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Abstract

Block Toeplitz matrices are a special class of matrices that exhibit reduced memory requirements and a re-
duced complexity of matrix-vector multiplications. We herein present an efficient computational approach
to solve a sequence of block Toeplitz systems arising from a block Toeplitz system with multiple right-hand
sides. Two different numerical schemes are implemented for the solution of the sequence of block Toeplitz
systems based on global and block variants of the generalized minimal residual (GMRES) method. The
performance of the schemes is assessed in terms of the wall clock time of the iterative solution process, the
number of multiplications with the block Toeplitz system matrix and the peak memory usage. To demon-
strate the method, two numerical examples are presented. In the first case study, aeroacoustic prediction
of an airfoil in turbulent flow is examined, which requires multiple solutions of the wall pressure field be-
neath the turbulent boundary layer. The fluctuating pressure on the surface of the airfoil is synthesized in
terms of uncorrelated wall plane waves, whereby each realization of the wall pressure field is an input to
the acoustic solver based on the boundary element method (BEM). The total acoustic response from the air-
foil in turbulent flow is then obtained from an ensemble average for the number of realizations considered.
The number of realizations to yield a converged solution for the wall pressure field leads to a sequence of
block Toeplitz systems. The second case study examines the nonlinear eigenvalue analysis of a sonic crystal
barrier composed of locally resonant C-shaped sound-hard scatterers. The periodicity of the sound barrier
leads to a block Toeplitz system matrix whereas the nonlinear eigenvalue problem requires the solution of
sequences of linear systems. The combined technique to solve the sequences of block Toeplitz systems
using the proposed variants of the GMRES is shown to yield a computationally efficient approach for flow
noise prediction and nonlinear eigenvalue analysis.

Keywords: sequence of linear systems, global Krylov solver, block Krylov solver, block Toeplitz matrix,
boundary element method

1. Introduction

A block Toeplitz matrix is a special block matrix which contains constant blocks along each diagonal,
and is one of the most well-studied classes of structured matrices [1]. A system of linear equations in
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which the system matrix is a block Toeplitz matrix is called a block Toeplitz system [1, 2]. Block Toeplitz
systems arise in a diversity of disciplines including applied mathematics [3, 4], physical sciences and engi-
neering [5–10], and signal processing and control [11]. Karimi et al. [12] found that applying the BEM to
periodic structures leads to the formation of a block Toeplitz matrix due to the translational invariance of the
free-space Green’s function. The method is termed the periodic boundary element method and has been ap-
plied to problems with multi-directional periodicity [13], problems involving rotational symmetry [14] and
aeroacoustic predictions of airfoils [15, 16]. In the latter case, sequences of linear block Toeplitz systems
are considered which are block Toeplitz systems with many right-hand sides. Sequences of linear block
Toeplitz systems can also be found in Gaussian process modeling [17], electromagnetics [18, 19] and data
analysis [20].

Direct or iterative solvers are generally employed to solve a Toeplitz system. Direct solution schemes
for Toeplitz systems as well as multilevel and block Toeplitz systems have been extensively studied, for
example, see [21–26]. Direct solution schemes generally exhibit a complexity of O(N2), with N denoting
the number of degrees of freedom. Recently, stable direct solvers with complexities below O(N2) have
been proposed, for example, see [27–29] and references therein. However, the high memory requirements
of direct solvers still prevent their application to large-scale problems. Iterative solvers generally require
less memory than direct solvers and can be implemented without additional effort [30–32]. Employing an
iterative solver for the solution of a single linear block Toeplitz system was shown to exhibit a complexity
of O(N log2(N)). A prominent variant of an iterative solver is the conjugate gradient algorithm, which has
been applied to symmetric positive definite Toeplitz systems employing circulant preconditioners [33, 34].
Using this algorithm, several parallelization techniques were implemented to solve multilevel Toeplitz sys-
tems [35]. Further, the minimum residual method and the generalized minimal residual method (GMRES)
were used to solve indefinite and non-symmetric Toeplitz systems [36, 37]. Barrowes et al. [8] demonstrated
efficient solution of an electromagnetic scattering problem involving multilevel block Toeplitz matrices us-
ing the biconjugate gradient stabilized method together with one-dimensional fast Fourier transforms.

The aforementioned iterative solution schemes belong to the class of Krylov subspace methods and can
be grouped as seed/recycling, global or block Krylov subspace methods [38]. Using seed methods, a single
system within the sequence of linear systems is selected and solved. Subsequently, the Krylov subspace
of the seed system is reused in the solution process of the other linear systems. For m linear systems,
the residuals of the remaining m − 1 linear systems are projected onto the Krylov subspace of the seed
system. This often leads to a good approximation of the solution of the remaining non-seed systems [38, 39].
Seed methods can be improved further by introducing augmentation and/or deflation, which are referred to
as recycling methods [40, 41]. Recycling methods have been applied to solve the Helmholtz equation
discretized by the finite element method [42] as well as Maxwell’s equations discretized by the boundary
element method [43, 44]. In contrast, global and block methods efficiently solve all linear systems within the
sequence simultaneously. As such, the solution and right-hand side vectors are concatenated into matrices.
This allows matrix-matrix multiplications to be efficiently performed within the global and block iterative
schemes. A further benefit of global and block methods is that they build a much larger Krylov subspace
which usually yields a solution within less iterations [45, 46]. Malhotra et al. [47] applied block methods
to solve exterior acoustic problems using the finite element method (FEM). Block methods have also been
employed using the FEM for applications in exterior acoustics to address waveform inversion [48] and for
uncertainty analysis [42].

The current work extends the capability in exterior acoustics by employing global and block iterative
solvers to accelerate the solution process of a block Toeplitz system with many right-hand sides. Both global
and block variants of the GMRES are employed to solve a sequence of block Toeplitz systems arising from
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a BEM formulation. Two numerical examples are considered. In the first case study, the aeroacoustic
prediction of flow-induced noise from an airfoil in low Mach number turbulent flow is considered. A small
segment of the airfoil was selected as a unit cell. Using a periodic BEM formulation, the acoustic problem
results in a block Toeplitz system. An uncorrelated wall plane wave technique is used to synthesize the
fluctuating pressures on the surface of the structure. Each realization of the synthesized wall pressure field
corresponds to an input to the acoustic problem, i.e., to a right-hand side of the periodic BEM model of the
airfoil. Taking a number of realizations into account results in a sequence of block Toeplitz systems. The
acoustic response of each realization is predicted by solving this sequence. The final acoustic response due
to flow-induced noise from the flat plate is then obtained from an ensemble average of the individual acoustic
response of the realizations. In the second case study, the eigenvalues and eigenvectors of a periodic sound
barrier design are analyzed. Applying the periodic BEM formulation leads to a block Toeplitz system
that is implicitly frequency dependent. This yields a nonlinear eigenvalue problem which can be solved
efficiently by contour integral methods [49–51]. These methods allow extraction of the eigenvalues within a
predefined contour but require the solution of sequences of linear systems at multiple frequency points along
the contour. For both case studies, the performance of global and block variants of the GMRES to solve the
sequence of block Toeplitz systems is evaluated in terms of computation time and memory requirements.
Both the global and block GMRES methods are shown to significantly reduce the overall computational
effort of the solution process, yielding an efficient approach for exterior acoustic problems.

2. Sequence of block Toeplitz systems

A sequence of linear systems is given by

Tx(i) = b(i) , i = 1, . . . ,m , (1)

where T is a complex-valued system matrix and b(i), x(i) respectively denote the complex-valued right-hand
side vector and solution vector of the i-th linear system within the sequence of m linear systems. When
the system matrix T is a block Toeplitz matrix, the linear systems within eq. (1) are called block Toeplitz
systems [1, 2]. An N × N matrix T is a block Toeplitz matrix if it has constant blocks along each diagonal.
Hence, a block Toeplitz matrix has the form

T =



T0 T−1 · · · · · · T1−s

T1 T0 T−1 · · · T2−s
... T1

. . .
. . .

...
...

...
. . .

. . . T−1
Ts−1 Ts−2 · · · T1 T0


, (2)

where each T j is an n × n matrix. In order to solve block Toeplitz systems by means of global and block
Krylov solvers, the sequence of linear systems given by eq. (1) is reformulated into

TX = B , (3)

where the solution and right-hand side vectors are concatenated to form the solution matrix X = [x(1), . . . , x(m)]
and right-hand side matrix B = [b(1), . . . ,b(m)].

An efficient scheme to calculate block Toeplitz matrix products is implemented using the following
procedure: (i) calculate the unique entries of the block Toeplitz matrix, (ii) construct the first block column
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of a block circulant matrix, (iii) calculate the discrete Fourier transform (DFT) of this first block column,
and (iv) store the DFT of the first block column as a block diagonal matrix. The unique elements of the
block Toeplitz matrix in eq. (2) are the first block row and first block column. Concatenating the unique
blocks column-wise yields the following n × (2s − 1)n matrix

Q =
(
T0 T−1 · · · T1−s Ts−1 · · · T2 T1

)
. (4)

The Q matrix defines the first block row of the block circulant matrix C. A block circulant matrix is a
special type of block Toeplitz matrix in which each block row is a rightward circular shift of the first block
row [2, 52]. Therefore, rightward circular shifts of Q form the block circulant matrix C, i.e.

C =



T0 T−1 · · · T2 T1
T1 T0 T−1 · · · T2
... T1

. . .
. . .

...

T−2
...

. . .
. . . T−1

T−1 T−2 · · · T1 T0


. (5)

By embedding the block Toeplitz matrix into a block circulant matrix, matrix products become circular
convolutions that can be quickly computed using the discrete Fourier transform (DFT) or the fast Fourier
transform (FFT). A matrix product can be obtained by multiplying the block Toeplitz matrix T with an
arbitrary matrix V, which is equivalently expressed in terms of a block circulant matrix C as follows [14]

TV = Z ≡ CṼ = Z̃ , (6)

with Ṽ and Z̃ being extended versions of V and Z, respectively. Introducing the block DFT operator F and
its corresponding inverse operator F−1, the block circulant matrix in eq. (6) is given by

C = F−1ΛF , (7)

where Λ is a block diagonal matrix. This block diagonal matrix stores the block DFT of the first block
column of the block circulant matrix, that is

Λ = diag
(
T̂0, T̂1, . . . , T̂−2, T̂−1

)
, (8)

where [T̂0 T̂1 . . . T̂−2 T̂−1] = F [T0 T1 . . . T−2 T−1]. The forward block DFT operator is given by the
Kronecker product ⊗ of the (2s − 1) × (2s − 1) Fourier matrix F2s−1 and the n × n identity matrix In, that is

F = F2s−1 ⊗ In . (9)

Analogously, the inverse of the forward block DFT operator is defined by

F
−1 = F−1

2s−1 ⊗ In . (10)

The definition of the Fourier matrix and its inverse can be found in [1].
The extended matrices Ṽ and Z̃ in the matrix-vector product of eq. (6) include additional unknowns. A

further acceleration is achieved by only computing the necessary terms, i.e. by computing

C̄V = Z . (11)
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The sn × sn matrix C̄ is defined by
C̄ = F̄−1ΛF̄ , (12)

with the incomplete block DFT operators

F̄ = F̄2s−1 ⊗ In and F̄
−1 = F̄−1

2s−1 ⊗ In . (13)

The incomplete Fourier matrix F̄2s−1 contains the first s columns of F2s−1, whereas the incomplete inverse
Fourier matrix F̄−1

2s−1 contains the first s rows of F−1
2s−1.

3. Krylov subspace solvers

3.1. Block Krylov subspace solver

Block Krylov subspace solvers can be derived from standard Krylov subspace solvers by modifying the
way the Krylov subspace is built. Block Krylov methods generate an approximate solution Xk ∈ CN×m in
each iteration k such that the following relation holds

Xk − X0 ∈ K�
k (T,R0) . (14)

Here, X0 ∈ CN×m is an arbitrary initial estimate of the solution matrix, R0 = B − TX0 is the initial residual
and K�

k (T,R0) is the block Krylov subspace of iteration k. The superscript ( )� denotes the block nature of
the subspace and is given by [38]

K�
k (T,R0) =

k−1∑
i=0

TiR0γi ; γi ∈ Cm×m

 . (15)

Equation (15) shows that every column of the matrix Xk − X0 is approximated by a linear combination of
every column of the matrices spanning the block Krylov subspaceK�

k (T,R0). Compared to standard Krylov
subspace solvers, the block Krylov subspace is of much larger size. Each iteration adds up to m additional
Krylov vectors to the subspace instead of just a single vector in the case of standard Krylov solvers. As
such, a greater number of Krylov vectors is available for the approximation of the solution in each iteration
and convergence is generally reached in less iterations [38]. However, the computational efficiency comes
at the cost of additional memory requirements. Further, linearly or nearly linearly dependent columns in
the block Krylov subspace lead to a breakdown of the solver. Deflation techniques which detect and delete
linearly dependent columns prevent this breakdown [38]. In addition, linearly dependent right-hand side
vectors can be detected upfront. An elegant implementation was introduced by Langou [43], comprising
the performance of a singular value decomposition (SVD) of the right-hand side matrix of eq. (3) and
truncating the SVD at a prescribed tolerance. This leads to a dimension reduction of the right-hand side
matrix, thus reducing the computational effort.

The block variant of the GMRES introduced by Vital [53] is herein employed. The block GMRES uses
a block Arnoldi process to build the block-orthogonal basis ofK�

k (T,R0). Similar to the standard GMRES,
this orthogonal basis is stored and extended within every iteration. As such, the block GMRES requires a
significant amount of memory which increases linearly with k. Remedies to the large memory requirements
are restarting the algorithm [54] and applying preconditioning techniques [48, 55].
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3.2. Global Krylov subspace solver

Global Krylov subspace solvers generate an approximate solution Xk in each iteration k such that the
following relation holds

Xk − X0 ∈ Kk(T,R0) . (16)

In contrast to block methods, global methods rely on a matrix Krylov subspace Kk(T,R0) that is extended
in each iteration k as follows

Kk(T,R0) =

k−1∑
i=0

TiR0γi ; γi ∈ C
 . (17)

Using the global Krylov subspace, the entire matrix Xk −X0 is approximated by a linear combination of the
matrices which span the matrix Krylov subspace. This clearly differs from block methods which rely on the
block Krylov subspace in eq. (15) and approximate each column of Xk − X0 independently. Consequently,
the search space of global methods is smaller than the search space of block methods, yielding slower
convergence [38].

The global variant of the GMRES method introduced by Jbilou et al. [56] employs the global Arnoldi al-
gorithm. This algorithm creates F-orthonormal matrices Vi, i.e. tr(V∗i V j) = 0 for i , j and i, j = 0, ..., k − 1
in its k-th iteration. Here, tr( ) denotes the trace and ( )∗ denotes the conjugate transpose. Linear dependence
of the matrices spanning the Krylov subspace does not occur. However, linear dependent right-hand sides
can be handled following the aforementioned approach of Vital [53].

4. Numerical examples

4.1. Aeroacoustic prediction of an airfoil in turbulent flow

In the first numerical example, aeroacoustic prediction of an airfoil in turbulent flow is examined. An
incompressible flow passes a flat plate with a Reynolds number based on chord Rec = 4.9 · 105 and Mach
number M = 0.1. At this Reynolds number, the flow is in a turbulent unsteady regime. The plate has a chord
length of 200 mm, a variable span l and a thickness of 5 mm, as shown in fig. 1. The leading edge is circular
with a diameter of 5 mm while the trailing edge is a symmetric wedge shape with an apex angle of 12◦.

Figure 1: Flat plate airfoil divided into small segments in the spanwise direction. The local coordinates in the streamwise and
spanwise directions are denoted by x and y respectively.
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Assuming a time-harmonic dependence of the form e−iωt, where i =
√−1, ω = 2π f is the circular

frequency, f is the frequency in Hz and t is time, the Helmholtz equation is given by

∆p(x, ω) + k2
a p(x, ω) = −q(x, ω) . (18)

p(x, ω) is the acoustic pressure at point x, ∆ is the Laplacian operator, ka = ω/c is the acoustic wave number,
c is the speed of sound and q is the source term. The plate is divided into segments in the spanwise direction
as shown in fig. 1, where each segment corresponds to a unit cell. Applying the boundary element method
to the flat plate, the following block Toeplitz system is obtained [12, 13]

Tp = pinc , (19)

where T is a complex-valued, non-symmetric block Toeplitz matrix in the form of eq. (2). Each block
within the block Toeplitz matrix is of dimension n×n, with n denoting the number of degrees of freedom of
the unit cell. Considering s plate segments, T is of dimension N ×N with N = ns denoting the total number
of degrees of freedom. In eq. (19), pinc and p represent the incident acoustic pressure and response acoustic
pressure at discrete nodal points on the boundary of the flat plate. In contrast to the underlying geometry,
the incident and response pressures do not need to fulfill periodicity.

The incident acoustic pressure originates from the pressure beneath a turbulent boundary layer arising
from turbulent flow around the plate. This incident pressure is called the wall pressure field (WPF) and can
be calculated using the uncorrelated wall plane wave (UWPW) technique [57, 58]. Different realizations of
the random WPF are generated, where each realization is an input to an acoustic solver based on the BEM.
The WPF for the l-th realization can be represented by a set of UWPWs at a node of the boundary element
mesh as follows [16, 57]

p(l)
inc(x, ω) =

Nx∑
i=1

Ny∑
j=1

√
φpp(kx, ky, ω)δkxδky

4π2 ei
(
kx x+kyy+ϕ(l)

i j

)
, (20)

where δkx and δky are the wavenumber resolutions in streamwise and spanwise directions of the wavenum-
ber space, respectively, and Nx, Ny are the number of points considered along the kx and ky directions,
respectively. The phase ϕ is sampled from a uniform random distribution within [0, 2π]. The cross spectral
density of the WPF denoted by φpp can be expressed in terms of the auto spectral density Ψpp of the WPF
and the normalized cross spectral density φ̃pp of the WPF as follows [57, 59]

φpp(kx, ky, ω) = Ψpp(ω)
(Uc

ω

)2
φ̃pp(kx, ky, ω) , (21)

where Uc denotes the convective velocity. Using eqs. (20) and (21), a deterministic acoustic load is calcu-
lated for each realization.

Taking a total of m realizations into account, the block Toeplitz system of eq. (19) is reformulated into
a sequence of block Toeplitz systems as

TP = Pinc , (22)

where the matrix P = [p(1), . . . ,p(m)] contains the acoustic pressure of each realization and the right-hand
side matrix Pinc = [p(1)

inc, . . . ,p
(m)
inc ] contains the incident pressure of each realization. Solving the sequence

in eq. (22) corresponds to calculating the acoustic pressure on the boundary of the flat plate for each real-
ization. The far-field acoustic pressure pf = [p(1)

f , . . . , p(m)
f ] at a single field point xf for each realization is

then computed by
pf = −hfP , (23)
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where hf is the far-field boundary element matrix as defined in [60]. Finally, the scattered acoustic response
at each frequency is obtained from an ensemble average of the far-field acoustic pressure of all realizations
as follows

S pp(x, ω) = E
[
p(l)

f (x, ω)
(
p(l)

f (x, ω)
)∗]

l∈{1,...,m} , (24)

where E[ ] represents the ensemble average over the number of realizations.

4.2. Eigenvalue analysis of a locally resonant sonic crystal barrier

Sonic crystals are periodic arrangements of sound scatterers, and have been receiving growing interest
in their potential for use as a noise barrier [61, 62]. Significant sound attenuation in the shadow zone of a
sonic crystal barrier is shown to occur in broad and narrow frequency bands respectively attributed to the
periodicity and local resonance of the scatterers [63, 64]. The second numerical example considers a finite
sonic crystal composed of four C-shaped cylindrical shells as shown in fig. 2. Each cylinder corresponds to
a periodic segment and has a height of 1 m, an outer radius of 0.1 m, inner radius of 0.05 m and a slit width
of 0.05 m. The ground is assumed to be sound-hard and the distance between the centers of neighboring
C-shaped cylinders is 0.3 m.

Figure 2: Sonic crystal barrier design with four C-shaped cylinders.

Applying the periodic boundary element method yields a block Toeplitz system similar to eq. (22) with
an N × N block Toeplitz matrix T that has constant n × n matrix blocks along its diagonal. Setting the
right-hand side to zero yields the following nonlinear eigenvalue problem

T(ω̃)Φ = 0 , (25)

with the complex eigenvalue parameter ω̃ and the nonzero eigenvector Φ. The real part of ω̃ corresponds
to the eigenfrequency whereas the imaginary part describes the damping of the corresponding mode. The
eigenfrequencies and modal damping of the periodic structure are of interest since sound attenuation occurs
around the eigenfrequencies and the mode shapes provide valuable insight on the effects leading to the
attenuation. For infinite periodic arrangements, an eigenvalue analysis of a single unit cell is sufficient [65].
However, for small periodic arrangements, the entire geometry needs to be considered [66].

Contour integral methods are an efficient measure to solve the nonlinear eigenvalue problem in eq. (25).
All eigenvalues and corresponding eigenvectors are extracted within a predefined contour in the complex
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plane, as shown in fig. 3. A specific contour integral method is the block Sakurai Sugiura (block-SS)
method [49]. It involves transforming the nonlinear eigenvalue problem into the smaller generalized eigen-
value problem given by

(H2 − ω̂H1)Φ̂ = 0 , (26)

with the KL × KL Hankel matrices H1 and H2, where K and L denote parameters of the eigenvalue solver.
The solution of eq. (26) yields the complex eigenvalue parameters ω̂ which coincide with those eigenvalue
parameters ω̃ of the original nonlinear eigenvalue problem that lie inside the contour C. The Hankel matrices
are formed by

H1 =
[
Mi+ j−2

]K

i, j=1
and H2 =

[
Mi+ j−1

]K

i, j=1
, (27)

based on the positive integer K and the sequence of moments

Mk =
1

2πi

∮
C

zkV∗T(z)−1Vdz , k = 0, 1, . . . , 2K − 1 , (28)

of size L×L. Calculating the moments involves an integration along the contour Cwith complex coordinate z
and a random n × L matrix V with its conjugate transpose denoted by V∗. Integrating eq. (28) with the
trapezoidal rule along a circular contour yields

Mk ≈ 1
Nc

Nc−1∑
j=0

ρ

(
z j − γ
ρ

)k+1

V∗T(z j)−1V , (29)

where z j = γ+ρeiθ j is one of the Nc contour points [49]. The complex value of z j is given in polar coordinates
in terms of angle θ j, center γ and radius ρ of the circular contour. Once the small eigenvalue problem given
by eq. (26) is set up and solved, the eigenvalue parameters ω̂ and eigenvectors Φ̂ can be projected back to
the original problem. The reader is referred to [49, 67] for details on the solution techniques for eq. (26)
and the back transformation.

The accuracy of the eigenvalue solver is mainly determined by the number of contour points Nc and
the value of L. A large value of Nc leads to a more accurate approximation of eq. (28) whereas a large
value of L results in a larger subspace, i.e. a larger generalized eigenvalue problem given by eq. (26). The
calculation of T(z j)−1V in eq. (29) is performed once for each of the Nc contour points and involves the
n × L matrix V as the right-hand side. Hence, highly accurate eigenvalue estimates require the solution
of a large number of linear systems with many right-hand sides. A sophisticated choice of the iterative
solver to calculate T(z j)−1V has great potential to reduce the overall computational cost of the nonlinear
eigenvalue solver. Note that the structure of eq. (29) is not unique to the block-SS method but also occurs
in other contour integral methods such as the block-SS with resolvent sampling [68] or nonlinear FEAST
algorithms [51].

5. Numerical results

5.1. Aeroacoustic prediction of an airfoil in turbulent flow
Both block and global variants of the GMRES are applied to solve the sequence of block Toeplitz sys-

tems defined in eq. (22), arising from the prediction of the aeroacoustic response of a flat plate excited by
turbulent flow using the periodic boundary element formulation in conjunction with the UWPW technique.
In this example, each periodic segment of the plate sketched in fig. 1 is discretized using 376 linear discon-
tinuous boundary elements. This yields a total of n = 1504 degrees of freedom per segment. Four different
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Figure 3: Contour points z j on the contour C that encloses all eigenvalues of interest.

cases are studied in which the span length l of the flat plate is varied by varying the number of segments s.
Here, 25, 50, 75 and 100 segments are considered, corresponding to numerical models with a total of 37600,
75200, 112800 and 150400 degrees of freedom, respectively. The analyses were performed at a frequency
of f = 2600 Hz unless specified otherwise. The plate is in air with sound speed of c = 340 m/s.

A total of m = 30 realizations need to be taken into account to achieve an average error of the scattered
acoustic pressure of less than 1 dB [16, 57]. The solution of the acoustic system with 60 and 90 realizations
has also been considered in order to investigate the complexity of the linear solvers with respect to different
numbers of right-hand sides. The performances of both block GMRES and global GMRES are compared
to the performance of the standard GMRES algorithm by examining the total time to solution, the number
of equivalent matrix-vector products and the required memory. The global and block GMRES solve the full
sequence of block Toeplitz systems of eq. (22) whereas the standard GMRES solves each of the m block
Toeplitz systems independently. The accuracy of the solution of each block Toeplitz system is tracked
by computing the norm of the relative residual in each iteration. For the global GMRES, the Frobenius
norm of the residual matrix R is calculated, whereas for the GMRES and block GMRES, the l2-norm of
the residual of each individual block Toeplitz system is calculated. Convergence is achieved whenever a
relative tolerance of 10−8 is met for all systems. Preliminary studies showed that for the case study presented
here, linear dependence of the basis vectors does not occur within the solution process. Therefore, deflation
techniques are not included. Furthermore, no restarting and no preconditioning is applied. The calculations
were performed using MATLAB R2018b on a desktop PC with 128 GB of RAM and 6 physical cores
running at 3.5 GHz.

5.1.1. Acoustic response
The acoustic response of the flat plate airfoil subject to incompressible flow was calculated using eq. (24)

at 400 field points located on a circle circumscribing the flat plate. The circle has a radius of 585 mm, lies
in the x-z-plane and is centered at (x, y, z) = (100 mm, l/2,−2.5 mm). Figure 4 shows the directivity of the
scattered field at frequencies of 2600 Hz, 4200 Hz and 6000 Hz for a plate with span length l = 150 mm.
Only a limited amount of noise is radiated in the downstream and upstream direction of the flow which
corresponds to 0◦ and 180◦, respectively. The absolute pressure is symmetric with respect to the x-y-plane
and the phase of the acoustic waves on the top side are shifted by half a wavelength with respect to the
acoustic waves on the bottom side. The noise that propagates in the upstream direction is reduced due to
destructive interference of the acoustic waves which are diffracted at the leading edge. Further, acoustic
waves which are scattered by the trailing edge are backscattered by the leading edge and cause multiple
lobes in the directivity plot. The complexity of the acoustic directivity increases with increasing frequency
as indicated by the increasing number of lobes, with a corresponding decrease in amplitude.
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Figure 4: Directivity of the scattered absolute acoustic pressure (in Pascal) on a circle with radius 585 mm located in the x-z-plane
with its center at (x, y, z) = (100 mm, 75 mm,−2.5 mm), for a plate with span length l = 150 mm. The downstream and upstream
directions of the flow correspond to 0◦ and 180◦, respectively.

5.1.2. Computational effort
The performances of all three Krylov solvers are initially investigated by comparing the time of the

iterative solution processes. Figure 5 presents the wall clock time as a function of the considered number
of right-hand sides for a plate comprising 75 segments, corresponding to 112800 degrees of freedom. The
solution times for all three variants of GMRES scale linearly with the number of right-hand sides. The
block GMRES algorithm is the fastest in each case followed by the global GMRES algorithm, and both are
significantly faster than standard GMRES. A beneficial deviation from linear scaling in time is observed
for the block variant attributed to the varying number of iterations until convergence is reached. To solve
the block Toeplitz systems with 30, 60 and 90 right-hand sides, the block GMRES performs 10, 9 and
8 iterations, respectively. The size of the block Krylov subspace increases with an increased number of
right-hand sides and convergence is reached in less iterations compared to the other Krylov solvers. This
capability is unique to block Krylov subspace methods. In contrast, the global GMRES performed 12
iterations to solve the full sequence of block Toeplitz systems, and the GMRES performed 360 iterations to
solve the block Toeplitz systems, independent of the number of right-hand sides.

For all three solvers, the convergence behavior of the solution of the plate model with 112800 degrees
of freedom and 30 right-hand sides is presented in fig. 6. Multiplications of the system matrix are expressed
in terms of equivalent matrix-vector products, i.e., multiplying the N × N system matrix with an N × m
matrix corresponds to m equivalent matrix-vector products. The standard GMRES solves each of the 30
block Toeplitz systems consecutively, resulting in a total of 360 matrix-vector products. The convergence
plot resembles a sawtooth profile, where each tooth represents the convergence of the solution of a single
system. As such, using the standard GMRES, the solution of each block Toeplitz system is equally ex-
pensive in terms of matrix multiplications. The global and block GMRES solve all block Toeplitz systems
simultaneously, yielding a single monotonically decreasing curve for both cases. A total of 12 iterations
are required in the case of the global GMRES whereas only 10 iterations of the block GMRES are per-
formed until convergence is reached. This corresponds to 360 and 300 equivalent matrix-vector products,
respectively.

Solving a linear system in less iterations usually comes at the cost of additional computational effort
in other parts of the solution process. In the present case, the duration of each iteration can be separated
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Figure 5: Wall clock time (in seconds) for solving the sequence of block Toeplitz systems with 112800 degrees of freedom (dofs)
using GMRES, global GMRES (gGMRES) and block GMRES (bGMRES) for 30, 60 and 90 right-hand sides.
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Figure 6: Convergence of the relative residual of the solutions calculated using standard GMRES, global GMRES (gGMRES)
and block GMRES (bGMRES) for a plate model with 112800 degrees of freedom and 30 right-hand sides. Multiplications of the
system matrix with another matrix are expressed in terms of equivalent matrix-vector products.
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Figure 7: Wall clock time (in seconds) for solving the sequence of block Toeplitz systems with 112800 degrees of freedom and 90
right-hand sides using standard GMRES, global GMRES (gGMRES) and block GMRES (bGMRES). The total time is separated
into time spent for system matrix multiplication, orthogonalizing the new basis and solving a minimization problem.

into three parts: system matrix multiplication, orthogonalization of the new basis and solution of a mini-
mization problem. Figure 7 compares the time each solver spends on these operations while solving the
block Toeplitz system of a plate model with 112800 degrees of freedom and 90 right-hand sides. The first
step involving multiplication of the system matrix is the most costly operation, which respectively takes up
to 98.7 %, 96.6 % and 90.3 % of the total solution time for the GMRES, global GMRES and block GMRES.
For the case of 90 right-hand sides, GMRES and global GMRES perform a total of 1080 equivalent matrix-
vector products. Although both solvers require the same amount of equivalent matrix-vector products, the
time both solvers spend performing these products differs by a factor of 1.81. This is mainly related to the
benefit of performing matrix-matrix multiplications in the global GMRES instead of matrix-vector multi-
plications in GMRES. This benefit also occurs within the block GMRES, where 8 iterations are performed
until convergence is reached which corresponds to 720 equivalent matrix-vector products. An additional
reduction in computational time is achieved since the block GMRES requires less iterations in total, which
accounts for the difference in the solution time of the global and block variants. The aforementioned addi-
tional computational effort arises in orthogonalizing the new basis and solving the minimization problem.
The global GMRES requires slightly more time during the orthogonalization process. In the block GMRES,
more time is spent solving the minimization problem. However, the additional effort is only minor since the
matrix multiplications take up the largest fraction of the solution time.

Finally, the solution time for different widths of the plate is investigated. Different values of the span
length l are obtained by modifying the number of segments s. The number of segments selected here
are 25, 50, 75 and 100 corresponding to a total of 37600, 75200, 112800 and 150400 degrees of freedom.
In fig. 8, the solution time is compared for both block and global GMRES considering all four plate models.
The solution time scales linear for both variants with the aforementioned deviations occurring for block
GMRES. Applying global GMRES leads to a higher wall clock time in all four cases. The average speedup
of the block variant compared to the global variant is about 1.31. Compared to the standard GMRES, the
average speedup is 2.34. In fig. 8, a tendency towards higher speedup rates for block Toeplitz systems with
increasing number of right-hand sides is observed. This especially holds for the plate model with 150400
degrees of freedom where the maximum speedup rates of 1.42 with respect to global GMRES and 2.53 with
respect to standard GMRES are observed.

13



30 60 90
0

200

400

600

Number of right-hand sides m

Ti
m

e
fo

ri
te

ra
tiv

e
so

lu
tio

n
in

s
gGMRES, 150k dofs
gGMRES, 113k dofs
gGMRES, 75k dofs
gGMRES, 38k dofs
bGMRES, 150k dofs
bGMRES, 113k dofs
bGMRES, 75k dofs
bGMRES, 38k dofs

Figure 8: Wall clock time (in seconds) for solving the sequence of block Toeplitz systems using global GMRES and block GMRES
taking 30, 60 and 90 right-hand sides and plate models with 37600, 75200, 112800 and 150400 degrees of freedom (dofs).

5.1.3. Memory requirements
The memory requirements of all three solvers is herein examined. The peak memory usage is shown

in fig. 9. Since standard GMRES solves each linear system within the sequence subsequently, the memory
usage is independent of the number of right-hand sides, scaling O(N(k + 5)) with the number of iterations k.
In the case of 150400 degrees of freedom, the standard GMRES uses a total of 36 MB of memory. In
contrast, the memory requirements of the global and block variants scaleO(Nm(k + 5)) and therefore exhibit
linear scaling with both the number of degrees of freedom N and the number of right-hand sides m. The
deviation from linear scaling in fig. 9 is due to the varying number of iterations until convergence is reached
using block GMRES. For the solution of the numerical case study considered in this work, a standard
desktop computer is adequate for the memory requirement. For problems exhibiting slower convergence or
higher numbers of degrees of freedom, the memory requirements may become impracticable. To address
this issue, restarting the solver as well as preconditioning can be employed.

5.2. Eigenvalue analysis of a locally resonant sonic crystal barrier

The second case study is an eigenvalue analysis of a periodic sound barrier design. Applying the pe-
riodic boundary element method leads to a nonlinear eigenvalue problem which can be solved by contour
integral methods. In this work, the nonlinear eigenvalue solver block-SS is employed [49]. The scheme
requires the solution of Nc linear systems with L right-hand sides along a predefined contour C according
to eq. (29). Both block and global variants of GMRES are applied to these sequences of linear equations to
accelerate the eigenvalue computations. The sonic crystal barrier design comprising four C-shaped cylinders
as shown in fig. 2 is examined. Each cylinder is discretized with 2800 boundary elements featuring 11200
pressure degrees of freedom. This leads to a total of 44800 pressure degrees of freedom. The design of fig. 2
features resonances at the Helmholtz frequency of the C-shaped cross section which is estimated at 382.0 Hz
based on a two-dimensional finite element analysis of a single C-shaped cross section. The circular contour
of the eigenvalue solver has a center point at 405 Hz and a radius of 75 Hz and as such, encloses the esti-
mated Helmholtz frequency. The contour is discretized with Nc = 16 contour points shown in fig. 10 and
a value of K = 4 is chosen. Six different runs of the block-SS are compared where the value of L is varied
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Figure 9: Peak memory usage (in gigabyte) of GMRES, global GMRES and block GMRES for solving block Toeplitz systems
with 30, 60 and 90 right-hand sides considering plate models with 37600, 75200, 112800 and 150400 degrees of freedom (dofs).

between 5 and 30. This influences the accuracy of the solution and the computational effort. The accuracy
of an eigenvalue ω̃ and corresponding eigenvector Φ is quantified by the relative error |T(ω̃)Φ|/|Φ|.

5.2.1. Eigenvalues and eigenvectors
Figure 10 shows the eigenvalues of the C-shaped sonic crystal within the contour. All eigenvalues have

a negative imaginary part and are calculated with a relative error of less than 10−8 using L = 20. The
accuracy of the solution changes significantly with the parameter L as shown in fig. 11. Each mode is
numbered in ascending order according to the real part of its eigenvalue, i.e. its eigenfrequency. Figure 12
visualizes the first, third and fifth eigenvector on the boundary of the sonic crystal, with corresponding
eigenfrequencies of 363.6 Hz, 426.3 Hz and 432.0 Hz. Resonances within each C-shaped cylinder can be
observed. In the case of the first eigenvector, the resonances of the first and fourth cylinder are in-phase
and shifted by π with respect to the resonances in the second and third cylinder. This changes for the third
eigenfrequency, where the resonance of the first two cylinders and the last two cylinders share the same
phase. The resonances resemble the pressure distribution of a Helmholtz resonator in the cutting planes
parallel to the xy-plane where the sound pressure is nearly constant. The sound pressure varies along the
height of the C-shaped cylinders due to the opening at the top. Three quarters of a wave forms within
the resonators in the case of the fifth eigenvector with less pronounced magnitudes in the second and third
cylinders. The large imaginary parts of the calculated eigenvalues indicate high attenuation of the sound
waves that excite the corresponding modes. This is in good agreement with the study of Karimi et al. [13],
in which significant insertion loss between 350 Hz to 480 Hz was reported for a comparable C-shaped sound
barrier design.

5.2.2. Computational effort and memory requirements
The performance of all three Krylov solvers is evaluated and compared in terms of their solution time

and peak memory usage. Figure 13(a) presents the time spent for the iterative solution of a single block
Toeplitz system within the block-SS method, i.e. for computing the term T(z j)−1V in eq. (29). The re-
sults are based on the solution at z1 = 478.56 + 14.63i but also hold for every other contour point shown
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Figure 13: Comparison of the performance of GMRES, global GMRES (gGMRES) and block GMRES (bGMRES) based on the
solution of a single sequence of block Toeplitz systems in the block-SS method. Values of L between 5 and 30 are considered
which leads to block Toeplitz systems with 5 to 30 right-hand sides.

in fig. 10. The value of L defines the accuracy of the eigenvalue solver and corresponds to the number of
columns of V, that is, the number of right-hand sides of the block Toeplitz system. The solution time of
the GMRES method scales linear with L and takes 718 s for L = 5 and 4325 s for L = 30. An average
of 106.2 iterations is performed per right-hand side. The global GMRES is up to two times faster and
requires between 115 and 119 iterations in total. The number of iterations is slightly higher than in the
GMRES method since the Frobenius norm of the residual matrix R is used to calculate the relative error
of the intermediate solutions. This norm slightly overestimates the actual relative error of each individual
solution vector which is given by its l2-norm. The fastest solver is the block GMRES method which only
requires 44 iterations in the case of L = 5 and generates a solution 2.74 times faster than GMRES. The
number of block GMRES iterations reduces with an increase in L. Only 28 iterations are performed in the
case of L = 30 which takes 510 s and corresponds to a speedup of 8.48 compared to GMRES and 4.16
compared to global GMRES. As shown in the previous case study, this speedup comes at the cost of higher
memory requirements. Figure 13(b) compares the peak memory usage of all three solvers with respect to L.
Since GMRES solves the block Toeplitz system for each right-hand side subsequently, the memory usage
is constant in L with only 80.5 MB. For L = 30, the global and block GMRES require additional memory
of up to 2584 MB and 1059 MB, respectively. However, the additional memory usage is well within the
bounds of modern desktop computers. In the case of the block variant, the speedup is in good relation with
the additional memory requirements. For L = 20, a speedup of 7.6 comes at an increase of the memory
usage by 8.7.

The convergence of the relative error within the solution process is presented in fig. 14 for all three
solvers and L = 20 right-hand sides. The GMRES method solves each block Toeplitz system subsequently
without taking information of previous solution processes into account. GMRES takes a total of 2123
matrix-vector products to solve the full sequence. In contrast, the global GMRES performs matrix-matrix
products and solves the system for all right-hand sides simultaneously. The matrix-matrix products are

17



0 300 600 900 1200 1500 1800 2100 2400

10−12

10−8

10−4

100

Equivalent matrix-vector products

R
el

at
iv

e
re

si
du

al
GMRES
gGMRES
bGMRES

Figure 14: Convergence of the relative residual of the solutions calculated using GMRES, global GMRES (gGMRES) and block
GMRES (bGMRES) for the eigenvalue analysis with L = 20 right-hand sides. Multiplications of the system matrix with another
matrix are expressed in terms of equivalent matrix-vector products.

expressed in terms of equivalent matrix-vector products in fig. 14. Applying the global GMRES method
does not yield faster convergence. In fact, a few additional equivalent matrix-vector products are computed.
However, significant speedup is achieved due to performing matrix-matrix products which can be computed
more efficiently than matrix-vector products. The fastest convergence is achieved using the block GMRES
method. It solves the full sequence at once and builds a very large Krylov subspace. In the present case,
convergence is achieved in 30 iterations computing 600 equivalent matrix-vector products.

6. Conclusions

In this work, global and block GMRES methods were employed to solve block Toeplitz systems with
many right-hand sides. Such systems can be understood as sequences of block Toeplitz systems and arise in
various fields. In the present study, boundary element discretized Helmholtz problems of periodic structures
are considered. Employing global and block GMRES significantly reduces the time of the iterative solution,
thus providing an efficient approach for exterior acoustic problems. To demonstrate the approach, two case
studies were presented. In the first case study, the evaluation of aeroacoustic noise from turbulent flow
around a flat plate airfoil was examined. The block Toeplitz matrix arises from a periodic boundary element
formulation applied to the geometric model divided into unit cells. The acoustic excitation was assessed by
synthesizing the wall pressure field underneath the turbulent boundary layer in terms of uncorrelated wall
plane waves. A number of realizations of the wall pressure field to yield a converged solution was taken
into account which leads to a sequence of block Toeplitz systems. In the second case study, an eigenvalue
analysis of a sonic crystal barrier was performed. Applying the periodic boundary element method yields a
block Toeplitz system which is solved at various frequencies within a nonlinear eigenvalue solver in order
to extract the eigenvalues and eigenvectors within a predefined contour. The block Toeplitz system features
many right-hand sides and its solution accounts for the major part of the computational time spent by the
nonlinear eigenvalue solver. Both numerical examples presented here show that employing global and block
GMRES significantly reduces the time of the iterative solution of the sequences of block Toeplitz systems.
The solution times of both methods exhibit more favorable scaling with respect to the number of right-
hand sides, leading to higher speedup rates for problems with an increasing number of right-hand sides.
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The speedup rates arise from performing matrix-matrix products within global and block GMRES instead
of matrix-vector products with standard GMRES. A further speedup is achieved using block GMRES
since the method requires less iterations. The significant reduction in solution time comes at the cost of
increased memory requirements. Further acceleration of the solution process can be achieved by reducing
the complexity of the matrix multiplications. In the case of aeroacoustic noise prediction, this may be done
by incorporating the fast multipole BEM into the periodic boundary element formulation. For problems
which feature poor convergence behavior, different preconditioning techniques based on the block Toeplitz
structure of the system matrix could be applied. In addition, the block GMRES solver can be applied to
other acoustic BEM problems in which many right-hand sides arise. This might include problems which do
not feature block Toeplitz matrices such as the optimization of high-intensity focused ultrasonic transducer
arrays [69, 70].
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[51] B. Gavin, A. Miȩdlar, E. Polizzi, FEAST eigensolver for nonlinear eigenvalue problems, Journal of Computational Science
27 (2018) 107–117. doi:10.1016/j.jocs.2018.05.006.

[52] P. Davis, Circulant Matrices, AMS Chelsea Publishing Series, Chelsea, New York, 1994.
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