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Abstract. This paper studies the solution behaviour of a general delayed

predator-prey model with discontinuous prey control strategy. The positive-
ness and boundeness of the solution of the system is firstly investigated using

the comparison theorem. Then the sufficient conditions are derived for the

existence of positive periodic solutions using the differential inclusion theory
and the topological degree theory. Furthermore, the positive periodic solution

is proved to be globally exponentially stable by employing the generalized Lya-

punov approach. The global finite-time convergence is also discussed for the
system state. Finally, the numerical simulations of four examples are given to

validate the correctness of the theoretical results.

1. Introduction. Predator-prey systems are of significant importance in many
fields such as biology, physics, chemical technology, population models and economy.
The dynamic behavior analysis of predator-prey systems plays an important role
in the design and application of the predator-prey model (see[1, 21]). The periodic
solution and the stability of the positive equilibrium are the main concern for the
predator-prey systems.
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From the control method perspectives, there exist several types of control strate-
gies for the predator-prey models, including the economic threshold control (see[6,
22]), the sliding mode control (see[5, 36]), and the feedback control (see[11, 38]). For
the economic threshold control strategy, harvesting is carried out when the popula-
tion density of prey is above a certain harvesting economic level, while harvesting
is prohibited when the population density of prey is below the harvesting economic
level. As pointed out by [22], owing to the presence of time delays, it is difficult for
managers to carry out the economic threshold control strategy efficiently. Discontin-
uous prey harvesting control strategy is an effective control method of the economic
threshold control methodologies and has attracted significant research interest over
the past decade. The main purpose of the harvesting control is to ensure the exis-
tence of globally asymptotically periodic solution of the predator-prey systems to
maintain enough natural resources and at the same time to avoid the extinction of
species.

When a discontinuous control strategy is implemented to the predator-prey sys-
tem, the resulting dynamic model becomes discontinuous predator-prey models.
Generally speaking, there are two types of discontinuous predator-prey models, one
is a delayed predator-prey model with control strategy, and the other is a non-
autonomous system with control strategy ([4, 32, 9, 42, 27, 14, 17, 20, 36]). Cai
et al.[2, 3] studied the periodic dynamical behavior of a class of delayed Filippov
system under the framework of differential inclusion in set-valued analysis. Duan
et al.[9, 7] considered a delay Lasota-Wazewska model with discontinuous harvest-
ing policy. Luo et al. [32] gave the almost periodicity of the delayed predator-
prey model with mutual interference and discontinuous harvesting policy. Wang
et al.[37] investigated a non-autonomous Hassell-Varley type delayed prey-predator
system with non-selective harvesting control strategy. Martin et al. [33] studied
the predator-prey models with delay and prey harvesting. Fan et al.[10] exam-
ined a non-autonomous delayed ratio-dependent predator-prey system by using the
continuation theorem of coincidence degree theory. Liu et al. [28] presented the
dynamics of a stochastic regime-switching distributed delays predator-prey model
with harvesting. Luo et al. [31] analyzed the global boundedness of the solutions
in a Beddington DeAngelis type predator-prey model with nonlinear prey taxis and
random diffusion. Liu et al. [29] studied the nonlinear dynamic behavior in a
predator-prey model with harvesting. Chakraborty et al. [4] investigated a prey-
predator type fishery model incorporating partial closure for the populations. Song
et al. [35] analysed a non-autonomous ratio-dependent three species predator-prey
system with additional food for predator. Lu et al. [30] considered a non-constant
eco-epidemiological model with SIS-type infectious disease in prey. Zhang et al.
[41] studied a stochastic non-autonomous Lotka-Volterra predator-prey model with
impulsive effects. Jiang et al. [19] investigated a stochastic non-autonomous com-
petitive Lotka-Volterra model in a polluted environment. Zuo et al. [44] examined
a stochastic non-autonomous Holling-Tanner predator-prey system with impulsive
effect. Li et al. [26] gave the dynamics of a non-autonomous Beddington-DeAngelis
type density-dependent predator-prey system.

Although the periodic solution of a predator-prey model ([2, 3, 33, 32, 37, 13,
15, 18, 40, 23, 24, 16]) was extensively studied, to the best of our knowledge, the
general delayed predator-prey model with discontinuous prey harvesting control
has not yet been considered. Due to the characteristic of discontinuous harvesting
control strategy, the existing results obtained for the optimal continuous harvesting
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policy, threshold policy and weighted escapement policy cannot be directly applied
to the general delayed predator-prey model with discontinuous harvesting control
strategy. New analysis needs to be performed for the periodic solution of a general
delayed predator-prey model with discontinuous harvesting control strategy.

Motivated by the above brief discussions and inspired work [43, 38, 33], the main
focus of this paper is on the periodic solution analysis of a general delayed predator-
prey model with discontinuous harvesting control strategy. The dynamical behavior
of the general delayed system with discontinuous prey harvesting control is more
complex than that of a predator-prey model without delay considered in [43, 38, 33],
because of the complexity of the structure of the delayed system with discontinuous
prey harvesting control. The novelty of this paper lies in three aspects. Firstly,
the regularity and visibility analysis of the general delayed predator-prey model is
conducted by using the principle of differential inclusion. Secondly, it is found that
there exists a periodic solution for the non-autonomous delayed predator-prey model
by using the principle of topological degree and set value mapping. Furthermore, it
is shown that the solution of the general delayed predator-prey system is globally
exponentially stable by utilizing the Mawhin-like coincidence theorem. Numerical
simulations of four examples are presented to demonstrate the correctness of the
theoretical results. The obtained results show that the general predator-prey model
with delay and discontinuous prey harvesting introduced in this paper can have
more dynamical behaviors than the conventional models without delay.

The rest of this paper is organized as follows. Section 2 presents a general delayed
predator-prey model with discontinuous prey harvesting control strategy and some
preliminaries for the analysis. Section 3 performs the periodic solution analysis of
the general delayed predator-prey model with discontinuous prey harvesting control
strategy. In Section 4, four illustrative examples and their simulations are provided
to demonstrate the effectiveness of the theoretical results obtained. Concluding
remarks are given in Section 5.

2. Preliminaries. This section briefly introduces the general delayed predator-
prey model with discontinuous prey control strategy and provides some definitions
and lemmas for the analysis. Throughout this paper, we set a positive continuous
function of ω-period on a compact interval of R (see[2]) as:

η̄ =
1

ω

∫ ω

0

η(t)dt, ηM = max
t∈[0,ω]

η(t), ηL = min
t∈[0,ω]

η(t). (2.1)

2.1. Model description. This paper considers the discontinuous prey control
strategy introduced in the first equation and a time delay τ in the interplay term
y(t)Q(x(t)) of the second equation of the predator-prey system as:

dx(t)

dt
= r1(t)x(t)g(x(t),K(t))− k1(t)P (t, x(t))y(t)− ε1(t)h1(x(t))x(t),

dy(t)

dt
= y(t− τ)k1(t)Q(t, x(t− τ))− y(t)δ(t),

(2.2)
where the change rate of the predators depends on the number of prey and predator
at a certain previous time (see [43, 33, 2] and [39]); x(t) and y(t) represent the
population densities of the prey and predator, respectively; r1(t) denotes the specific
growth rate of the prey, and K(t) stands for the carrying capacity of the prey; δ(t) is
the death rate of the predator and k1(t) is a positive constant describing the effects
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of the capture rate; r1(t), k1(t), δ(t), ε1(t),K(t), b1(t), c(t) are positive continuous
ω-periodic functions.

The other parameters and functions involved in the equation when τ = 0 are
satisfied the following assumptions (see [43, 34, 33] for more details):

(H1): g(x(t,K(t)) represents the net growth rate of the prey and satisfies g(K(t),
K(t)) = 0, g(0,K(t)) > 0 g′x(x(t),K(t)) < 0, lim

K→∞
g′x(x(t),K(t)) = 0.(for

x(t) > 0,K(t) > 0). In addition, there exists a positive constant G and a con-
tinuous function ξ such that g(x(t),K(t))−g(x1(t),K(t)) = g′x(ξ,K(t))(x(t)−
x1(t)), |g′x(ξ,K(t))| < G.

(H2): P (t, x(t)) is a continuously differentiable predator response function and
satisfies P (0, x(0)) = 0, P (t, x(t)) = c(t)x(t)p(t, x(t)) > 0 for x(t) > 0,
lim
x→∞
t→∞

p(t, x(t)) < ∞. Moreover, there exists a positive constantP0 and a con-

tinuous function ν such that p(t, x(t)) − p(t, x1(t)) = p′x(t, ν)(x(t) − x1(t)),
|p′x(t, ν)| < P0.

(H3): Q(t, x(t)) = b(t)P (t, x(t)) denotes continuously differentiable predator
response function and satisfies Q(0, x(0)) = 0, Q(t, x(t)) > 0 for x(t) > 0.
There also exists a positive constant P0 and a continuous function ν such that
p(t, x(t))− p(t, x1(t)) = p′x(t, ν)(x(t)− x1(t)), |p′x(t, ν)| < P0.

(H4): h1 is continuous except on a countable set of isolate points {ρk}, where
there exist finite right and left limits, h+

1 (ρk) and h−1 (ρk), with h+
1 (ρk) >

h−1 (ρk). In addition, h1 has a finite number of discontinuous points on any
compact interval R, ∀x(t) ∈ [0,∞), 0 6 h1(x(t)) 6 1 and h1(0) = h1(0+) = 0.

2.2. Preliminaries. Let ([0, ω], ζ) denote the Lebesgue measurable space, Rn(n >
1) as an Euclidean space, and Kv(Rn) as all nonempty compact subsets of Euclidean
space, then the metric ζ is defined by

ζ(c, d) = max{ι(c, d), ι(d, c), c, d ∈ Kv(Rn)}, (2.3)

where ι(c, d) = sup{dist(x, c) : x ∈ c}, ι(d, c) = sup{dist(y, d) : y ∈ d}, Kv(Rn)
represents a complete metric space with the Hausdorff metric ζ.

Definition 2.1. [8] Given a set-valued function F : X → P (Y ), a function f :
X → Y is said to be a selector for F if f(x) ∈ F (x) for all x ∈ X.

Definition 2.2. [8] Let X and Y be topological Hausdorff spaces and P (Y ) be all
nonempty subsets of Y . We say that F : X → P (Y ) is upper semicontinuous at
x ∈ X if for every neighborhood U of F (x), there exists a neighborhood V of x
such that F (x̂) ⊂ U for every x̂ ∈ V . A set-valued function F : X → P (Y ) is upper
semi-continuous on X if it is upper semi-continuous at every x ∈ X.

We adopt a reasonable definition from Filippov (see [8, 2, 9]) and consider the
following delayed differential equation with discontinuous right-hand side

z′(t) = f(t, z(t− τ), z(t)). (2.4)

A set-valued map F : Rn ×Rn → Rn associated with system (2.2) is given by

F (t, y, z(t)) =
⋂
δ>0

⋂
η(N)=0

K[f(t, y, [z(t)− δ, z(t) + δ] \N ], (2.5)

where K[I] denotes the convex hull of I for set I ⊂ R, and η(N) represents Lebesgue
measure of set N . A solution in Filippov’s sense is an absolutely continuous function
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z(t), t ∈ (0, T ), which satisfies differential inclusion and for almost all t ∈ I, z(t)
satisfies the differential inclusion,

z′(t) ∈ F (t, z(t− τ), z(t)) for almost all (a.a.) t ∈ (0, T ). (2.6)

Definition 2.3. A Filippov solution of system (2.2) u(t) = (x(t), y(t))T is a density
solution on any compact interval of (−∞, T )→ R if

1). u(t) is continuous on (−∞, T ), and absolutely continuous on [0, T );
2). For almost all t ∈ [0, T ), u(t) = (x(t), y(t))T satisfies
dx(t)

dt
∈ r1(t)x(t)g(x(t),K(t))− c(t)k1(t)p(t, x(t))x(t)y(t)− ε1(t)K[h1(x(t))]x(t),

dy(t)

dt
= k1(t)c(t)b(t)p(t, x(t− τ))x(t− τ)y(t− τ)− δ(t)y(t),

(2.7)

where r1(t)x(t)g(x(t),K(t)) − c(t)k1(t)p(t, x(t))y(t) − ε1(t)K[h1(x(t))]x(t) , f1(t, u(t)),

k1(t)c(t)b(t)p(t, x(t − τ))x(t − τ)y(t − τ) − δ(t)y(t) , f2(t, u(t)). It is clear that the
map (t, u) ↪→ (f1(t, u(t)), f2(t, u(t))T is upper semi-continuous. Then there exists a
function γ1(t) ∈ K[h1(x(t))] such that

dx(t)

dt
= r1(t)x(t)g(x(t),K(t))− c(t)k1(t)p(t, x(t))x(t)y(t)− ε1(t)γ1(t)x(t),

dy(t)

dt
= k1(t)c(t)b(t)p(t, x(t− τ))x(t− τ)y(t− τ)− δ(t)y(t),

(2.8)
for almost everywhere t ∈ [0, T ) any bounded measurable function γ1(t) satisfying
(2.8) is defined by the population density solution u(t). With Definition 2.3, it is
easy to notice that the population density u(t) is a solution to the discontinuous
system (2.2). Clearly, γ1(t) is a harvesting policy function, and u(t) denotes the
population densities of the predator and prey.

Definition 2.4. (Initial value problem (IVP)) For any continuous and bounded
function g = (g1, g2)T : (−∞, 0]→ R2 and any measurable selection ψ1 : (−∞, 0]→
R, such that ψ1 ∈ K[h1(g1(α))] for a.e. α ∈ (−∞, 0] by an initial value problem
of system (2.2) with condition [g, ψ1], we consider the following problem, look for
a couple of functions [u(t), γ1(t)]; (−∞, T ] → R × R, such that u(t) is a solution
of model (2.2) on (−∞, T ) for some T > 0 (T might be +∞), γ1(t) is a harvesting
solution of u(t), and

dx(t)

dt
= r1(t)x(t)g(x(t),K(t))− c(t)k1(t)p(t, x(t))x(t)y(t)− ε1(t)γ1(t)x(t)

dy(t)

dt
= k1(t)c(t)b(t)p(t, x(t− τ))x(t− τ)y(t− τ)− δ(t)y(t), for a.e.α ∈ [0, T ),

γ1(α) ∈ K[h1(g1(α))], for a.e.α ∈ [0, T ),

u(α) = g(α) > 0, ∀α ∈ (−∞, 0].

γ1(α) = ψ1(α) > 0, for a.e.α ∈ (−∞, 0].

(2.9)

Definition 2.5. [9] Let u∗(t) = (x∗(t), y∗(t))T be a solution to the given IVP of
system (2.2), if for any solution u(t) there exist constants M > 0, λ > 0 and t1 > 0
such that

||u(t)− u∗(t)|| < Me−λ(t−t1) for t > t1 > 0, (2.10)

then solution u∗(t) is said to be globally exponentially stable.
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Next we adopt some lemmas and definitions for the periodic dynamical behavior
of the inclusion (2.7) ([2, 3, 4]).

Definition 2.6. A solution u(t) of the given IVP of system (2.2) on [0,+∞) is a
periodic solution with period ω if u(t+ ω) = u(t), for all t > 0.

Lemma 2.7. [2, 25, 3]Suppose that f : R×Rn → Kv(Rn) is upper semi-continuous
and ω-periodic in t. If

1). there exists a bounded, continuous open set Ω ⊂ Cω, ω-periodic map: R →
Rn, such that for any positive number 0 < λ 6 1 each ω-periodic solution u(t) of
the following inclusion

du

dt
∈ λf(t, u) (2.11)

satisfies u /∈ ∂Ω if u exists;
2). each solution u ∈ Rn of the following inclusion

0 ∈ 1

ω

∫ ω

0

f(t, u)dt = g0(u) (2.12)

satisfies u 6∈ ∂Ω ∩Rn; and
3). deg(g0,Ω ∩Rn, 0) 6= 0,
then inclusion (2.7) has at least one ω-periodic solution with u ∈ Ω̄.

A local Lipchitz function V (u): Rn → R is said to be regular, if for each u ∈ Rn
and v ∈ Rn, there exists the usual (right-sided) directional derivative of V (u, v) at
u in the direction v

V ′(u, v)+ = lim
t→0+

V (u+ tv)− V (u)

t
,

and V (u) admits a strict derivative at u, provided that for each v, the following
equation holds:

V̂ ′(u, v) = lim
t→0+

sup
y→u

V (y + tv)− V (y)

t
,

then V ′(u, v)+ = V̂ ′(u, v).
Now, we briefly introduce a chain rule for computing the time derivative of the

composed function V (u(t)) : [0,+∞)→ R.

Lemma 2.8. (Chain Rule)[2, 3] Assume that V (u): Rn → R is C-regular and
u(t):[0,+∞) → R is absolutely continuous on any compact interval of [0,+∞).
Then, u(t) and V (u(t)) are differentiable for almost all t ∈ [0,+∞), and

dV (u(t))

dt
=

〈
%(t),

du(t)

dt

〉
,∀%(t) ∈ ∂V (u(t)), (2.13)

where ∂V (u(t)) is the Clark generalized gradient of V at u(t).

Lemma 2.9. [8] Let u(t) be a solution of system (2.2), which is defined on [0, T ), T ∈
(0,+∞]. Then, the function |u(t)|, is absolutely continuous and

d

dt
|u(t)| = vT (t)u′(t) =

n∑
i=1

vi(t)u
′
i(t), for a.a.t ∈ [0, T ),

with

vi(t) =

{
sign(ui(t)), if ui(t) 6= 0,

arbitrary chosen in [−1, 1], if ui(t) = 0.
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Lemma 2.10. (Positivity) Under the assumptions (H1)-(H4), suppose that every
positive initial value u(α) = (x0, y0) > 0 is continuous on t1 − τ 6 α 6 +∞, then
the solution of system (2.2) satisfies u(t) > 0 for t ∈ [t1,+∞).

Proof. By applying the same method as Proposition 3.1 in [2], we can obtain the
conclusion of Lemma 2.10. The detailed proof for Lemma 2.10 is provided in Ap-
pendix A.

Lemma 2.11. All the solutions of system (2.2) with the positive initial condition
ut1 = (x0, y0) are ultimately bounded.

Proof. From the first equation of system (2.9) and Eq.(2.1), under assumption (H1),
if x(t) > KM , then we have rM1 x1(t)g(x(t),K(t)) < 0, and

dx(t)

dt
6 −cLkL1 p(t, x(t))x(t)y(t). (2.14)

Integrating both sides of Eq.(2.14) with respect to t gives rise to

x(t) 6 KM exp

{
−
∫ t

t1

cLkL1 p(s, x(s))y(s)ds

}
,

where cLkL1 p(s, x(s))y(s) > 0, and t1 is a positive number. By using assumption
(H2) and Lemma 2.10, we know that x(t) < KM for t > t1, then x(t) is bounded
for all t > 0.

Next, we prove that y(t) is ultimately bounded for t ∈ [t1,+∞). This discussion
will be divided into two cases below:

Case 1. If x0 6 KM , then we have x(t) < KM on t1 − τ 6 t 6 +∞. By using the
assumption (H1), it easy to know that g(t, x(t)) > 0. By comparing the coefficients
of the non-autonomous system (2.9), then we have the following comparison system

dx(t)

dt
6 rM1 x(t)g(x(t),K(t))− cLkL1 p(t, x(t))x(t)y(t),

dy(t)

dt
6 kM1 cMbMp(t, x(t− τ))x(t− τ)y(t− τ)− δLy(t).

(2.15)

By taking the right-hand side term of inequality (2.15) as the new two-dimensional
system, we can obtain a new delayed system

dz1(t)

dt
= rM1 z1(t)g(z1(t),K(t))− cLkL1 p(t, z1(t))z1(t)z2(t),

dz2(t)

dt
= kM1 cMbMp(t, z1(t− τ))z1(t− τ)z2(t− τ)− δLz2(t).

(2.16)

Due to z1(t) > 0, z2(t) > 0 for all t ∈ [t1,+∞), by letting w(t) = `2z1(t) + `1z2(t+
τ), cLkL1 = `1, k

M
1 cMbM = `2, based on assumptions (H1)-(H4), there exist positive

constants KM and gM such that |z1(t)| < KM , |g(z1(t),K(t))| < gM . Taking the
derivative on both sides of the equality w(t) yields

w′(t) = `2z
′
1(t) + `1z

′
2(t+ τ)

6 −δL`1z2(t+ τ) + rM1 `2z1(t)g(z1(t),K(t))

6 −δL(`1z2(t+ τ) + `2z1(t)) + δL`2z1(t) + `2r
M
1 z1(t)g(z1(t),K(t))

6 −δw(t+ τ) + `2δ
Lz1(t) + `2r

M
1 z1(t)g(z1(t),K(t))

6 −δLw(t) + `2δ
LKM + `2r

M
1 KMgM ,

(2.17)
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we can easily know that w′(t) 6 `2δ
LKM + `2r

M
1 KMgM − δLw for all t > T .

Furthermore,

lim
t−→∞

w(t) 6
`2δ

LKM + `2r
M
1 KMgM

δL
⇒ `2z1(t) + `1z2(t+ τ) 6

`2δ
LKM + `2r

M
1 KMgM

δL
.

(2.18)

Then by letting ı = t+ τ > T , we know that

z2(ı) 6
`2r

M
1 KMgM

`1δL
(2.19)

and consequently z1(t), z2(t) are ultimately bounded.

Case 2. If x0 > KM , where x0 is a positive initial value, we prove that the y(t)
is bounded if x0 > x(t) > KM . By using the assumption (H1), we know that
g(x(t),K(t)) < 0. A similar procedure to that of Case 1 can be used to prove Case
2, and we have

z2(t) 6
`2r

L
1 K

MgL

`1δL
. (2.20)

Then, from Eqs.(2.15), (2.19) and (2.20), we know that x(t), y(t) are also ulti-
mately bounded for t ∈ [t1,+∞), where t1 = max{t0, T}. Hence, the y(t) is
ultimately bounded, i.e., for any positive solution u(t) of model (2.2), there are

positive constants KM ,
`2r

M
1 KMgM

`1δL
and t1 such that 0 < x(t) 6 max{x0,K

M}, 0 <
y(t) 6 max{y0,

`2r
M
1 KMgM

`1δL
} for t ∈ [t1,+∞), which completes the proof of Lemma

2.11.

3. Main results.

3.1. Existence of the periodic solution.

Theorem 3.1. Suppose that assumptions (H1)-(H4) hold and that rgL − ε1 > 0,
then system (2.2) admits an ω-period periodic solution.

Proof. Theorem 3.1 can be proved in three steps. Firstly, we know that the solution
u(t) = (x(t), y(t)) of system (2.2) is non-negative for all t > 0, then we introduce
the change of variables

u1(t) = ln[x(t)], u2(t) = ln[y(t)] (3.1)

into the discontinuous system (2.2), and we have
du1(t)

dt
∈ r1(t)g(eu1(t),K(t))− c(t)k1(t)p(t, eu1(t))eu2(t) − ε1(t)K[h1(eu1(t))],

du2(t)

dt
= k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ) − δ(t),

(3.2)
where all functions satisfying assumptions (H1)-(H4). We know that u1(t) = lnx(t) :
(0,∞) → R, and u2(t) = lny(t) : (0,∞) → R are absolutely continuous, then we
can say that x(t) = eu1(t) and y(t) = eu2(t) are both absolutely continuous. In
order to prove the existence of ω-periodic solution x(t), y(t) of system (2.7), the
existence of ω-periodic solution u(t) = (u1(t), u2(t))T of system (3.2) needs to be
proved. Thus, in order to prove Theorem 3.1, we have to show that Eq.(2.7) has
one periodic solution of positive period ω.
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Now, let us define

Cω = {u(t) ∈ C(R,R2) : u(t+ ω) = u(t)}, ‖ u(t) ‖cω=

2∑
i=1

max
t∈[0,ω]

| ui(t) |, (3.3)

then we know that Cω is a Banach space. Let f(t, u(t)) = (f1(t, u(t)), f2(t, u(t)))T

for u(t) = (x(t), y(t)) ∈ Cω, where

f1(t, u(t)) = r1(t)g(eu1(t),K(t))− c(t)k1(t)p(t, eu1(t))eu2(t) − ε1(t)K[h1(eu1(t))],

f2(t, u(t)) = k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ) − δ(t).
(3.4)

Obviously, f(t, u(t)) : R×R2 → Kv(R2) is a upper semi-continuous under assump-
tions (H1)-(H4). From Lemma 2.7, we need to find a bounded and open set Ω
corresponding to the inclusion u′(t) ∈ λf(t, u(t)), λ ∈ (0, 1], that is

du1(t)

dt
∈ λ[r1(t)g(eu1(t),K(t))− c(t)k1(t)p(t, eu1(t))eu2(t) − ε1(t)K[h1(eu1(t))]],

du2(t)

dt
= λ[k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ) − δ(t)].

(3.5)
Suppose that (u1(t), u2(t))T is a periodic solution of the inclusion (3.5) with an
arbitrary ω period and there exits a certain h ∈ [0, 1]. Due to the measurable
selection theorem (see[2]), we can find a function (u1(t), u2(t))T : [0,+∞) → R2

such that γ1(t) ∈ K[h1(eu1(t))], for almost everywhere t ∈ [0, T ) and
du1(t)

dt
= h[r1(t)g(eu1(t),K(t))− c(t)k1(t)p(t, eu1(t))eu2(t) − ε1(t)γ1(t)],

du2(t)

dt
= h[k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ) − δ(t)].

(3.6)
Integrating (3.6) over the interval [0, ω), 0 6 γ1(t) 6 sup

γ1∈K(u(t))

γ1(t) 6 1 results in

∫ ω

0

c(t)k1(t)p(t, eu1(t))eu2(t)dt+

∫ ω

0

ε1(t)γ1(t)dt =

∫ ω

0

g(t, eu1(t))r(t)dt, (3.7)∫ ω

0

δ(t)dt =

∫ ω

0

k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ)dt. (3.8)

From Eqs.(2.7)-(2.8) and assumption (H4), we can obtain∫ ω

0

| u′1(t) | dt 6
∫ ω

0

c(t)k1(t)p(t, eu1(t))eu2(t)dt+

∫ ω

0

ε1(t)γ1(t)dt+

∫ ω

0

r(t)gMdt

= 2rgMω,

(3.9)∫ ω

0

| u′2(t) | dt 6
∫ ω

0

δ(t)dt+

∫ ω

0

k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ)dt

= 2

∫ ω

0

δ(t)dt = 2δω.

(3.10)
By noting that u(t) = (u1(t), u2(t))T , there exist πi, ζi ∈ [0, ω) such that

ui(πi) = max
t∈[0,ω]

ui(t), ui(ζi) = min
t∈[0,ω]

ui(t), i = 1, 2. (3.11)



2648 WENJIE LI, LIHONG HUANG AND JINCHEN JI

From Eq.(3.7), we have that
∫ ω

0
c(t)k1(t)p(t, eu1(t))eu2(t)dt < rgMω, which implies

u2(π2) < ln
rgM

cLpLkL1
. (3.12)

From (3.10) and (3.12), we can derive that

u2(t) < u2(π2) +

∫ ω

0

| u′2(t) | dt < 2δω + ln
rgM

cLpLkL1
. (3.13)

It follows from (3.9) that ∫ ω

0

| u′1(t) | dt < 2rgMω. (3.14)

Using assumptions (H1)-(H4) and differential mean value theorem, there exist con-

stants ~ and ℘ such that u(t − τ) − u(t) = −u′(~)τ and e−u
′(~)τ 6 ℘. Then from

(3.10), (3.7) and (3.6), we can obtain∫ ω

0

k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ)dt

=

∫ ω

0

k1(t)c(t)b(t)p(t, eu1(t−τ))e−u
′(~)τeu1(t−τ)dt <

∫ ω

0

δ(t)dt,

(3.15)

∫ ω

0

eu1(t−τ)dt <
δω

℘pLkL1 c
LbL

, (3.16)

there exists t− τ = π1 ∈ [0, ω] such that

u1(π1) < ln
δ

℘pLkL1 c
LbL

. (3.17)

From (3.16) and (3.17), we have

u1(t) < u1(π1) +

∫ ω

0

| u′1(t) | dt < 2rgMω + ln
δ

℘pLkL1 c
LbL

. (3.18)

By recalling the definition of K[h1(eu1(t))] and the property of h1((eu1(t))) in as-
sumption (H4), we can easily notice that 0 6 γ1(t) 6 sup

γ1∈K[h1(eu1(t))]

γ1(t) 6 1.

According to assumptions (H1)-(H4), we can derive from (3.5) that,

rgLω <

∫ ω

0

c(t)k1(t)p(t, eu1(t))eu2(t)dt+

∫ ω

0

ε1(t)γ1(t)dt,

rgLω <

∫ ω

0

c(t)k1(t)p(t, eu1(t))eu2(t)dt+

∫ ω

0

ε1(t)dt

=⇒ rgLω − ε1ω <

∫ ω

0

c(t)k1(t)p(t, eu1(t))eu2(t)dt,

rgLω − ε1ω <

∫ ω

0

cMkM1 pMeu2(t)dt =⇒ rgLω − ε1ω < cMkM1 pMeu2(t)ω,

(3.19)

which yields

u2(ζ2) > ln
rgL − ε1

cMkM1 pM
. (3.20)

From (3.20) and (3.10), we have

u2(t) > u2(ζ2)−
∫ ω

0

| u′2(t) | dt > ln
rgL − ε1

cMkM1 pM
− 2δω. (3.21)
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Combining (3.13) and (3.21) leads to

B2 , max
t∈[0,ω]

| u2(t) |< max

{∣∣∣∣ln rgL − ε1

cMkM1 pM

∣∣∣∣+ 2δω,

∣∣∣∣lnrgMcpL
∣∣∣∣+ 2δω

}
. (3.22)

Similarly, using assumptions (H1)-(H4), we can obtain from (3.6) that∫ ω

0

δ(t)dt =

∫ ω

0

k1(t)c(t)b(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)eu1(t−τ)dt

=

∫ ω

0

k1(t)c(t)b(t)p(t, eu1(t−τ))e−u
′(~)τeu1(t−τ)dt,

(3.23)

δω 6
∫ ω

0

kM1 cMbMpMe−u
′(~)τeu1(t−τ)dt⇒ δω 6

∫ ω

0

℘kM1 cMbMpMeu1(t−τ)dt.

(3.24)
Therefore, there exists a positive number ζ1 = t − τ , and from (3.24) we can

derive that

u1(ζ1) > ln
δ

℘kM1 cMbMpM
. (3.25)

From (3.10) and (3.25), we have

u1(t) > u1(ζ1)−
∫ ω

0

| u′1(t) | dt > ln
δ

℘kM1 cMbMpM
− 2rgMω. (3.26)

Combining (3.26) and (3.18) implies

B1 , max
t∈[0,ω]

| u1(t) |< max

{∣∣∣∣ln δ

℘kM1 cMbMpM

∣∣∣∣+ 2rgMω,

∣∣∣∣ln δ

℘pLkL1 c
LbL

∣∣∣∣+ 2rgMω

}
.

(3.27)

Consider the following model of inclusion{
0 ∈ rg(eu1)− ck1p(e

u1)eu2 − ε1K[h1(eu1)],

0 = ck1bp(e
u1(t−τ))e−u

′(~)τeu1(t−τ) − δ,
(3.28)

where rg(eu1) = 1
ω

∫ ω
0
rg(eu1(t))dt, ck1p(e

u1)eu2 = 1
ω

∫ ω
0
c(t)p(t, eu1(t))eu2dt,

ck1bp(e
u1(t−τ))× e−u′(~)τeu1(t−τ) = 1

ω

∫ ω
0
k1(t)c(t)b(t)p(eu1(t−τ))e−u

′(~)τeu1(t−τ)dt.
It is easy to notice that all solutions of Eq.(3.28) are bounded. By denoting
B = B0 + B1 + B2, each solution u = (u1, u2)T ∈ R2 of Eq.(3.28) satisfies
| u1 | + | u2 |< B and the inequality

max

{∣∣∣∣ln δ

℘kM1 cMbMpM

∣∣∣∣+ 2rgMω,

∣∣∣∣ln δ

℘kL1 c
LbLpL

∣∣∣∣+ 2rgMω

}
+ max

{∣∣∣∣ln rgL − ε1

cMkM1 pM

∣∣∣∣+ 2δω,

∣∣∣∣lnrgMcpL
∣∣∣∣+ 2δω

}
< B.

(3.29)

Here B0 is sufficiently large. Let Ω = (u1(t), u2(t))T ∈ Cω :‖ (u1(t), u2(t))T ‖Cω<
B. Then, it is easy to know that Ω is an open bounded compact set of Cω and
u /∈ ∂Ω for any λ ∈ (0, 1]. The proof of Condition 1) of Lemma 2.7 is now complete.

In the second step, we need to prove that Condition 2) of Lemma 2.7 is satisfied.
Suppose that there exists a solution u(t) of the inclusion (3.28), then u(t) is a
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constant vector with |u1|+ |u2| = B. That is,

0 /∈ 1

ω

∫ ω

0

f(t, u)dt = g0(u) =

(
rg(eu1)− ck1p(e

u1)eu2 − 1
ω

∫ ω
0
ε1K[h1(eu1)dt]

1
ω

∫ ω
0
ck1bp(e

u1)e−u
′(~)τeu1(t−τ)dt− δ

)
.

(3.30)
This leads to a contradiction to Eq.(3.28). This completes proof of Condition 2) of
Lemma 2.7.

In the third step, we need to prove that Condition 3) in Lemma 2.7 is satisfied.
Define the continuous homotopy map ϕ : Ω ∩R2 × [0, 1]→ Cω:

ϕ(u1, u2, h) =

(
rg(eu1)

−δ

)
+ h

(
rg(eu1)− 1

ω

∫ ω
0
ck1p(e

u1)eu2 + ε1K[h1(eu1)dt]

−δ + 1
ω

∫ ω
0
k1cbp(e

u1)dt

)
.

(3.31)

where h ∈ [0, 1] is a parameter. If u(t) = (u1(t), u2(t))T ∈ ∂Ω ∩ R2, then we know
that u = (u1, u2) is a constant vector in R2 with | u1 | + | u2 |= B. We will show
that when u ∈ ∂Ω ∩ R2, 0 /∈ (u1, u2)T /∈ ϕ(u1, u2, h). If not , then there is a vector
u = (u1, u2)T /∈ ϕ(u1, u2, h) with | u1 | + | u2 |= B, such that 0 ∈ (u1, u2, h), that
is 

0 ∈ rg(eu1) + h[rg(eu1) +
1

ω

∫ ω

0

ck1p(e
u1)eu2 + ε1K[h1(eu1)dt],

0 = −δ + h[−δ +
1

ω

∫ ω

0

ck1bp(e
u1)e−u

′(~)τeu1(t−τ)dt].

(3.32)

Based on Eq.(3.29), we can obtain that

max

{∣∣∣∣ln δ

℘kM1 cMbMpM

∣∣∣∣+ 2rgMω,

∣∣∣∣ln δ

℘kL1 c
LbLpL

∣∣∣∣+ 2rgMω

}
+ max

{∣∣∣∣ln rgL − ε1

cMkM1 pM

∣∣∣∣+ 2δω,

∣∣∣∣lnrgMcpL
∣∣∣∣+ 2δω

}
< B.

It follows from (3.32) that | u1 | + | u2 |< B which is a contradiction. Clearly, the
algebraic equation ψ(u1, u2, 0) = 0 has a unique solution u∗ = (x0, y0)2 = (u∗1, u

∗
2)T

which satisfies rg(eu1) = 1
ω

∫ ω
0
rg(t, eu1(t))dt, cψ(eu1) = 1

ω

∫ ω
0
k1(t)c(t)p(eu1(t))dt,

kφ(eu1) = 1
ω

∫ ω
0
c(t)b(t)k1(t)p(t, eu1(t−τ))eu2(t−τ)−u2(t)]eu1(t−τ)dt. Therefore, by ap-

plying the homotopy invariance and using the property of the topological degree,
we have

deg{g0,Ω ∩Rn, 0} = deg{ϕ(u1, u2, 1),Ω ∩Rn, 0}

= deg{ϕ(u1, u2, 0),Ω ∩Rn, 0} = sign

∣∣∣∣ rg(eu1) 0

∗ δ

∣∣∣∣ = 1 6= 0.

(3.33)
where deg.(·, ·, ·, ·) is the topological degree, which is an upper semi-continuous set-
valued map (see [2]). Then, Condition 3) in Lemma 2.7 holds. This indicates that
all the conditions in Lemma 2.7 are satisfied. Hence, under assumptions (H1)-(H4),
if rgL − ε1 > 0 holds, then system (2.2) has a periodic solution which is ω period.
The proof of Theorem 3.1 is complete.

Now, we are ready to state that system (2.2) has a unique ω periodic solution
x(t), y(t), which is globally exponentially stable.
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3.2. Uniqueness and global exponential stability.

Theorem 3.2. Under the assumptions of Theorem 3.1, suppose that max
t∈[0,,ω]

[r(t)ρ1+

c(t)k1(t)ρ2 − ε1(t) + c(t)b(t)k1(t)ρ3 − δ(t)] < 0, then system (2.2) admits a unique
ω-periodic solution u(t) = (x(t), y(t)), which is globally exponentially stable, where
ρ1 = (GM0 + gM ), ρ2 = (M0P0 − L − M0L), ρ3 = (M0L + M0P0 + L), M0 =

max{KM ,
`2r

M
1 KMgM

`1δL
, x0, y0}, gM = max

t∈[0,,ω]
|g(t, x(t))| and L = max

t∈[0,,ω]
|p(t, x(t))|,

where (x0, y0) is a positive initial value.

Proof. From the condition of Theorem 3.2, there exists a positive constant ε > 0
such that

ε+
r(t)ρ1 + c(t)k1(t)ρ2 − ε1(t) + c(t)b(t)k1(t)ρ3 − δ(t)

2
< 0. (3.34)

From Lemma 2.11, we know that there exist a constant

M0 = max
{
KM ,

`2r
M
1 KMgM

`1δL
, x0, y0

}
with a positive initial condition (x0, y0) and

a t such that for all t > t2, 0 < x∗(t), y∗(t), x(t), y(t) 6 M0. From (2.9) and
assumptions (H1)-(H4), we know that |g(t, x(t))| < gM and |p(t, x(t))| < L, where
γ1(t) ∈ co[h1(t, x(t))], γ∗1(t) ∈ co[h1(t, x∗(t))], then we can obtain

ẋ(t)− ẋ∗(t)
= r(t)[g(x(t),K(t))x(t)− g(x∗(t),K(t))x∗(t)]− c(t)k1(t)[p(t, x(t))y(t)x(t)
− p(t, x∗(t))y∗(t)x∗(t)]− ε1(t)[γ1(t)x(t)− γ∗1 (t)x∗(t)],
= r(t)[g(x(t),K(t))x(t)− g(x∗(t),K(t))x(t) + g(x∗(t),K(t))x(t)− g(x∗(t),K(t))x∗(t)]

− c(t)k1(t)y(t)[p(t, x(t))x(t)− p(t, x∗(t))x∗(t)]− c(t)k1(t)p(t, x∗(t))x∗(t)[(y(t)− y∗(t))]
− ε1(t)[γ1(t)x(t)− γ∗1 (t)x∗(t)]
= r(t)[g(x(t),K(t))x(t)− g(x∗(t),K(t))x(t) + g(x∗(t),K(t))x(t)

− g(x∗(t),K(t))x∗(t)]− c(t)k1(t)y(t)[p(t, x(t))x(t)− p∗(t, x(t))x(t)]
− c(t)k1(t)y(t)[p(t, x∗(t))x(t)− p(t, x∗(t)x∗(t)]
− c(t)k1(t)p(t, x∗(t))x∗(t)[y(t)− y∗(t)]− ε1(t)[γ1(t)x(t)− γ∗1 (t)x∗(t)]
= r(t)[g(x(t),K(t))x(t)− g(x∗(t),K(t))x(t) + g(x∗(t),K(t))x(t)− g(x∗(t),K(t))x∗(t)]

− c(t)k1(t)y(t)x(t)[p(t, x(t))− p(t, x∗(t))]− c(t)k1(t)y(t)p(t, x∗(t))[x(t)− x∗(t)]
− c(t)k1(t)p(t, x∗(t))x∗(t)[y(t)− y∗(t)]− ε1(t)[γ1(t)x(t)− γ∗1 (t)x∗(t)]
= r(t)x(t)[g(x(t),K(t))− g(x∗(t),K(t))] + r(t)g(x∗(t),K(t)))[x(t)− x∗(t)]
− c(t)k1(t)y(t)x(t)[p(t, x(t))− p(t, x∗(t))]− c(t)k1(t)y(t)p(t, x∗(t))[x(t)− x∗(t)]
− c(t)k1(t)p(t, x∗(t))x∗(t)[y(t)− y∗(t)]− ε1(t)[γ1(t)x(t)− γ∗1 (t)x∗(t)].

(3.35)

There also exist continuous functions τ2, τ3 such that g(x(t),K(t))−g(x∗(t),K(t)) =
g′(τ2,K(t))(x(t) − x∗(t)) and p(t, x(t)) − p(t, x∗(t)) = p′(t, τ3)(x(t) − x∗(t)) by us-
ing assumptions (H1)-(H3). Then we have |g′(τ2,K(t))| 6 G and |p′(t, τ3| 6 P0.
Accordingly, Eq.(3.35) can be rewritten as

ẋ(t)− ẋ∗(t) = [r(t)(g′(τ2,K(t))x(t) + g(x(t),K(t))− c(t)k1(t)y(t)(p′(t, τ3)x(t)

+ p(t, x∗(t)))][x(t)− x∗(t)]− c(t)k1(t)p(t, x∗(t))x∗(t)[(y(t)− y∗(t)]
− ε1(t)[γ1(t)x(t)− γ∗1 (t)x∗(t)].
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By using Lemmas 2.10 and 2.11 and assumption(H1)-(H3), we have

ẋ(t)− ẋ∗(t) < [(r(t)(GM0 + gM ) + c(t)k1(t)(M0P0 − L)](x(t)− x∗(t))
− c(t)k1(t)LM0(y(t)− y∗(t))− ε1(t)[γ1(t)x(t)− γ∗1 (t)x(t)

+ γ∗1(t)x(t)− γ∗1(t)x∗(t)]

< [(r(t)(GM0 + gM ) + c(t)k1(t)(M0P0 − L)− ε1(t)](x(t)− x∗(t))
− c(t)k1(t)M0L(y(t)− y∗(t))− ε1(t)x(t)[γ1(t)− γ∗1(t)]

(3.36)
and

ẏ(t)− ẏ∗(t) = c(t)b(t)k1(t)[p(t− τ, x)y(t− τ)x(t− τ)
− p(t− τ, x∗)y∗(t− τ)x∗(t− τ)]− δ(t)[y(t)− y∗(t)]
= c(t)b(t)k1(t)[p(t− τ, x)y(t− τ)x(t− τ)− p(t− τ, x∗)y(t− τ)x∗(t− τ)
+ p(t− τ, x∗)y(t− τ)x∗(t− τ)− p(t− τ, x∗)y∗(t− τ)x∗(t− τ)]
− δ(t)[y(t)− y∗(t)]
= c(t)b(t)k1(t)y(t− τ)[p(t− τ, x)x(t− τ)− p(t− τ, x∗)x∗(t− τ)]
+ c(t)b(t)k1(t)p(t− τ, x∗)x∗(t− τ)[y(t− τ)− y∗(t− τ)]
− δ(t)[y(t)− y∗(t)].

(3.37)

Furthermore, there exists a continuous function τ4 such that p(t, x(t − τ)) −
p(t, x∗(t − τ)) = p′(t, τ4)(x(t − τ) − x∗(t − τ)) by using assumptions (H1)-(H3).
Then we have |p′(t, τ4)| < P0. Subsequently, Eq.(3.37) can be rewritten as

ẏ(t)− ẏ∗(t) 6 c(t)b(t)k1(t)(M0P0 + L)[x(t− τ)− x∗(t− τ)]

+ c(t)b(t)k1(t)M0L[y(t− τ)− y∗(t− τ)]− δL[y(t)− y∗(t)].
(3.38)

There exists a t ∈ [t1 − τ,+∞] (see[9]) such that

ẏ(t)− ẏ∗(t) 6 c(t)b(t)k1(t)(M0P0 + L)[x(t)− x∗(t)] + c(t)b(t)k1(t)M0L[y(t))− y∗(t)]

− δL(y(t)− y∗(t)).
(3.39)

Moreover, by letting x(t) = u1(t), y(t) = u2(t), we can obtain

d

dt
|ui(t)− u∗i (t)| = ∂|ui(t)− u∗i (t)| (u̇i(t)− u̇i∗(t)) = vi(t) (u̇i(t)− u̇i∗(t)) , (3.40)

where

vi(t) =


0 if u1(t)− u∗1(t) = γ1(t)− γ∗1(t) = 0,

sign(γ1(t)− γ∗1(t)) if u1(t) = u∗1(t) and γ1(t) 6= γ∗1(t),

sign(ui(t)− u∗i (t)) if ui(t) 6= u∗i (t).

(3.41)

Obviously, it follows from (3.41) that

vi(t)(ui(t)− u∗i (t)) = |ui(t)− u∗i (t)|, i = 1, 2, v1(t)(γ1(t)− γ∗1(t)) = |γ1(t)− γ∗1 (t)|.
(3.42)

Consider the Lyapunov function V (t) :

V (t) = |x(t)− x∗(t)|eεt + |y(t)− y∗(t)|eεt. (3.43)
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Clearly, V (t) is absolutely continuous. By virtue of Lemma 2.8, from (3.42)-
(3.46) we can determine the derivative of V (t) along the trajectory of (2.2) with the
initial condition u(0) = (x(0), y(0)) > 0.

dV (t)

dt
= v1 (ẋ(t)− ẋ∗(t)) + v2 (ẏ(t)− ẏ∗(t)) + ε|x(t)− x∗(t)|eεt + ε|y(t)− y∗(t)|eεt

6 ε|x(t)− x∗(t)|eεt + ε|y(t)− y∗(t)|eεt + [r(t)(GM0 + gM )

+ c(t)k1(t)(M0P0 − L)− ε1(t) + c(t)b(t)k1(t)(M0P0 + L)]|x(t)− x∗(t)|eεt

+ [−c(t)k1(t)M0L+ c(t)b(t)k1(t)M0L− δ(t)]|y(t)− y∗(t)|eεt

− ε1(t)x(t)|(γ1(t)− γ∗1(t)|eεt

6 (ε+ r(t)(GM0 + gM ) + c(t)k1(t)(M0P0 − L)

− ε1(t) + c(t)b(t)k1(t)(M0P0 + L))|x(t)− x∗(t)|eεt

+ (ε− c(t)k1(t)M0L+ c(t)b(t)k1(t)M0L− δ(t))|y(t)− y∗(t)|eεt.
(3.44)

Then it follows from (3.44) that

dV (t)

dt
6[(2ε+ (r(t)(GM0 + gM ) + c(t)k1(t)(M0P0 − L)− ε1(t)− c(t)k1(t)M0L

+ c(t)b(t)k1(t)(M0P0 + L) + c(t)b(t)k1(t)M0L− δ(t)]M0e
εt.

(3.45)
Accordingly, when t > t2, there exists a positive constant ε > 0 such that

dV (t)

dt
6

[
ε+

[r(t)ρ1 + c(t)k1(t)ρ2 − ε1(t) + c(t)b(t)k1(t)ρ3 − δ(t)]
2

]
M0e

εt < 0

holds, where M0 = max{KM ,
`2r

M
1 KMgM

`1δL
, x0, y0}, ρ1 = (GM0 +gM ), ρ2 = (M0P0−

L−M0L), ρ3 = (M0L+M0P0 + L).
Hence, system (2.2) admits a unique ω-periodic solution u(t) = (x(t), y(t)), which

is globally exponentially stable. This completes the proof Theorem 3.2.

Remark 1. In system (2.2), the function g(x(t),K(t)) is the net growth rate of the

prey, for instance, the logistic growth with g(x(t),K(t)) = r(t)(1− x(t)
K(t) ) which sat-

isfies all the conditions. p(t, x(t)) is the so-called predator functional response, and
Condition 2 includes the commonly used functional response ([43, 34, 2]), namely

Holling I type with p(t, x(t)) = m(t)x(t), Holling II type with p(t, x(t)) = m(t)x(t)
a(t)+x(t) ,

Holling III type with p(t, x(t)) = m(t)x(t)2

a(t)+x(t)2 , Ivlev type with p(t, x(t)) = α(t)x(t)(1−
e−β(t)x(t)), Monod-Haldane type with p(t, x(t)) = m(t)x(t)

a(t)+b(t)x(t)+x(t)2 , Holling IV type

with p(t, x(t)) = m(t)x(t)
a(t)+x(t)2 , and some other equivalent forms (see[34]). From the

point of view of biology, we only restrict our attention to system (2.2) in R2+.
For system (2.2), a global bifurcation and the existence uniqueness and the non-
existence of limit cycles in certain ranges of parameters for the general predator-prey
system were studied in the absence of the impulsive harvesting [43].

3.3. Global convergence.

Theorem 3.3. Under the assumptions of Theorem 3.2, any harvesting solution
(u(t), γ1(t)) is globally convergent to the harvesting equilibrium point (u∗(t), γ∗1 (t))
in measure.
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Proof. Firstly, it is assumed that the positive harvesting equilibrium point of sys-
tem(2.2) is denoted by (u∗(t), γ∗1(t)) ∈ R2. By differentiating the Lyapunov func-
tion, we have

d

dt
V (t)

= v1

(
ẋ(t)− ẋ∗(t)

)
+ v2

(
ẏ(t)− ẏ∗(t)

)
+ ε|x(t)− x∗(t)|eεt + ε|y(t)− y∗(t)|eεt

6 ε|x(t)− x∗(t)|eεt + ε|y(t)− y∗(t)|eεt + [ε+ r(t)(GM0 + gM )

+ c(t)k1(t)(M0P0 − L)− ε1(t) + c(t)b(t)k1(t)(M0P0 + L)]|x(t)− x∗(t)|eεt

+ [ε− c(t)k1(t)M0L+ c(t)b(t)k1(t)M0L− δ(t)]|y(t))− y∗(t)|eεt

− ε1(t)x(t)|γ1(t)− γ∗1(t)|eεt 6 −εL1M0|γ1(t)− γ∗1(t)|eεt,
(3.46)

where ζ = εL1M0e
εt > 0.

Integrating both sides of inequality(3.46) with respect to t yields

V (t)− V (T ) 6 −ζ
∫ t

T

|γ1(s)− γ∗1(s)|ds. (3.47)

Clearly, V (t) is monotonically non-increasing. Then there exists a limit number
N0 such that lim

t→+∞
V (t) = N0. Subsequently we have V (µ(t))−N0 > 0 and

1

ζ
(V (t)− V (T )) >

∫ +∞

T

|γ1(s)− γ∗1(s)|ds. (3.48)

For any ε > 0, by letting Eε = {t ∈ [T,+∞)|γ1(t) − γ∗1 (t)| > ε} < ε, (see[2]), we
can obtain

1

ζ
(V (t)− V (T )) >

∫ +∞

T

|γ1(s)− γ∗1(s)|ds >
∫ +∞

T

|γ1(t)− γ∗1(t)|ds > εµ(Eε).

(3.49)
From µ(Eε) < +∞, we know that ∀ε > 0, µ{t ∈ [T,+∞)}|γ1(t)−γ∗1(t)| < ε} = +∞,
i.e., for t → +∞, γ∗1 (t) ∈ R is an almost classification point of γ1(t). By using
Proposition 2 in [23], it is easy to see solution (u(t), γ1(t)) of system (2.2) converges
to equilibrium point (u∗(t), γ∗1 (t)) in measure, as t→ +∞, that is, µ lim

t→+∞
γ1 = γ∗1 .

This completes the proof of Theorem 3.3.

Theorem 3.4. Under the conditions of Theorem 3.3, any solution (x(t), y(t)) of
the predator-prey system (2.2) converges to equilibrium point (x∗(t), y∗(t)) in finite
time.

Proof. If h(x∗−(t))− γ∗1 < 0 < h(x∗+(t))− γ∗1 . Let h−(x∗(t)) = γ∗1(t)− h(x∗−(t)),
h+(x∗(t)) = γ∗1 (t)− h(x∗+(t)), ∆ = min{h+(x∗(t)), h−(x∗(t))}, and

H(x(t)) = h1(µ(t) + x∗)− γ∗1 (t), µ(t) = x(t)− x∗(t). (3.50)

Obviously, H(x1(t)) is compact continuous interval in [0,∞) except on a count-
able set of isolate points {ρk}, and γ(t) = γ1(t) − γ∗1 (t) ∈ K[h1(x(t))]. It is clear
that ∆ > 0 by assumption (H4). Because lim

ρ→+0−
H(ρ) = H(0−) 6 −4, and

lim
ρ→+0+

H(ρ) = H(0+) > 4, there exists a sufficiently small positive constant ε such

that |H(x1(t))| > ∆ and ∀0 < |µ(x)| 6 ε. Since the positive equilibrium point
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(x(t), y(t)) of system(2.2) globally asymptotically converges to (x∗(t), y∗(t)), there
exists a positive number Tε > 0 such that

|µ(t)| = |x(t)− x∗(t)| 6 ε, (3.51)

from (3.50) yields ‖ γ(t) ‖= |γ1(t) − γ∗1 (t)| > ∆. For Eq.(3.47), there exists a
positive number T ∗∗, such that

V (µ(T ∗∗))

dt
6 −ζ|γ1(t)− γ∗1(t)| 6 −ζ∆. (3.52)

Integrating both sides of inequality (3.52) with respect to t leads to

V (µ(t), t) 6 V (µ(T ∗∗), T ∗∗)− ζ∆(t− T ∗∗). (3.53)

Combing (3.43) and (3.53) yields

M |µ(t)| 6 V (µ(T ∗∗), T ∗∗)− ζ∆(t− T ∗∗). (3.54)

There exists a positive number T ∗ such that t > T ∗ = T ∗∗+ V (µ(T∗∗),T∗∗)
ζ∆ . Then

we have

M |x(t)− x∗(t)| = M |µ(t)| = |V (µ(t))| 6 0. (3.55)

from the conditions of Eq.(3.43), we have x(t) = x∗(t) and y(t) = y∗(t) for t > T ∗.
This completes the proof of Theorem 3.4.

4. Numerical simulations. This section gives numerical simulation results to
demonstrate the theoretical results obtained in Section 3. Four specific biological
models will be compared to show the correctness of the theoretical results developed
in Section 4.

Example 4.1. Holling I type. Let g(t, x(t)) = (1− 0.2sin( t
6
))− (1− 0.5cos( t

6
))x(t),

r(t) = 1, p(t, x(t)) = x(t)(1 − 0.1sin( t6 )), k1(t)c(t)b(t) = 2(1 − 0.1cos( t6 )), δ(t) =

1 − 0.1sin( t6 ). Consider the non-autonomous predator-prey Holling I type model
with discontinuous harvesting policy:

dx(t)

dt
= x(t)(1− 0.2sin(

t

6
))− (1− 0.5cos(

t

6
))x(t)x(t)

− x(t)(1− 0.1sin(
t

6
))y(t)− 0.3h1(x(t))x(t),

dy(t)

dt
= 2(1− 0.1cos(

t

6
))y(t− 1)x(t− 1)− (1− 0.1sin(

t

6
))y(t)

(4.1)

where h1(x(t)) =

{
0 if 0 6 x(t) 6 0.83,

1 if x(t) > 0.83,

Fig.1 and Fig.2 show the numerical simulation results for the non-autonomous
and the corresponding Holling I type system (4.1). Fig.1 demonstrates the peri-
odic solution of the non-autonomous Holling I type system with discontinuous prey
control strategy, while Fig.2 displays that the solution converging to an equilib-
rium for the corresponding autonomous Holling I type system whose coefficients
are constant.

Example 4.2. Holling II type. Let g(t, x(t)) = 1.3−0.2sin( t5 )−(1.3−0.2sin( t5 ))

x(t), r = 1, p(t, x(t)) = (0.2 − 0.1cos( t5 ))x(t)/(1 + 0.1cos( t5 ))x(t), k1(t)c(t)b(t) =
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2− 0.1cos( t5 ), δ(t) = 1− 0.1sin( t5 ), the Holling II type system (2.2) is given as:

dx(t)

dt
= x(t)(1.3− 0.2sin(

t

5
))− (1.3− 0.2sin(

t

5
))x(t)x(t)

−
(x(t)(0.2− 0.1cos( t5 ))y(t))

(1 + 0.1cos( t5 )x(t))
− 0.2h1(x(t))x(t),

dy(t)

dt
=

((2− 0.1cos( t5 ))y(t− 1)x(t− 1))

(1 + 0.1cos( t5 )(x(t− 1))
− (1− 0.1sin(

t

5
))y(t),

(4.2)

where h1(x(t)) =

{
0 if 0 6 x(t) 6 0.61,

1 if x(t) > 0.61,

Fig.3 shows the periodic solution of the non-autonomous Holling II type system
(4.2) under discontinuous prey control strategy. While for the corresponding au-
tonomous Holling II type system (4.2), Fig.4 displays the trajectory converging to
an equilibrium for the system under the condition that the coefficients of the Holling
II type system (4.2) are constant.

Example 4.3. Holling III type. Let g(t, x(t)) = (1−0.2sin( t6 ))−(1.3−0.1sin( t6 ))
x(t), r(t) = 1, p(t, x(t)) = ((0.2− 0.1cos( t

6
))x(t))/(1+0.2cos( t

6
)x(t)x(t)), k1(t)c(t)b(t) =

3− 0.2cos( t6 ), δ(t) = 1− 0.1sin( t6 ), the Holling III type equation (2.2) is given by

dx(t)

dt
= x(t)(1− 0.2sin(

t

6
))− (1.3− 0.1sin(

t

6
))x(t)x(t)

−
(x(t)(0.2− 0.1cos( t6 ))y(t))

(1 + 0.2cos( t6 )x(t)x(t))
− 0.3h1(x(t))x(t),

dy(t)

dt
=

((3− 0.2cos( t6 ))y(t− 1)x(t− 1))

(1 + 0.2cos( t6 )(x(t− 1)x(t− 1))
− (1− 0.1sin(

t

6
))y(t),

(4.3)

where h1(x(t)) =

{
0 if 0 6 x(t) 6 0.27,

1 if x(t) > 0.27.

Similarly, Fig.5 and Fig.6 show the periodic solution of the non-autonomous
Holling III type system (4.3) and the trajectory converging to the equilibrium of
the corresponding autonomous Holling III type system with constant coefficients,
respectively.

Example 4.4. Holling Ivlev type. Let g(t, x(t)) = (1 − 0.1sin( t8 )) − (0.6 −
0.1sin( t8 ))x(t), r(t) = 1, p(t, x(t)) = x(t)(0.6− 0.1cos( t8 ))(1− exp(−0.8x(t)), δ(t) =

1−0.1sin( t8 ),k1(t)c(t)b(t) = 2−0.1cos( t8 ),the Holling Ivlev type Eq.(2.2) is expressed
as 

dx(t)

dt
= (1− 0.1sin(

t

8
))x(t)− (0.6− 0.1sin(

t

8
))x(t)x(t)

− x(t)(0.6− 0.1cos(
t

8
))y(t)(1− exp(−0.8x(t)))− 0.3h1(x(t))x(t),

dy(t)

dt
= x(t− 1)(2− 0.1cos(

t

8
))y(t− 1)(1− exp(−0.8x(t− 1)))

− (1− 0.1sin(
t

8
))y(t),

(4.4)

where h1(x(t)) =

{
0 if 0 6 x(t) 6 0.73,

1 if x(t) > 0.73.
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Figure 1. Periodic solution of Holling I type non-autonomous system; (a) phase

portraits of the state variables x(t) and y(t), (b) trajectory in three-dimensional
space, and (c) trajectories of the state variables x(t) and y(t) with time.
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Figure 2. The trajectory converging to an equilibrium of the corresponding
Holling I type autonomous system; (a) phase portrait of the state variables

x(t) and y(t), (b) trajectory of the state in three-dimensional space, and (c)

trajectories of the variables x(t) and y(t) with time.
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Figure 3. Periodic solution of Holling II type non-autonomous system; (a)

phase portraits of the state variables x(t) and y(t), (b) trajectory in three-
dimensional space, and (c) trajectories of the state variables x(t) and y(t) with

time.
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Figure 4. The trajectory converging to an equilibrium of the corresponding
Holling II type autonomous system; (a) phase portrait of the state variables x(t)

and y(t), (b) trajectory of the state in three-dimensional space, (c) trajectories
of the variables x(t) and y(t) with time.
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Figure 5. Periodic solution of Holling III type non-autonomous system; (a)

phase portraits of the state variables x(t) and y(t), (b) trajectory of the state
in three-dimensional space, and (c) trajectories of the state variables x(t) and

y(t) with time.
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Figure 6. The trajectory converging to an equilibrium of the corresponding
Holling III type autonomous system; (a) phase portrait of the state variables

x(t) and y(t). (b) trajectory of the state in three-dimensional space, and (c)
trajectories of the variables x(t) and y(t) with time.
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Figure 7. Periodic solution of Ivlev type non-autonomous system; (a) phase

portraits of the state variables x(t) and y(t), (b)trajectory in three-dimensional
space, and (c) trajectories of the state variables x(t) and y(t) with time.
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y(t), (b) trajectory of the state in three-dimensional space, and (c) trajectories

of the variables x(t) and y(t) with time.
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Fig.7 and Fig.8 demonstrate the numerical simulation results for the periodic
solution of the non-autonomous Holling Ivlev type system under discontinuous con-
trol strategy and for the equilibrium of the corresponding autonomous Holling Ivlev
type systems with constant coefficients, respectively.

By analyzing Examples 4.1-4.4, we can easily know that the conditions of The-
orems 3.1-3.4 are all satisfied. Thus, the non-autonomous predator-prey systems
have a unique globally asymptotically stable ω-periodic solution. The numerical
simulation results shown in Fig.1 for Holling I type system (4.1), Fig.3 for Holling
II type system (4.2), Fig.5 for Holling III type system (4.3), and Fig.7 for Holling
Ivlev type system (4.4) demonstrate that there is a unique globally exponentially
stable ω-periodic solution of the non-autonomous delayed models with discontinu-
ous prey control strategy. The numerical results are in excellent agreement with the
theoretical results of Theorems 3.1-3.4. While for the corresponding autonomous
predator-prey models, periodic solutions do not exist in the systems but an equilib-
rium under the selected parameter regions. The existence of the globally exponen-
tially stable periodic solution is preferred to maintain the sustainable development
of the ecosystem.

5. Summary and discussion. Under the condition of the predator-prey system
with ecological sustainability, when the number of prey is above a certain level, we
should remove some preys. In real world, given the fact that an excess of preys
cannot be discovered in time, then we should consider the delay effects occurring
in taking actions to remove a certain number of preys. Based on the previous
literature on discontinuous harvesting control strategy, we proved the positiveness
and boundedness of the solutions of the general delayed model with discontinuous
prey harvesting control strategy. By using the degree theory, set-valued mapping
and differential inclusion theory, we analyzed the periodic solutions of the general
non-autonomous system. More interestingly, both theoretical and numerical results
demonstrated that Example 4.1 (Holling I type), Example 4.2 (Holling II type),
Example 4.3 (Holling III type), and Example 4.4 (Holling Ivlev type) all exist a
periodic solution under discontinuous control strategy. The periodic solutions of
the models were found to be exponentially asymptotically stable. The periodic
solution can well maintain the sustainable development of the ecosystem.

Compared with the existing studies in the literature, system (2.2) is more gen-
eral and considers the delay effects in harvesting preys. The discontinuous har-
vesting control strategy is simple and easy to be implemented in real world appli-
cations. It is worth pointing out that our research results on the corresponding
autonomous systems have been obtained before, but few studies were focused on
the non-autonomous delayed predator-prey model. In this paper, the classical au-
tonomous ordinary differential theory could not be applied to perform the qualita-
tive analysis of the general delayed predator-prey model (such as equilibrium point
analysis and sliding bifurcation analysis). This will be our future research topics.

Acknowledgments. The authors would like to express sincere thanks to the anony-
mous reviewers for their valuable comments and suggestions.

Appendix A. Proof of Lemma 2.10. From the definition of the solution for sys-
tem(2.2), u(t) is a solution of differential inclusion (2.7). Clearly, under Condition
(H4), we know that c̄o[h1(0)] = 0, and h1(x(t)) is continuous at u(t) = 0. Due to
the continuity of h1 at u(t) = 0, there are positive constants D1 and D2 such that
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when | x(t) |< D1, | y(t) |< D2, x(t) and y(t) are continuous, and the inclusion
(2.7) becomes the dynamic system:

dx

dt
= x(t)[r(t)g(t, x(t))− c(t)p(t, x(t))y(t)− ε1(t)h1(t, x(t))],

dy

dt
= y(t)[k1(t)c(t)b(t)p(t, t− τ)x(t− τ)y(t− τ)y(t)−1 − δ(t)].

(5.1)

Hence, u(t) > 0 for all t ∈ [0,+∞). If not, we let t∗1 = inf{t | x(t) = 0},
t∗2 = inf{t | y(t) = 0}, then t∗i > 0(i = 1, 2) and x(t∗1) = 0, y(t∗2) = 0. From
the continuity of x(t), y(t) on [0,+∞), there is a positive constant δi such that
t∗i − δi > 0 and 0 < x(t) < D1, 0 < y(t) < D1 for t ∈ [t∗i − δi, t∗i )i = 1, 2. Next, by
multiplying both sides of Eq.(5.1) by 1

x(t) ,
1
y(t) for all t ∈ [t∗i − δi, t∗i ) and integrating

with the interval t ∈ [t∗i − δi, t∗i ), we have 0 = x(t∗1) = x(t∗1 − δ1)e
∫ t∗1
t∗1−δ1

[r(s)g(s,x(s))−c(s)p(s,x(s))y(s)−ε1(s)h1(s,x(s))]ds
> 0,

0 = y(t∗2) = y(t∗2 − δ2)e
∫ t∗2
t∗2−δ2

[k1(s)c(s)b(s)p(s,s−τ)x(s−τ)y(s−τ)y(s)−1−δ(s)]ds
> 0,

(5.2)
which is a contradiction to the previous assumption. Hence, u(t) = (x(t), y(t)) > 0
for all t ∈ [0, T ) and T →∞, which completes the proof of Lemma 2.10.

REFERENCES

[1] A. A.Berryman and B. A.Hawkins, The refuge as an integrating concept in ecology and
evolution, Oikos, 115 (2006), 192–196.

[2] Z. W. Cai and L. H. Huang, Periodic dynamics of delayed Lotka-Volterra competition systems

with discontinuous harvesting policies via differential inclusions, Chaos, Solitons Fractals, 54
(2013), 39–56.

[3] Z. W. Cai, L. H. Huang, L. L. Zhang and X. L. Hu, Dynamical behavior for a class of

predator-prey system with general functional response and discontinuous harvesting policy,
Math. Meth. Appl. Sci., 38 (2015), 4679–4701.

[4] K. Chakraborty, S. Das and T. K. Kar, On non-selective harvesting of a multispecies fishery
incorporating partial closure for the populations, Applied Mathematics and Computation,

221(2013), 581–597.

[5] C. Chen, Y. Kang and Smith. R, Sliding motion and global dynamics of a Filippov fire-blight
model with economic thresholds, Nonlinear Anal. Real World Appl , 39 (2018), 492–519.

[6] M. I .S. Costa and M. E. M. Meza, Dynamical stabilization of grazing systems: An interplay
among plant-water interaction, overgrazing and a thresholdmanagement policy, Mathematical
Biosciences, 204 (2006), 250–259.

[7] L. Duan, X. Fang and C. Huang, Global exponential convergence in a delayed almost peri-

odic Nicholson’s blowflies model with discontinuous harvesting, Mathematical Methods in the
Applied Sciences, 41 (2018), 1954–1965.

[8] L. Duan and L. H. Huang, Global dissipativity of mixed time-varying delayed neural networks
with discontinuous activations, Commun Nonlinear Sci Numer Simulat , 19 (2014), 4122–
4134.

[9] L. Duan, L. Huang and Y. Chen, Global exponential stability of periodic solutions to a
delay Lasota-Wazewska model with discontinuous harvesting, Proceedings of the American

Mathematical Society, 144 (2016), 561–573.

[10] Y. H. Fan, W. T. Li and L. L. Wang, Periodic solutions of delayed ratio-dependent predator-
prey models with monotonic or nonmonotonic functional responses, Nonlinear Analysis: Real

World Applications, 5 (2004), 247–263.

[11] D. Fang, P. Yu, Y. Lv and L. Chen, Periodicity induced by state feedback controls and driven
by disparate dynamics of a herbivore-plankton model with cannibalism, Nonlinear Dyn, 90

(2017), 2657–2672.

http://www.ams.org/mathscinet-getitem?mr=MR3102847&return=pdf
http://dx.doi.org/10.1016/j.chaos.2013.05.005
http://dx.doi.org/10.1016/j.chaos.2013.05.005
http://www.ams.org/mathscinet-getitem?mr=MR3449626&return=pdf
http://dx.doi.org/10.1002/mma.3379
http://dx.doi.org/10.1002/mma.3379
http://www.ams.org/mathscinet-getitem?mr=MR3091955&return=pdf
http://dx.doi.org/10.1016/j.amc.2013.06.065
http://dx.doi.org/10.1016/j.amc.2013.06.065
http://www.ams.org/mathscinet-getitem?mr=MR3698152&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2017.08.002
http://dx.doi.org/10.1016/j.nonrwa.2017.08.002
http://www.ams.org/mathscinet-getitem?mr=MR2290098&return=pdf
http://dx.doi.org/10.1016/j.mbs.2006.05.010
http://dx.doi.org/10.1016/j.mbs.2006.05.010
http://www.ams.org/mathscinet-getitem?mr=MR3778099&return=pdf
http://dx.doi.org/10.1002/mma.4722
http://dx.doi.org/10.1002/mma.4722
http://www.ams.org/mathscinet-getitem?mr=MR3215041&return=pdf
http://dx.doi.org/10.1016/j.cnsns.2014.03.024
http://dx.doi.org/10.1016/j.cnsns.2014.03.024
http://www.ams.org/mathscinet-getitem?mr=MR3430834&return=pdf
http://dx.doi.org/10.1090/proc12714
http://dx.doi.org/10.1090/proc12714
http://www.ams.org/mathscinet-getitem?mr=MR2025067&return=pdf
http://dx.doi.org/10.1016/S1468-1218(03)00036-1
http://dx.doi.org/10.1016/S1468-1218(03)00036-1
http://www.ams.org/mathscinet-getitem?mr=MR3722165&return=pdf
http://dx.doi.org/10.1007/s11071-017-3829-y
http://dx.doi.org/10.1007/s11071-017-3829-y


DELAYED PREDATOR-PREY MODEL UNDER DISCONTINUOUS CONTROL 2663

[12] M. Forti and P. Nistri Global convergence of neural networks with discontinuous neuron
activations, IEEE Transactions on Circuit Theory I: Fund. Theory Appl., 50 (2003), 1421–

1435.

[13] S. J. Gao, L. S. Chen and Z. D. Teng, Impulsivee vaccination of an SEIRS model with time
delay and varying total population size, Bull. Math. Biol, 69 (2007), 731–745.

[14] L. N. Guin and S. Acharya, Dynamic behaviour of a reaction-diffusion predator-prey model
with both refuge and harvesting, Nonlinear Dyn, 88 (2017), 1501–1533.

[15] H. J. Guo and L. S. Chen, Periodic solution of a chemostat model with Monod growth rate

and impulsivee state feedback control, J. Theor. Biol , 260 (2009), 502–509.
[16] Z. Y. Guo and X. F. Zou, Impact of discontinuous harvesting on fishery dynamics in a stock–

effort fishing model, Communications in Nonlinear Science and Numerical Simulation, 20

(2015), 594–603.
[17] D. Jana, R. Agrawal, R. K. Upadhyay and G. P. Samanta, Ecological dynamics of age selective

harvesting of fish population: Maximum sustainable yield and its control strategy, Chaos,

Solitons & Fractals, 93 (2016), 111–122.
[18] G. R. Jiang and Q. S. Lu, Impulsivee state feedback control of a predator–prey model, J.

Comput. Appl.Math., 200 (2007), 193–207.

[19] D. Q. Jiang, Q. M. Zhang, T. Hayat and A. Alsaedi, Periodic solution for a stochastic non–
autonomous competitive Lotka–Volterra model in a polluted environment, Physica A, 471

(2017), 276–287.
[20] S. Khajanchi, Modeling the dynamics of stage–structure predator-prey system with Monod–

Haldane type response function, Applied Mathematics and Computation, 302 (2017), 122–

143.
[21] V. Kr̆rivan, On the Gause predator-prey model with a refuge: A fresh look at the history,

Journal of Theoretical Biology, 274 (2011), 67–73.

[22] B. Leard and J. Rebaza, Analysis of predator-prey models with continuous threshold harvest-
ing, Applied Mathematics and Computation, 217 (2011), 5265–5278.

[23] W. J. Li, L. H. Huang and J. C. Ji, Periodic solution and its stability of a delayed Beddington–

DeAngelis type predator–prey system with discontinuous control strategy, Mathematical
Methods in the Applied Sciences, 42 (2019), 4498–4515.

[24] W. J. Li, J. C. Ji and L. H. Huang, Global dynamic behavior of a predator–prey model under

ratio–dependent state impulsive control Applied Mathematical Modelling, 77 (2020), part 2,
1842–1859.

[25] Y. Li and Z. H. Lin, Periodic solutions of differential inclusions, Nonlinear Anal Theory
Methods Appl , 24 (1995), 631–641.

[26] H. Y. Li and Z. K. She, Dynamics of a non-autonomous density-dependent predator-prey

model with Beddington-DeAngelis type, International Journal of Biomathematics, 9 (2016),
1650050, 25pp.

[27] M. Liu and C. Z. Bai, Optimal harvesting of a stochastic delay competitive model, Discrete
and Continuous Dynamical Systems Series B , 22 (2017), 1493–1508.

[28] M. Liu, X. He and J. Y. Yu, Dynamics of a stochastic regime-switching predator-prey model

with harvesting and distributed delays, Nonlinear Analysis: Hybrid Systems, 28 (2018), 87–

104.
[29] W. Liu and Y. L. Jiang, Nonlinear dynamical behaviour in a predator-prey model with har-

vesting, East Asian Journal on Applied Mathematics, 2 (2017), 376–395.
[30] Y. Lu, X. Wang and S. Q. Liu, A non-autonomous predator-prey model with infected prey,

Discrete and Continuous Dynamical Systems Series B, 23 (2018), 3817–3836.

[31] D. Luo, Global boundedness of solutions in a reaction-diffusion system of Beddington DeAn-

gelis type predator-prey model with nonlinear prey taxis and random diffusion, Boundary
Value Problems, 2018 (2018), Paper No. 33, 11 pp.

[32] D. Z. Luo and D. S. Wang, On almost periodicity of delayed predator-preymodel with mutual
interference and discontinuous harvesting policies, Math. Meth. Appl. Sci., 39 (2016), 4311–

4333.

[33] A. Martin and S. G. Ruan, Predator-prey models with delay and prey harvesting, Mathemat-
ical Biology, 43 (2001), 247–267.

[34] S. G. Ruan and D. M. Xiao, Global analysis in a predator-prey system with nonmonotonic

functional response, SIAM Journal on Applied Mathematics, 61 (2000), 1445–1472.

http://www.ams.org/mathscinet-getitem?mr=MR2024569&return=pdf
http://dx.doi.org/10.1109/TCSI.2003.818614
http://dx.doi.org/10.1109/TCSI.2003.818614
http://www.ams.org/mathscinet-getitem?mr=MR3628403&return=pdf
http://dx.doi.org/10.1007/s11071-016-3326-8
http://dx.doi.org/10.1007/s11071-016-3326-8
http://www.ams.org/mathscinet-getitem?mr=MR2973106&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2009.07.007
http://dx.doi.org/10.1016/j.jtbi.2009.07.007
http://www.ams.org/mathscinet-getitem?mr=MR3251518&return=pdf
http://dx.doi.org/10.1016/j.cnsns.2014.06.014
http://dx.doi.org/10.1016/j.cnsns.2014.06.014
http://www.ams.org/mathscinet-getitem?mr=MR3576514&return=pdf
http://dx.doi.org/10.1016/j.chaos.2016.09.021
http://dx.doi.org/10.1016/j.chaos.2016.09.021
http://www.ams.org/mathscinet-getitem?mr=MR2276825&return=pdf
http://dx.doi.org/10.1016/j.cam.2005.12.013
http://www.ams.org/mathscinet-getitem?mr=MR3597436&return=pdf
http://dx.doi.org/10.1016/j.physa.2016.12.008
http://dx.doi.org/10.1016/j.physa.2016.12.008
http://www.ams.org/mathscinet-getitem?mr=MR3602743&return=pdf
http://dx.doi.org/10.1016/j.amc.2017.01.019
http://dx.doi.org/10.1016/j.amc.2017.01.019
http://www.ams.org/mathscinet-getitem?mr=MR2974938&return=pdf
http://dx.doi.org/10.1016/j.jtbi.2011.01.016
http://www.ams.org/mathscinet-getitem?mr=MR2770143&return=pdf
http://dx.doi.org/10.1016/j.amc.2010.11.050
http://dx.doi.org/10.1016/j.amc.2010.11.050
http://www.ams.org/mathscinet-getitem?mr=MR3983773&return=pdf
http://dx.doi.org/10.1002/mma.5673
http://dx.doi.org/10.1002/mma.5673
http://www.ams.org/mathscinet-getitem?mr=MR4029595&return=pdf
http://dx.doi.org/10.1016/j.apm.2019.09.033
http://dx.doi.org/10.1016/j.apm.2019.09.033
http://www.ams.org/mathscinet-getitem?mr=MR1319074&return=pdf
http://dx.doi.org/10.1016/0362-546X(94)00111-T
http://www.ams.org/mathscinet-getitem?mr=MR3489906&return=pdf
http://dx.doi.org/10.1142/S1793524516500509
http://dx.doi.org/10.1142/S1793524516500509
http://www.ams.org/mathscinet-getitem?mr=MR3639174&return=pdf
http://dx.doi.org/10.3934/dcdsb.2017071
http://www.ams.org/mathscinet-getitem?mr=MR3744970&return=pdf
http://dx.doi.org/10.1016/j.nahs.2017.10.004
http://dx.doi.org/10.1016/j.nahs.2017.10.004
http://www.ams.org/mathscinet-getitem?mr=MR3647446&return=pdf
http://dx.doi.org/10.4208/eajam.020916.250217a
http://dx.doi.org/10.4208/eajam.020916.250217a
http://www.ams.org/mathscinet-getitem?mr=MR3927577&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3773889&return=pdf
http://dx.doi.org/10.1186/s13661-018-0952-8
http://dx.doi.org/10.1186/s13661-018-0952-8
http://www.ams.org/mathscinet-getitem?mr=MR3549394&return=pdf
http://dx.doi.org/10.1002/mma.3861
http://dx.doi.org/10.1002/mma.3861
http://www.ams.org/mathscinet-getitem?mr=MR1868216&return=pdf
http://dx.doi.org/10.1007/s002850100095
http://www.ams.org/mathscinet-getitem?mr=MR1813689&return=pdf
http://dx.doi.org/10.1137/S0036139999361896
http://dx.doi.org/10.1137/S0036139999361896


2664 WENJIE LI, LIHONG HUANG AND JINCHEN JI

[35] J. Song, M. Hu, Y. Z. Bai and Y. H. Xia, Dynamic analysis of a non-autonomous ratio-
dependent predator-prey model with additional food, Journal of Applied Analysis and Com-

putation, 8 (2018), 1893–1909.

[36] S. Y. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke, Sliding bifurcations of Filippov two stage
pest control models with economic thresholds, SIAM J. Appl Math., 72 (2012), 1061–1080.

[37] D. S. Wang, On a non-selective harvesting prey-predator model with Hassell-Varley type
functional response, Applied Mathematics and Computation, 246 (2014), 678–695.

[38] J. M. Wang, H. D. Cheng, Y. Li and X. N. Zhang, The geometrical analysis of a predator-prey

model with multi-state dependent impulses, Journal of Applied Analysis and Computation,
8 (2018), 427–442.

[39] P. J. Wangersky and W. J. Cunningham, Time lag in prey-predator population models,

Ecology, 38 (1957), 136–139.
[40] Q. Xiao and B. Dai, Heteroclinic bifurcation for a general predator-prey model with Allee

effect and state feedback impulsive control strategy, Mathematical Biosciences and Engineer-

ing, 5 (2015), 1065–1081.
[41] S. Q. Zhang, X. Z. Meng, T. Feng and T. H. Zhang, Dynamics analysis and numerical simu-

lations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlin-

earAnalysis: Hybrid Systems, 26 (2017), 19–37.
[42] K. H. Zhao and Y. P. Ren, Existence of positive periodic solutions for a class of Gilpin-

Ayala ecological models with discrete and distributed time delays, Advances in Difference
Equations, 2017 (2017), Paper No. 331, 13 pp.

[43] R. Zou and S. J. Guo, Dynamics in a diffusive predator-prey system with ratio-dependent

predator influence, Computers and Mathematics with Applications, 75 (2018), 1237–1258.
[44] W. J. Zuo and D. Q. Jiang, Periodic solutions for a stochastic non-autonomous Holling-

Tanner predator-prey system with impulses, NonlinearAnalysis: Hybrid Systems, 22 (2016),

191–201.

Received March 2019; revised June 2019.

E-mail address: forliwenjie2008@163.com

E-mail address: lhhuang@csust.edu.cn

E-mail address: Jin.Ji@uts.edu.au

http://www.ams.org/mathscinet-getitem?mr=MR3884396&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2968763&return=pdf
http://dx.doi.org/10.1137/110847020
http://dx.doi.org/10.1137/110847020
http://www.ams.org/mathscinet-getitem?mr=MR3265905&return=pdf
http://dx.doi.org/10.1016/j.amc.2014.08.081
http://dx.doi.org/10.1016/j.amc.2014.08.081
http://www.ams.org/mathscinet-getitem?mr=MR3760102&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3356526&return=pdf
http://dx.doi.org/10.3934/mbe.2015.12.1065
http://dx.doi.org/10.3934/mbe.2015.12.1065
http://www.ams.org/mathscinet-getitem?mr=MR3695325&return=pdf
http://dx.doi.org/10.1016/j.nahs.2017.04.003
http://dx.doi.org/10.1016/j.nahs.2017.04.003
http://www.ams.org/mathscinet-getitem?mr=MR3712510&return=pdf
http://dx.doi.org/10.1186/s13662-017-1386-9
http://dx.doi.org/10.1186/s13662-017-1386-9
http://www.ams.org/mathscinet-getitem?mr=MR3766515&return=pdf
http://dx.doi.org/10.1016/j.camwa.2017.11.002
http://dx.doi.org/10.1016/j.camwa.2017.11.002
http://www.ams.org/mathscinet-getitem?mr=MR3530838&return=pdf
http://dx.doi.org/10.1016/j.nahs.2016.03.004
http://dx.doi.org/10.1016/j.nahs.2016.03.004
mailto:forliwenjie2008@163.com
mailto:lhhuang@csust.edu.cn
mailto:Jin.Ji@uts.edu.au


Copyright of Discrete & Continuous Dynamical Systems - Series B is the property of
American Institute of Mathematical Sciences and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.


	1. Introduction
	2.  Preliminaries
	2.1.  Model description
	2.2.  Preliminaries 

	3. Main results
	3.1. Existence of the periodic solution
	3.2. Uniqueness and global exponential stability
	3.3. Global convergence

	4.  Numerical simulations
	5. Summary and discussion
	Acknowledgments
	Appendix A
	REFERENCES

