithms are compared in terms of the best samples and give a P-value correspond-

ingly, which determines the statistical significance of that algorithm at 5% level of significance. For

the present case, the proposed SaDN algorithm has been compared with some recent algorithms such

as SaDN with JADE, SaDN/SaDE, SaDN/GWO-E, SaDN/OEWOA, SaDN/SCCSA, SaDN/FO-

FPA, SaDN/SHADE, SaDN/LSHADE-SPACMA, SaDN/CMA-ES, SaDN/EO and SaDN/NMRA

to prove the efficiency of SaDN. It is impossible to compare the SaDN with itself so that NA (Not

Applicable) or blank has been used in its place. When the algorithm under comparison to proposed

SaDN is identical or there is no statistical relevance between them, then ’=’ sign is inserted in its

place, which shows both of the algorithms have the same performance and can not be compared.

Similarly, the ’+’ sign is used if the algorithm compared to SaDN performs better and assigns a ’−’

sign if SaDN is found to be the best among the algorithms under test. The w(win)/l(loss)/t(tie)

analysis represents how many times the algorithm under comparison win, loss and have an equal

performance as compared to the proposed SaDN, as shown in Table 8. From the table, it has been

observed that JADE, SaDE, SCCSA, LSHADE-SPACMA and CMA-ES losses 11 times, OEWOA

and SHADE for 10 times, GWO-E, FO-FPA, EO and NMRA for 8 times loses or have the worse

performance as compared to SaDN. Hence it is proved that the SaDN performance is significantly

better for the maximum number of cases and found to be the best algorithm statistically.

In the second stage, the Friedman F − rank analysis (non-parametric in nature) has been used to

test the performance of SaDN. In order to have a reliable comparison, at least 10 benchmark func-

tions with more than five different algorithms are considered [53]. Here this work has considered 15

benchmark functions with 12 different algorithms. As a resultant, Table 8 illustrates that F-rank has
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been assigned to all the algorithms according to their performance in descending order. Then, add

up all the individual ranks of particular algorithms to find the f-value of that algorithm. At last, all

the algorithms are sorted in f-rank wise based on their f-values performance. The algorithm with the

lowest f-value is considered the best algorithm, whereas the algorithm with higher f-value indicates

poor performance. Finally, from these analyses, SaDN, JADE and CMA-ES have significant results

among other variants under consideration. But overall, the proposed SaDN is found to be the best

algorithm with first ranked, minimum f-value of 58.

5.7. Convergence profiles

This section presents an impact of merging DE exploration and NMRA exploitation within

the frame structure of basic NMRA algorithm to enhance the acceleration convergence trends of

SaDN, for twelve different CEC 2005 benchmark functions in Figure 2. Generally, the convergence

curve exists at a slow rate at the initial iterations of an algorithm due to the requirement of the

exploration phase in the starting stage while the exploitation phase is required towards the algorithm

end iterations. In the exploitation phase, the algorithm moves faster than the exploration end of

the phase, and this enables the algorithm to converge faster towards an optimal solution at the

later stages. Here SaDN algorithm proved that it has excellent performance to enhance exploration

propensity and maintain a balance between exploration and exploitation. From the inspection of

Figure 2, it can be observed that for functions F1-F4, F8 and F10, SaDN fitness reached to a final

solution of zero value after the few initial stages while at the same time DE and NMRA algorithms

have been failed to obtain zero fitness. Moreover, SaDN exhibits the faster decaying rate for the

optimal values for all the given functions except F7. So overall, the proposed SaDN is found the

best convergence trends as compared to DE and NMRA.

5.8. Comparison on CEC2014 benchmark problems

In this part, performance evaluation of the proposed SaDN algorithm has been tested on thirty

CEC 2014 benchmark functions [25] and compared the results with respect to some standard Lapla-

cian Biogeography-Based Optimization (Lx-BBO) [54], Blended Biogeography-Based Optimization

(B-BBO) [54], Random Walk-Grey Wolf Optimization (RW-GWO) [55], Isomorphic Algorithms

(ISOS) [56], Marine Predators Algorithm (MPA) [57], Improved Elephant Herding optimization

(IMEHO) [58], Variable Neighborhood Bat Algorithm (VNBA) [58], Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [59], Improved Differential Evolution (IDE) [60], Sinusoidal Differ-

ential Evolution (SinDE) [61], Beta Differential Evolution (BDE) [62], Memory Guided Sine Cosine
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Table 8: Statistical results of proposed algorithm in comparison to other algorithms for CEC 2005

Function JADE SaDE GWO-E OEWOA SCCSA FO-FPA SHADE LSHADE CMA-ES EO NMRA Proposed

[21] [21] [23] [39] [49] [50] [6] -SPACMA [6] [6] [6] SaDN

F1

mean 1.80E-60 4.50E-20 3.92E-67 7.75E-176 9.22E-69 1.51E-184 1.42E-09 2.23E-01 1.42E-18 3.32E-40 7.72E-29 0.00E+00

std 8.40E-60 6.90E-20 1.11E-66 0.00E+00 3.81E-68 0.00E+00 3.09E-09 1.48E-01 3.13E-18 6.78E-40 5.51E-28 0.00E+00

P-rank + + + + + + + + + + +

F-rank 5 8 4 2 3 2 10 11 9 6 7 1

F2

mean 1.80E-25 1.90E-14 4.31E-36 1.86E-115 8.25E-41 5.04E-93 8.70E-03 2.11E+01 2.98E-07 7.12E-23 5.17E-16 0.00E+00

std 8..8E-25 1.05E-14 6.57E-36 1.32E-114 4.19E-40 3.47E-93 2.13E-02 9.57E+00 1.78E+00 6.36E-23 2.76E-15 0.00E+00

P-rank + + + + + + + + + + +

F-rank 6 9 5 2 4 3 10 12 11 7 8 1

F3

mean 5.70E-61 9.00E-37 3.75E-37 2.87E+04 4.31E-13 1.23E-183 1.54E+01 8.87E+01 1.59E-05 8.06E-09 5.40E-26 0.00E+00

std 2.70E-60 5.43E-36 1.36E-36 1.02E+04 2.83E-30 0.00E+00 9.94E+00 4.72E+01 2.21E-05 1.60E-08 3.85E-25 0.00E+00

P-rank + + + + + + + + + + +

F-rank 3 4 5 12 6 2 10 11 9 8 7 1

F4

mean 8.20E-24 7.40E-11 2.39E-25 1.06E+01 2.15E-17 9.97E-93 9.79E-01 2.11E+00 2.01E-06 5.39E-10 1.44E-16 0.00E+00

std 4.00E-23 1.82E-10 6.80E-25 2.22E+01 1.06E-16 7.31E-93 7.99E-01 4.92E-01 1.25E-06 1.38E-09 7.24E-16 0.00E+00

P-rank + + + + + + + + + + +

F-rank 4 7 3 12 6 2 10 11 9 8 5 1

F5

mean 8.00E-02 2.10E+01 2.65E+01 2.85E+01 5.90E+00 2.89E+01 2.44E+01 2.88E+01 3.67E+01 2.53E+01 9.89E+01 9.89E+01

std 5.60E-01 7.80E+00 5.19E-01 2.22E-01 9.13E-01 1.72E-02 1.12E+01 8.24E-01 3.34E+01 1.69E-01 1.38E-02 3.01E-02

P-rank + + + + + + + + + + +

F-rank 6 10 7 8 4 2 11 5 12 9 3 1

F6

mean 2.90E+00 9.30E+02 2.65E+01 1.62E+00 4.14E-08 5.88E+00 5.31E-10 2.48E-01 6.83E-19 8.29E-06 2.46E+01 2.45E+01

std 1.20E+00 1.80E+02 5.19E-01 6.93E-01 5.22E-08 5.86E-01 6.35E-10 1.13E-01 6.71E-19 5.02E-06 5.43E-01 4.18E-01

P-rank + + − − − − − + − − −

F-rank 11 12 8 5 3 6 2 10 1 4 7 9

F7

mean 6.40E-04 4.80E-03 9.90E-05 1.37E-03 1.33E-03 1.13E-04 2.35E-02 4.70E-03 2.75E-02 1.17E-03 5.40E-03 8.61E-04

std 2.50E-04 1.20E-03 8.37E-05 2.85E-03 1.72E-03 8.94E-04 8.80E-03 1.90E-03 7.90E-03 6.54E-04 6.00E-03 6.98E-04

P-rank + + − + + − + + + + +

F-rank 6 12 1 9 11 2 7 10 8 4 5 3

F8

mean 1.00E-04 1.20E-03 0.00E+00 0.00E+00 5.46E+00 0.00E+00 8.53E+00 6.75E+01 2.53E+01 0.00E+00 0.00E+00 0.00E+00

std 6.00E-05 6.50E-04 0.00E+00 0.00E+00 5.62E+00 0.00E+00 2.19E+00 1.00E+01 8.55E+00 0.00E+00 0.00E+00 0.00E+00

P-rank + + = = + = + + + = =

F-rank 2 3 1 1 5 1 4 7 6 1 1 1

F9

mean 8.20E-10 2.70E-03 5.58E-15 3.02E-15 8.88E-16 8.88E-16 3.95E-01 3.93E-02 1.55E+01 8.34E-14 8.88E-16 8.88E-16

std 6.90E-10 5.10E-04 1.67E-15 2.27E-15 9.36E-32 0.00E+00 5.86E-01 1.51E-02 7.92E+00 2.53E-14 0.00E+00 0.00E+00

P-rank + + + + + = + + + + =

F-rank 6 7 4 3 2 1 9 8 10 5 1 1

F10

mean 9.90E-08 7.80E-04 0.00E+00 1.42E-02 3.33E-02 0.00E+00 4.80E-03 8.94E-01 5.76E-15 0.00E+00 0.00E+00 0.00E+00

std 6.00E-07 1.20E-03 0.00E+00 1.00E-01 4.56E-02 0.00E+00 7.70E-03 1.07E-01 6.18E-15 0.00E+00 0.00E+00 0.00E+00

P-rank + + = + + = + + + = =

F-rank 3 5 1 8 6 1 4 7 2 1 1 1

F11

mean 4.60E-17 1.90E-05 1.98E-02 1.06E-01 1.34E-02 8.32E-01 3.46E-02 8.18E-04 2.87E-16 7.97E-07 1.26E+00 1.22E+00

std 1.90E-16 9.20E-06 1.01E-02 4.97E-02 1.60E-02 1.78E-01 8.75E-02 1.00E-03 5.64E-16 7.69E-07 7.22E-02 9.25E-02

P-rank − − + + + + + − − − +

F-rank 2 4 11 9 10 12 7 5 1 3 8 6

F12

mean 2.00E-16 6.10E-05 2.50E-01 1.03E+00 2.01E-02 2.94E+00 7.32E-04 1.02E-02 3.66E-04 2.92E-02 9.99E+00 9.99E+00

std 6.50E-16 2.00E-05 1.63E-01 3.61E-01 7.23E-02 1.59E-01 2.80E-03 1.03E-02 2.00E-03 3.52E-02 1.20E-03 2.30E-03

P-rank − − + + + + − + + + +

F-rank 1 2 11 10 7 12 3 9 5 8 6 4

F13

mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 8.40E+00 3.00E+00 3.00E+00 2.37E+01

std 1.10E-15 3.00E-15 1.25E-05 4.96E-04 8.93E-05 3.13E-09 1.87E-15 1.25E-15 2.05E+01 1.56E-15 2.19E-02 1.48E+01

P-rank − − − − − − − − + − −

F-rank 5 1 8 9 7 6 2 4 12 3 10 11

F14

mean -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.01E-01 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.46E+00

std 0 3.10E-15 4.16E-06 2.92E-04 9.29E-06 2.25E-16 2.70E-15 2.70E-15 2.70E-15 6.80E-03 9.45E-08 2.38E-01

P-rank − − − − − − − − − − −

F-rank 1 3 7 8 6 2 4 4 4 9 5 10

F15

mean -3.31E+00 -3.31E+00 -3.26E+00 -3.24E+00 -3.27E+00 -3.29E+00 -3.27E+00 -3.28E+00 -3.29E+00 -3.26E+00 -3.25E+00 -1.93E+00

std 3.60E-02 2.80E-02 7.50E-02 8.18E-02 6.00E-02 1.97E-02 6.00E-02 5.70E-02 5.35E-02 5.70E-02 6.69E-02 4.28E-02

P-rank + + − − − + − − − − −

F-rank 8 9 2 1 4 10 4 5 6 5 3 7

w/l/t 11/4/0 11/4/0 8/5/2 10/4/1 11/4/0 8/4/3 10/5/0 11/4/0 11/4/0 8/5/2 8/4/3 NA

Overall F-value 69 96 78 99 84 64 97 119 105 81 77 58

Overall F-rank 3 8 5 10 7 2 9 12 11 6 4 1
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Figure 2: SaDN convergence profiles of different functions
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Algorithm (MG-SCA) [63] and basic Naked Mole-rat Algorithm (NMRA). These functions are di-

vided into four categories as: 3 unimodal functions (F1 − F3), 13 multimodal functions (F4 − F16),

6 hybrid functions (F17 −F22) and 8 composition functions (F23 −F30), which are well explained in

Table 9. During the simulation, the dimension size of SaDN is taken as 30, the population kept as

50 with 30000 maximum number of iterations. The simulation performance is noted for each of the

51 NMR runs. Apart from this, the simulated results for all the algorithms are compared in terms

of mean and standard deviation as shown in Table 10 for functions F1 − F15 and in Table 11 for

F16 − F30.

From these analyses, it is observed that for unimodal functions F1, F2 and F3, CMA-ES, SinDE and

IDE algorithms have been performed well and found to be best among other variants. In case of

multimodal F4-F16 functions, SaDN is found to be the best for all multimodal functions except the

function F4, F7 and F8. Here, SaDN comes out as a very effective algorithm because of the inserted

DE structure to NMRA frame enhances the exploration propensity in addition to an already exist-

ing strong exploitation of NMRA. For function F4, CMA-ES was able to obtain the global optimal

solution. Whereas, for functions F7 and F8, IDE and B-BBO are found as best algorithms among

other variants, respectively. For hybrid (F17-F22) functions, MPA is identified as a best algorithm

for functions F17, F20 and F21 while for rest of the functions F18, F19 and F22, SaDN is found to

be the best. In case of composition functions (F23-F30), SaDN again provided high-grade results in

terms of mean and std., except the function F25 and F27. For functions F25 and F27, MPA performed

very well among other algorithms. Moreover, based on the wilcoxon Rank-sum test (p-rank), only

MPA win (w) the proposed algorithm for 6 functions, CMA-ES for 5 functions, SinDE for 4, IDE

for 3, ISOS for 1, and B-BBO for 1 function. All other algorithms are failed to beat the SaDN.

After that, the statistical Friedman rank test has been performed for all the benchmark functions to

validate the capability and efficiency of the proposed SaDN algorithm, as listed in Table 11. Finally,

it is analysed that SaDN gave the highest ranking for 19 functions, MPA for 5, CMA-ES for 2,

IDE for 2, SinDE for 1 and B-BBO for 1 function. Overall, SaDN attained the first rank with a

minimum f-value of 49. Hence, SaDN is again recognized as the best algorithm as compared to all

other variants.

5.9. Comparison on CEC 2019 benchmark problems

In this section, the proposed SaDN algorithm performance has been evaluated on ten CEC

2019 benchmark functions (100-Digit Challenge) [64] and compared the results with respect to

some standard Grey Wolf Optimization (GWO) [55], Mutated Salp Swarm Algorithm (MSSA) [65],
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Table 9: CEC 2014 Real parameter benchmark optimization functions

No. Functions F∗i = Fi(x
∗)

Unimodal Functions

F1 Rotated High Conditioned Elliptic Function 100

F2 Rotated Cigar Function 200

F3 Rotated Discus Function 300

Simple Multimodal Functions

F4 Shifted and Rotated Rosenbrock’s Function 400

F5 Shifted and Rotated Ackley’s Function 500

F6 Shifted and Rotated Weierstrass Function 600

F7 Shifted and Rotated Griewank’s Function 700

F8 Shifted Rastrigin’s Function 800

F9 Shifted and Rotated Rastrigin’s Function 900

F10 Shifted Schwefel’s Function 1000

F11 Shifted and Rotated Schwefel’s Function 1100

F12 Shifted and Rotated katsuura Function 1200

F13 Shifted and Rotated HappyCat Function 1300

F14 Shifted and Rotated HGBat Function 1400

F15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function 1500

F16 Shifted and Rotated Expanded Scaffer’s F6 Function 1600

Hybrid Functions

F17 Hybrid Function 1(N = 3) 1700

F18 Hybrid Function 2(N = 3) 1800

F19 Hybrid Function 3(N = 4) 1900

F20 Hybrid Function 4(N = 4) 2000

F21 Hybrid Function 5(N = 5) 2100

F22 Hybrid Function 6(N = 5) 2200

Composition Functions

F23 Composition Function 1(N = 5) 2300

F24 Composition Function 2(N = 3) 2400

F25 Composition Function 3(N = 3) 2500

F26 Composition Function 4(N = 5) 2600

F27 Composition Function 5(N = 5) 2700

F28 Composition Function 6(N = 5) 2800

F29 Composition Function 7(N = 3) 2900

F30 Composition Function 8(N = 3) 3000

Search Range: [−100, 100]D
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Table 10: Statistical results of proposed algorithm in comparison to other algorithms for CEC 2014

LX-BBO B-BBO RW-GWO ISOS MPA IMEHO VNBA CMA-ES IDE SinDE BDE MG-SCA NMRA SaDN

[54] [54] [55] [56] [57] [58] [58] [63] [63] [63] [63] [63]

F1

mean 1.01E+07 6.50E+06 8.02E+06 9.82E+05 3.98E+06 2.38E+06 2.43E+08 2.70E-14 3.81E+07 1.51E+06 1.25E+07 2.92E+07 4.48E+04 2.17E+04

std 1.01E+07 1.30E+06 3.31E+06 7.05E+05 1.00E+06 4.32E+06 5.93E+07 1.13E-14 7.92E+06 1.19E+06 7.47E+07 2.07E+07 2.24E+05 2.14E+04

p-rank − − − − − − − + − − − − −

f-rank 10 8 9 4 7 6 14 1 13 5 11 12 3 2

F2

mean 5.34E+04 2.35E+04 2.23E+05 5.27E+00 1.50E+04 5.69E+03 1.92E+10 5.29E-14 0.00E+00 0.00E+00 9.25E+03 2.26E+09 8.56E+03 1.06E+02

std 2.14E+04 9.99E+03 5.51E+05 1.72E+01 1.32E+04 4.87E+03 4.23E+09 2.11E-14 0.00E+00 0.00E+00 6.19E+04 1.69E+09 4.76E+03 7.60E+02

p-rank − − − + − − − + + + − − −

f-rank 10 9 11 3 8 6 13 2 1 1 7 12 5 4

F3

mean 1.63E+04 6.03E+03 3.16E+02 4.79E+02 1.00E-04 4.41E+02 2.96E+04 1.07E-13 0.00E+00 3.13E-11 5.27E+02 1.77E+04 2.04E+04 6.90E+01

std 1.70E+04 3.15E+03 4.34E+02 6.24E+02 9.94E-05 1.58E+02 1.39E+04 4.31E-14 1.80E-14 1.54E-10 1.11E+03 6.63E+03 5.04E+03 4.92E+02

p-rank − − − − + − − + + + − − −

f-rank 10 9 6 8 4 7 13 2 1 3 8 11 12 5

F4

mean 9.99E+01 1.02E+02 3.41E+01 5.98E+01 9.05E+00 5.24E+02 2.20E+03 1.07E-13 4.81E+01 4.24E+00 5.76E+02 2.76E+02 1.83E+01 2.57E-01

std 2.84E+01 3.13E+01 1.80E+01 3.57E+01 2.15E+01 4.77E+01 3.63E+02 5.11E-14 4.31E+01 1.27E+01 4.29E+01 6.55E+01 6.10E+00 1.83E+00

p-rank − − − − − − − + − − − − −

f-rank 9 10 6 8 4 12 14 1 7 3 13 11 5 2

F5

mean 3.06E+00 3.74E+00 2.05E+01 2.03E+01 2.00E+01 5.21E+02 5.21E+02 2.00E+01 2.07E+01 2.05E+01 2.02E+01 2.04E+01 2.08E+01 3.92E-01

std 7.86E-01 4.91E-01 7.46E-02 6.67E-02 2.86E-02 5.99E-02 5.43E-02 1.57E-02 6.70E-02 4.61E-02 1.33E-01 1.44E-01 6.15E-02 2.80E+00

p-rank − − − − − − − − − − − − −

f-rank 2 3 10 7 5 14 13 4 11 9 6 8 12 1

F6

mean 1.70E+01 1.99E+01 9.84E+00 1.05E+01 6.88E+00 6.12E+02 6.33E+02 4.20E+01 2.38E+01 3.48E+00 2.38E+01 1.94E+01 2.30E+01 3.65E-01

std 3.12E+00 2.70E+00 3.49E+00 2.39E+00 1.93E+00 2.72E+00 2.58E+00 1.06E+01 1.66E+00 2.01E+00 4.39E+00 2.89E+00 2.04E+00 1.60E+00

p-rank − − − − − − − − − − − − −

f-rank 6 8 4 5 3 13 14 12 10 2 11 7 9 1

F7

mean 1.75E-01 7.81E-02 2.53E-01 1.56E-02 3.49E-02 7.00E+02 8.11E+02 2.66E-03 1.07E-09 1.93E-04 1.50E+00 1.99E+01 7.00E-03 1.51E-07

std 8.56E-02 4.44E-02 1.43E-01 1.83E-02 2.92E-02 1.19E-01 1.81E+01 4.65E-03 7.61E-09 1.38E-03 6.08E+00 1.18E+01 3.05E-03 1.07E-06

p-rank − − − − − − − − + − − − −

f-rank 9 8 10 6 7 13 14 4 1 3 11 12 5 2

F8

mean 5.53E+01 4.71E-01 4.38E+01 1.47E+01 1.33E+01 8.33E+02 9.74E+02 4.29E+02 1.05E+01 9.99E-01 6.12E+01 1.07E+02 9.60E+01 1.15E+00

std 3.78E+02 6.79E-01 8.48E+00 3.34E+00 5.10E+01 9.19E+00 1.61E+01 9.03E+01 1.06E+01 1.48E+00 2.60E+01 2.14E+01 1.10E+01 8.23E+00

p-rank − + − − − − − − − + − − −

f-rank 8 1 7 6 5 13 14 12 4 2 9 11 10 3

F9

mean 7.66E+01 9.11E+01 6.33E+01 2.56E+02 7.06E+01 9.32E+02 1.15E+03 6.37E+02 1.41E+02 3.29E+01 1.10E+02 1.39E+02 2.79E+02 5.14E+00

std 1.61E+01 1.54E+01 1.30E+01 1.34E+01 1.43E+01 1.15E+01 2.03E+01 1.59E+02 1.17E+01 7.50E+00 4.69E+01 2.56E+01 2.84E+01 1.07E+01

p-rank − − − − − − − − − − − − −

f-rank 5 6 3 10 4 13 14 12 9 2 7 8 11 1

F10

mean 1.25E+04 6.68E+03 9.61E+02 1.78E+03 4.50E+02 3.26E+03 4.50E+03 5.15E+03 1.03E+02 5.93E+01 1.75E+03 2.82E+03 1.35E+03 1.42E+01

std 1.16E+02 4.58E+02 2.72E+02 4.09E+01 2.14E+02 5.72E+02 3.47E+02 8.13E+02 7.48E+01 7.09E+01 7.28E+02 6.83E+02 2.28E+02 1.01E+01

p-rank − − − − − − − − − − − − −

f-rank 14 13 5 8 4 10 11 12 3 2 7 9 6 1

F11

mean 1.23E+04 6.71E+03 2.68E+03 1.48E+03 1.96E+03 3.96E+03 7.90E+03 5.14E+03 5.49E+03 2.43E+03 3.90E+03 3.30E+03 3.16E+03 5.34E+01

std 3.41E+02 5.17E+02 3.68E+02 4.54E+02 4.57E+02 5.38E+02 3.79E+02 7.61E+02 2.91E+02 5.14E+02 7.38E+02 6.26E+02 3.82E+02 3.81E+02

p-rank − − − − − − − − − − − − −

f-rank 14 12 5 2 3 9 13 10 11 4 8 7 6 1

F12

mean 1.11E-02 1.11E-02 5.45E-01 3.55E-01 1.00E-01 1.20E+03 1.20E+03 2.82E-01 1.24E+00 4.10E-01 3.77E-01 6.33E-01 8.00E-01 3.90E-03

std 1.75E-18 1.75E-18 1.66E-01 5.73E-02 2.36E-02 5.26E-01 3.51E-01 2.61E-01 1.83E-01 1.58E-01 1.71E-01 3.36E-01 1.46E-01 2.82E-02

p-rank − − − − − − − − − − − − −

f-rank 2 2 8 5 3 13 12 4 11 7 6 9 10 1

F13

mean 6.55E-01 6.78E-01 2.80E-01 3.77E-01 3.00E-01 1.30E+03 1.30E+03 2.35E-01 3.54E-01 1.36E-01 5.13E-01 5.51E-01 3.00E-01 4.80E-03

std 1.56E-01 7.98E-02 6.30E-02 7.10E-02 5.31E-02 6.25E-02 3.64E-01 5.87E-02 3.60E-02 3.42E-02 1.41E-01 8.94E-02 3.24E-02 3.44E-02

p-rank − − − − − − − − − − − − −

f-rank 11 12 4 8 6 14 13 3 7 2 9 10 5 1

F14

mean 6.20E-01 3.93E-01 4.23E-01 2.71E-01 2.00E-01 1.40E+03 1.46E+03 3.60E-01 3.05E-01 2.45E-01 4.41E-01 2.34E+00 2.00E-01 4.10E-03

std 2.96E-01 1.55E-01 2.15E-01 5.12E-02 3.70E-02 9.85E-02 1.22E+01 7.16E-02 7.85E-02 1.03E-01 2.46E-01 3.31E+00 2.40E-02 2.93E-02

p-rank − − − − − − − − − − − − −

f-rank 11 8 9 5 3 13 14 7 6 4 10 12 2 1

F15

mean 1.55E+01 1.88E+01 8.81E+00 1.06E+01 4.70E+00 1.50E+03 3.89E+03 3.52E+00 1.44E+01 3.89E+00 3.78E+01 8.72E+01 2.98E+01 3.52E-01

std 5.49E+00 5.64E+00 1.51E+00 3.71E+00 1.37E+00 1.35E+00 1.22E+03 1.06E+00 9.90E-01 9.19E-01 9.26E+01 1.01E+02 3.90E+00 2.51E+00

p-rank − − − − − − − − − − − − −

f-rank 8 9 5 6 4 13 14 2 7 3 11 12 10 1
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Table 11: Statistical results of proposed algorithm in comparison to other algorithms for CEC 2014

LX-BBO B-BBO RW-GWO ISOS MPA IMEHO VNBA CMA-ES IDE SinDE BDE MG-SCA NMRA SaDN

[54] [54] [55] [56] [57] [58] [58] [63] [63] [63] [63] [63]

F16

mean 1.08E+01 1.06E+01 1.03E+01 9.21E+01 1.04E+01 1.61E+03 1.61E+03 1.43E+01 1.20E+01 1.01E+01 1.26E+01 1.16E+01 1.28E+01 2.30E-01

std 5.84E-01 6.25E-01 6.11E-01 7.31E-01 6.12E-01 7.64E-01 3.66E-01 3.67E-01 2.27E-01 5.32E-01 5.92E-01 6.91E-01 2.58E-01 1.64E+00

p-rank − − − − − − − − − − − − −

f-rank 6 5 3 12 4 14 13 11 8 2 9 7 10 1

F17

mean 1.49E+06 1.27E+06 5.71E+05 1.75E+05 8.90E+00 7.86E+04 7.53E+06 1.65E+03 1.54E+06 1.32E+05 2.80E+04 9.56E+05 1.81E+05 2.91E+03

std 9.34E+05 5.46E+05 4.10E+05 1.64E+05 1.30E+02 8.38E+04 3.34E+06 3.68E+02 6.94E+05 1.24E+05 2.24E+04 7.62E+05 8.26E+04 2.08E+04

p-rank − − − − + − − + − − − − −

f-rank 12 11 9 7 1 5 14 2 13 6 4 10 8 3

F18

mean 2.89E+03 8.22E+02 6.52E+03 3.89E+03 1.40E+01 5.10E+03 1.66E+08 1.35E+02 2.65E+03 9.53E+02 3.54E+04 1.48E+05 8.90E+02 4.64E+00

std 4.27E+03 1.00E+03 4.63E+02 5.15E+03 5.44E+00 3.52E+03 1.03E+08 4.10E+01 2.05E+03 1.64E+03 1.63E+05 9.00E+05 3.02E+02 3.31E+01

p-rank − − − − − − − − − − − − −

f-rank 8 4 11 9 2 10 14 3 7 6 12 13 5 1

F19

mean 5.19E+03 7.81E+03 1.14E+01 7.79E+00 4.50E+00 1.91E+03 2.02E+03 9.88E+00 8.33E+00 4.76E+00 1.11E+01 2.28E+01 1.04E+01 1.78E-01

std 5.67E+03 4.67E+03 2.03E+00 1.78E+00 7.52E-01 1.74E+00 3.82E+01 1.95E+00 7.27E-01 8.44E-01 1.08E+01 1.43E+01 1.52E+00 1.27E+00

p-rank − − − − − − − − − − − − −

f-rank 13 14 9 4 2 11 12 6 5 3 8 10 7 1

F20

mean 2.61E+04 1.62E+04 6.27E+02 4.98E+03 1.11E+01 2.21E+03 1.89E+04 2.63E+02 2.85E+02 2.17E+01 3.02E+03 4.24E+03 8.93E+03 7.27E+01

std 1.57E+04 4.11E+03 1.12E+03 3.40E+03 3.81E+00 8.17E+01 6.57E+03 1.11E+02 1.12E+02 3.05E+01 7.27E+03 3.82E+03 4.28E+03 5.19E+02

p-rank − − − − + − − − − + − − −

f-rank 14 12 6 10 1 7 13 4 5 2 8 9 11 3

F21

mean 1.11E+06 1.22E+06 2.58E+05 8.90E+04 7.78E+01 2.93E+04 2.31E+06 1.10E+03 2.11E+05 1.81E+04 5.08E+04 2.35E+05 5.10E+04 2.98E+02

std 7.95E+05 7.96E+05 1.76E+05 1.07E+05 6.46E+01 1.83E+04 1.35E+06 3.28E+02 1.01E+05 2.57E+04 1.24E+05 2.39E+05 2.25E+04 2.13E+03

p-rank − − − − + − − − − − − − −

f-rank 12 13 11 8 1 5 14 3 9 4 6 10 7 2

F22

mean 1.88E+03 1.68E+02 2.08E+02 2.75E+02 1.29E+02 2.41E+03 3.04E+03 3.10E+02 1.12E+02 5.91E+01 6.81E+02 3.39E+02 3.93E+02 1.29E+01

std 2.03E+02 2.47E+02 2.08E+02 1.45E+02 6.10E+01 1.01E+02 1.28E+02 1.79E+02 6.33E+01 4.84E+01 2.11E+02 1.78E+02 1.20E+02 9.21E+01

p-rank − − − − − − − − − − − − −

f-rank 6 5 7 8 4 13 14 9 3 2 12 10 11 1

F23

mean 4.11E+02 3.43E+02 3.15E+02 3.15E+02 3.15E+02 2.62E+03 2.69E+03 3.15E+02 3.15E+02 3.15E+02 3.15E+02 3.29E+02 2.02E+02 3.92E+00

std 6.43E+01 2.84E+01 2.77E-01 0.00E+00 6.60E-08 4.78E-01 2.47E+01 1.71E-13 1.36E-12 1.35E-12 1.20E-01 4.03E+00 1.60E+01 2.80E+01

p-rank − − − − − − − − − − − − −

f-rank 12 11 9 3 7 13 14 4 6 5 8 10 2 1

F24

mean 1.47E+04 3.41E+04 2.00E+02 2.00E+02 2.00E+02 2.64E+03 2.63E+03 2.98E+02 2.25E+02 2.26E+02 2.46E+02 2.00E+02 2.00E+02 3.92E+00

std 8.37E+03 2.35E+04 3.04E-03 1.50E-03 3.16E-04 6.46E+00 2.53E+01 3.80E+02 2.75E+00 5.40E+00 5.69E+00 1.56E-03 0.00E+00 2.80E+01

p-rank − − − − − − − − − − − − −

f-rank 13 14 6 4 3 11 10 12 7 8 9 5 2 1

F25

mean 5.29E+02 6.53E+02 2.04E+02 2.00E+02 1.00E-01 2.71E+03 2.71E+03 2.04E+02 2.12E+02 2.04E+02 2.08E+02 2.11E+02 2.00E+02 3.92E+00

std 4.36E+01 6.01E+01 1.18E+00 8.07E-01 3.61E-01 2.08E+00 1.07E+01 2.99E+00 1.71E+00 9.08E-01 4.51E+00 2.82E+00 0.00E+00 2.80E+01

p-rank − − − − + − − − − − − − −

f-rank 11 12 6 4 1 14 13 7 10 5 8 9 3 2

F26

mean 2.12E+00 3.64E+01 1.00E+02 1.00E+02 1.00E+01 2.70E+03 2.70E+03 1.02E+02 1.00E+02 1.00E+02 1.01E+02 1.01E+02 1.00E+02 1.96E+00

std 3.46E+00 5.62E+01 7.36E-02 9.55E-02 2.99E+01 6.00E-02 4.30E-01 1.38E+01 4.35E-02 4.28E-02 1.17E+00 1.53E-01 7.16E-02 1.40E+01

p-rank − − − − − − − − − − − − −

f-rank 2 4 8 9 3 14 13 12 6 5 10 11 7 1

F27

mean 1.95E+02 3.04E+02 4.09E+02 5.43E+02 8.00E-01 3.28E+03 3.99E+03 4.17E+02 5.06E+02 3.51E+02 8.82E+02 8.19E+02 3.33E+02 3.92E+00

std 1.04E+02 1.60E+02 6.09E+00 1.36E+02 4.25E-01 1.41E+02 3.30E+01 1.75E+02 1.08E+02 4.30E+01 2.03E+02 9.17E+01 9.95E+01 2.80E+01

p-rank − − − − + − − − − − − − −

f-rank 3 4 7 10 1 13 14 8 9 6 12 11 5 2

F28

mean 1.94E+03 2.12E+03 4.34E+02 9.68E+02 8.38E+02 3.77E+03 4.48E+03 3.98E+03 8.39E+02 8.35E+02 1.29E+03 9.68E+02 1.12E+03 3.92E+00

std 1.04E+02 4.44E+02 8.45E+00 4.12E+01 5.42E+01 2.44E+02 2.33E+02 3.09E+03 2.71E+01 2.48E+01 2.88E+02 1.06E+02 1.03E+02 2.80E+01

p-rank − − − − − − − − − − − − −

f-rank 10 11 2 6 4 12 14 13 5 3 9 7 8 1

F29

mean 1.98E+07 3.09E+07 2.14E+02 5.70E+05 4.40E+02 4.11E+03 7.48E+06 8.01E+02 1.98E+05 9.27E+05 4.80E+06 1.19E+06 2.08E+02 3.92E+00

std 3.95E+06 6.91E+06 2.37E+00 2.14E+06 2.60E+02 2.16E+02 1.20E+06 9.49E+01 1.18E+06 2.61E+06 4.83E+06 3.25E+06 2.86E+00 2.80E+01

p-rank − − − − − − − − − − − − −

f-rank 13 14 3 8 4 6 12 5 7 9 11 10 2 1

F30

mean 6.95E+06 1.38E+07 6.69E+02 2.38E+05 7.28E+02 7.08E+03 1.92E+05 2.55E+03 2.89E+03 3.11E+03 1.76E+04 1.92E+04 4.39E+02 3.92E+00

std 1.03E+07 1.08E+07 2.14E+02 1.10E+03 3.48E+02 1.44E+03 1.03E+05 6.60E+02 1.08E+03 1.24E+03 3.18E+04 8.25E+03 1.77E+02 2.80E+01

p-rank − − − − − − − − − − − − −

f-rank 13 14 3 12 4 8 11 5 6 7 9 10 2 1

w/l/t 30/0/0 29/1/0 30/0/0 29/1/0 24/6/0 30/0/0 30/0/0 25/5/0 27/3/0 26/4/0 30/0/0 30/0/0 30/0/0 NA

Overall F-value 277 266 202 205 112 325 395 192 208 125 269 293 201 49

Overall F-rank 11 9 6 7 2 13 14 4 8 3 10 12 5 1
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Levy based Naked-Mole Rat Algorithm (LNMRA) [66], Cuckoo Search (CS), Fitness Dependent

Optimizer (FDO) [67], DE, Adaptive Flower Pollination Algorithm (AFPA) [64], Naked Mole-Rat

Algorithm version 3.0 (NMRV 3.0) [68], self-adaptive Differential Evolution (jDE100) [69], and

improved elephant herding optimization (EHOI) [70]. All the functions are scalable functions. Few

of them have shifted and rotated properties (CEC4-CEC10), whereas CEC1-3 have default properties

are noted in Table 12. During the simulation, the population size kept as 50 with 500 maximum

number of iterations. The simulation performance is noted for each of the 51 NMR runs. Apart

from this, the simulated results for all the algorithms are compared in terms of best, worst, median,

mean and standard deviation as shown in Table 13. From these analyses, it is observed that the

proposed SaDN algorithm has been performed well and found to be best among other algorithms.

SaDN attained zero value for the best and median. Hence, SaDN is again recognized as the best

algorithm as compared to all other variants.

Table 12: CEC 2019 benchmark functions (100-digit challenge)

Function No. Functions Dim Search range F∗i = Fi(x
∗)

CEC01 Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192, 8192] 1

CEC02 Inverse Hilbert Matrix Problem 16 [-16,384, 16384] 1

CEC03 Lennard-Jones Minimum Energy Cluster 18 [-4, 4] 1

CEC04 Rastrigin’s Function 10 [-100, 100] 1

CEC05 Griewangk’s Function 10 [-100, 100] 1

CEC06 Weierstrass Function 10 [-100, 100] 1

CEC07 Modified Schwefel’s Function 10 [-100, 100] 1

CEC08 Expanded Schaffer’s F6 Function 10 [-100, 100] 1

CEC09 Happy Cat Function 10 [-100, 100] 1

CEC10 Ackley Function 10 [-100, 100] 1

5.10. Summary of results

Though NMRA is a good algorithm but it suffers from the problem of poor exploration and

may get stuck in some local optimal solution. So it becomes very necessary to enhance the NMRA

algorithm to improve its working capabilities. The salient features and the major enhancements

proposed in present work are highlighted as:

• The later versions of DE algorithm are found to have better exploration operation and are

governed by very simple random parameters. The exploitation part is a bit challenging and a

lot of studies have been proposed to overcome the same.

• In present work, NMRA is hybridized with DE algorithm to improve the exploration properties

of NMRA algorithm and exploitation properties of DE. The new modification has been added
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Table 13: Statistical results of proposed algorithm in comparison to other algorithms for CEC 2019

GWO MSSA LNMRA CS FDO DE NMRA AFPA NMRV 3.0 jDE100 EHOI SaDN

[64] [68] [69] [70]

CEC01

best 4.29E+04 7.10E+04 1.22E+05 1.00E+10 4.34E+05 9.01E+05 5.87E+04 1.05E+06 3.68E+04 3.37E+04 - 0.00E+00

worst 1.11E+09 1.17E+06 1.29E+06 1.00E+10 2.85E+09 5.75E+08 1.53E+06 1.75E+08 4.82E+04 6.23E+05 - 2.76E+05

mean 1.32E+08 2.05E+05 5.79E+05 1.00E+10 7.37E+08 6.70E+07 8.60E+05 2.52E+07 4.01E+04 1.59E+05 4.69E+04 1.08E+04

std 2.64E+08 2.04E+05 2.94E+05 0.00E+00 7.36E+08 9.11E+07 4.69E+05 3.59E+07 2.45E+03 1.59E+05 2.87E+03 5.41E+04

CEC02

best 1.73E+01 1.73E+01 1.75E+01 1.73E+01 2.01E+01 1.73E+01 1.83E+01 1.73E+01 1.73E+01 2.33E+06 - 0.00E+00

worst 1.73E+01 1.85E+01 1.98E+01 1.73E+01 1.73E+01 1.74E+01 1.98E+01 1.73E+01 1.74E+01 2.43E+06 - 1.85E+01

mean 1.73E+01 1.76E+01 1.84E+01 1.73E+01 1.73E+01 1.73E+01 1.95E+01 1.73E+01 1.73E+01 2.38E+06 1.73E+01 7.28E-01

std 2.14E-04 2.36E-01 6.09E-01 3.94E-05 3.94E-06 1.22E-02 4.51E-01 2.80E-05 6.40E-03 2.71E+04 1.18E-15 3.64E+00

CEC03

best 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.37E+05 - 0.00E+00

worst 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 2.81E+06 - 1.27E+01

mean 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.31E+06 1.27E+01 4.98E-01

std 1.69E-06 1.23E-05 4.12E-08 8.37E-11 1.19E-11 3.63E-15 8.68E-04 2.78E-14 9.00E-15 8.51E+05 1.87E-15 2.49E+00

CEC04

best 2.23E+01 2.03E+02 1.00E+02 1.87E+01 1.53E+01 6.96E+00 1.94E+03 2.06E+01 4.23E+01 1.25E+05 - 0.00E+00

worst 4.18E+03 1.97E+03 8.65E+02 3.53E+01 1.10E+02 1.10E+03 2.16E+04 4.09E+01 1.96E+03 5.09E+05 - 3.22E+04

mean 1.49E+02 6.02E+02 3.70E+02 2.65E+01 4.18E+01 1.51E+02 9.25E+03 2.92E+01 7.05E+02 3.47E+05 1.27E+01 1.26E+02

std 5.88E+02 3.53E+02 1.84E+02 3.72E+00 2.22E+01 2.34E+02 4.40E+03 5.41E+00 5.32E+02 1.14E+05 3.95E+00 6.31E+03

CEC05

best 1.07E+00 1.57E+00 1.29E+00 1.02E+00 1.00E+00 1.00E+00 2.33E+00 1.03E+00 1.17E+00 5.52E+04 - 0.00E+00

worst 1.85E+00 2.10E+00 2.55E+00 1.11E+00 1.40E+00 1.29E+00 5.88E+00 1.08E+00 2.69E+00 3.77E+05 - 3.60E+00

mean 1.34E+00 1.83E+00 1.84E+00 1.05E+00 1.17E+00 1.13E+00 3.73E+00 1.06E+00 1.59E+00 1.67E+05 1.04E+00 1.41E-01

std 2.39E-01 1.17E-01 2.87E-01 1.74E-02 1.00E-01 7.20E-02 8.73E-01 1.25E-02 3.43E-01 8.42E+04 2.12E-02 7.06E-01

CEC06

best 8.50E+00 8.34E+00 8.50E+00 7.01E+00 8.29E+00 4.69E+00 8.40E+00 8.25E+00 9.65E+00 3.50E+04 - 0.00E+00

worst 1.17E+01 1.21E+01 1.19E+01 1.04E+01 1.22E+01 1.037E+01 1.26E+01 1.16E+01 1.25E+01 4.15E+04 - 1.38E+01

mean 1.06E+01 1.06E+01 1.03E+01 9.17E+00 1.08E+01 7.65E+00 1.11E+01 1.03E+01 1.13E+01 3.84E+04 8.29E+00 5.43E-01

std 7.16E-01 8.21E-01 7.26E-01 6.72E-01 8.66E-01 1.52E+00 7.51E-01 7.95E-01 7.07E-01 2.06E+03 8.19E-01 2.71E+00

CEC07

best 1.96E+00 1.32E+02 -1.88E+02 -1.02E+02 -3.91E+01 -1.05E+02 4.73E+01 -4.56E+01 2.67E+02 2.48E+06 - 0.00E+00

worst 1.01E+03 1.28E+03 1.93E+02 2.01E+02 7.81E+02 9.80E+02 6.93E+02 1.81E+02 1.34E+03 1.58E+07 - 1.44E+03

mean 3.63E+02 6.46E+02 4.31E+01 6.07E+01 2.93E+02 3.17E+02 3.31E+02 7.83E+01 7.74E+02 9.10E+06 1.40E+02 5.65E+01

std 2.65E+02 2.48E+02 8.16E+01 7.29E+01 1.79E+02 2.46E+02 1.38E+02 6.45E+01 2.34E+02 4.52E+06 1.04E+02 2.82E+02

CEC08

best 2.53E+00 4.63E+00 4.74E+00 4.47E+00 2.72E+00 2.54E+00 5.44E+00 2.94E+00 2.86E+00 1.59E+08 - 0.00E+00

worst 6.37E+00 6.89E+00 6.18E+00 5.71E+00 6.45E+00 7.05E+00 6.94E+00 5.63E+00 6.79E+00 1.77E+09 - 7.49E+00

mean 4.60E+00 6.14E+00 5.59E+00 5.26E+00 5.12E+00 5.26E+00 6.17E+00 4.59E+00 5.64E+00 1.21E+09 2.72E+00 2.93E-01

std 1.01E+00 4.96E-01 2.71E-01 2.33E-01 8.15E-01 1.03E+00 2.99E-01 8.36E-01 8.41E-01 4.38E+08 8.77E-01 1.46E+00

CEC09

best 2.74E+00 3.19E+00 3.01E+00 2.47E+00 2.37E+00 2.35E+00 1.53E+02 2.42E+00 3.27E+00 6.08E+08 - 0.00E+00

worst 5.94E+00 7.30E+01 1.03E+02 2.96E+00 4.68E+00 4.83E+00 3.46E+03 4.72E+00 1.88E+02 1.05E+09 - 2.85E+03

mean 4.27E+00 1.20E+01 1.02E+01 2.73E+00 2.60E+00 2.57E+00 1.34E+03 3.02E+00 4.48E+01 9.20E+08 2.35E+00 1.11E+02

std 8.96E-01 1.35E+01 1.73E+01 1.16E-01 3.62E-01 3.75E-01 7.79E+02 5.23E-01 5.65E+01 1.31E+08 6.23E-03 5.59E+02

CEC10

best 3.60E+00 2.01E+01 2.01E+01 2.01E+01 4.35E-14 2.00E+01 2.00E+01 1.01E+01 1.44E+01 1.79E+05 - 0.00E+00

worst 2.05E+01 2.06E+01 2.05E+01 2.03E+01 2.00E+01 2.05E+01 2.05E+01 2.06E+01 2.07E+01 2.53E+06 - 2.05E+01

mean 1.98E+01 2.04E+01 2.04E+01 2.02E+01 1.92E+01 2.02E+01 2.02E+01 1.98E+01 2.02E+01 1.54E+06 1.98E+01 8.07E-01

std 2.99E+00 1.16E-01 8.37E-02 5.92E-02 3.92E+00 1.25E-01 1.25E-01 2.35E+00 1.24E+00 7.46E+05 1.50E+00 4.03E+00
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in the worker phase of the basic algorithm and general equations of breeder phase are kept

same as that of original NMRA.

• The scaling factor parameter of DE has been enhanced by using five different mutation weights

namely L, C, NB, T and D.

• Seven different mating factor are used including random, LD, Exp, Osci, SA, SD and log.

• Initial experiments show that F is best for Lévy mutation and λ is best for SD inertia weight.

Based on all of the added modifications, the SaDN algorithm is proposed.

• The performance evaluation of the proposed SaDN algorithm is done with respect to variable

population and dimension size on CEC 2005 and CEC 2014 benchmark functions. Here the

best population size is identified and based on that a comparison with respect to other recent

state-of-the-art algorithms is performed.

• Though the algorithm provides potentially viable solutions but experimental results demon-

strate that the algorithm is less efficient for fixed dimension problems and more work is required

to be done to improve its properties for these set of optimization problems.

Overall, it can be summarized that the proposed hybrid variant of DE and NMRA is a self-adaptive

algorithm and no user based initialization of parameter is required to improve its working properties.

The newly proposed SaDN algorithm has performed better than most of the recently proposed algo-

rithms and hence is expected to provide viable results for solving various domain research problems.

In the next section, the proposed SaDN algorithm is used for optimum design of frame structures.

6. Real Time Mechanical Engineering Design Problems

The proposed SaDN algorithm has been tested on the mechanical engineering design problems

such as the optimization of a pressure vessel, a welded beam design problem and the design of a

tension compression spring [71]. For completeness, we report the results in terms of best and worst

fitness value achieved, together with the median and standard deviation value for each problem

attained for 30 runs. It is noted that all the engineering design problems are conducted using the

500 number of iterations and population size of 30 for SaDN.
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6.1. Pressure Vessel Design Problem

This engineering problem is the problem considered for multidisciplinary design optimization for

a mixed (continuous/discrete) type of variables. A cylindrical pressure vessel with hemispheric heads

at both ends will operate at a pressure of 3,000 psi (2.1 × 107Pa) and a minimum volume of 750

ft3 (21.24m3) in compliance with the requirement of the ASME boiler code. The fitness function

of this problem is the cost minimization of a cylindrical vessel’s material, formation and welding

shown in Figure 3. Four specific variables are used in this engineering application and these are:

Cylindrical shell Thickness (Ts), Cylindrical head Thickness (Th), Cylindrical Inside radius (R) and

Length of the cylindrical segment (L). As per the availability of the thickness of rolled steel plates,

both thickness variables (Ts, Th) must be 0.0625-inch integer multiple values.

Figure 3: Pressure Vessel Design Problem

Four constraints are set on the Pressure Vessel Design problem. The problem formulation along

with its constraints is given in equations (29) to (33) below.

Consider, ~a = [a1 a2 a3 a4]=[Ts Th R L]

Minimize, f(~a) = 0.6224a1a3a4 + 1.7781a2a
2
3 + 3.1661a21a4 + 19.84a21a3 (29)

subjected to, g1(~a) = −a1 + 0.0193a3 ≤ 0 (30)

g2(~a) = a2 + 0.00954a3 ≤ 0 (31)

g3(~a) = πa23a4 −
4

3
πa23 + 1296000 ≤ 0 (32)
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g4(~a) = a4 − 240 ≤ 0 (33)

where the range of a1, a2, a3 and a4 Varies between 0.0625≤ a1 ≤ 99 × 0.0625, 0.0625 ≤ a2 ≤

99× 0.0625, 10 ≤ a3 ≤ 200, 10 ≤ a4 ≤ 200

Table 14 summarizes the optimal findings in the literature obtained by other approaches along

with the results obtained for SaDN algorithm. The outcome of Pressure Vessel Design problem is

compared with meta-heuristic algorithms [6],[72]-[57]. The results for SaDN are presented in mixed

variable form and compared it with mixed variable solutions only. SaDN has outperformed other

processes, as shown in Tables 14 and 15. The statistical findings are summarized in Table 15.

Table 14: Optimum results comparison for the pressure vessel design problem

Algorithm Ts Th R L f(~a)

HGA(2) [72] 1.1250 0.5625 58.1267 44.59410000 6832.5830

T-Cell [73] 0.8125 0.4375 42.0984 190.78769500 6390.5540

HGA(1) [72] 0.8125 0.4375 42.0492 177.25220000 6065.8210

CPSO [74] 0.8125 0.4375 42.0913 176.74650000 6061.0777

BFOA [75] 0.8125 0.4375 42.0964 176.68323100 6060.4610

HAIS-GA [76] 0.8125 0.4375 42.0931 176.70310000 6060.3670

DTS-GA [77] 0.8125 0.4375 42.0974 176.65404700 6059.9463

ES [78] 0.8125 0.4375 42.0981 176.64051800 6059.7450

CDE [79] 0.8125 0.4375 42.0984 176.63769000 6059.7340

SaDN 0.8125 0.4375 42.0984 176.63716500 6059.7199
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Table 15: Statistical result comparison for the pressure vessel design problem

Algorithm Best Mean Worst Std No. of Evaluations

HGA(2) [72] 6832.584 7187.314 8012.615 276 80,000

T-Cell [73] 6390.554 6737.065 7694.066 357 80,000

HGA(1) [72] 6065.821 6632.376 8248.003 515 80,000

CPSO [74] 6061.0777 6147.1332 6363.8041 86.4545 2,00,000

BFOA [75] 6060.46 6074.625 N.A 156 48,000

HAIS-GA [76] 6061.1229 6743.0848 7368.0602 457.99 1,50,000

DTS-GA [77] 6059.9463 6177.2532 6469.322 130.92 80,000

ES [78] 6059.746 6850 7332.87 426 25,000

CDE [79] 6059.734 6085.2303 6371.0455 43.013 2,40,000

EO [6] 6059.7143 6668.114 7544.4925 566.24 15,000

SaDN 6059.7004 6128.73183 6416.3528 46.4824 15,000

6.2. The Tension/Compression Spring Design Problem

Another well-known benchmark case is the design of a tension/compression spring with an objec-

tive of spring weight minimization subject to minimal deflection, shear stress, surge frequency and

some box constraints given in equations (34) to (38). This is a multidisciplinary process optimization

designed to improve the architecture as shown in Figure 4. Three specification variables are used to

solve the problem: Number of active coils (N), Wire diameter (d), and Mean coil diameter (D).

Figure 4: The Spring Design Problem

The statistical description of the problem stated above is expressed as:
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Consider ~a= [a1 a2 a3]=[d D N]

Minimize, f(~a) = (a3 + 2)a2a
2
1, (34)

subjected to, g1(~a) = 1− a32a3
71875a41

≤ 0 (35)

g2(~a) =
4a22 − a1a2

12566(a2a31 − a41)
+

1

5108a21
≤ 0 (36)

g3(~a) = 1− 140.45a1
a3a22

≤ 0 (37)

g4(~a) =
a1 + a2

1.5
− 1 ≤ 0 (38)

where the range of a1, a2 and a3 varies between 0.005≤ a1 ≤ 2.0, 0.25 ≤ a2 ≤1.30, 2.0 ≤ a3 ≤ 15.0

For comparison, the meta-heuristic algorithms [73],[74],[75],[79]-[63] were used. The optimum and

statistical summary results are given in Tables 16 and 17. SaDN achieved much better results than

the other algorithms, with comparatively less number of function evaluations.

Table 16: Optimum results comparison for the spring design problem

Algorithm d D N f(~a)

SI [80] 0.050417 0.321532 13.979910 0.013060

GA(1) [81] 0.05148 0.351661 11.632201 0.012704

CA [82] 0.05000 0.317395 14.031795 0.012721

GA(2) [83] 0.051989 0.363965 10.890522 0.012681

CPSO [74] 0.051728 0.357644 11.244543 0.012674

BFOA [75] 0.051825 0.359935 11.107103 0.012671

CDE [79] 0.051609 0.354714 11.410831 0.012670

SCA [84] 0.05216 0.368159 10.648442 0.012669

HGA [85] 0.05130 0.347475 11.852177 0.012668

T-Cell [73] 0.051622 0.355105 11.384534 0.012665

EO [6] 0.05162 0.355054 11.387968 0.012666

SaDN 0.051622 0.355105 11.384415 0.012665
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Table 17: Statistical result comparison for the spring design problem

Algorithm Best Mean Worst Std No. of Evaluations

SI [80] 0.013060 0.015526 0.018992 N.A 20,000

GA(1) [81] 0.012704 0.012769 0.012822 3.93E-05 N.A.

CA [82] 0.012721 0.013568 0.015116 8.40E-04 50,000

GA(2) [83] 0.012681 0.012742 0.012973 9.50E-05 80,000

CPSO [74] 0.012674 0.012730 0.012924 5.19E-05 2,00,000

BFOA [75] 0.012671 0.012759 N.A 1.36E-04 48,000

CDE [79] 0.012670 0.012703 0.012790 2.07E-05 2,40,000

SCA [84] 0.012669 0.012922 0.016717 5.92E-04 25,167

HGA [85] 0.012668 0.013481 0.016155 N.A. 36,000

T-Cell [73] 0.012665 0.013309 0.012732 9.40E-05 36,000

EO [6] 0.012666 0.013017 0.013997 3.91E-04 15,000

SaDN 0.012665 0.012678 0.012872 6.73E-08 15,000

6.3. Welded Beam Design Problem

Another aspect in engineering optimization is the welded beam design which has also served as a

benchmark problem to check the effectiveness of optimization algorithms. This is a cantilever beam

that is welded at one end and at the other end is subjected to point load (P). The goal is to reduce

a welded beam’s manufacturing costs with bending stress, shear stress, deflection, buckling load,

and other constraints as shown in Figure 5. The problem consists of four variables, which are Bar

length (l), thickness (b), height (t), and Weld thickness (h) of the attached part. The problem has

four restrictions including lateral limitation, bar buckling load (Pc), end beam deflection (d), beam

bending stress (h) and shear stress (s). The expression of the above problem is detailed in (39) to

(52), as follows:

Consider, ~a = [a1 a2 a3 a4]=[h l t b]

Minimize, f(~a) = 1.10471a21a2 + 0.04811a3a4(14.0 + a2) (39)

subjected to, g1(~a) = τ(~a)− τmax ≤ 0 (40)

g2(~a) = σ(~a)− σmax ≤ 0 (41)
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Figure 5: Welded Beam Design Problem

g3(~a) = δ(~a)− δmax ≤ 0 (42)

g4(~a) = a1 − a4 ≤ 0 (43)

g5(~a) = P − Pc(~a) ≤ 0 (44)

g6(~a) = 0.125− a1 ≤ 0 (45)

g7(~a) = 1.10471a21 − 0.04811a3a4(14.0 + a2)− 5.0 ≤ 0 (46)

where the range of a1, a2, a3 and a4 varies between 0.1≤ a1 ≤ 2, 0.1 ≤ a2 ≤ 10, 0.1 ≤ a3 ≤ 10,

0.1 ≤ a4 ≤ 2

τ(~a) =

√
(τ/)2 + 2τ/τ//

a2
2R

+ (τ//)2 (47)

where, τ/ =
P√

2a1a2
, τ// =

MR

J
, M = P (L+

a2
2

), (48)

R =

√
a22
4

+ (
a1 + a3

2
)2, (49)

J = 2[
√

2a1a2[
a22
4

+ (
a1 + a3

2
)2]] (50)
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σ(~a) =
6PL

a4a23
, δ(~a) =

6PL3

Ea22a4
, (51)

Pc(~a) =
4.013E

√
a2

3a
6
4

36

L2
(1− a3

2L

√
E

4G
), (52)

Table 18 summarizes the optimal results for different algorithms while the statistical description

of results is given in Table 19. For comparison, the meta-heuristic algorithms [6],[73],[74],[75],[86]

were used. The tables’ findings reveal that SaDN has outperformed other algorithms with lower

costs compared to others. SaDN also obtained the results in a small number of function evaluations

and with lower values for standard deviation, mean and worst solutions compared to most other

algorithms. However, the results of EO are nearly equal to SaDN for same number of evaluations.

Table 18: Optimum results comparison for the welded beam design problem

Algorithm h l t b f(a)

SBM [86] 0.2407 6.4851 8.2399 0.2497 2.4426

BFOA [75] 0.2057 3.4711 9.0367 0.2057 2.3868

SCA [84] 0.2444 6.238 8.2886 0.2446 2.3854

EA [87] 0.2443 6.2201 8.2940 0.2444 2.3816

T-Cell [73] 0.2444 6.1286 8.2915 0.2444 2.3811

FSA [88] 0.2444 6.1258 8.2939 0.2444 2.3811

IPSO [89] 0.2444 6.2175 8.2915 0.2444 2.3810

HSA-GA [90] 0.2231 1.5815 12.8468 0.2245 2.2500

SaDN 0.2444 6.21787 8.2915 0.2444 1.9773
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Table 19: Statistical result comparison for the welded beam design problem

Algorithm Best Mean Worst Std No. of Evaluations

SBM [86] 2.4426 2.5215 2.6315 N.A 19,259

BFOA [75] 2.3868 2.4040 N.A 0.016 48,000

SCA [84] 2.3854 3.2551 6.3996 0.959 33,095

EA [87] 2.3816 N.A 2.3830 0.0003 28,897

T-Cell [73] 2.3811 2.4398 2.7104 0.0931 3,20,000

FSA [88] 2.3811 2.4041 2.4889 N.A 56,243

IPSO [89] 2.3810 2.3819 N.A 0.0052 30,000

HSA-GA [90] 2.25 2.26 2.28 0.0078 26,466

SaDN 1.9773 1.9828 1.9947 5.50E-06 15,000

7. Conclusion

This paper proposes a SaDN algorithm, based on the hybrid concepts of DE and NMRA. The

concept of hybridization has been utilized to mitigate the poor exploration properties of NMRA and

poor exploitation in case of DE algorithm. Thus it is expected that the hybrid algorithm will have

the combined advantage of both the algorithms and provides better exploration and exploitation

operations. In order to have a balance between the exploration and exploitation operation, the

breeding probability has been identified and validated. All the basic parameters of proposed SaDN

have been made self-adaptive with scaling factor changing with respect to mutation weights, mating

factor adapting as per inertia weights and crossover rate changing with respect to the total number of

generations. The added hybridization along with Lévy mutation and sigmoidal inertia weights pro-

vides better searching capabilities. The proposed algorithm is them subjected to variable population

and dimension sizes to prove its significance for higher dimension and find the best population size.

Here a comparative analysis with respect to other recent state-of-the-art algorithms is presented for

CEC 2005, CEC 2014 and CEC 2019 benchmark problems. Statistical tests in terms of Wilcoxon’s

ranksum test and Freidman’s test have also been done to prove the significance of the presented

results. Moreover, the proposed algorithm has also been tested on three mechanical engineering

design problems to further validate the results on real world problems. It has been found that the

proposed SaDN algorithm provides highly competitive results and can be considered as a potential

candidate for future application to real world scenarios. As a future direction, the algorithm can be
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further enhanced by apply population size reduction, division of iteration, more balanced operations

using fuzzy based adaptations, and other hybridization as well as general modifications. The SaDN

is highly effective and can be applied to various domain research problems such as clustering, image

segmentation, structural engineering design, antenna design, medical imaging, time series analysis,

forecast modelling, feature selection and others. Apart from that more research can be done on the

basic parameters of SaDN algorithm for high dimensional computing.
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