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AMP Ampicillin 

BSA Bovine Serum Albumin 

CetZ                                          Cell-structure-related Euryarchaeota tubulin/FtsZ 

DNA deoxyribonucleic acid 

 g Gram 

GTP Guanosine triphosphate 

GDP Guanosine diphosphate 

h Hour(s) 

IPTG                                          Isopropyl β-D-1-thiogalactopyranoside 

kDa Kilo base pair(s) 

min Minute(s) 

mL Millilitre(s) 

MQW Milli-Q-water 

OD Optical Density 

PBS Phosphate Buffered Saline 

PIPES                                         1,4-Piperazinediethanesulfonic acid 

PIPES Buffer                            800 mM PIPES, 3M KCl, 10 mM MgCl2, pH 7.3 

M Molar concentration 

mM Millimolar concentration 

MW                                           Molecular Weight 

MWCO Molecular weight cut-off 

  n Nano 

ROW                                        Reverse osmosis water  

RT Room Temperature 

rpm Revolution per minute 

SDS-PAGE                                Sodium dodecyl sulphate polyacrylamide gel electrophoresis                          

sec                                       Seconds 

TEM                                           Transmission electron microscope 
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TEMED                                      N,N,N’,N’-Tetramethylethane-1,3 diamine  

Tris                                             Tris (hydroxymethyl) methylamine 

v  Volume 

w                                                 Weight 

W                                                Wild-type 

µ                                                  Micro 

Δ                                                  Delta (change in) 
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ABSTRACT 
  
The cytoskeleton is a dynamic network of proteins, which are required by all cells for cell 

division, growth, and maintenance of cell shape. A major group of cytoskeleton proteins 

present in nearly all cells are the tubulin superfamily proteins. Archaea, the third domain of 

life, encode a great diversity of tubulin superfamily proteins, including FtsZ and the tubulins 

that are more similar to those in eukaryotes. Recently a new group of cytoskeletal proteins 

was found in archaea, named “CetZ”, which show characteristics in common with both 

tubulin and FtsZ and are involved in cell shape regulation. They form dynamic cytoplasmic 

filaments at or near the cell envelope, which are required for cell shape determination 

(Duggin et al., 2015). However, the mechanisms by which CetZ proteins lead to remodelling 

of the cell envelope to modulate cell shape remain unknown. 

      Based on crystal structures of CetZ proteins and their likely manner of self-association, we 

have initiated a structure-function analysis of CetZ interactions in vivo (De Silva, 2019 PhD 

Thesis) and, in the present study, in vitro. Point mutations were introduced into the Haloferax 

volcanii CetZ1 protein, designed to target putative functional interactions in self-association 

and putative membrane association. In the present study, mutations that disrupt the 

longitudinal and lateral interactions were selected for the in vitro analysis. Light scattering 

and TEM were used as an approach to analyse the polymerization cycle and structural 

features of CetZ polymers, correlating these to the in vivo structures observed by high- and 

super-resolution fluorescence microscopy. 

      The in vitro studies demonstrated that CetZ1 forms GTP-dependent single-stranded 

filaments and polymer stability was clearly altered in predicted self-association mutants. The 

longitudinal interface mutants demonstrated that the GTP binding site and GTPase activity 

controls the longitudinal interaction of CetZ1 polymer formation by GTP hydrolysis. Lateral 

interaction mutants showed decreased polymerization ability. The mutation in the M-loop 

region, revealed that it is crucial for polymer formation. Preliminary investigation into 

possible CetZ1 lipid membrane binding suggests that CetZ1 can bind to the lipid membrane 

and modify shape changes in them, dependent on the polymerization ability of CetZ1. 

      These findings have contributed to the understanding of tubulin-like cytoskeleton proteins 

in archaea, which, by comparison to the cytoskeletons of bacteria and eukaryotes, are 
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expected to provide future insights into cytoskeleton evolution and help reveal fundamental 

principles of cytoskeletal function across the three domains of life. 
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