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Abstract

Legged robots traversing in confined environ-
ments could find their only path is blocked by
obstacles. In circumstances where the obstacles
are movable, a multilegged robot can manipu-
late the obstacles using its legs to allow it to
continue on its path. We present a method for
a hexapod robot to autonomously generate ma-
nipulation trajectories for detected obstacles.
Using a RGB-D sensor as input, the obstacle
is extracted from the environment and filtered
to provide key contact points for the manipula-
tion algorithm to calculate a trajectory to move
the obstacle out of the path. Experiments on a
30 degree of freedom hexapod robot show the
effectiveness of the algorithm in manipulating
a range of obstacles in a 3D environment using
its front legs.

1 Introduction

Terrains in disaster zones, subterranean environments
and vegetated areas present a combination of fixed ob-
stacles, movable obstacles and irregular ground. Robots
could be prohibited from navigating confined spaces
when the only path is blocked by movable obstacles.
Wheeled and tracked robots have limited ability to tra-
verse these challenging environments as they require con-
tinuous ground contact points which can damage the
terrain. On the other hand, legged robots can place
their foot tips on small footholds in discontinuous ter-
rain [Tennakoon et al., 2020], adjust their footprint to
pass through confined areas [Buchanan et al., 2019], and
traverse rough terrain [Bjelonic et al., 2018]. To success-
fully traverse these unstructured terrains with unknown
obstacles in the robot’s path, the robot is required to
manipulate obstacles out of its way. Thus, if a legged
robot platform is able to autonomously identify and ma-
nipulate an obstacle in its path, the robot can progress
further in the environment.

Figure 1: Hexapod robot Weaver manipulating an ob-
stacle.

Existing legged mobile manipulators have at-
tached gripper equipped manipulator arms onto agile
quadruped platforms [Bellicoso et al., 2019; Boston Dy-
namics, 2019; Rehman et al., 2016]. This method pro-
vides dexterous manipulation capability at the expense
of reduced payload and decreased operating time due
to the additional mass. While some dynamic scenarios
would benefit from a fully integrated manipulator, these
disadvantages have lead researchers to focus on utilising
the legs for the dual purpose of mobility and manipula-
tion, or legipulation. Quadruped robots are only able to
manipulate with a single leg while standing stationary,
or with two legs while sitting [Hebert et al., 2015]. On
the other hand, hexapod robots, such as Weaver shown
in Figure 1, have the advantage of grasping objects with
up to 2 legs and still being able to walk with statically
stable gaits. Hexapod robot platforms such as LAU-
RON V [Roennau et al., 2014], LEMUR-II [Kennedy et
al., 2006), MAX [Elfes et al., 2017], MELMANTIS [Koy-
achi et al., 2002], and ASTERISK [Takubo et al., 2006]
have demonstrated manipulating objects with legs.

LAURON V used a RGB-D camera system to de-
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Figure 2: Overview of the Syropod Manipulation system.

tect objects of interest [Heppner et al., 2015] and pre-
defined grasp trajectories for a gripper [Heppner et
al., 2014] attached to the front right leg to pick and
store objects. A stereo camera pair on LEMUR-II
was used to detect fiducial markers attached to the
objects and arm to reduce pose errors [Nickels et al.,
2006]. The vision algorithms performed visual servo-
ing to achieve autonomous docking and bolt fastening.
To grasp and move objects simultaneously, various grip-
per designs [Lewinger et al., 2006] and locomotion gaits
[Deng et al., 2018] have been investigated. To move
large objects, [Inoue et al., 2010] developed a novel
approach of utilising two upper legs and the robot’s
body to increase exertion force. Two legged manipula-
tion through a combination of teleoperation and prede-
fined motions have been shown in [Koyachi et al., 2002;
Takubo et al., 2006].

Our approach is similar to [Heppner et al., 2015] where
we use a RGB-D sensor to detect the object pose and
use inverse kinematics to move the leg to the object,
without the use of fiducial markers and visual servoing
[Nickels et al., 2006) for pose tracking. While the pre-
vious works have focused on either predefined motions
for known objects or teleoperation of unknown objects,
our approach extends robot capability through the cal-
culation of control points for the trajectory based on the
object size and location from point cloud data. This
allows for autonomous manipulation for different sized
obstacles using different legs without a gripper.

In this paper, we present Syropod Manipulation, a
framework integrating perception and manipulation on
a hexapod robot to achieve autonomous legipulation of
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Figure 3: Overview of the Obstacle Identification per-
ception system.

obstacles in the robot’s path. A RGB-D sensor is used to
detect obstacles in the robot’s path, with the leg trajec-
tory generated to sweep obstacles away. The framework
focuses on obstacles that can be moved away from the
region in front of the robot with a single pushing motion.

We detail the framework in Section 2 for the per-
ception of obstacles and the generation of trajectories
for legipulation. Section 3 details the experiments con-
ducted, with results shown in Section 4 and discussed in
Section 5. The paper is concluded in Section 6.

2 Syropod Manipulation

Syropod Manipulation is comprised of Obstacle Iden-
tification and Legipulation, which are the perception
and manipulation modules respectively, as shown in Fig-
ure 2. Obstacle Identification utilises a RGB-D camera
to gather point cloud data of the environment and ex-
tract the obstacle location. The processed data is passed
into Legipulation to control how the leg will interact
with the obstacles. A high-level controller such as Open-
SHC [Tam et al., 2020] controls the robot servomotors
to achieve the desired tip pose.

2.1 Obstacle Identification

The perception system uses a RGB-D sensor to iden-
tify and isolate obstacles where manipulation is feasible
based on its relative size to the robot from the surround-
ing scene. Obstacle identification uses point cloud data
to extract the obstacle directly in front of the robot from
the environment. Our work is based on [Zeineldin and
El-Fishawy, 2016] with several modifications, as outlined
in Figure 3, to extract the key contact point for manipu-
lation. For obstacles 0.2 m to 0.4 m away from the sensor,
the obstacles occupy the majority of the sensor’s field of
view. Thus, the point cloud is downsampled to 0.01 m
voxels to reduce computation without affecting accuracy.
A passthrough filter is used to remove points outside



Figure 4: Key object contact points based on the bound-
ing box. Point 1: Front top centre; Point 2: Front centre;
Point 3: Right centre; Point 4: Left centre; Point 5: Left
back centre.

the workspace of the front legs of the robot. Then, the
ground plane is removed via RANSAC to leave the re-
maining points that represent the obstacles. These mod-
ules follow [Zeineldin and El-Fishawy, 2016] and appear
shaded in Figure 3.

We extend the work in [Zeineldin and El-Fishawy,
2016] to isolate the closest obstacle from all obstacles
detected. This allows the robot to sequentially manipu-
late each obstacle in its path. Additional filtering with
Euclidean Cluster Extraction and Octree Radius Search
is utilised to detect at close proximity the location of
the target obstacle. A bounding box is fitted to the ob-
stacle’s point cloud and the key contact point for the
robot to manipulate is calculated in the Contact Point
Extraction module.

Euclidean Cluster Extraction

The point cloud without the ground plane is clustered
into groups which identifies different focus areas within
the field of view. This filter groups neighbouring clus-
ters within a threshold together. This further removes
any outliers that do not belong to the group of clusters.
The robot only needs to manipulate obstacles which are
large enough to cause potential issues when traversing,
as smaller obstacles can be stepped over. Thus, the pa-
rameters for the Euclidean Cluster Extraction from the
Point Cloud Library [Rusu and Cousins, 2011] were em-
pirically selected based on observations with the robot.

Octree Radius Search Filter

The clusters are filtered for the nearest neighbours at
the target search location within a specified radius. The
filter is initially given a (z,y,z) coordinate in front of
the robot at the centre to search for objects. The search
location is incrementally increased from the centre to the
peripherals of the field of view until the closest obstacle
is found.

" Object
Position

Figure 5: Weaver simulation following the trajectory
generated by the modified cubic Bézier equation. Down-
ward arrows indicate the location and orientation for the
leg tip to follow.

These additional filters removes stray clusters that can
cause the bounding box for the object to be inflated.
Thus, the euclidean cluster extraction arranges the ma-
jor clusters into groups, with the octree filter searching
within these groups to single out the object.

Contact Point Extraction

The identified closest object is surrounded by a bounding
box. The bounding box extracts the height and width
of the detected object and provides key points where the
robot can interact with the object, as shown in Figure 4.
The key point on the boundary box is selected based on
the legipulation behaviour and is mapped to the object.
The selected key point for each respective legipulation
behaviour is predefined. The key points provides the
position of the object and the path for the robot’s leg
to pass through. The location of the object influences
the final position of the intermediate and last control
points for trajectory generation, highlighted by the red
dot influencing the position of P;, P, and Ps in Figure 5.
Additional key contact points can be specified for com-
plex interaction motions such as combining lifting and
pushing. The key contact points are defined prior to
executing manipulation.

2.2 Legipulation

Spatial control of the leg allows unique leg movements for
interacting with different objects. A single or a combi-
nation of splines are used to create the trajectory which
guides the leg tip to the desired locations. Splines formed
by Bézier curves are used to generate the desired smooth
trajectory and Spherical linear interpolation (Slerp) is
used to define the desired final orientation of the leg tip.
The key contact point from the object is fed into the
control points of the curves, guiding the leg to interact
with the object.
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Figure 6: (a) A Quartic Bézier curve and (b) a sequence
of Quadratic & Cubic Bézier curves.

Leg Trajectory Generation

Bézier curves are used to control the position of the leg
trajectory in 3D space while Slerp is used to interpo-
late from the current to desired leg tip rotation. The
combination of both allows the pose of the leg tip to be
defined. Thus, the leg tip can remain at a particular
orientation throughout the execution if required and the
degrees of freedom allow. Bézier curves generate smooth
transitions for the tip position from the start to final po-
sition. The equations defining quadratic (2" order) and
cubic (3" order) Bézier curves are given by:

’B(t) = s°Py + 2tsPy + t° P, (1)

3B(t) = s°Py + 3ts* Py + 3st> Py + 3P (2)

respectively, where s =1 — ¢ and ¢ € [0,1]. P, is control
point 0 (starting point); P; is control point 1; Ps is con-
trol point 2; and P, is control point n (final point) for
"B(t).

The control points defining the Bézier curve do not
normally lie on the curve itself but rather a certain dis-
tance away. Thus, not all the control points can be used
as desired points, locations where we want the curve to
pass through. For all control points to be used as desired
points, the Bézier curve Equations 1 and 2 are modified
to recalculate P; and P». The modified point P, for the
quadratic Bézier curve from Equation 1 is given by:

p - 2B(t) — 82P0 — t2P2
e 2ts

3)

The modified points ]51 and ]52 for the cubic Bézier curve
from Equation 2 is given by:

S BB(t) - SSPO - 35t2P2 - t3P3
A= 3ts? )

p o BB(t) — 83P0 - 3t82p1 — t3P3
* 3st2 (5)

For Equations 3 and 4, P, takes in the original control
points. For Equation 5, P, takes in the modified control
point P; and the remaining original points. Thus, the
changes for ]31 also affects 132. These modification allows
us to obtain the results in Figure 6, where the curve is
approximately nearer or on the desire points.

Leg Sequence Generation

Each control point on the Bézier curve defines a future
position the leg tip will visit. A leg trajectory is gener-
ated with control points defined for:

1. Initial position - The current pose of the selected leg
tip.

2. Safe position - A predefined and tested pose where
it will not damage the robot or object.

3. Beside the object - A pose where the leg is ready to
interact with the object/obstacle.

4. Final position - A pose which completes the entire
motion or the final pose of the leg tip.

The order of the Bézier curve used can be modified. De-
pending on the type of motion, it is beneficial to use se-
quenced cubic Bézier curves to generate the trajectory,
rather than a quartic Bézier curve. This is especially
true for simple up and down motion. Through the use
of control points, unique sequences of motion can be cre-
ated for legged robots. The leg motion can be altered to
allow for a modified leg end-effector, such as a gripper.

For a 2" order curve, the generated spline passes
through all the control points. However, for complex
splines such as 3'¢ and 4" order curves, this is not
guaranteed, with the spline not passing through all the
control points but approximately near it. To generate
complex curves while reducing this error, illustrated by
Fy...Py in Figure 6a, the trajectory is segmented into
several movements, each defined by a lower order Bézier
curve as illustrated by Fy...Ps and PJ...P} in Figure 6b.

Leg Overload Detection

The system continuously senses whether the obstacle is
too heavy to proceed with manipulating. Torque, cur-
rent or effort feedback from the motors informs the sys-
tem when the leg is about to be overloaded, allowing the
motors to be protected from damage. When overload de-
tection is triggered, the current manipulation action is
abandoned and the leg returns to stance position. Addi-
tional leg sequences can be executed to attempt moving
the obstacle with a different leg configuration instead of
returning to stance position.

3 Experiments

Syropod Manipulation was deployed on Weaver [Bjelonic
et al., 2018; Buchanan et al., 2019; Tam et al., 2017],
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Figure 7: Top row: The 3 objects taken by a GoPro.
Bottom row: Point clouds of the 3 objects seen by the
RGB-D camera.

with an Intel Realsense D435 sensor payload. The algo-
rithm was executed on the onboard Intel i7 PC, powered
by an external power supply and connected remotely via
an Ethernet cable. The joint effort and tip positions
for each leg were monitored to evaluate the behaviour
and response of the leg tip following the leg trajectory
motion.

3.1 Experimental Setup

The objects were selected so that the robot was capable
of seeing and interacting with them. Three scenarios
tested the effectiveness of the trajectory algorithm as
outlined in Table 1. Specifically, the scenarios are:

e Object 1 - light weight and small - where the object
was detectable and movable. The smaller object size
tested accuracy.

e Object 2 - light weight and large - where the object
was detectable and movable. The larger size tested
the workspace limits of the leg.

e Object 3 - heavy and large - where the object was
detectable but not movable due to its weight. This
tested the reaction to immovable obstacles.

Object 1 and 2 were different shape and size, while
Object 2 and 3 were the same shape and size but dif-
ferent weight. Figure 7 shows the different objects and
how it appears to the perception system. Tests were pre-
dominately conducted on a flat carpet surface, with tests

on marble and concrete to compare system performance
on different surfaces. Objects were placed the same dis-
tance away from Weaver for all the tests, but the robot
had to adjust to the different object widths, detailed in
Table 1. Tests were mostly conducted indoors with con-
sistent lighting conditions.

For all the tests, a single leg motion was used to move
the object aside to clear the path in front of the robot.
The motion consists of a quadratic and cubic Bézier
curve executed in sequence. A quadratic curve was used
to move the leg tip pose from the initialised pose to a
predefined safe pose in front of the robot at an elevated
height. Then a cubic curve was used to guide the leg tip
to push the object aside, as shown in Figure 6b. The
positions for control points P; and P, in Figure 5 were
influenced by the position of the object’s key contact
point. The result of the leg motion was to move the
obstacle in front of the robot away from it’s path.

The Dynamixel motors are unable to provide a direct
torque value, but have an effort value which is a ratio
of the load experienced. An empirical estimate of this
dimensionless effort output from the Dynamixel motors
was used to determine when a leg was considered to be
overloaded. For safety considerations, the limit was set
below the estimate. If any of the joints for the selected
manipulation leg is overloaded, the motion would cease
its operation and return to a safe position so that the
motors for the robot is protected from any damage.

3.2 Experimental Evaluation

The performance for the system was based on the robot’s
ability to detect and move the object in front of it. A run
was successful if the robot was able to detect and push
aside the object, so that it no longer obscures the path
for the robot to perform other actions, such as walking.
The system was also successful if it was able to detect a
potential motor overload and change its motion to pre-
vent damage. A run was considered unsuccessful when
the object was still in the robot’s path such that the
robot would need to perform the motion again. It was
also unsuccessful if the robot behaves in an undesirable
way when interacting with the object, such as falling
over.

Object ~ Weight (kg) Dimension (mm) Location (mm) Surface
Object 1 0.013 Dia. 66.2 x 115.2 (360, -30) Carpet
Object 2 0.39 300 x 224 x 115 (360, -30) Carpet, Concrete, Marble
Object 3 1.45 300 x 224 x 115 (360, -30) Carpet

Table 1: Dimensions follow L x W x H unless otherwise specified. Location of the object in (x,y) coordinate relative

to the centre of the robot body.
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Figure 8: The key contact point (red dot) for Objects 1
(a), 2 (b) & 3 (c¢), which influences the control points for
the leg tip trajectory.
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Figure 9: Effort exerted from coxa joint for Object 2
and 3. Positive and negative effort values indicates the
direction of the joint. Effort limit threshold of -3200 is
represented by the red dash line.

4 Results

The perception system was successful in detecting all
three objects, even though the environment was visually
non-uniform as shown by the patches on the ground in
Figure 1. The point cloud based approach was invariant
to environment colour and lighting conditions, with ob-
servations of little disruption from lighting changes when
the tests were run at different times of the day. The sys-
tem was able to provide object identification updates at
over 20 Hz.

The perception system provided the location of the
desired key contact point. As shown by the red dot in
Figure 8, this object contact point was located at point 5
based on the bounding box in Figure 4. The intermediate
control points were influenced by the object’s position so
that the curve would pass through the object and that
the behaviour of the curve was maintained as shown in
Figure 5 for control points P, and Ps.

The generated leg trajectory points were both inside
and outside the workspace. When the trajectory was in-
side the workspace, the desired position and orientation
of the leg tip was achieved. In the case where the trajec-
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Figure 10: Mean and standard deviation of the manipu-
lation leg’s joint efforts for Object 1. A single standard
deviation is represented by the purple shaded area. A:
Leg initialising from stance to manipulation mode. B:
Leg moving to in front of Weaver. C: Leg interacts with
the object and pushes it aside. D: Leg returns to stance.

tory was beyond the reach of the robot’s leg tip, emphasis
was placed on following through with the behaviour of
the trajectory, rather than achieving the desired leg tip
pose.

For the heavy and large object scenario, the mass of
the box was increased such that Weaver had difficulty
moving it. Conducting experiments with the feedback



Figure 11: Unique trajectories simultaneously generated
for both legs for advanced movements.

from the robot’s joint states, it was deduced that if any of
the joints exceeded the effort value of £3500, the motors
would enter protective shutdown. Thus, for the safety of
the robot, the threshold was set to 3200. During execu-
tion, the motion would follow the trajectory as planned
until the leg attempted to push the heavy box. Once
the effort threshold was exceeded, the original leg mo-
tion was abandoned and a new set of trajectories was
executed to return the leg back to stance position. Fig-
ure 9 shows the comparison between the effort of the coxa
joint during Object 2 and 3 scenario. The peak effort for
every Object 3 trial exceeded the threshold, even though
the mean did not exceed due to the alignment across the
trials.

For both the light weight small and large object sce-
nario, contact between the leg tip and the desired key
contact point on the object was successful. Figure 10
shows that most of the effort exerted is for maintaining
the pose of the leg tip to remain normal to the ground
and following the planned trajectory. Other surfaces
listed in Table 1 were tested and yielded similar results
as Object 2 when tested on carpet.

5 Discussion

The perception system was designed so that the filters
would remove any point cloud outliers that could inter-
fere with the generation of the bounding box. Although
the bounding box did not cover the entirety of the point
cloud cluster, as shown in Figure 8, the data allowed
the extraction of the object location and the key contact
point for the leg tip.

Object 2 and 3 compared the behaviour of the robot

when faced with the same object shape and size but dif-
ferent weight. Object 3’s weight was chosen to be mov-
able but the system would experience instability. Heav-
ier weights would result in the robot losing stability dur-
ing manipulation and the coxa joint motor would over-
load and become nonfunctional for the rest of the move-
ment, requiring a motor power cycle. The leg overload
detection prevented this occurrence as the system was
able to sense the effort exerted by the manipulation leg
and abort the motion when required. The type of move-
ment what was used on all 3 scenarios was best suited for
Object 2. For Object 2 and 3, the optimal point when
being pushed aside was located in the centre depth of
the object. Similarly, the same location relative to the
object was used for Object 1. However, Object 1’s reac-
tion to this contact point was less favourable, resulting
in the occasional rolling of the object.

The option of moving two legs of the robot was ex-
plored, with the system able to create paths for simulta-
neous dual legipulation as shown in Figure 11. Each leg
during dual legipulation had its own unique trajectory.
However, this capability of more advanced legipulation
behaviours such as grasping and lifting was only explored
in simulation. Without onboard batteries, Weaver’s al-
tered centre of mass affected its stability. While not
evident for the single leg tests, the large change in the
support polygon for dual legipulation resulted in robot
instability.

The perception system was configured to view the area
immediately in front of the robot, within the workspace
of the legs. A visual servoing approach was not used
due to the leg interfering with the camera’s view during
the leg motion sequence. Figure 12 shows the difference
in tracking between the desired and actual tip position,
where the greatest error is less than 0.02m. The er-
ror was within the required accuracy for the intended
purpose of the system, thus feedback was not required
from the perception system during manipulation. That
is, once the perception system provided the key contact
point, legipulation was only controlled via proprioceptive
feedback.

The behaviour of the robot was evaluated when in-
teracting with objects on different ground surfaces. The
friction between the ground and the object affects the
performance of the system and would vary greatly, espe-
cially in disaster areas. Each surface tested had differ-
ent levels of friction, with marble, concrete and carpet
increasing respectively. Object 2 was tested on all these
surfaces, with each surface yielding similar results. The
robot was able to successfully move the object with little
difficulty.
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Figure 12: The mean of the difference between the desired and actual leg tip position for Object 1 (a) and 2 (b).

6 Conclusions

This paper presented a method to control how legged
robots manipulate objects within their environment.
Key contact points for the obstacle extracted from the
point cloud of the environment provided the information
for the leg tip to successfully interact with the object. A
combination of point cloud filters were used to create a
bounding box around the obstacle for the key contact
points, irrespective of the object’s shape and size. With
the ability to compose different leg sequences, unique
movements can be created to best suit the situation. Ex-
perimental results show the system was able to generate
a leg tip trajectory for a legged robot to follow, with a
motion sequence that was influenced by the placement
and shape of the object. Additionally, the leg overload
detection safety module was successful in aborting the
legipulation sequence when a heavy obstacle was present,
preventing robot damage.

In future works, we will consider the use of visual ser-
voing to track the location the object during manipula-
tion to adjust for any unexpected behaviours. Another
goal includes exploring the potential of using any legs
on the Syropod to manipulate objects, provided that the
perception system covers the leg workspace.
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