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Abstract 

Purpose of review: Preeclampsia is a dangerous pregnancy condition affecting both 

the mother and offspring. It is a multifactorial disease with poorly understood 

pathogenesis, lacking effective treatments. Maternal immune response, inflammation 

and oxidative stress leading to endothelial dysfunction, are the most prominent 

pathogenic processes implicated in preeclampsia development. Here, we give a 

detailed overview of the therapeutic applications and mechanisms of mesenchymal 

stem/stromal cells (MSCs) as a potential new treatment for preeclampsia. 

Recent findings: MSCs have gained growing attention due to low immunogenicity, 

easy cultivation, and expansion in vitro. Accumulating evidence now suggests that 
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MSCs act primarily through their secretomes facilitating paracrine signalling that leads 

to potent immunomodulatory, pro-angiogenic and regenerative therapeutic effects.  

Summary: MSCs have been studied in different animal models of preeclampsia 

demonstrating promising result, which support further investigations into the 

therapeutic effects and mechanisms of MSC-based therapies in preeclampsia, 

steering these therapies into clinical trials.  

 

Key words: pre-eclampsia; preeclampsia; mesenchymal stem cells; extracellular 

vesicles; biological therapies 

 

Introduction 

Preeclampsia is a severe cardiovascular disorder that affects 2-8% of 

pregnancies and it is a leading cause of maternal and neonatal morbidity and mortality 

[1]. Preeclampsia usually occurs during the second half of pregnancy and is 

characterised by the new onset of hypertension, proteinuria and end organ 

dysfunction; such as that of the liver and kidneys [2, 3]. Mild to moderate preeclampsia 

often does not display obvious symptoms and generally can be managed well without 

complications, unlike severe preeclampsia, which is defined as very high blood 

pressure (≥160/110) and substantial protein in the urine (≥300 mg of protein), or 

deterioration in liver, cerebrovascular and clotting function, as well as progressive 

renal damage [4]. If preeclampsia is left untreated it can result in the manifestation of 

seizures (eclampsia), HELLP (haemolysis, elevated liver enzymes, low platelet count) 

syndrome and other serious morbidities and death [5]. Early-onset preeclampsia is 

diagnosed prior to 34 weeks of gestation whereas late-onset preeclampsia is 
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diagnosed from 34 weeks of gestation onwards [6, 7]. While the development of early-

onset preeclampsia appears to be closely associated with abnormal placentation, late-

onset preeclampsia is believed to be predominantly caused by irregular growth of the 

placenta in combination with underlying maternal cardiovascular, metabolic and 

inflammatory conditions [6, 8]. However, a distinct delineation between these two 

types of preeclampsia is still not well understood and, therefore, further elucidation of 

the pathogenesis of the disease in the context of early-onset and late-onset 

preeclampsia is needed [9]. Cases of postpartum preeclampsia following delivery of 

the placenta and baby have also been observed [10].  

 

The pathogenesis of preeclampsia 

The complex heterogeneity of preeclampsia, ethical implications in obtaining 

placental samples early in pregnancy and difficulty in developing representative pre-

clinical models, have hindered the progression of better understanding the molecular 

regulation of the pathogenesis of this disease. Despite these obstacles, inappropriate 

spiral uterine artery (SUA) remodelling due to inadequate trophoblast invasion and 

function has been identified as one of the main underlying causes. During normal 

placentation, two subtypes of extravillous trophoblasts (EVTs), referred to as interstitial 

and endovascular, migrate from the placental villi into the decidual layer of the uterus 

and begin invading the maternal SUAs. This process is followed by the apoptosis and 

replacement of maternal endothelial cells and the establishment of high calibre, low 

resistance vessels that enable increased blood flow to the developing feto-placental 

interface without damaging the placental villi [11]. Inability of trophoblast cells to 

migrate, invade and remodel the SUAs leads to poor perfusion of the placenta and 
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subsequent ischaemic conditions. While a low oxygen gradient has been reported as 

essential in the proliferation and differentiation of extravillous trophoblasts, persistent 

hypoxia or low oxygen tension as well as reperfusion injury is believed to lead to an 

oxidative stress response, the release of antiangiogenic factors and endothelial 

dysfunction [12].  

A number of studies have highlighted the role of decidual immune cells, namely 

uterine natural killer (uNK) cells and macrophages, in inducing physiological changes 

in the SUAs prior to invasion of trophoblast cells [13]. Studies suggest that decidual 

uNK cells and macrophages begin the process of disrupting the vasculature of 

maternal SUAs, likely by inducing apoptosis of smooth muscle cells and digesting 

extracellular matrix components by secreting matrix metalloproteinases (MMPs) [14–

17]. Data has also suggested that decidual leukocytes promote the migration of 

invading EVTs to the SUAs by secreting chemokines, which leads to vascular 

development and the secretion of angiogenic growth factors [18–20]. In fact, failure of 

this leukocyte regulation may impair appropriate remodelling of SUAs and the 

establishment of maternal blood flow to the feto-placental unit [21–23]. 

In addition to regulating the invasion of EVTs, decidual immune cells appear to 

play a pivotal role in the tolerance of the maternal immune system to the semi-allograft 

fetus [24–26]. Protection of the feto-placental unit from maternal rejection has been 

considered a vital process in the establishment of healthy pregnancy, which can be 

inappropriately developed in cases of nulliparity, new paternal partner and donor 

oocyte conception, all of which represent risk factors for preeclampsia [27]. 

Harnessing of uNK cells and macrophages by expressing unique forms of HLA class 

I molecules and secretion of chemokines by EVTs, are likely to prevent an immune 

response to feto-placental cells and ensure the initiation of SUA remodelling [20, 28–
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30]. In addition, cytokine production by uterine macrophages has been implicated in 

their immunosuppressive role in pregnancy [25, 31–33]. Recently, extracellular 

vesicles (EVs) have been demonstrated to play an important role in the exchange 

between immune cells and trophoblast cells in achieving immunotolerance [34••, 35]. 

Inappropriate regulation of these immunomodulatory processes may inhibit the 

release of chemokines and angiogenic factors by uNK cells, impairing implantation 

and adequate perfusion of the placental bed.  

Poor perfusion or placental ischaemia-reperfusion (hypoxia/reoxygenation) 

injury can cause an imbalance between reactive oxygen species (ROS) and 

antioxidants resulting in systemic inflammation and endothelial dysfunction [12]. 

Increased oxidative stress due to impaired perfusion of the placenta or reperfusion 

episodes following periodic vasoconstriction of inadequately remodelled SUAs may 

increase the production of ROS, as seen in pregnancies complicated by preeclampsia. 

Generation of ROS could induce increased apoptosis of the placental 

syncytiotrophoblast, which form a continuous and multinucleated maternal-fetal 

syncytium. This subsequently leads to the release of syncytiotrophoblast 

microvesicles, inflammatory factors such as tumour necrosis factor (TNF-α) and 

antiangiogenic factors such as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble 

endoglin (sEng) into the maternal circulation [36]. These soluble proteins inhibit the 

actions of vascular endothelial growth factor (VEGF) and placental growth factor 

(PlGF) as well as transforming growth factor β1 (TGF-β1), which are all important for 

maintaining endothelial function and vasodilation [37]. The combination of these 

factors released into the intervillous space appear to trigger the systemic inflammatory 

response and peripheral endothelial dysfunction of the maternal disease. Underlying 

vascular conditions may increase a woman’s susceptibility to vascular inflammation 
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and risk of developing preeclampsia when pregnant [38]. This is often the case in 

pregnant women with pre-existing conditions such as obesity, hypertension and 

diabetes, which are well-established risk factors for the  development of preeclampsia 

[6, 39, 40]. Our previous work has demonstrated a significant amount of overlapping 

pathogenic pathways and biomarkers between preeclampsia and adult hypertension 

[41•]. 

In addition to maternal disease, preeclampsia can lead to perinatal morbidities 

such as stillbirth and fetal growth restriction due to reduced placental perfusion [5]. 

Although preventative low-dose aspirin use has showed promising results, particularly 

in relation to early-onset preeclampsia, the current treatment of preeclampsia upon 

diagnosis remains the delivery of the placenta and the baby, often at preterm [42]. 

Beyond life-threatening complications in pregnancy, preeclampsia is also associated 

with increased maternal and offspring morbidity in later life. Studies have 

demonstrated that women and their offspring affected by preeclampsia have a higher 

risk of developing additional cardiovascular, neurological and metabolic disorders 

such as diabetes mellitus and heart disease following the pregnancy [43].  

Considering that preeclampsia development is usually associated with 

inappropriate remodelling of maternal SUAs, impaired immune response, oxidative 

stress and irregular angiogenesis, mesenchymal stem/stromal cells (MSCs) with the 

potential to ameliorate these aberrant processes are emerging as a promising 

therapeutic option for preeclampsia [44]. MSCs’ low immunogenicity, self-renewal 

capabilities, and easy cultivation gives them an advantage over other types of cell-

based therapies [45]. More specifically, MSCs have been shown to have 

immunomodulatory, pro-angiogenic, anti-inflammatory and anti-oxidant effects (Figure 

1) [46, 47].  
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MSC-based therapies as a novel therapeutic strategy for preeclampsia   

MSCs are the most widely studied stem cells. These fibroblast-like, easy-to-propagate 

in vitro cells were discovered over 50 years ago as they exhibited potential to 

differentiate into adipose, bone, cartilage and muscle tissue [48]. MSCs can be 

isolated from tissues such as bone marrow, adipose tissue, umbilical cord and the 

placenta [49–52]. Interestingly, MSCs residing in the maternal decidua are believed to 

be involved in regulating the pro-angiogenic, immunomodulatory and anti-

inflammatory environment of the maternal-fetal interface during placentation. In fact, 

abnormalities in decidual MSC cytokine production and micro-RNA have been 

detected in patients with preeclampsia [53]. Recent study assessing the function of 

adipose tissue-derived MSCs from women with and without preeclampsia, 

demonstrated impaired survival, proliferation and migration of MSCs isolated from 

women with preeclampsia. These cells also showed lower angiogenic potential likely 

due to senescence, which was improved when a senolytic agent was added to the 

MSC culture ex vivo [54]●●. 

MSCs act through both cell contact-dependent regulation of the host cells and 

by secreting soluble factors. Direct intercellular communication between MSCs and 

their target cells can occur through tunnelling nanotubule (TNT) formation or cell fusion 

(reviewed in [55]•). In both cases, direct exchange of cytoplasmic content (including 

organelles such as mitochondria and lysosomes) can take place, resulting in the 

restoration of function of the host cells injured by disease microenvironment. More 

recently, MSC-derived EVs have attracted significant attention as key to intercellular 

communication. EVs serve as plasma membrane-wrapped vehicles which carry 

diverse cargo present in the cytoplasm of the producer cells. Vesicle content can 

include cytosolic and membrane proteins, mRNA and non-coding RNA including 
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miRNA, as well as organelles such as mitochondria and lysosomes. The nature of the 

EV cargo of MSCs can be influenced by the extracellular environment. A growing 

number of studies have demonstrated that treatment with MSC-derived EVs can 

recapitulate the therapeutic effects of MSCs in pre-clinical models of liver, kidney, 

heart, skin, lung and other diseases [56–58], however, their role in preeclampsia has 

only been addressed recently. 

MSCs are considered immunoprivileged cells as they can be infused into either 

autologous or allogeneic hosts owing to their lack of host immune reactivity [59]. MSCs 

have demonstrated therapeutic effects in animal models of multiple sclerosis, 

rheumatoid arthritis, myasthenia gravis and diabetes mellitus [60–63]. While MSC-

based therapy in other autoimmune experimental models has been extensively 

studied in vivo, there are only a small number of studies performed in preeclampsia 

models. Notably, when MSCs were injected in an LPS-induced rat model of 

preeclampsia, it was demonstrated that regulatory mechanisms to recover Th1/Th2 

immune response balance were restored and placental inflammation ameliorated [64]. 

Following MSCs intravenous injection, rats demonstrated lower plasma levels of TNF-

a, IL-6, IL-12, and ICAM-1, while IL10 was increased [64]. In separate studies, using 

Th-1 or endotoxin-induced or angiotensin receptor agonistic autoantibody (AT1-AA) 

models of preeclampsia, the therapeutic effect of MSCs, which included reduced 

systolic blood pressure and proteinuria, was attributed to significant attenuation of 

TNF-α expression in uterine and splenic lymphocytes [65, 66, 67●]. Interestingly, it 

appears that the mechanism of these MSC-mediated therapeutic effects is through 

secreted factors rather than cell-to-cell contact, which was also confirmed in another 

pre-clinical preeclampsia study using MSC-derived exosomes  [66, 67●, 68]. Indeed, 

paracrine effects of MSCs have been highlighted as important factors in angiogenesis 
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and promotion of wound repair [69]. Thus, it was demonstrated that treatment with 

MSC conditioned media is capable of restoring angiogenic potential of villous explants 

from women with preeclampsia by decreasing the expression of IL-6 and sFlt-1 [70]. 

Another study demonstrated that intravenous infusion of MSCs into preeclampsia 

model of AT1-AA induced pregnant rats can ameliorate SUA remodelling impairment 

and intrauterine growth retardation by regulating trophoblast invasion; this was also 

confirmed using MSCs derived from placenta [67•, 71]. 

Given that MSCs and associated EVs have shown therapeutic effects in murine 

and rat hypertension models (Table 1) as well as in cardiovascular diseases (Table 

2), this type of stem cell-based therapy represents a viable therapeutic option for 

preeclampsia. A summary of pre-clinical studies investigating the therapeutic potential 

of MSC-based therapies in preeclampsia is presented in Table 1. As a number of 

studies highlighted that women with pre-eclampsia are at higher risk of developing 

cardiovascular disorders such as chronic hypertension, ischaemic heart disease and 

stroke later in life [72], we reviewed a few of these studies [73], [74], [75], [76], [77], 

and summarised the findings in Table 2. 

 

Immunomodulatory properties of MSCs 

A growing body of evidence suggests that preeclampsia could be considered an 

autoimmune-like disease affecting the maternal-fetal interface, as described above 

[78]. Indeed, normotensive pregnancies are found to be a Th2 type immunological 

state where an immune-tolerant environment is favoured, while preeclampsia has 

been characterized as a pro-inflammatory state with Th1 predominance [79, 80]. 

However, the well accepted Th1/Th2 paradigm has changed into the Th1/Th2/Th17-
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Treg in light of accumulating evidence that T-regulatory cells (Tregs) contribute to the 

maintenance of tolerance during pregnancy [81]. Notably, the immunosuppressive 

function of Treg cells comes from the functional characteristics of dendritic cells (DCs), 

which constantly induce immunosuppressive functions of Treg cells [82]. A large body 

of evidence is focused on the ability of MSCs to modulate immune and inflammatory 

responses, particularly in endometrial tissue, where an adequate immuno-tolerant 

environment is essential for successful implantation and the normal invasion process 

of trophoblasts. Paracrine immunomodulation by MSCs targets T-lymphocytes, B-

lymphocytes, DCs and natural-killer cells (NKs) [83, 84]. By altering the cytokine profile 

of DCs, MSCs suspend their pro-inflammatory potential and influence Treg cells 

generation [85]. Also, MSCs alter Th17 differentiation in two different ways: i) by 

inducing IL-4 production, needed for Th2 phenotype, and ii) by inhibiting IFN-Ƴ 

production, needed for Th1. MSCs may shift Th1 towards Th2 response  by promoting 

an immature DC phenotype, preventing the Th1 response, which is favoured by 

mature DCs  [85, 86]. These stem cells are able to directly induce an increase in Treg 

cell number most likely by suppressing monocyte production of IL-6 and IL-1β in 

preeclampsia. In the same manner, MSCs may reduce exaggerated inflammation 

caused by Th17 differentiation, therefore contributing to the immune homeostasis 

required during pregnancy [85]. Apart from the possibility of altering the cytokine 

profile, MSCs can act in direct MSC-to-cell contact through PD1-PD1L pathway, which 

has a central role as a suppressor of immune response during pregnancy [87, 88]. 

Apart from having anti-inflammatory properties, MSCs are described to also be 

able to produce a pro-inflammatory environment, depending on a stimuli. Waterman 

et al. demonstrated that MSCs’ polarization depends on specific toll-like receptors 

(TLRs) expression affecting  ability to migrate, invade, and secrete immune modulating 
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factors [89]. Thus, TLR3 stimulation of MSCs will give immunosuppressive effects, 

while TLR4 activation will provide a pro-inflammatory signature.  

 

Angiogenic properties of MSCs 

MSCs have been shown to promote endogenous angiogenesis in a variety of in vitro 

assays and in vivo models of diseases such as acute lung injury, stroke, breast cancer, 

wound healing and other types of ischaemic injury [90–99]. Further, MSCs have been 

investigated for their ability to stimulate angiogenesis in in vitro trophoblast cultures 

and animal models of preeclampsia. As described above, when Nuzzo et al treated 

pre-eclamptic villous explants with placenta-derived MSC conditioned media (MSC-

CM), a neutralization of pro-inflammatory and anti-angiogenic mRNA expression was 

observed [70]. While the exact mechanism of MSC-mediated regulation of 

angiogenesis is still unclear, it is now believed that their effects are predominantly 

induced by paracrine factors rather than their capacity to differentiate into endothelial 

cells [46, 100, 101]. More specifically, EVs secreted by MSCs are able to transfer 

biologically active membrane and cytosolic components to target cells, as described 

above. Exosomes, a subtype of EVs, have recently been recognised for their role in 

intercellular communication by transporting proteins, lipids and genetic material 

including non-coding RNAs such as miRNAs in order to regulate the biological 

functions of target cells [102].  

 MSC-CM and isolated EVs have been used in various in vitro experiments to 

determine the role of MSC-based paracrine factors in promoting angiogenesis. Komaki 

et al (2017) tested MSC-CM and isolated exosomes from placenta-derived MSCs to 

evaluate their regulation of human umbilical vein endothelial cell (HUVEC) 
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angiogenesis. The MSC-CM contained angiogenic factors that enhanced HUVEC tube 

formation, however, when exosomes were removed from the media, the angiogenic 

effect was significantly reduced. Further, the isolated exosomes were successfully 

incorporated into the HUVEC cells, following which angiogenic marker expression was 

increased; with the pro-angiogenic effects of these exosomes confirmed in a murine 

auricle ischaemic injury model [103]. Several other studies including our own work, 

demonstrated similar pro-angiogenic capabilities of MSCs on endothelial and 

trophoblast migration, invasion and tube formation [104–107].  

 In addition, a growing number of animal models of ischaemic injury and 

preeclampsia have begun examining the mechanism of MSC promotion of 

angiogenesis [64, 67, 108]. Xiong et al (2018) using L-name induced rat model of 

preeclampsia investigated the effects and mechanism of varying concentrations of 

human umbilical cord MSC-derived exosomes. Following treatment, the rat models 

treated with exosomes demonstrated a substantial decrease in blood pressure, cell 

apoptosis and expression of anti-angiogenic sFlt-1. Further beneficial effects of MSV-

derived exosomes included an increase in the number of fetuses per pregnancy, 

restored morphology, micro-vascular density and VEGF expression, in placenta, in a 

dose-dependent manner. However, the exosomal cargo responsible for these effects 

was not investigated [68••]. A number of pro-angiogenic factors regulated by MSC or 

associated EVs, have also been implicated in the pathogenesis of preeclampsia, 

however, further research is required to elucidate this association between 

preeclampsia and MSC-mediated mechanism of repair [109–111]. 

 

Anti-inflammatory effects of MSCs 
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Compelling evidence has demonstrated that during the inflammatory process, MSCs 

modulate the balance between effector and regulatory immune functions in favour of 

the latter. Most notably, in almost every pre-clinical model of inflammatory disease, 

including models of preeclampsia, MSC administration leads to robust amelioration of 

inflammatory response reflected in the reduction of inflammatory cell influx, 

improvement of epithelial and endothelial barrier integrity associated with the 

decreased expression of endothelial adhesion molecules and significantly lower levels 

of pro-inflammatory cytokines, both locally and systemically [64, 67•, 112]. The 

therapeutic effects of MSCs result in deactivation (or reprogramming) of both innate 

and adaptive inflammatory immune cells, such as monocytes, macrophages, DCs, 

CD4+, CD8+, NK, and B cells,  while up-regulating regulatory subsets of cells such as 

alternatively activated monocytes and macrophages, and regulatory T cells to facilitate 

resolution of inflammation and restore function.  

As introduced earlier, an important mechanism of MSC modulation of the host 

cells is mediated through their capacity to secrete multiple paracrine factors. Soluble 

mediators act on multiple cell targets, changing their phenotype and function. A 

constantly growing number of soluble mediators have been implicated in MSC-induced 

anti-inflammatory effects, including indoleamine 2,3-dioxygenase (IDO), nitric oxide, 

TNF-a stimulated Gene/Protein 6 (TSG6), TGF-β, Prostaglandin-E2 (PGE2) and 

LipoxinA4 [113–117]. These findings paved the way to improving effectiveness of 

MSC-based therapies through gene modification, to overexpress several different 

soluble mediators, such as TGFβ or IL-10 [118, 119]. Interestingly, Gonzales-King et 

al. demonstrated that exosomes derived from HIF-1α overexpressing MSCs were 

enriched in the Notch-1 ligand Jagged-1, and subsequently were able to trigger 

transcriptional changes in Notch target genes in endothelial cells and induce 
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angiogenesis in both an in vitro model of capillary-like tube formation and matrigel plug 

assay in vivo [120]. MSC-derived EVs are capable of improving endothelial barrier 

integrity through transferring of Ang-1 mRNA, which results in expression and 

secretion of Ang-1 protein by human lung microvascular endothelial cells [121]. We 

have demonstrated that MSC-derived EVs containing functional mitochondria 

metabolically reprogram macrophages from glycolysis governed M1 pro-inflammatory 

phenotype towards oxidative-phosphorylation-dependent M2 anti-inflammatory 

phenotype [122]. A growing area of research is focussed on investigating the 

functional role of EV miRNA cargo. Thus, Pan et al, demonstrated that mouse bone 

marrow derived MSCs were able to ameliorate hypoxia-reperfusion induced injury in 

HUVECs in vitro by exosomal transfer of miRNA-126 which subsequently activated  

PI3K/Akt/eNOS pathway [123]. 

Given that EVs have several advantages over whole cell therapy such as lower 

risk of tumorigenic effect, lower susceptibility to damage by hostile injury 

microenvironment (e.g. hypoxia and high concentrations of cytokines), ability to retain 

efficacy after freezing and therefore avoiding the need to have expensive GMP cell 

manufacturing facilities on site (which could be critical for smaller hospitals), EVs are 

increasingly considered as an attractive alternative to the whole cell based therapy.  

Interestingly, new evidence suggests that after administration in vivo, MSCs 

undergo apoptosis, possibly targeted by NK cells [124]. These apoptotic MSCs induce 

anti-inflammatory effects through modulation of phagocytic cells involved in their 

clearance (reviewed in [125–127]). Galleu et al. were the first to report that graft-

versus-host-disease (GvHD) patients could be stratified into two categories based on 

their cytotoxic activity towards MSCs. Those who had high cytotoxic activity against 

MSCs responded to MSC infusion, whereas those with low cytotoxic activity did not. 
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After infusion, a recipient phagocytes engulfed apoptotic MSCs and produces 

indoleamine 2,3-dioxygenase (IDO), which was necessary for effective 

immunosuppression observed following MSC administration [124]. The follow-up 

study by the same group identified PGE-2 as a key soluble factor upstream of IDO-

induced monocytes after engulfment of apoptotic MSCs, which is responsible for IDO 

upregulation and could be used as a biomarker of MSC efficacy in the patients 

receiving MSC therapy [128]. These findings are in line with the  studies from the 

Hoogduijn’s group suggesting that infused MSCs are rapidly phagocytosed by 

monocytes [129, 130]. Phagocytosis of MSCs induces phenotypical and functional 

changes in monocytes polarising the cells towards non-classical Ly6Clow phenotype. 

These monocytes were able to induce Foxp3+ regulatory T-cell formation in mixed 

lymphocyte reactions. Therefore, these findings highlight that the therapeutic effects 

of MSCs are dependent on interactions between MSCs and monocytes/macrophages 

and emphasize the important contribution of innate immune modulation to MSC 

therapeutic efficacy. 

 

Anti-oxidant effects of MSCs 

Oxidative stress is a key mechanism involved in early inflammation, and reactive 

oxygen and nitrogen species have been implicated in the pathogenesis of 

preeclampsia [12, 41•, 131]. A number of studies have shown that MSCs are able to 

secrete relatively high levels of heme oxygenase-1 (HO-1) and that HO-1 

overexpression in MSCs enhances their therapeutic potential in pre-clinical models of 

lung and liver injury [132, 133]. Heme oxygenases degrades heme to biliverdin, iron, 

and carbon monoxide, which has beneficial vasodilatory effect. Expression of HO-1 
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modulates oxidative stress and confers protection from apoptosis [134]. In the models 

of acute kidney injury, molecules associated with the release of free radicals, such as 

the inducible nitric oxide synthases (iNOS), endothelial nitric oxide synthases (eNOS) 

and 8-hydroxy-2-deoxyguanosine (8-OHdG) are decreased after MSC administration 

[135, 136]. 

In the model of ischemia-reperfusion, AKI mice after MSC administration were 

found to have higher expression levels of NAD(P)H quinone oxidoreductase 1 

(NQO1), glutathione reductase (GSH-Rx) and glutathione peroxidase (GSH-Px) when 

compared with control groups. Moreover, the global oxidative index had decreased 

after MSC treatment [137]. Zhuo et al. reported that MSC infusion also significantly 

improved the activity of superoxide dismutase (SOD), a potent molecule responsible 

for reducing oxidative stress, and increased GSH-Px expression, an antioxidant 

enzyme, in renal tissues [138]. 

Another mechanism implicated in the anti-oxidant effect of MSCs is their 

capacity to transfer functional mitochondria to the target cells in affected tissues and 

thus alleviate oxidative stress induced by mitochondrial dysfunction. As mentioned 

earlier, mitochondria can be transferred via TNTs as well as secreted in EVs. 

Mitochondrial transfer is associated with a decrease in mitochondrial ROS, restoration 

of mitochondrial membrane potential (ΔΨm) and restoration of oxidative 

phosphorylation levels in recipient cells leading to improved functional activity (e.g., 

surfactant secretion, phagocytosis, wound healing and viability; Reviewed in [55•, 139, 

140]). Liu et al. demonstrated that the establishment of TNTs between MSCs and 

oxidative stress‐injured endothelial cells (HUVECs) resulted in the rescue of aerobic 

respiration and protection of endothelial cells from apoptosis. TNT formation required 

recognition of the surface‐exposed phosphatidylserines (PSs) on the injured HUVECs 
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by MSCs. Shielding of PSs with Annexin V resulted in the failure of TNT‐mediated cell 

contact between the two cell types [141]. In the follow up study, the same group 

showed that mitochondrial transfer from MSCs promoted cerebral microvasculature 

recovery in the rat model of ischemic stroke. The same group demonstrated that the 

host cells of injured cerebral microvasculature accepted the mitochondrial transfer 

from the transplanted MSCs. Mitochondrial transfer was associated with significantly 

improved mitochondrial activity of injured microvasculature, enhanced angiogenesis, 

reduced infarct volume, and improved overall functional recovery [92]. We have 

recently demonstrated that mitochondrial transfer from MSC to pulmonary epithelial 

cells restores epithelial cell mitochondrial membrane potential significantly reduced by 

inflammatory environment [142•]. Mitochondrial dysfunction has been implicated in 

preeclampsia and targeting mitochondrial-mediated oxidative stress has been shown 

to alleviate endothelial dysfunction in preeclampsia [143, 144]. 

 

Translating MSCs therapies into clinical trials for preeclampsia treatment 

MSCs have been in focus for several years for a number of therapeutic applications. 

Their potent anti-inflammatory, pro-angiogenic and immunomodulatory potential, easy 

isolation, capacity for self-renewal and the lack of immunogenicity, represent a 

promising tool for future therapeutic applications. Although a number of molecular 

pathways have been identified, the exact mechanisms by which MSCs exert their 

therapeutic function in preeclampsia, or any other disease, are still not completely 

clear. It seems that direct cell-to-cell contact is not crucial, as findings suggest that no 

fluorescent-labelled MSCs were present in any of the organs which restored their 

function after MSC treatment [67•]. Considering the very complex pathogenesis of 
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preeclampsia, it is likely that each of the secreted molecules play only a partial role in 

restoring the normal function of an end-organ. An interesting approach to identify the 

exact molecule(s) would be to inhibit or knockout molecules individually or 

simultaneously and investigate the therapeutic potential. 

While a number of studies utilising in vivo models of preeclampsia have 

demonstrated promising results, there are a number of concerns, which need to be 

addressed in order to steer MSCs into clinical trials for the treatment of preeclampsia. 

Most of these studies reported data up to 10 days following administration of MSC-

based injections. No results in relation to prolonged exposure to MSC were reported 

and not much is known about the effect of MSCs on fetal health, apart from an 

apparent increase in birth weight. Since only a limited number of in vivo studies have 

investigated the use of MSCs as a treatment of preeclampsia, further pre-clinical and 

clinical studies are necessary to evaluate the therapeutic potential as well as the safety 

profile of MSCs in preeclampsia. Based on the current knowledge of MSC properties, 

a concern still remains regarding their role in tumour development [145]. Since MSCs 

have regenerative and pro-angiogenic roles, their capacity to promote malignancies 

needs to be fully addressed prior to any treatment. Also, there are only a limited 

number of pre-clinical models of preeclampsia, which are all induced and poorly 

representative of human preeclampsia [146].  

Considering that MSCs can be harvested from different sources of tissues, 

there is likely a difference in stages of differentiations, as well as in proteomic and 

genomic profiles, which results in different functional efficacies of these cells. 

Therefore, this heterogeneity could affect their therapeutic potential and 

immunogenicity. Another important aspect of MSC-based therapies is their 

mechanism of action, which is poorly understood. Overall, before MSCs can be used 
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in the clinical trial settings, standardised procedures need to be developed in relation 

to their isolation, propagation and administration, as well as patient’s suitability, which 

will maximise their therapeutic potential and minimise possible side effects. 

 

Conclusion 

Although preeclampsia remains the leading cause of maternal and fetal morbidity and 

mortality, the only cure remains the delivery of the placenta and the baby. While this 

can reduce short-term pregnancy complications, long-term increased incidence of 

diabetes and cardiovascular diseases still remains. MSCs and associated EVs have 

demonstrated therapeutic potential in a variety of in vitro and in vivo models of various 

diseases and MSCs have begun investigation in the clinical trial context. In 

preeclampsia pre-clinical models, MSC-based therapies have demonstrated 

improvement in symptoms of preeclampsia and immuno-modulatory, pro-angiogenic, 

anti-inflammatory and anti-oxidant effects. However, the complex pathogenesis of 

preeclampsia and the lack of mechanistic insight into MSC-mediated repair requires 

further elucidation before MSCs or MSC-EVs can be introduced in the clinical context.  
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