
PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

Quantum-inspired algorithm for general minimum conical hull problems

Yuxuan Du ,1,* Min-Hsiu Hsieh,2,† Tongliang Liu,1,‡ and Dacheng Tao1,§

1UBTECH Sydney AI Centre, School of Computer Science, Faculty of Engineering, The University of Sydney, Australia
2Centre for Quantum Software and Information, Faculty of Engineering and Information Technology,

University of Technology Sydney, Australia

(Received 30 March 2020; accepted 15 July 2020; published 5 August 2020)

A wide range of fundamental machine learning tasks that are addressed by the maximum a posteriori
estimation can be reduced to a general minimum conical hull problem. The best-known solution to tackle
general minimum conical hull problems is the divide-and-conquer anchoring learning scheme (DCA), whose
runtime complexity is polynomial in size. However, big data are pushing these polynomial algorithms to
their performance limits. In this paper, we propose a sublinear classical algorithm to tackle general minimum
conical hull problems when the input has stored in a sample-based low-overhead data structure. The algorithm’s
runtime complexity is polynomial in the rank and polylogarithmic in size. The proposed algorithm achieves the
exponential speedup over DCA and, therefore, provides advantages for high-dimensional problems.

DOI: 10.1103/PhysRevResearch.2.033199

I. INTRODUCTION

Maximum a posteriori (MAP) estimation is a central prob-
lem in machine and statistical learning [1,2]. The general
MAP problem has been proven to be NP hard [3]. Despite the
hardness in the general case, there are two fundamental learn-
ing models, the matrix factorization and the latent variable
model, that enable MAP problem to be solved in polynomial
runtime under certain constraints [4–8]. The algorithms that
have been developed for these learning models have been
used extensively in machine learning with competitive perfor-
mance, particularly on tasks such as subspace clustering, topic
modeling, collaborative filtering, signal processing, structure
prediction, feature engineering, motion segmentation, sequen-
tial data analysis, and recommender systems [5,7,9]. A recent
study demonstrates that MAP problems addressed by matrix
factorization and the latent variable models can be reduced to
the general minimum conical hull problem [10]. In particular,
the general minimum conical hull problem transforms prob-
lems resolved by these two learning models into a geometric
problem, whose goal is to identify a set of extreme data points
with the smallest cardinality in data set Y such that every data
point in data set X can be expressed as a conical combination
of the identified extreme data points (see Sec. II B). Unlike the
matrix factorization and the latent variable models that their
optimizations generally suffer from the local minima, a unique

*yudu5543@uni.sydney.edu.au
†min-hsiu.hsieh@uts.edu.au
‡tongliang.liu@sydney.edu.au
§dacheng.tao@sydney.edu.au

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

global solution is guaranteed for the general minimum conical
hull problem [10]. Driven by the promise of a global solution
and the broad applicability, it is imperative to seek algorithms
that can efficiently resolve the general minimum conical hull
problem with theoretical guarantees.

The divide-and-conquer anchoring (DCA) scheme is
among the best currently known solutions for addressing
general minimum conical hull problems. The idea is to
identify all k extreme rays (i.e., k extreme data points) of
a conical hull from a finite set of real data points with
high probability [10]. The discovered extreme rays form the
global solution for the problem with explainability and, thus,
the scheme generalizes better than conventional algorithms,
such as expectation-maximization [11]. DCA’s strategy is to
decompose the original problem into distinct subproblems.
Specifically, the original conical hull problem is randomly
projected on different low-dimensional hyperplanes to ease
computation. Such a decomposition is guaranteed by the fact
that the geometry of the original conical hull is partially
preserved after a random projection. However, a weakness of
DCA is that it requires a polynomial runtime complexity with
respect to the size of the input. This complexity heavily limits
DCA’s use in many practical situations given the number of
massive-scale data sets that are now ubiquitous [12]. Hence,
more effective methods for solving general minimum conical
hull problems are highly desired.

To address the above issue, we propose an efficient clas-
sical algorithm that tackles general minimum conical hull
problems in polylogarithmic time with respect to the input
size. Consider two data sets X and Y that have stored in
a specific low-overhead data structure, i.e., a sampled-based
data structure supports the length-square sampling operations
[13]. Let the maximum rank, the Frobenius norm, and the
condition number of the given two data sets be k, ‖H‖F , and
κ , respectively. We prove that the runtime complexity of the
our algorithm is Õ(k6κ12‖H‖6

F /ε6) with the tolerable level of
error ε. The achieved sublinear runtime complexity indicates

2643-1564/2020/2(3)/033199(16) 033199-1 Published by the American Physical Society

https://orcid.org/0000-0002-5997-7882
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033199&domain=pdf&date_stamp=2020-08-05
https://doi.org/10.1103/PhysRevResearch.2.033199
https://creativecommons.org/licenses/by/4.0/

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

that our algorithm has capability to benefit numerous learning
tasks that can be mapped to the general minimum conical hull
problem, e.g., the MAP problems addressed by latent variable
models and matrix factorization.

Two core ingredients of the proposed algorithm are the
“divide-and-conquer” strategy and the reformulation of the
minimum conical hull problem as a sampling problem. We
adopt the “divide-and-conquer” strategy to acquire a favorable
property from DCA. In particular, all subproblems, i.e., the
general minimum conical hull problems on different low-
dimensional random hyperplanes, are independent of each
other. Therefore, they can be processed in parallel. In addi-
tion, the total number of subproblems is only polynomially
proportional to the rank of the given data set [10,14]. An
immediate observation is that the efficiency of solving each
subproblem governs the efficiency of tackling the general
minimum conical hull problem. To this end, our algorithm
converts each subproblem into an approximated sampling
problem and obtains the solution in sublinear runtime com-
plexity. Through advanced sampling techniques [13,15], the
runtime complexity to prepare the approximated sampling
distribution that corresponds to each subproblem is polylog-
arithmic in the size of input. To enable our algorithm has an
end-to-end sublinear runtime, we propose a general heuristic
postselection method to efficiently sample the solution from
the approximated distribution, whose computation cost is also
polylogarithmic in size.

Our work creates an intriguing aftermath for the quantum
machine learning community [16]. The overarching goal of
quantum machine learning is to develop quantum algorithms
that quadratically or even exponentially reduce the runtime
complexity of classical algorithms [16]. Numerous quantum
machine learning algorithms with quantum speedups have
been proposed since the early 2010s [17–22]. However, the
polylogarithmic runtime complexity in our algorithm implies
that a rich class of quantum machine learning algorithms do
not, in fact, achieve these claimed quantum speedups. More
specifically, if a quantum algorithm aims to solve a learning
task that can be mapped to the general minimum conical hull
problem, then its quantum speedup will collapse. As a result,
we show that quantum speedups collapse for these quantum
algorithms: recommendation system [23], matrix factorization
[24], and clustering [25–27]. Furthermore, our algorithm, ac-
companied by other quantum-inspired algorithms [13,28,29],
improves the threshold to devise quantum machine learn-
ing algorithms with provable runtime speedups. Recently,
the quantum-inspired classical algorithms have been broadly
employed as the criterion to justify the quantum advantages
achieved by the proposed quantum machine learning algo-
rithms, e.g., the proposals [30–32] have carefully compared
their results with the corresponding quantum-inspired results.

Moreover, our proposal and other quantum-inspired al-
gorithms also motivate the quantum machine learning com-
munity to explore other advanced quantum techniques that
are difficult to be dequantized. A representative example is
Ref. [33], which proposed a sublinear quantum algorithm
for training linear and kernel-based classifiers. In light of
the quantum-inspired classical machine learning algorithms,
Ref. [33] points out that the exploitation of too powerful input
data structures such as the quantum random access memory

might render any finding of quantum speedup inconclusive.
Driven by this observation, their algorithm leveraged a very
mild quantum input model to earn the quadratic runtime
speedups compared with its classical counterparts. The em-
ployed quantum input model guarantees that their proposal
cannot be dequantized by the quantum-inspired algorithms.
In summary, the quantum-inspired algorithms contribute to
devising quantum machine learning algorithms with more
solid quantum advantages.

A. Related work

We make the following comparisons with previous studies
in maximum a posteriori estimation and quantum machine
learning.

(i) The mainstream methods to tackle MAP problems
prior to the study [10] can be separated into two groups.
The first group includes expectation-maximization, sampling
methods, and matrix factorization [11,34,35], where the learn-
ing procedure has severely suffered from local optima. The
second group contains the method of moments [36], which has
suffered from the large variance and may lead to the failure
of final estimation. The study [10] effectively alleviates the
difficulties encountered by the above two groups. However, a
common weakness possessed by all existing methods is the
polynomial runtime with respect to the input size.

(ii) There are several studies that collapse the quantum
speedups by proposing quantum-inspired classical algorithms
[15,37,38]. For example, the study in Ref. [13] removes the
quantum speedup for recommendation systems; the study
in Ref. [39] eliminates the quantum speedup for principal
component analysis problems; and the study in Ref. [40]
collapses the quantum speedup for support vector machine
problem. The correctness of a branch of quantum-inspired
algorithms is validated by the study in Ref. [41]. The studies
in Refs. [13] and [40] can be treated as a special case of our
result, since both recommendation systems and support vector
machine can be efficiently reduced to the general conical hull
problems [14,42]. In other words, our work is a more general
methodology to collapse the speedups achieved by quantum
machine learning algorithms.

The rest of this paper proceeds as follows. A formal outline
of the general minimum conical hull problem is given in
Sec. II. The runtime complexity of our algorithm is analyzed
in Sec. III. Section IV discusses the algorithm’s correctness.
Numerical simulations are conducted in Sec. V. We conclude
the paper in Sec. VI.

II. PROBLEM SETUP

A. Notations

Throughout this paper, we use the following notations. We
denote {1, 2, . . . , n} as [n]. Given a vector v ∈ Rn, vi or v(i)
represent the ith entry of v with i ∈ [n] and ‖v‖ refers to the

�2 norm of v with ‖v‖ =
√∑n

i=1 v2
i . The notation ei always

refers to the ith unit basis vector. Suppose that v is nonzero,
we define Pv as a probability distribution in which the index
i of v will be chosen with the probability Pv(i) = (|vi|/‖v‖)2

for any i ∈ [n]. A sample from Pv refers to an index number

033199-2

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

i of v, which will be sampled with the probability Pv(i).
Given a matrix X ∈ Rn×m, Xi j represents the (i, j) entry of
X with i ∈ [n] and j ∈ [m]. X(i; :) and X(:; j) represent the
ith row and the jth column of the matrix X, respectively. The
transpose of a matrix X (a vector v) is denoted by X� (v�).
The Frobenius and spectral norm of X is denoted as ‖X‖F

and ‖X‖2, respectively. The condition number κX of a positive
semidefinite X is κX = ‖X‖2/σmin(X), where σmin(X) refers
to the minimum singular of X. R+ refers to the real positive
numbers. Given two sets A and B, we denote A minus B as
A \ B. The cardinality of a set A is denoted as |A|. We use
the notation Õ(k) as shorthand for O(k log(n)).

B. General minimum conical hull problem

A cone is a nonempty convex set that is closed under the
conical combination of its elements. Mathematically, given a
set R = {ri}k

i=1 with ri being the ray, a cone formed by R
is defined as cone(R) = {∑k

i=1 αiri : ∀i ∈ [k], ri ∈ R, αi ∈
R+}, and cone(R) is the conical hull of R. A ray is a part of
a line that has one endpoint that lies at the origin and goes
on infinitely in only one direction. A ray ri is an extreme
ray (or an anchor) if it cannot be expressed as the conical
combination of elements in R \ ri. A fundamental property of
the cone and conical hull is its separability, namely whether a
point in cone(R) can be represented as a conical combination
of certain subsets of rays that define cone(R). The above
separability can be generalized to the matrix form as follows
[10].

Definition 1 (General separability condition [10]). Let
X ∈ RnX ×m be a matrix with nX rows. Let Y ∈ RnY ×m be
a matrix with nY rows, and let YA be a submatrix of Y
with row indexes A ⊂ [nY]. We say that X is separable with
respect to YA if X = FYA, where there exists F satisfying
rank(F) � |A|.

In other words, the general separability condition states
that, ∀i ∈ [nX], we have Xi ∈ cone(YA), where the set YA =
{Y(i; :)}i∈A. Under this definition, the general minimum con-
ical hull problem aims to find the minimal set A, as the
so-called anchor set, from the rows of Y.

Definition 2 (General minimum conical hull problem [10]).
Given two matrices X ∈ RnX ×m and Y ∈ RnY ×m with nX and
nY rows, respectively, the general minimum conical hull
problem MCH(Y, X) finds a minimal subset of rows in Y
whose conical hull contains cone(X):

MCH(Y, X) := arg min{|A| : cone(YA) ⊃ cone(X)}, (1)

where cone(YA) is induced by rows A of Y.
We remark that the general separability condition is rea-

sonable for many learning tasks, i.e., any learning task can be
solved by the matrix factorization model or the latent variable
model possessing general separability [10].

For ease of understanding, we provide an intuitive example
about how to treat the separable nonnegative matrix factor-
ization as the general minimum conical hull problem (Further
examples can be founded in Ref. [10]). Recall that a given data
matrix X admits a separable nonnegative matrix factorization
if it can be expressed as X = WXA, where W ∈ RnX ×k and
XA ∈ Rk×m are two nonnegative matrices, k refers to the rank
of X with k ∼ O[poly log(nX , m)], and XA is a submatrix of

X. From the view of the conical hull problem as formulated
in Definition 2, we have Y := X [43,44]. Geometrically, all
rows of X reside in a cone generated by a small subset of rows
of X, i.e., cone(X) ⊆ cone(XA) with |A| = k. The goal of the
general minimum conical hull problem is finding the index set
A that describes XA.

C. Divide-and-conquer anchoring scheme for the general
minimum conical hull problem

Efficiently locating the anchor set A of a general minimum
conical hull problem is challenging. To resolve this issue,
the DCA learning scheme is proposed [10,14]. This scheme
adopts the following strategy. The original minimum conical
hull problem is first reduced to a small number of subprob-
lems by projecting the original cone into low-dimensional
hyperplanes. Then these subproblems on low-dimensional
hyperplanes are then tackled in parallel. The anchor set of the
original problem can be obtained by combining the anchor
sets of the subproblems because the geometric information of
the original conical hull is partially preserved after projection.
Moreover, the efficiency of DCA schemes can be guaranteed
because anchors in these subproblems can be effectively de-
termined in parallel and the total number of subproblems is
modest.

DCA is composed of two steps, i.e., the divide step and the
conquer step. Following the notations of Definition 2, given
two sets of points (rows) with X ∈ RnX ×m and Y ∈ RnY ×m,
the goal of DCA is to output an anchor set A such that X(i; :
) ∈ cone(YA) with A ⊂ [nY] and |A| = k, ∀i ∈ [nX]. Note
that k ∼ O[poly log(nX , nY)] refers to the number of latent
factors or variables. Following the result in Ref. [10], Table I
summarizes the physical meaning of k in different models.

1. Divide step

A set of projection matrices {Bt }p
t=1 with Bt ∈ Rm×d is

sampled from a random ensemble M, e.g., Gaussian random
matrix ensemble, the ensemble composed of standard unit
vectors ei or real data vectors, and various sparse random
matrix ensembles [10]. The general minimum conical hull
problem for the t th subproblem is to find an anchor set At for
the projected matrices Yt := YBt ∈ RnY ×d and Xt := XBt ∈
RnX ×d :

MCH(Yt , Xt) := arg min{|At | : cone(YAt) ⊃ cone(Xt)} ,

(2)

TABLE I. The abbreviations of NMF, SC, GMM, HMM, and
LDA represent nonnegative matrix factorization, spectral clustering,
Gaussian mixture models, hidden Markov models, and latent Dirich-
let allocation, respectively.

Learning model k in conical hull problem

NMF No. of factors
SC No. of basis from all clusters
GMM No. of components or clusters
HMM No. of hidden states
LDA No. of topics

033199-3

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

where YAt is the submatrix of Y whose rows are indexed
by At ⊂ [nY]. Attributed to the flexible mechanism of DCA,
several studies [10,14,45] provide distinct strategies to solve
Eq. (2) with varied projected dimension d .

2. Conquer step

This step yields the anchor set A by employing the follow-
ing selection rule to manipulate the collected {At }p

t=1. First,
we compute, ∀i ∈ [nY],

ĝi := 1

p

p∑
t=1

1At [Y(i; :)], (3)

where Y(i; :) is the ith row of Y, and 1At [Y(i; :)] is the
indicator function that outputs “1” when the index i is in At ,
and zero otherwise. The anchor set A of size k is constructed
by selecting k indexes with the largest ĝi.

The following proposition demonstrates the theoretical
guarantee that employs DCA to solve the general minimum
conical hull problem.

Proposition 3 (Corollary 1 [10]). With probability 1 − δ,
DCA can recover the anchor set A by solving p =
�(k log(k/δ)) subproblems, where k = |A|.

The total runtime complexity of DCA is Õ(max{poly(nX),
poly(nY)}) when parallel processing is allowed [10].

D. Reformulation as a sampling problem

Interestingly, following the result in Ref. [45], each sub-
problem in Eq. (2) can be reduced to a sampling problem
when d = 1. This observation is one of the crucial compo-
nents that make our algorithm exponentially faster than the
conventional DCA schemes [10].

Fix d = 1. At defined in Eq. (2) becomes

At :=
{

arg min
i∈[nY]

[
Yt (i; :) − max

j∈[nX]
Xt (j; :)

]
+

}
, (4)

where Yt ∈ RnY ×1, Xt ∈ RnX ×1, (x)+ = x if x � 0 and ∞
otherwise. We give an intuitive explanation of Eq. (4) in Fig. 1.

Note that, ∀t ∈ [p], Eq. (4) can then be written as

At :=
{

arg min
i∈[nY]

[
PYt (i) − ξt max

j∈[nX]
[PXt (j)]

]
+

}
, (5)

where PXt and PYt refer to the distributions of Xt and Yt

and ξt = ‖Xt‖/‖Yt‖ is a constant at t th random projection to
rescale the value max j∈[nX][PXt (j)]. We will explain how to
efficiently approximate ξt in Sec. III C.

III. MAIN ALGORITHM

The core of our algorithm consists of the following major
steps. In the preprocessing step, we reconstruct two matrices,
X̃ and Ỹ, to approximate the original matrices X and Y so
that the t th projected subproblem can be replaced with X̃t =
X̃Bt and Ỹt = ỸBt with little disturbance. The mathematical
representation of X̃ and Ỹ is X̃ = ṼX Ṽ�

X X and Ỹ = ṼY Ṽ�
Y Y,

respectively, where Ṽ approximates the left singular matrix
V of the given input with ‖V − Ṽ‖ � ε. The motivation to
rebuild the low-rank approximations of input is to exploit
the advanced sampling techniques [13] to approximate the
projected result X̃t and Ỹt in polylogarithmic runtime with

1D hyperplane Bt

X = { }
X(j∗; :) = { }

Y(At; :) = { }
Y = { }

FIG. 1. The projection on a one-dimensional hyperplane. we
show how to obtain the anchor At as the solution in Eq. (4). The
data set Y is composed of red and green nodes. The data set X is a
cone that is composed of blue and light blue nodes. Bt represents a
random one-dimensional projection hyperplane. On hyperplane Bt ,
the light blue node X(j∗; :) refers to the result of max j∈[nX] Xt (j; :)
in Eq. (4). The green node Y(At ; :) corresponds to the solution of
Eq. (4), where At refers to the anchor at the t th random projection.
Geometrically, on the hyperplane Bt , the green node is the nearest
node among all nodes in Y relative to the light blue node and has a
larger magnitude.

respect to the input size. Considering that the precondition
to use such sampling methods is recasting the given task
to a sampling task with the support of the square-length
sampling operations [13], we adopt the sampling version
of the general minimum conical hull problem defined in
Eq. (5). The divide step employs two sampling subroutines
that allow us to efficiently approximate two distributions PX̂t

and PŶt
in polylogarithmic runtime with respect to the input

size. All subproblems are processed in parallel, following the
divide-and-conquer principle. We then propose the general
heuristic postselection rule to identify the target index At

by substituting {PYt (i) − ξt max j∈[nX][PXt (j)]+} in Eq. (5)
with {PŶt

(i) − ξt max j∈[nX][PX̂t
(j)]+}. Last, we employ the

selection rule in Eq. (3) to form the anchor set A for the
original minimum conical hull problem.

Before elaborating on the details of the main algorithm, we
emphasize the innovations of this work, i.e., the reformulation
of the general conical hull problem as a sampling problem
and the general heuristic postselection rule. The sampling
version of the general conical hull problem is the precondition
to introduce advanced sampling techniques to reduce the
computational complexity. The general heuristic postselection
rule is the central component to guarantee that the solution
of the general conical hull problem can be obtained in sub-
linear runtime. In particular, the intrinsic mechanism of the
general conical hull problem enables us to employ the general
heuristic postselection rule to query a specific element from
the output in polylogarithmic runtime.

In this section, we introduce the length-square sampling
operations in Sec. III A. Two sampling subroutines developed
in Ref. [13] are introduced in Sec. III B. The implementation
of our algorithm is shown in Sec. III C. The computation anal-
ysis is given in Sec. III D. We give the proof of Theorems 8
and 9 in Appendices B and D, respectively.

033199-4

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

A. Length-square sampling operations

The promising performance of various sampling algo-
rithms for machine learning tasks is guaranteed when the
given data set supports length-square sampling operations
[13,15,38]. We first give the definition of the access cost to
facilitate the description of such sampling operations,

Definition 4 (Access cost). Given a matrix W ∈ Rn×m, we
denote that the cost of querying an entry W(i; j) or query-
ing the Frobenius norm ‖W‖F is Q(W), the cost of query-
ing the �2 norm of ‖W(i; :)‖ is N (W), and the cost of
sampling a row index i ∈ [n] of H with the probability
PW(i) = ‖W(i; :)‖2/‖W‖2

F or sampling an index j ∈ [m]
with the probability PW(i;:)(j) is S(W). We denote the overall
access cost of W as L(W) := S(W) + Q(W) + N (W).

We use an example to address the difference between
query access and sampling access. Given a vector v ∈ Rn, the
problem is to find a hidden large entry v(i). It takes �(n) cost
to find v(i) with just query access, while the computation cost
is O(1) with query and sample access.

The length-square sampling operations, as so-called �2

norm sampling operations, are defined as:
Proposition 5 (�2 norm sampling operation). Given an in-

put matrix H ∈ Rn×m with s nonzero entries, there exists
a data structure storing H in space O(s log2 m), with the
following properties:

(i) The query cost Q(H) is at most O(log(nm));
(ii) The query cost N (H) is at most O(log2(n));
(iii) The sampling cost S(H) is at most O(log2(nm)).
The overall cost of accessing H is therefore L(H) =

O(poly[log(mn)]).
Remark. The �2 norm sampling operation can be efficiently

fulfilled if the input data are stored in a low-overhead data
structure, e.g., the binary tree structure (BNS) [23] (more
details about BNS are given in Appendix A).

B. Two sampling subroutines

Here we introduce two sampling subroutines, the inner
product subroutine and the thin matrix-vector multiplication
subroutine [13], used in the proposed algorithm.

1. Inner product subroutine

In our algorithm, the inner product subroutine is em-
ployed to obtain each entry of q̂t in parallel, i.e., q̂t (i) es-
timates q̃t (i) ≡ ṽ(i)�Ht , where ṽ(i) ∈ Rn×1, Ht ≡ HBt , H ∈
Rn×m, and Bt ∈ Rm×1. Let Z be a random variable that, for
j ∈ [n], l ∈ [m], takes value

Z (j, l) = ‖ṽ(i)‖‖Bt‖H(j, l)

ṽ(i)(j)Bt (l)

with probability

PZ (Z (j, l)) = |ṽ(i)(j)|2|Bt (l)|2
‖ṽ(i)‖2‖Bt‖2

. (6)

We can estimate q̃t (i) using Z as follows [38]. Fix ε, δ > 0.
Let

NZ = Np × Nq ∼ O
(‖H‖F ‖Bt‖‖ṽ(i)‖

ε2
log

(
1

δ

))
. (7)

We first sample the distribution PZ with NZ times to obtain
a set of samples {zi}NZ

i=1, followed by dividing them into
Np groups, {S1, . . . , SNp}, where each group Si contains Nq

samples. Let z̄i = ∑Nq

i=1 zi/Nq be the empirical mean of the

ith group Si, and let z̄∗ be the median of {z̄i}Np

i=1. Then Ref.
[15, Lemma 12] and Ref. [38, Lemma 7] guarantee that, with
probability at least 1 − δ, the following holds:

|z̄∗ − q̃t (i)| � ε. (8)

The computational complexity of the inner product subrou-
tine is as follows:

Lemma 6 (Ref. [15, Lemma 12] and Ref. [38, Lemma 7]).
Assume that the overall access to H is L(H) and the query
access to Bt and Ṽ is Q(Bt) and Q(Ṽ), respectively. The
runtime complexity to yield Eq. (8) is

O
(‖H‖F ‖Bt‖‖ṽ(i)‖

ε2
[L(H) + Q(Bt) + Q(Ṽ)] log

(
1

δ

))
.

Proof. We first recall the main result of Lemma 12 in
Ref. [15]. Given the overall access to H and query access to
the matrix Ṽ and Bt with complexity Q(Ṽ) and Q(Bt), the
inner product q̃t (i) ≡ ṽ(i)�Ht can be estimated to precision
ε‖H‖F ‖ṽ(i)‖‖Bt‖F with probability at least 1 − δ in time

O
(

[L(H) + Q(Bt) + Q(Ṽ)]

ε2
log

(
1

δ

))
.

With setting the precision to ε instead of ε‖H‖F ‖‖ṽ(i)‖Bt‖F ,
it can be easily inferred that the runtime complexity to esti-
mate q̃t (i) ≡ ṽ(i)�Ht with probability at least 1 − δ is

O
(‖H‖F ‖Bt‖‖ṽ(i)‖

ε2
[L(H) + Q(Bt) + Q(Ṽ)] log

(
1

δ

))
.

�

2. Thin matrix-vector multiplication subroutine

Given a matrix Ṽ ∈ Rn×k and q̂t ∈ Rk with the �2 norm
sampling access, the thin matrix-vector multiplication subrou-
tine aims to output a sample from PṼq̂t

. The implementation
of the thin matrix-vector multiplication subroutine is as fol-
lows [15].

For each loop
(i) Sample a column index j ∈ [k] uniformly.
(ii) Sample a row index l ∈ [n] from distribution

PṼ�(:; j)(l) = |Ṽ�(l; j)|2
‖Ṽ�(:; j)‖2 .

(iii) Compute |Ṽ(l; :)q̂t |2.

(iv) Output l with probability |Ṽ(l;:)q̂t |2
‖Ṽ(l;:)‖2‖q̂t ‖2 or restart to

sample (j, l) again (back to step 1).
We execute the above loop until a sample l is successfully

output.
The complexity of the thin matrix-vector multiplication

subroutine, namely the required number of loops, is as
follows:

033199-5

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

Algorithm 1 Subsampling method [13]

Data: H ∈ Rn×m with supporting �2 norm sampling operations, parameters s, ε, κ .
Result: The singular value decomposition of C.

1 Independently sample s columns indices [is] according to the probability distribution PH;
2 Set R ∈ Rn×s as the matrix formed by H(:; it)/

√
sPH(:;it) with it ∈ [is];

3 Sample a column index t with t ∈ [s] uniformly and then sample a row index j ∈ [n] distributed as PR(j;t). Sample a total number of s
row indexes [js] in this way;

4 Let C ∈ Rs×s be a matrix whose t th row is C(t ; :) = R(jt ; :)/
√

sPR(jt ;:).
5 Apply SVD to obtain right singular vector {ω(i)}k

i=1 and singular values {σ (i)}k
i=1 of C;

6 Output the decomposition results {σ (i), ω(i)}k
i=1 of C.

Lemma 7 (Ref. [15, Lemma 12] and Ref. [13, Proposition
6.4]). Let Ṽ ∈ Rn×k and q̂t ∈ Rk . Given �2 norm sampling
access to Ṽ, we can length-square sample from PṼq̂t

in the
expected runtime complexity

O
(

k‖q̂t‖2

‖Ṽq̂t‖2
[S(Ṽ) + kQ(Ṽ)]

)
.

C. The implementation of the algorithm

Our algorithm consists of three steps, the preprocessing
step, the divide step, and the conquer step. The first step
prepares an efficient description for X and Y. The second step
locates anchors {At }p

t=1 by solving p subproblems in parallel.
The last step obtains the anchor set A.

1. Preprocessing step

The preprocessing step aims to efficiently construct X̃ and
Ỹ such that the matrix norm ‖X̃ − X‖2 and ‖Ỹ − Y‖2 are
small. This step employs the subsampling method [13] to con-
struct an approximated left singular matrix ṼH of H, where
H ∈ RnH ×mH can be either X or Y, so that H̃ = ṼH ṼH

�
H. If

no confusion arises, then the subscript H can be disregarded.
We summarize the subsampling method inAlgorithm 1 to

detail the acquisition of Ṽ. We build the matrix R ∈ Rn×s by
sampling s columns from H and then build the matrix C ∈
Rs×s by sampling s rows from R. After obtaining R and C,
we implicitly define the approximated left singular matrix Ṽ ∈
Rn×k as

Ṽ(:; i) ≡ ṽ(i) := Rω(i)

σ (i)
, (9)

where {σ (i)}k
i=1 and {ω(i)}k

i=1 refer to k singular values and
right singular vectors of C.1

2. Divide step

The obtained approximated left singular matrices ṼX ∈
RnX ×kX and ṼY ∈ RnY ×kY enable us to employ advanced sam-
pling techniques to locate potential anchors {At }p

t=1. Here we
only focus on locating the anchor At for the t th subproblem,
since each subproblem is independent and can be solved in
the same way. The divide step employs Eq. (5) to locate
At . In particular, we first prepare two distributions PX̂t

and

1The “implicitly define Ṽ” means that only the index array of R and
C, and the SVD result of C are required to be stored in the memory.

PŶt
to approximate PXt and PYt and then sample these two

distributions to locate At .
The preparation of two distributions PX̂t

and PŶt
is

achieved by exploiting two sampling subroutines, the in-
ner product subroutine and the thin matrix-vector multipli-
cation subroutine [13], as introduced in Sec. III B. Recall
that the two approximated matrices at the t th subproblem
are X̃t = ṼX (Ṽ�

X Xt) and Ỹt = ṼY (Ṽ�
Y Yt). Denote q̃X,t ≡

Ṽ�
X Xt ∈ RkX ×1 and q̃Y,t ≡ Ṽ�

Y Yt ∈ RkY ×1. Instead of directly
computing q̃X,t and q̃Y,t , we construct their approximated vec-
tors q̂X,t and q̂Y,t using the inner product subroutine to ensure
the low computational cost, followed by the thin matrix-vector
multiplication subroutine to prepare probability distributions
PX̂t

and PŶt
, where X̂t ≡ ṼX q̂X,t and Ŷt ≡ ṼY q̂Y,t . The close-

ness between PX̂t
(respectively, PŶt

) and PXt (respectively,
PYt) is controlled by the number of samplings s, as analyzed
in Sec. IV.

The rescale parameter ξt defined in Eq. (5) can be effi-
ciently approximated by employing the inner product sub-
routine. Recall that ξt = ‖Yt‖/‖Xt‖. We can approximate
ξt by ξ̂t = ‖Ŷt‖/‖X̂t‖. Alternatively, an efficient method of
approximating ‖Ŷt‖ and ‖X̂t‖ is sufficient to acquire ξt . Let
H be the general setting that can either be X or Y. The �2 norm
of ‖Ĥt‖ can be efficiently estimated by using the inner product
subroutine. Intuitively, the �2 norm of ‖Ĥt‖ can be expressed
by the inner product of Ĥt , i.e., ‖Ĥt‖2 = Ĥ�

t Ĥt . Recall that Ĥt

has an explicit representation Ĥt = ṼH q̂H,t , and the efficient
access cost for ṼH and q̃H,t enables us to use the inner product
subroutine to efficiently obtain ‖H̃t‖.

Given PX̂t
, PŶt

, and ξ̂t , we propose the general heuristic
postselection method to determine At . Following the sam-
pling version of the general minimum conical hull problem
defined in Eq. (5), we first sample the distribution PX̂t

with NX

times to obtain a value C∗
X̂t

such that C∗
X̂t

= max j∈[nX][PX̂t
(j)].

We next sample the distribution PŶt
with NY times to find an

index Ât approximating At = arg mini∈[nY](PŶt
(i) − ξ̂tC∗

X̂t
)+.

The following theorem quantifies the required number of sam-
plings to guarantee Ât = At , where At is defined in Eq. (5).

Theorem 8 (General heuristic postselection (Informal)).
Assume that PX̂t

and PŶt
are multinomial distributions. De-

note that C∗
X̂t

� εT . If |PX̂t
(i) − PX̂t

(j)| > ε for C∗
X̂t

= PX̂t
(i)

and ∀ j = i, and |PŶt
(At) − PŶt

(j)| > ε for ∀ j = At

and a small constant ε, then for any δ > 0 with a
probability at least 1 − δ, we have Ât = At with
NX , NY ∼ O(κX , polylog[max{nX , nY }]).

033199-6

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

Algorithm 2 A sublinear runtime algorithm for the general minimum conical hull problem

Data: Given X ∈ RnX ×m, Y ∈ RnY ×m, and {Bt }p
t=1 with Bt ∈ Rm×1. X, Y, and Bt support �2 sampling operations. The number of anchors

k.
Result: Output the set of anchors A with |A| = k.

1 Preprocessing step;

2 Set sX ← 852k2
X κ4

X ln(8nX /η)‖X‖2
F

9ε2 and sY ← 852k2
Y κ4

Y ln(8nY /η)‖Y‖2
F

9ε2 (see Theorem 19);
3 Sample RX ∈ RnX ×sX from X and sample CX ∈ RsX ×sX from RX using Algorithm 1;
4 Sample RY ∈ RnY ×sY from Y and sample CY ∈ RsY ×sY from RY using Algorithm 1;
5 Implicitly define ṼX and ṼY by employing Eq. (9);
6 (Divide Step) Set t = 0;
7 while t < p (Computing in parallel.) do
8 Estimate q̃t

X = Ṽ�
X Xt and q̃t

Y = Ṽ�
Y Yt by q̂t

X and q̂t
Y via inner product subroutine;

9 Prepare PX̂t
(PŶt

) with X̂t = ṼX q̂t
X (Ŷt = ṼY q̂t

Y) via matrix-vector multiplication subroutine;
10 Collect Ât by sampling PX̂t

and PŶt
via the general heuristic postselection method;

11 t ← t + 1;
12 end
13 (Conquer Step) Output the anchor set A using the selection rule defined in Eq. (3);

3. Conquer step

After the divide step, a set of potential anchors {At }p
t=1 with

p = O[k log(k)], where k refers to the number of anchors with
k ∼ min{log(nX), log(nY)}, is collected [10,24,45]. We adopt
the selection rule defined in Eq. (3) to determine the anchor
set A. This step can be accomplished by various sorting
algorithms with runtime O{poly[k log(k)]} [10].

We summarize our algorithm as follows.

D. Computation complexity of the algorithm

The complexity of the proposed algorithm is dominated
by the preprocessing step and the divide step. Specifically,
the computational complexity is occupied by four elements:
finding the left singular matrix Ṽ (Line 5 in Algorithm 2),
estimating q̃t by q̂t (Line 7 in Algorithm 2), preparing the
approximated probability distribution PĤ (Line 8 in Algo-
rithm 2), and estimating the rescale factor ξ̂t (Line 10 in
Algorithm 2). We evaluate the computation complexity of
these four operations separately and obtain the following
theorem.

Theorem 9. Given two data sets X ∈ RnX ×m and Y∈RnY ×m

that satisfy the general separability condition and support the
length-square sampling operations, the rank and condition
number for X (respectively, Y) are denoted as kX (respectively,
kY) and κX (respectively, κY). The tolerable error is denoted
as ε. The runtime complexity of the proposed algorithm for
solving the general minimum conical hull problem is

max

(
Õ

(
856k6

X κ12
X ‖X‖6

F

93ε6

)
, Õ

(
856k6

Y,tκ
12
Y ‖Y‖6

F

93ε6

))
.

Recall that the input data sets X and Y of the gen-
eral minimum conical hull problem are low rank, where
kX , kY ∼ O[poly log(nX , nY)]. Following Theorem 9 and the
polylogarithmic dependence between the rank and the input
dimensions, the proposed algorithm achieves the exponential
speedup in terms of nX , nY , and m.

IV. CORRECTNESS OF THE ALGORITHM

In this section, we present the correctness of our algorithm.
We also briefly explain how the results are derived and vali-
date our algorithm by numerical simulations. We provide the
detailed proofs of Theorem 10 in the Appendix C.

The correctness of our algorithm is determined by the
closeness between the approximated distribution and the ana-
lytic distribution. The closeness is evaluated by the total vari-
ation distance [13], i.e., Given two vectors v ∈ Rn and w ∈
Rn, the total variation distance of two distributions Pv and
Pw is ‖Pv,Pw‖TV := 1

2

∑n
i=1 |Pv(i) − Pw(i)|. The following

theorem states that ‖PX̂t
− PXt ‖TV and ‖PŶt

− PYt ‖TV are
controlled by the number of samplings s:

Theorem 10. Given a matrix H ∈ Rn×m with �2 norm sam-
pling operations, let R ∈ Rn×s, C ∈ Rs×s be the sampled
matrices from H following Algorithm 1. The distribution
prepared by the proposed algorithm is denoted as PĤt

. Set

s = 852k2κ4 ln(8n/η)‖H‖2
F

9ε2
,

with probability at least (1 − η), we always have ‖PĤt
− PHt

‖TV � ε.

V. EXPERIMENTS

We apply the proposed algorithm to accomplish the
near separable nonnegative matrix factorization (SNMF) to
validate the correctness of Theorem 10 [14,46] and compare
the runtime complexity with original DCA. SNMF, which
has been extensive applied to hyperspectral imaging, signal
processing, and text mining, can be treated as a special case
of the general minimum conical hull problem [10]. Given a
nonnegative matrix X, SNMF aims to find a decomposition
such that X = FX(R, :) + N, where the basis matrix X(R, :)
is composited by r rows from X, F is the nonnegative encod-
ing matrix, and N is a noise matrix [43].

The synthetic data matrix used in the experiments is gener-
ated in the form of Y ≡ X = FXA + NG, where F = [Ik;U],
the entries of noise NG are generated by sampling Gaussian
distribution N (0, μ) with noise level μ, the entries of XA and

033199-7

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

FIG. 2. Finding anchor set A of a 500×500 matrix of rank 10 on
five noise levels and six different settings of the number of samples.
The label “Ours x” refers to the noise level μ = x, e.g., “DCA 2”
represents μ = 2.

U are generated by independent and identically distributed
uniform distribution in [0, 1] at first and then their rows are
normalized to have unit �1 norm. Analogously to DCA, we
use the recovery rate as the metric to evaluate the precision
of anchor recovery. The anchor index recovery rate ρ is
defined as ρ = |A ∩ Â|/|A|, where Â refers to the anchor set
obtained by our algorithm or DCA.

We first set the dimensions of X as 500 × 500 and set
rank k as 10 to validate the correctness of our algorithm.
We generate four data sets with different noise levels, which
are μ = 0, 0.1, 0.5, 2. The number of subproblems is set as
p = 100. We give nine different settings for the number of
sampling s for our algorithm, ranging from 500 to 8000. We
compare our algorithm with DCA to determine the anchor set
A. The simulation results are shown in Figs. 2 and 3. For the
case of μ = 0, both our algorithm and DCA can accurately
locate all anchors. With increased noise, the recovery rate
continuously decreases both for our algorithm and DCA, since
the separability assumption is not preserved. As shown in
Fig. 3, the reconstruction error, which is evaluated by the
Frobenius norm of ‖X̂ − X‖F , continuously decreases with
increased s for the noiseless case. In addition, the variance
of the reconstructed error, illustrated by the shadow region,
continuously shrinks with increased s. For the high noise
level case, the collapsed separability assumption arises that
the reconstruction error is unrelated to s.

We then generate a set of matrix with the rank k = 10,
noise level μ = 0, and size n ∈ [5000, 70000] with interval
5000, to explore when our algorithm has lower runtime over
original DCA. The number of sampling s and the subproblems
is set as s = 10 ∗ k2 log(n) and p = k log(k), respectively. We
compute the averaged runtime over p subproblems. As shown
in Fig. 4, the runtime of our algorithm (highlight by green line)
and original DCA (highlight by red line) is logarithmically
and linearly increased with the linearly increased input size,
respectively. The simulation results indicate that our algorithm
outperforms classical DCA when n is sufficiently large.

FIG. 3. Finding anchor set A of a 500×500 matrix of rank 10 on
five noise levels and six different settings of the number of samples.
The label “Noise x” refers to noise level μ = x. The shadow region
refers to the variance of the error, e.g., the green region refers to the
variance of reconstruction error with μ = 0.5.

VI. CONCLUSION

In this paper, we have proposed a sublinear runtime clas-
sical algorithm to resolve the general minimum conical hull
problem. We first reformulated the general minimum conical
hull problem as a sampling problem. We then exploited two
sampling subroutines and proposed the general heuristic post-
selection method to achieve low computational cost. We the-
oretically analyzed the correctness and the computation cost
of our algorithm. The proposed algorithm benefit numerous
learning tasks that can be mapped to the general minimum
conical hull problem, especially for tasks that need to process
data sets on a huge scale. The numerical simulation results
indicate that the high exponents in the complexity bound can
be further improved via advanced sampling techniques. There

FIG. 4. The averaged runtime complexity for each subproblem
of our algorithm and original DCA. The labels “Classical_RT” and
“Ours_RT” refer to the runtime to accomplishing classical DCA and
our algorithm, respectively.

033199-8

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

FIG. 5. The BNS for v ∈ R4.

are three promising future directions. First, we will explore
other advanced sampling techniques to further improve the
polynomial dependence in the computation complexity. Sec-
ond, we will investigate whether there exist other fundamental
learning models that can be reduced to the general mini-
mum conical hull problem. One of the most strongest can-
didates is the semidefinite programming solver. Third, for the
quantum machine learning community, it is intriguing to ex-
plore other quantum machine learning algorithms that cannot
be dequantied by quantum inspired algorithms.

We organize the Appendices as follows. In Appendix A,
we detail the binary tree structure to support length-square
sampling operations. We then provide the proof of Theorem 8
in Appendix B. Because the proof of Theorem 9 cost employs
the results of Theorem 10, we give the proof of Theorem
10 in Appendix C and present the proof of Theorem 9 in
Appendix D.

ACKNOWLEDGMENTS

This work received support from Australian Research
Council (Project FL-170100117 and Future Fellowship under
Grant No. FT140100574), and the Faculty of Engineering and
Information Technologies at the University of Sydney (the
Engineering and Information Technologies Research Schol-
arship).

APPENDIX A: THE BINARY TREE STRUCTURE FOR
LENGTH-SQUARE SAMPLING OPERATIONS

As mentioned in the main text, a feasible solution to fulfill
�2 norm sampling operations is the BNS to store data [23].
Here we give the intuition about how BNS constructed for a
vector. For ease of notations, we assume the given vector has
size 4 with v ∈ R4. As demonstrated in Fig. 5, the root node
records the square �2 norm of v. The ith leaf node records the
ith entry of v(i) and its square value, e.g., {|v(i)|2, sgn[v(i)]}.
Each internal node contains the sum of the values of its two
immediate children. Such an architecture ensures the �2 norm
sampling operations.

APPENDIX B: GENERAL HEURISTIC POST-SELECTION
(PROOF OF THEOREM 8)

Recall that the anchor At is defined as

At = arg min
i∈[nY]

{
PŶt

(i) − ξ̂t max
j∈[nX]

[PX̂t
(j)]

}
+
.

The goal of the general heuristic postselection is approx-
imating At by sampling distributions PX̂t

and PŶt
with

O(polylog[max{nX , nY }]) times, since the acquisition of the
explicit form of PX̂t

and PŶt
requires O[poly(nX , nY)] com-

putation complexity and collapses the desired speedup. Let
{xi}NX

i=1 be NX examples independently sampled from PX̂t

with PX̂t
(x = z) = |X̂t (z)|2/‖X̂t‖2 and NX,z be the number

of examples taking value of z ∈ [nX] with
∑nX

z=1 NX,z = NX .
Similarly, let {yi}NY

i=1 be NY examples independently sam-
pled from PŶt

with PŶt
(y = z) = |Ŷt (z)|2/‖Ŷt‖2 and NY,z

be the number of examples taking value of z ∈ [nY] with∑nY
z=1 NY,z = NY . Denote that wX is the total number of dif-

ferent indexes after sampling PX̂t
with NX times, IX,v and JX,v

are two indexes corresponding to the vth largest value among
{NX,z}wX

z=1 and PX̂t
with wX � nX and v ∈ [wX], respectively.2

Similarly, denote that wY is the total number of distinguished
indexes after sampling PŶt

with NY times, and the indexes IY,v

and JY,v are vth largest value among {NY,z}wY
z=1 and PŶt

with
wY � nY and v ∈ [wY], respectively. In particular, we have

IX,1 = arg max
z

NX,z, IY,1 = arg max
z

NY,z,

JX,1 = arg max
z

PX̂t
(x = z), and JY,1 = arg max

z
PŶt

(y = z).

The procedure of the general heuristic postselection is as
follows:

(i) Sample PX̂t
with NX times and order the sampled items

to obtain X = {IX,1, IX,2, . . . , IX,wX } with wX � nX ;
(ii) Query the distribution PX̂t

to obtain the value C∗
X̂t

with
C∗

X̂t
= PX̂t

(x = IX,1);
(iii) Sample PŶt

with NY times and order the sampled
items to obtain Y = {IY,1, IY,2, . . . , IY,wY } with wY � nY .

(iv) Locate Ât with Ât = IY,v∗ and IY,v∗ = arg minz∈Y
(NY,z

NY
− ξ̂tC∗

X̂t
)+.

An immediate observation is that, with NX , NY → ∞, we
have Ât = At , where

PX̂t
(x = IX,1) = max

JX,v∈[wX]
[PX̂t

(JX,v)],

and

NY,IY,v∗

NY
= PŶt

(y = At), wX = nX , wY = nY .

The general heuristic postselection is guaranteed by the fol-
lowing theorem (the formal description of Theorem 5).

Theorem 11 ((Formal) General heuristic postselection).
Assume that PX̂t

and PŶt
are multinomial distributions.

If PX̂t
(JX,1) � εT , |PX̂t

(JX,1) − PX̂t
(JX,2)| > ε, and

|PŶt
(JY,v∗±1) − PŶt

(JY,v∗)| > ε for the constants εT

and ε with At = JY,v∗ , then for any δ > 0, NX ∼
O(max{1/ε, 1/εT }) and NY ∼ O(max{1/ε, 1/(ξ̂tεT)}),
we have Ât = At with a probability at least 1 − δ.

Remark. The physical meaning of ε can be treated as the
threshold of the “near-anchor,” that is, when the distance of a

2Due to the limited sampling times, the sampled results
{NX,1, NX,2, . . . , NX,wX } (or {NY,1, NY,2, . . . , NY,wX }) may occupy a
small portion of the all nX (or nY) possible results.

033199-9

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

data point and the anchor point after projection is within the
threshold ε, we say the data point can be treated as anchors.
The real anchor set A therefore should be expanded and
include these near anchors. In other words, ε and εT can
be manually controllable. The parameter ξ̂t is bounded as
follows:

ξ̂t = ‖Ŷt‖
‖X̂t‖

� κX ‖Ŷ‖F .

In this work, we set 1/ε ∼ O[polylog(nX , nY)] and
1/εT ∼ O[polylog(nX , nY)], which gives NX , NY →
O(κX , polylog(max{nX , nY })).

An equivalent statement of Theorem 11 is as follows:
Problem 12. How many samples, NX and NY , are re-

quired to guarantee IX,1 = JX,1 and IY,v∗ = JY,v∗ , where JX,1 =
arg maxJX,v∈[nX][PX̂t

(JX,v∗)] and At = JY,v∗ .
We use Breteganolle-Huber-Carol inequality [47] to prove

Theorem 11, i.e.,
Lemma 13 (Breteganolle-Huber-Carol inequality [47]).

Let PD be a multinomial distribution with l event probabilities
{PD(i)}l

i=1. We randomly sample N events from PD and let Ni

be the number of event i appeared. Then, the following holds
with a probability at least 1 − δ for any δ > 0,

P
(

l∑
i=1

∣∣∣∣Ni

N
− pi

∣∣∣∣ � λ

)
� 2l exp

(−Nλ2

2

)
. (B1)

Proof of Theorem 11. The proof is composed of two parts.
The first part is to prove that the index IX,1 with IX,1 = JX,1 can
be determined with sampling complexity O[1/(ε2ε2

T)]. The
second part is to prove that the index IY,wY with IY,wY = At

can be determined with sampling complexity O[1/(ε2ε2
T)].

For the first part, we split the set X into two subsets
X1 and X2, i.e., X1 = {IX,1} and X2 = {IX,2, . . . , IX,wX }. The
decomposition of X into two subsets is equivalent to setting
l = 2 in Eq. (B1). In particular, we have N1 = NX,IX,1 and
N2 = ∑wX

v=2 NX,IX,v
. The Breteganolle-Huber-Carol inequality

yields

P
(∣∣∣∣ N1

NX
− PX̂t

(X1)

∣∣∣∣ +
∣∣∣∣
[

N2

NX
− PX̂t

(X2)

]∣∣∣∣ � λ

)

� 4 exp

(−NX λ2

2

)
. (B2)

The above inequality implies that, when δ = 4 exp (−NX λ2

2),
we have ∣∣∣∣NX,IX,1

NX
− PX̂t

(IX,1)

∣∣∣∣
�

∣∣∣∣ N1

NX
− PX̂t

(X1)

∣∣∣∣ +
∣∣∣∣
[

N2

NX
− PX̂t

(X2)

]∣∣∣∣
�

√
2 log (4/δ)

NX
, (B3)

with probability at least 1 − δ.
The assumption PX̂t

(JX,1) � εT guarantees that JX,1 ∈ X
by sampling PX̂t

with O(1/εT) times. In addition, since
we have assumed that |PX̂t

(JX,1) − PX̂t
(JX,2)| > ε, it can be

easily inferred that, when NX �
√

2 log (4/δ)
ε2 with a probability

at least 1 − δ, there is one and only one value
NX,IX,1

NX
that is

in the ε-neighborhood of PX̂t
(IX,1). We therefore conclude

that IX,1 = JX,1 can be guaranteed by sampling PX̂t
with NX �

max{
√

2 log (4/δ)
ε2 , 1

εT
}.

For the second part, we split the set Y into three subsets
Y1, Y2, and Y3, i.e., Y1 = {IY,1, . . . , IY,v∗−1}, Y2 = {IY,v∗ },
and Y3 = {IY,v∗+1, . . . , IY,wY }. Analogous to the above case,
the decomposition of Y into three subsets for the case of
sampling PŶt

is equivalent to setting l = 3 in Eq. (B1).

In particular, we have N1 = ∑v∗
v=1 NY,IY,v

, N2 = NY,IY,v∗ , and
N3 = ∑wY

v=v∗+1 NY,IY,v
. The Breteganolle-Huber-Carol inequal-

ity yields

P
(∣∣∣∣ N1

NY
− PŶt

(Y1)

∣∣∣∣ +
∣∣∣∣
[

N2

NY
− PŶt

(Y2)

]∣∣∣∣
+

∣∣∣∣
[

N3

NY
− PŶt

(Y3)

]∣∣∣∣ � λ

)
� 8 exp

(−NY λ2

2

)
. (B4)

The above inequality implies that, when δ = 4 exp (−NY λ2

2),
we have∣∣∣∣NY,IY,v∗

NY
− PŶt

(IY,v∗)

∣∣∣∣ �
∣∣∣∣ N1

NY
− PŶt

(Y1)

∣∣∣∣
+

∣∣∣∣
[

N2

NY
− PŶt

(Y2)

]∣∣∣∣ +
∣∣∣∣
[

N3

NY
− PŶt

(Y3)

]∣∣∣∣
�

√
2 log (8/δ)

NY
, (B5)

with probability at least 1 − δ.
Since we have assumed PX̂t

(JX,1) � εT , we have
PŶt

(JY,v∗) � ξ̂tεT . In other words, PŶt
(JY,v∗) � ξ̂tεT

guarantees that IY,v∗ = JY,v∗ by sampling PŶt
with

O[1/(ξ̂tεT)] times. In addition, the assumption
|PŶt

(JY,v∗±1) − PŶt
(JY,v∗)| > ε leads to that, when

NY � max{
√

2 log (8/δ)
ε2 , 1

ξ̂t εT
} with a probability at least

1 − δ, there is one and only one value
NY,IY,v∗

NY
that is in

the ε neighborhood of PŶt
(IY,v∗). We therefore conclude that

IY,v∗ = JY,v∗ with JY,v∗ = Ât .
Combing the results of two parts together, it can be easily

inferred that, with the sampling complexity Õ(max{ 1
ε
, 1

ξ̂t εT
}),

we have At = Ât with probability 1 − δ. �

APPENDIX C: PROOF OF THEOREM 10

In this Appendix, we give the proof of Theorem 10. De-
tailed proofs of Theorems 15 and 16 are in subsections C 3
and C 4, respectively.

Proof of Theorem 10. Recall that Ĥt = Ṽq̂H,t , and q̂H,t is
an approximation of q̃H,t = Ṽ�Ht . The triangle inequality
yields

‖PĤt
− PHt ‖TV � ‖PĤt

− PH̃t
‖TV + ‖PH̃t

− PHt ‖TV, (C1)

where ‖Q‖TV is the total variation distance of Q. In the
following, we bound the two terms on the right-hand side of
Eq. (C1) respectively.

033199-10

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

1. Correctness of ‖PH̃t
− PHt ‖TV.

The goal here is to prove that

‖PH̃t
− PHt ‖TV � ε

2
. (C2)

By Lemma 14 below, Eq. (C2) follows if the following
inequality holds: ∥∥H̃t − Ht

∥∥ � ε

4
‖Ht‖. (C3)

Finally, the inequality in Eq. (C3) is guaranteed to hold
because of Theorem 15.

Lemma 14 (Lemma 6.1 [13]). For x, y ∈ Rn satisfying
‖x − y‖ � ε, the corresponding distributions Px and Py

satisfy ‖Px,Py‖TV � 2ε
‖x‖ .

Theorem 15. Let the rank and the condition number of H ∈
Rn×m be k and κ , respectively. Fix

s = 852k3κ4 ln(8n/η)‖H‖2
F

9ε2
.

Then, Algorithm 2 yields ‖H̃t − Ht‖ � ε‖Ht ‖
4 with probability

at least (1 − η).

2. Correctness of ‖PĤt
− PH̃t

‖TV.

Analogously to the above part, we bound

‖Ĥt − H̃t‖ � ε

4
‖H̃t‖, (C4)

to yield

‖PĤt
− PH̃t

‖TV � ε

2
. (C5)

And Eq. (C4) can be obtained by the following theorem.
Theorem 16. Let the rank of H ∈ Rn×m be k. Set the

number of samplings in the inner product subroutine as

NZ ∼ O
(

(4 + ε)
√

k‖H‖F ‖Bt‖‖ṽ(i)‖
4ε

log(1/δ)

)
.

Then Algorithm 2 yields ‖Ĥt − H̃t‖ � ε
4‖H̃t‖ with at least

1 − δ success probability.
Finally, Eq. (C1) holds combining Eq. (C2) with

Eq. (C5). �

3. Proof of Theorem 15

Due to Ht = VV�HBt , we have

‖H̃t − Ht‖ = ‖ṼṼ�HBt − VV�HBt‖

�
∥∥∥∥∥
(

k∑
i=1

ṽ(i)ṽ(i)� − �(H)

)∥∥∥∥∥
2

‖HBt‖

�
∥∥∥∥∥
(

k∑
i=1

ṽ(i)ṽ(i)� − �(H)

)∥∥∥∥∥
2

‖H‖2, (C6)

where �(H) = ∑
i v(i)v(i)� and v(i) is the left singular vectors

of H. The first inequality of Eq. (C6) is obtained by ex-
ploiting the submultiplicative property of spectral norm [48],
i.e., for any matrix M ∈ Rn×m and any vector z ∈ Rm, we
have ‖Mz‖ � ‖M‖2‖z‖. The second inequality of Eq. (C6)

comes from the submultiplicative property of spectral norm
and ‖Bt‖ = 1. To achieve ‖H̃t − Ht‖ � ε

4‖Ht‖ in Eq. (C3),
Eq. (C6) indicates that the approximated left singular matrix
Ṽ should satisfy∥∥∥∥∥

k∑
i=1

ṽ(i)ṽ(i)� − �(H)

∥∥∥∥∥
2

� ε

4
. (C7)

The spectral norm ‖∑k
i=1 ṽ(i)ṽ(i)� − �(H)‖2 can be quan-

tified as follows.
Theorem 17. Suppose that the rank of H is k and ṽ(i) refers

to a approximated singular vector of H such that∣∣ṽ(i)�ṽ(j) − δi j

∣∣ � α � 1

4k
. (C8)

Then, we have∥∥∥∥∥
k∑

i=1

ṽ(i)ṽ(i)� − �(H)

∥∥∥∥∥
2

� 17kα

3
. (C9)

The proof of Theorem 17 is given in subsection D 4.
Theorem 17 implies that to achieve Eq. (C7) [or, equiva-

lently, Eq. (C3)], we should bound α as∥∥∥∥∥
k∑

i=1

ṽ(i)ṽ(i)� − �(H)

∥∥∥∥∥
2

� 17kα

3
� ε

4
. (C10)

We use the following lemma to give an explicit representation
of α by the sampled matrix R and C,

Lemma 18. Suppose that ω(l) refers to the right sin-
gular vector of C such that �(C) = ∑

l ω(l)ω(l)� and
ω(i)�C�Cω(j) = δi j (σ (i))2, where (σ (i))2 � 4/(5κ2). Suppose
that the rank of both R and C is k and

‖R�R − C�C‖2 � γ .

Let ṽ(l) := Rω(l)/σ (l), and then we have

∣∣ṽ(i)�ṽ(j) − δi j

∣∣ � 5κ2γ

4
. (C11)

The proof of Lemma 18 is presented in subsection C 3 a.
In conjunction with Eq. (C8) and Eq. (C11), we set α =

(5γ κ2)/4 and rewrite Eq. (C10) as∥∥∥∥∥
k∑

i=1

ṽ(i)ṽ(i)� − �(H)

∥∥∥∥∥
2

� 85kγ κ2

12
� ε

4
. (C12)

In other words, when γ � 3ε
85kκ2 , Eq. (C3) is achieved so that

‖H̃t − Ht‖ � ε
4‖Ht‖. Recall that γ is quantified by ‖R�R −

CC�‖2 as defined in Eq. (C11), we use the following theorem
to bound γ .

Theorem 19. Given a nonnegative matrix H ∈ Rn×m, let
R ∈ Rn×s, C ∈ Rs×s be the sampled matrix following Algo-

rithm 1. Setting s as s = 852k2κ4 ln(8n/η)‖H‖2
F

9ε2 , with probability at
least (1 − η), we always have ‖R�R − C�C‖ � γ ,

The proof of Theorem 19 is given in subsection C 3 b.
Combining the result of Theorem 17 and Lemma 18, we

know that with sampling s rows of H, the approximated
distribution is ε

2 close to the desired result, i.e.,

‖PH̃t
− PHt ‖TV � ε

2
.

033199-11

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

4. Proof of Theorem 15

Proof of Theorem 17. We first introduce a lemma to facili-
tate the proof of Theorem 17.

Lemma 20 (Adapted from Lemma 5 [15]). Let A be a ma-
trix of rank at most k, and suppose that W has k columns
that span the row and column spaces of A. Then ‖A‖2 �
‖(W�W)−1‖2‖W�AW‖2.

Proof of Theorem 17. The main procedure to prove this
theorem is as follows. By employing the Lemma 20, we can
set A and W as

A :=
k∑

i=1

ṽ(i)ṽ(i)� − �(H), W ≡ V =
k∑

i=1

ṽ(i)ṽ(i)�,

and then bound ‖W�AW‖2 and ‖(W�W)−1‖2 separately.
Last, we combine the two results to obtain the bound
‖∑k

i=1 ṽ(i)ṽ(i)� − �(H)‖2 � 17kα
3 in Eq. (C9).

Following the above observation, we first bound the term
‖W�AW‖2. We rewrite W�AW as

W�AW =
k∑

i, j=1

ṽ(i)(ṽ(i)�Aṽ(j))ṽ(j)�. (C13)

The entry A(i, j) of A with A(i, j) = (ṽ(i)�Aṽ(j)) is bounded
by α, i.e.,∣∣ṽ(i)�Aṽ(j)

∣∣
=

∣∣∣∣∣ṽ(i)�
(

k∑
t=1

ṽ(t)ṽ(t)� − �(H)

)
ṽ(j)

∣∣∣∣∣
=

∣∣∣∣∣
k∑

t=1

ṽ(i)�ṽ(t)ṽ(t)�ṽ(j) − ṽ(i)�ṽ(j)

∣∣∣∣∣
�

∣∣∣∣∣
k∑

t=1

ṽ(i)�ṽ(t)ṽ(t)�ṽ(j) − δi j

∣∣∣∣∣ + α

�

∣∣∣∣∣∣
k∑

t=1,t ={i, j}
ṽ(i)�ṽ(t)ṽ(t)�ṽ(j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

t ′={i, j}
ṽ(i)�ṽ(t ′)ṽ(t ′)�ṽ(j) − δi j

∣∣∣∣∣∣ + α

�

∣∣∣∣∣∣
k∑

t=1,t ={i, j}
ṽ(i)�ṽ(t)ṽ(t)�ṽ(j)

∣∣∣∣∣∣ + 4α � 17α

4
. (C14)

The first equivalence of Eq. (C14) comes from the definition
of A, and the second equivalence employs ṽ(i)��(H)ṽ(j) =
ṽ(i)�ṽ(j). The first inequality of Eq. (C14) exploits triangle
inequality and Eq. (C8), i.e.,∣∣∣∣∣

k∑
t=1

ṽ(i)�ṽ(t)ṽ(t)�ṽ(j) − ṽ(i)�ṽ(j)

∣∣∣∣∣
�

∣∣∣∣∣
k∑

t=1

ṽ(i)�ṽ(t)ṽ(t)�ṽ(j) − δi j

∣∣∣∣∣ + |δi j − ṽ(i)�ṽ(j)|

�
∣∣∣∣∣

k∑
t=1

ṽ(i)�ṽ(t)ṽ(t)�ṽ(j) − δi j

∣∣∣∣∣ + α. (C15)

The second inequality of Eq. (C14) directly comes from the
triangle inequality. The last second inequality of Eq. (C14)
employs the inequality |∑t ′={i, j} ṽ(i)�ṽ(t ′)ṽ(t ′)�ṽ(j) − δi j | �
3α for both the case i = j and i = j, guaranteed by Eq. (C8)
and α2 < α. Specifically, for the case i = j, we bound
| ∑t ′={i, j} ṽ(i)�ṽ(t ′)ṽ(t ′)�ṽ(j) − δi j | as∣∣∣∣∣∣

∑
t ′={i, j}

ṽ(i)�ṽ(t ′)ṽ(t ′)�ṽ(j)

∣∣∣∣∣∣
� |ṽ(i)�ṽ(j)ṽ(j)�ṽ(j)| + |ṽ(i)�ṽ(i)ṽ(i)�ṽ(j)|
= |ṽ(i)�ṽ(j)||ṽ(j)�ṽ(j)| + |ṽ(i)�ṽ(i)||ṽ(i)�ṽ(j)|
� α(|ṽ(j)�ṽ(j) − δ j j + δ j j |) + (|ṽ(i)�ṽ(i) − δii + δii|)α
� 2α(α + 1) � 3α.

For the case i = j, we bound
| ∑t ′={i, j} ṽ(i)�ṽ(t ′)ṽ(t ′)�ṽ(j) − δi j | as∣∣∣∣∣∣

∑
t ′={i, j}

ṽ(i)�ṽ(t ′)ṽ(t ′)�ṽ(j) − δi j

∣∣∣∣∣∣
= |ṽ(i)�ṽ(i)ṽ(i)�ṽ(i) − δii|
� |ṽ(i)�ṽ(i) − δii||ṽ(i)�ṽ(i) + δii|
� α(α + 1) � 3α.

The last inequality of Eq. (C14) comes from∣∣∣∣∣∣
k∑

t=1,t ={i, j}
ṽ(i)�ṽ(t)ṽ(t)�ṽ(j)

∣∣∣∣∣∣ �
α

4
,

since ∣∣∣∣∣∣
k∑

t=1,t ={i, j}
ṽ(i)�ṽ(t)ṽ(t)�ṽ(j)

∣∣∣∣∣∣
=

k∑
t=1,t ={i, j}

|ṽ(i)�ṽ(t)|2

�
k∑

t=1,t ={i, j}
α2 � kα2 � α/4.

Combing Eq. (C13) and Eq. (C14), we immediately have

‖W�AW‖2 � 17kα

4
.

In addition, from Eq. (C8) and the definition of W, we can
obtain

‖W�W − I‖2 � kα � 1/4

and then ‖(W�W)−1‖2 � 4/3. Combining the two result, we
have

‖A‖2 � ‖(W�W)−1‖2‖W�AW‖2 � 17kα

3
. (C16)

�

033199-12

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

a. Proof of Lemma 18

Proof of Lemma 18. The inequality |ṽ(i)�ṽ(j) − δi j | �
5κ2γ

4 in Eq. (C11) can be proved following the definition of
ṽ(i). Mathematically, we have

|ṽ(i)�ṽ(j) − δi j | =
∣∣∣∣ω(i)�R�Rω(j)

σ (i)σ (j)
− δi j

∣∣∣∣
�

∣∣∣∣ω(i)�C�Cω(j)

σ (i)σ (j)
− δi j

∣∣∣∣ + γ

σ (i)σ (j)

= γ

σ (i)σ (j)
� 5κ2γ

4
. (C17)

The first equivalence of Eq. (C17) comes from the definition
of ṽ(i). The first inequality of Eq. (C17) is derived by employ-
ing ‖R�R − C�C‖ � γ , i.e.,∣∣∣∣ω(i)�R�Rω(j)

σ (i)σ (j)
− δi j

∣∣∣∣
=

∣∣∣∣ω(i)�(R�R − C�C + C�C)ω(j)

σ (i)σ (j)
− δi j

∣∣∣∣
�

∣∣∣∣ω(i)�(R�R − C�C)ω(j)

σ (i)σ (j)

∣∣∣∣ +
∣∣∣∣ω(i)�C�Cω(j)

σ (i)σ (j)
− δi j

∣∣∣∣
� γ

σ (i)σ (j)
+

∣∣∣∣ω(i)�C�Cω(j)

σ (i)σ (j)
− δi j

∣∣∣∣. (C18)

The last second equivalence of Eq. (C17) employs

ω(i)�C�Cω(j) = δi j (σ
(i))2.

The last inequality of Eq. (C17) uses

(σ (i))2 � 4/(5κ2). �

b. Proof of Theorem 19

We introduce the following lemma to facilitate the proof.
Lemma 21 (Adapted from Theorem 4.4 [49]). Given

any matrix R ∈ Rn×s. Let C ∈ Rs×s be obtained by
length-squared sampling with E(C�C) = R�R. Then,
for all ε ∈ [0, ‖R‖2/‖R‖F], we have

Pr(‖C�C − R�R‖2 � ε‖R‖2‖R‖F) � 2ne−ε2s/4. (C19)

Hence, for s � 4 ln (2n/η)/ε2, with probability at least (1−η)
we have ‖C�C − R�R‖2 � ε‖R‖‖R‖F .

Proof of Theorem 19. The Lemma 21 indicates that the
sample complexity of s determines ‖C�C − R�R‖2. With
setting γ = ε‖R‖2‖R‖F , we have

Pr(‖C�C − R�R‖2 � γ) � 2ne−γ 2s/4(‖R‖2‖R‖F). (C20)

Let the right-hand side of the above inequality be η, i.e.,

2ne−γ 2s/4(‖R‖2‖R‖F) = η

log−→ 4‖R‖2‖R‖F ln(2n/η) = γ 2s

→ s = 4‖R‖2‖R‖F ln(2n/η)

γ 2

→ s = 852k2κ4‖R‖2‖R‖F ln(8n/η)

9ε2

� 852k2κ4‖H‖2
F ln(8n/η)

9ε2
, (C21)

where the inequality comes from ‖R‖F � ‖R‖F and ‖R‖F =
‖H‖F . Therefore, with setting s as

s = 852k2κ4 ln(8n/η)‖H‖2
F

9ε2
,

we have ‖R�R − C�C‖2 � γ with probability at least
(1 − η). �

5. Proof of Theorem 16

Proof of Theorem 16. We first give the upper bound of the
term ‖Ĥt − H̃t‖, i.e.,

‖Ĥt − H̃t‖ = ‖Ṽq̂H,t − Ṽq̃H,t‖

� ‖Ṽ‖2‖q̂H,t − q̃H,t

∥∥∥∥ � 4 + ε

4
‖q̂H,t − q̃H,t

∥∥∥∥. (C22)

The first inequality comes from the the submultiplicative
property of spectral norm. The second inequality supported
by Eq. (C12) with

‖Ṽ‖2 � 1 + ε

4
.

Following the definition of �2 norm, we have

‖q̂H,t − q̃H,t‖2 =
k∑

i=1

[q̂H,t (i) − q̃H,t (i)]
2.

Denote the additive error

ε′ = max
i∈[k]

|q̂H,t (i) − q̃H,t (i)|,

we rewrite Eq. (C22) as

∥∥Ĥt − H̃t

∥∥ � 4 + ε

4

√
kε′. (C23)

An observation of the above equation is that we have
‖Ĥt − H̃t‖ � ε/4 if

ε′ � 4ε

(4 + ε)
√

k
. (C24)

We use the result of the inner product subroutine to quan-
tify the required number of samplings to achieve Eq. (C24).
The conclusion of Lemma 6 is that when

NZ ∼ O
(‖H‖F ‖Bt‖‖ṽ(i)‖

ε
log(1/δ)

)
,

we have |q̃H,t (i) − q̂H,t (i)| � ε with at least 1 − δ success
probability. With substituting ε by ε′, we immediately obtain
|q̃H,t (i) − q̂H,t (i)| � ε′, where the required number of sam-
plings is

NZ ∼ O
(

(4 + ε)
√

k‖H‖F ‖Bt‖‖ṽ(i)‖
4ε

log(1/δ)

)
. (C25)

�

033199-13

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

APPENDIX D: THE COMPLEXITY OF THE ALGORITHM
(PROOF OF THEOREM 9)

Proof of Theorem 9. As analyzed in the main text, the
complexity of the proposed algorithm is dominated by four
operations in the preprocessing step and the divide step,
i.e., finding the left singular vectors Ṽ, estimating the inner
product to build q̂t , preparing the approximated probability
distribution PĤ, and estimating the rescale factor ξ̂t . We
evaluate the computation complexity of these four operations
separately and then give the overall computation complexity
of our algorithm.

In this subsection, we first evaluate the computation com-
plexity of these four parts separately and then combine the
results to give the computation complexity of our algorithm.
Due to same reconstruction rule, we use a general setting H ∈
Rn×m that can either be X or Y to evaluate the computation
complexity for the four parts.

1. Complexity of finding Ṽ

Supported by the �2 norm sampling operations, the matrix
C can be efficiently constructed following Algorithm 1, where
O[2s log2(mn)] query complexity is sufficient. Applying SVD

onto C ∈ Rs×s with s = 852k2κ4 ln(8n/η)‖H‖2
F

9ε2 generally costs

O(s3) = Õ
(

856k6κ12‖H‖6
F

93ε6

)

runtime complexity. Once we obtain such the SVD result of
C, the approximated left singular vectors Ṽ can be implicitly
represented, guaranteed by the following Lemma:

Lemma 22 (Adapted from Ref. [13]). Let the given data set
support the �2 norm sampling operations along with the
description of Ṽ ∈ Rn×s, We can sample from any ṽ(t) in
O(Ks2) expected queries with K = κ‖H‖2

F and query for any
particular entry Ṽ(i, j) in O(s) queries.

2. Complexity of estimating q̃t by q̂t

The runtime complexity to estimate q̃t by q̂t obeys the
following corollary, i.e.,

Corollary 23. Let Bt ∈ Rm×1 be the input vector, H ∈
Rn×m be the input matrix with rank k, and Ṽ ∈ Rn×k be
the approximated left singular matrix. We can estimate q̃t =
Ṽ�HBt by q̂t to precision ε with probability at least 1 − δ

using

Õ
(

4k(1 + ε)1.5‖H‖F

ε

[
852k2κ4‖H‖2

F ln (8n/η)

9ε2

])

runtime complexity.
Proof of Corollary 23. The proof of Corollary 23 employs

the result of Theorem 16 and Lemma 6.
Theorem 16 indicates that, to estimate q̃t (i) by q̂t (i), the

required number of samplings is

NZ ∼ O
(

(4 + ε)
√

k‖H‖F ‖Bt‖‖ṽ(i)‖
4ε

log(1/δ)

)
.

Following the result of Lemma 6, the runtime complexity to
obtain q̂t (i) is

NZ [L(H) + Q(Ṽ) + Q(Bt)]. (D1)

Since ‖ṽ(i)‖ �
√

1 + ε for any ṽ(i) indicated by Eq. (C22),
we rewrite Eq. (D1) as

NZ [L(H) + Q(Ṽt) + Q(Bt)]

�Õ
(
‖H‖F (1 + ε)1.5

√
k

ε
[L(H) + Q(Ṽt) + Q(Bt)]

)
. (D2)

We now quantify the access cost of H, Bt , and Ṽ to give an
explicit bound of Eq. (D1). We have L(H) = O[log2(nm)] and
Q(Bt) = O[log(m)], since H and Bt are stored in BNS data
structure. We have Q(Ṽ) = O(s) supported by Lemma 22.
Combing the above access cost and Eq. (D1), the runtime
complexity to estimate q̂t (i) is

Õ
(

(1 + ε)1.5
√

k‖H‖F

ε

852k2κ4‖H‖2
F ln (8n/η)

9ε2

)
.

Since each entry can be computed in parallel, the runtime
complexity to obtain q̂t is also

Õ
(

(1 + ε)1.5
√

k‖H‖F

ε

852k2κ4‖H‖2
F ln (8n/η)

9ε2

)
.

�

3. Complexity of sampling from PĤt

Recall that the definition of H̃t is Ĥt = Ṽ q̂t . We first
evaluate the computation complexity to obtain one sample
from PĤt

. From Lemma 7, we know the expected runtime

complexity to sample from PĤt
is O{ k‖q̂t ‖2

‖Ṽq̂t ‖2 [S(Ṽ) + kQ(Ṽ)]}.
Specifically, we have

‖q̂t‖ � ‖qt‖ + ε

2
= ‖Ṽ�Ht‖ + ε

2
� ‖Ṽ�‖2‖Ht‖ + ε

2

�
√

(1 + ε)‖H‖F + ε

2
, (D3)

where the first inequality employs the triangle inequality,
the second inequality employs the submultiplicative property
of spectral norm, and the third inequality utilizes ‖Ht‖ �
‖H‖2‖Bt‖ � ‖H‖F ‖Bt‖ with ‖Bt‖ = 1. Concurrently, we
have ‖Ṽqt‖ = �(1). Employing Lemma 22 to quantify S(Ṽ)
and Q(Ṽ), the complexity to obtain a sample from PĤt

is

O
(
k(1 + ε)(‖H‖2

F κs2 + ks)
)
.

With substituting s with its explicit representation in Theo-
rem 10, the complexity is

O
(
k(1 + ε)(‖H‖2

F κs2 + ks)
)≈O

(
854k5κ9 ln2(8n/η)‖H‖6

F

92ε4

)
.

Following the result of the general heuristic postselection
method in Theorem 11, we sample the distribution PĤt

with
N ∼ Õ(1

ε
) times in parallel, which gives the runtime complex-

ity

O
(

854k5κ9 ln2(8n/η)‖H‖6
F

92ε5
log2 (nm)

)
.

033199-14

QUANTUM-INSPIRED ALGORITHM FOR GENERAL … PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

4. Complexity of estimating ξt by ξ̂t

For the general case with X = Y, we should estimate the �2

norm of their project results, i.e., ‖Ht‖2 = H�
t Ht that H can

either be X or Y. Recall that the explicit representation of the
approximated result is ‖Ĥt‖ with ‖Ht‖ = q̂�

t Ṽ�Ṽq̂t , where
the (j, j)th entry of Ṽ�Ṽ is ‖ṽ(j)‖2 and the else entries are
zero. An immediate observation is that ‖Ht‖ can be obtained
by using the inner product subroutine in Lemma 6.

We first calculate the sample and query complexity to
query the (j, j)th entry of Ṽ�Ṽ, namely the query and sample
complexity to obtain the inner product of ṽ(j). By employing
the result of the inner product subroutine, with removing H
and setting both Bt and ṽ(i) as ṽ(j), we can estimate ṽ(j)�ṽ(j)

to precision ε with probability at least 1 − δ in time

O
(‖ṽ(j)‖2

ε2
[Q(ṽ(i))] log

(
1

δ

))

� O
([

(1 + ε)

ε2
(s)

]
log

(
1

δ

))

≈ O
(

852k2κ4 ln(8n/η)‖H‖2
F

9ε4
log

(
1

δ

))
, (D4)

where we use Lemma 22 to get Q(ṽ(i)) = O(s) and the
inequality comes from ‖ṽ(i)‖ � (1 + ε) in Eq. (C6). We store
k nonzero entries of Ṽ�Ṽ in memory.

We next use the inner product subroutine to obtain ‖Ĥt‖
with ‖Ĥt‖ = q̂�

t Ṽ�Ṽq̂t . Since both q̂t and Ṽ�Ṽ are stored
in memory, we have L(Ṽ�Ṽ) = O(k) and Q(q̂t) = O(1).
Following the result of Lemma 6, we can estimate ‖Ĥt‖

to precision ε with probability at least 1 − δ with runtime
complexity

O
(

‖Ṽ�Ṽ‖F ‖qt‖2

ε2
log

(
1

δ

))

� O
(√

k(1 + ε)2
√

k(1 + ε)‖H‖F

ε2
(k) log

(
1

δ

))
, (D5)

where the inequality comes from ‖ṽ(i)‖ � (1 + ε) in Eq. (C6)
and Eq. (D3).

Combining Eq. (D4) and Eq. (D5), the computation com-
plexity to obtain the �2 norm of ‖Ĥt‖ is

O
(

852k2κ4 ln(8n/η)‖H‖2
F

9ε4
log

(
1

δ

))
. (D6)

5. The overall complexity of our algorithm

An immediate observation of the above four parts is that
the query complexity and runtime complexity of our algo-
rithm is denominated by the complexity of finding Ṽ , i.e.,

O(s3) = Õ(856k6κ12‖H‖6
F

93ε6). Since H is a general setting that can
either be X or Y, the runtime complexity for our algorithm
is

max

{
Õ

(
856k6

X κ12
X ‖X‖6

F

93ε6

)
, Õ

(
856k6

X,tκ
12
Y ‖Y‖6

F

93ε6

)}
.

�

[1] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, Berlin, 2006).

[2] K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence
(CRC Press, Boca Raton, FL, 2010).

[3] S. E. Shimony, Finding maps for belief networks is np-hard,
Artif. Intell. 68, 399 (1994).

[4] N. D. Lawrence, Gaussian process latent variable models for
visualisation of high dimensional data, in Advances in Neural
Information Processing Systems (MIT Press, Cambridge, MA,
2004), pp. 329–336.

[5] D. D. Lee and H. S. Seung, Learning the parts of objects by
non-negative matrix factorization, Nature 401, 788 (1999).

[6] J. C. Loehlin, Latent Variable Models: An Introduction to Factor,
Path, and Structural Analysis (Lawrence Erlbaum Associates,
Mahwah, NJ, 1987).

[7] R. Salakhutdinov and A. Mnih, Probabilistic matrix factor-
ization, in Proceedings of the 20th International Conference
on Neural Information Processing Systems, NIPS’07 (Curran
Associates Inc., Red Hook, NY, 2007), pp. 1257–1264.

[8] M. N. Schmidt, O. Winther, and L. K. Hansen, Bayesian
non-negative matrix factorization, in Proceedings of the
International Conference on Independent Component
Analysis and Signal Separation (Springer, Berlin, 2009),
pp. 540–547.

[9] S. Geman and D. Geman, Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images, in Readings in
Computer Vision (Elsevier, Amsterdam, 1987), pp. 564–584.

[10] T. Zhou, J. A. Bilmes, and C. Guestrin, Divide-and-conquer
learning by anchoring a conical hull, in Advances in Neural
Information Processing Systems (MIT Press, Cambridge, MA,
2014), pp. 1242–1250.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum
likelihood from incomplete data via the EM algorithm, J. Roy.
Stat. Soc. Ser. B 39, 1 (1977).

[12] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, Data mining with big
data, IEEE Trans. Knowl. Data Eng. 26, 97 (2013).

[13] E. Tang, A quantum-inspired classical algorithm for recommen-
dation systems, in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (ACM Press, New York,
2019), pp. 217–228.

[14] T. Zhou, W. Bian, and D. Tao, Divide-and-conquer anchoring
for near-separable nonnegative matrix factorization and com-
pletion in high dimensions, in Proceedings of the 2013 IEEE
13th International Conference on Data Mining (ICDM’13),
(IEEE, Los Alamitos, CA, 2013), pp. 917–926.

[15] A. Gilyén, S. Lloyd, and E. Tang, Quantum-inspired low-rank
stochastic regression with logarithmic dependence on the di-
mension, arXiv:1811.04909.

[16] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature 549, 195
(2017).

[17] S. Chakrabarti, A. M. Childs, T. Li, and X. Wu, Quantum
algorithms and lower bounds for convex optimization, Quantum
4, 221 (2020).

033199-15

https://doi.org/10.1016/0004-3702(94)90072-8
https://doi.org/10.1038/44565
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1109/TKDE.2013.109
http://arxiv.org/abs/arXiv:1811.04909
https://doi.org/10.1038/nature23474
https://doi.org/10.22331/q-2020-01-13-221

DU, HSIEH, LIU, AND TAO PHYSICAL REVIEW RESEARCH 2, 033199 (2020)

[18] Y. Du, M.-H. Hsieh, and D. Tao, Efficient online quantum
generative adversarial learning algorithms with applications,
arXiv:1904.09602.

[19] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular
value transformation and beyond: Exponential improvements
for quantum matrix arithmetics, in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing
(ACM Press, New York, 2019), pp. 193–204.

[20] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[21] A. Kapoor, N. Wiebe, and K. Svore, Quantum perceptron
models, in Advances in Neural Information Processing Systems
(MIT Press, Cambridge, MA, 2016), pp. 3999–4007.

[22] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal
component analysis, Nat. Phys. 10, 631 (2014).

[23] I. Kerenidis and A. Prakash, Quantum recommendation sys-
tems, in Proceedings of the 8th Innovations in Theoretical
Computer Science Conference (ITCS’17) (Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018).

[24] Y. Du, T. Liu, Y. Li, R. Duan, and D. Tao, Quantum divide-
and-conquer anchoring for separable non-negative matrix fac-
torization, in Proceedings of the 27th International Joint Confer-
ence on Artificial Intelligence (AAAI Press, Stockholm, 2020),
pp. 2093–2099.

[25] E. Aïmeur, G. Brassard, and S. Gambs, Quantum clustering
algorithms, in Proceedings of the 24th International Conference
on Machine Learning (ACM Press, New York, 2007), pp. 1–8.

[26] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algo-
rithms for supervised and unsupervised machine learning,
arXiv:1307.0411.

[27] N. Wiebe, A. Kapoor, and K. M. Svore, Quantum algorithms
for nearest-neighbor methods for supervised and unsupervised
learning, Quantum Inf. Comput. 15, 316 (2015).

[28] N.-H. Chia, A. Gilyén, T. Li, H.-H. Lin, E. Tang, and C.
Wang, Sampling-based sublinear low-rank matrix arithmetic
framework for dequantizing quantum machine learning, in
Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (ACM Press, New York, NY, 2020),
pp. 387–400.

[29] D. Jethwani, F. Le Gall, and S. K. Singh, Quantum-
inspired classical algorithms for singular value transformation,
arXiv:1910.05699.

[30] I. Kerenidis and A. Prakash, Quantum gradient descent for
linear systems and least squares, Phys. Rev. A 101, 022316
(2020).

[31] I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, q-means:
A quantum algorithm for unsupervised machine learning, in Ad-
vances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2019), pp. 4134–4144.

[32] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore,
and X. Wu, Quantum SDP solvers: Large speed-ups, optimality,
and applications to quantum learning, in Proceedings of the
46th International Colloquium on Automata, Languages, and
Programming (ICALP’19) (Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 2019).

[33] T. Li, S. Chakrabarti, and X. Wu, Sublinear quantum algorithms
for training linear and kernel-based classifiers, in Proceed-
ings of the International Conference on Machine Learning
(ACM Press, New York, 2019), pp. 3815–3824.

[34] S. Geman and D. Geman, Stochastic relaxation, gibbs distri-
butions, and the bayesian restoration of images, IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-6, 721 (1984).

[35] R. Salakhutdinov and A. Mnih, Probabilistic matrix
factorization, in Proceedings of the 20th International
Conference on Neural Information Processing Systems
(NIPS’07) (Curran Associates Inc., Red Hook, NY, 2007),
pp. 1257–1264.

[36] M. Belkin and K. Sinha, Polynomial learning of distribution
families, in Proceedings of the 2010 IEEE 51st Annual Sympo-
sium on Foundations of Computer Science (IEEE, Los Alamitos,
CA, 2010), pp. 103–112.

[37] N.-H. Chia, T. Li, H.-H. Lin, and C. Wang, Quantum-
inspired classical sublinear-time algorithm for solving low-
rank semidefinite programming via sampling approaches,
arXiv:1901.03254.

[38] N.-H. Chia, H.-H. Lin, and C. Wang, Quantum-inspired sub-
linear classical algorithms for solving low-rank linear systems,
arXiv:1811.04852.

[39] E. Tang, Quantum-inspired classical algorithms for
principal component analysis and supervised clustering,
arXiv:1811.00414.

[40] C. Ding, T.-Y. Bao, and H.-L. Huang, Quantum-inspired sup-
port vector machine, arXiv:1906.08902.

[41] J. M. Arrazola, A. Delgado, B. R. Bardhan, and S. Lloyd,
Quantum-inspired algorithms in practice, arXiv:1905.10415.

[42] Y. Liu and S. Zhang, Fast quantum algorithms for least squares
regression and statistic leverage scores, Theor. Comput. Sci.
657, 38 (2017).

[43] D. Donoho and V. Stodden, When does non-negative matrix
factorization give a correct decomposition into parts?, in Ad-
vances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2004), pp. 1141–1148.

[44] S. Arora, R. Ge, R. Kannan, and A. Moitra, Computing a
nonnegative matrix factorization—provably, SIAM J. Comput.
45, 1582 (2016).

[45] X. Yu, W. Bian, and D. Tao, Scalable completion of nonnegative
matrix with separable structure, in Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI Press, Phoenix,
Arizona, 2016), pp. 2279–2285.

[46] A. Kumar, V. Sindhwani, and P. Kambadur, Fast coni-
cal hull algorithms for near-separable non-negative matrix
factorization, in Proceedings of the International Confer-
ence on Machine Learning (ACM Press, New York, 2013),
pp. 231–239.

[47] A. W. Van Der Vaart and J. A. Wellner, Weak convergence, in
Weak Convergence and Empirical Processes (Springer, Berlin,
1996), pp. 16–28.

[48] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge
University Press, Cambridge, UK, 2012).

[49] R. Kannan and S. Vempala, Randomized algorithms in numeri-
cal linear algebra, Acta Numer. 26, 95 (2017).

033199-16

http://arxiv.org/abs/arXiv:1904.09602
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nphys3029
http://arxiv.org/abs/arXiv:1307.0411
http://arxiv.org/abs/arXiv:1910.05699
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1109/TPAMI.1984.4767596
http://arxiv.org/abs/arXiv:1901.03254
http://arxiv.org/abs/arXiv:1811.04852
http://arxiv.org/abs/arXiv:1811.00414
http://arxiv.org/abs/arXiv:1906.08902
http://arxiv.org/abs/arXiv:1905.10415
https://doi.org/10.1016/j.tcs.2016.05.044
https://doi.org/10.1137/130913869
https://doi.org/10.1017/S0962492917000058

